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Abstract 

Glioma is the most common and aggressive primary malignant brain tumour. Glioma is 

typically treated with surgery followed by radio/chemotherapy. Even with aggressive 

treatment, median survival time is expected to be ~12 to 15 months. Reoccurrence of glioma 

is almost inevitable, further threatening the well-being of patients who have already endured 

rigorous treatment. Therefore, it is paramount to choose the most effective therapy and to 

accurately determine outcome as early as possible to provide optimum end-of-life care. 

Tumours alter their metabolism in response to increasing energy demands, mainly through 

increased glycolysis and accompanying lactate production. This increases production of other 

acids and alters intracellular and extracellular pH. Hyperpolarized 13C magnetic resonance 

spectroscopic imaging, is capable of measuring in vivo metabolism. Increased lactate 

production in tumours can be probed by imaging the metabolism of hyperpolarized [1-

13C]pyruvate after injection. Similarly, extracellular pH can be mapped after measuring the 

concentrations of H13CO3
- and 13CO2 after injection of hyperpolarized 13C bicarbonate. The 

objective of this thesis is to investigate molecular changes in lactate production and pH 

gradient in a rat glioma model. To accomplish this objective, three related projects have been 

undertaken. For first project, a custom-made switch-tunable radiofrequency coil was 

designed and constructed. This radiofrequency coil facilitated imaging 1H and 13C nuclei 

without any registration issues producing high signal-to-noise ratio imaging data. In the 

second project, C6 glioma was implanted into brains of rats, which were imaged with 

hyperpolarized [1-13C]pyruvate at days 7, 12, 15, 18, 21 and 24 after implantation. Between 

days 10 and 15, rats received one of three therapies: radiotherapy, chemotherapy, combined 

therapy or none. Significant early therapeutic response, measured as a reduction in the 

lactate-to-pyruvate ratio, was observed for effective therapy. In the final project, the same 

tumour model was used to study cellular pH gradient in tumours. Animals were monitored at 

days 8, 12 and 15 after implantation using hyperpolarized 13C bicarbonate to measure 

intracellular pH and a chemical exchange saturation transfer method to measure intracellular 

pH. Measured pH gradient in tumours showed a higher intracellular pH than extracellular 

pH, which was the opposite of healthy brain tissue. These studies have demonstrated the 

potential of hyperpolarized 13C probes to promptly measure changes in tumour metabolism. 



 

ii 

 

Early response assessment is important for identifying effective therapies and eliminating the 

toxic effects of ineffective ones. This can potentially reduce treatment costs for expensive 

and ineffective therapies and improve the quality of life for patients. 

Keywords 

hyperpolarization, carbon-13, 13C pyruvate, 13C lactate, 13C bicarbonate, RF coil design, 

switch-tuned RF coil, magnetic resonance spectroscopic imaging, molecular imaging, pH 

imaging, tumour metabolism, glioma, radiotherapy, chemotherapy, therapeutic response 
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Chapter 1  

1 Introduction 

1.1 Introduction to 1H Magnetic Resonance Imaging  

In this section, general background information is provided for the magnetic resonance 

imaging (MRI) methods relevant to this research. In particular, information regarding 

nuclear spin, magnetization, RF pulses, relaxation, free induction decay, chemical shift, 

k-space, spatial encoding, spin-echo and gradient-echo sequences, echo planar imaging 

sequences and their applications will be provided. Further detailed explanation of those 

topics can be found in several references. [1, 2] 

1.1.1 Nuclear spin and magnetization 

Conventional MRI involves exploiting the properties of the magnetic dipole moments of 

protons (1H) as they interact with their environment for its imaging contrast. In the 

absence of a magnetic field, the orientation of the magnetic dipoles of protons will be 

random. However, in an external magnetic field, B0, the nuclear magnetic dipole 

moments precess around the magnetic field direction at the Larmor frequency: 

𝜔0 = 2𝜋𝛾𝐵0 Equation 1-1 

where , is a nuclear property of the proton known as gyromagnetic ratio related to its 

magnetic dipole moment (for 1H, 42.576  106 Hz T-1). As an ensemble of magnetic 

dipoles precesses in the magnetic field, longitudinal spin-lattice relaxation will cause the 

distribution of dipole directions to have a small alignment with the magnetic field. (In 

MRI, the direction of this field is assumed to be along the z-axis.) This produces a net 

longitudinal magnetization (M0), known as the thermal equilibrium magnetization, in the 

direction of the magnetic field given by:  

𝑀0�̂� =
𝜌0𝛾2ℏ2

4𝑘𝑇
𝐵0�̂� . Equation 1-2 
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Here, ρ0 is defined as the number of protons per volume, ћ is known as the reduced 

Planck constant (ℎ/2𝜋), k is the Boltzmann constant and T is the temperature of the 

sample. The thermal equilibrium magnetization achievable at body temperature and 

clinical field strength is small and is the major factor limiting the signal-to-noise ratio 

(SNR) for MRI. In the human body, the average 1H concentration in tissue is large, ~88M 

[1], which makes MRI possible for in vivo imaging with protons.  

1.1.2 RF pulse and Relaxation time 

In order to detect M0, it must be “tipped away” or perturbed from its equilibrium along 

B0. This is achieved by application of a transverse radiofrequency (RF) magnetic field, 

B1, oscillating at the Larmor frequency produced by an RF transmit coil. This excites M0 

so that it precesses around the z-axis at an angle 𝛼, which is known as the flip angle. For 

example, when an RF pulse is applied that produces a 90° flip angle, all the 

magnetization is excited and precesses at the Larmor frequency in the x-y plane 

orthogonal to B0. Components of the excited magnetization rotating in the transverse 

plane (Mx and My) are referred to as the transverse magnetization, Mt, where 

𝑴𝑡(𝑡) =  𝑀𝑥(𝑡)�̂� + 𝑀𝑦(𝑡)�̂�. Equation 1-3 

The transverse magnetization can be detected by an RF receive coil as an induced 

sinusoidal voltage resulting from the oscillating magnetic flux through this coil. As this is 

occurring, the longitudinal magnetization, Mz, is recovering asymptotically along B0 with 

an exponential time constant given by spin-lattice relaxation time, T1, (or its reciprocal R1 

= 1/ T1, the spin-lattice relaxation rate): 

𝑀𝑧 = 𝑀0(1 − 𝑒−𝑡/𝑇1). Equation 1-4 

The exponential decay of the magnitude of the transverse magnetization, Mt, is governed 

by the spin-spin relaxation time, T2, (or its rate R2 = 1/ T2): 

𝑀𝑡(𝑡) = 𝑀𝑡(𝑡 = 0)𝑒−𝑡/𝑇2 Equation 1-5 

 



3 

 

The decay of transverse magnetization is due to interactions between spins that cause 

individual spins to precess at different rates. Ultimately, Mt will be decay to zero and this 

process is referred as dephasing. In addition to spin-spin interactions, local magnetic field 

inhomogeneities caused by the inherent magnetic susceptibility of tissues and their 

interfaces with air can cause the transverse magnetization to decay even faster. This is 

characterized by the effective spin-spin relaxation time constant, T2
* (or its rate, R2

* = 1/ 

T2
*). 

Figure 1-1 Shows the magnetization, M0, after excitation by an RF pulse. M0 is perturbed 

by an angle θ away from B0 (along the z-axis) by excitation of an RF pulse. The 

longitudinal part of M0, Mz recovers asymptotically to the equilibrium value, 𝑴𝟎�̂� , 

defined by Equation 2 in a time governed by the spin-lattice relaxation time, T1. The 

transverse component of the magnetization, Mt rotates in the x-y plane at the Larmor 

frequency. The magnitude of Mt decays exponentially with the effective time constant 

T2
*. 

1.1.3 Free induction decay and chemical shift 

The oscillating signal with an exponentially decaying amplitude envelope acquired by the 

RF coil after excitation is known as a free induction decay (FID). The frequency of the 

FID deviates slightly from the 1H Lamor frequency since the protons precess in the local 

molecular electron cloud in addition to the external field. This molecular distribution of 
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electrons causes a shielding effect and ultimately a small but observable shift in the 

Larmor frequency. This small shift is known as the chemical shift. Protons associated 

with different molecules exhibit different chemical shifts. Magnetic resonance 

spectroscopic imaging (MRSI) is a technique, which produces maps of the regional 

distribution of molecules discriminated by their chemical shift. The FID can be converted 

into a spectrum via a mathematical tool, the Fourier transform. The resulting spectrum 

contains different spectral lines whose frequencies correspond to the various chemical 

shifts of the imaged nuclei and whose amplitudes are proportional to their number 

density. However, due to this small chemical shift in resonant frequency, nuclei with 

different chemical shifts may appear to be displaced from their actual location. This 

small, but important imaging artifact is referred as chemical shift displacement.[3] 

1.1.4 k-Space and spatial encoding gradient  

To encode spatial information in MRI, a linearly varying magnetic field (known as a 

gradient) is applied across the imaging volume. This gradient can be applied along any 

direction. When gradients are applied during excitation by the RF pulse, a specific slab of 

the imaging volume can be excited instead of the entire volume. This procedure is known 

as slice selection. After slice selection, a spatially encoded signal is collected in k-space. 

k-Space is a frequency representation of the image and it can be transformed into an 

image using an inverse-Fourier transform. Ideally, complete coverage of k-space is 

required to produce a detailed image. Systematic application of gradients during signal 

acquisition determine where data are accumulated in k-space (spatial encoding). 

For instance, in two dimensions, gradients are used to spatially encode the MRI signal by 

manipulating the signal frequency and phase. To collect a two-dimensional image, slice 

selection is used to excite a slab of finite thickness along the z-axis. Spatial encoding of 

the FID signal along the x-axis can be accomplished by applying a magnetic field 

gradient along that axis during acquisition This is known as frequency encoding. Phase-

encoding using short “blips” of a gradient applied along the y-axis. This alters the phase 

of the precessing magnetization along that direction producing spatial encoding of the 

MRI signal in the y-direction. Systematic application of the frequency and phase code 

gradients and acquisition of the FID signals are controlled by a set of instructions known 
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as the pulse sequence. After slice selection excitation, a phase-encoding gradient is 

applied followed by acquisition of the FID signal with frequency encoding to acquire a 

complete line of k-space. This needs to be repeated several times to acquire all lines of k-

space data. The time between each RF excitation pulse is known as the time to repetition 

(TR). 

1.1.5 Spin-echo and gradient-echo sequence 

The transverse magnetization can be used more efficiently be refocusing the dephasing 

spins to create an “echo”. This echo can be induced by application of a 180° RF pulse 

after the transverse magnetization reaches zero or a dephasing and refocusing gradient 

during decay. The former technique is called a spin-echo sequence and the latter, a 

gradient-echo sequence. Multiple echoes can be produced for each RF excitation of the 

transverse magnetization so that several lines of k-space can be acquired before the 

transverse magnetization is fully dephased to zero. The time between application of the 

RF excitation pulse and when the echo is formed is known as the time-to-echo (TE). 

Spin-echo and gradient-echo sequences and variants are the most frequently used 

sequences in MRI due to their simplicity and utility.  
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Figure 1-2 Simplified diagrams of a spin-echo and a gradient-echo sequence. Each line 

shows application of the RF excitation pulse, the slice select gradient, x and y gradients. 

Gp and Gf represent the duration of phase and frequency encoding gradients. Boxes 

illustrate the trajectory of the 180° RF pulse, Gp and Gf in k-space.   

1.1.6 Echo planar imaging sequence 

Another method used in MRI is echo planar imaging (EPI). In this rapid imaging 

technique, the entire k-space is acquired with a series of gradient echoes using only one 

or a few RF pulses. EPI requires rapid application of strong magnetic gradients to quickly 

fill k-space for a given image slice. This can be used to help mitigate image artifacts due 

to subject motion. However, due to the extended series of gradient echoes, EPI is 

weighted to T2
* and is sensitive to field inhomogeneities. EPI is used to detect dynamic 

changes in structure and contrast in cardiac imaging and perfusion imaging. 

1.1.7 Application 

1.1.7.1 T1-weighted and T2-weighted imaging sequences  

Different tissues in the body have specific T1 and T2 values, which can be used to produce 

image contrast between them. Using a spin- or gradient-echo sequence as described 

above, imaging data can be acquired with either T1- or T2-weighting. To acquire an image 
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with T1-weighted contrast, a gradient-echo sequence can be specified with a TR value on 

the order of the tissue T1 value and a short TE value. TE and TR are chosen to minimize 

the effects of T2
* blurring and maximize the T1 contrast. Often a paramagnetic contrast 

agent such as a gadolinium chelate is used to enhance the contrast of T1-weighted images. 

These contrast agents significantly shorten the T1 of surrounding tissue, allowing 

increased signal in T1-weighted images. To produce an image with T2-weighted contrast, 

a spin-echo sequence can be used with a long TR value and a TE value on the order of 

the T2 values. Spin-echo sequences negate the effects of T2
* decay. TE and TR are chosen 

to maximize the contrast related to T2 relaxation and minimize the effects of T1. Fluids, 

such as cerebral spinal fluid have long T2 values which are manifested as regions of 

increased signal in a T2-weighted image. 

1.1.7.2 Dynamic susceptibility contrast imaging sequence 

Dynamic susceptibility contrast (DSC) imaging is a technique that can be used to 

measure perfusion. DSC exploits the change in image contrast due to a decrease in T2
* by 

the introduction of a paramagnetic agent such as a gadolinium chelate. It is common to 

use a gradient-echo EPI sequence to generate a time series of DSC images. A series of 

images are rapidly acquired during injection of the contrast agent. The temporal evolution 

of the signal in individual voxels is examined across the time series as a result of the 

bolus injection. This signal slowly increases from an initial minimum as the contrast 

agent clears out of the tissue. Using this signal-time curve, the blood volume and flow 

can be estimated on a pixel-by-pixel basis to produce tissue maps of these quantities. A 

more detailed explanation and discussion of the application of DSC imaging is described 

in reference [4]. 

1.2 Introduction of hyperpolarized 13C imaging. 

This section describes some background information for hyperpolarized 13C imaging. 

This includes details regarding carbon-13 (13C), hyperpolarization by dynamic nuclear 

polarization, hyperpolarized 13C-enriched metabolic probes and pulse sequences for data 

acquisition of hyperpolarized compounds. More detailed explanations and descriptions 

can be found in references [5-7]. 
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1.2.1 Carbon-13 

Ordinary carbon-12 (12C) is ubiquitous in tissues. However, unlike protons, it is MR 

invisible since it has no nuclear spin (magnetic dipole moment). Therefore, 12C nuclei 

cannot be aligned by an external magnetic field or manipulated by application of an RF 

pulse. Among the isotopes of carbon, carbon-13 (13C) is a stable and naturally occurring 

isotope that has a nuclear spin of ½. Thus, 13C is visible with MRI; however, two major 

issues complicate its imaging. First, the natural abundance of 13C is 1.11% compared to 

98.93% for 12C and 99.98% for 1H. [8] Since the signal is proportional to the number of 

13C nuclei in an imaging voxel, the detectable 13C signal is significantly lower than that of  

protons. Secondly, the gyromagnetic ratio of 13C is approximately 4 times less than that 

of 1H. From equation 1, M0 is proportional to γ2. Furthermore, the FID signal induced in 

the RF receive coil is also proportional to γ. Therefore, the MRI signal is proportional to 

γ3 and it becomes quite evident that it is a significant challenge to perform MRI with 13C 

nuclei. Although, it is possible to detect 13C signal with MRI, it is very time consuming 

and not particularly feasible for an in vivo study. 

Table 1-1 Comparison between properties of 1H and 13C nuclei that affect the signal 

strength in MRI. 

Nucleus 1H 13C 

Natural abundance 99.98% 1.11% 

Gyromagnetic ratio (MHz/T) 42.577 10.705 

Relative signal strength 1 0.0002 

1.2.2 Hyperpolarized 13C 

To counter the limited sensitivity of 13C MRI, a few measures can be taken. Instead of 

relying on the presence of endogenous naturally abundant (1.11%) 13C in the imaging 

volume, highly-enriched 13C-labelled molecules can be introduced. In practice, a fairly 

large dose of 13C-labelled agents would need to be distributed throughout the tissue. 

High-field MRI would also increase the observed 13C signal but this is an expensive 
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solution and practical limits exist on field strength. Hyperpolarization is another possible 

solution to this problem. As the name suggests, hyperpolarization is an in vitro process to 

enhance the magnetization of a sample by increasing the degree of alignment of the 

contained nuclei beyond that achievable at thermal equilibrium (see Section 1.1.1). In 

theory, any nucleus with non-zero nuclear spin can be hyperpolarized; however, 

successful application depends on physical properties of the nucleus and its environment. 

There are several methods of hyperpolarization but this thesis will focus on the dynamic 

nuclear polarization (DNP) method used at the Robarts Research Institute.  

1.2.3 Dynamic nuclear polarization 

In principle, any liquid or solid containing molecules with MRI-sensitive nuclei can be 

hyperpolarized by this method. The basic principle behind DNP is the transfer of spin 

polarization from electron to nucleus. This transfer of spin polarization is mediated by 

microwave irradiation. For this method, a stable radical is doped uniformly throughout a 

liquid sample containing 100%-enriched 13C molecules. The magnetic dipole moment of 

an electron is nearly three orders of magnitude larger than that of a proton and, at high 

magnetic field strengths (3.35 T) and low temperatures (1.4 K), the unpaired electron of 

the radical is nearly 100% polarized (aligned). By irradiating the pool of polarized 

electrons from the doped radical with microwaves at a frequency near the electron spin 

resonance (94 GHz), the electronic polarization can be transferred to surrounding nuclei 

achieving a very high degree of polarization. [9] However, in this physical state (~1.4 K) 

the frozen hyperpolarized liquids cannot be directly used for in vivo imaging. 

Hyperpolarized compounds must be rapidly warmed to near body temperature, properly 

buffered and free radicals removed for clinical use. This can be accomplished by quickly 

mixing it with a super-heated buffer solution at high pressure. This process is referred to 

as “dissolution” and it allows the buffered hyperpolarized solution to be rapidly prepared 

for in vivo experimentation while preserving most of its magnetization achieved by DNP. 

Using DNP, the MRI signal from hyperpolarized 13C liquids can be increased 10,000-fold 

compared to thermal equilibrium. A detailed explanation of the method DNP is presented 

in reference [6]. 
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1.2.4 Hyperpolarized 13C probes 

Since carbon is the backbone of almost all biological molecules, it is possible to label 

almost any biological molecule with 13C for use as a hyperpolarized contrast agent. 

However, for hyperpolarized 13C probes to be of practical use, a few details need to be 

considered. Firstly, the T1 values of these probes must be sufficiently long enough to 

sustain their magnetization for MRI. Although hyperpolarization can greatly increase the 

potential signal achievable from 13C-enriched compounds, this signal rapidly disappears 

as the magnetization decays to the thermal equilibrium magnetization by spin-lattice 

relaxation governed by the T1 value. After a time interval equal to 3×T1, approximately 

95% of signal is already lost. Before the sample is completely relaxed, the hyperpolarized 

13C probe must be transported to the MRI, injected and circulated through the vasculature 

into the tissue of interest and rapidly imaged with MSRI. Furthermore, in vivo T1 

relaxation is faster than in vitro T1 relaxation due to interaction with other molecules in 

the vasculature and tissues. Secondly, 13C nuclei in different positions in a molecule 

likely possess different chemical shifts due to spin-spin couplings.  This is known as 

magnetic inequivalence. This leads to splitting of the 13C signal producing a more 

complicated nuclear magnetic resonance spectrum. Finally, as a probe of in vivo 

metabolism the hyperpolarized agent must be delivered quickly and rapidly undergo 

metabolism within the tissue of interest before imaging. As a result, the single most 

limiting factor for effective imaging of hyperpolarized 13C imaging is the finite T1 value 

of the 13C nucleus. For 13C nuclei in small endogenous molecules, in vitro T1 values of 

tens of seconds are possible facilitating imaging of their metabolism. In this thesis, the in 

vivo use of two hyperpolarized 13C metabolic probes will be presented: [1-13C]pyruvate 

and 13C bicarbonate. 

1.2.4.1 [1-13C]pyruvate  

[1-13C]pyruvate is the most commonly used hyperpolarized 13C probe for in vivo 

metabolic imaging. Also, it is the first in-human hyperpolarized imaging probe. [10] 13C 

pyruvate has been used for investigating metabolism in cardiac disease, prostate, breast 

and brain cancers in different animal models including murine, rat, and pig models. [11-

14]  This broad use of pyruvate can be explained by its several advantages. First, 
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pyruvate is a key metabolite at the center of an important metabolic pathway. Pyruvate 

can be converted into carbohydrates, fatty acids, amino acids and metabolic energy. 

Pyruvate is readily used by tissue with high metabolic activity. Commonly in cancer, 

pyruvate is converted to lactate instead of contributing to the Krebs cycle. [15] Measuring 

conversion between pyruvate and lactate is a straight forward process using 

hyperpolarized 13C MSRI. In this case, the first carbon of pyruvate is labelled. If a study 

of a pathway within the Krebs cycle is desired, then the second carbon of pyruvate is 

labelled instead or as well. Secondly, the C1 of pyruvate has a relatively long T1 

approximately 65 s at 3T. [16] This long T1 ensures that the magnetization of 13C-

pyruvate is sustained during delivery to the tissues of interest and conversion into other 

metabolites. Finally, pyruvate (with a single 13C label) is detected as a single spectral 

peak and its metabolic byproducts are well separated by chemical shift. This facilitates 

accurate quantification of the concentration of the metabolite and its metabolic products. 

In this thesis, [1-13C]pyruvate was used to probe metabolism to [1-13C]lactate. In terms of 

chemical shifts, [1-13C]pyruvate is separated by 12 ppm from [1-13C]lactate and 4 ppm 

from [1-13C]alanine. 

1.2.4.2 13C Bicarbonate 

Another hyperpolarized 13C probe relevant to this thesis is 13C bicarbonate. pH imaging 

with 13C bicarbonate has been demonstrated in animal models of disease. [17] 

Bicarbonate plays an important role in the pH buffer system. Tissues maintain pH 

through a balance of bicarbonate and carbon dioxide (CO2) under the influence of 

carbonic anhydrase. The ratio of bicarbonate and CO2 concentrations can be used to 

estimate the pH of tissue using the Henderson-Hasselbalch equation as follows: 

pH = p𝐾𝑎 +
[𝐻𝐶𝑂3

−]

[𝐶𝑂2]
. Equation 1-6 

Here, pKa (6.17) is the logarithmic acid dissociation constant and [HCO3
-] and [CO2] are 

the concentrations of bicarbonate and CO2 respectively. By labelling bicarbonate with 

13C, the ratio of bicarbonate and carbon dioxide concentrations can be measured using 

hyperpolarized 13C MRSI and maps of tissue pH are readily obtained. Since uptake of 

bicarbonate by cells is slow compared to in vivo spin lattice relaxation of 13C bicarbonate, 
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this method measures pH in the extracellular space. Unfortunately, the in vitro T1 of 13C 

bicarbonate is only ~33 s, and ~ 10 s in vivo at 3T. [18] This is much faster relaxation 

than for 13C pyruvate. Therefore, imaging of hyperpolarized 13C bicarbonate must be 

performed quickly. The use of deuterium oxide instead of water as the solvent for the 

dissolution media can significantly increase T1. [18] However, a large dose of deuterium 

oxide could alter in vivo metabolism and at significant volumes is poisonous in animals. 

[19] 13C bicarbonate and 13CO2 possess single spectral peaks, which are well separated by 

a 36-ppm chemical shift. 

1.2.5 Hyperpolarized 13C pulse sequences 

Due to the limitation of finite T1 values of hyperpolarized 13C compounds, MRI 

sequences must be efficient. This includes imaging time and use of the 13C probe 

magnetization. The magnetization of the 13C nucleus relaxes to thermal equilibrium in 

tens of seconds and the DNP process requires approximately an hour to hyperpolarize 

another sample for injection so that signal averaging as used in conventional MRI is not a 

realistic option. Therefore, the magnetization of the hyperpolarized sample must be 

excited with a series of small flip angle RF pulses to conserve the initial magnetization 

for the acquisition of all k-space data. In addition, a short TR is required to preserve SNR. 

Two imaging sequences were used in this thesis: free induction decay chemical shift 

imaging and spectrally selective spiral imaging. 
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Figure 1-3 Simplified diagram of FID-CSI sequence and its data analysis. a) Each line 

shows application of the RF excitation pulse, the slice select gradient, x and y gradients 

and signal. Gp represents the duration of phase encoding gradients. Box a) illustrates the 

trajectory Gp and where the signal is stored in 3D k-space (with coordinate, kx, ky). Box b) 

illustrates the 3D image-space (with coordinate, x, y) after 2D Fourier transformation 

from 3D k-space. Each voxel a contains FID as shown in c). These FIDs can be 

transformed to spectra as shown in d) by a 1D Fourier transform. 

1.2.5.1 FID-CSI 

Free induction decay chemical shift imaging (FID-CSI) is an enhanced version of a free 

induction decay pulse sequence. After the RF excitation pulse and slice selection gradient, 

phase gradients are added to encode spatial information. The resulting three-dimensional 

k-space is a data matrix where the first and second dimensions represent spatial space of 

kx & ky and the third dimension (spectral space) represents the spatially encoded FID of 

that k-space coordinate. Once, the spatial portion of k-space is Fourier transformed into 

image space, the remaining spectral dimension represents the FIDs of an individual 

image voxel. The equation representing this FID is given here: 
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𝑆(𝑡) = ∑ 𝐴𝑛𝑒−𝑖𝛺𝑛𝑡+𝜙𝑛𝑒−𝑅2
∗

𝑛𝑡𝑚
𝑛=1  . Equation 1-7 

S(t) is the signal at time, t, m is the number of spectral lines with unique chemical shifts. 

An is the amplitude, Ωn is the frequency offset, ϕn is the phase offset, and 𝑅2𝑛
∗  is the 

effective spin-spin relaxation rate of spectral component, n. The number of spectral lines 

depends on the number of metabolites in the spectrum and the number of inequivalent 13C 

nuclei per metabolite. As the number of spectral lines becomes large, spectral overlap 

becomes a potential difficulty. For the metabolites used in this thesis, their spectra are 

largely well separated and signal parameters can be accurately estimated from fitting 

equation 1-7 to the FID data. In particular, the amplitude of each metabolite in the FID is 

extracted, which is used to estimate the relative amount of 13C metabolite in each imaging 

voxel. This produces the same result as measuring the area of a spectral line. Voxel-by-

voxel spectra can be produced by Fourier transformation and displayed as a function of 

chemical shift from the peak (i.e. major) metabolite in ppm. The spatial resolution of the 

spectral data is limited by the number of RF pulses and ultimately the total sample 

magnetization. Since each k-space point requires an RF excitation pulse, even with small 

flip angle excitation, only a limited k-space matrix can be acquired with sufficient SNR, 

resulting in a relatively low-resolution image.  The k-space matrix can be artificially 

increased by zero-filling in spatial or spectral dimensions to increase the apparent 

resolution after transformation. However, this does not actually improve resolution, but it 

may be desired for aesthetic reasons. Often, a Gaussian filter is used to apodize the FID 

signal to reduce high frequency noise in the resulting spectrum. Further mathematical 

details regarding the relationship between the FID signal and resulting spectrum can be 

found in reference [20]. 

1.2.5.2  Spectrally selective spiral imaging  

This sequence was developed by Dr. Rolf F. Schulte (General Electric Healthcare) and is 

described in detail in reference [21]. For this sequence, a spectrally selective RF 

excitation pulse is employed. This RF pulse excites only a chosen metabolite(s) based on 

its unique chemical shift(s). Then, the k-space data is acquired with a two-dimensional 

spiral trajectory through k-space. Unlike, the Cartesian k-space acquisition described 
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before, k-space is encoded in polar coordinates and then re-gridded into a Cartesian 

coordinate system. The advantage of this method is that the regional distribution map for 

each metabolite can be generated with a single RF pulse. Each metabolite is separately 

excited and imaged serially. This is a very fast process so that even though data for 

different metabolites are collected at slightly different times, relative metabolite 

concentrations can still be assumed to be the ratios of the observed metabolite signals. 

Furthermore, each metabolite map can be averaged to improve SNR until all the 

magnetization has been expended or relaxed and the flip angle can be separately 

optimized for each metabolite to further increase efficient use of the magnetization. 

However, because only a narrow band of excitation frequencies is employed, it is 

important to carefully calibrate the excitation frequencies and bandwidths to coincide 

with the chemical shifts of the metabolites of interest.  

1.3 Radiofrequency hardware 

Details of the bespoke radiofrequency (RF) coil for 13C/1H MRI are discussed in this 

section. This includes consideration of RF materials and components, RF design, dual-

frequency operation and transmit-only, receive-only (TORO) operation. Complete details 

can be found in these references [22, 23]. 

1.3.1 RF coil concept  

The purpose of the RF coil is to generate a uniform RF magnetic field, B1 for sample 

excitation and to detect the resulting Mt. To maximize its efficiency for both excitation 

and detection, an RF coil must resonate (be tuned) at the Larmor frequency of a particular 

nucleus (i.e. 1H or 13C). Also, the RF coil must be “matched” for a specific impedance 

(usually 50Ω) The RF coil circuit can be represented as an array of lumped circuit 

elements including resistors (R), inductors (L) and capacitors (C). The relationship 

between L, C and resonant angular frequency (ω0) is described by the equation: 

𝜔0
2 =

1

𝐿𝐶
. Equation 1-8 

The geometry of the RF conductors within the RF structure and the choice of conductor 

material determines the inductances and resistances. Then, capacitors are added to 
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achieve resonance at a particular frequency. These capacitances can be considered as 

tuning capacitors (Ct), since it is difficult to alter the inductance of the RF structure, 

without changing its physical dimensions or materials. The impedance of the RF coil 

must be matched to that of the rest of the RF transceiver chain including the transmission 

lines that connects the RF coil to the excitation source and RF detector. Without proper 

impedance matching, the measured FID will be attenuated by signal reflections. This is 

accomplished by adding a circuit to transform the impedance of the RF coil to 50Ω. 

Finally, a “balun” is added to the RF circuitry to unbalanced the RF signal. The balun 

reduces RF current in the shields of coaxial cables and inputs. This provides the desired 

optimum signal transmission and compatibility with the RF transceiver chain. 

1.3.2 RF coil design 

There are many RF coil designs suitable for MRI. The key objective is to design a circuit 

that will provide an oscillating magnetic field perpendicular to B0. The simplest design is 

a loop circuit. It is known as a surface RF coil, which has a very high sensitivity for a 

limited imaging volume near the plane of the circuit loop. It is relatively easy to construct 

and it is placed very near or against the imaging volume. In principle, the loop can also 

be multi-turned or have a curved or complex topology to conform to the size and shape of 

imaging volume. Surface coils are not used for RF excitation because they have poor RF 

homogeneity even over a limited region of interest. However, the resulting limited field 

of view makes them ideal RF receive antennae since they only detect noise from a small 

volume. In general, the sensitivity of the surface coil drops off rapidly for distances 

greater than the physical dimensions (i.e. diameter or length) of the RF coil. 

Another common RF design is known as the birdcage RF coil, named for its physical 

structure. As name suggests, this design is composed of two end rings connected by 

several rungs resulting in a structure that looks like the skeleton of a birdcage. A birdcage 

RF coil produces a very homogenous B0 field as the number of rungs employed are 

increased. However, the sensitivity of this architecture can be severely influenced by 

interactions (loading) of the coil with its imaging sample. Based on where the capacitors 

are added to resonate the RF circuit, three distinct RF architectures can be identified. For 

low-pass architecture, the capacitors are inserted into the rungs. For high-pass 
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architecture, they are introduced between rung connections on both of the end rings. 

When capacitors are added to end rings and rungs, this produces a band-pass architecture. 

The choice of birdcage architecture largely depends on the resonant frequency as well as 

the complexity and cost of the number of capacitors. Birdcage RF coils produce a B1 field, 

which rotates in the transverse plane, perpendicular to rungs, when it is driven by two RF 

signals with a 90° phase difference. This is known as quadrature operation, which also 

increases the receive sensitivity of the RF coil by a factor of √2 compared to operation 

with a single RF connection (port). Quadrature operation requires special hardware to 

achieve the 90° phase offset between ports. 

Figure 1-4 Simplified circuit diagrams of 13C – 1H switch-tuned RF coil. a) shows the 

switch-tuned coil operating as a band-pass bird cage coil (1H mode). Here, the PIN diodes 

are reverse biased and the end ring capacitors are not bypassed by the diodes. b) shows 

the switch-tuned coil operating as a low-pass bird cage coil (13C mode). Here the PIN 

diodes are forward biased and AC current is bypassed around the end ring capacitors. 

1.3.3 Dual-frequency RF coil 

A simple RF coil is typically optimized to resonate at one chosen frequency. For 

metabolic imaging with 13C MRSI, it is desirable for the RF hardware to be capable of 

operating at the Larmor frequencies of 1H to assess morphology and 13C nuclei to map 
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metabolism. In principle, this could be accomplished with separate RF coils; however, 

changing RF coils is inconvenient and disturbs image registration between morphological 

and metabolic data. The use of an RF system, which is simultaneously resonant at both 

frequencies or that can be rapidly “switch-tuned” between frequencies eliminates the 

need for subsequent image registration and its associated uncertainties and expedites data 

collection.  

RF architectures for multi-nuclear imaging are inherently more complex than single-

tuned RF systems and, as a result, often have reduced signal sensitivity and potential 

losses in image SNR must be weighed against the advantages of image registration and 

convenience. This research employed an RF system, which uses a switch-tuning strategy 

to achieve the highest possible SNR for dual-frequency operation. This was accomplished 

through the incorporation of PIN (PN junction with isolation region) diodes to change the 

RF coil architecture between low-pass (13C) and band-pass (1H) operation (See Figure 1-

4). In this scheme, the PIN diodes are placed in parallel with the end ring capacitors. 

When the PIN diodes are forward biased by application of a DC bias, the end ring 

capacitors are bypassed and the RF coil resonates at the 13C Larmor frequency as a low-

pass RF coil. Reverse biasing the PIN diodes enables band-pass operation at the 1H 

frequency. In addition, a 13C RF surface coil was added for transmit-only, receive-only 

operation to further improve 13C SNR.          

1.3.4 Transmit-only, receive-only mode 

As described in chapter 1.1.2, transmission and reception are usually accomplished by a 

single RF coil. For transmit-only, receive-only (TORO) operation, a separate transmit RF 

coil is used to excite the volume with homogenous B1 at a desired flip angle. The 

important goal is to provide homogenous B1 such that the sample magnetization over the 

entire imaging volume is excited to the same flip angle. Thus, a birdcage RF coil is 

typically used for transmission. For reception, a separate receive RF coil is utilized to act 

as a sensitive antenna to detect the resulting Mt. To achieve the highest SNR, a local 

surface RF coil is chosen for its high sensitivity over a limited volume. One complication 

with the TORO system architecture is coupling between transmit and receive RF coils. It 

is desirable to only have the transmit coil resonant only during transmission and the 
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receive coil only resonant during reception. For this switch-tuned RF system, decoupling 

of the 13C transmit and receive RF coils was accomplished by rapidly switching the 

resonant frequency of the birdcage coil after transmission. 

1.4 Glioma 

A rat glioma model was used in this thesis as a prototypical solid tumour model to 

evaluate pyruvate-to-lactate conversion measured by 13C MRSI as a biomarker for 

treatment response and demonstrate pH mapping in tumours. This section contains 

information regarding background information for glioma, glioma therapy, tumour 

metabolism and tumour pH. 

1.4.1 Background of glioma 

Glioma is a type of brain tumour that arises from glial cells. It is the most common 

primary brain tumour and comprises 80% of all malignant brain tumours. [24] Gliomas 

are graded between I ~ IV according to World Health Organization (WHO). [25] The 

grading scale spans Grade I, categorized as a non-proliferating non-malignant tumour to 

Grade IV considered a highly proliferating malignant tumour. The most common and 

aggressive malignant glioma is glioblastoma, categorized as WHO grade IV.  

Glioblastoma has very poor prognosis and a median survival rate of only 12 to 15 

months. [26] Severe interventions such as surgical removal and radio/chemotherapy are 

offered as treatments. Despite these efforts, this cancer inevitably recurs and further 

undermines the well-being of patients. [27] 

1.4.2 Glioma therapy 

The most common treatment of glioma is surgical removal of the tumour (when it is 

accessible) followed by radiotherapy and chemotherapy. For radiotherapy, a total of 60 

Gy is delivered locally in 2 Gy fractions over 5 to 6 weeks. [28] Radiotherapy induces 

double strand breaks of DNA causing cellular death. Surgical resection and conformal 

radiotherapy is employed to preferentially eliminate tumour and spare healthy brain 

tissue.  This is followed by adjuvant chemotherapy. Typically for glioma, a dose of 150 

mg/m2 of temozolomide (TMZ) in is given once daily for 5 days followed by 23 days 
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without treatment. [28]  TMZ is an alkylating agent that damages DNA by methylating a 

specific site of DNA, which results in cellular death. Highly proliferating cells are 

vulnerable to TMZ. However, its action is non-specific and its effects are not restricted to 

tumours limiting its therapeutic window. TMZ also causes adverse side effects such as 

nausea and vomiting. Other chemotherapeutic drugs such as antiangiogenic agents or 

growth factor receptor tyrosine kinase inhibitors are also used in combination. [29] 

Despite these aggressive and multimodal treatments, the median survival rate of patients 

is increased to only 15 months. Considering the toxicity of these therapies, accurate and 

prompt knowledge of treatment efficacy is paramount to guide therapeutic choice and 

improve end-of-life care. 

1.4.3 Tumour metabolism 

The metabolic profile of tumours change during their progression. As mentioned in “The 

Hallmarks of Cancer”, tumour metabolism is one of several key therapeutic targets [30]. 

The most notable change of metabolism exhibited by many tumours is an increased rate 

of glycolysis and reduction of oxidative phosphorylation compared with other tissue even 

with the availability of oxygen. This phenomenon was first observed by Dr. Otto 

Heinrich Warburg and is referred to as the Warburg Effect. [31] In greater detail, the 

uptake of glucose is increased by glucose transporters in many cancer cells. Glucose is 

converted into pyruvate by several upregulated enzymes. The resulting pyruvate is 

converted into lactate and produces oxidized nicotinamide adenine dinucleotide (NAD+) 

from reduced nicotinamide adenine dinucleotide (NADH) by increased lactate 

dehydrogenase (LDH) activity. [32] Compared to oxidative phosphorylation where 

pyruvate is metabolized in the Krebs cycle in the mitochondria of cells to produce 

adenosine triphosphate (ATP), the energy production by glycolysis is very inefficient 

(measured as ATP production per molecule of glucose). As a result, tumour cells often 

exhibit increased glucose uptake through increased membrane transport. [33] These traits 

can be detected by several molecular imaging techniques. Positron emission tomography, 

PET, using 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG), can quantitatively measure the 

uptake of glucose in tissue. [34] Highly aggressive tumours such as glioma, exhibit 

increased 18F-FDG uptake. [35] As discussed in chapter 1.2.4.1, hyperpolarized 13C 
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pyruvate can also be used to measure metabolic conversion between pyruvate and lactate. 

In tumours, where increased lactate production is observed, the application of therapy has 

produced a commensurate decrease in lactate production. [7] Brain tissue is highly 

metabolic reducing the contrast for brain tumours when assessed by 18F-FDG PET. 

Quantification of glioma metabolism with 13C pyruvate does not suffer this limitation. 

 

Figure 1-5 Use of hyperpolarized [1-13C]pyruvate and 13C bicarbonate for quantifying 

tumour metabolism and tumour pH. [1-13C]pyruvate and 13C bicarbonate are delivered by 

the vasculature. [1-13C]pyruvate is transported into the cytoplasm of tumour (or healthy) 

cells by monocarboxylate transporter (MCT). Increased LDH activity in tumour cells 

shifts the chemical equilibrium between pyruvate and lactate, creating a larger pool of 

endogenous lactate in the cytoplasm. This results in a greater concentration of [1-

13C]lactate relative to [1-13C]pyruvate in tumour cells compared to healthy cells. Excess 

protons and acids are pumped out of the tumour into the interstitial space. The pH of the 

extracellular space is buffered by 13C bicarbonate, which converts the excess protons to 

water and 13C-labelled carbon dioxide.     
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1.4.4 Tumour pH 

pH is the scale measuring hydrogen ion activity in a given environment. Proteins are 

often functional only within a limited pH range. [36] Therefore, tissues operate to 

maintain pH both intracellularly and extracellularly. Within cells, hydrogen ions and 

metabolic acids are generated, which decrease the intracellular pH (pHi). To balance this 

acidic environment, hydrogen ions and cations are pumped out of the cell until the 

electrochemical gradient of cell is balanced. [37] This results in acidification of the 

interstitial space due to excessive hydrogen ions. The extracellular pH (pHe) is 

maintained largely by the bicarbonate buffer system. Excess hydrogen ions are combined 

with bicarbonate ions into carbon dioxide and water as shown here: 

𝐻+ + 𝐻𝐶𝑂3
− ⇄ 𝐶𝑂2 + 𝐻2𝑂. Equation 1-9 

This process is facilitated by carbonic anhydrase and can be reversed if the surrounding 

environment becomes too alkaline. Excess carbon dioxide and water are removed by the 

vascular system. Similarly, within tumours, the pH also needs to be regulated. Since a 

tumour is highly proliferative, it produces more metabolic acids. [32] To compensate, the 

tumour often over-expresses transporters to transfer metabolic acids and cations into the 

extracellular space. In the end, the pHi of the tumour cell becomes slightly alkaline due to 

upregulated ion pumping. [37] The pHe of the tumour becomes acidic and without 

functional and efficient vascularization, acidification of the extracellular space is 

increased. This regional hypoxia resulting from insufficient vascularization can intensify 

the aggressive proliferation of the tumour. [38] Compared to healthy tissues, which 

exhibit pHe > pHi, tumours often show the opposite behaviour (pHi > pHe). [39] This 

reversal of the pH gradient is an important a factor in the electrochemical gradient across 

tumour membrane. Glioma is known to develop a very low pHe and this pH has been  

correlated with its invasiveness. [38] Extracellular pH can be measured using 

hyperpolarized 13C bicarbonate as described in chapter 1.2.4.2. The intracellular pH can 

be measured using an MRI method known as Chemical Exchange Saturation Transfer 

(CEST). [40]  
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1.5 Objectives and hypothesis 

The objective of this thesis was to investigate molecular changes in tumour metabolism. 

Assessment of tumour metabolism during tumour progression could potentially aid in 

choosing patient-specific therapies. Hyperpolarized 13C imaging is an emerging technique 

that is capable of non-invasively mapping the distribution of 13C-labelled molecular 

probes. In this thesis, [1-13C]pyruvate and 13C bicarbonate were used to assess different 

aspects of tumour metabolism in a rat model of glioma. We hypothesized that in vivo 

hyperpolarized 13C imaging would be capable of sensitive and prompt assessment of the 

therapeutic response of solid tumours ([1-13C]pyruvate) and to detect regional changes in 

the pH gradient of tumours (13C bicarbonate).  

The objective of chapter 1 is to provide the necessary introductory information for 

chapters 2, 3 and 4. This includes 1H MRI, hyperpolarized 13C MRSI, RF hardware and 

glioma biology.  In particular, sections 1.1 and 1.2 provide an explanation of the imaging 

techniques and methods used in later chapters. A complete description was not possible 

within the limitations of the journal manuscript format. Basic background information 

required to understand the construction of RF coil in chapter 2 has been provided in 

section 1.3. Finally, section 1.4 provides important biological aspects of the glioma 

model that was used in this thesis.  

The objective of chapter 2 is to describe the construction and evaluation of a novel 

switch-tuned 13C – 1H RF coil, which was required for this imaging research. Special RF 

coil technology is required to perform 13C MRSI, in order to provide high sensitivity to 

the 13C signal and facilitate co-registration between 1H and 13C imaging data. The design 

and construction of a switch-tuned 13C – 1H RF coil is discussed in chapter 2. Single 

tuned 1H and 13C RF coils have also been constructed and evaluated along with switch-

tuned 13C – 1H RF coil. Improved signal sensitivity using the TORO mode is also 

explored. 

The objective of chapter 3 is to demonstrate the use of hyperpolarized 13C MRSI to assess 

early therapeutic efficacy in a preclinical tumour model. A high rate of lactate production 

from pyruvate is correlated with tumour proliferation. Using hyperpolarized [1-
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13C]pyruvate as a probe, its conversion to [1-13C]lactate was quantified longitudinally in a 

rat model of glioma. Early tumour response or lack of response to radiotherapy, 

chemotherapy and combined therapies are compared with the absence of therapy in a 

longitudinal imaging study using a C6 rat glioma model. Imaging results are validated 

with histology at experimental endpoint. 

The objective of chapter 4 is to longitudinally measure the intracellular/extracellular pH 

gradient in a rat glioma model. CEST MRI was used for pHi measurement and 

hyperpolarized 13C-bicarbonate MRSI used for pHe measurement. Progression between 

tumour volume and pH gradient is discussed in chapter 4. Histology (including 

haematoxylin and eosin, HIF-1α and Ki-67 staining) is compared with tumour pH 

gradient maps.   

Chapter 5 summarizes the results from the three previous chapters and their contributions 

towards molecular imaging of tumour metabolism in a rat model of glioma. This chapter 

also includes future work for further expansion of these studies.  
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Chapter 2  

2 Construction and evaluation of a switch-tuned 13C – 1H 
birdcage radiofrequency coil for imaging the 
metabolism of hyperpolarized 13C-enriched compounds 

Heeseung Lim, Kundan Thind, Francisco M. Martinez-Santiesteban, 

and Timothy J. Scholl 

Journal of Magnetic Resonance Imaging. September 2013. DOI: 10.1002/jmri.24458  

2.1 Introduction 

The development of hyperpolarization technology to increase the magnetization of 13C-

enriched endogenous compounds [1, 2] has enabled their use as contrast agents with 

MRI. Cellular metabolism, which is often altered in diseases dictates the rate of uptake of 

cellular substrates and their conversion for individual metabolic needs of the cell [3]. 13C 

imaging and spectroscopy with MR can readily measure those rates and thereby quantify 

cellular metabolism [4-6]. The inherent physical properties of the 13C-isotope such as its 

limited natural abundance (1.1%) and its low gyromagnetic ratio (the 13C gyromagnetic 

ratio is four times less than that of 1H) results in a significantly lower MR signal [7]. The 

use of endogenous compounds with highly enriched 13C compounds as metabolic probes 

can overcome the natural abundance problem to a large extent; however, more 

importantly, 13C substrates can be highly magnetized (hyperpolarized) by dynamic 

nuclear polarization (DNP) in vitro and then used as injectable agents to probe in vivo 

metabolism [2]. 

Regional and time-resolved in vivo metabolic information can be determined using 

hyperpolarized 13C imaging and spectroscopy. Despite signal enhancement through 

hyperpolarization, this information is limited in spatial or temporal resolution by the 

amount of signal available due to the transient nature of the hyperpolarized state. 

Metabolic information can be co-registered with tissue morphology obtained at higher 

resolution using conventional proton MRI. The use of dual or switch-tuned RF hardware 

that can image both nuclei without a change of RF coils or repositioning of the animal 
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model simplifies the co-registration of metabolism and anatomy and makes this 

registration essentially exact. 

This study describes the construction and performance of a switch-tuned 13C - 1H 

birdcage radiofrequency (RF) coil that can be rapidly switched between anatomical 

imaging mode (1H) and metabolic imaging mode (13C) by use of PIN (PN junction with 

isolation region) diodes. To determine the utility of the switch-tuned 13C - 1H RF coil, 

individual single-tuned 1H and 13C birdcage RF coils with identical dimensions were 

constructed for a detailed comparison of imaging performance. A 13C receive-only 

surface RF coil was integrated with the switch-tuned 13C - 1H RF coil exploiting its fast 

frequency switching capability to enable transmit-only, receive-only (TORO) operation 

for 13C spectroscopy with improved sensitivity. Lastly in vivo 13C spectroscopy and 1H 

imaging were performed using TORO operation to demonstrate the practicality of this 

hardware strategy. 

2.2 Methods 

2.2.1 Coil Geometry 

All RF coils were constructed with the same physical dimensions and materials for 

accurate comparison of imaging performance gauged by the observed signal-to-noise 

ratio (SNR). The coil dimensions were chosen to accommodate an animal model up to 

the size of a small rabbit. Each coil consisted of a birdcage resonator and a shield. The 

resonator was constructed on a cylindrical acrylic tube, 88.9 mm in outer diameter (OD) 

by 266.7 mm in length. The thickness of the coil form was 3.2 mm. The RF shield (356 

mm long, 165 mm OD) was constructed on a separate cylindrical acrylic tube and two 

nylon rings were used to concentrically locate it with respect to the resonator. These rings 

also served to fasten the coil assembly to a rail system that was used to position the 

hardware in the scanner. 

2.2.2 Resonator Circuit 

Three eight-rung birdcage resonators were constructed: a single-tuned 13C (32.115 MHz 

at 3 Tesla [T]) low-pass resonator, a single-tuned 1H (127.728 MHz at 3T) band-pass 
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resonator and a switch-tunable combined 13C low-pass and 1H band-pass resonator. Self-

adhering, copper foil tape (12.7-mm-wide by 0.07-mm-thick) was fitted into grooves, 

which were accurately machined into the acrylic forms and the copper conductors were 

soldered together to form the basic eight-rung resonator geometry. The length of each 

rung was 101.6 mm and the diameter of the end rings was 87.3 mm. High-Q capacitors 

(Q > 2000, Working voltage: 500 V, American Technical Ceramics) were used to 

resonate the coil. The capacitances were initially determined to a few percent by software 

(Birdcage Builder Version 1.0 Software, College of Medicine, Penn State Hershey) and 

later refined as resonators were fine-tuned [8]. The switch-tuned 13C - 1H resonator 

included PIN diodes (Micro-semi UM9415) in parallel with each of the capacitors on the 

end rings. The PIN diodes were biased through a network of 10-mH RF chokes (Bourns 

4612-RC).  
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Figure 2-1 Simplified circuit diagram of the switch-tuned 13C - 1H RF coil. The 

capacitors on the end rings and rungs had slight variations in value. The switch-tuned 13C 

- 1H RF coil had a total of four RF connections, a pair for each frequency of operation. 

A simplified circuit diagram of the switch-tuned 13C - 1H RF coil is shown in Figure 2-1. 

The RF circuitry consisted of eight rungs and four matching networks. Each frequency 

matching network was 90° apart in phase from each other. The birdcage coil is well 

documented in the literature [9]. An eight-rung birdcage RF coil provided a homogenous 

B1 field while minimizing complexity of construction [10]. The single-tuned 13C coil is a 

low-pass birdcage design that uses lower-value capacitors. The single-tuned 1H coil and 

switch-tuned 13C - 1H RF coil used a band-pass birdcage circuit. The band-pass or hybrid 

birdcage circuit is a combination of low-pass and high-pass birdcage circuitry, which 

conveniently lends itself to a switching scheme between these two resonator geometries. 

Switch-tuning was accomplished by controlling the RF impedance of the PIN diodes 
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using a DC bias. The method of switch-tuning resonator frequencies for different nuclei 

using PIN diodes had been previously described for two relatively closely spaced Larmor 

frequencies 127.728 MHz (1H at 3T) and 97.302 MHz (3He at 3T) using band-pass 

geometry [11]. In that RF system, the relatively small frequency shift was achieved 

without a complete change of the resonator geometry. 

Bias current to the PIN diodes was DC-choked to confine RF current to the resonator. 

Careful use of twisted-pair cable for bias currents and use of RF chokes suppressed any 

RF noise coming from the bias supply or from pickup along the cables. Impedance 

matching circuits and baluns were chosen to use convenient values of capacitance and 

inductance. All coils were first tuned while loaded with an appropriate phantom in their 

shields and then slightly re-tuned at the scanner for optimum signal reception. 

2.2.3 Matching Circuitry Baluns 

Separate impedance matching circuits and baluns (balanaced→unbalanced) were used for 

each frequency. Each coil was matched to 50  and “unbalanced” at a particular 

frequency to reduce RF current in the coaxial shield [10]. The 13C frequency was 

matched with a  matching circuit and unbalanced with an LC balun. The 1H frequency 

was matched with a capacitive matching circuit and unbalanced with a cable-trap balun. 

2.2.4 Shield 

The shield was comprised of strips of overlapping aluminum tape. Continuous strips of 

self-adhering tape (330 mm long by 25.4 mm wide by 0.13 mm thick) were oriented on 

the cylindrical form in a direction along the axis of rotation. Each strip of aluminum tape 

overlapped the previous layer in the circumferential direction by 6 mm and was separated 

with a layer of insulating Kapton tape. 

2.2.5 RF Coil and Animal Support 

The RF coils and animal tray were supported by a pair of non-conducting glass-fiber 

reinforced plastic rails. These rails were located by plastic struts fixed to a platform that 

was designed to fasten onto the patient bed of a GE Healthcare MR750 3T MRI scanner 

(GE Healthcare, Waukesha, WI). All the components of the rail system and platform are 
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MR compatible. A custom-built animal bed could be slid along the rail system and locked 

at a specific longitudinal position. The animal bed provided delivery and recovery of 

anesthesia through a nose cone and was heated by water (40°C) circulating through 

internal channels to keep the animal warm under anesthesia during imaging experiments. 

2.2.6 Surface Coil 

A rectangular (91.0 mm by 90.0 mm) 13C surface RF coil was used for signal reception 

only. It was constructed on a curved acrylic form with an OD of 56.3 mm. The circuit 

was actively detuned during RF transmission using a DC bias applied to a PIN diode. 

Capacitive matching was used to match the coil to 50  and a cable trap balun was used 

to eliminate shield currents. 



34 

 

 

Figure 2-2 Detailed schematic of the RF configuration for transmit-only, receive-only 

operation of the switch-tuned 13C - 1H RF coil. The T/R switch provided an RF transmit 

pulse including a DC offset bias during transmission. The RF pulse was applied to the 13C 

quadrature hybrid circuit, which drives the switch-tuned 13C - 1H RF coil in quadrature 

operation. In a parallel circuit, a tank circuit filtered AC current from the transmit pulse. 

The resulting DC bias from the transmit pulse (present only during RF transmission) was 

used to trigger the MOSFET circuit to supply DC current to bias the PIN diodes of the 

RF coils. 
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2.2.7 Power Supply and Switching Circuit 

Active frequency switching and detuning of the RF coils during TORO operation was 

accomplished by application of DC biases to the PIN diodes. A metal-oxide-

semiconductor field-effect transistor (MOSFET) circuit (see Figure 2-2) was used to 

control current from an Agilent U8002A power supply. During transmit/ receive (T/R) 

operation of the switch-tuned RF hardware in 1H mode, the PIN diodes were reverse-

biased to prevent the RF current from biasing the end-ring diodes and detuning the 

resonator. 

2.2.8 Imaging Phantom 

Two imaging phantoms were used to calibrate and test the coils. A rat-sized phantom was 

constructed using a cylindrical container, 57.5 mm in diameter and 127.0 mm in length 

with two separate coaxial compartments. The inner compartment held three glass vials 

containing different 13C-enriched compounds: [1-13C]sodium acetate, 13C-urea, and [1-

13C]pyruvate. The outer compartment was filled with 0.15-mmol/L MnCl2 in 0.9% saline 

solution for coil loading. This phantom was designed to roughly mimic a rat model after 

13C metabolite injection. The second phantom consisted of a 5-mL plastic vial, containing 

7-mol/L [1-13C]sodium acetate. Gd+ contrast agent was added to the sodium acetate 

phantom to achieve a T1 of less than one second. 

2.2.9 Coil Calibration 

All the coils have been interfaced to the GE 3T MRI scanner. The 13C/1H rat phantom 

was used to calibrate 1H imaging and the 13C sodium acetate phantom was used to 

calibrate 13C imaging and spectroscopy. Calibration of tip angles was determined by 

adjusting the transmit gain to obtain a 90° pulse with the phantoms. 

2.2.10 Phantom Imaging 

For 1H images, two-dimensional (2D) coronal images of the phantoms were acquired 

with a 128-mm  128-mm field-of-view (FOV) and 40-mm slice thick-ness resulting in a 

0.5-mm-per-voxel in-plane resolution. A fast gradient-recalled echo (FGRE) sequence 

was used with the following parameters: repetition time (TR) = 34 ms, echo time (TE) = 



36 

 

4.1 ms, flip angle, α = 90° and 16 averages. For 13C imaging, the in-plane resolution was 

reduced to 1 millimeter over the same field of view (FOV) and with the same slice 

thickness as the coronal 1H images. Images of the phantoms were acquired using a broad-

banded FGRE (bbFGRE) sequence with TR = 34 ms, TE = 2.3 ms, α = 90° and 64 

averages. Image SNR was calculated with MATLAB code using the dual acquisition 

method [12]. In addition, 13C spectra of the sodium acetate phantom were acquired using 

a free induction decay chemical shift imaging (FID-CSI) pulse sequence with TR = 1000 

ms, α = 90° and 64 averages. 13C spectra SNR were analyzed using SAGE 7.7 (GE 

Healthcare, Waukesha, WI, USA). 

2.2.11 B1 Mapping 

Using the 13C/1H phantom, a 3D B1 map with 2-mm isotropic resolution was obtained 

with a noninverting double-angle Look-Locker pulse sequence [13] (TR = 3.7 ms, 16 

echo trains, nominal flip angle, α = 6° and 8 different TIs per angle). B1 maps were 

reconstructed from raw data using dedicated software written in MATLAB (Mathworks, 

Natick, MA). 

2.2.12 Hyperpolarization 

Trityl radical (OX063, GE Healthcare) was added at 15 mmol/L to 13C-enriched (99%) 

[1-13C]pyruvic acid (Cambridge Isotope Laboratories, Andover, MA). Approximately 25 

mL of the mixture was hyperpolarized at 1.4 K and 3.35T using a HyperSense DNP 

apparatus (Oxford Instruments Abingdon, Oxfordshire, UK). After approximately 45 min 

of polarization, the hyperpolarized sample was rapidly thawed and diluted with a 

buffering solution producing an 80-mmol/L [1-13C]pyruvate solution buffered to a pH of 

~7.6 with a liquid-state polarization of ~15% [14]. Approximately 3 mL of the [1-

13C]pyruvate solution was gathered in a syringe and rapidly transferred to the MRI for 

imaging. 

2.2.13 Animal Imaging 

Male Wistar rats were used for the in vivo experiments. One million C6 rat glioma cells 

were implanted in the rat brain using a stereotactic frame. During the imaging session, the 
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rat was anesthetized using isoflurane and warmed by a heated animal bed to maintain 

body temperature. Rat breathing and temperature were continuously recorded using a 

small animal monitoring and gating system (S.A. instruments, Stony Brook, NY). Axial 

T2-weighted 1H images of the rat brain were initially acquired using a fast-spin echo 

sequence with a 80-mm by 80-mm FOV, 0.3-mm isotropic resolution, 3-mm slice 

thickness, TR = 4000 ms, TE = 85 ms, 16-echo trains and 9 averages. The buffered 

hyperpolarized [1-13C]pyruvate solution was injected through the tail vein catheter in a 

single 12-s bolus injection. Twenty-five seconds after the start of injection, 13C spectra 

(axial plane, 12 by 12 spectral imaging matrix, TR = 80 ms, bandwidth = 5 kHz, 2048 

pts, α = 10°) were acquired using a 2D FID-CSI pulse sequence with a 60-mm by 60-mm 

FOV, slice thickness ≈ tumour extent. All animal procedures were approved by the 

University Council on Animal Care, Animal Use Subcommittee. 

Table 2-1 Network analyzer (Agilent E5061B) measurements of RF coil performance* 

 Single-Tuned Coil Switch-tuned Coil 

Nucleus 1H 13C 1H 13C 

Resonant frequency (MHz)† 127.74 32.15 127.70 32.09 

Reflected signal (dB) † -44.0 -37.5 -40.6 -40.9 

Quality factor 200 183 109 45 

Isolation (dB) -22.8 -42.5 -20.9 -44.0 

 

* All RF coils were preloaded with the animal tray and a 13C/1H phantom. 

Resonant frequency, reflected signal and isolation were measured using a 

5-MHz frequency window. The RF coil quality factor was measured with 

the network analyzer using separate transmitting and receiving RF coils 

placed outside and inside (respectively) of the single- and switch-tuned 13C 

- 1H RF coils. 

 

† Averaged value for both channels. 
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2.3 Results 

2.3.1 Initial Coil performance 

Benchtop measurements of the coil performance are shown in Table 2-1. All coils were 

preloaded with the animal tray and 13C/1H phantom. The resonant frequencies were 

within 30 kHz of nominal values at 3T. Quality factors were systematically lower for the 

switch-tuned 13C - 1H RF coil compared with the single-tuned RF coils (for proton 109 

vs. 200, for carbon 45 vs. 183). Isolation between quadrature channels was very similar 

for the switch-tuned 13C - 1H RF coil and single-tuned RF coils, but 13C isolation was 

much greater than that observed for 1H. 13C transmit power for the switch-tuned 13C - 1H 

RF coil was higher than the single-tuned 13C RF coil. 

 

Figure 2-3 1H (1H FGRE) and 13C (13C bbFGRE) images of a rat-sized 13C/1H phantom 

were acquired with single- and switch-tuned 13C - 1H RF coils for SNR comparison. c,f: 

13C spectra (13C FID-CSI Spectrum) of a thermally polarized [1-13C]sodium acetate 

phantom were also acquired using both RF coils. The percentage SNR for the switch-

tuned 13C - 1H RF coil was with respect to the single-tuned coil for either 1H or 13C 

nuclei. 
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2.3.2 SNR Comparison Using Phantoms 

Images of phantoms acquired from the three coils are shown in Figures 2-3 and 2-4. For 

1H operation, the image SNR observed from the switch-tuned 13C - 1H RF coil was 87% 

that of the single-tuned 1H RF coil. For 13C operation, the SNR observed using the 

switch-tuned 13C - 1H RF coil was 56% that of the single-tuned 13C RF coil. Operation of 

the switch-tuned 13C - 1H RF coil in TORO mode with the 13C surface receive coil 

showed the highest SNR determined from 13C images of our phantoms. The resulting 

image SNR was increased by a factor of 2.35 for TORO operation compared with single-

tuned 13C T/R operation. Additional SNR comparisons from 13C spectra are shown in 

Figure 2-3c and f. For 13C spectroscopy, the SNR measured using the switch-tuned 13C - 

1H RF coil (T/R operation) was 46% of that observed from the single-tuned 13C RF coil. 

Figure 2-4 Comparison of 13C images with a thermally polarized [1-13C]sodium acetate 

phantom acquired using three different RF coils. SNR measurements were normalized to 

100% for the single-tuned 13C RF coil. 

2.3.3 B1 Homogeneity 

Figure 2-5 illustrates a T1-weighted 1H image, B1 map and its respective B1 profile. The 

mean observed flip angle was 5.66° with standard deviation of 0.4327 for a nominal 

value of 6°. The B1 profile revealed only a small amount of Gibbs ringing and RF 

inhomogeneity over the entire volume of the phantom. 
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Figure 2-5 B1 map obtained from the switch-tuned 13C - 1H RF coil with a phantom 

(shown at left). Nominal flip angle, α was 6°. The B1 profile was acquired axially through 

the phantom at the red line shown on the B1 map. 

2.3.4 In Vivo Imaging 

A summed spectrum from individual rat brain voxels is shown Figure 2-6a. Individual 

13C-spectra overlaid on a T2-weighted 1H image of a rat brain glioma are shown in Figure 

2-6b. These spectra contained five relevant spectral components (numbered 1 to 5 from 

left to right); lactate, pyruvate hydrate, alanine, pyruvate, and bicarbonate. Spectral 

quantification and image registration was carried out using SAGE 7.7. The boundary of 

the tumour region was highlighted in red and voxels containing tumour exhibit higher 

lactate to pyruvate ratio (Lac/Pyr) than healthy tissue voxels. 
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Figure 2-6 Summed 13C spectrum (left) and individual 13C spectra (right) overlaid on a 

T2-weighted 1H image of a rat’s head. a) Relevant spectral peaks labeled 1 through 5 

(summed from individual spectra at right) were respectively: lactate, pyruvate hydrate, 

alanine, pyruvate and bicarbonate. b) A brain tumour was outlined in red. Notice the 

elevated lactate-to-pyruvate ratio in tumour voxels compared with healthy brain tissue. 

2.4 Discussion 

All three birdcage coils were geometrically identical and share common circuit 

components and construction methods that had been optimized for 50  impedance. 

Baluns were added to each matching network to eliminate RF current in the coaxial 

shields and prevent unwanted common mode currents. Suitable biasing of the diodes 

produced a switchable capability that is used to rapidly alter the resonator geometry from 

band-pass configuration (1H) to low-pass configuration (13C). When the switch-tuned 13C 

- 1H RF coil was forward biased, PIN diodes on rings of the band-pass birdcage resonator 

presented a low-impedance path to RF, effectively eliminating the ring capacitors 

resulting in a low-pass RF coil that resonates at the 13C Larmor frequency. Conversely, 

when the switch-tuned 13C - 1H RF coil was reverse biased (or no DC is applied), the 

intrinsic capacitance of the PIN diodes in parallel with the ring capacitors, produced a 

band-pass birdcage resonator at the 1H frequency. 
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Benchtop measurements of the quality factor for each coil were obtained as an 

assessment of coil sensitivity [10]. Reflected signal strength from the RF coil provided a 

secondary determination of coil performance, assessing coil matching. In initial coil 

performance testing, the reflected signal strength did not vary much from coil to coil. 

Yet, when the quality factor was considered, the switch-tuned 13C - 1H RF coil has poorer 

performance than single-tuned RF coils for both nuclei. This translated to reduced SNR 

during imaging. 

There were a few factors that contribute to reduction in quality factor of the switch-tuned 

13C - 1H RF coil. Use of PIN diodes could cause dissipation of the RF energy stored in 

the resonator circuit. During forward biasing, the RF resistance of the diodes was low but 

not negligible. When reversed biased, a PIN diode operated as a low-Q capacitor in 

parallel with the ring capacitors. The junction capacitance of the PIN diodes was 

nominally 4 pF, which is approximately 10% of the capacitance of the ring capacitors. 

The addition of bias lines and RF chokes may also reduce the efficiency through 

imperfect RF blocking. Increased complexity of the resonator due to the addition of extra 

components for switch-tuning could lead to asymmetries in the resonator circuit that are 

difficult to correct.  

Individual PIN diodes were forward biased with a current of 0.375 A. With this bias 

current, the nominal resistance of the PIN diodes at 32.1 MHz was measured to be 0.5 . 

Most of the power supplied by the bias power supply was dissipated in the RF chokes 

which have a DC resistance of 1.5 . This resulted in a small amount of heating of the 

RF coil structure during 13C imaging. In practical use, the coil was largely operated in 1H 

mode and this heating was insignificant considering the proximity of the heated animal 

bed inside the RF coil.  

Image SNR and spectral SNR were compared between coils. Based on benchtop 

measurements, reduced SNR for both frequencies was expected. Quality factors of the 

switch-tuned 13C - 1H RF coil were lower than those measured for the corresponding 

single-tuned RF coil. For proton imaging, benchtop measurements of the Quality factor 

showed a 46% reduction for the switch-tuned 13C - 1H RF coil compared with its single-
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tuned RF coil. Comparisons of proton SNR between these coils yielded a loss of 13% for 

the switch-tuned configuration. For comparisons at the 13C frequency, the Quality factor 

of the switch-tuned 13C - 1H RF coil was only 25% that of the single frequency coil 

resulting in a larger reduction of imaging SNR. An SNR loss of 45% for the switch-tuned 

13C channel was observed compared with the 13C single-tuned RF coil. Coil efficiencies 

were expected to drop for the switch-tuned 13C - 1H RF coil due to the added losses of 

extra necessary circuit components.  

Modifications to the switch-tuned 13C - 1H RF coil were investigated to improve SNR. RF 

chokes with different inductances were investigated; however, these changes did not 

affect the 13C SNR. No significant SNR improvement was noticed by increasing the DC 

bias current beyond the typical value that was required for 13C operation. It was 

interesting that it is possible to fine-tune the matching of 13C coils using the DC biasing 

current. The exact mechanism was unknown, but it was likely linked to small corre-

sponding changes in the PIN diode resistance. This characteristic is also observed when 

the coil is reverse-biased to 1H mode but the amount of fine-tuning of the 1H frequency 

during reverse biasing is not very significant in comparison to that achievable with 

variations of forward bias current.  

B1 homogeneity was another important factor for an RF coil. Application of uniform RF 

energy across a sample is essential for some RF pulse sequences [10] and important for 

quantification of the spectroscopic data. For a coil possessing an inhomogeneous B1 field, 

an RF pulse would excite a sample with a non-uniform flip angle. The switch-tuned 13C - 

1H RF coil displayed a homogeneous B1 field for the proton channel across a large field of 

view. The measured flip angle was very close to the expected value of 6° with a small 

measurement standard deviation. The B1 profile demonstrated a small amount of Gibbs 

ringing artifact at the edge of phantom boundary. Although not measured in this work, it 

would be expected that the 13C B1 field was similar to that of the proton [15].  

Detailed information about TORO operation of RF hardware had been previously 

described [16]. TORO operation takes advantage of the highly sensitive localized 13C 

surface RF coil and homogeneous transmission field. The 13C surface RF coil and switch-
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tuned 13C - 1H RF coil were precisely tuned and matched with the position of the 13C 

surface RF coil fixed at the center of the birdcage coil with a suitable loading phantom. 

During TORO operation, transmit and receive RF coils must be alternately tuned/ 

detuned during transmit and receive phases. This was accomplished by application of a 

DC bias current to PIN diodes in the RF hardware circuitry. For imaging, a DC bias 

current was applied during RF transmission, which switches the 13C - 1H birdcage RF coil 

to resonance at the 13C frequency and simultaneously detunes the surface RF coil. After 

transmission, the absence of this bias shifted the resonant frequency of the birdcage coil 

to the proton frequency. This effectively decoupled the birdcage and 13C surface RF coils 

and enabled reception of the 13C surface RF coil at the 13C frequency. For 1H imaging, the 

small 13C surface RF coil did not couple significantly to the birdcage resonator operating 

at the 1H frequency during either transmission or reception. Therefore, no other 

decoupling circuitry was required. Bias current provided by the MRI scanner was limited 

and not sufficient to bias all the required PIN diodes. For this work, the DC bias from the 

scanner was used to control a fast MOSFET switching circuit that modulated the current 

from an auxiliary DC power supply, effectively increasing the available bias current. In 

theory, TORO operation could also be implemented at the 1H frequency with an 

appropriate surface RF coil but this was not undertaken for this work.  

To illustrate the capability of the switch-tuned 13C - 1H RF coil, an in vivo experiment 

was conducted. After injection of hyperpolarized [1-13C]pyruvate, the SNR for the 

summed spectra was easily sufficient to determine the amount of pyruvate and its 

metabolites observed in the rat model of glioma. The ratio of observed Lac/Pyr was often 

used as a measurement of local hypoxia to study diseases such as cancer [17]. However, 

other metabolites such as alanine or bicarbonate could be also monitored [17]. The high 

SNR resulting from TORO operation permitted quantification of the Lac/Pyr in 

individual voxels of the rat brain and tumour yielding regional information of tumour 

metabolism. Tumours manifesting significantly higher Lac/Pyr were well documented in 

the literature and this biomarker could be used to identify early onset of tumour 

progression [18] or tumour response to therapy [19, 20]. Other relevant information such 

as perfusion and angiography could be acquired using 1H imaging. Exact co-registration 

of 1H and 13C data facilitated unambiguous evaluation of the higher resolution 1H data 
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with tissue metabolism obtained by 13C imaging. In the future, TORO operation of this 

RF coil will be used to monitor various animal disease models with hyperpolarized 13C 

substrates. 

In conclusion, this study described the construction of a switch-tuned 13C - 1H birdcage 

RF coil and compares its imaging performance with identical single-tuned RF coils as a 

true measure of its utility and to measure potential SNR losses due to its more 

complicated circuitry. Imaging comparisons measured a reduction in observed SNR for 

the switch-tuned 13C - 1H RF coil compared with identical single-tuned RF coils at either 

frequency. However, for TORO operation with a 13C surface RF coil, the 13C SNR was 

4.2 times higher than ordinary T/R operation of the switch-tuned 13C - 1H RF coil. The B1 

field profile for 1H imaging provided uniform RF excitation over a 13-cm FOV. A dual 

frequency or switch-tuned RF coil permits data acquisition at two distinct frequencies 

(i.e., for different nuclei) with exact image co-registration for those images. But unlike a 

dual frequency RF coil, the integration of a 13C surface RF coil with the 13C - 1H switch-

tuned RF coil for TORO operation was relatively simple (due to shifts of the resonator 

frequency) producing significant improvements in imaging SNR. This switch-tuned 13C - 

1H RF birdcage coil operating with a 13C receive-only surface RF coil in TORO mode 

was extremely useful for analyzing in vivo models where anatomic information of 1H 

images provides a high-resolution background against which to evaluate regional 

metabolic information obtained by 13C spectroscopy or imaging with enhanced SNR.  
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3.1 Introduction 

Brain cancer is a challenging disease with very poor prognosis and outcomes. The most 

prevalent form of malignant brain tumours is glioma, which arises from glial cells.[1] 

While there are aggressive therapies available (i.e. surgical resection, radiotherapy, and 

chemotherapy), patients diagnosed with the most aggressive (grade IV) malignant glioma 

have a disappointing five-year survival rate of 5.1%.[2] Despite aggressive treatment, 

these tumours almost inevitably recur.[3]  

Advances in imaging techniques help radiologists to noninvasively detect and assess 

brain tumours. Magnetic resonance imaging (MRI) is the preferred clinical diagnostic 

tool for brain tumour detection,[4] yet it is still challenging to observe both the 

therapeutic response and efficacy during the course of the treatments. Because 

radiotherapy and chemotherapy affect tumours at the molecular level (DNA damage, 

blocking protein/RNA), phenotypical changes (tumour size, diffusion, proliferation) that 

arise from therapies, can be challenging to detect during the early staging of treatment.  

Clinical assessment of the progression of a primary brain tumour can be assessed by 

contrast-enhanced MRI using one of the following criteria: Response Assessment in 

Neuro-Oncology (RANO) criteria, Response Evaluation Criteria in Solid Tumours 

(RECIST) or World Health Organization criteria.[5, 6] The RANO criteria, updated from 

MacDonald criteria, includes measureable  morphological changes in the tumour size due 
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to therapy. Tumour response is divided into four different groups based on changes in 

contrast-enhancing tumour volumes: 1. complete response with no tumour enhancement, 

2. partial response with > 50% reduction in tumour size, 3. progressive disease with > 

25% increase in tumour size, and 4. stable disease with no changes in tumour size. Other 

criteria methods use similar categorizations of groups but differ in methodology for 

measurement of tumour size. All criteria methods depend on the post contrast-

enhancement of tumours visualized using MRI. However, it is often difficult to determine 

if the enhancement is a result of tumour reoccurrence, radiation necrosis or pseudo-

progression.[5]  

Tumour metabolism has been identified as a “hallmark of cancer”.[7] Tumours require an 

increased amount of energy and nutrients to proliferate at a much faster rate compared to 

healthy tissues. To sustain increased energy demands, tumour metabolism is altered.[8] 

Most notably, energy production in tumour cells often switches from predominantly 

oxidative phosphorylation in the mitochondria (Krebs cycle) to anaerobic glycolysis 

(followed by lactic acid fermentation) in the cytosol.[9, 10] This is also known as 

Warburg Effect. This choice of energy production generates an intracellular pool of lactic 

acid as a potential molecular imaging biomarker.[11] Moreover, the excretion of lactic 

acid and protons from tumour cells accelerates acidification of the extracellular space and 

increases the viability of these cells through further vascularization.[10] Clinical studies 

have demonstrated an increased metabolic uptake of 2-deoxy-2-[18F]fluoro-D-glucose 

(18F-FDG) in tumours using positron emission tomography (PET).[12, 13] The ability to 

monitor therapeutic changes accurately and in a timely manner in brain tumours will 

provide a further understanding of tumour metabolism and guide initiation of alternative 

(or salvage) therapies. 

Hyperpolarized 13C magnetic resonance spectroscopic imaging (13C MRSI) is an 

emerging molecular imaging tool with MRI that can directly quantify metabolic changes 

in tissues. A chosen cellular substrate is enriched with 13C and then hyperpolarized 

(highly magnetized) in the polarizer to increase the potential 13C MRSI signal by nearly 

five orders of magnitude.[14] After injection of the hyperpolarized 13C-enriched 

substrate, the substrate and its byproducts from metabolic processes can be individually 
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detected in vivo by their inherent chemical shifts using magnetic resonance. The 

hyperpolarized signal is transient as the magnetization of the 13C nuclei relaxes to thermal 

equilibrium. This is highly dependent on the hyperpolarized contrast agent’s spin-lattice 

relaxation time (T1) and that of its metabolic byproducts.[15] 

The most common and widely researched hyperpolarized 13C contrast agent is [1-

13C]pyruvate.[16] After a bolus injection and circulation, hyperpolarized [1-13C]pyruvate 

is taken up by cells through active transport,[17] and converted into three major 

metabolic byproducts: [1-13C]alanine, 13C bicarbonate and [1-13C]lactate.[16] Tumours 

exhibit increased lactate production through upregulated lactate dehydrogenase (LDH) 

production by oncogenes.[9] Cells targeted by metabolic therapy have reduced LDH 

activity and thereby often exhibit reduced lactate production.[18, 19] The production of 

[1-13C]lactate in tumour tissues by metabolizing injected hyperpolarized [1-13C]pyruvate 

can be tracked using 13C MRSI. In this way, the therapeutic response of tumours is 

monitored by measuring changes in [1-13C]lactate conversion from [1-13C]pyruvate.  

Both glioma and brain tissues are highly metabolic and readily uptake metabolites for 

energy. This reduces the contrast and effectiveness of 18F-FDG PET for imaging and 

quantification of brain tumours which must be confirmed by other means.[13, 20, 21] For 

instance, brain tissues express high background signal with 18F-FDG PET, particularly in 

the cortex, due to high metabolic activity.[22] On the other hand, pyruvate is actively 

taken up by glioma cells through monocarboxylate transport and rapidly converted to 

lactate by upregulated LDH activity.[23, 24] Glioma cells are highly proliferative, 

utilizing the lactate alternative energy source as well as amino acid production.[11] Thus, 

MRSI of hyperpolarized [1-13C]pyruvate has an advantage of directly measuring 

metabolic activity in glioma cells and the ability to distinguish these cells from other 

highly metabolic brain tissues through their altered metabolic signature. 

The purpose of this study was to monitor the metabolic response of tumours to chemo- 

and radiotherapies using hyperpolarized 13C MRSI in an orthotropic rat model of glioma 

and compare with conventional methods of treatment response assessment. Assessment 

of tumour response to therapy using hyperpolarized 13C MRSI has been shown in several 



51 

 

models and therapies;[25-29] however, no longitudinal study has compared therapeutic 

responses to different therapies. Since each therapy relies on a different treatment 

mechanism, this will likely produce different metabolic responses to treatment. As 

discussed above, tumour response to therapy can be assessed by the observed ratio of [1-

13C]lactate with respect to [1-13C]pyruvate in the cytosol of tumour cells using 13C MRSI. 

The results of this study illustrate the ability of 13C MRSI of hyperpolarized [1-

13C]pyruvate to quantify therapeutic response for different therapies and to follow tumour 

progression or response with noninvasive longitudinal imaging. 

3.2 Methods 

3.2.1 Pyruvic acid sample preparation 

A trityl radical, OX63 (Oxford Instruments, Concord MA, U.S.A.) was mixed with 99%-

enriched [1-13C]pyruvic acid (Sigma Aldrich, Miamisburg OH, U.S.A) to a final 

concentration of 15mM. The pyruvic acid preparation was stirred and heated to 60°C to 

dissolve, then cooled and stored at -4°C for later use. Before hyperpolarization, ProHance 

gadolinium contrast agent (Bracco Diagnostics, Monroe Township, NJ, U.S.A.) was 

added at a concentration of 1 mM to the pyruvic acid sample to enhance polarization and 

reduce polarization time.[30] 

3.2.2 Hyperpolarization 

A Hypersense dynamic nuclear polarizer (Oxford Instruments, Abingdon, UK) was used 

to hyperpolarize the prepared [1-13C]pyruvic acid sample. The DNP operates at a 

temperature of 1.4 K and a magnetic field strength of 3.35 T. The pyruvic acid 

preparation was irradiated with microwaves from a source operating at 94.125 GHz 

achieving ~90% nuclear polarization of the solid after 45 min. For dissolution, the sample 

was rapidly thawed and mixed with a super-heated 80-mM phosphate buffer solution 

containing 0.34-mmol/L ethylenediaminetetraacetic acid. The resulting solution was 

dispensed into a flask prior to uptake into a syringe for injection. The resulting 80-mM 

hyperpolarized [1-13C] pyruvate buffered solution had a final volume of ~4 ml with a pH 

of 7.4 at 37°C. Its measured T1 was ~ 65 s at 3 Tesla[15] and its liquid-state polarization 

was > 12%. 
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Figure 3-1 Hyperpolarized 13C spectra of a rat brain with tumour. b) Regional spectral 

data overlaid on T2-weighted image. Tumour has been outlined in cyan. a) & c) 

Individual spectra from tumour and contralateral brain voxels. Red lines represent line 

fitting to spectral data in yellow. Note the increased lactate signal relative to pyruvate 

signal in the tumour voxel. 

3.2.3 In Vivo Imaging  

All imaging sessions were performed using a GE Discovery MR750 3.0 T MRI (General 

Electric Healthcare, Waukesha WI, U.S.A.). A custom-built, switch-tuned 13C-1H 

radiofrequency (RF) coil with a local 13C receive-only RF coil was used in transmit-

only/receive-only operating mode for 13C imaging.[31] Switch-tuning between 1H and 

13C frequencies produced inherently registered images for morphology (1H) and 

metabolism (13C). A single imaging session consisted of (in sequential order), T2-

weighted 1H imaging, hyperpolarized 13C MRSI, and post-Gd contrast T1-weighted 1H 

imaging. T2-weighted 1H images were acquired using a fast spin echo pulse sequence 

with the following imaging parameters: 80  80 mm field of view (FOV), 0.3-mm 

isotropic in-plane resolution, 3-mm slice thickness, repetition time (TR) = 4000 ms, echo 

time (TE) = 85 ms, bandwidth = 10.42 Hz, echo train length = 16 and number of averages 

= 4. For hyperpolarized 13C MRSI, animals were injected by tail vein with approximately 

a 3-ml bolus of the buffered hyperpolarized [1-13C]pyruvate solution. 2D 13C-spectral 

maps were acquired 25 s after the injection using free induction decay chemical shift 

imaging (FID-CSI) with the following parameters: 60  60 mm FOV, 5-mm isotropic in-

plane resolution, slice thickness = 10 to 15 mm (depending on tumour extent), TR = 80 

ms, spectral width = 5000 Hz and number of points = 256. Regional 13C-spectra are 
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shown in Figure 3-1. Prior to T1-weighted 1H imaging, 100 mM of Magnevist (Bayer 

HealthCare Pharmaceuticals Inc., Whippany NJ, U.S.A.) was injected by tail vein 

catheter. T1-weighted 1H images were acquired using a fast gradient echo pulse sequence 

with the following parameters: 80  40  32 mm FOV, 0.5-mm isotropic resolution, flip 

angle = 25°, TR = 6.9 ms, TE = 2.9 ms and 9 averages.  

3.2.4 Animal disease model 

Eighteen male Wistar rats (Charles River Laboratories, Senneville, QC, Canada) with an 

initial weight of ~ 250 g (~ 5 to 7 weeks old) were used for this study. One million rat 

glioma cells C6 (CCL-107, Purchased 2011, American Type Culture Collection, 

Manassas, VA, U.S.A.)  were stereotactically implanted in the caudate nucleus of the 

right brain hemisphere (day 0). C6 cells were passaged 9 times and tested for 

mycoplasma using MycoAlertTM (Lonza, Mississauga, ON, Canada) before use. Seven 

days post cell implantation, animals underwent pre-therapy imaging sessions. On day 10, 

animals were randomly divided into four groups: 1. no therapy, 2. radiotherapy, 3. 

chemotherapy, and 4. radio- and chemotherapy (combined therapy). Group 1 (no therapy) 

functioned as the control group. The radiotherapy group received a localized radiation 

dose of 20 Gy in two fractions on two consecutive days to the tumour using a CT GE 

Vision 120CT (General Electric Healthcare, Waukesha WI, U.S.A.) with a custom-built 

collimator.[32] The chemotherapy group received intraperitoneal injections of 40 mg/kg 

of TMZ (Sigma Aldrich, Miamisburg OH, U.S.A.) dissolved in dimethyl sulfoxide for 5 

consecutive days. The combined therapy group received both therapies, with the same 

timeline as described above. Starting on day 12, and every 3 days thereafter, animals 

underwent post-therapy imaging sessions. At endpoint, rats were sacrificed for 

histological examination. All animal procedures were approved by the University 

Council on Animal Care, Animal Use Subcommittee. 

3.2.5 Histology 

Following the final post-therapy imaging session, the rats were injected by tail vein 

catheter with 60-mg/kg Pimonidazole (Hypoxyprobe Inc., Burlington MA, U.S.A.) 30 

minutes prior to sacrifice. The rats were then sacrificed, perfused with 4% 
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paraformaldehyde (Sigma Aldrich, Miamisburg OH, U.S.A), and the brains were 

extracted and refrigerated at 5 ºC in 4% paraformaldehyde. The brains were then 

sectioned to 5-mm-thick paraffin slabs and later further sectioned to 5 μm for staining. 

Brain sections were stained with hematoxylin & eosin (H&E) and for hypoxia. Whole-

brain sectioned slices were scanned using light-fluorescent microscopy (Leica 

Microsystems Inc., Concord ON, Canada). Histological image slices were co-registered 

to the MRI images using Slicer (Version 4.31, Surgical Planning Laboratory, Brigham & 

Women's Hospital Boston MA, U.S.A.) using a custom software plugin.[33] 

3.2.6 Image analysis 

The 13C MRSI raw data were analyzed using a custom-written MATLAB (MathWorks, 

Natick MA, U.S.A.) script. Free induction decay signals from each k-space point were 

apodized by a 20-Hz Gaussian filter. The signals were spatially zero-filled and then 

Fourier transformed in frequency and phase-encoding directions. Signal for the individual 

metabolites is represented by the time-domain signal function as described in reference 

[34]: 

𝑆(𝑡)  = 𝐴𝑒−𝑖𝛺𝑡+𝜙𝑒−𝑅2
∗𝑡. Equation 3-1 

Here, S(t) is the signal at time t, A is the amplitude of the signal, Ω is the frequency 

offset, and ϕ is the phase offset. 𝑅2
∗  is the effective spin-spin relaxation rate given by 

𝑅2
∗ =

1

𝑇2
∗ . Each voxel could potentially contain up to 5 different summed metabolite 

signals. Initial estimates for the parameters for each individual metabolite (Ai, Ωi, ϕi, and 

𝑅2𝑖
∗ ) were obtained by examining the data. The summed signal model for all observed 

metabolites was fitted to the processed data by a nonlinear least-squares curve-fitting 

method on a voxel-by-voxel basis to extract metabolite parameters and their 

uncertainties. These parameters were used to calculate the lactate to pyruvate ratio 

(Lac/Pyr ratio) and propagate an associated uncertainty.  An example of spectral fitting is 

showing in Figure 3-1.  
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3.2.7 Statistics 

Post-Gd tumour volumes were measured from the T1-weighted contrast images using 

ITK-Snap (www.itksnap.org, [35]). Boundaries of tumours were manually contoured and 

the volumes were calculated. Inter-observer variability was used for the error of tumour 

volume. Cohort statistics were calculated using SPSS (IBM Corp., Armonk, NY USA). 

Analysis of variance (ANOVA) with Dunnett's post hoc test was performed to calculate 

the statistical differences between groups at each day and overall group differences 

respectively. The uncertainties propagated from parameter fitting were used to weight 

Lac/Pyr ratios for ANOVA analysis. Uncertainties for the Lac/Pyr ratio are reported as 

standard error of the mean of measurements. The correlations between Lac/Pyr ratio, 

tumour volume and tumour growth rate were tested using Pearson correlation.  

 

  

http://www.itksnap.org/
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3.3 Results 

 

Figure 3-2 Kaplan-Meier survival plot. Tumour implantation surgery was on Day 0 and 

the experimental endpoint was Day 24. Therapies were initiated on Day 10, lasting 2 days 

for radiotherapy and 5 days for chemotherapy. Specific details regarding the therapies are 

included in the text. 

A total of 18 rodents were monitored using hyperpolarized [1-13C]pyruvate MRSI at 

multiple time points: 7, 12, 15, 18, 21 and 24 days after tumour implantation. During the 

course of the longitudinal study, the health of some animals deteriorated due to the 

increased tumour burden and these animals were sacrificed earlier than the expected 

endpoint. Figure 3-2 depicts the survival rate of each group. The radio- and combined 

therapy groups had the highest mean survival time at 25 days followed by chemotherapy 

at 18 days and lastly the no therapy group at 17 days. A Kaplan-Meier method was used 

to determine if there were any differences in the survival distribution for the therapy 

groups. The survival distributions for different therapy groups are statistically different (p 

< 0.0005). 
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Figure 3-3 A single representative animal from the no therapy group. a) Lactate-to-

Pyruvate ratio maps are overlaid on axial proton images of the rat brain at longitudinal 

imaging time points. Tumours are outlined by cyan boundaries. b) Bar graph of measured 

lactate-to-pyruvate ratio of tumours and contralateral brain volumes at different imaging 

sessions. c) Graph of tumour volume for all imaging time points. The error bars for 

Lac/Pyr data represent one measurement standard deviation. The uncertainty for the 

tumour volume was estimated from inter-observer measurement variability. 

Figures 3-3 and 3-4 illustrate longitudinal assessments of therapeutic response in a rat 

model of glioma comparing Lac/Pyr ratio and tumour volume Figure 3-3 shows 

longitudinal imaging data for a representative rodent from the no-therapy group. Rapid 

tumour growth is readily apparent in Figure 3-3 a) and is quantified in 3-3 c). 

Longitudinal measurements of the Lac/Pyr ratio are presented in Figure 3-3 b), 

comparing tumour and contralateral brain for each 13C imaging session. Higher Lac/Pyr 

ratios are observed in tumour tissue compared to contralateral brain tissue. Lac/Pyr ratio 

increased with tumour growth. As illustrated in Figure 3-3 c), without any therapy, the 

tumour grew rapidly. Due to the large tumour burden and resulting adverse health effects, 

the rodent was sacrificed before the last imaging session at day 24, in compliance with 

terms of the animal use protocol. Neurological impairment and lack of appetite were 

observed for all rodents that did not receive therapy and as a result, these animals were 

sacrificed before the final imaging time point, typically between days 15 and 21.  
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Figure 3-4 Representative animal from the combined therapy group. a) Lactate-to-

Pyruvate ratio maps are overlaid on axial proton images of the rat brain at longitudinal 

imaging time points. Tumours are outlined by cyan boundaries. b) Bar graph of measured 

lactate-to-pyruvate ratio of tumours and contralateral brain volumes at different imaging 

sessions. Treatment periods are indicated as hatched areas. c) Graph of tumour volume 

for all imaging time points. The error bars for Lac/Pyr data represent one measurement 

standard deviation. The uncertainty for the tumour volume was estimated from inter-

observer measurement variability. 

 Figure 3-4 shows a representative rodent from the combined therapy group. Tumour 

growth shown in Figure 3-4 a) and quantified in 3-4 c) is slower compared to that of the 

no therapy group. On day 7, the Lac/Pyr ratio is higher in the tumour than in contralateral 

brain tissue (see Figure 3-4 b)). Within two days post therapy, the tumour Lac/Pyr ratio 

drops to that of contralateral brain. Further longitudinal measurements show similar 

Lac/Pyr ratios in tumour and healthy brain until the final imaging session on day 24. 

Reduced tumour growth assessed by volume measurements commensurate with 

therapeutic response was not apparent until day 21. 
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Figure 3-5 Longitudinal assessment of the lactate-to-pyruvate ratio in tumour tissue for 

four therapy groups. Radio- and chemotherapy were initiated on day 10 for a duration of 

2 and 5 days respectively. No statistical comparison between the no therapy and other 

treatment groups was possible for days 21 and 24 due to the poor survival of the 

untreated group. (Details of therapy are in the text.) Error bars represent one standard 

deviation for the averaged animal data. 

Figure 3-5 illustrates a longitudinal comparison of the average Lac/Pyr ratio in tumours 

for the four therapy groups measured up to 24 days post cell implantation. A consistently 

elevated Lac/Pyr ratio was observed in the tumours for the no therapy group for all time 

points. No statistical comparison between the no therapy and other treatment groups was 

possible for days 21 and 24 due to the poor survival of the untreated group. Some of the 

rodents that received radiotherapy showed a Lac/Pyr ratio reduction in the tumour tissue 

at day 12, but as a whole, that group did not show a significant reduction (p  0.33). The 

rodents that received either chemotherapy or combined therapy show a statistically 

significant reduction in the Lac/Pyr ratio within the tumour volumes (p < 0.05) post-

therapy (Day 12, 15 and 18). However, the rodents that received only chemotherapy did 

not survive to the endpoint at day 24 despite a significant reduction in the Lac/Pyr ratio. 

Application of combined therapy produced the best therapeutic response as assessed by 

tumour Lac/Pyr ratio and confirmed by the survival data. 
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Tumour volume measured from T1-weighted post-Gd images at day 18 show similar 

trends as Lac/Pyr ratio. In the absence of therapy, tumour volumes significantly increased 

in size until animals were sacrificed. The average enhancing tumour volume in the no 

therapy group at endpoint was 384 ± 63 mm3. All applied therapies showed reduced 

tumour growth by endpoint assessed by volume measurement. The average enhancing 

tumour volume for chemotherapy, radiotherapy and combined therapies were: 140 ± 23, 

107 ± 18 and 54 ± 9 mm3 respectively at endpoint. Rodents with tumours that received 

radiotherapy and combined therapy would be classified as having stable disease based on 

the RANO criteria. Whereas, for rodents with tumours that received chemotherapy, the 

observed tumour volume growth rate would produce a classification of progressive 

disease. Notably, when using only the T1-weighted post-Gd images as one would in the 

clinic, these classifications would only be possible as early as 18 days after cell 

implantation. 

 

Figure 3-6 Comparison of T2-weighted images, lactate-to-pyruvate ratio maps, H&E 

staining and hypoxia staining for a representative no-therapy and combined therapy 

animal. A non-rigid image registration method has been used to co-register the histology 

to the MRI data. Magnified regions for H&E and hypoxia staining are presented next to 

the histology for the entire brain. Hypoxia staining (Pimonidazole) shows green contrast 

with blue nucleus counter staining. 

Figure 3-6 presents the representative histological results comparing rodents that received 

either no therapy or combined therapy. The T2-weighted image, Lac/Pyr ratio images, and 

histological sections have been co-registered as described above. The tumours within the 

brain are easily distinguishable by 1H MRI and H&E staining. Lac/Pyr ratio and hypoxia 
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staining show similar contrast between tumour and contralateral brain tissues. Comparing 

contralateral brain and tumour measurements, rodents that did not receive therapy 

showed higher Lac/Pyr ratio activity and hypoxia within the tumour, whereas animals 

that received combined therapy had minimal Lac/Pyr ratio activity through the entire 

brain and no hypoxia signal within the tumour at endpoint. 

 

Figure 3-7 Correlation plots for all experimental animal groups. a) Correlation plot of 

lactate to pyruvate ratio in tumour versus tumour volume b) Correlation plot of lactate to 

pyruvate ratio in tumour versus tumour growth rate. The Pearson correlation coefficients 

are 0.287 (p ~0.105) and 0.66 (p <0.001) and R2-values are 0.083 and 0.416 for panels a) 

and b) respectively. Tumour volumes (in mm3) were estimated at each imaging time point 

from T1-weighted images acquired after contrast enhancement. An exponential growth 

model was fit to the tumour volume data to estimate tumour growth rate in mm3/day. 

Tumour volumes were contoured and measured using post-Gd contrast enhanced T1-

weighted images acquired at each imaging time point. Tumour growth rates were 

modeled from these measurements. The correlations of tumour Lac/Pyr ratio versus 

tumour volume and growth rate are presented in Figure 3-7. The Pearson correlation 

coefficients for these data are 0.287 (p ~ 0.105) and 0.66 (p < 0.001) respectively. 

Tumour Lac/Pyr ratio was not correlated with tumour volume; however, a moderate and 

statistically significant correlation with tumour growth rate was observed. 



62 

 

3.4 Discussion 

The goal of this study was to demonstrate the ability to detect early changes in 

therapeutic response in tumours using hyperpolarized [1-13C]pyruvate MRSI and to 

evaluate potential clinical translation. Targeted therapy of tumour metabolism has gained 

more interest recently but therapeutic effects on tumour metabolism are not fully 

understood.[36] The ability to measure metabolic changes in tumours will aid to not only 

further understand tumour metabolism, but may also provide biomarkers to determine 

which therapeutic methods will be effective against tumours.  

The C6 rodent glioma model was chosen to study the therapeutic response of solid 

tumours because this model is well established in the literature and its tumour 

characteristics are well defined.[37, 38] During glioma progression, the tumour evolves 

into two different regions. The outer layer of tumour is highly vascularized and well-

perfused, whereas the inner core of the tumour becomes necrotic and hypoxic due to lack 

of functioning or effective vasculature.[39] In addition, as the tumour grows, the blood 

brain barrier becomes disrupted, which can allow for increased fluid exchange with the 

vasculature.[40] In MRI, tumours, edema, and cerebrospinal fluid appear hyperintense on 

T2-weighted 1H images,[41] complicating tumour volume measurements. Therefore, T1-

weighted post-Gd 1H images were used to measure tumour volumes. Given that 

malignant glioma possesses disrupted and leaky vasculature, low-molecular weight 

paramagnetic contrast agents can effectively accumulate within the tumour.[42] Post-Gd-

contrast T1-weighted 1H images were used to determine tumour volumes in this study. 

Contrast-enhanced tumours have increased conspicuity with hyperintense contrast 

compared to surrounding brain tissue for T1-weighted 1H images. In addition, regions of 

edema and necrosis can be discriminated by lack of enhancement.[43]  

Figures 3-3 and 3-4 show the progression of glioma in two different therapy groups using 

tumour volumes measured from T1-weighted 1H images. C6 glioma cells are extremely 

aggressive and grow exponentially as shown Figures 3-3a) & c). The RECIST criteria are 

the conventional indicators of therapeutic response. Post-therapy success is associated 

with stability or recession of tumour size. To detect post-therapeutic changes, tumour 

volume must be monitored repeatedly after therapy. In this model, using the standard 
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clinical method of detection with 1H imaging, the earliest post-therapeutic tumour volume 

changes were observed on day 18 (8 days after the therapy was given) and later 

confirmed to be stable disease. Tumour recurrence was not observable in this study due 

to the finite length of the study. Prolonged monitoring of post-therapeutic tumour volume 

changes would be required to dismiss tumour recurrence. Considering that most 

malignant gliomas eventually recur despite rigorous therapies,[1] early detection of 

therapeutic response or progression would not only be essential for prediction of 

prognosis but also improve quality of life for patients by terminating treatment when it is 

not effective. 

The purpose of this study was to evaluate the effectiveness of hyperpolarized 13C MRSI 

to detect early therapeutic changes by measuring tumour metabolism. Metabolic changes 

such as upregulated glucose uptake in tumours are clinically assessed by 18F-FDG PET. 

However, 18F-FDG is also readily taken up by highly metabolic tissue. This leads to the 

possibility of false positive results for 18F-FDG PET, which may require confirmation by 

other means.[13, 20, 21] For example, high metabolic activity in the cortex of the brain 

can produce an elevated background signal, which confounds the interpretation of 18F-

FDG PET results.[22] As an alternative, radiolabeled amino acids can be used to target 

brain tumours because amino acids are essential to highly proliferating tissues.[22, 44]  

Hyperpolarized 13C-labeled glucose can be used in a similar manner as 18F-FDG for 

tumour detection and characterization; however significant challenges exist. First, the T1 

of hyperpolarized 13C labeled glucose is too short (< 2 s) for detection of metabolic 

byproducts.[45] The T1 of glucose can be substantially increased by replacing all protons 

in the glucose with deuterium but this significantly increases the cost of this 

substrate.[46] Secondly, the labeling of various carbon atoms in the glucose molecule 

results in different chemical shifts for its 13C nuclei and those of its metabolic byproducts. 

Often these chemical shifts are close to each other, which complicates the separation of 

metabolites as the spectrum becomes congested. In this study, we used [1-13C]pyruvate as 

the metabolic probe agent, which offers several advantages over glucose. The T1 of [1-

13C]pyruvate at 3 T is ~ 65 s in vitro (~ 45 s in vivo), which is long enough for pyruvate 

to circulate through the circulatory system of our animal model and converted to 
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downstream metabolites.[15] Furthermore, the 13C-labeled carbon can only be transferred 

to four different metabolites; lactate, pyruvate hydrate, alanine, and bicarbonate. All these 

metabolites are individually represented as single spectral peaks and are well separated 

by their chemical shifts producing a fully resolved spectrum, which can be readily 

quantified as shown in Figure 3-1. 

Among the metabolites produced from [1-13C]pyruvate, the [1-13C]lactate signal is a 

sensitive biomarker for therapeutic effect in tumours where its production from pyruvate 

can be correlated with LDH activity and lactate pool (cellular redox state). The [1-

13C]lactate signal is normalized to the [1-13C]pyruvate signal to mitigate differences in 

pyruvate delivery and uptake in tumours and compared with that of healthy brain tissue. 

Increased LDH activity in metabolically active tumour cells will result in an increase in 

observed Lac/Pyr ratio, whereas necrotic tumour regions or healthy cells will have little 

to no lactate production as a result of limited LDH activity and a lower Lac/Pyr ratio. As 

illustrated in the representative case for a rodent that received no therapy in Figure 3-3 b), 

the Lac/Pyr ratio in tumour tissue is consistently larger than that of the healthy 

contralateral brain tissue. Furthermore, increased Lac/Pyr ratio corresponds to rapid 

progression of the tumour as shown in Figure 3-3 c). This is further demonstrated in the 

correlation plots of Figure 3-7. Here, tumour volume does not statistically correlate with 

Lac/Pyr ratio. Yet, there was a moderate and statistically significant correlation between 

Lac/Pyr ratio and tumour growth rate. Thus, Lac/Pyr ratio is potentially related to the 

growth of tumour which coincides with increased LDH activity rather than tumour 

volume.[47] This suggests that in principle, measurement of Lac/Pyr ratio at a single time 

point can be predictive of tumour response, which would require longitudinal tumour 

volume measurements over time for conventional assessment. 

As tumours rapidly grow, ineffective vascularization and necrosis of the core becomes 

evident. In Figure 3-3 a), particularly on day 21, there was inadequate delivery of 

hyperpolarized [1-13C] pyruvate to regions of the tumour precluding sufficient metabolite 

signal for accurate quantification of the Lac/Pyr ratio. For representative animals, blood 

volume and flow were longitudinally measured using dynamic susceptibility contrast 

imaging (data not shown). The blood flow and blood volume in tumour were lower than 
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contralateral brain and this may indicate decreased tumour perfusion and possibly 

necrosis at that time point. 

Conversely, as illustrated in the representative case for the rodent that received combined 

therapy (Figure 3-4 b)), two days after starting the combined therapies, the tumour 

already exhibited a reduced Lac/Pyr ratio compared to day 7. This ratio was comparable 

to that of the remaining brain tissue over the rest of the longitudinal experiment. Changes 

in Lac/Pyr ratio in tumour tissue directly suggests a reduction in LDH activity and cell 

death and potentially effective therapeutic response. Measured Lac/Pyr ratios in both 

tumour and contralateral brain declined and remained low after the window of therapy. 

This might be a result of inflammation, which subsided after treatment caused by 

radiotherapy, intracranial hypertension from the growing tumour and/or a side-effect of 

the administration of chemotherapy.[48] For this representative animal, blood flow and 

blood volume in the tumour and contralateral brain were also measured. The blood flow 

and blood volume in tumour were returned to a level consistent with the contralateral 

brain region approximately 14 days after therapy. (data not shown) The restoration of 

blood flow and blood volume suggests changes in tumour vasculature due to therapy. 

However, this observation can be only made in the later time points of the experiment. 

The large variation in blood flow and blood volume is a result of differences between the 

boundary of the tumour compared to the core of tumour.[49] The boundary of the tumour 

shows increased blood flow and blood volume compared to the core when it is treated. 

This leads to a reduction in therapeutic efficacy near the tumour core where there is 

limited blood flow and blood volume. 

In the clinic, patients diagnosed with glioma undergo surgery followed by radio- and 

chemotherapy.[50] Unfortunately, the effectiveness of a particular therapeutic method for 

an individual patient may be unclear because of variation in tumour progression among 

patients. Determining the efficacy of therapy as early as possible would provide an 

important tool for evaluation of new therapies and improved survival to patients. Figure 

3-5 shows the average Lac/Pyr ratio in tumours for the no therapy group and three 

therapy groups. As expected, the no therapy group shows elevated Lac/Pyr ratio sustained 

throughout the study, which is possibly due to increased tumour LDH activity. Blood 
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flow and blood volume ratios suggests that the tumour was poorly vascularized and 

necrotic; however, these data were not collected for all animals and, as a result, no 

absolute conclusion can be drawn. 

Among the three therapy groups (radiotherapy, chemotherapy, and combined therapy), 

the combined therapy group had the highest survivability and displayed significant 

reduction in Lac/Pyr ratio within the tumours. Combined therapy is expected to induce 

greater DNA damage compared to a single therapy alone, which leads to cellular 

apoptosis, reduced LDH activity and tumour burden.[51] In the literature, significant 

evidence exists suggesting radiotherapy helps to increase vasculature permeability and 

improve delivery of chemotherapeutic drugs to tumour sites.[52, 53] The chemotherapy 

group showed a statistically significant reduction of Lac/Pyr ratio in tumours; however, 

this group of rats had a high rate of mortality. Chemotherapy animals lost a significant 

amount of weight after therapy despite a moderate dose of TMZ given to those rats.[54, 

55] TMZ is known to cause nausea, vomiting, fatigue, headache as adverse reactions in 

human.[55, 56] These side effects, may have been the cause of weight loss for these 

animals, which negatively impacted their survivability. This may suggest that 

chemotherapy on its own is sufficient to cause dysfunction in tumour metabolism and 

proliferation; however, it is not potent enough alone to extend survival. The radiotherapy 

group has a slow and not statistically significant decline in the Lac/Pyr ratio, yet this 

group had low mortality compared to the chemotherapy group. In fact, there was a large 

variation in the Lac/Pyr ratio after therapy among the radiotherapy group suggesting the 

radiotherapy efficacy varies among the cohort. Despite injecting approximately the same 

number of C6 cells and providing a standard conformal radiation dose, an individual 

animal can show a varied therapeutic response to radiotherapy. Those tumours that did 

not response to radiotherapy may indicate resistance to therapy and tumour recurrence. 

However, the experimental timeline would need to be extended to confirm the metabolic 

profile associated with resistance to therapy and recurrence.  

Lastly, Figure 3-6 presents histological validation of Lac/Pyr measurements in the tumour 

model. Histological sections have been co-registered to the MR imaging data for accurate 

comparison. Tumour location and size are apparent from H&E images and with 1H MRI. 



67 

 

Although the T2-weighted contrast would suggest that the tumours are relatively 

homogenous, at least in structure, it is apparent from the Lac/Pyr ratio map and hypoxia 

staining that tumour metabolism varies throughout the tumour. The untreated tumour 

shows strong hypoxia staining as well as a high Lac/Pyr ratio. As previously noted in the 

literature, the tumour environment becomes hypoxic leading to increasing LDH activity. 

However, following effective therapy, the large reduction in the Lac/Pyr ratio shown in 

the combined therapy group compared to the no therapy group suggest a reduction in 

LDH activity. This is further verified by differences in the hypoxia staining between 

these two cohorts. For the untreated tumour, increased LDH activity is associated with a 

hypoxic tumour environment due to insufficient or inefficient vascularization, which was 

verified by hypoxia staining at endpoint. For the combined therapy group, reduced 

hypoxia was observed commensurate with the lower measured Lac/Pyr ratios. Looking 

forward to clinical translation, these findings suggest that the Lac/Pyr ratio is a non-

invasive imaging biomarker for assessment of hypoxia in the tumour microenvironment, 

which may be a useful tool for early assessment of tumour response to therapy. 

In summary, this study examined longitudinal therapeutic response to different therapies 

using hyperpolarized [1-13C]pyruvate MRSI. For cases where a standard treatment is 

ineffective, early assessment of therapeutic response is highly desirable to prompt 

alternative or salvage therapies or to improve end-of-life care. We have observed 

different early therapeutic responses assessed by changes in the Lac/Pyr ratio of tumour. 

All therapies produced unique changes in the Lac/Pyr ratio compared to the no-therapy 

control group. In contrast, therapeutic assessment using tumour volume showed a similar 

time-course to that assessed by Lac/Pyr ratio; yet, significant changes were not 

discernable until much later after therapy. Heterogeneous response to therapies observed 

in individual animals and across therapy groups was well characterized by hyperpolarized 

[1-13C]pyruvate MRSI. Lac/Pyr ratio measured across therapy groups was demonstrated 

to be correlated with tumour growth after initiation of therapy. Regional differences in 

Lac/Pyr ratio were compared with histology at endpoint and have been shown to be 

consistent with hypoxia. In conclusion, this study demonstrates the use of hyperpolarized 

[1-13C]pyruvate to probe real time tumour metabolism, which can provide a useful 

longitudinal non-invasive biomarker for assessment of therapeutic response. 
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Chapter 4  

4 Longitudinal Measurement of Intra- and Extracellular 
pH gradient in a Rat Model of Glioma 

Heeseung Lim, Mohammed Albatany, Francisco Martínez-Santiesteban, Robert Bartha 

and Timothy J. Scholl 

An updated version of the following chapter will be submitted to Tomography as a 

journal manuscript. 

4.1 Introduction 

Cancer is a physiologically and genetically diverse disease resulting in abnormal cellular 

proliferation. Cancer cells have altered biological pathways and microenvironment that 

support this proliferation. These changes have been widely studied and some categorized 

as hallmark features of cancer because they are common to many types of genetically 

diverse tumours.[1] These hallmark features impact on important aspects of cancer 

progression and therapy. Among the identified hallmarks, the deregulation of metabolism 

and poor vascularization are main contributors to altered intra- and extracellular pH 

within tumours.[1-4] Altered tumour pH, in particular the intracellular to extracellular pH 

gradient, is an important factor that drives cancer progression, by enhancing oncogene 

expression, increasing metastatic potential, and altering drug efficacy.[5, 6] 

The cellular pH gradient is defined as the difference between intracellular pH (pHi) and 

extracellular pH (pHe). In normal tissue, pHi is ~7.2 and pHe is ~7.4,[7-9] resulting in a 

negative pH gradient (~ -0.2) across the cellular membrane. In contrast, tumour cells 

possess a positive pH gradient (~ 0.5), where pHi is ~7.4 and pHe is ~6.9.[7, 8, 10-12] 

This reversal of the pH gradient is the result of modified cellular metabolism, which 

promotes tumour cell growth and invasion. As most tumour cells favor anaerobic 

metabolism over aerobic metabolism, even with the presence of oxygen (Warburg effect), 

the rate of glycolysis and lactic acid production is increased.[4] Significant decreases in 

intracellular pH due to accumulation of metabolic acids, would normally damage a cell, 
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but tumour cells actively maintain homeostasis by transporting protons into the 

extracellular space.[13] Inefficient tumour vasculature is not able to completely support 

the bicarbonate/carbon dioxide buffer system so that the extracellular space of tumour 

becomes more acidic.[13] This leads to destruction of the extracellular matrix, promoting 

tumour cell invasion and eventually metastasis.[7] The tumour pH gradient is further 

increased as the tumour becomes hypoxic and the vasculature fails to provide sufficient 

buffers. [14] Non-invasive measurement of the tumour pH gradient would aid in 

treatment planning and evaluating treatment response. 

Several non-invasive imaging techniques have been developed to quantify intra- and 

extracellular tissue pH.[10] In this study, intracellular tissue pH was measured using a 

novel chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) 

technique called amine and amide concentration-independent detection (AACID).[15] 

This method exploits the differential pH dependence of the exchange rate of amine and 

amide protons with bulk water to measure pH. A CEST image is produced to determine 

the ratio of the amine to amine CEST effect, which can be converted into a measurement 

of intracellular pH from a separate calibration.[15] Extracellular tissue pH was measured 

with hyperpolarized 13C magnetic resonance spectroscopic imaging (MRSI). The use of 

13C-labelled bicarbonate as a contrast agent to evaluate pHe was previously reported in 

the literature.[16] Hyperpolarized 13C bicarbonate is injected into the vasculature and 

after circulation reaches the tissue of interest where it exchanges with the pre-existing 

bicarbonate/carbon dioxide pool under carbonic anhydrase activity. Extracellular pH can 

be derived from the Henderson-Hasselbalch equation using the ratio of 13C bicarbonate 

and 13CO2 measured by 13C MRSI. By serially combining these approaches, the pH 

gradient of tissue can be mapped and quantified in the same pre-clinical model. 

This study followed the progression of the pH gradient of tumour cells in an untreated 

orthotopic rodent model of glioma. C6 rat glioma tumours exhibit rapid growth, 

vascularization and invasion.[17] Previous studies have noted that these tumours develop 

necrotic cores and exhibit regional hypoxia.[17, 18] Adequate vascularization facilitates 

effective delivery of hyperpolarized 13C bicarbonate to the tumour. For this aggressive 
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tumour model, significant changes in the pH gradient are expected over time, making it 

an ideal solid tumour model for longitudinal studies of tumour pH.  

The purpose of the study was to measure and characterize longitudinal changes in the 

tumour pH gradient. There have been several studies measuring pH of tissue using 

techniques as described above.[15, 16, 19-21] However, no longitudinal study exists 

measuring both pHe and pHi in a consecutive fashion to map regional differences and 

temporal changes in pH gradient in an untreated tumour. We hypothesized that the pH 

gradient would increase over time as the tumour increased in size. Knowledge of pH 

gradient is vital for tumour characterization and selecting appropriate therapy, since the 

outcome of therapy can be dependent on pH. The results of this study provide insight 

regarding changes in tumour pH linked to aggressive growth. 

4.2 Methods 

4.2.1 13C Bicarbonate Sample Preparation 

95% enriched 13C cesium bicarbonate (Sigma Aldrich, Miamisburg OH, U.S.A.) was 

dissolved in a 4:1 glycerol and deuterium oxide mixture at a final concentration of 6.3 

mol/L. In addition, OX63 trityl radical (Oxford Instruments, Concord MA, U.S.A.) and 

ProHance gadolinium contrast agent (Bracco Diagnostics, Monroe Township, NJ, 

U.S.A.) were added to the sample at final concentrations of 25 mmol/L and 0.5 mol/L 

respectively. The final mixture was heated to 60°C and stirred to dissolve. The resulting 

bicarbonate preparation was stored at -4°C for later use. 

4.2.2 Hyperpolarization  

13C cesium bicarbonate was hyperpolarized using dynamic nuclear polarization (DNP) 

(HyperSense, Oxford Instruments, Abingdon, UK). The bicarbonate sample was cooled 

to 1.4 K at 3.3 T in the DNP apparatus and irradiated with 50 mW of microwave 

radiation at a frequency of 94.123 GHz to transfer electronic spin magnetization to the 

13C-labelled bicarbonate. Approximately 90% solid state polarization was achieved 

during two hours of hyperpolarization. The sample was rapidly mixed with a super-

heated mixture of 80-mmol/L phosphate buffer (pH = 7.2) and 100-mg/L 
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ethylenediamine tetra-acetic acid disodium salt dehydrate (EDTA, Sigma-Aldrich, St. 

Louis MO, U.S.A.). The resulting hyperpolarized solution had a 13C bicarbonate 

concentration of 150 mmol/L and a pH of 7.4 at 37°C. The in vitro spin lattice relaxation 

time and polarization values of the 13C nucleus were 26.2  1.4 s and ~7.5% measured at 

3 T.[22]  

Figure 4-1 Calibration data for different pH-buffered solutions mixed with 

hyperpolarized 13C bicarbonate. a) A pH map derived from 13C MRSI and the 

corresponding pH values obtained by pH meter. b) The linear regression between 

measured pH (pH meter) and observed pH (hyperpolarized 13C bicarbonate) with R2 = 1. 

4.2.3 Phantom Imaging 

To calibrate pH measurement from hyperpolarized 13C bicarbonate, four separate 

phosphate buffers with different pH values (6.4, 6.6, 6.8, 7.0) were prepared prior to the 

experiments. One milliliter of each phosphate buffer was mixed with an equal volume of 

200 mmol/L buffered hyperpolarized 13C bicarbonate solution. For catalysis, 1 mg of 

carbonic anhydrase (Sigma Aldrich, Miamisburg OH, U.S.A.) corresponding to ~2500 

Wilbur-Anderson units, was added to each solution as a catalyst. The resulting mixtures 

were imaged with MRSI at 3 T (General Electric Healthcare Discovery MR750 3.0 T, 

Milwaukee WI, U.S.A.). Immediately after imaging, the pH of each mixture was 



78 

 

recorded using a pH meter (VWR Symphony SB70P digital bench-model pH meter, 

VWR International, Mississauga ON, Canada) 

4.2.4 Animal Model 

A total of 7 Wistar rats weighing approximately 250 g (~5 to 7 weeks old), were used in 

this study. On day zero, animals were surgically implanted with approximately one 

million C6 rat glioma cells in the right caudate nucleus of the brain. Animals were 

scanned on days 8, 12 and 15. CEST was performed first using a 9.4 T small animal MRI 

scanner (Agilent, Santa Clara, CA) to measure pHi. Under anesthesia, the animals were 

then transferred to the same 3 T MRI for hyperpolarized 13C MRSI to determine pHe. All 

animal procedures were performed in accordance with relevant guidelines and regulations 

stipulated by an animal use protocol approved by the University Council on Animal Care, 

Animal Use Subcommittee at Western University. 

4.2.5 Chemical Exchange Shift Imaging for Intracellular pH 

CEST imaging on the 9.4T MRI was performed with a 50-mm-diameter volume birdcage 

coil built in-house. Standard anatomical T2-weighted images were used for tumour 

localization. The T2-weighted images were acquired using a 2D fast spin-echo pulse 

sequence (FSE) with the following parameters: field of view (FOV) = 38.4  38.4 mm, 

0.3-mm isotropic in-plane resolution, slice thickness = 1 mm, repetition time (TR) = 3000 

ms, echo time (TE) = 10 ms, echo train length (ETL) = 4, and effective TE = 40 ms. 

Upon initial tumour detection by MRI, two slices from the T2-weighted image data with 

maximum tumour extent were selected for CEST imaging. Three sequential CEST 

images were acquired using an FSE sequence with the following parameters: FOV = 38.4 

 38.4 mm, 0.6-mm in-plane resolution, slice thickness = 2 mm, TR = 7000 ms, TE = 7 

ms, ETL = 32, effective TE = 7 ms and preceded by a continuous RF pulse with an 

amplitude of 1.5 µT and duration of 4s. CEST images were acquired at different 

saturation frequencies (1.2 to 4.5 (∆=0.1) ppm, from 5.4 to 6.6 (∆=0.1) ppm, -1000 and 

1000 ppm images were acquired as reference, producing a total of 49 images). For B0 

correction, a water saturation shift referencing (WASSR) technique was used.[23] A 

linearly spaced 37-point WASSR CEST spectrum with saturation frequencies from -0.6 
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to 0.6 ppm was acquired using the same pulse sequence except preceded by a shorter 

duration RF saturation pulse (100 ms) with low amplitude (0.2 µT). Each WASSR 

spectrum and CEST spectrum was interpolated to achieve 1-Hz resolution. Each CEST 

spectrum was then frequency shifted, using the corresponding WASSR spectrum, to 

account for B0 variation. B0 variations were corrected on a pixel-by-pixel basis. The three 

CEST spectra were summed for each pixel following B0 corrections to increase signal to 

noise ratio. A B1 field map was generated using a flip-angle imaging (FAI) pulse 

sequence (TR = 20 ms, TE = 3.47 ms, echoes = 2, flip-angle = 700, FOV = 38.4  38.4 

mm2, matrix size= 64  64). Observed B1 variations in the CEST slice were less than 5%, 

and no B1 correction was applied.  

4.2.6 Hyperpolarized 13C Bicarbonate MRSI for Extracellular pH 

A switch-tuned 1H - 13C RF coil was used to acquire inherently co-registered proton 

images and 13C MRSI data of the rat models.[24] Tumours were identified using a T2-

weighted anatomical 1H scan of the rat brain using a FSE sequence with the following 

parameters: 80.0  80.0 mm FOV, 0.3-mm isotropic in-plane resolution, 3-mm slice 

thickness, TR = 4000 ms, TE = 85 ms, bandwidth = 10.42 kHz, ETL = 16, and number of 

averages = 4. Prior to hyperpolarized 13C imaging, rats were injected with 3 ml of 

buffered hyperpolarized 13C bicarbonate solution in a single twelve-second bolus through 

a tail vain catheter. Dynamic 13C maps of bicarbonate and carbon dioxide were collected 

using a spectral-spatial excitation chemical shift imaging sequence (FIDALL[25]) with 

the following parameters: two frequency excitations (bicarbonate and CO2, 35.5 ppm 

difference), 60.0  60.0 mm FOV, 3.5 mm isotropic in-plane resolution, slice thickness 

~12 mm, TR = 350 ms, and 5°/90° flip angle for bicarbonate/CO2 excitation. 

4.2.7 Data analysis 

Data analysis of the CEST and hyperpolarized 13C bicarbonate MRSI was performed 

using MATLAB (Mathworks, Natick, MA, USA). Using B0-corrected and smoothed 

CEST spectra, AACID values were measured on a voxel-by-voxel basis. AACID data 

represent the ratio of the CEST effects of amine protons resonating at 2.75 ppm and 

amide protons at 3.50 ppm, normalized by magnetization transfer effects measured after 
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saturation at 6.0 ppm and are calculated using the following equation from McVicar et. 

al.:[15] 

AACID =
𝑀𝑧(3.50 𝑝𝑝𝑚)×(𝑀𝑧(6.00 𝑝𝑝𝑚)−𝑀𝑧(2.75 𝑝𝑝𝑚))

𝑀𝑧(2.75 𝑝𝑝𝑚)×(𝑀𝑧(6.00 𝑝𝑝𝑚)−𝑀𝑧(3.50 𝑝𝑝𝑚))
. Equation 4-1 

Here, Mz(f) is the magnitude of the CEST signal at a specific frequency, f. AACID is 

linearly-dependent on pHi and is insensitive to change in T1 relaxation time, temperature, 

and macromolecule concentration.[15] We calibrated the relationship between AACID 

and pH in both tumour and contralateral brain ROIs. For hyperpolarized 13C bicarbonate 

MRSI, non-Cartesian k-space data were reconstructed into maps of 13C-bicarbonate and 

13C-carbon dioxide.[26] Regional pH was calculated using the Henderson-Hasselbalch 

equation: [27] 

pH𝑒 = p𝑘𝑎 + log10

[𝐻𝐶𝑂3
−]

[𝐶𝑂2]
 

Equation 4-2 

Here, pHe is the extracellular pH, pka (6.17)[27] is the base-10 logarithm of the acid 

dissociation constant of carbonic acid and [HCO3
-] and [CO2] are the concentrations of 

bicarbonate and carbon dioxide respectively. The concentration ratio of bicarbonate to 

carbon dioxide is determined as the ratio of MRSI signal amplitudes of 13C-bicarbonate 

and 13C-carbon dioxide after corrections for individual flip angle excitations. 

4.2.8 Statistics 

The region of interest (ROI) for tumour and contralateral brain tissues were manually 

segmented on both 3T and 9.4T T2-weighted images using ITK-Snap (www.itksnap.org, 

[28]) prior to any image registration. From ROIs, tumour volumes were measured and 

inter-observer variability was used for the volume error. For each animal and time point, 

the mean and standard deviation for pHi and pHe were calculated from these ROIs (SPSS, 

IBM Corp., Armonk, NY USA). All pH errors represent one standard deviation of the 

weighted mean value. The statistical significant across pHi & pHe and each day were 

tested using an analysis of variance (ANOVA) with Tukey’s post hoc test and weighted 

data using the standard deviation of pH measurements. The correlation between pH 

gradient and tumour volume was tested using Pearson correlation.  

http://www.itksnap.org/
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4.2.9 Histology 

At the experimental endpoint, animals were sacrificed and perfused with 4% 

paraformaldehyde (Sigma Aldrich, Miamisburg OH, U.S.A). Perfused rat brains were 

paraffin embedded and sectioned to 5-µm-thick slices. Then rat brain slices containing 

tumour were stained with hematoxylin & eosin (H&E), Ki67 and HIF1α. These slices 

were scanned with an AxioImager Z1 Upright Microscope (Carl Zeiss Canada, North 

York, ON, Canada). Those images were subsequently co-registered with the T2-weighted 

MR images acquired at 3T using Slicer (Version 4.31, Surgical Planning Laboratory, 

Brigham & Women's Hospital Boston MA, U.S.A.) with a custom software plugin.[29] 

4.3 Results 

Seven Wistar rats were used in this study; five animals survived to the last imaging time 

point. The other two animals were sacrificed before the final imaging time point because 

of neurological impairment related to tumour volume. All animals showed aggressive 

tumour growth throughout the study, which is an expected feature of the C6 glioma 

model.[17]  
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Figure 4-2 The progression of intra- and extracellular pH of a representative C6 glioma. 

Panels a) b) and c) present the T2-weighted images, and intra-and extracellular pH maps 

of the rat brain at days 8 and 12. Tumours are contoured in magenta. d) Quantification of 

changes of intra- and extracellular tumour pH. Statistical significance is annotated with 

letters (measurements with different letters are significant at p < 0.05). e) Longitudinal 

tumour volume measurements. Inter-observer variability was used for the error bar. A 

large region of necrosis within the tumour is evident on day 12 in panel a). This animal 

was sacrificed prior to the final imaging time point on day 15 due to neurological 

impairment.  

Two animals from the cohort were chosen to demonstrate the observed changes in pH 

gradient of tumour cells. The first representative animal is shown in Figure 4-2. This 

animal did not survive to the final imaging time point but was scanned on days 8 and 12. 

Rapid tumour growth is evident by inspection of Figure 4-2a and quantified in Figure 4-

2e. At day 12, the dark region within the tumour boundary on the T2-weighted image was 

indicative of extensive necrosis. Maps of pHi and pHe at both imaging time points are 

provided for comparison in Figures 4-2b and 4-2c and the average pHi and pHe for the 

tumour is provided in Figure 4-2d. There was a statistically significant difference (p < 

0.05) between pHi and pHe of the tumour at day 12. There was also a significant increase 

in pHi of the tumour (p < 0.05) between days 8 and 12. However, there was no significant 

change in pHe of the tumour (p ~ 0.11). A second representative case is shown in Figure 
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4-3. This animal was scanned on days 8, 12 and 15 prior to sacrifice. This animal also 

exhibited a rapidly growing tumour as shown in Figure 4-3a and quantified in Figure 4-

3e. Again, pHi and pHe maps of the rat brain are shown in Figure 4-3b and c and average 

pHi and pHe of the tumour are graphed in Figure 4-3d. Only at day 12 and 15, there was a 

statistically significant difference (p < 0.05) between pHi and pHe within the tumour. 

Tumour necrosis was not evident with T2-weighted MRI. Increased pHi within the tumour 

was only significant (p < 0.05) at day 15. The pHe of the tumour was significantly 

decreased (p < 0.05) at day 12 compared to day 8 but increased again by day 15. 

 

Figure 4-3 The progression of intra- and extracellular pH of a representative C6 glioma. 

Panels a) b) and c) present the T2-weighted images, and intra-and extracellular pH maps 

of the rat brain at days 8, 12 and 15. Tumours are contoured in magenta. d) 

Quantification of changes of intra- and extracellular tumour pH. Statistical significance is 

annotated with letters. e) Longitudinal tumour volume measurements. Inter-observer 

variability was used for the error bar. 

Longitudinal changes in average pH gradient and tumour volume of all animals are 

shown in Figure 4-4. Figure 4-4a shows the average pHi of tumours and contralateral 
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brain on days 8, 12 and 15. Between days, there was no significant difference for 

measured pHi within either tumour or contralateral brain tissue; however, tumour pHi was 

significantly larger (p < 0.05) than contralateral brain at all days. Similarly, Figure 4-4b 

shows the average pHe of tumours and contralateral brain on days 8, 12 and 15. There 

was no significant difference detected on day 8 between tumour and contralateral tissue. 

However, there were significant reductions (p < 0.05) in tumour pHe on day 12 and 15 

and a significant increase (p < 0.05) in contralateral brain pHe on day 15. Significant 

differences between tumour and contralateral brain pHe were observed on day 12 and 15. 

Figure 4-4c illustrates the comparison between pH gradients in tumours and contralateral 

brain tissue on days 8, 12 and 15. The pH gradient within tumours increased significantly 

over the three imaging time points (p < 0.05). The pH gradient for contralateral brain 

regions did not change significantly over this period but was consistently less than that 

observed within the tumours. Lastly, figure 4d shows the average tumour volume for 

days 8, 12 and 15. Tumour volumes significantly increased (p < 0.05) between imaging 

time points. 
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Figure 4-4 Longitudinal changes in cohort-averaged pH measurements. Panel a) &b) 

shows intra- and extracellular pH in tumour and contralateral brain measured on days 8, 

12 and 15. Panel c) compares cellular pH gradient between tumour and contralateral brain 

at those same days. d) Average gross tumour volume measured from T2-weighted 

imaging data. Inter-observer variability was used for the error bar. All statistical 

significances (p < 0.05) are annotated with letters. 

The association between tumour volume and pH gradient is plotted in Figure 4-5. 

Averaging over all animals and time points, there was no significant correlation (p ~ 

0.26). However, when tumours with extensive necrosis were excluded, tumour volume 

was correlated with pH gradient (p < 0.05) with a 0.715 Pearson coefficient.  
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Figure 4-5 Correlation plot comparing pH gradient and tumour volume. Tumours that 

did not exhibit necrosis show a significant correlation (green line) between pH gradient 

and tumour volume (p < 0.05, Pearson correlation = 0.72). 

Histology for the second representative animal case is shown in Figure 4-6 with 

corresponding pH and imaging data. The T2-weighted image showed no clear sign of 

necrosis; however, necrotic parts of tumour were clearly distinguished from non-necrotic 

parts by histology. The whole tumour region showed a relatively high pHi and low pHe 

compared to contralateral brain tissue. H&E staining revealed an extremely high density 

of cells within the tumour compare to normal brain. Further, necrosis was formed within 

the core of the tumour. HIF-1 showed a higher expression in tumour compared to brain 

tissue except within the necrotic region of brain. Similarly, Ki-67 staining showed greater 

cellular proliferation in the tumour and no proliferation within the necrotic core and the 

brain tissue surrounding the tumour. 
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Figure 4-6 Histology of the 2nd representative animal shown in Figure 4-3. The first 

column presents the tumour extent, pHi and pHe within the rodent brain. The tumour 

margin is outlined in magenta. The second column contains histology including H&E, 

HIF-1α and Ki-67 staining of tumour and brain tissue. The third column of images 

contains magnified histology of the regions outlined by respective boxes in column 2. 

4.4 Discussion  

The purpose of this longitudinal study was to map and quantify the change in tumour pH 

gradient using a rodent model of glioma. To the best of our knowledge, this is the first 

study to sequentially measure both pHi and pHe at multiple time points during tumour 
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progression in an in vivo model. This enabled a direct calculation of the cellular pH 

gradient within the tumour and surrounding tissue. Knowledge of changes in cellular pH 

gradient in tumours may be important for understanding biological changes in tumours 

(metabolism, vascularization and proliferation) and informing on possible treatment 

strategies (chemo- and radiotherapies).[8, 11] 

The C6 rat glioma is a highly proliferating and aggressive solid tumour.[17] Tumour 

volumes increase rapidly as seen in Figures 4-2, 4-3 and 4-4. Tumour imaging in some 

animals suggested necrotic cores as shown in Figure 4-2a, which were confirmed by 

histology (see Figure 4-6). Changes in tumour volume have been correlated to alterations 

in tumour pH.[30] Hence, dynamic changes in tumour pH were expected commensurate 

with tumour growth. Due to rapidly increasing tumour volumes, some animals did not 

survive to the study endpoint. For animals with rapidly growing tumours, a reversal of pH 

was expected as well as a correlation between tumour growth rate and change in tumour 

pH.  

In general, pHi and pHe within tumours and contralateral brain tissue were observed to 

largely match what has been previously reported in literature. As shown in Figure 4-4a, at 

day 15, tumour pHi (7.30±0.09) and tumour pHe (7.19±0.11) were similar to previously 

reported values (pHi ~7.4 and pHe ~6.9)[7, 8, 10-12]. Similarly, measurements in 

contralateral brain tissue, (pHi = 7.01±0.12 and pHe = 7.46±0.18) were also comparable 

to previously reported values (pHi ~7.2 and pHe ~7.4)[7-9]. In addition, these in vivo 

measurements confirmed the change in pH gradient direction for tumour cells compared 

to those in contralateral brain tissue. However, it should be noted that the contralateral 

brain does not represent ideal normal tissue. Elevated intracranial pressure due to the 

large tumour burden would likely have an impact on brain tissue pH.[31] Although the 

contralateral brain region did exhibit a consistently negative pH gradient, this region of 

brain would likely have been influenced by intracranial hypertension and 

inflammation.[32] Measurements of the pH gradient (pHi – pHe) were observed to change 

sign as early as day 8 in tumours. This was approximately the earliest time point where 

tumour detection by MRI was reliable for this model.  
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For each animal, longitudinal measurements of pHe and pH gradient within the tumour 

showed a significant decreasing and increasing trend (respectively) as illustrated in 

Figures 4-2d, 4-3d. However, the averaged pHi for all tumours did not show any 

significant trend in time. The trend in tumour pHe suggests acidification of extracellular 

space while the pHi of tumour cells remains constant during tumour progression. These 

pH changes are a likely reason for the increase in tumour invasion and proliferation. 

Conversely contralateral brain tissue showed no significant change until day 15 when 

tumours had invaded the other hemisphere of the brain. At this last time point, 

contralateral brain tissue was able to maintain pHi, but pHe homeostasis was no longer 

balanced perhaps as a result of increased edema and reduced perfusion.  

These tumours exhibited a large heterogeneity in pHi and pHe  as demonstrated in Figures 

4-2 and 4-3.  These variations could be due to several biological factors. During tumour 

progression, tumour metabolism undergoes extensive modification, but these metabolic 

changes are often not homogenous.[33] Furthermore, the decrease in tumour pHe induces 

inefficient and non-uniform vascularization[34] leading to further regional variation of 

pHi and pHe.[35] Secondly, at the final time point, some tumours possessed necrotic 

cores as shown in the histology of Figure 4-6. This can occur since C6 gliomas often 

form a necrotic core as a result of rapid tumour growth and limited supply of 

nutrients.[17] After the tumour cell undergoes necrosis, the integrity of the cellular 

membrane is jeopardized and there is no longer a valid distinction between intracellular 

and extracellular space.[36] Therefore, pHi and pHe measurements in regions of necrosis 

would not properly represent tumour pH gradient. In this study, tumour necrosis could 

not be reliably defined with T2-weighted images. Furthermore, with limited imaging 

resolution and contrast, it was often difficult to identify necrotic regions prior to 

experimental endpoint with histology. Never-the-less, the reversal of pH gradient was 

observed at all time points when measurements were averaged over the entire tumour 

volume identified by T2–weighted imaging even though pH measurements were not 

statistically significant changing across time points. 

For individual animals, the change in cellular pH gradient within the tumour was readily 

apparent. Figure 4-2 presents a representative animal that died prior to the final imaging 
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time point. For this case, the tumour grew exceptionally fast such that the animal suffered 

significant weight loss and dehydration. Furthermore, rapid tumour growth led to 

necrosis, which was observed as a hypo-intense region within the tumour boundary on 

the T2-weighted image (Figure 4-2a). This was later confirmed as necrosis by histology. 

For tumour regions where increasing pHi and decreasing pHe was observed, this was 

likely a consequence of the tumour cells adapting to their microenvironment.[13] This 

tumour also showed heterogeneous pHi and pHe throughout the tumour at day 12, 

particularly in regions where necrosis was suspected compared to the non-necrotic 

portion of the tumour. This emphasizes the dynamic changes in both tumour pHi and pHe. 

Figure 4-3 showed another representative case in which the animal survived to the last 

imaging time point. Unlike the previous case, longitudinal changes in tumour volume, 

pHi and pHe were less substantial. In this case, pHe was significantly decreased for day 12 

compare to day 8 but significantly increased at day 15. Importantly, this tumour was later 

confirmed to have a substantial necrotic region by histology (see Figure 4-6), which is 

likely a factor for the larger range of regional pH measurements. Using only T2-weighted 

image data, it would be difficult to appreciate the full extent of the heterogeneity of the 

tumour and its environment. Regional maps of pHi and pHe facilitate the visualization of 

molecular and cellular changes linked to tumour progression in an individual animal. 

A modest but significant correlation between tumour volume and pH gradient was 

observed for this cohort (Figure 4-5). This correlation was only significant (p < 0.05) 

when necrotic tumours were excluded. This correlation between tumour volume and pH 

has been previously reported and that studies suggested a similar conclusion.[30, 37] This 

correlation may explain increased tumour proliferation and invasion due to changes in 

tumour microenvironment linked to pH. 

The histology in Figure 4-6, further illustrates the effects of regional tumour pH. 

Regional differences in pHi and pHe compared to contralateral brain corresponded well to 

the distribution of HIF-1α and Ki-67 measured by histology. In glioma, HIF-1α is 

upregulated and further induces metabolic remodeling.[38] Ki-67 is a marker for cellular 

proliferation. Thus, this histology finding demonstrates a potential link between tumour 

pH gradient, hypoxia and proliferation. Tumour heterogeneity is also speculated in both 
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the pH maps and histology. The ability to detect and measure tumour proliferation is 

important for the prognosis of these tumours. In addition, a priori knowledge of tumour 

pH may be valuable for choice of appropriate chemotherapy.  

In conclusion, this paper has demonstrated longitudinal mapping of pHi and pHe in a 

rodent model of glioma. This is the first demonstration of non-invasive consecutive in-

vivo measurement of pHi and pHe at multiple time points during tumour progression. This 

study has shown that within a single tumour, there is a significant regional variation of 

both pHi and pHe within tumour at a single time point. When these measurements were 

averaged for all animals at each time point, there was no statistically significant 

difference across time points. A statistical correlation between tumour volume and pH 

gradient was observed for non-necrotic tumours. Highly proliferative regions of the 

tumour can be observed by histology were associated with positive pH gradient. Regional 

molecular information such as pHi and pHe provide important information about 

longitudinal changes in the tumour environment. Knowledge of these changes may 

ultimately be useful to guide therapeutic choice for treatment of GBM or to assess 

treatment efficacy. 
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Chapter 5  

5 Summary and Future work 

This thesis investigated the molecular imaging of tumour metabolism using 

hyperpolarized 13C magnetic resonance spectroscopic imaging (MRSI). Two important 

aspects of tumour metabolism were assessed: pyruvate conversion to lactate and the 

cellular pH gradient. The conversion of pyruvate to lactate is the final process of 

anaerobic glycolysis. As described by the Warburg effect, solid tumours often prefer 

energy production by glycolysis in the cytoplasm rather than more efficient oxidative 

phosphorylation within the Krebs cycle of mitochondria. [1, 2] Since tumour progression 

is correlated with lactate production, [3] the ability to measure this conversion can be 

used to quantify tumour progression and early therapeutic effects. The cellular pH 

gradient plays an important role in tumour proliferation and invasion. [4] Unlike healthy 

tissue, tumours often exhibit a reversed pH gradient such that extracellular pH (pHe) is 

lower than the intracellular pH (pHi). [5] Longitudinal measurements of changes in the 

pH gradient within tumours could also be useful to understand tumour progression.  

These aspects of tumour metabolism can be measured using hyperpolarized 13C magnetic 

spectroscopy imaging. [1-13C]Pyruvate can be used to non-invasively determine the 

lactate-to-pyruvate (Lac/Pyr) ratio in order to directly probe the conversion between 

pyruvate and lactate in tumours.13C bicarbonate can used to directly measure pHe by 

mapping the ratio of H13CO3
- and 13CO2 concentrations after its injection and application 

of the Henderson-Hasselbalch equation. Prior to injection into animals, [1-13C]pyruvate 

and 13C bicarbonate were hyperpolarized, which can produce a greater than 10,000-fold 

signal increase for detection of metabolism with MRSI. [6] It is impractical to image 

these probes without hyperpolarization, due to their low senstivity with MRI and limited 

concentration in tissue. In addition, specialized MRI pulse sequences are necessary to 

image these probes with a short acquisition time, which is dictated by the limited spin-

relaxation time of hyperpolarized probes.  

Furthermore, it was necessary to develop custom-made radiofrequency (RF) hardware for 

hyperpolarized 13C MRSI. 13C MRSI produces regional molecular information while 1H 
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MRI provides valuable anatomical context. As a result, sensitive dual-frequency RF 

hardware was required to gather co-registered molecular and morphological imaging data  

with high senstivity for signal detection. Thus a switch-tuned strategy for 13C - 1H RF 

hardware was designed and contructed. For optimum sensitivity and image homogeneity,  

a TORO mode was included to improve signal detection. 

In this thesis, a rat model of glioma was used to study tumour metabolism. This rodent is 

an excellent model for preclinical imaging studies. It is relatively small and easy to 

handle but it is also large enough for imaging with a clinical MRI system without 

requiring higher-strength gradients to improve voxel size. Compared with mouse models, 

intravenous injections through the tail vein are considerably easier. Moreover, rats better 

tolerate the injected hyperpolarized imaging probes at larger volumes than smaller mice. 

In this study the brains of rats were sterotectically implanted with glioma. A longitudinal 

study was undertaken to assess the resulting tumour response to therapy. This tumour 

model capitulates clinical progression and is an excellent system to study the assessment 

of therapeutic response using hyperpolarized endogenous probes. These animal 

experiments were peformed in accordance with relevant guidelines and regulations 

stipulated by an animal use protocol approved by the University Council on Animal Care, 

Animal Use Subcommittee at Western University. 

Glioma is a highly aggressive and proliferating brain tumour. [7] It is an ideal model to 

study tumour metabolism. As a highly proliferating tumour, glioma is very metabolically 

active, specifically through glycolysis. Brain tissue, although also metabolically active, 

prefers metabolism of pyruvate in the Krebs cycle, whereas in glioma pyruvate is 

converted predominantly to lactate. This difference was exploited to detect and quantify 

tumour response or progression after treatment. Increased glycolysis in the cytoplasm of 

glioma cells leads to greater intracellular hydrogen ion and acid production and increased 

ion transport to transfer these protons and metabolic acids to the extracellular space. This 

maintains an alkaline pHi, at the expense of highly acidic pHe. While the brain is well 

vascularized and perfused, this is not necessarily the case in the cores of brain tumours 

where necrosis is often present due to hypoxia. [8] The combination of an acidic 
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interstitial space and lack of perfusion gives tumour cells a proliferative advantage 

compared to other cells, which aids in proliferation.  

Clinical treatment of glioma involves surgical resection of the tumour, if possible and 

radiotherapy followed by administration of chemotherapy to the patient. [9] In this study, 

stereotactic surgery was omitted which is extremely difficult to perform on rodents. 

Radiotherapy comprised of two fractions of 20 Gy, were administered to only the 

hemisphere of the brain containing the tumour with a modified CT system. For 

chemotherapy, 40 mg/kg of temozolomide (TMZ) was administered intraperitoneally for 

5 days to mimic clinical practice. These therapies and their combination were chosen to 

duplicate the clinical setting as much as possible so that the some of the imaging methods 

and results learned through this longitudinal imaging study might eventually become 

clinically relevant.  

5.1 Construction and evaluation of a switch-tuned 13C – 
1H RF coil 

Chapter 2 describes the construction a switch-tuned 13C – 1H birdcage RF coil system that 

is capable of metabolic imaging of hyperpolarized 13C-enriched metabolic probes for co-

registration with 1H MRI morphology. In addition, the imaging performance of the RF 

coil was evaluated through comparison with identical single-tuned, 1H and 13C birdcage 

RF coils, which were constructed for that purpose. To further enhance RF receive 

sensitivity, a 13C receive-only surface RF coil with active decoupling was also integrated 

with the switch-tuned 13C – 1H RF system to produce a transmit-only, receive-only RF 

system for 13C operation. The performance of the individual RF coils and the TORO 

system were tested with specialized imaging phantoms at both 1H and 13C frequencies. A 

fast gradient-recalled echo (FGRE) sequence was used for proton imaging of phantoms 

and 13C spectra were acquired using a FID-CSI sequence. B1 homogeneity was also 

mapped using the Look-Locker method. The signal-to-noise ratio (SNR) achieved with 

the switch-tuned coil in transmit/receive mode was 87% that of the single-tuned 1H coil. 

For 13C imaging, the SNR for the switch-tuned 13C
 
coil was 55% that of the single-tuned 

coil. TORO operation of the switch-tuned coil with the surface coil increased SNR for by 

a factor of 4.2 over transmit/receive operation of the switch-tuned coil alone. As figure 2-
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5 illustrates, the B1 map is homogenous over the entire coil volume except near its ends. 

Finally the TORO RF and animal support systems were evaluated with animal imaging. 

This system provided co-registered imaging data for both nuclei with sufficient SNR for 

in vivo imaging experiments. Due to the additional circuit elements, the switch-tuned 13C 

– 1H RF coil had inferior SNR compared to that of individual frequency RF coils. 

However, the use of a surface coil with TORO operation greatly improved the observed 

SNR. In vivo metabolic imaging of injected [1-13C]pyruvate in a rat model of glioma was 

demonstrated using TORO operation. Two-dimensional 13C spectral maps of pyruvate 

metabolism were measured, which were inherently co-registered with 1H anatomical 

images. 

5.2 Quantifying early therapeutic response using 
hyperpolarized [1-13C]pyruvate MRSI 

Chapter 3 demonstrates the use of hyperpolarized 13C MRSI to assess therapeutic efficacy 

in a preclinical tumour model. [1-13C]pyruvate was used to monitor early changes in 

tumour metabolism based on the Warburg Effect. High grade malignant tumours exhibit 

increased glycolytic activity and lactate production to promote proliferation. [10] A rat 

glioma model was used to explore altered lactate production after therapy as an early 

imaging biomarker for therapeutic response. Rats were surgically implanted with C6 

glioma cells and separated into four groups: no therapy, radiotherapy, chemotherapy and 

combined therapy. Animals were imaged serially at 6 different time points (days 7, 12, 

15, 18, 21, 24 after the surgery) using hyperpolarized [1-13C]pyruvate MRSI and 

conventional 1H imaging. Using hyperpolarized [1-13C]pyruvate MRSI, alterations in 

tumour metabolism were detected as changes in the conversion of lactate to pyruvate 

(measured as the Lac/Pyr ratio) and compared to the conventional method of detecting 

therapeutic response using anatomical tumour volume measurement. In addition, the 

Lac/Pyr ratio was correlated with tumour growth rate. Hypoxia staining was performed at 

experimental endpoint and compared with the Lac/Pyr ratio map. Each therapy group 

expressed different characteristic changes in tumour metabolism. The group that received 

no therapy showed a gradual increase of the Lac/Pyr ratio within the tumour. The 

radiotherapy group showed large variations in tumour Lac/Pyr ratio. The chemo- and 
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combined therapy groups showed a statistically significant reduction in tumour Lac/Pyr 

ratio, however only the combined therapy was capable of suppressing tumour growth, 

which resulted in low endpoint mortality. A prompt reduction in the Lac/Pyr ratio was 

very apparent after therapy. However, measurements of tumour volume were not useful 

for establishment of therapeutic response until a much later time point. The Lac/Pyr ratio 

showed a significant correlation with tumour growth rate; however, it was not 

significantly correlated with tumour volume. Thus, Lac/Pyr ratio is potentially related to 

the growth of tumour rather than tumour volume. Regional differences in the Lac/Pyr 

ratio were consistent with hypoxia histology. Hyperpolarized magnetic resonance 

spectroscopic imaging of the metabolism of [1-13C]pyruvate was able to detect a 

reduction in the Lac/Pyr ratio as early as two days post combined chemo- and 

radiotherapies. In conclusion, metabolism of hyperpolarized [1-13C]pyruvate has been 

demonstrated as a non-invasive biomarker for assessment of therapeutic response. 

5.3 Longitudinal Measurement of pH gradient 

Chapter 4 reports the first longitudinal measurement of intracellular/extracellular pH 

gradient using non-invasive magnetic resonance imaging in a C6 rat glioma model. The 

acid-base balance in the brain is tightly controlled by endogenous buffers such as 

bicarbonate and phosphate. Tumours often express a positive pH gradient (pHi – pHe) in 

contrast to a negative gradient in normal tissue. [8] An alkaline pHi in tumour cells 

increases the activity of several metabolic enzymes that drive cellular proliferation. [4] In 

contrast, an acidic pHe is established due to increased lactic acid production and the 

subsequent active transport of protons out of the cell. [11] The pHi was mapped with 

chemical exchange saturation transfer (CEST) and hyperpolarized 13C bicarbonate MRSI 

was used to determine regional pHe. Rats were surgically implanted with C6 glioma cells 

in the brain. pHi and pHe were mapped in the tumour tissue and contralateral brain tissue 

at days 8, 12 and 15 post implantations. After sacrifice, rat brains were stained for 

histology including haematoxylin and eosin, HIF-1α and Ki-67. Compared to 

contralateral brain tissue, the pHe in tumours was more acidic, whereas the pHi within 

tumour cells was more alkaline leading to an increase in the pH gradient compared to 

contralateral. Longitudinal measurements of the average pH gradient for all rats is shown 
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in Figure 4-4. Overall, the averaged pH gradient in the tumour changed from 0.02±0.11 

to 0.10±0.21 then 0.19±0.16. Conversely the pH gradient of contralateral brain tissue 

changed from -0.44±0.16 to -0.25±0.21 then -0.33±0.25. The observed pH gradient was 

consistently larger in tumour than contralateral tissue. The pH gradient of tumours 

increased during tumour growth and also the heterogeneity of tumour pH was apparent at 

later time points. These regional measurements may be useful to assess therapeutic 

response and predict local areas of treatment resistance. Overall, the 

intracellular/extracellular pH gradients in this rat glioma model were non-invasively 

measured to a precision of ~0.1 pH units at three time points. Since most therapeutic 

agents are weak acids or bases, a priori knowledge of the pH gradient may help guide 

choice of therapeutic agent.  

5.4 Future work 

A TORO RF system was developed to provide a sensitive detection system for 13C 

MRSI. RF sensitivity could be extended over a larger volume than that provided by the 

single surface receive coil by development of an RF receive array. Although an 

individual surface RF coil has high sensitivity, this is only the case over a limited region. 

In theory, the SNR of a coil array is increased by √𝑁 where N is the number of surface 

coils. Furthermore, imaging can be accelerated using parallel imaging techniques. If there 

is a sufficient coverage of the imaging volume by the array coil, spatial information of the 

signal can be deduced by the weighting of signals from multiple surface coils. The 

drawback of a coil array is that design and construction of the array coil is far more 

complicated than for a single surface coil. Moreover, multiple receive channels are 

required. Currently the multi-nuclear receive hardware at the GE Discovery MR750 3.0 T 

is limited to eight channels. Receive arrays are typically operated in TORO mode with a 

volume transmit coil. 

In chapter 3, rat glioma was imaged for up to 24 days after tumour implantation. For 

radiotherapy and combined therapy, survival outcomes of these groups were 

inconclusive. Tumour volume was not significantly altered by therapy. Since glioma is 

known to recur despite therapy [12], it is possible that a subsequent increase in the 
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Lac/Pyr ratio might be observed in a treated tumour in a longer longitudinal study. This 

would be an important finding, demonstrating a potential prognostic capability of this 

imaging method. Other hyperpolarized 13C probes can be used to quantify more aspects 

of tumour metabolism. For instance, [1, 4-13C2]fumarate can be used to detect apoptosis. 

Increased [1,4-13C2]malate production from [1,4-13C2]fumarate has been observed in 

treated lymphoma cells after injection of hyperpolarized fumarate. This is likely a result 

of cellular necrosis suggesting that formation of malate from fumarate may be an in vivo 

biomarker for tumour cell death and response of tumours to treatment. [13] However, it 

may be difficult to determine if and when an optimum time exists for in vivo imaging of 

this process due to the nature of apoptosis.  

In chapter 4, MRI techniques were used to quantify the cellular pH gradient in tumours. 

Using these combined methods, a reversal of the pH gradient was observed in tumours 

compared to healthy brain tissue. Some chemotherapy drugs are effective only within a 

limited pH range. It would be informative to know in advance, how different therapies 

might be affected by the tumour microenvironment including intracellular and 

extracellular pH.  

At this juncture, almost all hyperpolarized 13C imaging research has been demonstrated 

using cell cultures or animal models. [14, 15] [14, 15] [14, 15] [14, 15] [14, 15] [14, 15] 

[14, 15] [14, 15] [14, 15] [14, 15] [14, 15] As basic research continues to develop the 

foundation for eventual clinical translation, manufacturers have developed 

hyperpolarization apparatus compatible with human use. A small number of these 

systems are currently being used for first-in-kind experiments and early clinical trials. 

[14, 15] The use of 13C-enriched endogenous substrates does not pose any significant 

toxicity or radiation exposure. No dose-related problems are expected for human 

imaging. With the advent of next-generation polarization technology, successful adoption 

in the clinic will require pre-clinical research such as that presented in this thesis. This 

will provide important information such as data to guide human dose, well-characterized 

biomarkers for non-invasive detection and assessment of disease and a proven ability to 

guide therapy.  
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Post Pilot Update. 

The pilot AUP (2010-273) helped establish our hyperpolarized metabolic probes research 

and answer some important associated questions. Within the four years of the pilot 

protocol: 
 

1) We were able to develop novel dual-frequency RF hardware and compatible animal 

support hardware for hyperpolarized magnetic resonance imaging using healthy animals. 

This early research established that the RF hardware had sufficient sensitivity for in vivo 

experiments. It also established our ability to hyperpolarize endogenous compounds for 

injection as contrast agents and safely inject them into the tail veins of rats and rapidly 

image metabolism. We were also able to gauge imaging signal-to-noise ratio which 

determines the spatial resolution of our metabolic imaging experiments. Our imaging 

hardware is being used for all hyperpolarized preclinical imaging experiments at Robarts.  
 

2) From early experiments we were able to determine the change in lactate conversion 

from pyruvate in response to radio- and chemotherapies. This information allows us to 

calculate accurate cohort numbers for our longitudinal studies. 
 

3) We have observed significant changes in tumour hypoxia using metabolic imaging of 

hyperpolarized pyruvate as early as two days post therapy. This provides a much earlier 

assessment than changes in tumour volume measured from MRI or CT. 
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4) Early experiments using hyperpolarized 13C bicarbonate have demonstrated our ability 

to measure pH in solid tumours. These experiments have provided useful data for 7 

research articles, the renewal of a research grant from the Ontario Institute for Cancer 

Research, two research grants from Cancer Care Ontario and a funding application to the 

Canadian Institutes for Health Research, which is still pending. 
 

The 3Rs 
 

Reduction: Our preliminary research has allowed us to refine our surgical techniques and 

animal care to reduce animal mortality. We also have established animal numbers to 

power our statistical comparisons between animal cohorts. Our experiments require 

cohort numbers of approximately eight animals per treatment group to establish 

significance between groups. We are requesting an additional four animals based on our 

experiences to date to replace those animals that do not survive to the experimental 

endpoint (if necessary). 
 

Replacement: We are studying the response of solid tumours to realistic clinical treatment 

as a first step to eventual clinical translation and as such, we require a realistic tumour 

model. The C6 rat glioblastoma is an excellent experimental model for our research. The 

tumours are precisely located through stereotactic intracranial implantation and grow 

with relative speed and predictability from animal to animal. These tumours have good 

contrast compared with healthy brain tissue with magnetic resonance imaging. Their 

location within the skull provides improved tumour location and reduced image artefact 

from animal motion. 
 

Refinement: We are constantly improving our experimental apparatus and imaging 

methods with an aim to improved imaging results. This will decrease the number of 

animals required for our studies. We are also developing new formulations for 

hyperpolarized probes, which will produce improved imaging results with decreased 

injected dose. 
 

Using non-scientific language, please describe the project's purpose, expected 

benefit, and a brief summary of your work with the animal model(s). 

Please be aware that in the event of communications with Western Media Relations 

and the PI is not available, this summary will be sent to Western Media Relations. 
 

Molecular imaging is a rapidly developing field, which non-invasively visualizes cellular 

function such as metabolism. Our research has focused on development of novel 

molecular imaging probes for magnetic resonance imaging (MRI) with a specific 

emphasis on application to cancer imaging. Therapeutic choice for an individual cancer 

patient relies on invasive tumour sampling. For many targeted agents, molecular 

assessment is particularly important to both apply these agents to cancers that are most 

likely to respond and avoid treatments that are unlikely to be effective. Sadly, predictive 

biomarkers are not perfect prognosticators of therapeutic response or failure for a given 

agent in a particular patient and treatment assessment often relies on longitudinal 

measurements of changes in tumour size. Significant changes in tumour size can take 

months to become apparent if at all. Molecular imaging has the potential to non-
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invasively assess subtle changes in disease. For cancer, it can assess the evolution of the 

tumour microenvironment, determine the potential for tumour proliferation and, perhaps 

most importantly, provide prompt evidence for early responses versus non-responses 

during ongoing treatment. 
 

Since MRI is a valuable diagnostic imaging tool capable of morphological and functional 

imaging with high spatial resolution and is the standard of care for assessment of most 

solid tumours, the added capability to assess molecular function is an important 

development, particularly for cancer research. For example, our preclinical research is 

demonstrating the ability to measure metabolic changes in the tumour such as hypoxia as 

soon as one day after initiation of therapy. This research using hyperpolarized metabolic 

imaging of hyperpolarized 13C-enriched compounds has produced seven peer-reviewed 
research articles and 17 conference abstracts over the past four years. In addition, a recent 

oral presentation of one of my PhD student’s thesis entitled “Molecular imaging of tumor 

metabolism: a longitudinal study of tumour response to therapies using hyperpolarized 
13C pyruvate” received a Magna Cum Laude Merit Award (top 5%) at the 2014 Scientific 

Meeting of the International Society for Magnetic Resonance in Medicine in Milan, Italy. 
 

The next steps for our hyperpolarized imaging research is to investigate additional probes 

of the tumour microenvironment. Our initial experiments have focused on pyruvate 

metabolism and its role in assessing hypoxia. We are currently interesting in assessing 

changes in pH, which tumours exploit for proliferative advantage. Using hyperpolarized 

13C bicarbonate, we plan to non-invasively measure extracellular pH and compare that 

with the intracellular pH assessed through chemical exchange saturation transfer (CEST) 

magnetic resonance imaging in tumour cells. Cellular necrosis in response to therapy can 

also be measured through conversion of hyperpolarized fumarate to malate as cellular 

walls break down. These three important biomarkers of the tumour microenvironment 

(hypoxia, pH and cellular necrosis) will be studied simultaneously in a rat model of 

glioma to look at their prognostic potential for early assessment of treatment response 

and longer term treatment outcome in extended longitudinal studies.  
 

We are working with John Ronald to modify our brain cancer cell line for in vivo animal 

experiments. We have engineered these cells so that they are produce a fluorescent green 

protein which makes the viable tumour cells much more visible under histology. In 

addition, the cells produce an enzyme known as luciferase, which can be used for 

bioluminescence imaging (BLI). Our animals are injected with a small amount of a 

compound known as luciferin. The luciferase produced by living tumour cells cause a 

chemical reaction with the luciferin that produces light. The amount of light that we 

measure with BLI is proportional to the number of living tumour cells. This allows us to 

non-invasively measure tumour burden in longitudinal studies of therapy. This is our 

gold-standard against which we can compare our other methods such as metabolic 

imaging of pyruvate, measurements of pH and cellular necrosis. 
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e.g. ALLELE - The genetic variant of a gene responsible for the different traits of 

certain characteristics and genetic diseases. 
 

MRI - Magnetic Resonance Imaging. 
13C - A naturally occurring non-radioactive isotope of carbon (1.11% natural abundance). 
HYPERPOLARIZATION - A technique for enhancing MRI signal strength by factors of 

up to 100,000. 
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CEST - Chemical exchange saturation transfer. This a magnetic resonance imaging 
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GLIOBLASTOMA or GLIOMA - A glioma is a type of tumor that starts in the brain or 

spine, more specifically the definition of glioma is a primary brain tumor that originates 

from the supportive cells of the brian, called glial cells. Glial cells are the most common 

cellular component of the brain There are five to ten times more glial cells than neurons. 

A Glioblastoma is a particular type of Glioma (Astrocytoma). 

FUMARATE - An endogenous intermediate in the citric acid cycle (krebs cycle). 

MOLECULAR IMAGING - a non-invasive means to visualize cellular function such as 

metabolism. 

BLI - Bioluminescence imaging is a means of measuring the biodistribution of cells that 

have been engineered to produce light after injection of a contrast agent. 

Luciferin -is a light-emitting compound which is injected into animals to generate 

bioluminescence. Cells in these animals, which produce the enzyme luciferase cause a 

chemical reaction with luciferin producing light that can be imaged by BLI. 
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