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Abstract 

Installations of large scale PV solar farms are rapidly increasing, worldwide. This is causing a 

growing apprehension that inertialess power injections from these inverter based generators 

will result in a decline in power system stability. Instead, this thesis presents novel applications 

of a patent pending technology whereby the PV solar farms actually help significantly increase 

system stability. A novel 24/7 (night and day) control of a large-scale PV solar farm as a 

dynamic reactive power compensator STATCOM, termed PV-STATCOM, is presented for 

damping low-frequency electromechanical power oscillations resulting in a significant 

improvement in power transfer capability of existing power transmission systems. A new real 

and reactive power modulation based control of PV-STATCOM is demonstrated during 

daytime that combines the functionalities of both a STATCOM and a Battery Energy Storage 

System (BESS) to provide significantly enhanced levels of power oscillation damping than 

that achieved by either a STATCOM or a BESS. 

 

The effectiveness of the proposed PV-STATCOM Power Oscillation Damping (POD) control 

techniques based on modulation of reactive power, real power or a combination of both is 

evaluated through both small signal and Electromagnetic Transients simulations studies. 

Participation factor analysis is utilized for selection of appropriate control signals and damping 

controllers. The POD controllers are designed through small signal Residue analysis and 

validated through Simplex Optimization technique in electromagnetic transient simulations. 

The efficacy of the proposed PV-STATCOM controls is demonstrated on three power systems: 

Single Machine Infinite Bus SMIB system, Two-Area system, and the 12 bus FACTS power 

system, which exhibit different power oscillation modes. New ramp up techniques for power 

restoration from solar farms are also presented, which are substantially faster than those 

specified by grid codes. A methodology for coordination of proposed PV-STATCOM controls 

with existing Power System Stabilizers (PSSs) on synchronous generators is further described 

for further damping enhancement. 
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This thesis thus presents a novel technology that can not only help increase the penetration of 

large scale PV solar farms but utilize them for reducing the need for construction of expensive 

new lines or use of costly Flexible AC Transmission systems for stability improvement. 

Keywords 

Photovoltaic (PV) Solar Farms, STATCOM, PV-STATCOM, Flexible AC Transmission 

System (FACTS), Power System Stabilizer (PSS), Optimization, Small Signal Analysis, Power 

Oscillation Damping (POD), Battery Energy Storage System (BESS), Reactive Power 

Compensation, Transmission Limits, Electromagnetic Transients Study (EMT), Real Power 

Restoration, Control Coordination.  
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Chapter 1  

1 Introduction 

Environmental concerns related to power generation with fossil fuels on one hand and 

the limitation of hydro and gas power plants on the other have caused a surge of interest 

and investments in the integration of renewable energy sources. In theory, renewable 

energy sources are able to provide 3000 times more power than the current global energy 

needs [1]. Among all renewable energy sources such as Hydro, Geothermal, and 

Bioenergy, Wind and Photovoltaic (PV) power are seeing the maximum growth. 

  According to a Global Wind Energy Council (GWEC) 2014 report [2], the total wind 

power plant installation in 2014 has reached 51,473 MW with the highest contribution of 

45.1% from China.  Additionally, the price reduction in power generation with PV units 

[3] has resulted in a rapid increase in PV power generation around the world. Solar power 

generation is experiencing a rapid growth at a rate of almost 40% worldwide [4] with 

governmental organizations enforcing utilities to supply their demands by renewable 

energy sources. For example, states such as New Jersey and New York are planning to 

supply more than 20% of their electricity demand by 2021 through renewables. In addition, 

according to [5], 8% of all of Ontario’s energy demand will be supplied by PV generation 

by 2025. To reach this goal, installation of utility-scale PV plants (in order of MWs) on the 

Ontario power network is predicted.  Figure 1.1 illustrates the exponential growth in solar 

power generation globally [6]. An increase in the penetration of PV power plants, 

especially plants with utility-scale power rating, reduces the need for  conventional sources 

of power, such as synchronous generators [7].  
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Figure 1.1Total solar power global capacity [6] 

In this thesis, the main goal is to propose novel control techniques for utility-scale PV 

systems in order to overcome the stability challenges with the interconnection of large-

scale PV power plants to existing power networks, as well as to further improve the stability 

performance of power systems through novel power oscillation damping controls for these 

large-scale power plants.   

 Large PV Solar Systems 

Recently, large-scale PV solar farms with more than 100 MW capacity have been 

connected worldwide, such as: Kamuthi, in Tamil Nadu, India (648 MW) [8], Solar Star I 

and II (579 MW) in USA, Rancho Cielo Solar Farm (600 MW), Topaz Solar Farm (550 

MW), Costas, Aquitaine project in France (300 MW) [9], Agua Caliente Solar Project (295 

MW) in Arizona, USA, California Valley Solar Ranch Farm (250 MW), USA, Huanghe 

Hydropower Golmud Solar Park in China (200 MW) [10-12], Neuhardenberg Solar Park 

in Germany (145 MW)[13]. These sizes of solar farms are fast becoming comparable to 

conventional synchronous generators.  

 Power System Stability  

The ability of a power system to remain in a state of equilibrium point during the normal 

power system operation and then regain the state of equilibrium after small and/or large 

disturbances is defined as the power system stability [14]. Power systems are subjected to 
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small disturbances such as load switching and large disturbances such as line, generator or 

transformer outages due to faults. The power system needs to maintain its operation by 

properly responding to these disturbances without failure. As a power system expands and 

more loads and generation units are connected to the system, it is more likely that the 

number of disturbances will increase in the network. Power system stability is classified as 

follows: 

1.2.1 Mid and Long-term Stability 

Mid and long-term stability are defined as the dynamic response of the power system to 

severe contingencies which result in frequency deviation. The power system instability in 

the mid-to-long-term occurs within seconds to minutes in which the conventional power 

system governors and excitation units are not able to properly address the contingency due 

to their fast or slow response times [14-16].  

1.2.2 Rotor Angle Stability 

Rotor angle stability determines the ability of interconnected synchronous machines in the 

power system to maintain their synchronism. The rotor stability involves the 

electromechanical oscillations of power systems in which the power output of the 

synchronous generators varies with the generator rotor angle. These electromechanical 

oscillations are in the frequency range of 0.1 to 2 Hz [14] which are divided into two main 

categories:  

• Local mode oscillations due to the oscillation of a single generator with respect to 

the rest of the power system with a frequency range of 1 to 2 Hz. 

• Inter-area mode of oscillations resulting from the swing of a group of generators 

in one part and other groups of machines on another part of the power system. 

These oscillations have a relatively lower frequency range of 0.1 to 0.8 Hz.  

1.2.3 Voltage Stability 

Voltage stability refers to the ability of a power system to maintain voltages at all buses in 

an acceptable range. System instability occurs due to a lack of adequate reactive power 
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support causing the bus voltages to decrease with increased loading, and eventually 

collapse. A good example of voltage instability is that which led to the 2003 blackout in 

North America as reported in [17]. The attempts from the operators to restore the voltage 

were unsuccessful and voltage continued decreasing following cascading line outages. In 

[18] voltage control techniques for voltage stability improvements of power systems are 

presented for an Italian power system. It is indicated that the proper response time is 

required to maintain the power system voltage stability during voltage drop in the power 

system.  

1.2.3.1 Case Study  

On August 10th 1996, following a series of disturbances, the Western System Coordinating 

Council (WSCC) grid in the USA  broke up into four islanded regions affecting 7.5 million 

customers [19]. Figure 1.2 illustrates the line power flow from California-Oregon Intertie 

(COI).  

 

Figure 1.2 Line power flow from California-Oregon Intertie (COI) [19] 

Illustrated in Figure 1.2 is the inter-area electromechanical mode of oscillation growth with 

an oscillation frequency of 0.24 Hz and damping ratio of -2.66% between northern and 

southern parts of the WSCC grid. This example is one of many occurrences of power 

oscillations in interconnected power systems. Other major examples include a 0.15 Hz 

oscillation through the synchronous interconnection of the Turkish Power System to the 
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European Network of Transmission System Operators for Electricity ENTSO-E [20], and 

0.22 to 0.26 Hz oscillations in UCTE/CENTREL Power System [21]. These low-frequency 

power oscillations are a limiting factor for power transmission through long transmission 

lines [22] as shown in Figure 1.3.  

.  

Figure 1.3 Power transmission limits. 

Figure 1.3 [23] depicts that in order to increase the transmission capability of existing 

transmission lines, improvements in the electrical damping limit may be required.  With 

regards to the increasing demand for transmitting larger amounts of power through existing 

transmission lines, this thesis presents improvements in inter-area power oscillations with 

a novel control concept of large-scale PV systems.  

 Impact of PV Solar Farms on Power Oscillations 

Traditional power systems have full control over power generation by balancing variable 

demand and generation through controlling the active power generation in the power 

utilities. Whilst, future power systems with utility-scale solar power plant interconnections 

will experience not only variable power demand but also variability in generation caused 

by changes in the solar radiation and ambient temperature [24]. Table 1.1 illustrates the 

main advantages and disadvantages of various power generation units. 
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Table 1.1 Comparison among PV, Wind, and Conventional power plants[25] 

Characteristics  PV Wind Conventional Generator 
Fluctuation High Low No 

Cost for Large-scale High Moderate Low to moderate 

Maintenance cost Minimal High Moderate 

Inertia No inertia Low inertia Large Inertia 

Capacity factor Very low Low to moderate High 

Annual growth Very high High High 

As shown in Table 1.1, one of the concerns regarding large-scale PV power plants is the 

absence of inertia in these power units.  Some reports have examined the effect of these 

large-scale solar power plants on power system stability. In [26] the effect of large-scale 

and distributed photovoltaic solar generation units on power system stability have been 

studied for the province of Ontario. Furthermore, in [25, 27, 28] the effect of increase in 

the PV power penetration on power system stability has been illustrated. According to [25], 

the replacement of existing synchronous generators with PV solar power plants will further 

reduce the power system stability by decommissioning the auxiliary synchronous generator 

controllers such as Automatic Voltage Controllers (AVR). It is therefore evident from the 

above studies that inertia-less PV power generation can adversely affect the power systems 

small signal and transient stability.  

 Power Oscillation Damping with FACTS Devices 

Power System Stabilizer (PSS) units are traditionally installed on the generator exciter 

units for damping of these power oscillations, [14, 29]. On the other hand, Flexible AC 

Transmission System (FACTS) devices have demonstrated the capability to effectively 

damp both inter-area and local mode oscillations. Some practical examples can be found 

in [30] such as: stability improvement in Furnas/Brazil with 500 kV Thyristor Controlled 

Series Compensator TCSC, where TCSC damping function is activated hundreds of times 

a day to stabilize the power system, [30] and Raipur 71 MVar TCSC in India in which the 

inter-area mode of oscillations for a 412 km long transmission line between Eastern and 

Western regions of the Indian grid is dampened [31]. Voltage Source Converter based 

FACTS devices such as STATic synchronous COMpensator (STATCOM) can be used to 

further improve the power system stability.  In [32], a comparative study between various 

FACTS devices for Power Oscillation Damping (POD) is presented. As shown in [32], 
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STATCOM devices can significantly increase the stability margins of the power system, 

especially during the contingencies. The other advantage of STATCOM devices compared 

to series FACTS devices, such as TCSC, is the voltage profile improvement whereby 

STATCOMs can improve the voltage stability of the power system. Power system stability 

improvements with STATCOMs have been studied widely in the literature [33-36]. 

Although the advantages of STATCOM equipped with Power Oscillation Damping (POD) 

controllers for damping low-frequency power oscillations are illustrated in these studies, 

STATCOMs are more expensive in comparison to other FACTS devices such as TCSCs 

and Static Var Compensators (SVC). The price range for these devices per kW can be 

found in [37]. Hence, a cost-benefit analysis has to be done to evaluate the suitability of 

these expensive devises for POD [32]. 

1.4.1 STATCOM 

STATCOM is a shunt-connected reactive power compensation device which mainly 

consists of a DC link capacitor bank, solid-state switches such as Gate Turn-Off Thyristors 

(GTO) or Insulated Gate Bipolar Transistor (IGBT). An AC filter is used to eliminate the 

high order harmonic frequencies and interfacing transformer. The main purpose of 

installing a STATCOM on the power system is to enhance the power system performance 

with a very fast response time (in order of a few cycles).  

A difference in the magnitude of the voltage at the STATCOM terminal and Point of 

Common Coupling (PCC) results in bi-directional reactive power flow from STATCOM 

to PCC and vice versa. Whenever the voltage at the STATCOM terminal is greater than 

the PCC voltage, STATCOM injects reactive power into the PCC. This behavior of the 

STATCOM is the same as the behavior of the shunt capacitor. On the other hand, if the 

voltage at the STATCOM terminal is less than the voltage of the PCC, the STATCOM 

absorbs the reactive power from the PCC and behaves like an inductor.  

The advantage of STATCOMs over fixed capacitor banks and shunt inductors connected 

to the grid is the rapidity of its control. Since the STATCOMs exchange reactive power 

using semiconductor devices, power losses are incurred in the operation of these devices. 

Hence, in order to keep the capacitor voltage at its desired value, a small amount of active 
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power is absorbed from the grid by the STATCOM to keep the capacitor charged during 

its operation.   

The basic configuration of a STATCOM is a two-level 3-phase Voltage Source Converter 

(VSC). A Pulse Width Modulation (PWM) technique is used to generate the On and Off 

firing signals for IGBTs or GTOs. Different PWM techniques have been presented in the 

literature, such as Sinusoidal PWM (SPWM) and Space-Vector PWM. Comparative 

studies of the performance efficiencies of different PWM techniques are presented in [38] 

and [39]. The specific technique of PWM is mainly selected based on the inverter 

application. Among PWM techniques, SPWM technique, as a basic and common 

technique, has shown acceptable results in most of the power system studies.  

In SPWM, by comparing three sinusoidal signals with three carrier signals, firing pulses 

for IGBT or GTO units are generated. It is shown that the switching of semiconductor 

devices results in harmonic injection to the PCC [40]. Hence, for higher voltage 

applications, STATCOMs with multilevel inverter features have been proposed in [41-43]. 

1.4.1.1 Control Characteristics 

Despite different STATCOM topologies, the operating characteristic of the 

STATCOMs is the same. The Voltage-Current Characteristic of STATCOMs is presented 

in Figure 1.4. It is noted that the STATCOM can provide rated capacitive current even at 

very low voltages, which is not the case with Static Var Compensators (SVCs) [22].  

1.4.1.2 Control Techniques with Case Studies  

STATCOMs have been installed on various power systems, such as a 140 MVAR 

STATCOM in Carro Navia [44], a 140 MVAR STATCOM in the Zhangjiagang plant, 

Eastern China [45] and a 16 MVAR STATCOM in Evron, France [46]. According to [44] 

to [46], it is shown that the actual installation of STATCOMs can help the power system 

in different ways. For example, in [44], the STATCOM is used for voltage stability and an 

increase in the power transfer capability of the network; in [45], the STATCOM is used for 
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Figure 1.4 The voltage-current characteristic of the STATCOM  [22] 

power factor correction in a very large arc furnace in a steel company. The  dynamic control 

of the positive, negative and zero sequence currents due to the existence of an unbalanced 

load from a railway company is presented in [46]. Besides these actual installations of 

STATCOMs, many studies have presented various other control strategies for STATCOM 

devices such as the mitigation of Sub-Synchronous Resonance [47] and an increase in fault 

ride-Through capability of wind farms [48]. The main idea behind all the aforementioned 

control strategies is to control the voltage at the PCC by rapidly exchanging reactive power 

from the STATCOM with the grid. 

1.4.1.3 Optimized Coordinated Controller Design 

Although improvements in power system stability with POD controllers in FACTS devices 

have been shown in the literature, the adverse interaction between POD controllers and 

existing PSS units in the power system has been addressed in [49, 50]. Hence, FACTS 

devices need to be coordinated with PSSs to avoid any adverse interaction [51]. A 

technique for controller coordination of PSS and FACTS has been proposed in [50, 52, 53]. 

In [52], the optimization is done based on minimizing the dynamic oscillations of the line 
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power. In [53], optimization based on a pole placement approach has been adopted. The 

pole placement technique which is used in most of the literature is performed based on a 

linearized model of the power system. In addition,  according to [54], other objective 

functions, including PSS gain, should also be minimized in order to reduce the excessive 

controller effort of PSS. After the controllers are designed based on power system 

linearized model, additional studies are required to evaluate the performance of the 

controllers in detailed EMT-type simulation studies. In this thesis, a simple though 

effective technique for coordination between PSS and POD controllers is presented in 

which the entire coordination and optimization of controllers are performed in detailed 

EMT-type simulation studies.  

1.4.1.4 Placement of FACTS Devices for POD 

The location of FACTS devices has a major impact on their performance in the power 

system. In [55] the optimal location of FACTS devices based on enhancement of steady-

state stability of the power systems is presented. In [56], the placement of FACTS devices 

to increase the loadability of a power system is described. In [57-59], the techniques to 

determine optimal locations of FACTS devices for damping low-frequency power 

oscillations are proposed. Since FACTS devices mainly operate based on reactive power 

modulation, the optimal location selection is based on the effectiveness of reactive power 

controllers on the power system. In [58], the placement technique based on residue analysis 

for energy storage devices is presented. In this thesis, the effect of location of the PV power 

system based on its real and reactive power output is presented.  

1.4.2 Energy Storage Devices 

Large scale energy storage devices such as Flywheel Energy Storage Systems (FESS) and 

Battery Energy Storage Systems (BESS) can effectively improve the performance of power 

systems. Some examples are: AES Energy Storage Angamos Battery Energy Storage 

System (BESS), in which 20 MW/5MWh BESSs are used for frequency regulation 

purposes and 36 MW BESS for improving grid stability and integrating wind energy in 

Younicos Battery Park [60]. In [61-63] POD with energy storage devices is presented. 

Although it is demonstrated that the POD based energy storage devices can increase the 
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damping ratio of selected mode of oscillations, the comparison between these devices with 

other FACTS devices for POD has not been studied. Furthermore, the battery models are 

simple voltage source with a converter in which other BESS dynamics are not considered 

during the transients.  

 Control of PV Solar Farms as STATCOM (PV-
STATCOM) 

1.5.1 Smart Inverters 

In 2009, EPRI’s Photovoltaic & Storage integration program started a new set of studies 

for high penetration of Distributed Energy Resources (DER) [6]. The term “Smart Inverter” 

was proposed for any inverter-based Distributed Generation (DG) that is facilitated with 

any real or reactive power controller features. The goal of this project was to enable high-

penetration scenarios in which different energy resources such as PV and BESS operate in 

a smart and beneficial way [6]. This initiative involved many inverter manufacturers, 

utilities, universities and other research organizations. The results from the research have 

provided valuable inputs for Standards developed by the National Institute of Standards 

and Technology (NIST) and the International Electronics Commission (IEC), including 

IEEE 1547 and California Rule 21. Recently many papers have used the term Smart-

Inverter for any active control strategy related to DG inverters. These control strategies 

mainly refer to reactive power modulation with remnant DG inverter capacity [25, 64-66]. 

Based on Rule 21, future smart PV inverters can have the ability to regulate the PV real 

power as well.  

1.5.2 Updates in Standards for PV Interconnections 

The DERs have been widely installed on the distribution systems. Besides all the benefits 

of DER interconnection to the power systems, such as improvement in voltage profile, 

reduction in the line and transformer losses, reduction in environmental impact and 

enhancement in power quality, [67] many studies have shown the adverse effects of DER 

interconnection to the distribution systems. To minimize many of the aforementioned 

problems, standards such as IEEE 1547-2003 have been established. Based on IEEE Std 

1547-2003, “the DER shall not actively regulate the PCC voltage”. According to this 
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standard, voltage regulation by DERs may conflict with other areas of Electrical Power 

Systems. In the meantime, some studies have shown the drawback of this non-active DG 

power control and proposed new control strategies to overcome these challenges by active 

control strategies for DG inverters [68-70]. On the other hand, current standards such as 

IEEE 1547 [71], VDE-AR-N 4105: 2011 [72] (low voltage) BDEW-2008 [73] 

(medium/high voltage) in European standard, AS 4777-2005 in New Zealand and IEC 

61727-2004 [17] for PV interconnections provide the specifications of reactive power 

regulation for inverter based DGs [74]. According to [74], it is seen that European 

standards provide more flexibility in reactive power modulation from DG inverters than 

IEEE 1547. For example, the VDE and BDEW both addressed the voltage support from 

the DG inverters by reactive power injection or absorption, while in IEEE 1547, DGs shall 

not actively regulate the PCC voltages. It can be inferred that current standards need to be 

further reviewed to permit the DG controllers to actively participate in power system issues 

at their PCC. Hence, new regulations have been presented for DG operations such as Rule 

No. 21. In Rule 21, it has been stated that “the smart inverters may actively regulate the 

voltage at the PCC while in parallel with Distribution Provider’s Distribution system”. 

Along with development in Rule 21, IEEE 1547 series have presented a new version of 

IEEE 1547 as IEEE 1547a which allows the DG inverters to control the voltage at PCCs.   

1.5.3 POD with PV-STATCOM  

A novel patented control of PV solar farms as STATCOM (PV-STATCOM) was presented 

for enhancing the connectivity of wind farms in the night [75] and for increasing power 

transfer capacity through damping of power oscillations both during night and day [76]. 

This control technique utilized the entire inverter capacity in the nighttime and the inverter 

capacity remaining after real power generation during daytime for power oscillation 

damping. An eighth-order POD controller for large PV solar farm was proposed in [77], 

whereas an energy function based design of POD controller was presented in [78]. Both 

these controllers are relatively complex in design. All the POD controls in the above papers 

[75-78] are based on remaining inverter capacity during daytime. Hence, the proposed 

POD capability of solar farm is limited during daytime, in fact becoming zero during hours 
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of full sun. Further, the effectiveness of the proposed control technique with different 

possible PV plant locations has not been studied.  

In [79], the real and reactive power POD controller for PV system is proposed. The study 

is done for a Single Machine Infinite Bus (SMIB) system. In this study, the effect of 

different PV real power generation levels has not been investigated. Furthermore, the 

proposed controller only addresses one mode of oscillations. It is noted from the studies 

that the effect of variation of PV real power on POD effectiveness needs to be further 

investigated. In addition, a comparison between the effect of real and reactive power based 

POD controllers for PV systems needs to be performed.  

 Scope and Objectives of the Thesis 

The objective and the scope of this thesis are as follows:  

1. Examine the effectiveness of novel, patent-pending, real and reactive power based 

power oscillation damping (POD) controls of PV-STATCOM in various study 

systems exhibiting multiples oscillatory modes. These controls include real power 

based power oscillation damping controller (P-POD), reactive power based 

controller (Q-POD) and the combined real and reactive power based controller (PQ-

POD). 

2. Compare the performance of real power based on POD (P-POD) controller of 

varying sizes of a Battery Energy Storage System (BESS) with the Reactive power 

based POD (Q-POD) controller of PV-STATCOM.  

3. Study of a coordinated optimized control of Power System Stabilizers (PSSs) with 

POD controllers of PV-STATCOM utilizing inverter capacity remaining after real 

power generation during daytime.  

4. Examine the performance of a novel reactive power based POD Control of a PV-

STATCOM utilizing the full capacity of the inverter at any time during day and 

night.  
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5. Study the effectiveness of combined real and reactive power based power 

oscillation damping control (PQ-POD) of the PV-STATCOM together with the 

influence of PV-STATCOM location in systems exhibiting both local and interarea 

oscillatory modes. 

6. Investigate the performance of the novel PV-STATCOM POD controllers in a 

multimachine system exhibiting several oscillatory modes utilizing Wide Area 

Measurement control signals which are impacted by communication delays. 

 

 Outlines of Chapters 

1. Chapter 2: presents power systems and components modeling for detailed 

EMTDC and small signal in PSCAD/EMTDC and Matlab Simulink software. The 

concept of PV-STATCOM in Partial and Full STATCOM mode of operation is 

discussed.  Controllers design procedure and PV-STATCOM placement technique 

based on residue analysis are presented in this chapter.  

2. Chapter 3: Presents POD with Full PV-STATCOM mode during the night time 

based on inverter reactive power output control Q-POD. In addition, real power 

based power oscillation damping P-POD control with BESS is presented. A 

comparative study is done to achieve the similar damping of 100 MW PV-

STATCOM with BESS.  This study has been performed on SMIB power system in 

which only one mode of oscillation is observed. To perform the comparative study, 

the controllers are optimized in PSCAD/EMTDC software.  

3. Chapter 4: Presents the optimized coordination between PV-STATCOM POD 

controllers with existing PSS units. Two-Area power system is selected as the study 

system in which local and interarea modes of oscillations are observed. In this 

chapter, the partial power oscillation damping with generators PSS units and PV-

STATCOM in partial mode of operation is studied. Coordination is performed in 

detailed EMT-type simulation in PSCAD software with Master/Slave simulation. 
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The performance of the PV-STATCOM in partial mode is compared with the same 

size actual STATCOM.   

4. Chapter 5: presents novel control concept for Q-POD with PV-STATCOM in 

which the entire PV inverter capacity is utilized during the day and night. Two-

Area power system is selected as the study power system. This POD control 

technique provides 24/7 POD ability from PV system regardless of the time of the 

day. Furthermore, novel fast ramp and nonlinear PV real power restoration with Q-

POD is presented.   

5. Chapter 6: presents novel combined real and reactive power POD control 

technique for PV systems. The controllers are design based on residue technique 

and further optimized in PSCAD/EMTDC software. The effect of the location of 

PV-STATCOM on the POD is investigated based on the small signal analysis. In 

addition, the effect of sudden variation in PV real power generation on power 

system frequency is illustrated.  

6. Chapter 7: The effect of proposed PQ-POD controller on power system with 

multiple modes of oscillations is investigated. The effect of Q-POD and P-POD 

controller on each mode of oscillations are presented and controller signal selection 

based on available PV system real power is presented. Both EMT-Type simulation 

and small signal studies were conducted to justify the results. The control signal 

selection based on the Participation Factor analysis is presented. The effect of the 

PV real power injection on the power system stability with and without proposed 

techniques were presented.  
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Chapter 2  

2 Power System Modeling and Controller Design 

 Introduction 

In this chapter, the concept of PV-STATCOM is presented. The models of different power 

system components including transmission lines, transformers, synchronous generators, 

and loads for stability studies are presented. Detailed models of PV system and its various 

conventional and PV-STATCOM controllers are presented. The design procedures of 

various PV system controllers are explained. The need for detailed EMT-type and small 

signal study is discussed. The PV-STATCOM operation in both the domains is described.  

A comparison is performed between the small signal model simulation and 

PSCAD/EMTDC detailed model simulation of the proposed PV-STATCOM system. The 

POD controller design techniques and the effect of PV-STATCOM location on power 

system stability are explained in this chapter. Embedded Simplex optimization technique 

for PV-STATCOM controller design in PSCAD/EMTDC software based on Master/Slave 

simulation is presented. In addition, a detailed model of aggregated Battery Energy Storage 

System (BESS) is developed in PSCAD/EMTDC software. 

 PV-STATCOM Concept 

The power output from the PV system during a sunny day is shown in Figure 2.1. From 

Figure 2.1, it is shown that even during a full sunny day, in 24 hours operation, more than 

70% of overall time the PV system operates below its rated power output. A patent-pending 

technology has been proposed [80], according to which the PV system can be controlled 

as a STATCOM, termed PV-STATCOM, in different modes of operation as described 

below:  

2.2.1 Partial STATCOM Operation Mode 

In the Partial STATCOM operation mode, the PV inverter capacity remaining after real 

power generation is utilized for STATCOM mode of operation during daytime. In this 

mode, which is depicted in Figure 2.1, the priority of the controller is to convert the PV 

system Maximum Power (MP) from Direct Current (DC) to Alternating Current (AC), and 
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only the remaining capacity of the inverter can be utilized for reactive power control. 

Hence, the capability of Partial STATCOM mode of operation is limited during noon hours 

when the entire inverter capacity is used up for real power generation. 

 

Figure 2.1 Power output of a 100MW PV system versus time on a sunny day (Partial 

STATCOM operation mode) 

2.2.2 Full STATCOM Operation Mode 

In this mode, the entire PV solar farm inverter capacity is utilized for STATCOM mode of 

operation. The full inverter capacity is continuously available during night time. During 

daytime, as soon as any unacceptable low-frequency power oscillations due to any system 

disturbance are detected, the real power generation function is discontinued for a brief 

period (typically less than a minute) and the solar inverter transforms into a STATCOM 

with the entire inverter capacity for power oscillation damping. If the low-frequency 

oscillations are damped, the real power generation function is reinstated.  
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Figure 2.2 Power output of a 100MW PV system versus time on a sunny day (Full 

STATCOM Operation mode) 

There is another mode of Full PV-STATCOM operation in which the revenue making real 

power generation function for the grid is discontinued for a brief period. However, during 

this period both real and reactive power output of PV system are controlled to damp power 

oscillation. This mode has been proposed in Patent [80], which will be discussed later in 

Section 5.4.1.  

 

 Power System Studies 

Proposed POD controllers for PV-STATCOM system are tested on three well-known 

power systems to ensure the functionality of the controllers. Power systems used in this 

thesis are as follows:  
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2.3.1 Study System 1: Single Machine Infinite Bus (SMIB) System 

The Single Machine Infinite Bus (SMIB) power system [81] is used as the initial system 

for POD controller design. Figure 2.3 illustrates the SMIB power system. A large 

synchronous generator is connected to an infinite bus through a 600-km line. Since SMIB 

power system contains one synchronous generator, during the contingencies such as a fault 

on the transmission line, only one electromechanical mode of oscillation will appear after 

the contingency. Hence, SMIB power system is suitable for first step development of POD 

controllers in which only one mode of oscillation is addressed. The data for this system is 

given in Appendix A.  

 

Figure 2.3 Single-line diagram of an SMIB system with a 100 MW PV plant connected 

to the midline. 

2.3.2 Two-Area Power System 

The Two-Area power system with four machines connected with 220 km tie-line [14, 44] 

is depicted in Figure 2.4 This power system is widely used in literature due to the existence 

of local and interarea modes of oscillations [33, 44, 82]. The different modes of oscillations 

with respect to various generators are as follows: 

a) Generators 1 and 2 oscillate against each other (Local mode 1)  

b) Generators 3 and 4 oscillate against each other (Local mode 2)  

c) Generators 1 and 2 oscillate against Generators 3 and 4 (Inter area mode)  

The data for this system is given in Appendix B.  
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Figure 2.4 Single-line diagram of a Two-Area power system. 

2.3.3 12 Bus Power System 

The 12 bus FACTS power system has been proposed and is being widely used for studying 

the impact of FACTS controls [83-85]. This system is utilized in this thesis for study of 

PV- 

 

Figure 2.5 Single-line diagram of the 12-bus FACTS power system 
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STATCOM damping controls through both EMTDC/PSCAD software for EMT-type 

simulation and Matlab Simulink software for small signal studies Figure 2.5 portrays the 

single line diagram of 12 bus FACTS benchmark power system. This power system 

consists of 12 buses (six 230 kV, Two 345-kV and four 22 kV buses). As illustrated in 

Figure 2.5, the power system is divided into three geographical Areas 1, 2, and 3.  Area 1 

is mainly a generation area where most of the power is generated through hydropower. 

Area 2 is located between the generation area (Area 1) and the load Area (Area 3). In Area 

2, one hydro generation unit is available in which the generated power is only sufficient 

for its local demand. Since in Area 2 the generation is limited, the system demand often 

must be met through 230 kV transmission lines. Area 3 which contains most of the loads 

is located 500 km away from Area 1. A thermal generator is available in Area 3. There is 

one 345 kV line connecting Area 1 to Area 3 (Bus 7 to Bus 8).  

According to [83], the power system has poorly damped interarea oscillations in addition 

to three local modes of oscillations for each generator. Thus, this study system is 

considered suitable for both transient and small signal stability studies considering FACTS 

devices connected to the different location of the power system. The system data is given 

in Appendix C 

 Modeling of Power System Components  

Many advanced simulations software currently are available to perform power system 

studies with detailed modeling of each component such as PSCAD/EMTDC [86], Matlab 

Simulink, PSS®E [87], etc. In this chapter modeling of all necessary component for 

stability studies are presented. These models are used throughout this thesis. 

2.4.1 Synchronous Generator Modeling  

Synchronous generators are the main sources of real power generation in the power system 

and can be modeled with a different level of complexity [14]. In this thesis, the 6-order 

model of synchronous generators considering the leakage reactance [14] is modeled in 

detailed EMT type simulation in PSCAD/EMTDC. The same generator is modeled in small 

signal in Matlab Simulink software assuming all phases are balanced [16]. 
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2.4.2 Generator Excitation Modeling  

Various forms of excitation systems such as DC, AC, and Static Excitation systems [88] 

have been used for generator voltage regulation. In this thesis, a fast DC 1 A type excitation 

[89] is used to regulate the generator voltage at the desired value. The general form of DC 

1 A exciter system suitable for stability studies is presented in Figure 2.6 [90].  

 

Figure 2.6 IEEE DC 1 A Excitation system model 

As shown in Figure 2.6 the reference voltage (Vref ) is compared with the PCC voltage Vc 

and a compensated feedback signal from field voltage EFD having a feedback rate KF  and 

feedback time constant TF. High-Value (HV) gate is used only in extreme or unusual 

conditions to limit the output below the under-excitation signal VUEL. KA and TA  present the 

regulating gain and time constant, respectively. VRmax and VRmin limit the regulator output. 

KE represent the exciter constant rate to field. It is common that station operators manually 

adjust the voltage regulator though periodically trimming rheostat set point in order to set 

the voltage error to zero. This action can be simulated by selecting the value of KE. 

According to [90], in power system programing tools, if KE is set to zero, program itself 

has to calculate the value for KE else, KE can be set by the programmer. TE represents the 

exciter time constant. Appendix A illustrates exciter parameters for each power system.  

2.4.3 Power System Stabilizer (PSS) 

Figure 2.7 illustrates the block diagram of PSS used in this thesis. 
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Figure 2.7 Block diagram of the PSS 

In this block diagram, Tw is the washout filter time constant, while Gn, Tlead-n, and Tlag-n are 

the stabilizer gain, lead and lag controller for the nth generator, respectively. Since the aim 

of PSS is to damp the local mode of oscillations the speed deviation of the generator 𝜔𝑛is 

used as the control signal. The design procedure for washout filter and the compensator is 

discussed later in Section 2.7.  

2.4.4 Governor 

The primary function of a governor is to control the generator speed to meet the frequency 

stability requirements of the grid [91, 92] by matching the generation with demand. In this 

thesis, since the small signal and transient stability studies are addressed, the frequency 

stability of the power system with regards to governor response is not covered in detail. 

Hence, the simplified classical model of the hydro governor with a constant droop is used. 

Figure 2.8 represents the governor simplified model. 𝑇𝑊 is referred to water starting time, 

which normally in full load condition lies between 0.5 and 4s [14]. R represents the droop 

feedback gain. SG stands for the synchronous generator model.  Governor data for study 

systems are presented in Appendix A. 
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Figure 2.8 Governor simplified model 

2.4.5 Transformers 

Transformers are representated by the Π-model of a two-winding transformer [14] as 

shown in Figure 2.9.  

 

Figure 2.9 Π-model representation of a two-winding transformer    

𝑍𝑒𝑞
𝑇𝑥 is the equivalent leakage reactance of the transformer. Hence the transformer 

admittance is calculated as: 

𝑌𝑒𝑞
𝑇𝑥 =

1

𝑍𝑒𝑞
𝑇𝑥                                                       (2.1) 

and  

𝐶𝑇𝑥 =
1

𝑂𝑁𝑅
                                                (2.2) 
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ONR represents the Off-Nominal Turn Ratio of the transformer. 

2.4.6 Loads 

Load modeling has a significant effect on power oscillation damping simulation studies. In 

this thesis, constant impedance load model is used which is adequate for stability studies 

[93]. Although different loads can be used for further investigation of power system 

dynamic response, in this thesis the methodology does not include various load models. 

The concept of the proposed controllers are presented with constant impedance load which 

is acceptable for stability studies in this thesis [16]. 

The constant impedance load model is described as: 

𝑌𝑖
𝑙𝑜𝑎𝑑 =

𝑃𝑖
𝑙𝑜𝑎𝑑 − 𝑗𝑄𝑖

𝑙𝑜𝑎𝑑

𝑉𝑖
                                       (2.3) 

where, 𝑌𝑖
𝑙𝑜𝑎𝑑 is the shunt admittance connected to ith load bus. 

2.4.7 Transmission Lines 

Figure 2.10 illustrates the π model of the line used in this thesis [14].  

 

Figure 2.10 Line π model  

Z and Y represent the series impedance and shunt admittance of the line, respectively. The 

relation between sending end voltage Vs, receiving end current IR and receiving end voltage 

VR is given by: 
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𝑉𝑠 = 𝑍 (
𝑌

2
𝑉𝑅 + 𝐼𝑅) + 𝑉𝑅                                              (2.4) 

 Modeling of a Grid Connected PV Solar System 

Figure 2.11 portrays the grid connected aggregated model of 100 MW solar farm including 

6-pulse 3-phase inverter, controllers, AC filter, and delta-star step-up transformer. The 

solar farm is connected to the power system at a bus called the Point of Common Coupling 

(PCC).  

Maximum Power Point Tracing (MPPT) unit is used to harvest the maximum available DC 

power. A large DC link capacitor is used to maintain the PV solar farm DC side voltage at 

the desired value. The main duty of the PV inverter is to transform the available DC power 

to AC. The inverter consists of IGBT semiconductor devices which provide the On/Off  

 

Figure 2.11 Detailed PV power plant modeled in PSCAD/EMTDC 

switching states for inverter function. In order to maintain the required PV system power 

output quality, AC filter is designed to filter the high-frequency harmonics caused by high-
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frequency switching of inverter semiconductors. A step-up coupling transformer is used to 

connect the large-scale utility size PV solar farm to the high voltage transmission network. 

The details of each subsystem are presented below: 

2.5.1 PV Solar Panel 

PV solar panels are power generating devices which can convert the solar radiation to 

electric power. The power output of these single PV modules is nonlinearly affected by the 

solar radiation and temperature. To illustrate the behavior of PV modules power output, 

the Voltage and Current (VI) characteristics of these units with regards to solar radiation 

and temperature are used [94]. In large scale PV solar power system, a substantial number 

of PV modules are connected in series and parallel to realize the required current and 

voltage. To achieve the required DC voltage, PV modules are connected in series to form 

a String. Furthermore, the desired current is achieved through the interconnection of these 

Strings in parallel which forms an Array. Through parallel and series interconnection of 

solar modules, the PV solar farm capacity can reach to tens or hundreds of Megawatts. 

Figure 2.12 illustrates the I-V and P-V characteristics of the simulated 100 MWpk solar 

power system with regards to different solar radiation and constant temperature. 

 

Figure 2.12 The effect of solar radiation on I-V and P-V characteristic of a 100 

MWpk solar power plant 
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The effect of temperature on solar power output is illustrated in Figure 2.13. 

 

Figure 2.13 The effect of ambient temperature on V-I and V-P characteristic of a 

100 MWpk solar power plant for (25, 50, and 75 °C)  

It is shown that the increase in temperature results in a nonlinear reduction in solar power 

output.  From Figure 2.12 and  Figure 2.13 it is noted that with regards to both different 

solar radiation and temperature, there is a peak point for PV system real power which can 

be determined by inverter DC voltage. The voltage associated with maximum PV power 

output is called Maximum Power Point Voltage Vmpp.. 

 

Figure 2.14 Single line diagram of an aggregated PV solar farm  
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The modeling of PV solar farm is commonly performed through an aggregated PV system 

model as shown in Figure 2.14. Ig is the current generated by the solar cells exposed to the 

light. Id is the current following through the antiparallel diode [95, 96]. This current 

contains the nonlinear characteristics of the individual solar cell. Rsr and Rsh represent the 

series and shunt resistances respectively. Ish represents the shunt current passes through the 

shunt resistor Rsh. According to Kirchhoff's law: 

I= Ig - Id - Ish               (2.5) 

By substituting the relevant expressions for Id and Ish [23] 

𝐼 = 𝐼𝑔 − 𝐼0 [exp (
𝑞(𝑉𝑑 + 𝐼𝑅𝑠𝑟

𝑛𝑘𝑇
) − 1] − (

𝑉 + 𝐼𝑅𝑠𝑟

𝑅𝑠ℎ
)                              (2.6) 

where q is the electronic charge (𝑞 = 1.1602 × 10−19  𝐶). K is the Boltzman constant of 

1.3806503 × 10−23  𝐽/𝐾. n represents the ideality factor of the diode. T represents the cell 

temperature. I0 is the diode saturation current.  

As mentioned earlier, to achieve higher voltage and current outputs for large PV solar farm 

applications, the aggregated simulation model is commonly used. If Np number of cells are 

connected in parallel and Ns number of cells in series, the output current IA and voltage 

output voltage VA form the following equation: 

𝐼𝐴 = 𝑁𝑝𝐼𝑔 − 𝑁𝑝𝐼0 [exp (

𝑞(𝑉𝐴 + 𝐼𝐴
𝑁𝑠

𝑁𝑝
𝑅𝑠𝑟

𝑁𝑠𝑛𝑘𝑇
) − 1] − (

𝑉𝐴 + 𝐼𝐴
𝑁𝑠

𝑁𝑝
𝑅𝑠𝑟

𝑁𝑠

𝑁𝑝
𝑅𝑠ℎ

)                   (2.7) 

With regards to different solar radiation and temperature, I0 and Ig are: 

𝐼𝑔 = 𝐼𝑔𝑟𝑒𝑓 (
𝐺

𝐺𝑟𝑒𝑓
) [1 + 𝐾𝑣(𝑇 − 𝑇𝑟𝑒𝑓)]                            (2.8) 

𝐼0=𝐼0𝑟𝑒𝑓 [
𝑇

𝑇𝑟𝑒𝑓
]

3

𝑒𝑥𝑝 [
𝐸𝑔,𝑟𝑒𝑓

𝐾𝑇𝑟𝑒𝑓
−

𝐸𝑔

𝐾𝑇
]                                   (2.9) 
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where, G and Gref are solar radiation and reference value for solar radiation, respectively. 

Tref is the reference cells temperature, Eg is the bandgap energy of the solar cell material 

and Kv is the temperature coefficient of photocurrent. Appendix D presents the electrical 

specification for FS 272 PV module that is used in this thesis. 

2.5.2 Inner Loop Controller  

The inner loop controller provides decoupled d-q axis control of real and reactive power 

based on the d axis reference current Idref and q axis reference current Iqref, respectively [97]. 

The details of controller decoupling and controller design for each component are 

described below. 

2.5.2.1 abc to dq Transformation 

Three phase electrical variables such as voltage, current, flux linkage can be represented in 

two-dimensional frame dq-frame [98]. In dq frame, under the steady-state condition, 

signals are assumed to be DC waveforms which result in simpler compensator, controller 

analysis and design.  Transformation of three abc to dq frame is shown in Figure 2.15. 

 

Figure 2.15 abc to dq transformation  

𝑓 is an electrical space vector with rotational speed 𝜔= 377 rad/sec 2𝜋𝑓. Its phase 

components fa, fb, and fc are as follows: 
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𝑓𝑎 = 𝐴𝑐𝑜𝑠(𝜔𝑡) 

𝑓𝑎 = 𝐴𝑐𝑜𝑠(𝜔𝑡 −
2𝜋

3
) 

𝑓𝑎 = 𝐴𝑐𝑜𝑠 (𝜔𝑡 −
4𝜋

3
)                                             (2.10) 

These variables fa, fb, and fc can be transformed to dq frame as fd and fq with rotational 

frame in which the speed of the rotation is the same as 𝜔. The transformation is given as: 

[
𝑓𝑑

𝑓𝑞
] =

2

3
[

cos (𝜔𝑡) cos (𝜔𝑡 −
2𝜋

3
) cos (𝜔𝑡 +

2𝜋

3
)

−sin (𝜔𝑡) −sin (𝜔𝑡 −
2𝜋

3
) −sin (𝜔𝑡 +

2𝜋

3
)

] [

𝑓𝑎(𝑡)
𝑓𝑏(𝑡)
𝑓𝑐(𝑡)

]     (2.11) 

The space vector 𝑓(𝑡) can be represented as 

𝑓(𝑡) = (𝑓𝑑 + 𝑗𝑓𝑞)                                              (2.12) 

Figure 2.16 presents 𝑓(𝑡) in abc and dq frame. In Figure 2.15, 𝜃 represents the angle 

between phase A-axis and d-axis in dq frame.  

2.5.2.2 Phase Locked Loop (PLL) 

In order to synchronize the d-axis rotational reference frame of ABC to DQ reference frame 

in Section 2.5.2.1, a PLL [97] is utilized as shown in Figure 2.16. The Voltage-Controlled 

Oscillator (VCO) is used to generate the phase shift 𝜌 and is realized as a resettable 

integrator. The integrator resets if the output reaches to 360°. Saturation block is used to 

ensure that controller signal 𝜔 remains within ±377°. The aim is to keep Vq to zero to ensure 

that the phase shift 𝜌 is equal to 𝜔𝑡 + 𝜃 in Figure 2.15 [99].  

With regards to an integrator in the feedback loop, 𝜌 tracks the constant components with 

zero steady state error. To ensure that the controller is also able to track the ramp 

components with zero steady-state error, at least one additional integrator is required in 

compensator H(s) at s=0. Based on the design requirements higher order compensator can 
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Figure 2.16 PLL block diagram 

be developed [97]. In this thesis, a Proportional and Integral (PI) controller with constant 

kp and Ti is used as compensator. The parameters of PI controller are given in Appendix E.  

2.5.2.3 PWM Modeling 

To generate three phase triggering pulses for IGBT units, sinusoidal PWM is used [100]. 

Firing pulses are generated through comparison between 5 kH triangular signals with the 

sinusoidal reference signal. A 5 kH switching frequency is selected to avoid excessive 

losses and minimize the noise in the audible range [23].  

2.5.2.4 Decoupled Control of Real And Reactive Power  

Assuming steady state operation, according to Figure 2.11, dq frame representation of PV-

STATCOM inverter current and voltage is given by: 

𝐿
𝑑𝑖𝑑

𝑑𝑡
= 𝐿𝜔𝑖𝑞 − (𝑅 + 𝑟𝑜𝑛)𝑖𝑑 +

𝑉𝐷𝐶

2
𝑚𝑑 − 𝑉𝑑                        (2.13) 

𝐿
𝑑𝑖𝑞

𝑑𝑡
= 𝐿𝜔𝑖𝑑 − (𝑅 + 𝑟𝑜𝑛)𝑖𝑞 +

𝑉𝐷𝐶

2
𝑚𝑞 − 𝑉𝑞                        (2.14) 

where R is line reactance, ron is the switched-on resistance of the IGBT units, L represents 

the line inductance, VDC is DC side voltage, Vd and Vq are direct and quadrant voltages, 

respectively. A full derivation of (2.13) and (2.14) can be found in [97].  

To eliminate the coupling terms 𝐿𝜔𝑖𝑞and 𝐿𝜔𝑖𝑑, md and mq are determined as  
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𝑚𝑑 =
2

𝑉𝐷𝐶
(𝑢𝑑 − 𝐿𝜔0𝑖𝑞 + 𝑉𝑠𝑑)                                    (2.15) 

𝑚𝑞 =
2

𝑉𝐷𝐶
(𝑢𝑞 + 𝐿𝜔0𝑖𝑑 + 𝑉𝑠𝑞)                                   (2.16) 

where ud and uq are new control inputs. Hence, substituting (2.15) and (2.16) in (2.13) and 

(2.14) we get 

𝐿
𝑑𝑖𝑑

𝑑𝑡
= −(𝑅 + 𝑟𝑜𝑛)𝑖𝑑 + 𝑢𝑑(2.26)                              (2.17) 

𝐿
𝑑𝑖𝑞

𝑑𝑡
= −(𝑅 + 𝑟𝑜𝑛)𝑖𝑞 + 𝑢𝑞(2.27)                             (2.18) 

Hence, by controlling 𝑢𝑑 and 𝑢𝑞, id and iq can be controlled in a decoupled manner. Figure 

2.17 illustrates the dq current control loops.  

 

Figure 2.17 Block diagram of id and iq control loops 

To achieve the desired time constant 𝜏𝑖 for the closed-loop system, following parameters 

are selected [97]: 
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𝑘𝑝 = 𝐿
𝜏𝑖

⁄                                                             (2.19) 

𝑘𝑖 = (𝑅 + 𝑟𝑜𝑛)𝜏𝑖                                                    (2.20) 

The parameters of PI controllers for PV system are given in Appendix E. The step 

responses for id and iq controllers are illustrated in Figure 2.18 assuming 100 MWpk PV 

system is connected to the Two-Area power system. It is evident from Figure 2.18 that id 

and iq are controlled in a decoupled manner. The settling time is 1 ms, and no overshoot is 

seen in the step response. The decoupled id/iq controller is at least 10 times faster than outer-

loop controllers i.e. 10 times faster than DC voltage controller and 100 times faster than 

POD controllers, which results in decoupled inner and outer loop control design [97].  

In addition, the designed controller has bandwidth of 1/𝜏𝑖=1000 which is 5 times slower 

than the switching frequency of 5kH as per required in [97].   

 

Figure 2.18 Step response for id/iq controller 

The id and iq reference signals are generated from outer-loop controllers. In dq frame three 

phase real and reactive power are: 

𝑃𝑠(𝑡) =
3

2
[𝑉𝑠𝑑(𝑡)𝑖𝑑(𝑡) + 𝑉𝑠𝑞(𝑡)𝑖𝑞(𝑡)]                             (2.21) 
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𝑄𝑠(𝑡) =
3

2
[−𝑉𝑠𝑑(𝑡)𝑖𝑞(𝑡) + 𝑉𝑠𝑞(𝑡)𝑖𝑑(𝑡)]                           (2.22) 

Having PLL, in a steady state, 𝑉𝑠𝑞= 0, (2.21) and (2.22) can be rewritten as 

𝑖𝑑𝑟𝑒𝑓(𝑡) =
2

3𝑉𝑠𝑑(𝑡)
  𝑃𝑠(𝑡)                                      (2.23) 

𝑖𝑞𝑟𝑒𝑓(𝑡) = −
2

3𝑉𝑠𝑞(𝑡)
𝑄𝑠(𝑡)                                   (2.24) 

 

2.5.3 LCL Filter Design 

LCL filter configuration is widely used in literature for smoothing the output current of 

Voltage Source Converter (VSC) units [98]. Through proper design of LCL filter, the 

switching frequency of the inverter unit can be reduced which results in less switching 

losses along with cost saving and reduction in component sizes [101]. To design the LCL 

filter, following considerations are required; 

1. The capacitor size has to be limited in order to absorb less that 5% of VSC rated 

power output for maintenance of unity power factor.  

2. The resonance frequency should be 10 times greater than the grid frequency and be 

less than half of the switching frequency (10fg < fres < 1/2fsw ) 

3. The current ripple is assumed to be 10% of the rated current and needs to be 

attenuated through LCL filter by 20%. Hence, the current ripple is limited to 2% 

after the LCL filter. 

Figure 2.19 illustrates the single phase of delta connected LCL filter  
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Figure 2.19 Single phase LCL filter  

L1, R1, L2, R2, Rf, and Cf are inverter side inductor, inverter side inductor resistance, grid side 

inductor, grid side inductor resistance, damping resistance, and filter capacitor, 

respectively. Vi is input voltage and Vg is the grid side voltage.  

The transfer function associated with LCL filter in Figure 2.19 with and without damping 

resistance are 

𝐻𝐿𝐶𝐿(𝑠) =
1

𝐿1𝐶𝑓𝐿2𝑠3 + (𝐿1 + 𝐿2)𝑠
                                      (2.25) 

𝐻𝐿𝐶𝐿(𝑠) =
𝐶𝑓𝑅𝑓𝑠 + 1

𝐿1𝐶𝑓𝐿2𝑠3 + 𝐶𝑓(𝐿1+𝐿2)𝑅𝑓𝑠2 + (𝐿1 + 𝐿2)𝑠
                           (2.26) 

The effect of Rf on the filter response will be shown later in this subsection. The base 

impedance 𝑍𝑏 and capacitance 𝐶𝑏 for LCL filter design are  

𝑍𝑏 =
𝐸𝑛

2

𝑃𝑛
                                                          (2.27) 

𝐶𝑏 =
1

𝜔𝑔𝑍𝑏
                                                       (2.28) 

where, 𝑃𝑛 and 𝐸𝑛 are rated power and voltage, and 𝜔𝑔 = 2𝜋𝑓𝑔. The maximum current 

ripple Δ𝐼𝑚𝑎𝑥 is given as  
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Δ𝐼𝑚𝑎𝑥 =
𝑉𝐷𝐶

6𝑓𝑠𝑤𝐿1
                                                (2.29) 

where Vdc is the inverter DC side voltage. The max current Imax is  

𝐼𝑚𝑎𝑥 =
√2𝑃𝑛

3𝑉𝑝ℎ
                                                  (2.30) 

where, 𝑉𝑝ℎis the phase voltage.  

Hence from (2.28) and (2.29) we get  

𝐿1 =
𝑉𝐷𝐶

6𝑓𝑠𝑤Δ𝐼𝐿𝑚𝑎𝑥
                                               (2.31) 

The ratio between the grid current at switching harmonic ig(hsw) and the switching current 

output from the inverter i(hsw) is  

𝑖𝑔(ℎ𝑠𝑤)

𝑖(ℎ𝑠𝑤)
=

1

[1 + 𝑟(1 − 𝐶𝐿1𝜔𝑠𝑤
2 )]

                           (2.32) 

where r is the constant ratio between grid side inductor L2 and inverter side inductor L1. In 

this thesis, r is selected to be 0.1.  Hence L2=0.1L1. 

The resonance frequency is given by 

𝜔𝑟𝑒𝑠 = √
𝐿1 + 𝐿2

𝐿1𝐿2𝐶𝑓
                                            (2.33) 

and it must satisfy  

10fg < fres < 1/2fsw                                                         (2.34) 

The damping resistance is calculated as 

𝑅𝑓 =
1

3𝜔𝑟𝑒𝑠𝐶𝑓
                                         (2.35) 
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The Matlab code for LCL filter design considering PV-STATCOM connected to the 

different study systems is given in Appendix F. 

Figure 2.20 illustrates the Bode plot for LCL filter with and without damping resistance 

for PV-STATCOM in a Two-Area power system where, L1= 7.511𝜇𝐻, L2=0.7511𝜇𝐻, 

Cf=20 𝜇F, Rf=0.052 Ω to illustrate the effect of damping resistance on the LCL filter 

response. It is observed from Figure 2.20 that the damping resistance eliminates the gain 

spike and smoothens the overall response of the LCL filter. Moreover, the resonance 

frequency of 3.72 kH is well within required limit.  

 

 

Figure 2.20 Bode plot for designed LCL filter for 100 MWpk PV system connected to 

Two-Area power system at 230 kV bus. 

2.5.4 MPPT Algorithm  

As described earlier in Section 2.5.1, the PV power output of the solar panels has a 

nonlinear relation with irradiance and cell temperature. Since the aim is to harvest the 

maximum available power from the PV solar farm, Maximum Power Point Tracking 

(MPPT) unit is used to generate the reference DC voltage (Vdref) in which the maximum 

available power is achieved. The MPPT flowchart is presented in Figure 2.21. The MPPT 

unit monitors the actual current and voltage and generates the reference voltage Vdref based 
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on the predefined algorithms of Incremental Conductance (IC) [102].  Two possible 

scenarios are examined in this algorithm [103]. In the first scenario, when there is no 

change in voltage, the algorithm examines the changes in the current. If the current 

deviation is zero, the algorithm assumes that the PV is operating at its MPP. Hence, no 

voltage step change is required. If the deviation is observed in current, a small deviation as 

delV is applied to the MPPT voltage output. By changing the DC voltage, the current also 

varies. This process continues until the PV reaches to its MPP operation.  

In the second scenario, if there is a change in the Vdc [103], the MPPT evaluates  

𝑑𝐼

𝑑𝑉
= −

𝐼𝑃𝑉

𝑉𝐷𝐶
                                                (2.36) 

If (2.36) is satisfied, the change in the voltage is due to the change in insolation or 

temperature but PV system is operating at MPPT. Hence, no voltage change is applied. On 

the other hand, if the relation is not satisfied, PV system is not operating at MPP and a 

voltage change is applied to Vdc. The process continues until MPP is achieved. In this thesis, 

the sampling interval is set to 0.1 sec, Vop=840 V, and Isc=120 kA as shown in Figure 2.12 

for 100 MWpk solar power plant.  
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Figure 2.21 MPPT block diagram [23] 

2.5.5 DC Voltage Controller 

The DC voltage of the PV system needs to be controlled to maintain the DC capacitor 

voltage based on the reference voltage (Vdref) from the MPPT unit. The DC link voltage Vdc 

is controlled to inject the balance of generated PV power and DC link voltage absorbed 

power to the grid. The DC side voltage dynamics considering inverter losses and capacitor 

real power absorption is as follows [23]:  



41 

 

𝐶𝑑𝑐

𝜕𝑉𝑑𝑐

𝜕𝑡
= 𝑖𝑃𝑉 − 𝑖𝑙𝑜𝑠𝑠 − 𝑖𝑑𝑐                                          (2.37) 

where, 𝑖𝑃𝑉 is the PV system output current, 𝑖𝑑𝑐 represents the VSC DC side current, 𝑖𝑙𝑜𝑠𝑠 

is the loses current, and 𝐶𝑑𝑐 is the DC side capacitor. Equation (2.37) can be rewritten in 

Laplace form as: 

𝑠𝑉𝑑𝑐𝐶𝑑𝑐 = 𝐼𝑃𝑉 − 𝐼𝑙𝑜𝑠𝑠 − 𝐼𝑑𝑐 = −
3

4
(𝑚𝑑𝐼𝑑 + 𝑚𝑞𝐼𝑞)                         (2.38) 

Since in decoupled dq transformation, the real power is mainly controlled through id , (2.38) 

can be rewritten as 

𝑠𝑉𝐷𝐶𝐶𝐷𝐶 = −
3

4
(𝑚𝑑𝐼𝑑)                                          (2.39) 

Hence, the compensator for Vdc can be expressed as a PI controller as follows: 

𝐼𝑑𝑟𝑒𝑓 = −
4𝑠𝑉𝑑𝑐𝐶𝑑𝑐

3𝑚𝑑
= −𝐾𝑑𝑐(𝑉𝑑𝑐 − 𝑉𝑑𝑐−𝑟𝑒𝑓)                 (2.40) 

where the compensator 𝐾𝑑𝑐  can be modeled as  

𝐾𝑑𝑐 = 𝐾𝑝𝑑𝑐 +
𝐾𝑖𝑑𝑐

𝑠
                                        (2.41) 

This controller is used throughout this thesis for all modes of PV system operation. As 

discussed earlier, the reference DC voltage 𝑉𝑑𝑐−𝑟𝑒𝑓 in PV mode of operation is generated 

through MPPT algorithm. In addition, during off-MPPT operation mode which is described 

later in Section 2.6.3, this controller is used to reduce the real power output to zero by 

setting 𝑉𝑑𝑐−𝑟𝑒𝑓 to PV system open circuit voltage Vop. Controller parameters are tuned to 

be 10 times slower than inner-loop controller, with overshoot less than 10%. In addition, 

controllers are tuned to be 10 times faster than sampling MPPT sampling time i.e. MPPT 

algorithm sampling rate is 0.1 Sec hence, the Vdc controller are tuned with 𝜏=0.01 sec.  The 

controller parameters are given in Appendix E.  
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2.5.6 Conventional Reactive Power Controller 

In normal PV system operation, the aim is to convert DC power to AC with unity power 

factor. According to (2.24), the Qref is set to zero. Hence, the iqref is set to zero.   

 PV-STATCOM Modeling 

As discussed earlier in this chapter, if low-frequency power oscillations with a frequency 

range of 0.1 to 2 Hz are detected in the power system, the conventional operation mode of 

PV system is disabled and STATCOM mode of operation is activated. By activation of 

STATCOM mode, the aim is to increase the damping of the power system by controlling 

reactive or/and the real power of PV solar power plant. Note that the inner loop controllers, 

inverter, filters, and transformer remain the same as those in PV conventional mode of 

operation. Figure 2.22 illustrates the real and reactive power controller of PV-STATCOM. 

The specific controllers can be selected through switches S1, S2, and S3. 

 

Figure 2.22 PV-STATCOM detailed modeling in PSCAD/EMTDC 

2.6.1 Zero Power Output 

This controller is activated if the full capacity of PV inverter is required for reactive power 

based POD. Hence, the id reference signal is generated through controlling DC voltage at 
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Vop. As shown in Figure 2.12, by controlling the Vdc at 840 V, the real power output of the 

PV can be controlled to zero. 

2.6.2 Reactive Power Based POD (Q-POD) Controller  

As shown in Figure 2.2, PV inverter capacity is fully available during the night time. If the 

power oscillations appear in the power system, PV-STATCOM reactive power is 

controlled to damp the power oscillations. This technique is available in full and partial 

STATCOM mode of operation.  

2.6.3 Real Power Based POD (P-POD) Controller  

In addition to Q-POD controller, in this thesis, during the day time, additional POD 

controller based on the PV-STATCOM real power controller is presented. If the P-POD is 

activated, the real power setpoint is set to half of the pre-fault value of PV real power. 

Furthermore, in this mode, PV-STATCOM real power is controlled through an off-MPPT 

technique by controlling the idref to modulate the PV-STATCOM real power output for 

damping the low electromechanical power oscillations.   

2.6.4 Real Power Restoration Controller  

If the power oscillations are damped, the PV real power is restored to its pre-fault value Ppr 

with a ramp rate Kst or in a nonlinear function. If the restoration is completed, PV 

controllers switch back to conventional PV control mode. 
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 POD Controller Design  

Figure 2.23 illustrates the general form of FACTS stabilizer in power system, 

 

Figure 2.23 Block Diagram of POD controller 

G(s) represents the power system transfer function and F(s) models the PV-STATCOM 

POD controllers as: 

𝐹(𝑠) = 𝐾𝐻(𝑠) = 𝐾𝐺𝑃𝑂𝐷(𝑠). 𝐺𝑊                                                     (2.42) 

𝐺𝑤(𝑠) =
𝑠 𝑇𝑤

1 + 𝑠𝑇𝑤
                                                    (2.43)  

𝐺𝑃𝑂𝐷(𝑠) = [
1 + 𝑇𝑙𝑒𝑎𝑑𝑠

1 + 𝑇𝑙𝑎𝑔𝑠
]

𝑚

                                           (2.44) 

𝐺𝑊(𝑠) represents the washout filter transfer function, 𝐺𝑃𝑂𝐷(𝑠) is the POD transfer function 

and K represents for the feedback gain. 𝑇𝑤 denotes the washout filter time constant. Tlead 

and Tlag are Lead and Lag time constants, respectively. The objective of designing the POD 

lead-lag controller is to determine the appropriate values for 𝑇𝑤, 𝑇𝑙𝑒𝑎𝑑, 𝑇𝑙𝑎𝑔, and K in order 

to add adequate lead or lag phase compensation to the feedback control loop at a certain 

frequency [104].    

2.7.1 Washout Filter Design 

Washout filter is used in PV-STATCOM POD controller to ensure that the steady-state 

error in the control signal will not result in a steady state error in the POD controller. As 
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shown in (2.43), (knowing that 𝑠 = 𝑗𝜔𝑓), as 𝜔𝑓 reduces, 𝐺𝑤(𝑠) moves towards zero. 

Hence, the transfer function is appropriate for blocking DC-offset or steady-state signals. 

It can also be shown that for higher frequencies than the washout filter corner frequency 

1/Tw, 𝐺𝑤(𝑠) becomes almost 1∠0°. To design the washout filter, corner frequency 1/Tw is 

set about a decade below the lowest frequency mode of oscillation [104].  

Assuming the frequency mode of oscillation to be 2 Hz, Tw is set to 5 s (i.e corner frequency 

is 0.2 Hz). The Bode plot for this washout filter is presented in Figure 2.24.  

 

Figure 2.24 Frequency response of washout filter with Tw=5s 

As shown in Figure 2.24 for 2 Hz frequency range, the phase shift is almost equal to 8.86° 

which is considered negligible. 

2.7.2 Participation Factor (PF) Analysis 

PF analysis is used in this thesis to select the control signals in which the selected modes 

of low-frequency power oscillations have higher participation. To determine the 

participation of an individual state in selected mode of oscillation, PF analysis provides 

dimensionless relation between the states and modes [14, 104]. The concept of PF analysis 

which is used in this thesis is as follows: 

For a given state-space system with 𝑛 × 𝑛 matrix A, 𝜆ℎ is hth eigenvalue in which  

𝐴𝜈ℎ = 𝜆ℎ𝜈ℎ                                                    (2.45) 
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where, 𝜈ℎ is the right eigen vector of A matrix associated to  𝜆ℎ  

𝜈ℎ = [𝜈1ℎ𝜐2ℎ … … . 𝜐𝑛ℎ]𝑇                                       (2.46) 

Likewise, the left eigenvector 𝑤ℎ = [𝑤ℎ1𝑤ℎ1 … … . 𝑤ℎ𝑛] is determined to satisfy  

𝑤ℎ𝐴 = 𝑤ℎ𝜆ℎ                                                  (2.47) 

𝑤ℎ𝜈ℎ = 1                                                      (2.48) 

Having right and left eigenvectors of matrix A, PF matrix can be formed as 

𝑃ℎ𝑘 = 𝑤ℎ𝑘𝜈𝑘ℎ                                                   (2.49) 

where, 𝑃ℎ𝑘 provides a measure in which 𝜆ℎ contributes in the kth state. 

Note that from (2.48); 

∑ 𝑃ℎ𝑘 = ∑ 𝑤𝑘ℎ

𝑛

𝑘=1

𝑛

𝑘=1

𝜈𝑘ℎ = 1                                   (2.50) 

To calculate the participation of each state, small signal simulation of the power system is 

required. In this thesis, Matlab simulation is used for small signal simulation and is 

presented in Section 2.9. The linearized model of the power system is obtained through the 

linearization function in Matlab with proper selection of input and output signals [105].  

2.7.3 PV-STATCOM POD Design Based on Residue Analysis 

To design the POD controller for small signal stability, Residue technique is used in this 

thesis [104]. The residue technique is performed based on modal analysis in Matlab 

Simulink. Consider the Two-Area Power system with PV-STATCOM interconnection to 

bus 8 as shown in Figure 2.25. 
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Figure 2.25 Two-Area Power system with PV-STATCOM connected at bus 10. 

The line current between buses 9 and 10 is selected as the best control signal (i.e. il has the 

highest Participation in the electro mechanical oscillatory mode) [14]. The transfer function 

from the PV-STATCOM reference reactive power ∆𝑄 and the line current il is 𝐺𝑠(𝑠) =

∆𝑖𝑙/∆𝑄. To determine the compensation controller for POD, the interarea mode phase shift 

when POD controller feedback loop is switched from open to closed is considered.  

.  . 

Figure 2.26. Insertion of a Feedback Loop with a Small Gain in a System 

A transfer function G(s) can be described by its partial fractions as: 

𝐺(𝑠) =
𝑟1

𝑠 − 𝑃1
+

𝑟2

𝑠 − 𝑃2
+ ⋯ +

𝑟𝑖

𝑠 − 𝑃𝑖
+ ⋯ +

𝑟𝑛

𝑠 − 𝑃𝑛
                      (2.56) 
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where, 𝑟𝑖 represents the residue of the distinct pole 𝑃𝑖. To determine the compensation 

controller for POD, the interarea mode phase shift when POD feedback circuit is switched 

from open position to closed position is considered.  

The Transfer function of Two-Area power system with PV-STATCOM, assuming the 

feedback loop is closed, is: 

𝑊(𝑠) =
𝐺𝑠(𝑠)

1 − 𝐺𝑠(𝑠)𝐹𝑠(𝑠)
=

𝐺𝑠(𝑠)

1 − 𝑘𝐺𝑠(𝑠)𝐻(𝑠)
                          (2.57) 

 

Hence, the closed-loop poles are derived as: 

 

1 − 𝐺𝑠(𝑠)𝐹𝑠(𝑠) = 0                                            (2.58) 
 

Assuming that the open loop transfer function where the 𝐺𝑠(s) is excited by the eigenvalue 

𝜆ℎ is: 

 

𝐺𝑠(𝜆ℎ) =
𝑟ℎ

𝑠 − 𝜆ℎ
                                             (2.59) 

 

where rh is the residue of eigenvalue  𝜆ℎ of the forward-loop transfer function 𝐺𝑠(𝜆ℎ)  

[104]. The characteristic equation of (2.59) associated to 𝜆ℎ is: 

1 −
𝑟ℎ

𝑠 − 𝜆ℎ
𝐹(𝜆ℎ) = 0, 𝑜𝑟 𝑠 = 𝜆ℎ + 𝑘𝑅𝑟ℎ𝐻(𝜆ℎ)            (2.60) 

After closure of feedback loop, the mode 𝜆ℎis shifted by small amount Δ𝜆ℎ from the open-

loop pole. The root for the new characteristic equation is s= (𝜆ℎ+∆𝜆ℎ). Equation (2.60) 

then becomes: 

(𝜆ℎ + ∆𝜆ℎ) − 𝜆ℎ − 𝑘𝑅𝑟ℎ𝐻(𝜆ℎ + ∆𝜆ℎ) = 0                           (2.61) 

If the mode shift is small enough, then the transfer function H(s) around s=𝜆ℎ can be 

represented by first-order Taylor series as: 

𝐻(𝜆ℎ + ∆𝜆ℎ) = 𝐻(𝜆ℎ) + (
𝜕𝐻(𝑠)

𝜕𝑠
|
𝑠 = 𝜆ℎ

) ∆𝜆ℎ                     (2.62) 
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Substituting (2.62) in (2.61) leads to; 

∆𝜆ℎ =
𝐾𝑟ℎ𝐻(𝜆ℎ)

1 − 𝐾𝑟ℎ
𝜕𝐻(𝜆ℎ)

𝜕𝜆ℎ

                                             (2.63) 

If K is small enough to satisfy |𝐾𝑟ℎ
𝜕𝐻(𝜆ℎ)

𝜕𝜆ℎ
| ≪ 1, (2.63) can be rewritten as: 

∆𝜆ℎ =  𝐾𝑟ℎ𝐻(𝜆ℎ)                                                 (2.64) 

 

The residue 𝑟ℎ of the eigenvalue 𝜆ℎ is a complex number with 𝜃ℎ = 𝑎𝑟𝑔{𝑟ℎ}. To achieve 

the mode shift to be ±180°, the POD controllers must be designed with compensation 

angle 𝜙: 

 

𝜙 = ±180 − 𝑎𝑟𝑔{𝑟ℎ}                                             (2.65) 

 

Note that according to Figure 2.24, the phase shift of washout filter around the frequency 

of the selected mode (0.1-2 Hz) is around 8.26° which is considered negligible.  

2.7.4 Optimization of PV-STATCOM Controllers 

The POD controllers are first designed using small signal residue analysis to obtain the 

optimized controller parameters - Gain, Lead and Lag time constants. In order to account 

for system nonlinearities, these optimized parameters are subsequently tuned using the 

Simplex Optimization technique [105] embedded in the electromagnetic transients software 

PSCAD/EMTDC [106]. The Nonlinear-Simplex optimization method is an optimization 

technique based on geometric consideration in which desired Objective Function (OF) is 

achieved through a heuristic procedure.  

A Simplex is a geometric object which is formed by N+1 points in an N-dimensional space. 

The optimization starts with an initial value of the random or predefined variable. During 

the optimization process, the worst vertex is discarded and the new vertex which is the 

reflection of the discarded vertex with regards to the centroid of remaining vertices is 

selected. The same procedure continues in each iteration and OF moves towards the lower 
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OF value. The process can speed up if, during the optimization, the vertex of OF is very 

large. The procedure continues until the OF comes within the predefined error limit from 

the optimum point of operation.  

In PSCAD/EMTDC software, an optimization is performed through Master/Slave 

simulation programming as shown in Figure 2.27.  

 

Figure 2.27 Simplex Optimization Flowchart 

The main function is placed in Slave simulation and the simulation runs for predefined run 

time (depending on the simulation study). After the simulation is done in Slave project, OF 
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will be generated and sent to the Master project in which the optimization technique is 

performed and new sets of variables will be generated. These new parameters will be sent 

back to Slave project for a new simulation run. This process continues until the desired OF 

is achieved and deviation in the objective function (ΔOF) remains in predefined error limit 

Ԑ or the maximum number of iterations is achieved. For better illustration of this technique, 

a numerical example of simplex optimization procedure in PSCAD/EMTDC is provided 

in Appendix G.  

 Placement of PV-STATCOM – Residue Analysis 

The effect of PV-STATCOM interconnection to the power system is studied based on its 

potential to stabilize the selected mode of oscillation. Participation analysis is used to 

determine the control signal which has the highest participation in the oscillatory mode to 

be damped. This signal is used as the input control signal for POD controllers at all 

locations of PV solar system and for all types of controllers used (real power, reactive 

power or combined real and reactive power based). However the effectiveness of a specific 

type of POD controller at a given location of PV solar farm is determined from Residue 

Analysis [108]. According to (2.56), assuming that all zeros and poles of G(s) and H(s) are 

distinct, the closure of the feedback loop of the POD controllers results in a change in the 

selected eigenvalue 𝜆𝑖 as 

∆𝜆ℎ =  𝐾𝑟ℎ𝐻(𝜆ℎ)                                            (2.64) 

According to [107], the magnitude of 𝑟ℎ is a proper indicator of suitability of the POD 

controller. Hence, the magnitude of the residue associated with control signal can be 

determined by calculation of ∆𝜆 with regards to closure of the feedback loop. The higher 

the magnitude of the reside the better the location of PV-STATCOM for POD.  

 Small-signal Modeling of PV-STATCOM 

Although PSCAD/EMTDC software is suitable for detailed simulation studies, it does not 

have a platform for modal analysis. In addition, fast switching of power electronic devices 

such as IGBTs or GTOs requires a very small simulation time step in the EMT-Type 

simulations (5 to 15µs). This very short simulation time step results in a very long 
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simulation time. Hence, to perform the small signal studies and to design controllers, a 

simplified small signal PV model has been developed in Matlab software [108]. This model 

is useful if the aim is to study the stability of power system with respect to changes in 

magnitude and phases of all voltages and currents. Hence, there is no need to solve all 

differential equations resulting from the interaction between R, C, and L elements [16]. 

Figure 2.28the simplified small signal model of PV-STATCOM. 

 

Figure 2.28 PV-STATCOM small signal model  

Both real and reactive power can be controlled by controlling real and reactive power 

reference signals Pref  and Qref  as follow: 

[
𝑖𝑑
𝑖𝑞

] = 3/2 [
𝑉𝑑 𝑉𝑞
𝑉𝑞 −𝑉𝑑

]
−1

[
𝑃
𝑄

]                                 (2.65) 

(2.65) can be simplified further utilizing (2.24) where Vq is controlled to zero through 

proper design of PLL as: 

  

[
𝑖𝑑
𝑖𝑞

] = 3/2 [
𝑉𝑑 0
0 −𝑉𝑑

]
−1

[
𝑃
𝑄

]                                (2.66) 

The inverter is modeled as a first order transfer function with unity steady-state gain at 

td,tq=15 ms [26]. According to [109], inverter modeling with a first order function having 

time constant of the dominant pole of the closed loop transfer function has an acceptable 

response except for some differences during high frequency transients. For power 

oscillation damping studies performed in this thesis, the high frequency transients do not 
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play a role in the damping of electromechanical modes which have frequencies in the range 

0.1-2 Hz (time periods of 10 sec – 0.5 sec). Hence the first order model of the inverter is 

considered to be adequate. Figure 2.29 illustrates the comparison between the step response 

of the detailed model of PV-STATCOM in PSCAD/EMTDC and small signal PV-

STATCOM model in Matlab Simulink.  

 
(a) 

 
(b) 

Figure 2.29 (a) Comparison of decoupled controller for PV-STATCOM in 

PSCAD/EMTDC and Matlab Simulink (b) Magnified results  
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It is seen from Figure 2.29, the simplified model of PV-STATCOM in Matlab provides 

similar steady state responses as the detailed model simulation in PSCAD/EMTDC 

software.  There are differences in the transients from both the models. However, as 

explained above, these differences are not expected to impact the power oscillation 

damping behavior. It is noted when there is a step change in the PV real power output, the 

reactive power is not affected. Meanwhile, it is observed that the PV real power is not 

influenced by changing the PV system reactive power. Hence, both real and reactive of 

PV-STATCOM can be controlled in decoupled manner.  

 BESS Modeling  

Where the performances of BESS P-POD controller and PV-STATCOM Q-POD controller 

need to be compared for damping purposes, a detailed model of BESS is required. For this 

reason, the BESS is presented here. Figure 2.30 presents the aggregated BESS model 

developed in PSCAD and the connection principle of energy storage system for different 

BESS capacities.  

 

Figure 2.30 Aggregated BESS modeling in PSCAD/EMTDC 

CCapacity stands for the battery usable capacity. Rdicharge is the self-discharge resistor. Rse 

denotes the series resistor RSeries which is responsible for the instantaneous voltage drop 

during step response. The internal parameter of the battery can be simulated by RC 

networks. Short term transients are represented by Rtr_s and Ctr_s as RTransient_S, CTransient_S. In 
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addition, long-term transients can be modeled by RC network with Rtr_l and Ctr_l as 

RTransient_L, and CTransient_L. By connecting N battery cells in series, the voltage output of the 

energy storage system can be increased up to N times of the individual battery voltage. 

Meanwhile, to increase the rated current of the BESS, M batteries are connected in each 

branch in parallel. The behavior of entire energy storage system will then follow the same 

behavior for single battery model [110]. Since in [110] it is shown that the discharge current 

has a negligible effect on the battery parameter, in this thesis, the single-variable function 

model of each variable is used in PSCAD/EMTDC modeling.  

An aggregated BESS system based on series and parallel connection of accurate 4.1-V, 

850-mAh TCL PL-383562 Li-ion batteries model [111] is simulated in PSCAD/EMTDC 

software. The FORTRAN code for the battery model in PSCAD/EMTDC is included in  

Appendix H. Figure 2.31 illustrates the simulated results of single battery parameters based 

on the different level of State Of Charge (SOC). 

 

Figure 2.31 BESS RLC components variation based on SOC 

 

 



56 

 

 Conclusion  

In this chapter, the concepts of PV-STATCOM in both partial and full STATCOM modes 

of operation are presented. Three study power systems – the Single Machine Infinite Bus 

(SMIB) system, Two-Area system, and the 12 Bus FACTS power systems which will be 

utilized in this thesis are described. The models of different power system components and 

the constituents of the PV solar system are presented. The procedures for designing 

different PV system controllers are illustrated.  

The selection of POD control signal based on Participation Factor analysis is enunciated. 

The design of power oscillation damping controllers based on Simplex Optimization 

technique and Residue analysis is further presented.  

Residue analysis is described as an effective technique to determine the most effective 

location of PV-STATCOM for power oscillation damping. The performance of PV-

STATCOM models in small signal and EMTDC/PSCAD simulations is compared. A 

model of large scale BESS in PSCAD/EMTDC is also presented and the behavior of 

internal variables are illustrated based on State of Charge of the BESS. 
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Chapter 3  

3 Power Oscillation Damping in Single Machine Infinite 
Bus (SMIB) System with PV-STATCOM and Battery 
Energy Storage System (BESS)  

 Introduction  

The objective of this Chapter is to investigate the effectiveness of real power modulation 

on power oscillation damping. This real power control is provided by a Battery Energy 

Storage System (BESS). This work is expected to provide insights for designing the real 

power modulation based control of a PV-STATCOM in Chapter 6 and 7. This chapter also 

presents a comparison between the performance of a PV-STATCOM and (BESS) for 

damping the inertial mode oscillations in Single Machine Infinite Bus (SMIB) power 

system. The performance of Real Power Modulation based Power Oscillation Damping (P-

POD) for BESS is compared with Reactive Power Modulation based Power Oscillation 

Damping (Q-POD) controller of a PV-STATCOM while operating in Full STATCOM 

mode of operation. The BESS is modeled in PSCAD/EMTDC software. The effect of 

BESS size on damping of electromechanical oscillations of the generator is further 

investigated using EMTDC/PSCAD software. The POD controllers are optimized to justify 

the comparison between the different POD techniques.   

 Study System Model  

The SMIB system depicted in Figure 3.1 is selected as the study system for the present 

study. Figure 3.1 illustrates the SMIB power system in which the BESS and PV-

STATCOM are connected at its midpoint. The BESS and PV solar system share the same 

inverter, LCL filter and inner loop controllers. During Q-POD with PV-STATCOM, PV 

modules are connected to the DC bus. However, the P-POD control with BESS is activated 

by connecting the battery bank to the inverter DC bus. The red lines illustrate the controller 

during P-POD control with BESS. The blue lines represent the controller signals during Q-

POD control.  
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Figure 3.1 SMIB power system with PV-STATCOM and BESS 

The generator power is transferred to the infinite bus through a transmission line, which in 

this study is considered to be 400 km. No PSS is considered for the generator excitation 

unit. It is noted that for this operating condition, the power system is poorly stable. To 

compare the effectiveness of P-POD with BESS and Q-POD with PV-STATCOM, the 

location of BESS and PV-STATCOM is kept the same for both studies. The solar farm is 

assumed to be of 100 MW rating. 

 PV-STATCOM Components   

The PV-STATCOM system and its associated controllers are depicted in Figure 3.1. As 

shown in Figure 3.1 the conventional PV mode of operation is achieved by connecting the 

PV modules to DC bus. The models of different components of the PV-STATCOM have 

been described earlier in the thesis, i.e., PV solar panels (Section 2.5.1), Decoupled id/iq 

controller (Section 2.5.2), LCL filter (Section 2.5.3), MPPT algorithm (Section 2.5.4), DC 

Voltage controller (Section 2.5.5), and Conventional Reactive Power Controller (Section 

2.5.6). The new added outer loop controllers are designed as follows: 
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3.3.1 Q-POD controller for PV-STATCOM 

The midline current il is selected as the control signal for POD. Since in this power system 

only 1 synchronous generator exists, il has high participation factor in the electro 

mechanical mode of oscillation [23]. Moreover, utilizing a local signal avoids any delay 

between the control signal and the Q-POD controller for PV-STATCOM. The washout 

filter is designed based on the technique described in Section 2.7.1 with 𝑇𝑊 = 5 . The Q-

POD controller with 𝐺𝑄−𝑃𝑂𝐷(𝑠) transfer function is as: 

𝐺𝑄−𝑃𝑂𝐷(𝑠) = 𝐺 [
1 + 𝑇𝑙𝑒𝑎𝑑𝑠

1 + 𝑇𝑙𝑎𝑔𝑠
]                                          (3.1) 

where, Tlead, Tlag and the G are lead, lag time constants and the gain of the controller, 

respectively. The controller parameters are optimized through embedded simplex 

technique in Section 0. The Q-POD generates the iqref current for the inner-loop controller. 

To activate the POD controller of PV-STATCOM, S2 is set to position 2.  

 BESS Modeling  

Figure 3.1 further illustrates the BESS connected to the same inverter as the PV-

STATCOM. To perform POD with BESS, the PV panels are disconnected and BESS is 

connected to the DC bus.  The BESS can provide a bi-directional power flow control at its 

PCC. Various sizes of BESS are used in which the maximum power input/output of the 

BESS is controlled through a hard-limiter on idref signal. The overall BESS model is based 

on the aggregation of 850 mAh TCL PL-383562 Li-ion battery models described in Section 

2.10. The number of battery modules in series is kept constant at N=240. Hence, DC 

voltage of all sizes of BESS remains constant within 40%-100% SOC of the battery.  

It is assumed that BESS is in 90% of its SOC during POD. This assumption is acceptable 

for this study since the aim is to compare the fully charged BESS with PV-STATCOM. 

Furthermore, the POD is performed for less than 10 s during which period the SOC of the 

battery will not get affected considerably.  
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3.4.1 Conventional Reactive Power Controller 

Since in this chapter, the aim is to compare the effectiveness of P-POD controller in BESS 

and Q-POD controller in PV-STATCOM, the reactive power output of the BESS is 

controlled to zero during the period of POD. To control the reactive power output to zero, 

iqref  is set to zero and is controlled through inner-loop controller, as described in Section 

2.5.2.4. 

3.4.2 P-POD Controller design for BESS 

In this chapter, POD is performed with BESS real power modulation through the proposed 

P-POD controller. il signal is used as the control signal to perform P-POD. il is passed 

through the washout filter with Tw=5 s and is fed to the GP-POD compensator: 

𝐺𝑝−𝑃𝑂𝐷(𝑠) = 𝐺 [
1 + 𝑇𝑙𝑒𝑎𝑑𝑠

1 + 𝑇𝑙𝑎𝑔𝑠
]                                                (3.2) 

 

where, Tlead, Tlag and the G are lead, lag time constants and the gain of the controller, 

respectively. The controller parameters are optimized with the Simplex optimization 

technique described in Section 2.7.4.  

 Optimization of Q-POD and P-POD Controllers 

In this study, the size of both PV-STATCOM and BESS is assumed to be equal. The PV-

STATCOM has ±100 MVar inverter capacity and the BESS has  ±100 MWpk capacity. 

Optimization of controllers is performed considering a 3-phase to ground fault to be 

initiated at generator bus for a duration of 5 cycles. The SMIB power system, PV-

STATCOM, and BESS are simulated in Slave project and simulation runs for 20 seconds 

to encompass a minimum of 10 cycles of low frequency oscillations (1 Hz to 2 Hz). The 

aim is to minimize the low-frequency power oscillations after the fault. Hence, the 

objective function (OF) for this study is  

 
𝑂𝐹 = ∫ (𝑖𝑚𝑖𝑑 − 𝑖𝑚𝑖𝑑−𝑟𝑒𝑓)

2
𝑇2

𝑇1

𝑑𝑡                          (3. 3) 
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where T1 and T2 are the start and end time of Slave simulation, imid is the midline current 

and imid-ref is the reference midline current. Figure 3.2 presents the optimization of controller 

parameters for P-POD and Q-POD in PV-STATCOM and BESS system as the number of 

iterations progress.  

.  . 

Figure 3.2 Objective Function, Tlead, Tlag, and Gain for P-POD and Q-POD in PV-

STATCOM and BESS 

It is seen from Figure 3.2 that the OFs for both Q-POD and P-POD converge within 62 

iterations to the desired limit Ԑ which in this study selected as 1.  
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 Case Studies 

3.6.1 No POD Controller  

It is assumed that the PV-STATCOM inverter capacity is fully available for Q-POD 

controller and no real power is generated from the PV system during the night time. In 

steady-state operation condition, 527 MW real power transfers from the generator to the 

grid. At t= 5 sec, a 3-phase to ground fault is initiated at the generator bus, which is cleared 

after 5 cycles. Due to the fault, growing low frequency electro mechanical oscillations 

appear in the power system. Figure 3.3 illustrates the midline power oscillations after the 

fault. In this study, no POD controller is activated. Both the PV system and BESS stay idle 

during the contingency.  

 

Figure 3.3 SMIB midline real power with no POD controller 

3.6.2 Q-POD with PV-STATCOM Reactive Power 

Figure 3.4 depicts the results for midline real power and PV-STATCOM reactive power 

after the fault, considering the Q-POD controller for PV-STATCOM to be activated. As 

shown in Figure 3.4 (a) the oscillations get damped after 3 sec. Figure 3.4 (b) illustrates 

that after the fault clearance, the Q-POD controller modulates the PV-STATCOM reactive 

power output to damp the power oscillations. Furthermore, the entire PV-STATCOM 

inverter capacity is utilized to damp the power oscillations.  
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(a) 

 

(b) 

Figure 3.4 (a) SMIB midline real power, (b) PV-STATCOM reactive power in Q-

POD mode of operation 

3.6.3 P-POD with BESS Real Power 

In this study, power oscillations are damped with BESS real power controller. Different 

BESS sizes are used such as ±10, ±25, and ±50 MWmax in order to compare the effect of 

POD with BESS and Q-POD with PV-STATCOM. Figure 3.5 shows the results for SMIB 

system midline and BESS real power after the fault for three BESS sizes. The effectiveness 

of P-POD controller increases by increasing the size of the BESS from 10 to 50 MWpk. 

The results show that even the ±10 MWpk BESS can improve power oscillation damping. 

However, to achieve the desired 5% minimum damping ratio, a minimum of ±25 MWpk 

capacity is required i.e. a settling time less than 10 sec for 1.7 Hz oscillations [22]. As 

shown in Figure 3.5, if ±50 MWpk BESS is selected for P-POD the damping of power 
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oscillations are further improved and become similar to results achieved through Q-POD 

control of PV-STATCOM.  

Midline Real Power    BESS Real Power  

 

  (a) 

 

  (b) 

 

  (c) 

Figure 3.5 SMIB midline real power considering P-POD with ±10, ±20, and ±50 

MWmax BESS 

In Figure 3.6 (a), the SMIB system midline power for No-POD, Q-POD with PV-

STATCOM, and P-POD with BESS are illustrated for comparison of all scenarios. Figure 

3.6 (b) depicts the PV-STATCOM reactive power and BESS real power. Figure 3.6 (c) 

portrays the midline voltage during POD with PV-STATCOM and BESS. It is clear from 

Figure 3.6 (a) and Figure 3.6 (b) that a BESS of half the size of a PV-STATCOM is 

sufficient to perform the same level of POD. According to Figure 3.6 (c) the small 

difference is observed for midline voltage between P-POD with BESS and Q-POD with 

PV-STATCOM. In both cases, the voltage remains within acceptable range based on the 

E.On and NERC grid codes [112, 113]. 
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(a) 

 

(b) 

 

(c) 

Figure 3.6 Comparison between P-POD and Q-POD for BESS and PV-STATCOM 
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 Conclusion 

A comparative study of Q-POD control with PV-STATCOM and P-POD control with 

BESS is performed in this Chapter. The POD controllers are optimized in EMT-type 

detailed simulation studies to achieve maximal damping for both P-POD and Q-POD. The 

effectiveness of P-POD control with BESS is dependent on the size of BESS. Case studies 

for P-POD controller with various sizes of BESS are presented and results are compared 

with Q-POD with PV-STATCOM. It is shown that a BESS of half the size of PV-

STATCOM is needed to achieve the same level of power oscillation damping.  

The studies in this chapter illustrate that real power modulation based POD controller can 

be effectively employed for damping electromechanical oscillations. Based on this 

conclusion, such P-POD control is implemented on a PV-STATCOM during daytime in 

Chapter 6 and Chapter 7.  

 



67 

 

Chapter 4  

4 Coordinated Control of PV Solar System as STATCOM 
(PV-STATCOM) and Power System Stabilizers for Power 
Oscillation Damping  

 Introduction  

The objective of this chapter is to examine if a coordination of traditionally used power 

system stabilizers (PSS) and reactive power modulation based PV-STATCOM control can 

provide increased levels of power oscillation damping than with either one of them acting 

alone. Hence, this chapter presents an optimized coordinated control of PV-STATCOM 

with Power System Stabilizers (PSS) for Power Oscillation Damping (POD) in the Two-

Area power system. All the four synchronous generators are considered to be equipped 

with PSS whereas a large-scale PV solar power plant is connected at the midpoint of the 

tie-line connecting the two areas. The capacity of the PV inverter remaining after real 

power generation is utilized for dynamic reactive power exchange to damp power 

oscillations caused by a disturbance. The master-slave simulation technique based on 

simplex optimization in PSCAD/EMTDC software is utilized for performing the 

optimization and controller coordination. 

 Study System Model 

Figure 4.1 illustrates the Two-Area power system utilized in this study. The PSS units are 

added in the excitation systems of all four generators. The different components of Two-

Area power system are described in Section 2.3.2. The PSS block diagram is presented in 

Section 2.4.3. The speed of individual generator is used as the control signal for the PSS 

resident on that generator. A large PV solar system rated at 150 MW is connected at the 

midline of the power system. It is assumed that during steady state conditions, 430 MW 

real power transfers from Area A to Area B. The system data is presented in Appendix B 
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Figure 4.1 Two-Area Power System with PV-STATCOM 

 Model of PV-STATCOM in Partial STATCOM mode 

An aggregated 150 MW solar power plant controlled as STATCOM (PV-STATCOM) is 

simulated in PSCAD/EMTDC software. Figure 4.2 depicts the controllers for the proposed 

PV-STATCOM.  

 

Figure 4.2 PV-STATCOM components and controllers 
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The models of different components of the PV-STATCOM have been described earlier in 

the thesis, i.e., PV solar panels (Section 2.5.1), Decoupled id/iq controller (Section 2.5.2), 

LCL filter (Section 2.5.3), MPPT algorithm (Section 2.5.4), DC Voltage controller (Section 

2.5.5), and Conventional Reactive Power Controller (Section 2.5.6). The additional Q-POD 

controller is added in order to perform the POD with PV-STATCOM remnant inverter 

capacity.  

4.3.1 Q-POD Controller in Partial STATCOM mode 

The Q-POD controller controls the reactive power output of the PV-STATCOM to damp 

the low-frequency electromechanical oscillations. iL represents the line current between 

buses 9 and 10, which has the highest participation factor in interarea mode of oscillation 

[14]. The iL signal is passed through washout filter to remove its DC component. The 

washout filter design is described in Section 2.7.1. The damping controller transfer function 

is selected as: 

𝐺𝑠(𝑡) = 𝐺 ×
1 + 𝑠𝑇𝑙𝑒𝑎𝑑

1 + 𝑠𝑇𝑙𝑎𝑔
                                                   (4.1) 

where, G represents the controller gain; and Tlead and Tlag model the lead and lag time 

constants, respectively. 

This controller generates the Iqref  reference current for PV inverter inner loop controller 

to control the PV reactive power. The real power production is not affected during Q-POD 

control, implying that real power production is given priority during the POD operation. 

Consequently, MPPT unit continues to be activate and idref is not influenced during POD. 

If the low frequency electromechanical oscillations appear in the power system, switch S 

is changed from position 1 to position 2. Thus, iqref is controlled through Q-POD controller.  
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 Optimized Coordinated Controller Design 

PSS controllers for synchronous generators and Q-POD controllers for PV-STATCOM are 

designed with the Simplex optimization technique implemented in the EMTDC/PSCAD 

software. This optimization is implemented based on the Master/Slave simulation 

described in Section 2.7.4. It is assumed that 3-phase to ground fault is initiated near the 

bus 9 and faulted line 2 is disconnected after 5 cycles. Optimization of PSSs and Q-POD 

controller is performed based on minimization of low frequency oscillation in the line 

power after the line 2 disconnection, as follows:  

4.4.1 Optimized Q-POD Controller Design  

If all PSSs are out of service, POD is entirely performed by the Q-POD control of PV-

STATCOM in Partial STATCOM mode of operation. Q-POD controller is designed to 

damp the interarea mode of oscillation together with the local modes of oscillation. It is 

assumed that the PV solar system is generating 100 MW. The remaining PV inverter 

capacity is calculated as: 

𝑄 = √𝑆2 − 𝑃2                                             (4.2) 

where, P is the PV real power output, S represent the inverter rating, and Q represent the 

remaining inverter capacity.  

According to (4.2), for a 150 MW solar power plant producing 100 MW real power, 111 

Mvar PV inverter remnant capacity is available for Q-POD. Since line current il between 

buses 9 and 10 has the highest participation factor (PF) in the interarea mode of oscillation 

[14], il is selected as the control signal for Q-POD controller. To optimize the Q-POD 

controller, OF is defined as  

𝑂𝐹 = ∫ (𝑃𝑚𝑖𝑑 − 𝑃𝑚𝑖𝑑−𝑟𝑒𝑓)
2

𝑇2

𝑇1

𝑑𝑡                                      (4.3) 

where, Pmid and Pmid-ref are midline power and midline power reference, respectively. T1 

and T2 are the start and the end times of the power oscillations caused by the line outage. 

The washout filter with Tw=10 sec is designed to block the steady state components and 
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pass the interarea mode oscillatory component having frequency less than 1 Hz. Figure 4.3 

illustrates the OF and Q-POD controller parameters during the optimization process. 

 

Figure 4.3 Lead, and Lag time constants and Gain of the Q-POD controller and the 

Objective Function (OF) during the optimization process. 

4.4.2 Power Oscillation Damping with PSS 

Lead-Lag controllers of the PSS (Section 2.4.3) are designed based on the Simplex 

optimization technique in PSCAD/EMTDC software. It is desired to minimize the local 

mode of oscillations for each generator during the contingencies. Hence, the OF for PSSs 

variables optimization is; 

𝑂𝐹 = ∑ ∫ (𝑃𝑛 − 𝑃𝑛𝑟𝑒𝑓
)2

𝑇2

𝑇1

𝑑𝑡

4

𝑛=1

                                                  (4.4) 

where, Pn and Pnref are the power output and power output reference, respectively, for the 

nth generator. The power output reference is the generator power output during the steady-
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state operation.  Figure 4.4 illustrates the optimization process for design of PSS 

controllers. 

`  

Figure 4.4 Lead, and Lag time constants and Gain of the PSS and The OF during the 

optimization process  

4.4.3 PSS and Q-POD Coordination  

The objectives of the coordinated design of Q-POD controller of PV-STATCOM with the 

PSS of generators are as to: 

1) increase the damping of local modes of oscillation,  

2) increase the damping of inter-area mode of oscillation 

Based on the requirements of the coordination, the OF is determined as follows: 
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𝑂𝐹 = 𝑤1 ∫ (𝑃𝑚𝑖𝑑𝑙𝑖𝑛𝑒 − 𝑃𝑚𝑖𝑑𝑙𝑖𝑛𝑒𝑟𝑒𝑓
)

2𝑇2

𝑇1

𝑑𝑡 + 𝑤2 ∫ (𝑃𝐺1
− 𝑃𝐺1𝑟𝑒𝑓)2

𝑇2

𝑇1

𝑑𝑡                                

+ 𝑤3 ∫ (𝑃𝐺2
− 𝑃𝐺2𝑟𝑒𝑓)2

𝑇2

𝑇1

𝑑𝑡 + 𝑤4 ∫ (𝑃𝐺3
− 𝑃𝐺3𝑟𝑒𝑓)2

𝑇2

𝑇1

𝑑𝑡   

+ 𝑤5 ∫ (𝑃𝐺4
− 𝑃𝐺4𝑟𝑒𝑓)2

𝑇2

𝑇1

𝑑𝑡                                                                       (4.4) 

The weighting function w is dependent on the objectives of the optimization process, i.e. 

to minimize the inter-area oscillations, and local power oscillations. The weighting 

function for each objective function is calculated based on the PF analysis of different 

generators in the interarea mode of oscillation.  

The participation of rotor speeds for G1 to G4 in the inter area oscillation are 15%, 17%, 

31% and 32%, respectively based on PF technique presented in Section 2.7.3. It is therefore 

concluded that a larger weight function needs is needed for generators 3 and 4.  
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Figure 4.5 Lead, and Lag time constants and Gain of the PSSs and Q-POD controller 

and The OF during the optimization process (dashed lines represent the PSS 

compensator parameters) 

Since the main objective is to reduce the oscillation in interarea mode of oscillation, w1 is 

selected as 80% (note that based on specific requirements different values can be selected). 

The rest 20% is divided between other weight functions as w2=3.5%, w3=4.5%, w4=6%, 

and w5=6%. Figure 4.5 illustrates the simultaneous optimization process for coordination 

between PSS and PV-STATCOM Q-POD controllers.  

Comparing Figure 4.4 and Figure 4.5 it is seen that during the coordination process, the 

PSS gains are reduced from 0.5 to 0.25 which results in a lower control effort from PSS 

controllers during the POD process. This gain reduction is due to participation of PV-

STATCOM in POD in which reduces the need for excessive PSS effort.  
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 Case Studies 

It is assumed that in steady state condition, 430 MW real power transfers from Area A to 

B through line 1 and 2 (215 MW each). At t=5 sec, a 3-phase to ground fault is initiated at 

line 2 near the bus 9 for 5 cycles. The faulted line 2 is cleared after 5 cycles and the entire 

430 MW power is transferred through line 1. The performances of the proposed PSS and 

Q-POD controllers are tested for damping the low frequency oscillations due to the fault 

and subsequent outage of line 2.   

4.5.1 No PSS and No Q-POD Controller  

In this study, the generators PSSs are deactivated and the Q-POD controller of PV-

STATCOM is also disabled. The PV system is assumed to be generating 100 MW real 

power. Figure 4.6 illustrates the result for this study. It is seen that the growing oscillations 

occur both in the midline power and PV system real power. The system soon becomes 

unstable.   

 

Figure 4.6 Midline real power for No Q-POD and PSS controller 

 



76 

 

 PSS only 

In this study, all 4 PSSs are activated to damp the power oscillations. Figure 4.7 depicts 

the midline real power during the above-described contingency. The oscillations get 

damped in 10 seconds and power system operates in a stable manner.  

 

Figure 4.7 Midline real power and PV power output (PSS activated) 

 Q-POD with PV-STATCOM only in Partial 
STATCOM mode 

All PSSs are deactivated and power oscillation damping is done with the remnant PV 

inverter capacity (±111 MVar) in Partial-STATCOM mode of the PV-STATCOM. Figure 

4.8 (a) depicts the midline power and PV system real power for this study. Figure 4.8 (b) 

illustrates the PV-STATCOM reactive power output during Q-POD, while Figure 4.8 (c) 

depicts the midline voltage. 
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(a) 

 
(b) 

 
(c) 

Figure 4.8 (a)Midline real power and PV-STATCOM power output during Q-POD  

(b) PV-STATCOM reactive power, (c) Midline voltage 

The Q-POD control by PV-STATCOM damps the inter area power oscillations in 13 sec.  

However, this power oscillation damping takes longer time than that achieved with the 

activation of PSSs only. The PCC bus voltage is modulated based on PV-STATCOM 

reactive power output.  
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4.7.1 Coordinated PSSs and Q-POD Controller  

In this study both PSSs and the Q-POD controller of PV-STATCOM are activated. The 

controllers are coordinated and optimized.  

 
(a) 

 
(b) 

 
(c) 

Figure 4.9 (a)Midline real power and PV-STATCOM power output during 

coordinated Q-POD and PSS (b) PV-STATCOM reactive power, (c) Midline voltage 
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Figure 4.9 (a) illustrates the result for midline real power. Figure 4.9 (b) depicts PV-

STATCOM reactive power output. Figure 4.9 (c) illustrates the midline voltage for this 

study. The power oscillations are damped in 4 seconds which is much lower than those 

achieved with PSSs or Q-POD with PV-STATCOM, acting alone. The midline voltage 

variations are also considerably smaller in this case comparing to the case of Q-POD with 

PV-STATCOM.  

 

Figure 4.10 Midline real power for proposed control techniques 

In Figure 4.10 the performances of proposed controllers for PSSs, Q-POD, and coordinated 

PSSs and Q-POD for PV-STATCOM are compared. The most effective and fastest 

damping is achieved when both Q-POD and PSS are activated in coordinated manner.   

 Comparison Between PV-STATCOM and Actual 
STATCOM 

The damping performance of an actual 111 Mvar STATCOM connected together with a 

150 MW PV solar farm generating 100 MW is now compared with the 150 MW PV solar 

farm controlled as PV-STATCOM. The proposed PV-STATCOM controller described in 
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Section 4.3.1 is used in the actual STATCOM. The STATCOM is considered to be 

connected at the same PCC point of the PV system, although not shown in Figure 4.1. In 

this study, the PV system remains connected and generates 100 MW real power in the 

conventional mode (i.e. it does not operate in PV-STATCOM mode). Figure 4.11 (a) 

depicts the midline and PV system real power for both the above cases. Figure 4.11 (b) 

shows the PV system real power for both studies in a magnified manner. It is evident that 

the PV-STATCOM demonstrates the same effectiveness in damping power oscillations as 

an actual STATCOM of the same rating. The only difference between PV-STATCOM and 

STATCOM in this study is a small variation in the PV real power during the power 

oscillation damping process. This is due to a slight interaction between the real and reactive 

power controllers (imperfect decoupling) in PV-STATCOM. In any case, this does not 

reduce the effectiveness of the PV-STATCOM. 

 

 
(a) 

 
(b) 

Figure 4.11 (a) Midline, PV system, and PV-STATCOM real power. (b) PV system 

and PV-STATCOM real power (Magnified) 
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 Conclusion 

This Chapter demonstrates an optimized coordinated control of PV solar farm as 

STATCOM (PV-STATCOM) and PSSs for damping power oscillations in a multi-machine 

power system. The optimized coordination of controllers for PSS units and PV-STATCOM 

is performed using the Simplex method embedded in the EMTDC/PSCAD software. The 

following conclusions are made: 

i) A coordinated control of PV-STATCOM and PSSs results in a much higher 

damping than that achievable with either PSS or PV-STATCOM acting alone.   

ii) The performance of a PV-STATCOM utilizing the remaining inverter capacity 

(after real power generation) is similar to that of an actual STATCOM of the 

same capacity rating. 

Since large PV solar farms are being increasingly connected at transmission levels, 

worldwide, such utilization of PV systems as PV-STATCOMs in a coordinated manner 

with the existing PSSs can greatly enhance the power oscillation damping and lead to 

increased power transfers in transmission lines. This novel control will result in a more 

optimal utilization of the PV system asset for grid stabilization. 
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Chapter 5  

5 Power Oscillation Damping with Reactive Power 
Control in Full PV-STATCOM   

 Introduction  

This chapter presents a novel Power Oscillation Damping (POD) control for PV-

STATCOM system in Full STATCOM mode of operation during the day time. In the 

proposed control, as soon as power oscillations due to a system disturbance are detected, 

the solar farm discontinues its real power generation function very briefly (few seconds) 

and releases its entire inverter capacity to operate as a STATCOM for POD.  

After the oscillations are damped, the solar farm restores real power output to its pre-

disturbance level in a ramped manner, while keeping the damping function activated 

resulting in a much faster restoration than that specified in grid codes  [114, 115].  

During nighttime, the solar farm performs POD with its entire inverter capacity. It is shown 

from EMTDC/PSCAD simulations that the proposed control provides significant increase 

in power transfer capacity on a 24/7 basis in systems which exhibit both local inertial and 

inter-area modes. Another novel contribution of this chapter is that the POD function is 

kept activated during the ramp up of power to its pre-disturbance value utilizing the inverter 

capacity remaining after real power generation. This prevents any recurrence of power 

oscillations and also allows a much faster ramp-up than prescribed by grid codes [114] 

where such a damping function during ramp-up is not envisaged. The proposed novel smart 

PV inverter control as PV-STATCOM thus allows a 24/7 capability of power oscillation 

damping with full inverter capacity. Furthermore, this POD function is accomplished with 

a simple first order controller.  

The effectiveness of the proposed PV-STATCOM for POD is demonstrated on a Single 

Machine Infinite Bus (SMIB)  system [116] and the Two-Area system [14] through detailed 

electromagnetic transients studies using PSCAD/EMTDC software. The Simplex 

optimization method embedded in PSCAD/EMTDC [106] is utilized to design the POD 

controller. 
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 Concept of PV-STATCOM in Full STATCOM mode 

The proposed smart inverter PV-STATCOM has two modes of operation – Partial 

STATCOM and Full STATCOM modes, illustrated in Section 2.2. As discussed in Chapter 

2, the remnant PV inverter capacity during the day time and full PV inverter capacity during 

the nighttime can be utilized for POD as soon as low frequency power oscillations are 

detected in the power system. This technique is however limited during periods around 

noontime when the inverter capacity is largely or completely taken up for PV real power 

production. Hence, in this chapter, the Full STATCOM mode of operation is proposed 

wherein the PV real power injection function is disabled and entire PV inverter capacity is 

made available for POD.  

 Power System Studies 

The performance of the proposed Q-POD in Full STATCOM mode is studied using two 

power systems – the Single Machine Infinite Bus (SMIB) system and the Two-Area power 

system, utilizing the PSCAD/EMTDC software. The PV-STATCOM is connected at the 

midpoint of both study systems as shown in Figure 5.1. The modeling of each power system 

is presented in Section 2.3.  

 

(a) 
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(b) 

Figure 5.1(a) SMIB power system, (b) Two-Area Power system 

 Modeling of the PV-STATCOM in Full PV-
STATCOM mode 

Figure 5.2 illustrates the proposed 100 MW PV-STATCOM power system. The models of 

different components of the PV-STATCOM have been described earlier in the thesis, i.e., 

PV solar panels (Section 2.5.1), Decoupled id/iq controller (Section 2.5.2), LCL filter 

(Section 2.5.3), MPPT algorithm (Section 2.5.4), DC Voltage controller (Section 2.5.5), 

and Conventional Reactive Power Controller (Section 2.5.6). In this chapter, additional 

controllers are proposed to perform POD with PV-STATCOM utilizing full PV inverter 

capacity as Q-POD controller. PV real power controllers are introduced for PV real power 

restoration. An Oscillation Detection Unit (ODU) is presented to detect the low frequency 

oscillatory modes and select the proper mode of PV-STATCOM operation. The ODU unit, 

Q-POD controller, and PV real power controllers are described below:   
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Figure 5.2 Block Diagram of 100 MW PV-STATCOM Components and Controllers 

5.4.1 Q-POD Controller  

The Q-POD controller based on the line current iL at the PCC controls the reactive power 

output of the PV-STATCOM to damp the low-frequency electromechanical oscillations. 

In Study System 1 (SMIB), iL represents the midline current where the PV system is 

connected. Meanwhile, in Study System 2 (Two-Area), iL represents the line current 

between buses 9 and 10, which has the highest participation factor in interarea mode of 

oscillation [14]. The iL signal is fed to the washout filter to remove its steady state 

component. The washout filter design is described in Section 2.7.1. The damping controller 

transfer function is selected as: 

𝐺𝑠(𝑡) = 𝐺 ×
1 + 𝑠𝑇𝑙𝑒𝑎𝑑

1 + 𝑠𝑇𝑙𝑎𝑔
                                                   (5.1) 

where, G represents the controller gain; and Tlead and Tlag model the lead and lag time 

constants, respectively. 
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This controller generates the Iqref  reference current for PV inverter inner loop controller 

to control the PV reactive power. This controller remains activated during the PV real 

power restoration interval.  

5.4.2 PV Real Power Controllers  

These controllers are responsible for the restoration of the real power output of the PV solar 

farm to its pre-disturbance value after power oscillation damping is achieved in the Full 

STATCOM mode. Grid codes [115, 117] do not allow the power to be restored in a step 

manner as this may cause undesirable voltage and power oscillations. Instead these codes 

require the solar farms to restore their power with a prespecified ramp rate so that the above 

oscillations can be prevented. No damping function is envisaged in these grid codes during 

the process of power ramp-up.  

In this chapter, a novel power restoration technique is proposed, according to which the 

solar farm continues to perform power oscillation damping during the entire power 

restoration process in the Partial STATCOM mode. This new mode of operation prevents 

the recurrence of power oscillations while the power is being restored to its pre-disturbance 

level. The proposed technique allows a much faster ramp rate to be achieved since power 

oscillations continue to be damped during the entire restoration process.  

Two types of power restoration techniques are implemented in the PV Real Power 

Controllers depicted in Figure 5.1, and described below.  

5.4.2.1 Power Restoration in a Ramped Manner 

In this mode, the controller changes the PV real power output from zero to the pre-

disturbance PV power level in a ramped manner with a ramp rate of Ksl starting at time t = 

tst. This is the normal recommended mode for restoration of solar farms by grid codes. No 

damping function is envisaged during the ramp-up.  
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5.4.2.2 Proposed Power Restoration in the Partial STATCOM 
Mode with POD Control Active 

In this mode, the controller changes the PV real power output from zero to the pre-

disturbance PV power level in a ramped manner with a ramp rate of K’sl starting at time     

t = tst. The solar farm is operated in the Partial STATCOM mode with POD control kept 

active. 

A variant of this technique is also shown in this chapter, according to which the power 

is restored from zero to the pre-disturbance level in a nonlinear mode starting at t = tst with 

an exponential time constant tc. This time constant can be determined based on the decay 

time constant of the ambient power oscillatory modes. This technique is only demonstrated 

as an alternate technique which is shown to be quite effective.  

During the real power restoration process, solar farm performs POD in Partial 

STATCOM mode with the reactive power capacity available after real power generation 

at that time instant. The reactive power limit Qlim which continuously keeps declining as 

the real power gets restored to its original pre-disturbance level is given by 

 

𝑄𝑙𝑖𝑚 = √𝑆2 − 𝑃2                                                          (5.2) 
 

where, S represents the total inverter capacity, P is the inverter real power output and 𝑄𝑙𝑖𝑚 

is the maximum available inverter capacity during power restoration. Based on (2.24) the 

limitation in iqref  signal is applied on the output of POD controller.   

5.4.3 Oscillation Detection Unit 

The ODU autonomously detects the occurrence of unacceptable low-frequency 

electromechanical power oscillations caused by any grid disturbance such as faults. The 

ODU operates based on the flow chart depicted in Figure 5.3 and generates the ON/OFF 

status signals for switches S1, S2, and S3. The magnitude of the line current at the PCC of 

solar farm is selected as the control signal for POD [76]. The oscillatory component of line 

current ∆il is compared with a predefined value ε which in this study is chosen as 5%. 
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This ODU detects any oscillations in the control signal, which are caused by system 

disturbances such as faults. The ODU will also respond to system oscillations caused by 

sudden changes in the load, and will activate the Full PV-STATCOM operation. This 

aspect of load change, however, has not been considered in this thesis.  

If the variation is more than ε the Full STATCOM mode is activated for POD control and 

PV real power is reduced to zero. If the oscillations stabilize and remain within the 

acceptable range, the selected power restoration mode (Ramp, or Nonlinear) is activated at 

t=tst. A 2 sec delay is incorporated as a factor of safety. As soon as the PV real power Ppv 

reaches its pre-disturbance value Ppr, the STATCOM operation mode changes to the 

conventional PV controller mode of operation. 

 

Figure 5.3  Flowchart of the operation of Oscillation Detection Unit 

 Optimized POD Controller Design  

The POD controller parameters - Gain, Lead and Lag time constant are determined by the 

Simplex optimization technique [105] embedded in the PSCAD/EMTDC software [106]. 

The procedure and implementation of the optimization technique in PSCAD software is 
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discussed in Section 2.7.4 . In this study, the aim is to minimize the low frequency power 

oscillations in line current. The corresponding Objective Function (OF) is defined as: 

𝑂𝐹 = ∫ (𝑖𝑙 − 𝑖𝑙_𝑟𝑒𝑓)
2

𝑇2

𝑇1

𝑑𝑡                                                    (5.3) 

where, il_ref is the reference value of the midline current il. T1 and T2 are the start and end 

time of the current oscillations after the fault, respectively.   

Figure 5.4 presents the OF, Gain, Tlead and Tlag for PV-STATCOM damping controllers 

design in SMIB and the Two-Area power systems. The OF converges in about 40 runs for 

the SMIB system and 59 runs for the Two-Area power system.  
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Figure 5.4 The OF, Gain, Tlead and Tlag for damping controllers for PV-STATCOM 

in SMIB and Two-Area power systems. 

 CASE STUDY 1: THE SMIB SYSTEM 

This case study presents the improvement in power transfer capability in Study System 1 

(SMIB System) through power oscillation damping with the proposed PV-STATCOM 

control. A three phase to ground fault is initiated at generator bus at t = 2 sec for 5 cycles 

in the different studies to examine the performance of the proposed control. The simulation 

studies are performed using the PSCAD/EMTDC software. 
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5.6.1 Power Transfer without PV-STATCOM Control 

Figure 5.5 depicts the mid-line real power flow at the PCC bus of the PV solar farm as well 

as the power output of the solar farm. In this case, as soon as the fault occurs, the PV solar 

farm is disconnected thereby reducing its power output from 100 MW to zero. In order to 

ensure that the power oscillations have a damping ratio of at least 5% [102, 118] the 

oscillations should stabilize in about 10 sec for the considered oscillatory mode.  

The SMIB system can transfer at most 200 MW power from the synchronous generator in 

addition to the 100 MW power generated by the PV solar farm. To examine the effect of 

increased power transfer in the study system, a similar fault study as above is conducted 

with 430 MW generator power. This results in unacceptably high-power oscillations as 

shown in Figure 5.5. 

 

 

Figure 5.5 Maximum power transfer capability of the SMIB system 

5.6.2 Study 2: Power Transfer of SMIB with PV-STATCOM POD 
Mode and Step PV Reconnection 

In this study, the same fault as the one in Study 1 is applied at the SMIB system generator 

side. During the fault, ODU changes the PV operation mode to PV-STATCOM mode of 

operation. Figure 5.6 demonstrates that with the proposed POD technique, the maximum 

power transfer capability limit of the SMIB system is increased to 433 MW from the 

synchronous generator (damping ratio higher than 5%).   
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Figure 5.6 Midline and PV real power, PV reactive power and Midline voltage in 

SMIB system (Study 2), Step PV reconnection. 

After the oscillations are damped, the ODU changes the mode of operation to Step 

reconnection control and 100 MW PV power is injected into the line in a Step function 

mode. It is shown that the sudden increase in the power results in an additional low power 

oscillations. 

This mode of reconnection is not advised by the grid codes, but is described here only to 

illustrate its negative impact 

5.6.3 Power Transfer with Full PV-STATCOM Damping Control 
and Power Restoration in Normal Ramped Manner 

This study is conducted with a generator power of 430 MW and PV solar farm producing 

its rated power output of 100 MW at mid-noon with maximum solar irradiance. For this 

case, Figure 5.7 (a) depicts the midline power flow and the PV solar power output, whereas 
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Figure 5.7 5.7(b) and Figure 5.7 (c) demonstrate the reactive power of the PV-STATCOM 

and PCC voltage, respectively.  

 

 

Figure 5.7(a)  Midline and PV system real powers, (b) PV-STATCOM reactive 

power, (c) Midline voltage during POD and normal ramped power restoration. 

The proposed Full PV-STATCOM control utilizes the entire inverter capacity for 

reactive power modulation to successfully damp the power oscillations to within acceptable 

limits in 8 seconds. The PCC voltage is also rapidly stabilized. Grid codes such as [119] 

specify that power restoration from a PV solar farm from zero to its rated level may be 

done with a typical ramp rate of 10% of rated capacity in 1 minute to avoid any power 

oscillations. In this case study, the fastest ramp rate which will expectedly not cause any 

resurrection of power oscillations is determined from simulations to be 5.5 MW/sec. 

Therefore, after power oscillations stabilize, the restoration of PV solar power output to its 

pre-disturbance value is commenced at t = 12 sec (incorporating the 2 sec factor of safety) 

18 s 

(c) 
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with the above-obtained ramp rate of 5.5 MW/sec. It is noted that the power is completely 

restored in a time period of 18 sec, with no ensuing power oscillations.   

5.6.4 Power Transfer with Full PV-STATCOM Damping Control 
and Ramped Power Restoration with POD Control Active in 
Partial STATCOM Mode  

This study is performed to demonstrate the effectiveness of the proposed restoration 

technique for the same system operating conditions as in previous Case. Figure 5.8 (a) 

depicts the midline power flow and the PV solar power output whereas Figure 5.8 (b) and 

(c) illustrate the reactive power of the PV- STATCOM and PCC voltage, respectively.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 5.8 (a) Midline and PV system real power, (b) PV-STATCOM reactive 

power, (c) Midline voltage during POD and power restoration in Partial PV-

STATCOM damping mode. 

5 s 
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The PV real power is restored in a ramp manner with power oscillation damping 

continually being performed in the Partial STATCOM mode during the ramp-up. For better 

illustration, the reactive power modulation during the restoration period is indicated in a 

red dashed circle. It is evident from Figure 5.8 that with this novel restoration technique, 

the restoration of power to the pre-disturbance value is achieved in only 5 sec as compared 

to 18 sec in the previous case. This technique successfully prevents any recurrence of both 

power and voltage oscillations. 

5.6.5 Nighttime Power Transfer Enhancement with Full PV-
STATCOM Power Oscillation Damping Control 

The same 5 cycle fault at t = 2 sec is initiated for a generator power output of 430 MW 

at nighttime. Figure 5.9 (a) portrays the behavior of 430 MW power flow in the tieline with 

and without the PV-STATCOM POD control. Figure 5.9 (b) illustrates the generator 

reactive power of the PV-STATCOM. It is seen that the solar farm with the proposed Full 

PV-STATCOM POD control successfully enables the same increase in power transfer from 

200 MW to 430 MW in the nighttime, as in daytime. 

 

(a) 

 
       (b) 

Figure 5.9 Nighttime (a) Midline real power with and without POD with PV-

STATCOM control, (b) PV-STATCOM reactive power during POD. 
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 Case Study 2:  Two-Area Power System 

5.7.1 Power Transfer without PV-STATCOM Control 

In the Two-Area power system depicted in Figure 5.1 (b), power is transferred from Area 

A to Area B equally through tie-lines 1 and 2 under normal operation. A three phase to 

ground fault is initiated at t =2 sec for 5 cycles in Line 2 close to Bus 9. The circuit breakers 

disconnect the faulted line 2 and the entire tie line power is subsequently transferred 

through Line 1. The midline connected PV solar farm is considered to produce its rated 

100 MW power at noon under maximum solar irradiance. As soon as the fault occurs the 

PV solar farm is disconnected. Figure 5.10 shows the midline real power and the PV solar 

power for this study. In this case, the maximum tie line power that can be stabilized with a 

damping ratio of 5% subsequent to the fault is 230 MW. 

 

 

Figure 5.10 Midline and PV real power in Two-Area system (230 MW) 

In this study, the objective is to increase the line power transfer limit from 230 MW to 430 

MW. Figure 5.11 (a) illustrates the midline power and PV solar power output, whereas 

Figure 5.11 (b) depicts the PCC voltage for the case of 430 MW power transfer in the tie-

line. The considered fault is seen to cause severe oscillations both in tieline power and the 

bus voltage.  
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(a) 

 
(b) 

Figure 5.11 Midline and PV real power and Midline voltage in Two-Area system 

(430 MW power transfer). 

5.7.2 Power Transfer with Full PV-STATCOM Damping Control 
and Power Restoration in Normal Ramped Manner 

As soon as power oscillations are initiated, the solar power output is reduced to zero and 

the solar farm is transformed to Full PV-STATCOM with POD control. It is noted that 

according to the Voltage Ride Through criteria of grid codes [114, 115], the PV solar farm 

must be anyway disconnected due to the large voltage excursions caused by the fault. The 

proposed PV-STATCOM control goes a step further and instead of staying idle in 

disconnected mode, utilizes its entire inverter capacity for POD to increase the power 

transfer. 

  Figure 5.12 (a) illustrates the midline power and the PV real power.   Figure 5.12 (b) and 

(c) show the PV-STATCOM reactive power and PCC bus voltage, respectively.  
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(C) 

Figure 5.12(a) Midline and PV real power, (b) PV reactive power, (c) Midline 

voltage during POD and power restoration in a normal ramped manner. 

The PV-STATCOM POD function successfully stabilizes the power oscillations to within 

acceptable limits in about 10 sec (just before t = 12sec). The PCC voltage oscillations are 

also mitigated rapidly. The power restoration is commenced at t=15 sec, after a 2 sec delay 

for safety purpose. The solar power is ramped up to its pre-disturbance level of 100 MW 

at a rate of 5.5 MW/sec, as determined earlier, in about 18 sec.    

5.7.3     Power transfer with Full PV-STATCOM Damping Control 
and Ramped Power Restoration with POD Control Active in 
Partial STATCOM Mode  

This study is performed to illustrate the efficacy of the proposed restoration technique for 

the same system operating conditions as in the previous  

18 s 
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(c) 

Figure 5.13 (a) Midline and PV real power, (b) PV reactive power, (c) Midline 

voltage during POD and power restoration in a fast ramped manner. 

Case. Figure 5.13 (a) depicts the midline power flow and the PV solar power output 

whereas Figure 5.13 (b) and (c) demonstrate the reactive power of the PV-STATCOM and 

PCC voltage, respectively. It is evident that POD with Partial PV-STATCOM operating 

mode activated reduces the time of PV power restoration to its pre-disturbance level of 100 

MW in just 5 sec. This is about 3.5 times faster than without the proposed restoration 

technique. 

(c) 
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5.7.4 Power transfer with Full PV-STATCOM Damping Control and 
Nonlinear Power Restoration with POD Control Active in 
Partial STATCOM Mode  

This study is presented to show the effectiveness of an alternate technique of power 

restoration in a nonlinear (exponential) manner, after the power oscillations have been 

damped through POD control in Full STATCOM mode of operation. The time constant of 

the exponential restoration is determined from a hit and trial process. During the restoration 

period, the POD function remains activated in Partial STATCOM mode to damp the power 

oscillations. Figure 5.14 illustrates the midline power flow and the PV solar power output 

for this case. In this case, 95% of entire pre-disturbance PV real power is restored within 2 

sec and the remaining 5% is restored in 1 sec. The nonlinear PV restoration technique thus 

significantly reduces the restoration interval from 18 s to 3 s. This is presented just an initial 

study. More work is needed to systematically determine the time constant of the  

P
(M

W
)

  

Figure 5.14 Midline and PV real power when power is restored nonlinearly 

exponential ramp-up, which is outside the scope of this thesis. To compare the effect of 

Ramp and Nonlinear restoration techniques, Figure 5.15 illustrates the midline real power 

after restoration with both restoration techniques. As shown in Figure 5.15, in the ramp 

restoration technique, undamped low frequency power oscillations appear in the midline 

real power. The occurrence of these oscillations can be eliminated by proposed nonlinear 

restoration.  Further investigation is required to justify the best effective ramp rate for 

nonlinear restoration.  

3 s 
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Figure 5.15 Midline real power after power restoration with Ramp and Nonlinear 

function 

 Nighttime Power Transfer Enhancement with Full 
PV-STATCOM Power Oscillation Damping Control 

The effectiveness of the proposed Full PV-STATCOM based POD control subsequent to 

the same fault as in Section 5.7.1  is presented in this study.  Figure 5.16 (a) portrays the 

behavior of 230 MW and 430 MW of power flow in the tieline without the PV-STATCOM 

control. Figure 5.16 (b) and (c) demonstrate the tieline power and PV system reactive 

power during POD in Full STATCOM mode of operation. The maximum power transfer 

in the tie line is only 230 MW. The proposed power oscillation damping in Full STATCOM 

mode of operation, utilizing the full inverter capacity during nighttime increases the power 

transfer capability of the tieline from 230 MW to 430 MW, i.e., by 200 MW. 

 

 

(a) 
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(b) 

 

Figure 5.16 Nighttime (a) Midline real power without POD with PV-STATCOM 

control, (b) Midline real power with Full PV-STATCOM POD Control, (c) PV-

STATCOM reactive power 

 The Effect of Proposed POD Controls on Power 
System Frequency  

One of the potential concerns regarding the discontinuation of PV real power is its likely 

effect on the power system frequency. Figure 5.17 depicts the power system frequency 

with and without PV-STATCOM POD controller. It is shown that even with the proposed  

fast restoration of PV real power in which the entire POD and restoration is performed in 

18 sec, the power system frequency continues to be remain stable. In fact the proposed PV-

STATCOM control substantially reduces the oscillations in frequency that would be caused 

with the solar farm in the absence of PV-STATCOM control.  
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Figure 5.17 The effect of proposed controller on power system frequency 

 

 Conclusion 

This chapter presents a novel control of transmission line connected large PV solar system 

as a STATCOM, termed PV-STATCOM, for damping power oscillations and thereby 

substantially increasing the power transfer capacity of that transmission line. The proposed 

control provides POD utilizing its entire inverter capacity during nighttime. During 

daytime it discontinues its real power generation function very briefly (about 15 sec) and 

utilizes its entire capacity for POD. It subsequently restores power generation to its pre-

disturbance level in a gradual manner while keeping the POD function activated utilizing 

the remaining inverter capacity. EMTDC/PSCAD simulation studies are performed to 

demonstrate the effectiveness of the proposed PV-STATCOM control in a single machine 

infinite bus (SMIB) system which demonstrates local inertial oscillatory mode and the 

Two-Area system which exhibits both local inertial and inter-area modes of oscillations. 

In SMIB system, a 100 MW midline connected PV solar system increases the power 

transfer capacity by 230 MW, whereas in the Two-Area system a 100 MW PV solar system 

increases the power transmission limit by 200 MW. Moreover, the proposed power 

restoration technique keeping POD activated is more than 3 times faster than that specified 

by grid codes (without POD function).  
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The temporary (about 18 sec) shutdown of real power production function for POD is not 

seen to cause any adverse impact on system frequency.  

The proposed PV-STATCOM provides 24/7 functionality of an equivalent STATCOM for 

POD at the same location. This PV-STATCOM is expected to be about 50-100 times lower 

in cost than an equivalent STATCOM as it utilizes the existing infrastructure (substation, 

bus-work, transformers, circuit breakers, protection systems, etc.) of a PV solar farm to 

transform it into a full scale STATCOM of similar size.  

The PV-STATCOM as an alternate FACTS device is expected to bring significant savings 

for utilities seeking to increase their power transmission capacity. It also opens a new 

revenue making opportunity for transmission connected solar farms to provide 24/7 

STATCOM functionality at substantially lower cost. The implementation of this 

technology of course requires appropriate agreements among utilities, system regulators, 

solar farm developers and inverter manufacturers. 
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Chapter 6  

6 Novel Combined Real and Reactive Power Control of PV 
Solar Farm as STATCOM (PV-STATCOM) for Power 
Oscillation Damping  

 Introduction 

This chapter presents a novel day-and-night control of a large-scale PV solar farm as PV-

STATCOM system for damping low-frequency power oscillations. Three different Power 

Oscillation Damping (POD) control strategies for PV-STATCOM are presented: i) 

Reactive power based POD (Q-POD), ii) Real power based POD (P-POD), and iii) 

Combined Real and Reactive power based POD (PQ-POD). The influence of the PV-

STATCOM location on its effectiveness for POD is presented. Small signal and detailed 

electromagnetic transients model of the Two-Area power system and a 100 MW PV-

STATCOM are developed in Matlab and PSCAD/EMTDC software, respectively. POD 

controllers are designed in two stages. In small signal studies, the controllers are designed 

based on small signal disturbance around the steady state operating point. Subsequently, 

these controller parameters are used for optimized controller design for the electromagnetic 

transient studies of the power system. The effectiveness of the proposed PV-STATCOM 

POD controllers on damping the power oscillations is demonstrated for various levels of 

PV power generation and locations of PV solar farm. In addition, the influence of the 

proposed POD control techniques on power system frequency is studied.  

 Concept of PV-STATCOM PQ-POD control mode 

Figure.6.1 presents the typical pattern of large-scale PV solar farm real power output on a 

sunny day and the corresponding inverter remaining capacity during a 24-hour period.  
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Figure.6.1 PV-STATCOM inverter remaining capacity, PV real, and reactive power 

during 24 hours. 

Figure.6.1 depicts both PV real power modulation and reactive power modulation which 

can be utilized either individually or in combination for power oscillation damping. 

Correspondingly, three modes of POD control are proposed as below: 

i) Reactive Power Modulation based POD Control (Q-POD Control) 

The reactive power is modulated between zero and the remaining inverter 

capacity (Partial STATCOM mode), or between zero and the rated inverter 

capacity (Full STATCOM mode) to accomplish POD. No real power 

modulation is involved. This mode is available both during day and night.  

ii) Real Power Modulation based POD Control (P-POD Control) 

The maximum real power production based on available solar irradiance is 

reduced to half and the real power is modulated between zero and the maximum 

value for POD. No reactive power modulation is involved. This mode is 

available during daytime. 
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iii) Combined Real and Reactive Power Modulation based POD Control (PQ-POD 

Control) 

The maximum real power production based on available solar irradiance is 

reduced to half and the real power is modulated between zero and the maximum 

value for POD. Simultaneously reactive power is also modulated between zero 

and the inverter capacity remaining after real power modulation. This mode is 

available during daytime. 

In cases of P-POD or PQ-POD activated after a system disturbance, whenever the real 

power is reduced for modulation purpose, after the low-frequency power oscillations are 

damped to within acceptable limits, the real power is restored to its pre-disturbance level 

in a ramped manner. It is noted that during the ramp-up period, POD function using 

available reactive power is kept activated to prevent any subsequent onset of power 

oscillations while power is restored.   

 Study System 

In this chapter, the effectiveness of the proposed PV-STATCOM POD controllers is 

demonstrated in the Two-Area power system described in Section 2.3.2. PSSs are not 

considered in the generator excitation units for this study. Figure 6.2 illustrates the Two-

Area power system in which the PV-STATCOM is connected at bus 10. This study system 

is simulated in Matlab Simulink and PSCAD for small signal and detailed electromagnetic 

transients studies.  
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Figure 6.2 Single-line diagram of Two-Area power system with PV-STATCOM 

connected to bus 10. 

 PV-STATCOM in EMT and Small Signal    

Figure 6.3 presents the model of PV-STATCOM, which is utilized in both the small signal 

studies and detailed EMTDC/PSCAD electromagnetic transients (EMT) simulation 

studies.  

6.4.1 PV-STATCOM EMT Model 

Figure 5.2 illustrates the proposed 100 MW PV-STATCOM power system. The models of 

different components of the PV-STATCOM have been described earlier in the thesis, i.e., 

PV solar panels (Section 2.5.1), Decoupled id/iq controller (Section 2.5.2), LCL filter 

(Section 2.5.3), MPPT algorithm (Section 2.5.4), DC Voltage controller (Section 2.5.5), 

and Conventional Reactive Power Controller (Section 2.5.6). The remaining constituents 

are described below: 

6.4.1.1 Q-POD Controller  

The Q-POD controller operation in Full STATCOM mode is described in Section 5.4.1. In 

this mode, the entire PV inverter capacity is released by reducing the PV-STATCOM real. 
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Figure 6.3 PV-STATCOM Controllers in detailed and small signal simulation 

power output to zero. Hence, POD can be performed by controlling the PV-STATCOM 

reactive power output utilizing the entire inverter capacity. The magnitude of the line 

current signal from bus 9 to bus 10 il which has the highest participation factor in selected 

interarea mode of oscillation is used as a control signal. il is subsequently passed through 

the washout filter. The oscillatory component of il is fed as the input signal for compensator 

with GQ-POD transfer function Section 5.4.1. A hard limiter is used on the compensator 

output to limit the iq-ref based on (5.2). To release the entire PV system inverter capacity, 

Vdc-ref changes to Vop by changing S3 to position 2. Further, iqref changes to iqref2 by switching 

S2 to position 2 to change the PV-STATCOM reactive power control mode from 

conventional to Q-POD control mode.  



110 

 

6.4.1.2 P-POD Controller 

In this mode, the POD is performed only by controlling the PV-STATCOM real power 

output. The idref is controller at 𝑖𝑑𝑟𝑒𝑓2. To activate P-POD controller, the real power set 

point is reduced to half of its pre-fault value (Ppr) using Sample and Hold (S/H) and divider 

block. The real power is controlled around the Pref2 through P-POD controller. Idref2   is 

calculated as:  

𝑖𝑑𝑟𝑒𝑓2 =
2

3 × 𝑉𝑑
𝑃𝑟𝑒𝑓2 + 𝑖𝑃−𝑃𝑂𝐷                                                  (6.1) 

 

where iP-POD represents the current output from P-POD controller with GP-POD transfer 

function:  

𝐺𝑝_𝑃𝑂𝐷(𝑡) = 𝐺 ×
1 + 𝑠𝑇𝑙𝑒𝑎𝑑

1 + 𝑠𝑇𝑙𝑎𝑔
                                                    (6.2) 

il passes through washout filter with Tw time constant to filter its steady state component 

and is used as the control signal.  

6.4.1.3 PQ-POD controller 

In this mode of operation, both P-POD and Q-POD are activated to enhance the PV-

STATCOM POD performance. The idref is controllered at 𝑖𝑑𝑟𝑒𝑓2 and iqref changes to iqref2. 

The generated iqref2 from Q-POD controller is limited through the hard limit block based 

on the available PV system inverter capacity. During the day time, PQ-POD can be 

activated by switching S1 to position 3 and S2 to position 2. 

6.4.2 PV-STATCOM Small Signal Model  

Figure 6.3 illustrates the small signal model of the PV solar farm [109], inverter, and 

current controllers. This model is described in detail in Section 2.9. In this chapter, the 

reference idref and iqref signals are the same as PV-STATCOM in EMT model.  
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6.4.3 Selection of PV-STATCOM Operation Mode  

The flowchart for PV-STATCOM operation mode selection is illustrated in Figure 6.4. The 

specific mode of operation is selected based on the power system conditions. 

 

Figure 6.4 Flowchart of PV-STATCOM operation mode selection. 

As described earlier, to detect the occurrence of low frequency oscillations, il is passed 

through washout filter (Section 2.7.1) to filter the steady state components of the signal. 
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The magnitude of il deviation is compared with a predefined limit ɛ. If the oscillations in il 

signal are within the limit ɛ, which in this chapter is selected as 5%, the conventional PV 

mode of operation is activated. If the oscillations are more than ɛ, POD mode is activated 

as follows:  

a) Q-POD is activated by changing Vdcref to Vop , iqref changes to iqref2.  

b) P-POD is activated by changing idref to idref2. The reactive power is controller 

through conventional controller.   

c) PQ-POD is activated by changing Vdcref to Vop , iqref changes to iqref2, and idref 

changes to idref2.  

In the POD techniques, if the magnitude of oscillations in il stabilizes within ɛ, after a 2 sec 

safety delay, the real power restoration mode is activated. It is emphasized that the POD 

function is kept activated in the Partial STATCOM mode while the real power is restored 

to its pre-disturbance value Ppr. If the Ppv reaches Ppr, the conventional PV mode of 

operation is reactivated.   

6.4.4 PQ-POD Controller Design  

The controllers are designed based on the residue analysis technique presented in Section 

2.7.3 and further optimized in PSCAD/EMTDC software based on the embedded Simplex 

Optimization technique described in Section 2.7.4. The POD controller parameters are 

given in Appendix I.  

 Placement of PV-STATCOM in Two-Area power 
system 

The effectiveness of the PV-STATCOM control at different locations is examined using 

the residue analysis technique described in Section 2.8. 

In the Two-Area power system, five different locations are considered for PV system 

placement as buses 6, 7, 8, 9, and 10, respectively. It is assumed that the PV system is 

generating half of its available power (50 MW). This power generation level gives adequate 
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PV inverter remaining capacity to perform the residue analysis for Q-POD controller while 

there is enough real power available for P-POD controller. The input and output signals for 

the Q-POD feedback loop are the variation in PV-STATCOM reactive power (∆𝑄) and 

variation in midline current (∆𝑖𝑙), respectively. For P-POD controller, the input is the 

variation in PV-STATCOM real power (∆𝑃) and ∆𝑖𝑙. 

6.5.1 Residue Analysis for PV-STATCOM with Q-POD  

Figure 6.5 presents the results for residue analysis for PV-STATCOM interconnection at 

the different buses for different levels of power transfer from Area A to B vice versa. The 

highest residue associated with PV-STATCOM in Q-POD control mode is achieved 

considering the midline power transfer is at its maximum (430 MW) and PV-STATCOM 

is connected to bus 10.  

 

 

Figure 6.5 Residue analysis for PV-STATCOM Q-POD controller. 

6.5.2 Residue analysis for PV-STATCOM with P-POD  

The results of the residue analysis for PV-STATCOM with P-POD controller are presented 

in Figure 6.6. If the PV-STATCOM is connected at the midline of the Two-Area power 

system (Bus 8), PV real power does not have a significant effect on the interarea mode of 
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oscillations. The highest residue for this study is achieved when the PV-STATCOM is 

connected at bus 6 or 10.  

 

Figure 6.6 Residue analysis for PV-STATCOM P-POD controller. 

Based on the results obtained in Figure 6.5 and Figure 6.6, the best location to perform PQ-

POD controller is bus 10 in which both Q-POD and P-POD have the highest residue 

magnitude on the interarea mode of oscillation.   

 Case Studies 

Three Case Studies based on the location of PV-STATCOM are presented in this chapter. 

In Case Study I, the PV-STATCOM is connected at bus 10 which is the best bus candidate 

for PQ-POD control. The performances of the proposed POD control techniques are tested 

in detailed EMT simulation studies. In addition, the effect of various PV real power 

generation on each POD technique is evaluated. In Case Studies 2 and 3, the PV-

STATCOM location is changed from bus 10 to bus 8 and 6, respectively. The effect of the 

location of PV-STATCOM on the performance of the proposed POD techniques is 

examined and results are compared with those obtained in residue analysis;  
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6.6.1 Power Oscillation Damping by PV-STATCOM Interconnected 
at the Best Location 

In this study, it is assumed that the PV-STATCOM is connected at bus 10 and 430 MW 

power is being transferred from Area A to B and. A three-phase to ground fault is initiated 

at t=1 sec for 5 cycles near bus 9. Due to the fault, growing low-frequency power 

oscillations occur in the line current. Figure 6.7 illustrates the power transfer capability of 

the Two-Area power system after three phase fault initiation. It is seen that the maximum 

power capability of the line is 250 MW. The aim is now to increase the power transfer 

capability of the same line to 430 MW with the proposed POD controllers. 

 

 

Figure 6.7 Maximum power transfer capability of Two-Area power system. 

Figure 6.8 depicts the results of power oscillation damping achieved by different POD 

techniques. It is observed that the Q-POD, P-POD and PQ-POD controllers damp the 

power oscillations to within acceptable limits in 12 sec, 12 sec, and 7 sec, respectively. 

This implies that the best POD is achieved by the PQ-POD control.  

 

 



116 

 

 
(a) 

 
(b) 

 

 
(c) 

 

(d) 
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(e) 

  

(f) 

Figure 6.8 a) Midline real power for case study A, b) PV-STATCOM real and 

reactive power for Q-POD control technique, c) PV-STATCOM real and reactive 

power for P-POD control technique, d) PV-STATCOM real and reactive power for 

PQ-POD control technique, e) PCC Voltage in pu. f) PV-STATCOM DC voltage for 

Q-POD, P-POD, and PQ-POD controllers. 

Figure 6.8 (b) presents the PV-STATCOM real and reactive power after the fault for Q-

POD control. The PV real power is reduced to zero within 0.3 second after the fault 

initiation and the entire PV-STATCOM inverter capacity is made fully available for Q-

POD control. The required modulation of reactive power of PV-STATCOM gets reduced 
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to less than 5% by t=10 sec.  Due to the decoupled P-Q control, the real power of the PV 

system continues to be at zero. Subsequently after the safety time of 2 seconds, at t = 12 

sec, the PV real power is restored to Ppr = 100 MW with a ramp rate of 20 MW/sec Section 

5.7.3. 

Figure 6.8 (c) shows the PV-STATCOM real and reactive power after the fault for P-POD 

control. The PV system real power is reduced to half of its pre-fault value (50 MW) and P-

POD control is performed by controlling the PV-STATCOM real power around 0 to 100 

MW. The required modulation of midline real power decreases to less than 5% by t= 10 

sec.  Due to the decoupled control the reactive power of the PV system continues to be 

almost zero. Subsequently after the safety time of 2 seconds, at t = 12 sec, the PV real 

power is restored to Ppr = 100 MW with a ramp rate of 20 MW/sec. The effectiveness of 

P-POD control is observed to be similar to the Q-POD control.     

Figure 6.8 (d) portrays the PV-STATCOM real and reactive power after the fault for PQ-

POD control. Following the fault, the PV-STATCOM real power is reduced to half of its 

pre-fault value. Both P-POD and Q-POD controllers are activated. In this mode, P-POD is 

the primary control function and Q-POD is done with inverter remnant capacity. If the 

required attenuation of oscillations achieved and remain in 5% for duration of 2 sec, at t = 

8 sec, the PV real power is restored to Ppr = 100 MW with 20 MW/sec ramp rate. 

Figure 6.8 (e) depicts the voltage at the PCC. It is seen that none of the studied PV-

STATCOM POD controllers have an adverse impact on the PCC voltage. In fact the bus 

voltage with all the POD controllers stays within utility specified limits. It is further 

observed that the voltage variation with PQ-POD control mode is much smaller than either 

P-POD and Q-POD acting alone.  

Figure 6.8 (f) illustrates the PV-STATCOM DC voltage modulation based on the selected 

POD mode of operation. In Q-POD mode of operation, the DC voltage is controlled at 840 

V to reduce the PV real power to zero based on VI characteristic of PV modules. In P-POD 

mode, PV-STATCOM DC voltage is controlled around 820 V (50 MW). This DC voltage 

variation results in 0 MW to 100 MW PV real power variation. In PQ-POD mode of 

operation, the DC voltage of the PV system is controlled around 830V to reduce the PV 
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real power set point to 50 MW. It is shown that the DC voltage variation in PQ-POD control 

is smaller than both the Q-POD and P-POD control techniques. This reduces the stress on 

the DC link capacitor 

6.6.1.1 The Effect of POD Controllers on Power System Frequency  

Figure 6.9 illustrates the impact of the proposed POD control techniques on power system 

frequency after the fault. If no POD control is activated the power system frequency 

variation violates the standard limits set by Standards [44], in fact the system becomes 

unstable. None of the POD controls utilized in this study destabilize the frequency. It is 

seen that the largest frequency variation is experienced with the Q-POD control since the 

real power is suddenly reduced to zero to release the entire inverter capacity for reactive 

power modulation. P-POD causes lower frequency oscillation since power is reduced by 

only half (from 100 MW to 50 MW), while PQ-POD causes the lowest amount of 

frequency excursion.  

 

 
 

Figure 6.9 Power system frequency for No POD, Q-POD, P-POD and PQ-POD 

control techniques. 
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6.6.2 Effect of Available PV Real Power on Proposed Control 
Techniques 

To evaluate the performance of PV-STATCOM POD controllers with respect to different 

PV real power injections, two case studies considering PV system is generating 60 MW 

and 20 MW are presented. Figure 6.10 and Figure 6.11 illustrate the result for P-POD, Q-

POD, and PQ-POD control techniques for PV-STATCOM in which the PV system is 

generating 60 MW and 20 MW, respectively.  

As shown in Figure 6.10 and Figure 6.11, the effectiveness of P-POD controller reduces 

due the lower available PV real power. The performance of Q-POD control technique is 

not affected by variation in PV system real power. This is quite expected. It is further noted 

that although the effectiveness of P-POD control technique is influenced by available PV 

system real power, the PQ-POD control provides the most effective damping in comparison 

to both Q-POD and P-POD control techniques.  

 

 

Figure 6.10  Midline real power for case study A, 430 MW power transfer, PV-

STATCOM is connected at bus 10. PV system is operating at 60 MW. 
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Figure 6.11 Midline real power for case study A, 430 MW power transfer, PV-

STATCOM is connected at bus 10. PV system is operating at 20 MW. 

6.6.3 Power Oscillation Damping by PV-STATCOM interconnected 
at other candidate busses  

Similar studies as Case 1 considering PV-STATCOM is connected to bus 8 and 6 are 

performed in PSCAD/EMTDC for detailed model analysis to examine the correlation with 

residue analysis in the small signal model. As shown in Figure 6.12 and Figure 6.13, after 

three phase fault initiation at line 2 near the bus 9, same low-frequency power oscillations 

appear in power system. Figure 6.12 and Figure 6.13 illustrate the results for midline real 

power for all POD control techniques. 
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Figure 6.12 Midline real power for case study 2 with 430 MW power transfer while 

PV-STATCOM is connected at bus 8. 

 

Figure 6.13 Midline real power for case study 2 with 430 MW power transfer while 

PV-STATCOM is connected at bus 6. 

Table 6.1 illustrates the power oscillation settling times with regards to different PV-

STATCOM locations and POD control techniques.  
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Table 6.1 Settling time of power oscillations with different PV-STATCOM locations 

and POD control techniques 

PV-STATCOM 

Location 

Settling time (sec) 

Q-POD P-POD PQ-POD 

Bus 6 13 15 9 

Bus 8 15 15 12 

Bus 10 10 10 6 

It is shown that the effectiveness of both P-POD and Q-POD controls for PV-STATCOM 

on power oscillations are affected by the location of the PV-STATCOM. The fastest 

settling time is achieved if the PV-STATCOM is connected at bus 10 and PQ-POD 

controller is activated. 

These results validate the residue analysis studies in Section 6.5 according to which the 

effectiveness of Q-POD and P-POD controllers is affected by changing the PV-STATCOM 

interconnection point to buses 8 and 6. Despite the adverse effect of the location of PV-

STATCOM, the PQ-POD control provides the best power oscillation damping among all 

the POD controls.   

 Conclusion  

Novel POD control technique with PV-STATCOM real and reactive power is presented 

based on patent [8]. The effectiveness of three power oscillation damping techniques – the 

Q-POD, P-POD and PQ-POD is compared in the Two-Area system for a three phase to 

ground fault for five cycles. This comparison is also made with respect to different levels 

of real power generation by the PV solar system.  The POD controllers are designed using 

small signal analysis in Matlab and optimized controller tuning technique embedded in 

PSCAD/EMTDC software. Small signal and detailed electromagnetic transients studies are 

performed for the Two-Area power system with PV-STATCOM in Matlab and 

PSCAD/EMTDC software. The influence of the location of PV-STATCOM on the 

effectiveness of power oscillation damping is examined through small signal residue 

analysis, which is subsequently validated with EMTDC/PSCAD simulation studies.  The 

following conclusions are made: 
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1) The best POD is achieved if PV-STATCOM real and reactive power are used together 

for damping power oscillations. Although P-POD controller is affected by the amount of 

PV real power availability, PQ-POD control results in best POD among all the three POD 

controls for all levels of power transfer.  

2) The best location of P-POD and Q-POD is bus 10.  

3) None of the three POD controls have any adverse impact on the system frequency.  

4)The PQ-POD control technique has the smallest impact on power system frequency in 

comparison with the P-POD and Q-POD control techniques.  
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Chapter 7  

7 Control of PV-STATCOM for Power Oscillation Damping 
in the 12 bus FACTS Power System 

 Introduction 

In this chapter, the performance of the proposed Q-POD and PQ-POD control techniques 

for PV-STATCOM will be examined for power oscillation damping in the 12 bus FACTS 

power system in which different modes of oscillations are observed. According to [27, 

120], the stability of the power system can be adversely affected by high real power 

injections from PV solar farms. It is argued that since PV solar systems do not have any 

inertia, the overall stability of the power system is negatively impacted by higher 

penetration levels of PV real power. In this chapter, the effect of PV real power injection 

with and without POD control techniques on power system stability is investigated. With 

regards to the different interarea modes of oscillation in the 12 bus FACTS power system, 

the aim of this chapter is to damp low-frequency oscillations of each mode by appropriate 

control signal selection. The effect of the location of PV-STATCOM with P-POD and Q-

POD controller on damping the selected mode of oscillation is presented. In addition, the 

effect of delay on POD with PV-STATCOM is studied and a simple compensator design 

procedure is presented. The simulation studies are performed in Matlab Simulink software 

which are subsequently validated by PSCAD/EMTDC software simulations.  

 Study System 

Figure 7.1 illustrates the 12 bus FACTS power system. This system is described in Section 

2.3.3. A 100 MW solar system is connected at bus 4. This PV solar system is controlled as 

PV-STATCOM. In this system, the direction of power flow is defined based on the loads 

and power generations in different area. No PSS is assigned for synchronous generators. 

The power system exhibits low damping of oscillatory modes in the steady-state operation.  
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Figure 7.1 Twelve bus FACTS power system with 100 MW PV solar system at bus 4 

 PV-STATCOM Modeling 

Figure 7.2 illustrates the single line diagram of the PV-STATCOM detail and small signal 

model in PSCAD/EMDTDC and Matlab Simulink.  

7.3.1 PV-STATCOM EMT Model 

The components modeling of the PV-STATCOM has been defined earlier in the thesis, 

i.e., PV solar panels (Section 2.5.1), Decoupled id/iq controller (Section 2.5.2), LCL filter 

(Section 2.5.3), MPPT algorithm (Section 2.5.4), Conventional PV controller in real power 

controller (Section 2.5.5), Conventional PV controller in reactive power controller (Section 

2.5.6), and Real power restoration controller (Section 5.4.2). The remaining constituents 

are described below:  

 

A new PV-STATCOM operation controller is designed to damp different interarea modes 

of oscillation in 12 bus FACTS power system. In this context, new components including 

Q-POD and PQ-POD with 



127 

 

 

Figure 7.2 Detailed and Small signal Model of the PV-STATCOM 

different generator speeds as control signals, and PV-STATCOM Operation controller are 

added to PV-STATCOM control units. 

7.3.1.1 Q-POD Controller  

In this mode of operation, the entire PV inverter capacity is released to perform POD with 

Full PV-STATCOM inverter capacity. The Q-POD controller in Full PV-STATCOM 

mode of operation is presented in Chapter 5. Speed deviation of G3 and G4 (𝜔3 and 𝜔4) are 

selected as control signals and transferred to the Q-POD controller via Wide Area 

Measurements (WAM) technique. Control signals are selected based on PF analysis 

Section 2.7.2. The controllers are designed based on residue technique Section 2.7.3.   

Q-POD controller is activated by switching iqref to iqref2. The DC voltage setpoint is changed 

from Vmpp to Vop by switching S1 from position 1 to 2 to reduce the PV-STATCOM real 

power output to zero.  
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Figure 7.2 illustrates the Q-POD controllers for PV-STATCOM. Q-POD controller utilizes 

two control signals 𝜔3 and  𝜔4 as discussed earlier. The compensators for each controller 

are as: 

𝐺1𝑄−𝑃𝑂𝐷 = 𝐺1

1 + 𝑠𝑇1𝑙𝑒𝑎𝑑

1 + 𝑠𝑇1𝑙𝑎𝑔
                                             (7.1) 

𝐺2𝑄−𝑃𝑂𝐷 = 𝐺2

1 + 𝑠𝑇2𝑙𝑒𝑎𝑑

1 + 𝑠𝑇2𝑙𝑎𝑔
                                              (7.2) 

where, G1, 𝑇1𝑙𝑒𝑎𝑑 and 𝑇1𝑙𝑎𝑔 are the gain, lead and lag time constant for 𝜔3 compensator. 

G2, 𝑇2𝑙𝑒𝑎𝑑 and 𝑇2𝑙𝑎𝑔 are the gain, lead and lag time constant for 𝜔4 compensator. 

Since both 𝜔3 and  𝜔4 are used for Q-POD controllers, both Mode 1 and 3 can be damped 

with proposed control technique.  

7.3.1.2 PQ-POD Controller 

PQ-POD controller is designed to damp both G3 and G4 power oscillations by controlling 

PV-STATCOM real and reactive power outputs. 𝜔3 has been chosen as the control signal 

to control the PV-STATCOM reactive power output in PQ-POD control mode. Further, 𝜔4 

is selected as the control signal to control the PV-STATCOM reactive power output in PQ-

POD control mode. The signal selection is performed through Residue analysis and will be 

explained in Section 7.4.2.   

In this mode of operation, idref changes to idref2 by switching S2 from position 1 to 2. 𝜔4 is 

used as the control signal. The control signal selection and the P-POD controller design is 

presented in Section 7.4.2.  
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The PQ-POD compensators as shown in Figure 7.2 are: 

𝐺3𝑄−𝑃𝑂𝐷 = 𝐺3

1 + 𝑠𝑇3𝑙𝑒𝑎𝑑

1 + 𝑠𝑇3𝑙𝑎𝑔
                                               (7.3) 

𝐺𝑃−𝑃𝑂𝐷 = 𝐺
1 + 𝑠𝑇𝑙𝑒𝑎𝑑

1 + 𝑠𝑇𝑙𝑎𝑔
                                                   (7.4) 

where, G3, 𝑇3𝑙𝑒𝑎𝑑 and 𝑇3𝑙𝑎𝑔 are the gain, lead and lag time constant for 𝜔3 compensator in 

Q-POD. G, 𝑇𝑙𝑒𝑎𝑑 and 𝑇𝑙𝑎𝑔 are the gain, lead and lag time constant for 𝜔4 compensator in 

P-POD controller. In order to provide the PQ-POD controller with maximum real power 

modulation ability, if the PQ-POD is activated, PV real power is reduced to half of its 

prefault value Ppr. This technique is described in detail in Section 6.4.1.2. 

7.3.2 Selection of PV-STATCOM Controller Operation  

Figure 7.3, depicts the flowchart for PV-STATCOM operation mode selection. As shown 

in Figure 7.3, if  𝜔3 or  𝜔4 speed deviation is greater than 𝜀 the PV-STATCOM changes 

its mode of operation to POD mode to damp the power oscillations. In this chapter 𝜀 is 

selected as 5%.  The Q-POD and PQ-POD controllers are selected based on following 

criteria;  

a. If the PV real power is less than the half of the PV power system maximum power 

(Pav=50 MW), PV real power reduces to zero and entire PV-STATCOM inverter 

capacity is used for Q-POD.  

b. If the PV real power is greater than the half of the PV power system maximum power 

(Pav=50 MW), PV real power reduces to half of the PV real power pre-fault value Ppr 

and PQ-POD mode is activated. In this mode iqref changes to iqref2 and idref changes to 

idref 2. 

c. The strategy of comparing with Pav is only to reduce the magnitude of change in real 

power with the objective of reducing a potential impact on the grid frequency. 
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Figure 7.3 Flowchart for PV-STATCOM POD mode selection 

d. If the oscillations in both 𝜔3 or  𝜔4 signals stabilize within 5% range, a waiting time 

period of th (selected as 2 sec) is utilized for safety. Subsequently at t = tst , the PV real 

power is restored back to Ppr with a ramp function. When Ppv reaches Ppr, the 

conventional PV mode of operation is activated.  
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 PV-STATCOM Small Signal Model 

Although detailed simulation study can be performed in EMT-type simulation studies in 

PSCAD/EMTDC software, it is not so efficient for design of controllers. Since EMT-type 

simulations require small simulation step time (10-100𝜇𝑠 depending on the application, the 

controller design could be very time-consuming procedure, especially when multiple 

controllers tuning is required. Hence, small signal studies are conducted for designing the 

POD controllers, using the PV-STATCOM small signal model. The small signal model of 

PV-STATCOM is presented in Section 2.9. The idref and iqref signals are generated through 

the outer-loop controllers as illustrated in PV-STATCOM detail model.  

7.4.1 Q-POD Controller Design 

Since 12 bus power system has different interarea modes of oscillation, the first step in 

designing Q-POD controller is to find the controller signals in which the selected 

oscillatory modes have the highest participation factor.  

7.4.1.1 Participation Factor analysis  

Following a disturbance, three low-frequency electromechanical mode of oscillations as 

1.21 Hz with a damping ratio of 11.4%, 1.002 Hz with a damping ratio of 9.7%, and 0.7624 

Hz with a damping ratio of 4.1 % appear in the power system. In order to determine the 

state that has the highest participation in each mode of oscillation, PF analysis is performed 

through small signal studies in Matlab software.  

Figure 7.4 illustrates the PF analysis for the three interarea modes of oscillations. The rotor 

speed and angle deviation of generator 3 have the highest participation in Mode 1. 

Generator 2 rotor speed and angle participate more in Mode 2 interarea oscillation. 

Furthermore, Generator 4 speed deviation and rotor angle are the main participants in Mode 

3 interarea oscillation.  
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Figure 7.4 Participation Factor analysis for the critical modes of oscillations. 

Based on the PF study, to damp the Mode 1 and 3, speed deviation signal from the generator 

3 and 4 are the best control signals. It is noted that the PV-STATCOM does not have a 

significant damping effect on Mode 2 oscillation due to the long distance between 

generator 2 and PV-STATCOM location. This conclusion will further be justified in this 

chapter.  

Although the Wide Area Measurement (WAM) technique contains a certain amount of 

delay, in this section to achieve POD controller which results in highest damping for critical 

modes of oscillations, no delay has been added to the WAMs signal. However, the effect 

of delay on the proposed controller is investigated in the Section 7.5.3, where new 

controller parameters are utilized to compensate the effect of delay. Since three interarea 

modes of oscillation exist in the 12 bus FACTS power system, POD controllers for an 

individual mode can have an adverse effect on other modes of oscillation. Hence, modal 

analysis is required to investigate the effect of POD feedback loop controllers on other 

modes of oscillation.   

7.4.1.2 Modal Analysis for Q-POD Controller Design 

Modal analysis based on small signal studies is performed in Matlab environment. A 

feedback signal from generator 3 (ω3) is fed to the Q-POD controller of the 100 MW PV-

STATCOM system. It is assumed that the PV system is generating 50 MW real power and 

86.6 MVar inverter capacity is available for Q-POD. Figure 7.5 presents the root loci of 

the critical eigenvalues and the effect of the feedback gain of the POD controller on low-

frequency modes of oscillation in the power system.  
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Figure 7.5 Eigenvalues of critical Modes with respect to different feedback gains of 

G3 without phase compensation. 

It is seen that increasing the feedback gain of 𝜔3 from 0 to 2 pu, Mode 1 and Mode 3 start 

becoming more stable but maximum stability is achieved when the feedback gain reaches 

1.2 pu. A Phase compensator G1s(t) is designed for small signal stability of the power 

system based on residue technique in Section 2.7.3 and presented in Appendix J.  

 

 

Figure 7.6 Eigenvalues of critical Modes with respect to different feedback gains of G3 with 

phase compensation. 

Figure 7.6 presents the root loci of the critical eigenvalues with changes in 𝜔3 feedback 

controller gain along with designed lead-lag controller. It is seen that by increasing the ω3 
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feedback gain, Mode 3 moves towards 𝑗𝜔 axis. After the feedback gain of ω3 reaches 1.8 

pu the damping of Mode 3 starts decreasing. Hence, the maximum feedback gain for ω3 is 

selected as 1.8 pu. To increase the damping ratio of Mode 3, the ω4 feedback gain is 

increased from 0 to 1.5 pu. Figure 7.7 portrays the mode shift due to ω4 gain increment.  

 

Figure 7.7 Eigenvalues of critical Modes with respect to different G4 feedback gain with 

phase compensation. 

It is observed that the maximum feedback gain must be set at 1.3 pu. If higher feedback 

gain is selected, according to Figure 7.7, Mode 1 moves back towards 𝑗𝜔 axis which results 

in less damping of oscillations. 

7.4.1.3 Effect of Delay Compensation on Response of Q-POD 
controller  

The communication delay in transmitted signals varies with different data transmission 

techniques and distances [121]. The effect of different WAM delays on the PV-STATCOM 

POD is investigated and new controllers are designed to compensate the effect of delay 

caused by WAM signals. Figure 7.8 depicts the effect of WAM delay on the proposed POD 

controller for generator 3.  



135 

 

 

Figure 7.8 Effect of different delays on 𝝎𝟑WAM signal 

Since the PV-STATCOM has the same distance from generator 3 and 4, the same delay is 

considered for both WAM signals (𝜔3 and 𝜔4). As shown in Figure 7.8, the effectiveness 

of POD controller for 𝐺3 speed deviation is reduced as the delay increases from 0 to 150 

ms.  

Figure 7.9 illustrates the 𝐺4 speed deviation with different WAM delays. In this case, 

𝜔4 does not show significant change in damping as the delay is increased from 0 to 150 ms 

[122]. 

 

Figure 7.9 Effect of different delays on 𝝎𝟒WAM signal 
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To compensate the effect of delay, a new POD controller based on the residue technique 

in Section 2.7.3 is presented and tested both in the small signal simulation and EMT-type 

simulation. In this study, a large delay time constant of 150 ms is considered which is 

compensated by a new Lead-Lag POD controller. The aim is to compensate the effect of 

delay on WAM signals to achieve the same damping ratio as if there is no delay in the 

WAM signals. Since the delay does not affect the 𝜔4 feedback gain POD controller, the 

gain for 𝜔4 remains the same as 0.8 pu. The parameters for the new 𝜔3 POD controller are 

given in Appendix J. 

7.4.2 PQ-POD Controller Design 

The proposed PQ-POD control technique described in Section 6.4.1.3 for PV-STATCOM 

during daytime is tested on the 12 Bus FACTS power system. Since this study system has 

different modes of interarea oscillations, signal selection for P-POD and Q-POD is done to 

achieve the highest POD effect. It is assumed that WAM measurements have a 150 ms 

delay. Residue analysis based on the technique in Section  2.8 describes how each P-POD 

and Q-POD controller can improve the stability of specific modes of oscillation with regard 

to the different possible locations of the PV power system. Figure 7.10 illustrates the 

residue analysis for PV-STATCOM interconnection to all the buses in 12 bus power system 

(except generator buses) for P-POD and Q-POD controllers.  

 

Figure 7.10 Residue analysis of 12 bus FACTS power system for Q-POD and P-POD 

controller 
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For residue analysis of P-POD, the input is selected as PV-STATCOM real power variation 

∆𝑃. For Q-POD residue analysis PV-STATCOM reactive power output variation ∆𝑄 is 

selected as the input signal. The output signals for Mode 1, Mode 2, and Mode 3 are 𝜔3, 𝜔2, 

and 𝜔4, respectively. The output signals are selected based on PF analysis.  

It is observed from Figure 7.10 that: 

I. PV-STATCOM P-POD and Q-POD controllers have a high impact on Modes 1 and 3 

oscillations except when they are connected at bus 2 and 7. The reason for this 

phenomenon is that the bus 2 and 7 are far from the generators 3 and 4. Further, the 

speed deviation of these generators have the highest participation in Modes 1 and 3.  

II. Only at bus 2, the PV-STATCOM P-POD and Q-POD controllers have the highest 

effect on Mode 2 oscillation. This finding validates the assumption made in Section 

7.4.1.1. 

III. The highest effectiveness of Q-POD and P-POD control on Mode 3 damping is 

achieved at bus 10. This results also confirms the assumption that closeness of the PV-

STATCOM to a specific generator results in highest POD effect on the oscillatory 

mode associated with that generator.   

IV. Buses 4 and 5 are the best locations for PQ-POD control with PV-STATCOM due to 

the fact that magnitude of residue for Modes 1 and 3 are relatively high enough for P-

POD and Q-POD controllers. Hence, both selected Mode of oscillations can be 

effectively damped by proposed Q-POD and/or P-POD controllers.   

Based on the findings of the residue analysis, in order to damp the selected Modes of 

oscillation, the PV power system is considered to be connected to bus 4. According to 

Figure 7.10, the PV-STATCOM real power has the highest effect on Mode 3 and PV-

STATCOM reactive power modulation has more effect on Mode 1. Hence, for PQ-POD 

controller design the P-POD controller is assigned to Mode 3 and Q-POD controller is 

allocated to damp Mode 1.  
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The controllers are designed based on residue technique in small signal analysis and 

optimized in PSCAD/EMTDC software for transient stability. These Controller parameters 

are listed in Appendix J. 

 Case Studies 

To test the performance of the proposed controllers, a worst-case scenario is considered. 

The simulation results in small signal studies are compared with those obtained from EMT-

detailed simulation.  

7.5.1 Selection of Worst Case Scenario  

Based on the modal analysis, four different case studies with regards to line outages near 

the PV-STATCOM interconnection are presented in Figure 7.11. This figure illustrates the 

shift in modes due to each line outage. The lowest damping ratio occurs if the line between 

bus 4 and 5 is disconnected. Hence, electromagnetic transients studies are performed 

considering the line between buses 4 and 5 is disconnected. 

 

Figure 7.11 Modal analysis for 12 bus power system with respect to various 

contingencies  
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7.5.2 Comparison between Small Signal and EMT-Type Simulation  

To validate the small signal model simulation, the results obtained in EMT-Type model 

simulation in PSCAD/EMTDC software is compared with that obtained in small signal 

simulation in Matlab. In this study, a permanent line outage between Bus 4 and Bus 5 is 

initiated at t=11.1 Sec. Figure 7.12 to Figure 7.14 respectively present the speed deviations 

of generators 2, 3, and 4 as obtained through PSCAD and Matlab simulations.  

 

Figure 7.12 Generator 2 speed deviation for the permanent line outage at t = 11.1 sec 

in PSCAD/EMTDC and Matlab. 

 

Figure 7.13 Generator 3 speed deviation for the line permanent outage at t= 11.1 sec 

in PSCAD/EMTDC and Matlab. 
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Figure 7.14 Generator 4 speed deviation for the line permanent outage at t = 11.1 sec in 

PSCAD/EMTDC and Matlab. 

It is seen that the variations in generator speeds obtained through small signal simulation 

studies correlate well with those obtained through EMTDC/PSCAD studies.  

7.5.3 Delay Compensation  

The performance of the delay-compensated controllers in presence of the communication 

delays is examined in this study. In Figure 7.15 and Figure 7.16, the speed deviations of 

generator 3 and 4 are presented with No delay and 150 ms delay during Q-POD in Partial 

STATCOM mode.  

 

Figure 7.15 Generator 3 speed deviation for POD with and without 150 ms delay. 
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Figure 7.16 Generator 4 speed deviation for POD with and without 150 ms delay. 

It is seen that a WAM delay of even 150 ms does not have any appreciable impact on the 

performance of the POD control provided by the PV-STATCOM. This demonstrates the 

successful compensation of the delays in the designed controllers.    

7.5.4 PSCAD/EMTDC Simulation Studies 

PSCAD/EMTDC simulation studies are performed to evaluate and compare the 

performance of the proposed Q-POD and PQ-POD controllers. A three phase to ground 

fault is initiated at line 4-5 near the bus 4. The fault is cleared after 5 cycles and the faulted 

line is permanently disconnected. Due to the fault and line outage, three electromechanical 

modes of oscillations appear in the power system. The PV-STATCOM changes its mode 

of operation to P-POD or PQ-POD mode of operation based on the Flowchart in Figure 

7.3. Figure 7.17 illustrates the results for both Q-POD and PQ-POD control techniques of 

PV-STATCOM.  

Figure 7.17  (a) depicts the results for 𝐺4 speed deviation after the line outage considering 

PV-STATCOM operates based on No-POD, Q-POD, and PQ-POD controllers. Figure 7.17 

(b) portrays the results for G3 speed deviation after the contingency considering the same 

operating modes of PV-STATCOM as Figure 7.17 (a). It is shown that if No-POD control 

technique is applied for PV-STATCOM, the oscillations are poorly damped. On the other 

hand, by activation of Q-POD control or PQ-POD control, the settling time interval for 
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both oscillatory modes are reduced significantly. It is evident from Figure 7.17 (a) and (b) 

that the fastest settling times for 𝜔3 and 𝜔4 are achieved through PQ-POD controller 

activation. 

Figure 7.17 (c) illustrates the PV-STATCOM real and reactive power for Q-POD 

controller. As shown in Figure 7.17 (c), if the oscillations are detected in the power system, 

the PV real power reduces to zero to release the entire PV inverter capacity for Q-POD 

operation. The reactive power output of the PV-STATCOM is modulated to damp both 

selected modes of oscillation.  

Figure 7.17 (d) portrays  the PV-STATCOM real and reactive power output for PQ-POD 

control mode. As shown in Figure 7.17 (d), after detection of low frequency electro 

mechanical oscillations, PV real power reduces to half of its prefault value (Ppr) and POD 

is performed by controlling PV-STATCOM real and reactive power simultaneously. In 

both the controls, after the completion of POD, the PV-STATCOM changes its mode of 

operation to power restoration mode and PV real power restores back to the pre-disturbance 

power level  Ppr in a ramped manner.  

The following observations are made: 

1. If no POD control is initiated, both oscillatory Modes 1 and 3 have unacceptable 

damping ratio (about 10%) [118].  

2. The PQ-POD control results in faster damping than the Q-POD for speeds of both the 

generators 3 and 4. 

 
(a) 
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(b) 

  
(c) 

 
(d)  

Figure 7.17 (a) Generator 4 speed deviation, (b) Generator 3 speed deviation, (c) 

PV-STATCOM real and reactive power in Q-POD mode of operation, (d) PV-

STATCOM real and reactive power in PQ-POD mode of operation.   
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7.5.5 The Effect of PV Real Power Injection on Power System 
Stability 

In this study, the effect of different levels of PV power injection on the 12 bus FACTS 

power system stability is studied. It is assumed that the 100 MW PV solar plant is 

connected to bus 4. The PV real power varies from 0 MW to 100 MW.  Table 7.1 presents 

the damping ratio of critical modes of oscillations with respect to PV real power injection 

if no POD controller is activated. Table 7.1 demonstrates that by increasing the PV real 

power injection to the PCC, the damping ratio of Mode 1 and Mode 3 get reduced 

significantly from 11.4% to 9.72% for Mode 1 and 5.8% to 3.3 for Mode 3.  

Table 7.1. Eigenvalues and damping ratio of critical modes of oscillation without Q-

POD and PQ-POD controller 

Mode 1 Mode 2 Mode 3 

MW 𝝀 𝜻 𝝀 𝜻 𝝀 𝜻 

0 -0.88+𝑗7.66 11.4 -0.62+𝑗6.34 9.7 -0.28+𝑗4.78 5.8 

10 -0.87+𝑗7.65 11.2 -0.62+𝑗6.34 9.7 -0.27+𝑗4.77 5.6 

20 -0.86+𝑗7.64 11.1 -0.62+𝑗6.34 9.7 -0.27+𝑗4.76 5.6 

30 -0.84+𝑗7.63 10.8 -0.62+𝑗6.33 9.7 -0.27+𝑗4.75 5.4 

40 -0.83+𝑗7.62 10.7 -0.62+𝑗6.33 9.7 -0.26+𝑗4.74 5.2 

50 -0.81+𝑗7.61 10.5 -0.61+𝑗6.33 9.5 -0.26+𝑗4.73 4.8 

60 -0.80+𝑗7.59 10.3 -0.61+𝑗6.33 9.5 -0.25+𝑗4.72 4.5 

70 -0.79+𝑗7.58 10.2 -0.61+𝑗6.33 9.5 -0.25+𝑗4.71 4.1 

80 -0.77+𝑗7.57 9.98 -0.61+𝑗6.33 9.5 -0.24+𝑗4.71 3.9 

90 -0.76+𝑗7.56 9.85 -0.61+𝑗6.33 9.5 -0.24+𝑗4.70 3.5 

100 -0.75+𝒋7.5 9.72 -0.61+𝒋6.34 9.5 -0.24+𝒋4.70 3.3 

On the other hand, the damping ratio of Mode 2 does not change considerably. According 

to Residue analysis in Section 7.4.2, since generator 2 is far from the PV solar system its 

stability is not affected by the PV real power injection. It is noted that generators 3 and 4 

are relatively closer to the PV system location, hence their stability is impacted by the 

increase of power injection from the PV solar system. 

Table 7.2 depicts the results for PV real power penetration on the power system stability, 

considering that the Q-POD controller is activated. In this study, 𝜔3 and 𝜔4 are used as the 

reference signal for Q-POD controller. For this study, the PV-STATCOM does not select 

the PQ-POD mode after the PV real power generation exceeds 50 MW. To release the 
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entire PV inverter capacity, PV real power injection function is disabled after the 

oscillations are detected. As shown in Table 7.2, the damping ratios of Modes 1 and 3 have 

significantly improved. In addition, it is observed that if the PV real power exceeds 50 

MW, the damping ratio of Mode 3 starts reducing to 15.8 %. This damping ratio reduction 

is due to PV real power penetration level and sudden reduction in PV real power from 100 

MW to 0. 

 Table 7.2 Eigenvalues and damping ratio of critical modes of oscillation with Q-POD  

Table 7.3 depicts the results for PQ-POD controller for PV-STATCOM considering the 

PV system real power varies from 0 to 100 MW. As illustrated in Figure 7.2, the 𝜔3 signal 

is utilized for Q-POD controller and 𝜔4 is selected as the control signal for P-POD 

controller. As shown in Table 7.3, the damping ratio of Mode 1 in which 𝜔3 has the highest 

participation is significantly increased regardless of the level of power generation. On the 

other hand, damping ratio of Mode 3 illustrates gradual improvement from 5.8% to 18.3%. 

This phenomenon is due to the gradual increase in PV-STATCOM available real power to 

perform POD with its real power.   

 

 

 

 Mode 1 Mode 2 Mode 3 

MW 𝝀 𝜻 𝝀 𝜻 𝝀 𝜻 

Q
-P

O
D

 

 

0 -2.07+j7.85 25.3 -0.64+𝑗6.38 9.9 -0.90+j4.72 18.7 

10 -2.07+j7.90 25.3 -0.64+𝑗6.38 9.9 -0.90+j4.72 18.7 

20 -2.05+j7.89 25.1 -0.64+𝑗6.38 9.9 -0.89+j4.71 18.5 

30 -2.02+j7.86 24.7 -0.64+𝑗6.37 9.9 -0.89+j4.69 18.5 

40 -2.0+j7.84 24.4 -0.64+𝑗6.37 9.9 -0.89+j4.67 18.5 

50 -2.0+j7.8 24.4 -0.63+𝑗6.36 9.9 -0.88+j4.65 18.3 

60 -1.99+j7.8 24.3 -0.63+𝑗6.36 9.8 -0.87+j4.5 18.1 

70 -1.99+j7.7 24.3 -0.63+𝑗6.36 9.8 -0.85+j4.3 17.6 

80 -1.98+j7.86 24.2 -0.63+𝑗6.36 9.8 -0.82+j4.1 17.0 

90 -1.98+j7.82 24.2 -0.63+𝑗6.35 9.8 -0.81+j3.8 16.8 

100 -1.98+j7.6 24.2 -0.63+𝒋6.35 9.8 -0.76+j3.1 15.8 
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Table 7.3 Eigenvalues and damping ratio of critical modes of oscillation with PQ-POD 

Table 7.4 portrays the effect of PV real power penetration level on damping ratio of 

selected modes of oscillation considering Q-POD controller is activated if PV real power 

is less than 50 MW and PQ-POD controller is activated if the PV real power is more than 

50 MW. As depicted in Table 7.4, despite the level of PV real power generation, the 

damping ratio of Mode 1 and Mode 3 have significantly improved from 9.7% to 25.3% and 

3.3% to 18.3%, respectively.  

Table 7.4 Eigenvalues and damping ratio of critical modes of oscillation with PQ-POD 

 Mode 1 Mode 2 Mode 3 

MW 𝝀 𝜻 𝝀 𝜻 𝝀 𝜻 
P

Q
-P

O
D

 
0 -2.0+j7.85 24.6 -0.64+𝑗6.38 9.9 -0.28+j4.78 5.8 

10 -2.0+j7.90 24.6 -0.64+𝑗6.38 9.9 -0.35+j 4.77 7.3 

20 -2.05+j7.89 25.1 -0.64+𝑗6.38 9.9 -0.41+j 4.6 8.3 

30 -2.02+j7.86 24.7 -0.64+𝑗6.37 9.9 -0.62+j 4.6 12.5 

40 -2.0+j7.84 24.4 -0.64+𝑗6.37 9.9 -0.83+j 4.6 16.9 

50 -2.01+j7.89 24.6 -0.63+𝑗6.36 9.9 -0.91+𝑗4.65 18.5 

60 -2.03+j7.7 24.8 -0.63+𝑗6.36 9.8 -0.91+𝑗4.63 18.5 

70 -2.05+j7.86 25.1 -0.63+𝑗6.36 9.8 -0.91+𝑗4.62 18.3 

80 -2.08+j7.86 25.4 -0.63+𝑗6.36 9.8 -0.91+𝑗4.60 18.3 

90 -2.08+j7.84 25.4 -0.63+𝑗6.35 9.8 -0.91+𝑗4.58 18.3 

100 -2.07+j7.8 25.3 -0.63+𝒋6.35 9.8 -0.91+𝒋4.57 18.3 

 Mode 1 Mode 2 Mode 3 

MW 𝝀 𝜻 𝝀 𝜻 𝝀 𝜻 

Q
-P

O
D

 

0 -2.07+j7.85 25.3 -0.64+𝑗6.38 9.9 -0.90+𝑗4.72 18.7 

10 -2.07+j7.90 25.3 -0.64+𝑗6.38 9.9 -0.90+𝑗4.72 18.7 

20 -2.05+j7.89 25.1 -0.64+𝑗6.38 9.9 -0.89+𝑗4.71 18.5 

30 -2.02+j7.86 24.7 -0.64+𝑗6.37 9.9 -0.89+𝑗4.69 18.5 

40 -2.0+j7.84 24.4 -0.64+𝑗6.37 9.9 -0.89+𝑗4.67 18.5 

P
Q

-P
O

D
 

50 -2.01+j7.89 24.6 -0.63+𝑗6.36 9.9 -0.89+𝑗4.65 18.5 

60 -2.03+j7.7 24.8 -0.63+𝑗6.36 9.8 -0.89+𝑗4.63 18.5 

70 -2.05+j7.86 25.1 -0.63+𝑗6.36 9.8 -0.88+𝑗4.62 18.3 

80 -2.08+j7.86 25.4 -0.63+𝑗6.36 9.8 -0.88+𝑗4.60 18.3 

90 -2.08+j7.84 25.4 -0.63+𝑗6.35 9.8 -0.88+𝑗4.58 18.3 

100 -2.07+j7.8 25.3 -0.63+𝒋6.35 9.8 -0.88+𝒋4.57 18.3 
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Hence, from Table 7.3 and Table 7.4, it is noted that proper switching between Q-POD and 

PQ-POD controller is required based on the level of PV real power generation. 

 Conclusion  

In this chapter, the performances of Q-POD, P-POD and PQ-POD controllers of a PV-

STATCOM on the 12 bus FACTS power system are investigated. Modal analysis is used 

to select a fault scenario that causes the highest level of damming for the different modes 

of oscillation. The results obtained with small signal simulation in Matlab are validated 

with those obtained with EMT-Type model simulation in PSCAD/EMTDC software. The 

various controllers are therefore designed using small signal model of the power system. 

Participation Factor analysis is performed to determine the appropriate control signal for 

power oscillation damping. In addition, the effect of various delays on WAM signals is 

studied and new compensators are designed to minimize the effect of delay. Modal analysis 

is used to compare the damping ratios of different oscillatory modes with and without the 

proposed POD controls for various levels of PV system real power generation from 0 to 

100 MW. The following conclusions are drawn: 

1) Each type of control at different locations has different levels of effectiveness in 

damping different modes of oscillations. Based on this study, the P-POD controller is 

assigned to Mode 3 and Q-POD controller is allocated to damp Mode 1. 

2) Communication delays in the Wide Area Measurement signals adversely influence the 

damping performance of the various controllers. However, an appropriate controller design 

to compensate the delays mitigates this adverse impact.  

3) The PQ-POD control is more effective than Q-POD control if the PV real power 

generation level is more than 50 MW or half of the inverter rating.   

4) An increase in the PV penetration level is seen to reduce the stability of the study system. 

However, the proposed PV-STATCOM POD controllers significantly improve the stability 

of different oscillatory modes. Hence, higher level of PV penetration can be achieved with 

the use of proposed PV-STATCOM technology.   
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Chapter 8  

8 Conclusion  

 Introduction  

The number of large scale PV solar farm interconnections in power systems is rapidly 

increasing for environmental reasons. This is causing a growing apprehension that inertia-

less real power injections from these inverters based generation units will result in a decline 

in power system stability. This thesis presents a novel 24/7 (night and day) control of a 

large-scale PV solar farm as STATCOM (PV-STATCOM) for damping low-frequency 

electromechanical power oscillations resulting in a significant improvement in power 

transfer capability of existing power systems. The proposed PV-STATCOM control 

techniques are tested on three power systems: Single Machine Infinite Bus SMIB system, 

Two-Area system, and the 12 bus FACTS power system. The effectiveness of the proposed 

Power Oscillation Damping (POD) control techniques based on reactive and real power 

modulation is evaluated in both small signal and EMT-Type simulations studies. The 

performance of the proposed control techniques for PV-STATCOM is compared with that 

of an actual BESS and actual STATCOM.  

The broad overview of this thesis and the major contributions are presented below. 

Suggestions for future work based on the findings in this thesis are also provided. 

 Power System Modeling and Controller Design 

In Chapter 2 the concept of PV-STATCOM in both Partial STATCOM mode and Full 

STATCOM mode are presented. In Partial STATCOM mode, the inverter capacity 

remaining after real power generation is used for reactive power control. This mode is 

available during early mornings and late afternoons. In the Full STATCOM mode of 

operation, the real power generation function of the PV solar farm is temporarily 

discontinued during a severe disturbance in the power system and the entire inverter 

capacity is released for reactive power modulation to support the grid. Simultaneously, the 

available real power is also modulated to provide enhanced grid support. After the need for 

system support is fulfilled, the PV solar system restores its real power output to the pre-
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disturbance level in a ramped manner, and the PV solar farm resumes its normal function 

of real power generation. In Full STATCOM mode during nighttime, the entire inverter 

capacity is utilized for reactive power control.   

The Single Machine Infinite Bus (SMIB) system, Two-Area power system, and the 12 Bus 

FACTS power system which are used as study systems in this thesis are described. The 

models of different power system components i.e. generator, transmission lines, loads, etc. 

are presented. The modeling of an aggregated large-scale PV solar system is described. 

The design requirements for PV system controllers based on their required settling time 

and bandwidth are illustrated. Participation Factor analysis in POD control signal selection 

is presented. The design of power oscillation damping controllers through small signal 

Residue analysis and Simplex Optimization technique in electromagnetic transient 

simulations are exemplified.  

The Residue analysis technique is utilized for selection of the appropriate location of PV-

STATCOM POD controllers. The small signal simulations of POD controller performance 

of the proposed PV-STATCOM are presented and the results were compared with detailed 

EMT-Type simulation studies.  

In order to compare the effectiveness of POD with PV-STATCOM real power modulation 

with a similar size Battery Energy Storage System (BESS), a detailed model of large scale 

BESS in PSCAD/EMTDC software is presented. The aggregated BESS model is based on 

a series and parallel interconnection of multiple single Li-ion battery system models. 

Furthermore, the effect of the battery State of Charge (SOC) on the behavior of internal 

variables is also illustrated. 

 Power Oscillation Damping in Single Machine 
Infinite Bus (SMIB) System with PV-STATCOM and 
Battery Energy Storage System (BESS)  

This chapter presents a comparative study of Reactive power based Power Oscillation 

Damping Q-POD control with remnant PV inverter capacity of PV-STATCOM and real 

power based Power Oscillation Damping P-POD control with BESS of different sizes. To 

compare the effectiveness of the controllers, the POD controllers are first optimized in 
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EMT-type detailed simulation studies to achieve maximal damping for both P-POD and 

Q-POD controls.  

It is shown that the effectiveness of P-POD control with BESS is dependent on the size of 

BESS. Further, the power oscillation damping achieved by Q-POD control of a PV-

STATCOM can be accomplished by P-POD control of a BESS with just half size as the 

PV solar plant. This demonstrated that real power modulation based POD control can be 

effectively employed for damping electromechanical oscillations in PV solar plants.  

Based on the above conclusions, a P-POD controller is implemented on a PV-STATCOM 

during daytime in Chapter 6 and Chapter 7. 

 Coordinated Control of PV Solar System as 
STATCOM (PV-STATCOM) and Power System 
Stabilizers for Power Oscillation Damping  

One concern with POD controllers in FACTS devices is that these may adversely interact 

with other POD controllers such as Power System Stabilizer PSS in power systems. This 

chapter presents an optimized coordinated POD controller design for PV-STATCOMs 

considering PSSs are present in the power system. The Two-Area power system is selected 

as the study system and PSSs are introduced in all generators. The coordinated optimization 

of PV-STATCOM and PSSs is performed first through small signal analysis and 

subsequently tuned with detailed electromagnetic transients simulation studies. Three 

different POD scenarios were compared: i) PSSs present but no PV-STATCOM, ii)  PV-

STATCOM present but no PSSs, and iii) coordinated POD control with both PV-

STATCOM and PSSs. It is concluded that a coordinated POD control provides a much 

superior performance than either of the two POD controls acting alone. The coordinated 

control results in considerably faster settling time and smaller oscillation magnitude during 

the power oscillations. 

The performance of Q-POD with PV-STATCOM and that with an actual STATCOM at 

the same location is then compared. It is seen that Q-POD with PV-STATCOM remnant 

inverter capacity introduces no adverse effect on the PV system real power generation.  



151 

 

Further, the PV-STATCOM performance utilizing the remnant inverter capacity (after real 

power generation) is similar to that of an actual STATCOM with the same capacity. 

   Power Oscillation Damping with Reactive Power 
Control in Full PV-STATCOM   

Although utilization of remnant PV inverter capacity for POD results in significant 

improvement of power system stability, the availability of this technique is limited during 

noon time (hours of full sun), since no PV inverter capacity is left for Q-POD operation. 

This chapter presents the application of a novel patented control technique for damping 

power oscillations with PV-STATCOM in Full-STATCOM mode utilizing the entire PV 

inverter capacity, even at noontime. As described earlier, in the Full-STATCOM mode, the 

PV system real power injection function is disabled and entire PV inverter capacity is made 

available for reactive power modulation to damp power oscillations.  

In order to change the PV-STATCOM operation mode, an autonomous oscillation 

detection unit is designed in PSCAD/EMTDC software. If any low frequency 

electromechanical oscillations appear in the power system, the PV real power injection 

function is disabled and Q-POD is activated. It is shown that with the proposed Q-POD 

technique in Full STATCOM operation mode of the PV system, the power transfer 

capability of the power system is increased significantly both during night and day. A 100 

MW PV solar system controlled as PV-STATCOM improves the power transfer capability 

by 230 MW in the SMIB power system and by 200 MW in the Two-Area power system 

on a 24/7 basis. 

This chapter further presents a novel technique for restoration of power to its pre-

disturbance level after the power oscillations are damped. Novel ramp and nonlinear PV 

real power restoration techniques are presented in which the Q-POD controller remains 

activated with the remaining inverter capacity, even during the restoration interval. Hence, 

the PV-STATCOM is able to prevent the recurrence of any power oscillations during the 

restoration process. These proposed restoration techniques decrease the restoration interval 

of 100 MW PV solar system to just 3 seconds. This technique is substantially faster than 

that required by various Grid Codes. 
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It is further demonstrated that despite the sudden discontinuation of real power from the 

PV system in the Full-STATCOM mode does not create any frequency stability issues in 

the two study systems.  

 Novel Combined Real and Reactive Power Control 
of PV Solar Farm as STATCOM (PV-STATCOM) for 
Power Oscillation Damping  

This chapter presents the application of a novel patent-pending POD control utilizing 

combined real and reactive power modulation with a PV-STATCOM. Three controls are 

considered: i) reactive power modulation based POD control (Q-POD), ii) real power 

modulation based control (P-POD) and iii) combined real and reactive power modulation 

(PQ-POD) control.  During a power system disturbance, the PV-STATCOM reduces its 

real power output from 100 MW to 50 MW and P-POD controller modulates the PV-

STATCOM real power between 0 to 100 MW. In the Q-POD mode the entire 100 Mvar 

inverter capacity is utilized for POD. In the PQ-POD, the real power is reduced to half of 

its maximum power generation level at that time and modulated around the half level from 

zero to the maximum level. The remaining inverter capacity is utilized for Q-POD.    

These different POD controllers are optimized in detailed simulation studies based on 

embedded Simplex optimization.  

It is shown that during full noon hours, the 0-100 MW real power modulation based P-

POD control results in the same damping as ±100 MVar Q-POD control with the PV-

STATCOM. The combined real and reactive power modulation based PQ-POD control of 

a large scale PV solar farm control as PV-STATCOM is more effective than both Q-POD 

with Full PV-STATCOM and P-POD with BESS. 

The effect of the location of the PV system and the magnitude of real power generation for 

P-POD and Q-POD control is investigated based on the small signal Residue analysis. The 

results of the Residue analysis are validated through detailed simulation studies in 

PSCAD/EMTDC software. It is seen that despite the location of PV-STATCOM, highest 

damping is achieved if PQ-POD controller is activated.  
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The effect of each controller (P-POD, Q-POD, and PQ-POD) on power system frequency 

is investigated. It is shown that the sudden reduction in PV-STATCOM real power to 

perform Q-POD results in a slightly lowered frequency stability of the power system. 

However, the PQ-POD controller has a minimal adverse effect on power system frequency. 

 Power Oscillation Damping for 12 bus FACTS 
Power system 

The performances of different novel POD controls of a PV-STATCOM, i.e., Q-POD, P-

POD and PQ-POD controls are investigated in the 12 bus FACTS power system which 

exhibits multiple interarea modes of oscillation. Modal analysis is used to justify the worst-

case fault scenario that causes the highest level of undamping for selected oscillatory 

modes. The results of small signal simulations in Matlab Simulink are validated by EMT-

simulations with PSCAD/EMTDC software. Participation Factor analysis is used to select 

the appropriate signal for POD controllers. After POD control signal selection, the 

effectiveness of P-POD and Q-POD controllers on selected mode of oscillations is 

examined. Based on the PV-STATCOM location in the power system, each POD controller 

(P-POD and Q-POD) has different effect on the modes of oscillations. Hence each mode 

of oscillation needs to be appropriately addressed by different controllers i.e., Q-POD or 

P-POD controller based on the findings of residue analysis. 

The PV system real power penetration has an adverse effect on the power system stability 

if no POD controller is activated in the PV system.  

It is observed that the effectiveness of P-POD controller on damping the selected mode of 

oscillation is affected by the level of PV system real power generation. The PQ-POD 

controller is more effective than Q-POD controller if the PV system is generating more 

than the half of its capacity (50 MW in this study). 

However, through utilization of the proposed PQ-POD controller, not only the adverse 

effect of PV real power penetration is attenuated, but the overall power system stability is 

significantly improved.   
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The effect of communication delays in the Wide Area Measurement based control signals 

used for different POD controls is investigated. It is observed that the delays in 

communication system have an adverse effect on the POD with PV-STATCOM. However, 

with the design of delay-compensated controls, this adverse effect is obviated.  

 Contribution and Significance of this Thesis 

This thesis presents the first time application of novel patented [1] and patent-pending [2] 

controls of PV solar farm as STATCOM (PV-STATCOM) for power oscillation damping 

in power systems. The resulting contributions of this thesis are as follows: 

1) A novel reactive power modulation based control of PV solar farm as a STATCOM, 

termed PV-STATCOM, is demonstrated which provides a 24/7 (day and night) 

functionality of a STATCOM for power oscillation damping. This functionality is provided 

at a significantly lower cost than a STATCOM as the existing infrastructure of a PV system 

is utilized for STATCOM implementation.  

2) The proposed Q-POD control on a PV-STATCOM reduces the need for installation of 

expensive Battery Energy Storage Systems for achieving similar levels of power oscillation 

damping. 

3) Novel fast ramp and nonlinear PV real power restoration, in which the POD controller 

remains activated, has been proposed. This novel PV real power restoration technique can 

significantly reduce the restoration intervals even more than those specified by grid codes. 

4) A method has been proposed in which the effectiveness of PV-STATCOM real and 

reactive power modulation on each mode of oscillations can be studied. This technique is 

useful for selecting an appropriate controller for POD for a given location of the PV-

STATCOM in the power system.     
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5) Coordination of proposed PV-STATCOM controls with existing Power System 

Stabilizers (PSSs) on synchronous generators enhances the overall system damping. 

6) A novel real and reactive power modulation based control of PV-STATCOM is 

demonstrated that combines the functionalities of both a STATCOM and a Battery Energy 

Storage System (during daytime) to provide significantly enhanced levels of power 

oscillation damping than that achieved by either a STATCOM or a BESS. 

Such novel applications of a PV solar farm as STATCOM have been illustrated for the first 

time in literature. 

 

 Future Work 

1) The PV inverters in large solar farms are considered as aggregated inverters. Studies 

need to be done to consider modeling of individual inverters and plant level controls in PV 

solar systems. 

2) Control Hardware in loop studies based on Real Time Digital Simulator (RTDS) studies 

need to be conducted on Two-Area and 12 bus FACTS power systems power systems to 

demonstrate the benefit of the proposed novel Q-POD, P-POD, and PQ-POD PV-

STATCOM control technologies in hardware. 

3) Small signal and detailed simulation studies required to justify the restoration control 

technique in nonlinear manner to provide the restoration technique interval for various 

power systems based on the frequencies of different oscillatory modes.  

4) Coordination between multiple PV-STATCOMs and other FACTS devices in the 

power systems needs to be investigated.. 

5) The effect of higher level of PV power penetration (20% to 50%) on the power system 

stability needs to be conducted based on implementation of PV-STATCOM controls on 

solar farms. 
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Appendices 

Appendix A. SMIB power system data 

 

1) Generator parameters 

Sn = 1110 MVA, Vn=22 kV, p.f.=0.9, Ra=0.0036 pu, X1=0.21 pu, Ra=0, X0=0.195 pu, 

T’d0=6.66 sec, T’q0=0.44 sec, T”d0=0.032 sec, T”q0=0.057 sec, Xd=1.933 pu, Xq=1.743 

pu, X’d=0.467 pu, X’q=1.144, X’q=1.144 pu, X”d=0.312 pu, X”q=0.312 pu. 

2) Transformers Parameters (100 MVA and 400 kV) 

RT = 0.0 pu, Xt=0.15 

3) DC-A1 Exciter parameters 

TR=0 sec, KA= 400 pu, TA=0.02 sec, KE= 1.0 pu,  

TE=1.0 sec, KF=0.06 pu, TF=1.0 sec, S’E=0 

4) Transmission line parameters  

R=0.055 ohm per phase per mile 

XL=0.52 ohm per phase per mile 

BC=5.92*10-6 Mho per phase per mile 

5) Governor and turbine parameters 

R=0.04 pu, Tf=0.05 sec, Tg=0.2 sec, r=1 pu, Tr=0.2 sec, Tw=2.0 sec 
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Appendix B.Two Area Power System data 

 

1) Generators and exciters parameters 

H= 5 pu D= 1 Td0’=8 s, Tq0’=0.4 s  Xd= 1.8 pu X’d’= 0.3 pu  Xq=1.7 pu X’q’= 0.55 pu 

KD=0 pu H=6.5 (for G1 and G2) H=6.175( for G3 and G4) KA=20 TA =0.055 TE=0.36 

KF=0.125 TF=1.8 Aex=0.0056 Bex=1.075 TR=0.05 

2) Lines 

R=0.0001 pu/km          xL=0.001 pu/km        bc=0.00175pu/km 

3) Loads 

Bus 7:           PL=967 MW            QL=100 MVar    QC=200 MVar 

Bus 9:           PL=1.767 MW         QL=100 MVar    QC=350 MVar 
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Appendix C 12 bus power system data 

 

G2 H= 5 pu D= 1 Td0’=5 pu Xd= 1.5 pu X’d’= 0.4 pu  Xq=1.2 pu X’q’= 0.4 pu Ta=0.05 

Ka=20 pu 

G3 H= 5 pu D= 0 Td0’=6 pu Xd= 1.4 pu X’d’= 0.4 pu Xq=1.35 pu X’q’= 0.3 pu Ta=0.05 

Ka=20 pu 

G4 H= 5 pu D= 1 Td0’=5 pu Xd= 1.5 pu X’d’= 0.4 pu  Xq=1.2 pu X’q’= 0.4 pu Ta=0.05 

Ka=20 pu 

Transformer Data (SBase=100 MVA) 

From-to Voltage (kV) Leakage reactance(pu) Rating (MVA) 

1-7 230-345 0.01 1000 

1-9 230-22 0.01 1000 

2-10 230-22 0.01 1000 

3-8 230-345 0.01 1000 

3-11 230-22 0.01 1000 

6-12 230-22 0.02 500 
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Lines 

Line Voltage 

(kV) 

Length 

(km) 

R(pu) X(pu) B(pu) Rating 

(MVA) 

1-2 230 100 0.0114 0.09111 0.18261 250 

1-6 230 300 0.03356 0.26656 0.5547 250 

2-5 230 300 0.03356 0.26656 0.5547 250 

3-4(1) 230 100 0.0114 0.09111 0.18261 250 

3-4(2) 230 100 0.0114 0.09111 0.18261 250 

4-5 230 300 0.03356 0.26656 0.5547 250 

4-6 230 300 0.03356 0.26656 0.5547 250 

7-8 345 600 0.01595 0.17214 3.2853 500 

 

Bus Data 

Bus Nominal 

Voltage 

Specified 

Voltage kV 

Load 

MVA 

Shunt 

MVar 

Generation 

MW 

1 230     

2 230  280+j200   

3 230  320+j240   

4 230  320+j240 160  

5 230  100+j60 80  

6 230  440+j300 180  

7 345     

8 345     

9 22 1.040    

10 22 1.02   550 

11 22 1.01   200 

12 22 1.02   300 

 

 

 

 

 

 



162 

 

 

Appendix D FS 272 PV module electrical specification at STC* and at 45°C, 0.8 Sun  

Table A. PV module electrical specification at STC* and at 45 oC, 0.8 Sun [23]. 

Item Description  Symbols AT STC At 45°C, 0.8 Sun 

Nominal Power (±5%) PMPP(Watt) 72.5 54.4 

Voltage at PMPP Vmp(Volt) 66.6 64.4 

Current at PMPP Vmp(Amp) 1.09 0.87 

Open Circuit Voltage Voc(Volt) 88.7 82.5 

Short Circuit Current Isc(Amp) 1.23 1.01 

Temperature Co-efficient  Kv(%/°C) -0.25 -0.25 

Series resistance  Rsr () 0.175 0.175 

Shunt resistance Rsh() 1000 1000 

 

Appendix E Decoupled Controller Design Matlab Code 

ti=0.002%settling time% 

L=8.7093e-05%filter reactance%  

R=0.002%the sum of R and ron resistances% 

Ibase=150000000/208%base current calculation% 

Rbase=208^2/100000000%base impidance calculation% 

Lbase=Rbase/(2*pi*60)%base admitance calculation% 

Rpu=R/Rbase%impidance in pu% 

Lpu=L/Lbase%admitance in pu% 

kp=Lpu/ti%kp% 

Ki=Rpu/ti;%ki% 

Ti=1/Ki%ti% 

 

1) 100 MWpk PV-STATCOM Connected to 400 kV Transmission line (SMIB) 

Cf = 9.1183e-05 F --L1 = 1.3064e-04 H --L2 = 7.5118e-05 H-- Rf = 0.1203 Ω Kp=5.6918e+04 

pu Ti=4.3264e-04 pu, Kp_PLL=900pu Ki_PLL=50pu Kp_Vdc=0.1 pu     Ti_Vdc=10 pu 

2) 150 MWpk PV-STATCOM connected to 400 kV transmission line (SMIB) 

Cf = 1.3677e-04 F--- L1 = 8.7093e-05 H-- L2 = 8.7093e-06 H--- Rf = 0.0802 Ω Kp= 

3.7945e+04 pu Ti=4.3264e-04 pu, Kp_PLL=900pu Ki_PLL=50pu Kp_Vdc=0.1 pu     Ti_Vdc=10 pu 
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3) 100 MWpk PV-STATCOM connected to 230 kV transmission line (Two-Area and 

12 bus power systems)   

Cf = 2.7579e-04 F --L1 = 7.5118e-05 H --L2 = 7.5118e-06 H-- Rf = 0.0525 Ω Kp=3.2728e+04 

pu Ti=4.3264e-04 pu, Kp_PLL=900pu Ki_PLL=50pu Kp_Vdc=0.1 pu     Ti_Vdc=10 pu 

Appendix F: LCL Filter Design Matlab Codes 

 

%LCL Filter design% 

clear all; close all; 

s= sym('s'); 

fg=60; %system frequency% 

VLL=400000;%Line Voltage% 

Vph=VLL/sqrt(3);%phasevoltage 

Pn=100000000; %max power% 

Zb=VLL^2/Pn;%base impedance% 

wn=2*pi*60; 

landa=165;%landa% 

Sw=5000;%switching frequency% 

VDC=800;%DC voltage% 

Imax=(Pn*sqrt(2))/(3*Vph); 

Cb=1/(wn*Zb); 

Cf=(landa*Pn/(6*pi*fg*Vph^2))/3 %for delta configuration you have to devide by 3 

MRip=1; %maximum riple percentage 

DeltaImax=MRip*Imax; 

L1=VDC/(6*Sw*DeltaImax) 

L2=0.1*L1 

wres=(sqrt((L1+L2)/(L1*L2*Cf))); 

fres=(sqrt((L1+L2)/(L1*L2*Cf)))/(2*pi); 

Rf=1/(3*wres*Cf) 

num1=[0 0 1]; 

den1=[L1*Cf*L2 0 (L1+L2) 0]; 

num2=[Cf*Rf 1]; 

den2=[L1*Cf*L2 Cf*(L1+L2)*Rf L1+L2 0]; 

sys1=tf(num1,den1); 

sys2=tf(num2,den2); 

bode (sys1); 

hold on ; 

bode (sys2); 

Appendix G Numerical Example for Simplex Optimization Technique Imbedded in 

PSCAD/EMTDC. 
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To evaluate the performance of the Simplex Optimization technique in PSCAD/EMTDC 

software, consider a two-variable function f as: 

𝑓(𝑥1, 𝑥2) = (𝑥1 − 1)2 + (𝑥2 − 1)2 + (sin 𝑥1)2. 𝑥2                        

The function has a minimum of 0.38 at (0.79,0.69). 𝑓(𝑥1, 𝑥2) is simulated in 

PSCAD/EMTDC as Slave project. Figure bellow illustrates the simulated function in 

PSCAD software.  

 

Simulation of 𝒇(𝒙𝟏, 𝒙𝟐) in PSCAD (Slave Project) 

As shown in above figure, two variables x1 and x2 are received from the master project. 

After the simulation is done for 𝑓(𝑥1, 𝑥2), the objective function is sent to the slave project 

as shown below 

 

Master Project in PSCAD 

.

Optimum Run

Simplex

[simplex:main] ob(1)

x2(1)

x1(1)

2

1



165 

 

It is illustrated the master project in which the Optimization block is placed. The Objective 

Function is received from Slave project and new variables x1 and x2 are generated and sent 

back to slave project.  

Fiure below depicts the contour map of 𝑓(𝑥1, 𝑥2) in which the higher density represents 

the higher value of the function. It also depicts the evolution of x1 and x2 throughout the 

simulation study in PSCAD/EMTDC.  

 

Contour map and OF for the optimization process of F (x1,x2) (MATLAB)

OF in PSCAD simulation to achieve the optimum values for variables  

The objective function, which in this study is the value of 𝑓(𝑥1, 𝑥2), is shown. It is depicted 

that the OF has reached to 0.38 after 56 iterations. This technique is used to design 

optimized PV-STATCOM POD controllers.  
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To optimize the POD controllers, power system and PV-STATCOM are simulated in detail 

in the slave project. The simulation run time is set to cover at least 10 low-frequency 

oscillations (i.e. in a time period of 10-15sec). The OF is defined as the area bellow the 

oscillation. The objective function after each Slave project run is sent to Master project for 

the optimization process. 

 

Appendix H BESS Fortran Code in PSCAD/EMTDC 

$v=$n*(-1.03*EXP(-35*$SOC) + ( 0.2156*$SOC ) (0.1178*$SOC*$SOC) + 

3.685+(0.3201*$SOC*$SOC*$SOC))  

$rs=$n*(0.1562*EXP(-24.37*$SOC) + 0.07446)/$m 

$rts=$n*(0.3208*EXP(-29.14*$SOC) + 0.04669)/$m 

$rtl=$n*(6.603*EXP(-155.2*$SOC) + 0.04984)/$m 

$tik=m*(-752.9*EXP(-13.15*$SOC) + 703.6)/$n 

$lil=m*(-6056*EXP(-27.12*$SOC)+4475)/$n 

where, v is the voltage output, n is the number of batteries in series, SOC represents the 

battery state of charge, m represents the number of batteries in parallel, rs is the series 

resistance, rts is the transient series resistance (short term), rtl is the transient series 

resistance ( Long term). Is the transient capacitance ( short term), and lil is the transient 

capacitance (Long term). 
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Appendix I P-POD, Q-POD, and PQ-POD Controller design for PV-STATCOM in 

Chapter 6 

All controller parameters are presented in table below. The optimization process are given 

in following figures for each case study.  

 

PCC Controller Mode Gain (pu) Tlead Gain (sec) Tlag Gain (sec) 

10 
P-POD 0.552 0.306 0.012 

Q-POD 0.509 0.1913 0.001984 

8 
P-POD 0.9196 0.046 0.1995 

Q-POD 0.5167 0.3121 0.0271 

6 
P-POD 0.5902 0.2195 0.0319 

Q-POD 0.5348 0.0002 0.2795 

 

 

Optimization process for PV-STATCOM connected at bus 10, and Q-POD mode is 

activated  
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Optimization process for PV-STATCOM connected at bus 10, and P-POD mode is 

activated  

 

Optimization process for PV-STATCOM connected at bus 10, and PQ-POD mode is 

activated  
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as shown in above figre, it is concluded that the controller parameter achieved for P-

POD and Q-POD are very close to those achieved in PQ-POD optimization. Hence, 

controllers for PV-STATCOM interconnection at bus 8 and 6 are performed only for 

P-POD and Q-POD optimization process.  

Optimization process for PV-STATCOM connected at bus 8, and P-POD mode is 

activated  

 

Optimization process for PV-STATCOM connected at bus 8, and Q-POD mode is 

activated  
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Optimization process for PV-STATCOM connected at bus 6, and P-POD mode is 

activated  

 

Optimization process for PV-STATCOM connected at bus 6, and Q-POD mode is 

activated  
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Appendix J Controller design for 12 bus FACTS power system 

Residue Analysis for 12-Bus power systems based on different Pv-STATCOM Bus 

location and P-POD and Q-POD control mode. The Eigenvalue asociated with No POD 

controller (Eig no), Q-POD controller (Eig Q), and P-POD controller (Eig P) are illustrated 

in table below. The residue regarding Q-POD and P-POD control feedback closer are (RQ) 

and (RP) respectively.   

 

Compensator Controller design for G3 Controller design  
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 Residue analysis for 𝜔3  

 

Bode plot for G3 compensator (No delay) 

 

Bode plot for G3 compensator (150 ms delay) 
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PV-STATCOM controller parameters for Q-POD and P-POD in 12 bus FACTS power 

system  

 

 Gain(pu) Tlead(s) Tlag(s) 

Q-POD  

𝝎𝟑 
No Delay 1.8 0.041 0.55 

150 ms Delay 1.8 0.0334 0.245 

𝝎𝟒 
No Delay 1.3 0 0 

150 ms Delay 1.3 0 0 

P-POD 𝝎𝟒 150 ms Delay 0.7 0 0 
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