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Abstract 

Urea use has grown substantially in the past half-century, with urea now accounting for > 

50% of nitrogen fertilizer applications worldwide. The shift from inorganic nitrogen 

fertilizers to urea-based sources has coincided with the reappearance of cyanobacteria 

blooms in freshwaters. Here, we examined urea as a nitrogen source for three bloom-

forming cyanobacteria species. We found that (1) urea was consumed more rapidly 

relative to inorganic nitrogen substrates, suggesting that cyanobacteria exhibit a 

preference for urea; (2) urea was consumed in excess of cellular requirements; and (3) 

urea may offer cyanobacteria a competitive edge over eukaryotic algae by enhancing 

light absorption capabilities. These findings build on the growing body of literature 

demonstrating the importance of urea in freshwater eutrophication and satisfying the 

nitrogenous needs of cyanobacteria. As society’s reliance on urea is projected to escalate, 

it is important that we understand the unintended consequences of urea discharge on 

receiving freshwaters. 

Keywords: freshwater, cyanobacteria, cyanobacteria harmful algal blooms 

(cyanoHABs), eutrophication, fertilizer, nitrogen, urea  

 

 

 

 

 

 

 

 

 

  



 

 

iii 

 

Co-Authorship Statement 

This M.Sc. thesis is part of a research project funded by NSERC CREATE on Algal 

Bloom Abatement through Technology and Education (ABATE), awarded to Dr. Irena 

Creed and Dr. Charles Trick. This thesis has been formatted into two manuscripts that 

will be submitted to the journal Freshwater Biology and Harmful Algae. I will be the lead 

author, as I contributed to the conceptual design, completion of experiments, analyses of 

data, and writing of the manuscript. Co-authors, Dr. Irena Creed and Dr. Charles Trick, 

contributed the conceptual design, interpretation of results, the writing and editing of the 

manuscripts and provided the financial resources to complete the study.  

 



 

 

iv 

 

Acknowledgments 

Collaboration is at the heart of great success and undertaking an endeavor this large is 

never the sole effort of one individual. Thus, I would like to acknowledge those who 

helped me pursue my dreams and who made significant contributions to ensure my 

success.   

I would like to extend my utmost gratitude to my supervisors, Dr. Irena Creed and Dr. 

Charles Trick, without whom I would be a different person today. The past three years 

have been the most challenging and gratifying journey to date. You have introduced me 

to the wonders of science and have constantly fostered my scientific curiosity. Your 

patience and mentorship has had a tremendous impact on the quality of my work and 

ultimately made me a better scientist. You have provided me with the foundation and 

skills needed to access my true potential, and for this continuous support, I am truly 

grateful. It is rare to come across professors who are this invested in their student’s 

success, and I am fortunate to have had the opportunity to work under both Dr. Irena 

Creed and Dr. Charles Trick’s supervision. Without their combined efforts, none of this 

could have been possible. Thank you. 

I would also like to thank my amazing colleagues and friends from the Trick and Creed 

Lab that have come and gone over the past years. Mali Mehdizadeh, Christine Dulal-

Whiteway, Bryant Oakes, Erika Freeman, Oscar Senar, Eric Enanga and Jacqueline 

Serran, thank you for creating such a positive atmosphere. Your continuous support, 

friendship, and humor helped create an unforgettable experience and pushed me to 

succeed, from traversing uncharted terrain in the Pilot, bird-eye views of algae-infested 

lakes, and exploring Africa’s beauty. These are the experiences I will never forget and 

will cherish as I move forward.  

Lastly, I would like to thank my parents for allowing me to realize my full potential and 

all the support they have provided over the years. You have instilled me with self-

confidence and independence necessary to undertake such a journey. Your unwavering 

support has ultimately been the greatest gift one has ever provided to me.  



 

 

v 

 

Table of Contents 

Abstract ............................................................................................................................... ii 

Co-Authorship Statement................................................................................................... iii 

Acknowledgments.............................................................................................................. iv 

Table of Contents ................................................................................................................ v 

List of Tables .................................................................................................................. viiii 

List of Figures ..................................................................................................................... x 

List of Abbreviations ......................................................................................................... xi 

Chapter 1 ............................................................................................................................. 1 

1.0 Introduction ................................................................................................................... 1 

 1.1 Problem Statement ................................................................................................... 1 

 1.2 Cyanobacteria: Pioneers of Primitive Earth ............................................................. 2 

 1.3 Characteristics of Cyanobacteria.............................................................................. 3 

 1.4 Cyanobacteria: Champions of  the Pelagic .............................................................. 3 

 1.5 Cyanobacteria: Ecological and Health Impacts ....................................................... 4 

 1.6 Eutrophication: Enrichment of Surface Waters ....................................................... 5 

 1.7 The Importance of Nitrogen ..................................................................................... 6 

 1.8 Global Reliance on Urea .......................................................................................... 7 

 1.9 Nitrogen Metabolism and Assimilation ................................................................... 9 

 1.10 Nitrogen Speciation Influences Community Composition .................................. 12 

 1.11 Thesis Hypothesis and Predictions ...................................................................... 14 

 1.12 References ............................................................................................................ 16 

Chapter 2 ........................................................................................................................... 15 

2 The efficiency of different nitrogen sources on the growth and photosynthetic 

efficiency of three bloom-forming cyanobacteria ........................................................ 15 



 

 

vi 

 

2.1  Introduction ................................................................................................................ 15 

2.2  Material and Methods ................................................................................................ 17 

 2.2.1  Experimental Design .......................................................................................... 17 

 2.2.2  Growth (k) .......................................................................................................... 18 

 2.2.3  Pigment Extractions ........................................................................................... 19 

 2.2.4  Oxygen Evolution .............................................................................................. 19 

 2.2.3  Statistical Analysis ............................................................................................. 30 

2.3 Results........................................................................................................................ 30 

  2.3.3 Growth ............................................................................................................... 30 

  2.3.2 Pigments ............................................................................................................. 32 

  2.3.3 Oxygen Evolution .............................................................................................. 35 

2.4 Discussion .................................................................................................................. 37 

  2.4.2 Growth ............................................................................................................... 37 

  2.4.2 Photosynthetic Activitys .................................................................................... 39 

2.5 Conclusion ................................................................................................................. 40 

2.6 References .................................................................................................................. 42 

Chapter 3 ........................................................................................................................... 48 

3 The differential utilization of ammonium, nitrate and urea by three bloom-forming 

cyanobacteria................................................................................................................ 48 

3.1 Introduction ................................................................................................................ 48 

3.2 Materials and Methods .............................................................................................. 51 

 3.2.1 Experimental Design ........................................................................................ 51 

       3.2.2 Colorimetric Assays .......................................................................................... 52 

      3.2.2.1 Nitrate ................................................................................................... 52 

                 3.2.2.2 Ammonium ........................................................................................... 53 

                3.2.2.3 Urea ....................................................................................................... 53 



 

 

vii 

 

 3.2.3 Formula ............................................................................................................. 54 

3.3 Results........................................................................................................................ 54 

      3.3.1 Preferential Use .................................................................................................. 54 

           3.3.1.1 Utilization Efficiency (η) ............................................................................ 54 

        3.3.1.2 Slope (K) ..................................................................................................... 56 

 3.3.2 Effect of High Urea Levels on N Assimilation ................................................ 57 

 3.3.3 Influence of External Factors on Urea Uptake ................................................. 59 

3.4 Discussion .................................................................................................................. 60 

3.5 Conclusion ................................................................................................................. 63 

3.6 References .................................................................................................................. 65 

Chapter 4 ........................................................................................................................... 70 

4 Conclusion ................................................................................................................... 70 

4.1 Main Findings ............................................................................................................ 70 

4.2 Significance ............................................................................................................... 71 

4.3 References .................................................................................................................. 74 

Curriculum Vitae .............................................................................................................. 78 

 



 

 

viii 

 

List of Tables  

Table 3.1 Utilization efficiency of cyanobacteria grown on different N combinations. 

Values are expressed as means ± SD, n=3 .........................................................................55 

Table 3.2 Assimilation rates of cyanobacteria grown on different N combinations. Values 

are expressed as means ± SD, n=3 .....................................................................................57 

Table 3.3 Growth and ammonium production of cyanobacteria grown on 7000 µmol-N 

L-1 and 3000 µmol-N L-1 - urea. Values are expressed as means ± SD, n=3 .....................58 

Table 3.4 Comparison between light and dark responses of cyanobacteria grown on 7000 

µmol-N L-1. Values are expressed as means ± SD, n=3 ....................................................59 

Table 3.5 Utilization efficiency of different N sources without cells exposed to growth 

conditions. Values are expressed as means ± SD, n=3 ......................................................60 

 

 

  



 

 

ix 

 

List of Figures 

Figure 1.1 Change in N fertilizer use in the United States between 1960 and 2011. .........7 

Figure 1.2 Cell model describing the various pathways in which cyanobacteria obtain N

............................................................................................................................................12 

Figure 2.1 Divisions per day (k) under different N sources. Values are expressed as 

means ± SD, n=3 ................................................................................................................31 

Figure 2.2 Growth of N-stressed cyanobacteria to additions of inorganic N (nitrate, 

ammonium) and urea. A) NO3
-, B) NH4

+ and C) urea. Values are expressed as means ± 

SD, n=3 ..............................................................................................................................32 

Figure 2.3 (a) Chlorophyll a (chl-a), and Phycocyanin (PC) concentrations under 

different N sources. Values are expressed as means ± SD, n=3 ........................................34 

Figure 2.4 (a) Maximum Photosynthetic rate (Pmax), and Photosynthetic efficiency (ɑ) 

under different N sources. Values are expressed as means ± SD, n=3 ..............................36 

Figure 3.1 N utilization of cyanobacteria grown on different combinations of nitrogen. 

A) Dolichospermum flos-aquae, B) Microcystis aeruginosa and C) Synechococcus. 

Values are expressed as means ± SD, n=3 .........................................................................56 

Figure 3.2 Ammonium production of cyanobacteria grown on 7 mmol-N L-1 - urea. 

Values are expressed as means ± SD, n=3 .........................................................................58 

Figure 3.3 Ammonium production of cyanobacteria grown on 3 mmol-N L-1 - urea. 

Values are expressed as means ± SD, n=3 .........................................................................58 

Figure 3.4 Urea consumption by cyanobacteria grown on 7 mmol-N L-1 - urea in the 

dark. Values are expressed as means ± SD, n=3................................................................59 

Figure 3.5 Different N substrates without cells exposed to experimental growth 

conditions. Values are expressed as means ± SD, n=3 ......................................................60 

 

 

 

 

 

 

 

 

 

 



 

 

x 

 

 

Abbreviations  

ɑ   Initial slope of photosynthesis (photosynthetic efficiency) 

APC   Allophycocyanin 

ATP   Adenosine Tri-Phosphate 

BG-11  Blue-green medium #11 

chl-a   Chlorophyll a 

CPCC  Canadian Phycological Culture Centre 

CyanoHAB  Cyanobacteria Harmful Algal Bloom 

ddH2O  Double distilled water 

DIN    Dissolved inorganic nitrogen 

DON   Dissolved organic nitrogen 

N   Nitrogen 

NA   Nitrogenase 

N2   Atmospheric nitrogen 

NH3   Ammonia 

NH4
+   Ammonium 

NO3
-    Nitrate 

NR   Nitrate Reductase 

NiR   Nitrite Reductase 

O2   Oxygen 

PI Curve  Photosynthesis-Irradiance response curve 

PC   Phycocyanin 

PE   Phycoerythrin 

Pmax   Maximum rate of photosynthesis (light saturated point)



 

 

1 

 

Chapter 1  

1 Introduction 

1.1 Problem Statement 

Freshwater algal blooms formed by cyanobacteria have been on the rise in Canada 

(Winter et al., 2011; Pick, 2016), and other north-temperate regions have seen an 

analogous trend (Taranu et al., 2015). The drivers of enhanced bloom frequency and 

duration are not fully understood, but conventional wisdom implicates increased nutrient 

availability combined with elevated temperatures and longer growing seasons (O’Neil et 

al., 2012; Paerl & Otten, 2013; Pick, 2016). The widespread use of chemical fertilizers 

linked to modern agricultural practices has enhanced the fertility of surface waters 

promoting the expansion of harmful cyanobacteria blooms (cyanoHABs) (Oliver et al., 

2012; O’Neil et al., 2012). While phosphorus (P) has been recognized as the principal 

agent regulating phytoplankton productivity in inland waters (Schindler, 1977), elevated 

P is not a universal trigger for bloom initiation (Paerl & Otten, 2013; Paerl et al., 2016). P 

fertilizer applications across the globe have now been outpaced by nitrogen (N) fertilizer 

use. The associated change in nutrient loads to freshwaters has created a scenario by 

which lakes are now saturated with excess N relative to P (Elser et al., 2009; Glibert et 

al., 2014).  

Not only has the supply of N entering surface waters increased, but the chemical 

composition has also been altered (Glibert  et al., 2006; Paerl et al., 2016). The use of 

inorganic N fertilizers (NO3
-, NH4

+) has declined in favour of urea-based products; with 

urea now accounting for more than half of the total N-fertilizer applications worldwide 

(Finlay et al., 2010; Glibert et al., 2014). This contemporary shift in fertilizer 

consumption patterns has coincided with the extensive re-emergence of cyanoHABs in 

freshwaters (Glibert et al., 2014; Belisle et al., 2016). As cyanobacteria are the 

phytoplankton group of greatest concern in inland waters, this thesis aims to: (1) predict 

how freshwater cyanobacteria may respond to current and future urea pollution by 
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examining the extent to which urea is incorporated into growth and photosynthetic 

processes, and (2) investigate whether cyanobacteria exhibit preferential use of urea over 

inorganic N forms. Society’s reliance on urea-based fertilizers is projected to increase 

further (Finlay et al., 2010), and it is important that we improve our understanding of the 

potential unintended consequences urea pollution may have on the ecology of primary 

producers in receiving water bodies. 

1.2 Cyanobacteria: Pioneers of Primitive Earth 

Cyanobacteria are a primitive group of photosynthetic prokaryotes and have been a 

natural part of the Earth’s oceans and lakes for about 3.5 billion years (Paerl et al., 2001). 

As one of the earliest of inhabitants known to exhibit oxygenic photosynthesis, 

cyanobacteria’s diversification and subsequent expansion during the Earth’s early history 

was responsible for converting the Earth’s previous anoxic atmosphere into an oxygen 

oasis—a phenomenon referred to as the great oxygenation event (Nisbet, 1985; Kasting, 

1993). Cyanobacteria also played an important role in the origin of plants. Cyanobacteria 

forged an endosymbiotic relationship with eukaryotic algae and higher plants, with the 

incorporation of cyanobacteria functioning as a precursor to the chloroplast (Kulasooriya, 

2011). The evolution of higher plants resulted in the “greening” of the terrestrial world, 

which played a pivotal role in molding the Earth’s climate and shaping the evolutionary 

trajectory of life on planet earth (Kenrick & Crane, 1997). Furthermore, some 

cyanobacteria have the capacity to process “inert” atmospheric N (N2) to biologically 

accessible forms thereby loosening N constraints that frequently limit ecosystem 

productivity (Paerl et al., 2001). Although cyanobacteria have made numerous beneficial 

contributions to re-engineering the planet into its current productive state, these tiny 

microbes also harbour other, more sinister characteristics that can lead to series of 

unfortunate circumstances when dense aggregates accumulate in surface waters 

(Explored in Section 1.5). 
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1.3 Characteristics of Cyanobacteria 

Often regarded as physiologically simple due to their prokaryotic cell organization, the 

diversification of cyanobacteria has given rise to a variety of cellular arrangements. The 

two dominant configurations that exist include: (1) coccid cells that exist either as free-

floating unicellular organisms or colonial forms that produce aggregated masses; and (2) 

filamentous varieties that form intricate linkages of individual cells (Paerl et al., 2001). 

Being prokaryotic organisms, cyanobacteria share striking structural similarities to 

bacteria, in that they both lack membrane-bound organelles and a defined nucleus (Paerl 

& Otten. 2013). However, unlike most other prokaryotes, cyanobacteria contain 

chlorophyll-a (chl-a) and undergo oxygenic photosynthesis. In addition to chl-a, 

cyanobacteria have phycobilins, accessory pigments which function as light absorbing 

complexes (Gantt, 1975; Oliver & Ganf, 2000). Phycobilins, phycocyanin (PC), 

allophycocyanin (APC) and phycoerythrin (PE), work in combination with chl-a to 

extend the range of light attenuation and act as photo-protectants, which help minimize 

photo-damage to the primary photosynthetic apparatus (Nisbett, 1985). Phycobilins are 

universally present in both freshwater and marine representatives. However, freshwater 

cyanobacteria tend to be more PC-rich. When present in sufficiently high concentrations, 

PC contributes to their distinctive blue-green appearance and colloquial name, the blue-

green algae (Brient et al., 2007). 

1.4 Cyanobacteria: Champions of the Pelagic 

Over their long evolutionary history, cyanobacteria have endured major environmental 

changes. Evolving in a continentally changing world has endowed cyanobacteria with a 

range of highly effective ecophysiological traits for ensuring their long-term success 

under both natural and anthropogenically-mediated change (Paerl et al., 2001; Paerl & 

Otten, 2013). Some of these adaptations that have allowed cyanobacteria to survive and 

dominate over their eukaryotic competitors include: (1) a small surface area to volume 

ratio that enhances nutrient sequestrating capabilities under low-nutrient regimes (Finkel 

et al., 2010; Carey et al., 2012); (2) luxury P uptake and storage, concentrating P in 

polyphosphate granules and subsequently releasing P when it is in low supply (Paerl & 
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Otten, 2013); (3) opportunistic consumers of N, with some species capable of fixing N2 

(Flores & Herrero, 2005; Chaffin & Bridgeman, 2014); (4) production of organic 

complexing ligands that scavenge micronutrients (e.g., Fe) in low supply (Murphy et al., 

1976; Wilhelm & Trick, 1994; Molot et al., 2014); (5) buoyancy that enables regulation 

of their vertical position in the water column to access nutrient-rich hypolimnetic waters 

as well as illuminated surface waters to drive photosynthesis (Ganf & Oliver,1982; Carey 

et al., 2012); and (6) higher temperature optimums enabling their success under warming 

conditions (Paerl & Huisman, 2008; O’Neil et al., 2012). The ecological “success” of 

cyanobacteria is in large part due to the suite of innovative strategies they have acquired 

over their long evolutionary history that has allowed this group to colonize nearly every 

conceivable habitat, spanning from the frigid waters of the Antarctic to the scorching heat 

of tropical deserts (Paerl et al., 2001).  

1.5 Cyanobacteria: Ecological and Health Impacts 

The term harmful algal bloom (HAB) is often used loosely in the wider literature with the 

“harmful” label often used exclusively to describe episodes tied to toxin production. 

However, the presence of toxins is not a prerequisite necessary for an algal bloom to be 

deemed “harmful,” as all blooms have the potential to jeopardize ecosystem or human 

health in some fashion (Paerl et al., 2001; Backer, 2002). Aside from being aesthetically 

unpleasant, cyanobacteria blooms are considered a major threat to freshwater resources 

due to the multitude of water-quality concerns that can quickly ensue following bloom 

initiation (Paerl & Otten, 2013; Brooks et al., 2016). For example, cyanobacteria blooms 

often manifest as a reduction in water transparency that inhibits the growth of aquatic 

macrophytes due to restricted light availability and subsequently disrupts invertebrate and 

fish habitat (Paerl et al., 2001; Pick, 2016). Cyanobacteria blooms can also impair food 

webs because their essential fatty acid composition is considered of a lower quality 

compared to eukaryotic algae (Schmidit & Jónasdóttir, 1997; Gearhart et al., 2017). 

When cyanobacteria outcompete more beneficial phytoplankton varieties, they create 

alternative food webs hampering energy transfer, which may lead to a series of negative 

effects on higher trophic states (Hixson & Arts, 2016; Gearhart et al., 2017).  During 

bloom die-offs, bacterial abundance typically increases, and these elevated bacterial loads 
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are frequently coupled with lower oxygen availability and in extreme cases cause fish 

kills (Smith et al., 1999; O’Neil et al., 2012).  

However, of greatest concern is the ability of some cyanobacteria to produce potentially 

harmful compounds (Paerl et al., 2001; de Figueiredo et al., 2004). These toxic secondary 

metabolites are referred to as cyanotoxins and can be broadly categorized into 

neurotoxins and hepatotoxins. Among the variety of toxins produced, microcystins are by 

far the most widespread and frequently encountered in freshwaters worldwide (de 

Figueiredo et al., 2004). Microcystins are hepatotoxins, targeting the liver, and are 

becoming increasingly recognized as a potential contaminant of concern due to the rise in 

cyanoHAB reports (Carmichael, 2001; O’Neil et al., 2012). The capacity of some 

cyanobacteria genera to produce cyanotoxins has led the Ontario Ministry of the 

Environment and Climate Change (OMOECC) to classify all algal blooms containing 

cyanobacteria as harmful, indicating the potential risk they pose to society (OMOECC, 

2014). 

1.6 Eutrophication: Enrichment of Surface Waters 

Eutrophication is a naturally occurring phenomenon by which water bodies gradually age 

and become increasingly more productive (Smith et al., 1999). Human activities have 

accelerated this natural phenomenon by increasing nutrient loads to surface waters, and 

freshwater ecosystems may experience eutrophic conditions within decades of human 

encroachment (Smith & Schindler, 2009; O’Neil et al., 2012). As nutrient availability 

rises, the relative abundance of phytoplankton groups associated with higher nutritional 

content (e.g., cryptophytes and diatoms) begin to diminish in importance, but the relative 

abundance of cyanobacteria increases. Cyanobacteria blooms are a cardinal symptom of 

eutrophication in freshwater environments, and these high biomass events often manifest 

as unsightly and potentially harmful blooms (Finlay et al., 2010; O’Neil et al., 2012; 

Paerl & Otten, 2013).   

Two elements, N and P, have long been recognized as the major growth determinants 

governing the spatial and temporal distribution of cyanobacteria blooms in inland waters 
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(Schindler, 1977; Paerl et al., 2001). Traditionally, P abatement has been the prescription 

to control nuisance algal growth. P abatement was successful in slowing down rates of 

eutrophication and cyanobacteria blooms (Schindler, 1977; Sterner, 2008), but a recent 

resurgence in cyanoHAB reports has sparked controversy over whether controlling 

cyanobacteria biomass requires reducing inputs of P, N or a dual nutrient approach 

(Schindler et al., 2008; Lewis et al., 2011; Paerl et al., 2016). P abatement efforts have 

been widely implemented since the late 1960s, resulting in total P loads to stabilize or 

decrease over time (Paerl et al., 2016). Whereas P is an important driver controlling 

cyanobacteria growth, focusing on P alone has increasingly driven many lakes out of 

stoichiometric balance (Elser et al., 2009; Glibert et al., 2014). The significant cost 

associated with N abatement together with the physiological ability of some 

cyanobacteria to thrive under N-deprived conditions has meant that N abatement has 

often been overlooked to control cyanoHAB formation resulting in N to enter surface 

waters virtually unregulated (Glibert et al., 2014; Gobler et al., 2016). 

1.7 The Importance of Nitrogen 

N is an essential macronutrient required for all forms of biological life and functions as a 

key component for many organic biomolecules, such as proteins, nucleic acids, and 

chlorophyll. Although N is found in relatively high abundance in the Earth’s atmosphere 

as N2, this form of N is largely inaccessible to most living organisms (Fields, 2004; 

Galloway et al., 2008). Consequently, N is relatively scarce in most biological systems 

and thus is one of the major limiting nutrients regulating phytoplankton community 

composition of freshwater ecosystems (Galloway et al., 2004). For N to become available 

to much of the biological world, N2 must be converted to a more chemically available 

form, such as ammonia (NH3). The industrial fixation of N2 to NH3, also known as the 

Haber-Bosch process (Smil, 1999), is often referred to as the single most important 

experiment of the 20th century (Erisman et al., 2008; Glibert et al., 2014). This reaction 

revolutionized the agricultural sector by allowing for mass production of synthetic N that 

was used to produce food for billions (Smil, 1999; Fields, 2004). However, this 

production of food has resulted in a 500% increase in the use of N fertilizers. Today, 

global N fertilizer use has seen a seven-fold increase since the 1970s, while P fertilizer 
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use has seen only a three-fold increase (Glibert et al., 2014). The increased reliance on N-

based fertilizers over the past century has been universally acknowledged, but little 

attention has been focused on the recent shift in its composition from inorganic N forms 

to organic (urea) N forms (Glibert et al., 2006; Bogard et al., 2012). 

1.8 Global Reliance on Urea 

Prior to the 1960s, global urea use was minimal, representing less than 5% of total N 

fertilizer applications. However, urea use has grown such that it now accounts for over 

half of N fertilizer applications worldwide (Fig 1.1) (Glibert et al., 2014). This increase in 

urea fertilizer use stems from the advantages urea offers over its inorganic counterparts, 

including: (1) urea fertilizers are more cost-effective both because they have lower 

production costs and their higher N content means lower application rates; (2) urea 

fertilizers are more water-soluble increasing the likelihood of N percolating through the 

soil profile; and (3) urea fertilizers are less explosive, making them safer for 

transportation and storage, and less likely to be converted into explosives (Glibert et al., 

2006; Paerl et al., 2016). The global shift towards higher urea fertilizer use now 

represents a potentially significant source of urea pollution to freshwaters (Finlay et al., 

2010; Donald et al., 2011; Glibert et al., 2014; Belisle et al., 2016). 
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Figure 1.1 Change in N fertilizer use in the United States between 1960 and 2011. Data 

show a shift from ammonium nitrate to urea as the dominant N-fertilizer (data replotted 

from USDA-ARS; Pearl et al., 2016). 

It was once assumed that urea applied to agricultural soils would either be incorporated 

into plant biomass or degrade into its decomposition products and thus would not enter 

waterways (Glibert et al., 2006). However, there is growing evidence to suggest that up 

to 40% of applied urea fertilizer enters waterways (Bogard et al., 2012; Glibert et al., 

2014). Urea may “bypass” the soil system. For example, the application of urea fertilizer 

is frequently paired with rainfall or irrigation. As urea is highly soluble in water, it 

readily moves across and through landscapes, increasing the likelihood of urea entering 

adjacent surface waters. Alternatively, urea may “avoid” degradation. For example, the 

hydrolysis of urea depends primarily on soil temperature and pH; relatively cool 

temperatures and low pH reduce urea decomposition efficiency by suppressing microbial 

metabolism and thus allowing urea to accumulate in the soil (Glibert et al., 2006). 

Furthermore, the hydrolysis of urea may be inhibited by the application of chemical 

inhibitors (e.g., ArgotainTM – a commercial additive used to limit urea hydrolysis). These 

chemical additives temporarily restrict microbial activity, specifically targeting the urease 

enzyme, which is responsible for the hydrolysis of urea into NH4
+ (Glibert et al., 2006; 

Belisle et al., 2016).  
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In aquatic environments, urea levels are largely dependent on the catchment to waterbody 

area ratio, and how the surrounding landscape is managed (Bogard et al., 2012). Urea 

concentrations may be elevated in waters adjacent to heavily fertilized regions, whereas 

concentrations near non-agricultural lands are generally below detection (Glibert et al., 

2014). Urea concentrations in freshwater lakes commonly range from undetectable to 150 

µmol-N L-1 (Berman, 1974; Siuda & Chorst, 2006; Bogard et al., 2012). However, in 

extreme cases, urea in downstream waters may exceed > 1000 µmol-N L-1 under 

conditions favouring its export (Finlay et al., 2010; Davis et al., 2016).    

1.9 Nitrogen Metabolism and Assimilation 

N is found in a variety of forms in freshwaters, with NO3
-, NH4

+, and urea being the most 

common in eutrophic waters (Glibert et al., 2016). Generally, NO3
- makes up the largest 

fraction of the N pool, followed by NH4
+.  Historically, concentrations of urea were 

negligible because natural inputs were low (Glibert et al., 2006). However, urea may 

represent the largest fraction of the N pool in regions with intensive agriculture (Bogard 

et al., 2012; Glibert et al., 2014). Dissolved inorganic N (DIN), including NH4
+ and NO3

-

, has been the primary focus of researchers investigating the link between N and 

phytoplankton productivity. The role of dissolved organic nitrogen (DON), including 

urea, has received comparatively little attention (Finlay et al., 2010; Fiedler et al., 2015). 

DON was initially thought to be largely refractory and therefore inaccessible to most 

phytoplankton, only becoming biologically available through bacterial mineralization or 

other degradative processes (Bronk et al., 2007). This assumption lead scientists to 

believe urea could not function as an important nutritional substrate. This assumption was 

reinforced by laboratory-based studies that used urea concentrations far exceeding 

ecologically relevant levels; high concentrations yielded poor phytoplankton growth, 

leading investigators to conclude that urea did not stimulate cyanobacteria blooms (Xu, 

2015). When scientists began to explore concentrations well below urea’s inhibitory 

threshold, it became clear that urea could satisfy the nitrogenous demands of 

phytoplankton and in some cases, alter the distribution of common algal groups (Berman 

& Chava, 1999; Berman & Bronk, 2003; Finlay et al., 2010; Solomon et al., 2010; 

Glibert et al., 2014). 
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Cyanobacteria can use a variety of inorganic and organic N substrates (Berman & Chava, 

1999; Finlay et al., 2010; Chaffin & Bridgeman, 2014). It has long been assumed that 

cyanobacteria typically favor NH4
+ over other N forms, as NH4

+ is energetically simple to 

incorporate into the cell and can be used directly upon intake (Flores et al., 2005; Oliver 

et al., 2012). Although NH4
+ is energetically favourable, there is a threshold at which 

NH4
+ becomes toxic to cells and this response has been shown to be species-specific (Dai 

et al., 2012). Therefore, NH4
+ functions as a “paradoxical” nutrient, stimulating algal 

growth at lower concentrations, whereas higher levels may suppress algal productivity 

(Dai et al., 2012; Collos & Harrison, 2014). 

NH4
+ is also believed to function as a regulatory agent, controlling N assimilation and 

metabolism within the cell. NH4
+ concentrations greater than 1 µM result in repression of 

the synthesis of enzymes involved in N assimilation, whereas NH4
+ concentrations lower 

than 1 µM result in activation of the genes that regulate the uptake of alternative N 

compounds (Flores et al., 2005; Glibert et al., 2016). The energy required to assimilate 

these alternative N forms and convert them into NH4
+ differs greatly. Consequently, the 

chemical form of N that is assimilated affects other cellular processes by reallocating 

energy reserves (Fig 1.2) (Herrero et al., 2001).   

 N2 fixation is by far the most energetically demanding pathway used by cyanobacteria in 

their attempt to satisfy N requirements (Flores et al., 2005; Finlay et al., 2010). N2 

fixation is the enzymatic conversion of “inert” N2 into two NH4
+ molecules. This N 

sequestration mechanism requires 16 adenosine triphosphate (ATP) molecules and a 

constant supply of electrons (8e-) and protons (8H+) (Paerl, 2017). The triple covalent 

bond shared between the two N atoms creates a very stable element resistant to 

decomposition. The high ATP requirements can be attributed to the high-energy demands 

necessary to break down the strong triple bond (Howarth et al., 1988; Flores et al., 2005). 

Only a few cyanobacteria genera–the diazotrophs–can fix N2 (Herrero et al., 2001). 

Diazotrophic cyanobacteria have specialized structures called heterocysts that facilitate 

N2 fixation thus allowing them to thrive in environments enriched with other essential 

nutrients (e.g., P and trace metals) but deprived of N. However, N2 fixation comes at a 

cost—the development and maintenance of heterocysts and the subsequent conversion of 
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N2 to NH4
+ requires complex enzyme systems (nitrogenases) that further increases the 

energy burden imposed (Finlay et al., 2010; Paerl, 2017). The conversion of NO3
- into 

NH4
+ is energetically less costly, requiring active transport and a two-step NO3

- reduction 

system. First, NO3
- is reduced to nitrite (NO2

-) via the enzyme nitrate reductase (NR). 

Second, NO2
- is reduced to NH4

+ ferredoxin-dependent nitrite reductase (NiR). NO3
- 

reduction requires a steady supply of electrons (8e-) and protons (9H+) (Flores et al., 

2005). 

The conversion of urea into NH4
+ could be the most energetically advantageous, as the 

hydrolysis of urea produces a two-fold increase in NH4
+ (Herrero et al., 2001). The 

hydrolysis of urea can occur through two mutually exclusive pathways involving the 

production of either ATP-urea amidolyase or urease (Leftley& Syrett, 1973). ATP-urea 

amidolyase production is restricted to some orders within the Chlorophyceae, whereas 

urease production occurs in all phytoplankton, including cyanobacteria (Berns et al., 

1966; Bekheet & Syrett, 1977). Despite requiring energy to produce the urease enzyme, 

urea hydrolysis results in the formation of two NH4
+ molecules (Finlay et al., 2010). 

Additionally, urea hydrolysis produces carbon dioxide (CO2) as a by-product, which can 

then be incorporated into photosynthesis reducing the cells reliance on active uptake 

(Berman & Chava, 1999; Glibert et al., 2014). 
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Figure 1.2 Cell model describing the various pathways in which cyanobacteria obtain N. 

Pathways that require enzymatic reactions are indicated with black circles; nitrogenase 

(NA), nitrate reductase (NR) and nitrite reductase (NiR). The outer dashed line indicates 

the traditional energetic assumption on nitrogen use in cyanobacteria, while the dotted 

line represents our prediction.   
1.10 Nitrogen Speciation Influences Community Composition 

It has been known for some time (e.g., Redfield et al., 1963; Dugdale & Goering, 1967) 

that individual species of marine phytoplankton have different preferences for N sources. 

In the marine ecological model, NO3
- is “new” N, originating from terrestrial runoff, 

whereas NH4
+ is a “recycled or regenerated” nutrient from bacterial decomposition, viral 

lysis of phytoplankton, or zooplankton metabolic waste. As a result, waters dominated 

with NO3
- will form a distinctly different phytoplankton community composition 

compared with waters containing NH4
+ (Syrett, 1981). The competition of marine 

phytoplankton for NO3
- or NH4

+ has been the foundation for marine HAB models 
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(Sournia 1974; Smayda 1979; Glibert et al., 2016). While NO3
- and NH4

+ are the 

dominant N-forms in marine waters (excluding the reduction of N2 by N-fixing bacteria 

and cyanobacteria), urea historically played a minor ecological role, as historical 

concentrations of urea were low even in coastal waters (even though many marine 

phytoplankton can utilize the N from urea for growth (McCarthy, 1972). 

In freshwater systems, the supply of urea cannot be dismissed (Finlay et al., 2010; 

Donald et al., 2011; Glibert et al., 2014). As the waters sit adjacent to natural terrestrial 

and agricultural lands, NO3
-, NH4

+, and urea all serve as sources of “new production”, 

influencing productivity, production, biomass, and species composition (Berman & 

Chava, 1999; Donald et al., 2011). In general, cyanobacteria dominate eukaryotic 

phytoplankton when grown under elevated NH4
+ concentrations, likely reflecting a 

competitive advantage for the low energetic costs associated with NH4
+ uptake and 

assimilation (Oliver & Ganf, 2000; Glibert et al., 2016). In contrast, eukaryotic 

phytoplankton show dominance over cyanobacteria under elevated NO3
- concentrations, 

as NR is more readily stimulated in eukaryotes compared to cyanobacteria (Blomqvist et 

al., 1994; Donald et al., 2011). Diatoms, in particular, have been described as NO3
- 

specialists due to their proportionally higher abundance of NO3
- transporters and non-

saturating uptake kinetics when silica is abundant (Lomas & Glibert, 1999; Glibert et al., 

2016). In contrast, other eukaryotic phytoplankton, such as the chlorophytes, grow 

particularly well when supplied with either reduced or oxidized N, reflecting the wide 

diversity of N transporters they possess (Galvan & Fernandez, 2001; Glibert et al., 2016). 

At present, there is a limited understanding of the effects of urea on natural 

phytoplankton communities. One exception is that urea additions to P-saturated 

freshwaters promote the growth of non-fixing cyanobacteria and chlorophytes over N2-

fixing cyanobacteria (Finlay et al., 2010; Donald et al., 2011).  

Phytoplankton possess two dominant N transporter types, with N transport activity 

dependent on external N concentrations. High-affinity transporters (HATs) are saturable 

and expressed under N-deprived environments, whereas low-affinity transporters (LATs) 

are non-saturable and expressed under N-replete conditions (Howitt & Udvardi, 2000).  

LATs are often referred to as low affinity, high capacity systems. Their high capacity 
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results in uptake kinetics that perform in linear or biphasic fashion. LATs are more 

frequently encountered for NO3
- uptake and result in greater N uptake capabilities under 

N-replete conditions (Collos et al., 1997; Lomas & Glibert 1999). In contrast, NH4
+ 

uptake often exceeds that of NO3
- under N-limited conditions (Glibert et al., 2013). The 

regulation of N transporters is not only influenced by N availability, but also N 

speciation. NO3
- functions as a positive signaling molecule, with increased NO3

- 

availability promoting higher rates of NO3
- uptake (Dugdale et al., 1981). In contrast, 

NH4
+ acts as a negative signaling agent, with increased NH4

+ availability downregulating 

the uptake and assimilation of itself and alternative N compounds (Dugdale et al., 1981; 

Flynn et al., 1997; Glibert et al., 2016). 

Cyanobacteria exhibit great physiological plasticity in response to different N forms, and 

have evolved an assortment of transporters to capitalize on this limiting substrate (Flores 

et al., 2005; Glibert et al., 2016). The vast majority of DIN and DON uptake moves 

against a concentration gradient and therefore requires an energy input (Dagenais-

Bellefeuille & Morse, 2013). For example, NO3
- uptake requires the participation of ATP 

to fuel transport (Flores et al., 1983). While all cyanobacteria can obtain N through active 

transport, NH4
+ and urea transport can also occur without an energetic investment. NH4

+ 

and urea can enter cells via diffusion (Valladares et al., 2002; Flores et al., 2005; Finlay 

et al., 2010) and urea, being a small-uncharged molecule, may rapidly enter cells via 

aquaporins (Valladares et al., 2002; Kojima et al., 2006). As reduced N forms may 

alternatively be transported in a less energetically demanding manner, this further 

supports why cyanobacteria prefer reduced N sources over oxidized forms  (Finlay et al., 

2010; Donald et al., 2011). 

1.11 Thesis Hypothesis and Predictions 

To evaluate whether widespread use of urea has promoted cyanobacteria dominance in 

freshwater lakes, three bloom-forming cyanobacteria were selected to understand the 

effect of different N forms on growth, photosynthesis, and N preference. The goal of this 

thesis is to understand if urea loading has contributed to increased cyanobacteria 

abundance in inland waters.  
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In nature, organisms strategically select pathways that require the least amount of energy 

to accomplish a task. It follows that the untapped energy reserves can then be allocated to 

other essential functions to improve cellular fitness (Schluter, 1996). As Raven et al. 

(1992) stated: “If the use of the resource needing more manipulation (NO3
-) ... to achieve 

the same rate of product formation, then the cell doubling time will be significantly 

increased since more energy for manipulation will be required to double the cell mass …” 

Here I hypothesis that the magnitude of response exhibited by cyanobacteria would be 

greatest on N forms that provide the greatest energetic return or least amount of 

manipulation, reflecting energetic efficiency for cellular N assimilation. As a result, cells 

would selectively uptake less energetically intensive N substrates and cellular 

performance would be enhanced on these energetically favourable N forms. 

Based on this simple assumption the following predictions were set: 

I. Photosynthetic activity and growth of cyanobacteria would be enhanced on 

reduced N forms, specifically urea, as reduced N forms lower the energetic 

constraints of N acquisition or offer the benefit of additional nutrient building 

blocks. 

II. Selected cyanobacteria species will transport energetically simple reduced N 

forms over energetically demanding oxidized forms; and (2) the transport of urea 

is independent of the availability of either of the two inorganic N-sources. 

Specifically, I predicted the sequence of N assimilation would be the independent 

utilization of urea, and the sequential utilization of NH4
+, prior to the use of NO3

-.  

III. Different cyanobacteria species will exhibit varying capacities to utilize urea and 

that uptake will be direct rather than indirect. 
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Chapter 2  

2 The efficiency of different nitrogen forms on the growth 

and photosynthetic efficiency of three bloom-forming 

cyanobacteria 

This chapter was submitted as a manuscript for publication to the journal Freshwater 

Biology.  

2.1 Introduction 

Excess nutrients entering surface waters can disrupt the existing ecological balance, 

giving rise to an environment where some organisms thrive at the expense of others 

(Anderson, Glibert & Burkholder, 2002; Glibert, Maranger, Sobota, & Bouwman, 2014). 

In freshwaters, a telltale sign of nutrient over-enrichment is a shift in the phytoplankton 

assemblage towards cyanobacteria dominance (Smith, Tilman, & Nekola, 1999; Paerl & 

Otten, 2013). Cyanobacteria are notable bloom formers in inland waters, and the 

development of high biomass events can wreak havoc on aquatic ecosystems and 

adjacent shoreline communities (Paerl, Fulton, Moisander, & Dyble, 2001; Pick, 2016). 

Under these conditions, when excessive cyanobacteria growth jeopardizes human or 

ecosystem health they are coined cyanobacteria harmful algal blooms (cyanoHABs) 

(O’Neil, Davis, Burford, & Gobler, 2012).  

Widespread P removal efforts were introduced following the universal recognition that 

phosphorus (P) was the primary nutrient linked to the proliferation and expansion of 

phytoplankton blooms in freshwaters (Schindler, 1977; Sterner, 2008). Abatement efforts 

targeting P have stabilized or decreased P inputs, which has contributed to elevated N:P 

ratios in neighboring waterways (Glibert et al., 2014; Paerl et al., 2016). In addition, 

many lakes are receiving elevated loads of bioavailable N relative to P, as N inputs have 

now surpassed P inputs due to increased use of N-based fertilizers (Elser et al., 2009; 

Glibert, Harrison, Heil, & Seitzinger, 2006). As a consequence, phytoplankton are now 
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receiving more N than their stoichiometrically-estimated requirements, and these higher 

N: P loads can alter the structure of phytoplankton communities (Elser et al., 2009; 

Glibert et al., 2014).  

Freshwater cyanobacteria are particularly well-suited to increased N: P loading, as this 

microbial group has evolved a suite of physiological adaptations to withstand low 

ambient P concentrations (Glibert et al., 2014; Gobler et al., 2016). Some of these 

adaptations include: (1) small surface area to volume ratio, typical of most cyanobacteria 

taxa, enhances P sequestering capabilities under low P conditions; (2) luxury P uptake 

and storage, concentrating P in polyphosphate granules, when P is in large supply; and 

(3) substitution of P-rich lipids with alternative elements (e.g., sulfolipids) when P is 

scarce. The combination of these adaptive strategies provides cyanobacteria with a strong 

competitive advantage in surface waters enriched with N (Glibert et al., 2014).  

While higher N: P loads to freshwaters have been widely acknowledged, less attention 

has been given to the changing chemical composition of N in freshwaters. N is an 

important control on phytoplankton growth and functions as a key component for many 

organic biomolecules, such as proteins, nucleic acids and pigments (Fields, 2004; Glibert 

et al., 2016). Cyanobacteria can use a variety of N substrates, with each substrate 

possessing its own unique energetic investment (Herrero, Muro-pastor, & Flores, 2001; 

Solomon, Collier, Berg, & Glibert, 2010; Donald, Bogard, Finlay, & Leavitt, 2011). N 

entering the cell must be metabolized into NH4
+, as NH4

+ is the basic building block for 

protein synthesis (Fig. 1.2) (Finlay et al., 2010). N2 fixation is by far the most 

energetically demanding pathway used by certain cyanobacteria genera in their attempt to 

satisfy N requirements (Flores & Herrero, 2005; Finlay et al., 2010). While less 

energetically costly, the conversion of NO3
- into NH4

+ requires a two-step NO3
- reduction 

system (Herrero et al., 2001). NH4
+ is energetically favorable to NO3

-, as NH4
+ is 

energetically simple to uptake into the cell and can be used directly upon intake (Flores & 

Herrero, 2005; Donald et al., 2011). Due to low energetic demands for NH4
+ utilization, 

NH4
+ is considered the preferred N form among cyanobacteria (Herrero et al., 2001; 

Finlay et al., 2010).  However, urea may offer the greatest energetic advantage, given that 

urea hydrolysis results in the production of two NH4
+ molecules, thereby providing a 
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two-fold increase in N compared to inorganic sources (Finlay et al., 2010; Donald et al., 

2011). Furthermore, the breakdown of urea results in the release of CO2 as a by-product, 

which can then be incorporated into photosynthesis, reducing the cells reliance on active 

uptake (Berman & Chava, 1999; Glibert et al., 2014). However, the relationship between 

urea and the occurrence of cyanoHABs remains largely unexplored. 

Historically, N in fertilizers were based on nitrate (NO3
-) and ammonium (NH4

+), but 

these have since been replaced by urea (CO(NH2)2)-based fertilizers composition (Glibert 

et al., 2006; Belisle et al., 2015). Urea now accounts for more than half of the total N-

fertilizer applications worldwide and this contemporary shift in fertilizer consumption 

patterns has coincided with the extensive reemergence of cyanoHABs in inland waters 

(Finlay, Patoine, Donald, Bogard, & Leavitt, 2010; Glibert et al., 2014). In this study, we 

examined the relative performance of cyanobacteria grown with urea, NO3
- or NH4

+ as an 

N source. We hypothesized that the magnitude of response would be greatest on N forms 

that provide the greatest energetic return or least amount of manipulation, reflecting 

energetic efficiency for cellular N assimilation (Raven, Wollenweber, & Handley, 1992; 

Glibert et al., 2016). Based on this simple energetic assumption, we predicted that growth 

and photosynthetic performance of cyanobacteria would be enhanced on urea, as urea 

lowers the energetic constraints of N acquisition and can offer the benefit of additional 

nutrient building blocks (urea supplying both N and C to the cell). 

2.2 Material and Methods 

2.2.1 Experimental Design 

Three bloom-forming species of cyanobacteria (Microcystis aeruginosa, 

Dolichospermum flos- aquae, and Synechococcus sp.) were used to evaluate whether 

cyanobacteria performed better in terms of growth and photosynthetic efficiency when 

supplied with N substrates that are energetically cheaper to assimilate and metabolize. 

Species selection was based on two major criteria: 1) organisms with cosmopolitan 

distributions; and 2) studied organisms represent the range of morphological diversity 

documented within cyanobacteria (e.g., filamentous, colonial, and picocyanobacteria).  
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M. aeruginosa (CPCC 300) and D. flos- aquae (CPCC 67) isolates were obtained from 

the Canadian Phycological Culture Centre (CPCC), and Synechococcus sp. was isolated 

from a sample taken from Lake Erie in 2015 at Western University. The isolates were 

maintained as non-axenic, uni-algal strains in BG-11 media (adjusted to pH 7.4). The 

basal medium for each experimental treatment was adjusted to contain a different N 

form: NO3
- (sodium nitrate), NH4

+ (ammonium chloride), or urea and four different 

concentrations of each N form were selected: 1, 3, 5, and 7 mmol-N L-1.  For each 

treatment, cell densities were logged daily, beginning from the initial inoculation (Day 0) 

and followed until cells reached the stationary growth phase (Day 10). Oxygen evolution 

measurements were recorded during the mid-exponential phase, and pigments were 

extracted and quantified during the early stationary phase of growth.  

Prior to conducting experimental trials, cultures in stationary growth were centrifuged 

(2000 g for 5 min). The supernatant was aspirated, and the pelleted cells were washed 

three times with N-free medium. After the final wash, cells were resuspended in N-free 

media and preconditioned for a period of 5 days to ensure cells had been exhausted of 

any intracellular N stores. Experiments were conducted in 125 mL Erlenmeyer flasks 

containing 50 mL of the mixture (i.e., medium and inoculum). Temperature was kept at 

23°C (±1°C), and cultures were sustained by a continuous light flux of 60–70 μmol 

photons m-2 s-1.    

2.2.2 Growth (k) 

Culture densities were monitored daily at an absorbance of 750 nm on a 

spectrophotometer. Optical density measurements at 750 nm correspond to particle 

density and are less prone to interference by pigments, as this wavelength extends beyond 

the range of photosynthetic pigments. Therefore, measurements of 750 nm address 

changes in relative turbidity. Optical density measurements were calibrated to 

hemocytometer (D. flos-aque) or flow cytometry (M. aeruginosa and Synechococcus sp. ) 

counts, which were used to estimate cell concentrations for normalizing photosynthetic 

measurements on a cell-1 basis. Optical density measurements were plotted over time and 
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the exponential portion of the curves was used to calculate k (division day-1) as defined 

by Guillard (1973): 

k (divisions day) = ln(N1/N0)/0.6931(t1-t0) 

where N1 is the final cell concentration, N0 is the initial cell concentration, and t1-t0 is the 

time elapsed in days. 

2.2.3 Pigment Extractions 

Pigments were analyzed using a modified version described in Morgan-Kiss et al. (1998).  

Aliquots (5 mL) of late-exponential phase cells were collected on Whatman GF/F filters 

and stored at -80°C prior to analysis. For each group of pigments, the extraction protocol 

was kept constant, only differing by the extraction solvent and incubation temperature.  

90% (v/v) acetone was used for chl-a extractions (Jeffery & Humphrey, 1975), whereas 

phosphate buffer (0.1M, pH of 6.8) was used for PC extractions (Lawrenz et al., 2011). 

Filters were suspended in solvent (2 mL) and were mechanically disrupted using a bead 

beater (3  10 sec cycles) fractioned with 0.1 silica beads. The resulting “slurry” was 

stored for 24 hr at -20°C for chl-a and 4°C for PC extractions. Clarification of extracts 

was carried out through centrifugation (6000 g for 5 min). Supernatant (1 mL) was then 

passed through a 0.22 µM syringe filter and measured on a spectrophotometer in a 1mL 

glass cuvette with 1-cm path length. Total chl-a concentrations were calculated using the 

method of Jeffery and Humphrey (1975), and PC concentrations were calculated 

determined using the method of Lawrenze et al. (2011). Chl-a and PC concentrations 

were normalized to the cellular level (pg cell -1). 

2.2.4 Oxygen Evolution  

Photosynthesis-Irradiance response (PI) curves were constructed using a series of light 

intensities ranging from 0 to 800 μmol photons m−2 s−1. PI curves were used to calculate 

two photosynthetic parameters, which were calculated to represent the photosynthetic 

capacity of each species: (1) Pmax represents the maximum (light-statured) rate of 

photosynthesis; and (2) α is the initial slope (photosynthetic efficiency) under light-
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limiting conditions (Talling, 1957). O2 evolution was measured in vivo using a Clark-type 

O2 electrode at room temperature (20 ºC ± 2 ºC). Measurements were performed on 1.5 

mL aliquots of mid-exponential-phase cells and were transferred into the reaction vessel 

with a magnetic stirrer to ensure a homogenous suspension. Prior to measurements, cells 

were dark adapted for 4 min, and sodium bicarbonate (NaHCO3) was introduced to a 

final concentration of 4 mM to avoid CO2 deficiencies (Maxwell, Falk, Trick, & Hüner, 

1994). 

2.2.5 Statistical Analysis  

Experiments were run three times, with each experiment comprised of three replicates. 

Two-way ANOVAs with post-hoc Tukey’s analyses were used to assess differences in 

growth, pigment content and photosynthetic efficiency among N sources (NO3
- , NH4

+ 

and urea) and N concentrations (1, 3, 5, 7 mmol-N L-1). Statistical analyses were 

performed using SigmaPlot 12 (Systat Software, San Jose, CA) and significance was 

assessed at p < 0.05. All graphs were generated with Origin 9.0.  

2.3 Results 

2.3.1 Growth 

All N substrates were suitable for growth, with all species displaying similar growth 

kinetics when supplied with the same N source (Fig. 2.2). However, the highest urea 

concentration (7 mmol-N L-1) showed inhibitory properties in two of the species, with 

lower growth kinetics observed in Synechococcus and complete inhibition in M. 

aeruginosa (Fig. 2.1). With the exception of the 7 mmol-N L-1-urea treatment, NO3
- and 

urea displayed comparable k values for all three species. In contrast, when cells were 

supplied with NH4
+ growth values were halved compared to NO3

- or urea treatments 

(p<0.05) (Fig. 2.1).  
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Fig. 2.1 Divisions per day (k) under different N sources. Values are expressed as means ± 

SD, n=3. Values are expressed as means ± SD, N=3. N sources selected: NO3
- (■), NH4

+ 

(■), and urea (■). Same uppercase letters indicate no significant effect of N concentration 
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with the same N source. Same lowercase letters indicate no significant effect of N source 

with the same N concentration. Significance tested at p < 0.05 level. 

 

 

Fig. 2.2 Growth of N-stressed cyanobacteria to additions of inorganic N (nitrate, 

ammonium) and urea. A) NO3
-, B) NH4

+ and C) urea. Values are expressed as means ± 

SD, N=3. Concentrations selected: 7 mmol-N L-1 (■), 5 mmol-N L-1(▲), 3 mmol-N L-1 

(●), and 1 mmol-N L-1 (♦). 

 

2.3.2 Pigments 

The lowest pigment content was observed under the NO3
- and urea treatments at the 

lowest concentration (1 mmol-N L-1), relative to higher N concentrations of the same N 

source (Fig. 2.3). This decline was especially evident in PC, with significant reductions 

observed among all three species (p<0.05). Although both pigments increased under urea 

amendments, the response observed in PC was more pronounced with mid-concentrations 

of urea (3 and 5 mmol-N L-1) showing significantly higher PC levels in Synechococcus 

and M. aeruginosa (p<0.05), and higher concentrations (5 and 7 mmol-N L-1) being more 
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suitable for D. flos-aquae. Similar to growth, Synechococcus and M. aeruginosa 

displayed significantly lower pigment concentrations when grown on the highest urea 

treatment (p<0.05). Significant effects were observed for both chl-a and PC for cells 

grown on the lowest concentration of NH4
+ (1 mmol-N L-1) compared to NO3

- or urea at 

the same concentration (p<0.05).  
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Figure 2.3 (a) Chlorophyll-a (chl-a), and (b) Phycocyanin (PC) concentrations under 

different N sources. Values are expressed as means ± SD, N=3. N sources selected: NO3
- 

(■), NH4
+ (■), and urea (■). Same uppercase letters indicate no significant effect of N 

concentration with the same N source. Same lowercase letters indicate no significant 

effect of N source with the same N concentration. Significance tested at p < 0.05 level. 

(a) (b) 
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2.3.3 Oxygen Evolution  

Significant effects were not observed when cells were grown on varying concentrations 

of NO3
-; however, Synechococcus displayed lower α (Fig. 2.4a) and Pmax (Fig. 2.4b) when 

supplied with the lowest NO3
- concentration (1 mmol-N L-1). The highest α and Pmax 

values occurred under mid-urea concentrations (3 to 5 mmol-N L-1) among all species 

(p<0.05). Again, the highest urea treatment (7 mmol-N L-1) restricted photosynthetic 

activity in Synechococcus and M. aeruginosa (p<0.05). However, this hindering effect 

was not observed in D. flos-aquae, which had an elevated α (Fig. 2.4a) and Pmax (Fig. 

2.4b) value at the highest urea concentration. Lower NH4
+ concentrations yielded 

significantly higher α and Pmax values compared to higher NH4
+ concentrations for all 

cyanobacteria sp. While Pmax declined in a dose-dependent fashion, only Synechococcus 

and M. aeruginosa were shown to have significant N concentration effects (p<0.05). 
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Figure 2.4 (a) Maximum Photosynthetic rate (Pmax), and (b) Photosynthetic efficiency (ɑ)  

under different N sources. Values are expressed as means ± SD, N=3. N sources selected: 

NO3
- (■), NH4

+ (■), and urea (■). Same uppercase letters indicate no significant effect of 

N concentration with the same N source. Same lowercase letters indicate no significant 

effect of N source with the same N concentration. Significance tested at p < 0.05 level. 

(a) (b) 
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2.4 Discussion 

Phosphorus is recognized as an important nutrient regulating cyanoHAB development in 

freshwaters (Schindler, 1977). While P mitigation measures are important for minimizing 

the risk of nuisance algal growth, some scientists recommend a shift towards a paradigm 

focused on dual nutrient control—both N and P (Conley et al., 2009; Lewis et al., 2011; 

Paerl et al., 2016). Unlike P, N occurs in various bioavailable forms in natural 

freshwaters. Therefore, targeting specific N substrates, such as those linked to the 

proliferation of cyanoHABs, may be particularly useful rather than concentrating 

abatement efforts on all bioavailable forms (Chaffin & Bridgeman, 2014). This study 

assessed the potential for growth and photosynthetic activity of cyanobacteria 

supplemented with diverse N forms to determine the role of urea on cellular fitness 

relative to inorganic N sources.   

2.4.1 Growth 

We predicted that cyanobacteria would experience maximum growth on N forms that 

lower energetic constraints for N acquisition. Thus, growth would sequentially increase 

from NO3
-, followed by NH4

+ and lastly urea. However, cells supplied with NO3
- did 

follow energetic expectations, as growth values were twice that of NH4
+ and comparable 

to urea. The poor response in NH4
+ likely reflects the “paradoxical” nature of this 

substrate (Glibert et al., 2016). Depending on substrate availability, phytoplankton 

growth can either be enhanced or suppressed by the presence of NH4
+ (Britto & 

Kronzucker, 2002; Dugdale, Wilkerson, Parker, Marchia, & Taberski, 2012). At the 

lower end of the availability spectrum, NH4
+ is frequently reported as the preferred N 

source of most phytoplankton due to its superior uptake kinetics, whereas at the higher 

end of the availability spectrum, NH4
+ has been shown to inhibit growth (Dai, Shang, & 

Qiu, 2012; Glibert et al., 2016). Concentrations of NH4
+ exceeding several 0.1 mmol-N 

L-1 have been shown to suppress algal growth, with these toxic effects not easily 

alleviated (Britto & Kronzucker, 2002; Dai et al., 2012; Collos & Harrison, 2014). NH4
+ 

functions as a negative signaling agent, with increased NH4
+ availability downregulating 

the uptake and assimilation of itself (Flynn, Fasham, & Hipkin, 1997; Glibert et al., 
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2016). Consequently, NH4
+ is more bioavailable to phytoplankton at lower concentrations 

and concentrations selected for this experiment were likely too high to support optimal 

growth (Glibert et al., 2016).  

Marked differences in growth were not observed when cyanobacteria were supplied with 

urea relative to inorganic N forms, as growth on urea was matched by cells grown on 

NO3
-. Our original prediction was that urea would stimulate higher growth responses 

compared to inorganic substrates due to: (1) low energetic investment; and (2) extra 

nutrient building blocks (Herrero et al., 2001; Finlay et al., 2010). The additional C and N 

generated from urea hydrolysis may have not been allocated towards growth, but rather 

redirected to other key physiological processes requiring high N quotas such as pigment 

synthesis or toxin production (Allen & Smith, 1969; Harke, Davis, Watson, & Gobler, 

2016). Therefore, urea may not enhance cell quantity, but rather cell “quality” and these 

higher quality cells would have a higher likelihood of survival due to increased N storage 

or enhanced light absorption capabilities.   

Even though urea was a suitable N source of cyanobacteria growth, cyanobacteria 

cultured on high urea concentrations (≥7 mmol-N L-1) lead to various degrees of 

inhibition among the cyanobacteria species. M. aeruginosa displayed complete inhibition, 

Synechococcus sp. exhibited signs of impairment followed by recovery and D. flos- 

aquae appeared to be unaffected (Fig. 2.2). The high variability in responses suggests a 

range of tolerance, and that cyanobacteria exhibit varying capacities to exploit this 

organic N source. Mackerras and Smith (1986) and Sakamoto, Delgaizo, & Bryant 

(1998) triggered a similar response when growing cyanobacteria under elevated urea 

concentrations (> 10 mmol-N L-1 ). Their findings suggest that cyanobacteria have a high 

affinity for urea and will hydrolyze urea in excess of their biosynthetic requirements, but 

the hydrolysis of urea resulted in high concentrations of NH4
+ accumulating in the 

medium, which led to cellular impairment (Mackerras & Smith, 1986). Hence, rates of 

urea hydrolysis are far greater than the incorporation of NH4
+ into cellular components, 

and excess NH4
+ is excreted externally when cellular requirements are satisfied, 

periodically creating conditions unsuitable for growth (Mackerras & Smith, 1986; 

Sakamoto et al., 1998). 
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2.4.2 Photosynthetic Activity  

Nitrogen is an essential structural element for pigment synthesis (Allen & Smith, 1969) 

and therefore we predicted that N forms that require the lowest energetic investment or 

supply additional N sources would enhance pigment production. Under this basic 

energetic principle, urea was projected to enhance the photosynthetic capacity of 

cyanobacteria relative to inorganic N source due to the additional nutrient N and C 

sources supplied following urea hydrolysis. Nitrogen speciation influenced cyanobacteria 

pigment composition by changing the relative abundance of the primary photosynthetic 

pigment (chl-a) and the dominant accessory pigment in freshwater cyanobacteria (PC). In 

general, we found cyanobacteria displayed the strongest increase in pigment content 

when grown on urea relative to inorganic N sources. Elevated pigment synthesis likely 

reflects the additional N and C resulting from hydrolysis of urea, which is absent when 

inorganic N sources are metabolized.  

Chl-a is often used as a proxy for phytoplankton biomass due to the time-consuming 

nature and taxonomic expertise required for microscope counts. However, variability in 

chl-a may reflect changes in chl-a content per cell rather than total algal biomass (Geider, 

MacIntyre, & Kana, 1997). For instance, growth values remained constant for cells 

grown on NO3
- and urea, whereas chl-a and PC concentrations were enhanced under urea 

amendments (Fig. 2.3). This finding suggests that excess N produced from the hydrolysis 

of urea was not used towards active growth, but rather accumulated in secondary pools to 

increase production of N-rich compounds, such as PC. PC functions as an accessory 

pigment as well as a nitrogen reserve becoming mobilized under times of N stress (Allen 

& Smith, 1969; Boussiba & Richmond, 1980). Cells grown on NO3
- and urea at 1 mmol-

N L-1 displayed symptoms of N deprivation, with signs of chlorosis appearing midway 

during growth. Interestingly, these cells yielded similar growth values compared to cells 

grown on higher N concentrations of the same N source. However, pigment values were 

significantly reduced at lower N concentrations relative to higher N concentrations, 

suggesting that cells grown in lower N concentrations began to degrade pigment pools 

and use these N-rich compounds to fuel active growth. This finding suggests that under 
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N-stressed conditions, cyanobacteria may tap into pigment reserves and reutilize the 

liberated N to sustain growth (Allen & Smith, 1969). 

Following bloom initiation, light availability declines due to the shading effect created by 

dense surface aggregates. This shadow exerts competition among phytoplankton and only 

the strongest competitors for light can flourish (Hutchinson, 1961; Paerl et al., 2001). PC-

rich cyanobacteria tend to thrive in turbid freshwaters, as they are superior competitors 

under low-light regimes (Stomp et al., 2007). A steeper attenuation of light due to the 

presence of PC improves photosynthetic efficiency, whereas the capacity to achieve 

higher growth rates under low light conditions further increases the competitive edge 

cyanobacteria possess under reduced water transparency (Tilzer, 1987; Scheffer, Rinaldi, 

Gragnani, Mur, & van Nes, 1997). Although cyanobacteria are well equipped to thrive 

under conditions of low light, their presence also promotes such conditions, as their 

biomass influences light attenuation in surface waters (van Liere, Mur, Gibson, & 

Herdman, 1979; Scheffer et al., 1997). Urea pollution could further improve the 

competitive advantage cyanobacteria possess under eutrophied environments by: (1) 

enhancing light absorption capabilities through elevated chl-a and PC content; and (2) 

further promoting conditions favorable for sustaining cyanobacteria growth by further 

reducing light availability through bloom development, thereby encouraging the 

dominance of this shade-tolerant group.  

2.5 Conclusion 

Urea has become the backbone of modern agriculture, and its ubiquitous use and high 

mobility support the mounting evidence of urea export into neighboring freshwaters. 

While urea did not increase cyanobacteria abundance, this organic N source enhanced the 

production of N-rich pigments. The physiological capacity of cyanobacteria to 

incorporate urea into pigment synthesis may offer a competitive edge by enhancing light 

absorption capabilities and N storage, thus making freshwaters more prone to 

cyanobacteria dominance. Thus, in a future with more intense and widespread 

agriculture, urea could become a key player in the formation of blooms by supplying 

cyanobacteria with an N form that enhances their adaptive capacities to environmental 
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change. Future work should focus on the potential role of urea stimulating other N-rich 

compounds, such as cyanotoxins, which have gained widespread attention as a 

contaminant of concern in inland waters due to the global increase in cyanoHAB events. 

As urea has the potential to alter physiological processes to enhance the storage of N- 

rich pigments, perhaps urea may also favor the synthesis of N-rich toxins, such as 

microcystins.  
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Chapter 3  

3 The differential utilization of ammonium, nitrate and 
urea by three bloom-forming cyanobacteria  

This chapter will be submitted as a manuscript for publication to the journal Harmful 

Algae. 

3.1 Introduction 

Increased nutrient availability has been identified as one of the dominant drivers 

responsible for the recent upsurge in cyanobacteria harmful algal bloom (cyanoHABs) 

reports (O’Neil et al., 2012; Paerl and Otten, 2013; Pick, 2016). Of particular concern is 

the loading of macronutrients, phosphorus (P) and nitrogen (N), which have been 

recognized as strong risk factors linked to the formation of cyanoHABs (Schindler, 1977; 

Paerl et al., 2001; Smith, 2003). While P has been recognized as the key limiting nutrient 

regulating cyanoHABs in freshwaters (Schindler, 1977; Sterner, 2008), the importance of 

N in mediating bloom dynamics is emerging (Conley et al., 2009; Gobler et al., 2016; 

Paerl et al., 2016). N has emerged as a pollutant of concern due to: (1) its increasing 

presence in inland waters; (2) accumulating evidence illustrating the importance of 

combined N and P reductions over single nutrient controls (Conley et al., 2009; Lewis et 

al., 2011; Paerl et al., 2014); and (3) the influence of N speciation on phytoplankton 

community structure (Finlay et al., 2010; Glibert et al., 2014; Glibert et al., 2016). 

In freshwater environments, much research has been devoted to investigating the effects 

of growth-limiting nutrients (e.g., specifically P) on phytoplankton productivity 

(Schindler et al., 2008; Sterner, 2008). However, there is growing evidence to suggest 

that even nutrients at non-limiting concentrations (e.g., N) can shape phytoplankton 

community structure (Finlay et al., 2010; Chaffin and Bridgeman, 2014; Glibert et al., 

2016). Taxon-specific differences in the assimilation and metabolism of reduced 

(ammonium (NH4
+) and urea) and oxidized (NO3

-) N play an important role in 

determining which phytoplankton members will succeed (Finlay et al., 2010; Donald et 

al., 2011; Glibert et al., 2014). For example, cyanobacteria blooms frequently occur in 
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waters where chemically reduced N dominants, whereas diatoms flourish in surface 

waters enriched with NO3
- (Glibert et al., 2016).  

Higher N concentrations relative to P in freshwaters have become an emerging trend, 

with elevated N: P ratios arising from the disproportionate use of N and P fertilizers 

(Elser et al., 2009; Galloway et al., 2008; Glibert et al., 2014) and nutrient reduction 

efforts aimed almost exclusively on P (Gobler et al., 2016;  Paerl et al., 2016). Aside 

from receiving excess N, there has also been a shift in the dominant N form delivered to 

freshwaters. Recent modifications to the chemical composition of fertilizers have altered 

the primary N form entering surface waters, with inorganic-N fertilizers now replaced 

with fertilizers containing urea (Glibert et al., 2006; Finlay et al., 2010; Davis et al., 

2016). There is mounting evidence to suggest that the contemporary increase in urea 

fertilizer use may favor the formation and maintenance of cyanoHABs in inland waters 

(Berman and Chava, 1999; Finlay et al., 2010; Donald et al., 2011; Glibert et al., 2014; 

Harke et al., 2016). 

Traditionally, dissolved inorganic N (DIN), including NH4
+ and NO3

-, has been the 

primary focus of researchers investigating the link between N and phytoplankton 

productivity. The role of dissolved organic nitrogen (DON), including urea, has received 

comparatively little attention (Finlay et al., 2010; Fiedler et al., 2015). A heavy research 

emphasis on DIN suggests a preference for NH4
+ over NO3

-among cyanobacteria, as 

NH4
+ lowers the energetic constraints of N acquisition (Herrero et al. 2001; Flores and 

Herrero, 2005; Glibert et al. 2016). However, what remains unclear is how urea, a 

growing N form of concern, fits in this energetic hierarchy. While the hydrolysis of urea 

requires an initial energetic investment to drive the enzymatic reaction required 

breakdown urea, this reaction generates two NH4
+ molecules for every urea molecule 

assimilated (Finlay et al., 2010; Donald et al., 2011). The hydrolysis of urea also provides 

an additional carbon source, circumventing the need for active uptake to drive 

photosynthesis (Finlay et al., 2010; Flores and Herrero, 2005).  Due to these additional 

benefits, urea may rank at the top of the energetic hierarchy (Finlay et al., 2010).  
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In nature, phytoplankton are rarely exposed to only one bioavailable form of N; however 

single nutrient additions are a common practice in culture studies. This single nutrient 

approach makes understanding nitrogenous preference challenging, as one cannot predict 

the synergetic effects of oxidized and reduced N forms, typical of most aquatic systems 

(Glibert et al., 2016). For example, classical physiological research points to the delayed 

or repressed uptake of alternative N forms in the presence of NH4
+ (Morris and Syrett, 

1963; Dortch, 1990; Flores and Herrero, 2005). While NH4
+ has been demonstrated to 

reduce the uptake of NO3
-, the possible synergetic effects on urea remain in question 

(Singh, 1990; Glibert et al., 2016). 

To elucidate the effects of co-existing N forms on urea uptake and metabolism, NO3
-, 

NH4
+ and urea were supplied in series of paired-combinations to three bloom-forming 

freshwater cyanobacteria (Microcystis, Dolichospermum, and Synechococcus) and N 

concentrations were monitored to track N uptake. Experiments were designed to 

understand the preferential utilization of N and the potential synergetic effects of 

different N forms. High urea concentrations were supplied in one of the treatments to 

understand how excess urea influenced growth. The prediction was that: (1) the sequence 

of N assimilation would be, from most to least energetically efficient: urea, then NH4
+, 

and ultimately NO3
-; (2) the uptake of urea would be independent of the availability of 

either of NO3
- or NH4

+; and (3) cyanobacteria would rapidly consume urea when supplied 

in abundance. As urea fertilizer use is projected to continue to escalate, it is essential to 

better understand whether urea could be promoting the growth of phytoplankton species 

more harmful to shoreline communities and wildlife. The development of N reduction 

schemes depend on both, understanding the N requirements of cyanobacteria, and 

identifying N forms that pose the greatest risk to propagating and maintaining 

cyanoHABs.    
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3.2 Methods 

3.2.1 Experimental Design 

This investigation focused on three bloom-forming cyanobacteria, maintained as non-

axenic, unialgal strains. Microcystis aeruginosa (CPCC 300) and Dolichospermum flos-

aquae (CPCC 67) were obtained from the Canadian Phycological Culture Centre (CPCC) 

and Synechococcus sp. was isolated from Lake Erie in 2015 at Western University. 

Cyanobacteria species were supplied with BG-11 medium (adjusted to pH 7.4) and 

maintained at 23C (±1C) under a continuous light flux of 60 -70 μmol photons m-2 s-1. 

Before initiating experiments, cells in stationary growth were collected via centrifugation 

(2000 g for 5 min). The resulting supernatant was discarded and pelleted cells were then 

washed three times with N-free BG-11 medium. Washed cells were inoculated into N-

free BG-11 media and grown for a 5-day period to eliminate internal N reserves. 

Experiments were conducted in 125 mL Erlenmeyer flasks and experimental culture was 

started at a low concentration (OD750 ~ 0.08) to lower the likelihood of nutrient 

carryover.  

For the preferential N experiment, the basal medium was adjusted to contain two N forms 

at a total of 1500 µmol-N L-1 of each substrate. Three different treatments were selected: 

NO3
- + NH4

+, urea + NO3
-, and urea + NH4

+. For the urea inhibition experiment, cells 

were supplied with 7000 µmol-N L-1 representing the high urea treatment. Whereas the 

control treatment contained 3000 µmol-N L-1 urea (optimal growth condition (Erratt 

Unpublished)) was tested simultaneously. For both experiments, N concentrations in the 

culture medium were monitored via a suite of colourmetric microplate techniques and 

measurements were recorded every two days, beginning from the initial inoculation (day 

0) and followed until cells reached the stationary growth phase (day 10).   

In addition to the preferential N source and urea inhibition experiments, the potential 

influence of external factors on N utilization was addressed. Cultures were grown in the 

absence of light to ensure algal-associated bacteria were not contributing to N 
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consumption. The culture medium without cells was also exposed to experimental growth 

conditions to verify that light and temperature were not influencing N uptake.  

Experiments were run three times and each experiment comprised of three replicates. For 

the preferential experiment, t-tests were used to determine whether the means of the two 

N treatments were statistically. Statistical analyses were performed using SigmaPlot 12 

(Systat Software, San Jose, CA) and significance was assessed at p < 0.05 level. Graphs 

were generated with Origin 9.0 (OriginLab Corporation, Northampton, MA). 

3.2.2 Colorimetric Assays 

In general, 1 mL of culture was collected in a microcentrifuge tube and centrifuged (6000 

g for 5 min) to remove cellular extracts. The resulting supernatant was either used 

directly or diluted with ddH2O before being seeded into 96-well microplates. All reagents 

were analytical grade and were prepared in glassware that had been prewashed with 0.1 

M hydrochloric acid (HCl). Reagents remained stable for one month and were stored at 4 

ºC in the dark, with the exception of the vanadium trichloride (VCl3) solution which was 

kept at -20ºC. All absorption measurements were read spectrophotometrically and clear 

bottom polystyrene 96-well microplates were used for all measurements.  

3.2.2.1 Nitrate 

NO3
- concentrations were determined using a single reagent procedure. VCl3 in an 

acidified solution was used as a reduction agent, reducing NO3
- to nitrite (NO2

-). Griess 

reagents (sulfanilamide and N-(1-naphthyl)-ethylenediamine (NED)) were used to detect 

the total amount of NO2
- by forming a red coloured product. Reagent solutions were 

prepared as described in Doane and Horwath (2003). 1 M HCl was prepared by 

combining 84 mL concentrated HCl into 916 mL ddH2O. For the VCl3 solution, 0.35 g of 

VCl3 was combined with 50 mL of 1 M HCl. Griess reagents were prepared separately, 

with the 2% sulfanilamide reagent prepared by adding 0.2 g sulfanilamide to 10 mL of 1 

M HCl, and the 0.2% NED solution prepared by adding 0.02 g NED to 10 mL ddH2O. 

The above solutions were mixed to form a working reagent solution (50 mL VCl3 

solution, 3.3 ml 2% sulfanilamide solution, 3.3 mL 0.2 % NED solution and 400 mL 
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ddH2O) which was separated into 10 mL aliquots and stored in the dark at -20ºC prior to 

analysis. During the analysis, samples (20 µL) were seeded into microplate wells 

followed by 180 µL of the working reagent. Microplates were incubated in the dark at 

37ºC for 50 min. Absorbance values were read at 540 nm. 

3.2.2.2 Ammonium 

NH4
+ determination was based on the reaction of NH4

+ with salicylate and hypochlorite 

in the presence of sodium nitroprusside to produce a coloured reaction ranging from pale 

green to dark blue. Three separate solutions were prepared according to Baethgen and 

Alley (1989): salicylate solution (6.8 g sodium salicylate, 5 g sodium citrate, 5 g sodium 

tartrate and 0.025 g sodium nitroprusside was added to 100 mL of ddH2O), sodium 

hydroxide solution (6 g sodium hydroxide was added to 100 mL of ddH2O), and a bleach 

solution (0.1 mL commercial bleach and 4.9 mL sodium hydroxide solution) were made 

fresh prior to analysis. Samples (20 µL) were added to microplate wells followed by 90 

µL of salicylate solution and 90 µL of bleach solution. Microplates were mixed between 

reagent additions and kept in the dark at room temperature (22 ± 2°C) during a 60 min 

reaction period. Absorbance values were read at 650 nm. 

3.2.2.3 Urea  

Dissolved urea concentrations were measured based on a method that involves the 

reaction of two reagents, diacetyl monoxime and thiosemicarbazide, in an acidified 

solution to form a pink coloured product (Revilla et al., 2005). The reagents were 

prepared according to Revilla et al. (2005). Diacetyl monoxime (6.8 g in 100 mL of 

ddH2O) and thiosemicarbazide solution (0.38 g in 40 mL of ddH2O) were prepared 

separately and mixed at a 5:1 ratio (diacetyl monoxime to thiosemicarbazide) to prepare 

Reagent A. Reagent B consisted of 300 mL of concentrated sulfuric acid (>98% grade) 

with 535 mL ddH2O and 0.5 mL ferric chloride solution (0.15 g in 10 mL ddH2O). 

Reagent A and B were mixed at 3.4: 1 ratio (Reagent B to Reagent A) to create the 

working reagent and was used within 15 min of analysis. Samples (200 µL) were seeded 

into microplate wells followed by 60 µL of working reagent. Samples were incubated for 
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72 hr in the dark at room temperature (22 ± 2°C). Absorbance values were read at 520 

nm. 

3.2.3 Formulae 

Utilization efficiency (η) of N substrates was defined by:  

η = (C0-Ct/C0)  100.  

Where C0 is the total N concentration at the initial time point, and Ct is the total N 

concentration at the end time point (Li et al. 2016). η values were calculated at day 6, 

representing approximately the half-way point during the experimental run.  

N drawdowns were plotted vs. time; the greatest slope of the curves were used to 

calculate the N assimilation rate (K): 

 K (day-1) = ln (N1/N0) / (t1-t0).  

Where N0 is the cell concentration at the initial time point (t0), N1 is the cell concentration 

at the end of the time period (t1), and t1-t0 is the time elapsed between the time points.  

3.3 Results 

3.3.1 Preferential Use 

3.3.1.1 Utilization Efficiency (η)  

To understand if preferential use of N occurs in cyanobacteria, two nitrogenous 

compounds were supplemented to the medium and N levels were monitored to determine 

whether any N form was preferentially uptaken (Fig. 3.1). Significant effects were 

observed for all cyanobacteria when grown on urea and NO3
- (p<0.05). A significant 

decline in urea was observed, with η values reaching  96.7 % and 91.7% for 

Synechococcus and Microcystis respectively, whereas η values for Dolichospermum were 

lower achieving 53.4 % (p<0.05) (Table 3.1). All isolates demonstrated superior uptake 

kinetics for urea relative to NO3
-, which had η values for NO3

- ranging from 32.7% to 
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8.3%. When urea and NH4
+ were offered in combination, a similar response was observed 

with urea utilization efficiency rates, reaching 98.4% for Synechococcus and 94.7% for 

Microcystis, and again Dolichospermum reaching lower values of 51.2% (p<0.05). 

However, NH4
+ levels remained relatively constant with only slight declines observed 

after urea reserves had become exhausted (Fig. 3.1). When both inorganic N substrates 

were supplied, NO3
- and NH4

+, NH4
+ appeared to be the preferred N source for 

Microcystis and Dolichospermum. NH4
+ concentrations decreased gradually, with η  

values of 30.7 % for Dolichospermum and 41.2% for Microcystis (p<0.05). However, for 

these two isolates, NO3
-  uptake appeared to be delayed by the presence of NH4

+, as NO3
- 

levels remained relatively constant during the duration of the experiment. Synechococcus 

did not follow this pattern; rather it displayed simultaneous drawdown of both N 

substrates at equivalent rates, 52.1% for NO3
- and  58.0% for NH4

+.  

Table 3.1 Utilization efficiency of cyanobacteria grown on different N combinations. 

Values are expressed as means ± SD, n=3. Same uppercase letters indicate no significant 

differences among N sources with a species. Significance tested at p < 0.05 level. 

Treatment N substrate 

Utilization 

Efficiency 

(η) 

Utilization 

Efficiency 

(η) 

Utilization 

Efficiency 

(η) 

Dolichospermum 

flos-aquae 

Synechococcus sp. Microcystis 

aeruginosa 

Urea + NO3
- Urea 53.4  7.7A 96.7  4.6A 91.7  11.2A 

NO3
- 8.3   8.7B 32.7  8.5B 26.8  11.0B 

NO3
- + NH4

+ NO3
- -2.0  19.9A 52.2  4.8A -6.0  11.2A 

NH4
+ 30.7  2.5B 58.0  2.9A 41.2  0.9B 

Urea + NH4
+ Urea 51.2  8.3A 98.4  1.1A 94.7  6.2A 

NH4
+ 2.8  9.5B 10.7  9.2B 5.6  4.9B 
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Figure 3.1 N utilization of cyanobacteria grown on different combinations of nitrogen. 

A) Dolichospermum flos-aquae, B) Microcystis aeruginosa and C) Synechococcus. 

Values are expressed as means ± SD, n=3. 

3.3.1.2 Slope (K) 

When urea and NO3
- were supplied, uptake rates for urea were slightly higher than NO3

-. 

Although this response was significant for one of the isolates, Dolichospermum (p<0.05), 

it was not significant for two of the isolates, Microcystis and Synechococcus (Table 3.2). 

When both urea and NH4
+ were supplied, all isolates demonstrated significantly higher 

assimilation rates for urea relative to NH4
+ (p<0.05).  On average, urea uptake rates were 

up to 10-fold higher compared to uptake rates for NH4
+ (Table 3.2). When both NO3

- and 

NH4
+ were supplied, there was no significant difference in assimilation rates; K values 

for NO3
- and NH4

+ remained relatively consistent among all isolates. 
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Table 3.2 Assimilation rates of cyanobacteria grown on different N combinations. Values 

are expressed as means ± SD, N=3. Same uppercase letters indicate no significant 

differences among N sources. Significance tested at p < 0.05 level. 

Treatment N substrate 

Assimilation rate  

(K) 

Assimilation rate  

(K) 

Assimilation rate  

(K) 

Dolichospermum 

flos- aquae 

Synechococcus sp. Microcystis 

aeruginosa 

NO3
- + NH4

+ NO3
- 0.04  0.06

A
 0.16  0.03

A
 0.12  0.07

A
 

NH4
+ 0.06  0.01

A
 0.25  0.07

A
 0.09  0.01

A
 

Urea + NO3
- 

 
Urea 0.28  0.05

A
 0.94  0.25

A
 0.85  0.25

A
 

NO3
- 0.14  0.03

B
 0.73  0.15

A
 0.43  0.22

A
 

Urea + NH4
+ Urea 0.22  0.05

A
 0.97  0.16

A
 0.88  0.30

A
 

NH4
+ 0.01  0.01

B
 0.08  0.04

B
 0.08  0.03

B
 

3.3.2 Effect of High Urea Levels on N Assimilation  

No significant effects (p<0.05)  in η values were observed between cyanobacteria grown 

under optimal conditions (3000 µmol-N L-1) and high urea treatments (7000 µmol-N L-1). 

Thus, urea utilization remained constant regardless of urea availability. When 

cyanobacteria were exposed to 3000 µmol-N L-1 urea, only trace amounts of urea were 

detected in the medium (Fig. 3.2). Whereas cells grown on 7000 µmol-N L-1 urea, had 

urea drawdowns accompanied by an increase in NH4
+ in the medium (Fig.1.3). NH4

+ 

concentrations recorded on day 10 were significantly higher (p<0.01) compared to 

optimal conditions, with values ~ 100-200 times higher (Table 3.3). The amount of NH4
+ 

produced at 7000 µmol-N L-1 urea corresponded with the varying degrees of inhibition 

observed among the cyanobacteria isolates (Table 3.3). Dolichospermum exhibited the 

lowest increase in ambient NH4
+ concentrations and appeared to be the less sensitive to 

the high urea concentrations. Whereas Microcystis showed the highest peak in NH4
+, and 

these high concentrations lead to complete inhibition.  
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Figure 3.2 Ammonium production of cyanobacteria grown on 7000 µmol-N L-1 - urea. 

Values are expressed as means ± SD, n=3. 

Figure 3.3 Ammonium production of cyanobacteria grown on 3000 µmol-N L-1 - urea. 

Values are expressed as means ± SD, n=3. 

Table 3.3 Growth and ammonium production of cyanobacteria grown on 7000 µmol-N 

L-1 and 3000 µmol-N L-1 - urea. Values are expressed as means ± SD, n=3. Same 

uppercase letters indicate no significant differences among N sources within a species. 

Significance tested at p < 0.05 level. 

Cyanobacteria  

Isolates 

Urea 

Concentration 

(7000 µmol-N L-

1) 

Growth 

(k) 

 

Utilization 

 Efficiency 

(η) 

NH4
+ Production 

Day 10 

(µmol-N L-1) 

 

Dolichospermum  3000 0.32  0.03A 36.6  2.30 A 10.8  1.3 A 

7000 0.28  0.04 A 31.7  14.65 A 2130.4  836.5B 

Synechococcus  3000 0.82  0.08 A 91.5  7.92 A 17.0  1.9 A 

7000 0.55  0.04 B 85.3  2.93 A 1702.9  507.9B 

Microcystis  3000 0.61  0.07 A 81.9  7.89 A 18.9  2.7A  

7000 -0.07 0.07 B 69.5  4.82 A 3893.3  291B 
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3.3.3 Influence of External Factors on Urea Uptake 

To confirm urea drawdowns were attributed entirely to cyanobacterial activity, the 

possibility of heterotrophic bacteria contributing to urea utilization had to be ruled out. 

Cultures were grown in the absence of light to suppress photosynthetic activity. Under 

dark conditions, minimal urea uptake was observed (Fig. 3.4), with N utilization 

efficiency ranging between 0.9 and 8.9% (Table 3.4). Cyanobacteria grown in the dark at 

7000 µmol-N L-1 urea had significantly lower (p<0.05) η values compared to cells grown 

with light at the same concentration (Table. 1.4). These results confirm that bacterial 

interference played little role in N consumption.  

Figure 3.4 Urea consumption by cyanobacteria grown on 7000 µmol-N L-1 – urea in the 

dark. Values are expressed as means ± SD, n=3. 

Table 3.4 Comparison between light and dark responses of cyanobacteria grown on 7000 

µmol-N L-1. Values are expressed as means ± SD, n=3. Same uppercase letters indicate 

no significant differences among N sources within a species. Significance tested at p < 

0.05 level. 

Cyanobacteria  

Isolates 

Urea 

Concentration 

(7000 µmol-N L-

1) 

Utilization 

Efficiency 

(η) 

NH4
+ Production 

Day 10 

(µmol-N L-1) 

 

Dolichospermum  Light 31.7  14.65A 2130.4  836.5A 

Dark 8.9  5.48B 1255.8  137.1A 

Synechococcus  Light 85.3  2.93A 1702.9  507.9A 

Dark 4.3 1.73B 637.2  16.2B 

Microcystis  Light 69.5  4.82A 3893.3  291A 

Dark 0.9  5.22B 1024.9  5.22B 
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In addition to heterotrophic bacteria interference, the possibility of light and temperature 

influencing N degradation had to be eliminated. Culture media without cells was exposed 

to experimental growth conditions (Fig. 3.5). Throughout the 10-day exposure period, no 

significant degradation of the three N substrates was observed, with utilization efficiency 

ranging between -6.7 to 0.4 % for all three N substrates (Table 3.5). Thus, confirming 

that no abiotic transformations of the available N sources occurred throughout the course 

of the experiments.  

Figure 3.5 Different N substrates grown on 3000 µmol-N L-1 without cells exposed to 

experimental growth conditions. Values are expressed as means ± SD, n=3. 

Table 3.5 Utilization efficiency of different N sources without cells exposed to growth 

conditions. Values are expressed as means ± SD, n=3. 

N Concentration  

(3000 µmol-N L-1) 
NO3

- NH4
+ Urea  

Utilization Efficiency 

(η) 
0.4  5.51 -6.7  4.77 -4.3  3.09 

 

3.4 Discussion 

Urea is now the dominant form of N pollution in agriculturally impacted regions, and its 

growing presence in freshwaters has increased concomitantly with the intensity and 

duration of cyanoHAB events (Finlay et al., 2010; Glibert et al., 2014; Davis et al., 2016). 

In the marine realm, urea has been branded as a N source of concern based on correlative 

evidence presenting an emerging trend between higher incidences of shellfish poisoning 

in regions experiencing elevated urea inputs. Although this evidence is indirect, this link 
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is further supported by the physiological capacity for urea uptake by many important 

marine HAB species (Glibert et al., 2006; Kudela et al., 2008). The importance of urea in 

contributing to freshwater HAB formation is now emerging. Here, we investigated 

whether cyanobacteria, the most notable bloom-forming algal group in freshwaters, 

exhibit preferential selection of urea over other nitrogenous compounds. 

Earlier observations suggest that urea uptake varies considerably within and among 

freshwater phytoplankton, with cyanobacteria achieving higher growth rates when grown 

on urea compared to inorganic N forms (Berman and Chava, 1999). Contrary to Berman 

and Chava (1999), there is growing evidence to suggest that preferential uptake of urea 

by freshwater cyanobacteria may not be a universal characteristic shared among all 

genera. Non-diazotrophic cyanobacteria, such as Microcystis and Planktothrix, are more 

readily stimulated by this organic N substrate than N2-fixing cyanobacteria (Finlay et al., 

2010; Donald et al., 2011). In this study, all cyanobacteria isolates consumed urea more 

rapidly than inorganic N, but the non-N2-fixing taxa, Microcystis and Synechococcus, 

exhibited higher utilization efficiencies than the N2-fixing taxa, Dolichospermum.  

NH4
+ control has been well established in the classical physiological literature, with a 

delayed or repressed uptake of NO3
- observed in the presence of NH4

+ (Dortch,1990; 

Glibert et al., 2016). This classical assumption played out for two of the studied 

cyanobacteria, Microcystis and Dolichospermum.  In the presence of NH4
+, Microcystis 

and Dolichospermum showed delayed NO3
- uptake, only tapping into NO3

- reserves late 

into the experimental run. However, Synechococcus challenged this well-grounded 

notion, exhibiting simultaneous drawdowns of both inorganic N forms. This response 

goes to show that cyanobacteria species cannot be lumped into one physiological 

grouping, as different physiological traits may exist among species.   

When urea was coupled with inorganic N forms, urea appeared to be the superior N 

source for all isolates, being drawn down at higher rates relative to inorganic N sources. 

Contrary to earlier assumption, the repressive effects of NH4
+ on urea were absent, in fact 

urea was shown to potentially hinder NH4
+ uptake. It was long assumed that most 

cyanobacteria preferred NH4
+ over alternative N forms, due to its favorable energetics 
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(Flores and Herrero, 2005; Finlay et al., 2010). However, urea may be more energetically 

efficient and therefore can override the repressive nature NH4
+. Aside from functioning 

as a superior N source, offering a two-fold increase in N. Urea may also function as 

readily available carbon source, thus lowering the cells reliance for active uptake to drive 

photosynthesis (Finlay et al., 2010; Donald et al., 2011).   

Although utilization efficiency values were significantly elevated for urea compared to 

NO3
-, assimilation rates were similar between the two N forms for two of the isolates, 

Microcystis and Synechococcus. Hence, assimilation rates for each substrate are 

comparable, but a significant lag period was observed prior to NO3
- uptake. This 

extended lag period was also observed for all species supplemented with urea and NH4
+, 

with NH4
+ appearing to be assimilated once urea had been exhausted. 

Cyanobacteria exposed to high urea concentrations lead to a range of inhibition among 

cyanobacteria species. To understand this response, changes in N forms in the medium 

were measured to determine if the transformation of urea into alternative N sources was 

hindering growth. Findings were consistent with Mackerras and Smith (1986) and 

Sakamoto et al., (1998), who detected elevated NH4
+ production when cyanobacteria 

were exposed to high urea concentrations. Cyanobacteria engaged in a “gluttonous” 

behavior, rapidly consuming urea in excess of their N requirements. Rather than 

accumulating excess NH4
+ intracellularly, cyanobacteria expelled excess N into the 

external environment to avoid NH4
+ toxicity. However, due to confining space and lack 

of dispersal within the culture vessel, NH4
+ accumulated to dangerously high levels 

resulting in growth impairment. Interestingly, cells grown on lower urea concentrations 

(3 mmol-N L-1) did not exhibit this trend, and only transient levels of NH4
+ were found.  

The range of inhibition observed among the three isolates corresponded with the level of 

NH4
+ detected. Dolichospermum being the least sensitive to high urea concentrations 

accumulated the lowest levels of NH4
+ in the medium, whereas Microcystis showed 

complete inhibition and the highest NH4
+ burden. NH4

+ concentrations in freshwaters 

have been proposed as a regulatory factor influencing phytoplankton community 

structure and cyanoHAB potential (Dai et al., 2012; Glibert et al., 2016). As a group, 
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cyanobacteria are relatively tolerant of high NH4
+ concentrations compared to eukaryotic 

algae, with the exception of the chlorophytes. However, certain cyanobacteria genera, 

such as Microcystis, have been shown to be quite intolerant to elevated NH4
+ levels with 

blooms appearing only at very low concentrations (Dai et al., 2012; Collos and Harrison, 

2014). Hence, Microcystis poor performance under high urea amendment is likely 

attributed to its sensitivity to NH4
+.  

Given the increasing trends in the use of the urea as a chemical fertilizer, the 

incorporation of isolated strains of other dominant phytoplankton groups (e.g., diatoms 

and chlorophytes) into preferential N uptake studies could provide a stronger 

understanding of how urea pollution may be driving phytoplankton community 

dynamics. The effect of urea on vulnerable freshwater systems (i.e., oligotrophic and 

mesotrophic lakes) also needs to be assessed at larger scales. Currently, many 

oligotrophic and mesotrophic systems are not neighboring large agricultural operations 

and therefore do not experience elevated urea loads. However, with climate change, the 

land suitable for agriculture will expand into northern regions, and these vulnerable 

systems will likely become more susceptible to urea pollution. Exploring how urea may 

influence natural phytoplankton assemblages in low-nutrient waters could offer insight 

into how lake primary production will change in response to future urea loading.   

3.5 Conclusion 

The loss of urea into freshwaters has been linked to the contemporary rise in cyanoHAB 

outbreaks. There is amassing evidence to suggest the importance of N in freshwater 

eutrophication and that the composition of the N pool may function as a regulatory factor 

determining the distribution of common phytoplankton species. Urea was consistently 

drawndown at higher rates relative to inorganic N substrates, indicating cyanobacteria 

exhibit a higher affinity for urea. Furthermore, when supplied in excess, cyanobacteria 

rapidly consumed urea in excess of their biosynthetic requirements suggesting a form of 

urea “gluttony”. The results of this study illustrate the importance of urea in freshwater 

eutrophication and satisfying the nitrogenous nutrition of cyanobacteria. As society 

moves forward into an era where influxes of urea in freshwaters will become increasingly 
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common, the need to understand how urea influences phytoplankton community 

composition is stronger than ever. 
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Chapter 4  

4 Conclusion  

4.1 Main Findings 

Eutrophication of freshwater lakes remains a growing threat to water security despite 

more than a half-century of research. This is due to the increased flux of growth-limiting 

nutrients, most notably P and N, entering surface waters (Smith et al., 1999; Conley et 

al., 2009; Paerl et al., 2016). Eutrophication is accompanied by an expansion of 

cyanoHABs (Smith, 2003; O’Neil et al., 2012; Brooks et al., 2016). Although our 

knowledge of cyanobacteria-related water quality concerns has advanced over the last 

few decades, knowledge gaps still exist, including the factors that initiate and maintain 

toxin-producing taxa. Even our most “scientifically sacred” nutrient paradigms (P-

limitation) are under intense scientific scrutiny (Lewis et al., 2011; Molot et al., 2014; 

Paerl et al., 2016). While some scientists strongly defend a single nutrient approach 

focused exclusively on P to reduce cyanoHABs (Schindler, 1977; Sterner, 2008), other 

scientists argue that P reductions together with N reductions could further reduce and the 

frequency and intensity of cyanoHAB events (Conley et al., 2009; Lewis et al., 2011; 

Paerl et al., 2016).  

In Chapter 2, I examined the effects between the supply of various nitrogenous 

compounds (NO3
-, NH4

+, and urea) on the growth and photosynthetic characteristics of 

three bloom-forming cyanobacteria species. Urea was predicted to be the superior N 

source, largely due to its low energetic costs for N acquisition and the additional benefit 

of extra nutrient substrates. Although, urea did not significantly increase cyanobacteria 

abundance relative to inorganic N forms. Urea did yield elevated pigment concentrations. 

The extra N generated from the hydrolysis of urea was not incorporated into active 

growth, but rather accumulated in secondary pools to increase production of N-rich 

pigments. Elevated pigment content provides cyanobacteria with a competitive edge by 

improving light absorption capabilities, while also functioning as N reserve, which can be 
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mobilized under times of N stress. Thus, urea produced “higher-quality” cells that may be 

more adapted to a changing world. 

In Chapter 3, I examined the effect of high urea concentrations (>7 mmol-N L-1) on 

cyanobacteria growth. A range of sensitivity was observed among the three cyanobacteria 

species, with some showing complete inhibition while other remained unaffected. 

Interestingly, urea was not directly contributing to growth impairment, but rather high 

extracellular concentrations of NH4
+ hindered growth. The range of inhibitation among 

the three species corresponded with the level of NH4
+ detected. For example, complete 

inhibition matched the highest NH4
+ burden, whereas the lowest detected NH4

+ levels did 

not suppress growth. All cyanobacteria isolates hydrolysed urea in excess of their N 

requirements, with excess NH4
+ expelled into the extrenal environment to avoid NH4

+ 

toxcitiy. When supplied with lower concentrations of urea, cells generated trace amounts 

of NH4
+. This finding suggests that cyanobacteria display a form of “luxury uptake” 

when urea is in excess.  

In Chapter 3, I also tested whether cyanobacteria would preferentially select urea over 

inorganic N substrates. Consistent with energetic expectations, urea was consistently 

drawn down at higher rates compared to inorganic N forms. However, preferential uptake 

of urea was not evident, as inorganic N were simultaneously drawn down, but 

experienced either extended delays or significantly lower rates of uptake relative to urea. 

In chapter 3, the repressive nature of NH4
+ on the uptake of alternative N forms was also 

explored (Dai et al., 2012; Glibert et al., 2016). Our research suggests that this statement 

is not entirely true, while NH4
+ inhibitory effects were reported from cells grown on NH4

+  

and NO3
- for two isolates, the other exhibited simultaneous uptake of each substrate at 

equivalent rates. Furthermore, urea appeared to be unaffected by the presence of NH4
+ 

and this result may reflect the superior energetics of this organic N substrate. 

4.2 Significance   

The crops that humanity depend on for survival demand more N than nature can provide. 

Thus, N fertilizers are perceived as a modern miracle, fueling the agricultural sector and 
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providing sustenance to a hungry world (Smil, 1999; Erisman et al., 2008). With an 

additional three billion more mouths to feed by 2050, global reliance on N is projected to 

escalate concurrently with N concentrations in the world’s freshwaters (Galloway et al., 

2004; Glibert et al., 2014). The dominant N source applied to agricultural landscapes is 

urea (Glibert et al., 2006; Finlay et al., 2010) and as society continues to release massive 

quantities to secure a steady food supply, inevitably some urea is lost and seeps into 

neighboring freshwaters acting as energy source for phytoplankton (Donald et al., 2011; 

Glibert et al., 2014).  

While initially overlooked as a contaminant of concern half-century ago, urea has now 

surpassed and nearly replaced inorganic N fertilizers (Glibert et al., 2006; Glibert et al., 

2014). This global shift in fertilizer consumption habits has brought about new questions 

surrounding the potential negative effects of urea pollution on aquatic environments. 

While urea has been recognized as N source of concern in marine systems (Glibert et al., 

2006; Kudela et al., 2008), it was only until recently that the urea enrichment to 

freshwaters was feared to be promoting the growth cyanoHABs (Finlay et al., 2010; 

Donald et al., 2011; Glibert et al., 2014; Belisle et al., 2016). The practical significance 

of this study lays in understanding environmental factors that may initiate and prolong 

cyanoHABs. Determining how different chemical forms of N may influence 

cyanobacteria abundance could offer insight regarding the nutritional requirements of 

cyanobacteria. A stronger understanding on the nitrogenous nutrition of this nuisance 

algal group could assist legislatures and scientists in developing effective polices and 

mitigation efforts for suitable water reclamation. For instance, if the dominant P 

paradigm is expanded to include N, then concentrating N abatement efforts of N species 

of greatest concern could be of potential interest, rather than tackling all bioavailable 

forms.  

The research findings build on the growing body of literature demonstrating the 

importance of urea in freshwater eutrophication and satisfying the nitrogenous nutrition 

of cyanobacteria. Cyanobacteria’s voracious appetite for urea is worrying, as urea content 

is freshwaters is only projected to increase in upcoming years. As society moves forward 

into an era where influxes of urea in surface waters will become increasingly common, 
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the need to understand how urea influences phytoplankton community composition is 

stronger than ever. By uncovering conditions that render freshwaters more susceptible to 

cyanobacteria dominance, knowledge obtained could help establish effective mitigation 

measures aimed at combating this significant threat to global water security. 
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