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Abstract 
It is well established that the addition of sulphate (SO4

2-) to peatlands increases methylmercury 

(MeHg) concentrations in pore waters via microbial methylation.  Less information exists about 

the effects of different concentrations and sources of SO4
2- loading on MeHg production in 

remote, non- SO4
2- impacted regions like Canada’s north, where increased SO4

2- loadings come 

not from the atmosphere, but often from mining waste water and rock tailings.  A three year field 

study (two years of loading; one year of recovery) examined the effects of simulated wastewater 

(containing 27.2 mg/L SO4
2-) on MeHg production.  Methylmercury concentrations increased to 

concentrations > 4.0 ng/L (background average = 0.09 ng/L) by the end of each field season but 

during the recovery year decreased to < 0.80 ng/L - still above background. Changes in 

partitioning between pore waters and peat were observed in the experimental fen, suggesting that 

the SO4
2- additions significantly impacted MeHg production in pore waters, and down-gradient 

movement.  To evaluate different SO4
2- loadings and sources, laboratory column experiments 

were conducted at a range of SO4
2- concentrations in solution, as well as using mine tailings rock 

that leached SO4
2-. All additions increased MeHg concentrations; the highest MeHg 

concentrations were seen in the intermediate 5 mg/L additions suggesting limits for SO4
2- 

utilization by microbes. Results from this work indicate that even very small additions of SO4
2- 

to these pristine peats will increase MeHg in pore waters. Potential downstream impacts of 

MeHg on biota will require careful consideration of both wastewater and waste rock 

management for SO4
2-.  
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Chapter 1 : Introduction and Literature Review 

1 Mercury Cycling and Biogeochemistry 

1.1 Global Mercury Cycle 

Mercury (Hg) is a naturally occurring element found in the lithosphere (Seneviratne, 2007). 

Elemental mercury (Hg(0)) has both liquid and gaseous phases at ambient temperatures and 

pressures.  Ionic inorganic Hg has two cationic states: monovalent mercury (Hg(I)) and divalent 

mercury (Hg(II)). Divalent mercury (Hg(II)) is more stable and commonly associated with 

inorganic molecules such as sulphur (cinnabar/meta-cinnabar), chlorine (mercuric chloride), and 

oxygen and hydroxyl ions (Carpi, 1997; Seneviratne, 2007). Mercury can also form organic 

substances such as dimethylmercury (Me2Hg) or methylmercury (MeHg) which are more toxic 

than the inorganic forms of Hg. Mercury has a relatively high vapour pressure which means it 

transforms into a colourless, odourless gas with relative ease (Seneviratne, 2007). Gaseous 

elemental Hg(0) (GEM) is found as a vapour which allows for its easy atmospheric transport and 

can have an atmospheric residence time of several months to a year which allows for 

hemispheric circulation in the stratosphere (Pirrone & Mason, 2009).  

Both natural processes and anthropogenic activities emit Hg into the atmosphere as GEM, Hg(II) 

and particulate Hg (Pirrone et al., 2010). Natural emissions include those from crustal degassing, 

volcanoes, and Hg volatilization from geologically-enriched material (Rasmussen, 1994; Gustin 

et al., 2000; Rytuba, 2005). Forest fires, soils and oceans also re-release Hg from long-range 

transport of Hg from anthropogenic sources (Mason et al., 1994; Fitzgerald et al., 1998; 

Ebinghaus et al., 1999; Sunderland & Chmura, 2000; Friedli et al., 2003). Anthropogenic 

sources of Hg increased with the Industrial Revolution with these emissions clearly increasing 

between 1850 and 1890 (North American gold rush) and peaking in the 1970s due to increased 

reliance on coal combustion for power generation (Schuster et al., 2002; Streets et al., 2011; 

UNEP, 2013). Aside from coal combustion, other anthropogenic sources of Hg are artisanal goal 

mining, ore processing, production of consumer products (e.g. paint, electronics) and industrial 

scale chemical manufacturing (Pirrone et al., 2010; UNEP, 2013). Artisanal gold mining is 
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currently the largest contributor to anthropogenic emissions of Hg as Hg is used for 

amalgamation of gold then is subsequently burned off and released into the atmosphere (see 

Cordy et al., 2011; UNEP, 2013). Present (2013) estimates of Hg emissions range from 6500 – 

8200 metric tonnes per year with the majority of these emissions classified as secondary 

emissions which are Hg re-emissions from previously deposition with primary emissions only 

contributing 30 – 35% of the total global emissions (Driscoll et al., 2013). Once GEM has been 

released into the atmosphere, it can be transported long distances in the stratosphere and will 

eventually re-enter the troposphere (Pirrone & Mason, 2009). Once GEM re-enters the 

troposphere, it can be oxidized by aerosols and halogens to form particulate bound mercury 

(Hg(II)) or stay as elemental Hg(0) (Pirrone & Mason, 2009). Once Hg has been deposited as 

Hg(II) species, it will either remain bound to soil or be hydrologically transported through the 

environment in both dissolved and particulate forms. With the presence of the right microbial 

community and/or environmental conditions, Hg(II) can be transformed into MeHg or reduced to 

Hg(0). Mercury can be transitioned within the environment by forming organic and inorganic 

complexes, Hg sulphide complexes, transformed to MeHg and bioaccumulated or evaporated 

from the system (Figure 1.1) (Skyllberg et al., 2000; Heyes et al., 2004).  

1.1.1 Methylmercury  

Methylmercury is a form of Hg that is an environmental toxin and contaminant of concern as it 

has the ability to bioaccumulate and biomagnify through the aquatic food web (Morel et al., 

1998). Bioaccumulation means that a substance accumulates in organisms faster than biological 

processes are able to break it down or remove it. Biomagnification is the increase in contaminant 

concentration with increasing trophic level, ultimately resulting in concentrations of concern in 

higher tropic level fish that present a risk to consumers. This accumulation in higher trophic 

organisms such as birds or fish can have serious effects on these individuals such as behavioral, 

neurochemical, hormonal and reproductive changes (Scheuhammer et al., 2007).  
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Figure 1.1: Mercury deposition, transport and cycling in the environment (from Mercury 
Pollution: Integration and Synthesis. Copyright Lewis Publishers, an imprint of CRC Press 
Krabbenhoft & Rickert, 2013). 

Methylmercury can also cause health complications in humans as it is a neurotoxin that can 

cause emotional changes, headaches, tremors, muscle weakness and impaired cognitive function 

(Mergler et al., 2007). Minamata disease in humans is a severe form of Hg poisoning that 

originated from Minamata, Japan where industrial waste containing Hg and MeHg from the 

Chisso Corporation chemical factory was released into Minamata Bay from 1932 to 1968 

(Harada, 1995). Mercury accumulated in the fish and shellfish that Minamata residents 

consumed caused serious Hg poisoning in local residents (Harada, 1995).  

Mercury methylation is primarily a microbial process (Compeau & Bartha, 1985) performed by 

some anaerobic iron- and sulphate-reducing bacteria that have the ability to transform Hg(II) and 

produce MeHg as a by-product of their microbial metabolism (Fleming et al., 2006; Kerin et al., 

2006). Some Desulfobacterales, Geobacter, and Desulfuromonales have been found to have the 
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ability to methylate Hg (Gilmour et al., 2011). Relatively recently it was discovered that at least 

one bacteria (Desulfovibrio desulphuricans) has the ability to methylate elemental Hg as well as 

Hg(II) (Colombo et al., 2013). Compeau & Bartha (1985) proposed that Hg methylation in this 

particular organism occurred through the transfer of a methyl group from methyl-

tetrahydrofolate using methylcobalamin The methyl group was found to have originated from the 

C-3 from serine or formate using acetyl-coenzyme A pathway. This pathway is found outside of 

D. desulfuricans LS so it was suggested that the ability to methylate Hg is likely associated with 

the substrate specificity of its enzymes. Ekstrom et al. (2003) and Ekstrom & Morel (2008) 

determined that the ability to methylate was not simply tied to the acetyl-coenzyme A synthase 

pathway as some known methylators lack this pathway. Since there is a known difference in the 

pathway involved in methylation, this could possibly explain the differences in methylation rate. 

The most common theory for Hg uptake is diffusion of small neutrally charged Hg complexes. 

Mercury is able to enter bacterial and algal cells though the cell wall using passive diffusion of 

HgCl2 and HgS (Mason et al., 1996; Benoit et al., 1999; Benoit et al., 2001). Golding et al. 

(2002) suggested that Hg uptake may actually occur via a facilitated transport mechanism. In all 

instances identified thus far, Hg is methylated in the cell and is then excreted by the microbe into 

the environment. 

Parks et al. (2013) found two gene clusters (HgcA and HgcB) that encode for proteins that have 

the ability to carry methyl groups in known Hg methylators Desulfovibrio desulfuricans and 

Geobacter sulferruducens. Following this discovery, Gilmour et al. (2013) looked for the 

presence of these gene clusters in all microorganisms with their genomes sequenced, including 

those previously identified Hg methylators. The HgcA and HcgB gene clusters were found in 

known methylators as well as other microorganisms not yet known to be Hg methylators 

including methanotrophic, syntrophic, acetogenic and fermentive anaerobes from both Archaea 

and Bacteria domains (Gilmour et al., 2013). These microorganisms survive in a diverse range of 

environments including rice paddies, the animal gut, and environments of extreme pH and 

salinity (Gilmour et al., 2013). Though there is now a variety of identified Hg methylators, iron- 

and sulphate-reducing bacteria remain the primary methylators. 

Methylmercury production is an anaerobic process that occurs in a saturated environment, at 

relatively low redox potentials and at lower pH. Methylmercury production can also be affected 
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by dissolved organic carbon (DOC) availability as DOC can complex with inorganic Hg and are 

generally too large to pass through the cell membranes (Miskimmin et al., 1992). At a lower pH, 

DOC is less negatively charged which makes it less likely to complex Hg and increases the 

available Hg for methylating bacteria (Miskimmin et al., 1992, Haitzer et al., 2003, Kelly et al., 

2003). Methylmercury can also be demethylated in the environment and thus the net MeHg 

concentration in soil, sediment and water is governed by both methylating and demethylating 

processes (see Marvin-DiPasquale et al., 2000). Demethylation of MeHg in the environment can 

occur biotically by mircoorganisms that have the mer operon (Marvin-DiPasquale et al., 2000; 

Barkay et al., 2006) and abiotically, through mechanisms like photodegradation (see Sellers et 

al., 1996).  

1.2 Peatlands as a Source of Methylmercury 

St. Louis et al. (1994) found that the presence of wetlands in a catchment resulted in higher 

MeHg exported from these catchments. The degree of MeHg loading to downstream 

environment was also found to be related to wetland type (St. Louis et al., 1996). MeHg was 

found in high concentrations in peat soils of some wetlands suggesting that they are net sources 

of MeHg to the downstream environment (Krabbenhoft et al., 1995; Branfireun et al., 1996).  

Methylmercury production in peatlands can vary widely both within a single peatland (Mitchell 

et al., 2008b) and between peatland types due to differences in nutrient status and hydrologic 

fluctuations (Tjerngren et al., 2012a, b). Provided sulphate (SO4
2-), a labile carbon source and 

bioavailable Hg, are present, Hg methylation can occur in the reducing peat environment.  

Divalent Hg has a high affinity for binding with dissolved organic matter and soil organic matter 

and in the natural environment, the majority of the soil Hg present is bound to organic matter 

(Skyllberg et al., 2000; Åkerblom et al., 2008). This means that the Hg mobility in soils is 

controlled by the complexation with organic matter (Kalbitz & Wennrich, 1998; Matilainen et 

al., 2001; Skyllberg et al., 2003). The organic compounds that Hg complexes strongly with 

contain reduced sulphur groups, such as thiols (Skyllberg et al., 2006) as well as other, weaker 

binding locations such as phenolics (Drexel et al., 2003). Drexel et al. (2003) was able to show 



6 

 

that Hg(II) showed a preference for thiols at lower Hg(II) concentrations and a preference for 

phenolic binding sites at higher Hg(II) concentrations.  

Sulphide (S-), generated by SO4
2- reduction can impact Hg availability. Gilmour et al. (1998) 

determined that there is a SO4
2- concentration producing a MeHg production optima in wetlands 

where there is sufficient SO4
2- to support MeHg production but not so much that excess S- is 

generated that would to inhibit methylation. Sulphide concentrations above 0.3 – 3.0 mg/L in 

different wetland ecosystems have been shown to inhibit methylation (Gilmour et al., 1998; 

Benoit et al., 2001; Langer et al., 2001; Jay et al., 2002; Drott et al., 2007). The formation of 

HgS(s) removes bioavailable Hg through precipitation (Björnberg, 1988; Benoit et al., 1999). In 

sulphidic environments, S- can out-compete other ligands as the solubility constant for Hg(II) 

and HgS(s) is extremely low (Ks = 10-52) meaning when S- if present, virtually all Hg would be 

precipitated as HgS(s) (Björnberg, 1988; Dyrssen & Wedborg, 1991).  

1.3 Sources of Sulphate to Peatlands 

Sulphate-reducing bacteria control Hg methylation in peatlands which makes SO4
2- concentration 

in peatlands important as it regulates their metabolic activity (Mitchell et al., 2008a; Stickman et 

al., 2016), and the deposition of SO4
2- in rain and snow is a primary vector of SO4

2- delivery to 

northern latitude ecosystems, including peatlands. Global sulphur/SO4
2- emissions increased 

fairly consistently until the end of the 1980s (Lefohn et al., 1999) and emissions decreased from 

1990 to 2000, with estimated peak global sulphur emissions between 70 and 80 Tg S/yr (Stern, 

2006). In the past, the majority of sulphur dioxide was released to the atmosphere from coal-

burning power plants. Sulphur dioxide interacts with water in the atmosphere to produce 

sulphuric acid (H2SO4), which delivers SO4
2- to ecosystems in rain and snow. Sulphate 

deposition is highest near industrialized regions and decreases with distance from the emission 

sources (Singh & Agrawal, 2005). Sulphate atmospheric deposition in northern peatlands is 

lower due to their remote location, compared to more southern locations closer to SO4
2- sources. 

This is well illustrated in the 2007 sulphur wet deposition map for North America in the 

following figure showing the lowest mass/year deposited in the more northern regions (Vet et al., 

2014):  
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Figure 1.2: 2007 Annual Wet Deposition of SO4
2- across Canada and the United States (Vet et 

al., 2007). 

Once sulphur is deposited to peatlands, it can be partitioned to both inorganic (e.g. SO4
2-, FeS, 

H2S) and organic forms (e.g. carbon-bound S, ester S) (Chapman & Davidson, 2000) governing 

the amount of SO4
2- available for Hg methylation (Novák & Wieder, 1992; Coleman-Wasik et 

al., 2015). In general, peatlands are SO4
2- sinks, however it can be released from the peat stores 

with fluctuating water tables which can re-oxidize reduced and organic bound S to SO4
2- (Devito 

& Hill, 1999; Dowrick et al., 2005; Coleman-Wasik et al., 2015).  

Regional hydrology can influence SO4
2- supply to wetlands through surficial and sub-surface 

flow. Devito & Hill (1997) observed small SO4
2- concentration peaks following water table rises 

above the wetland surface during storm runoff. Groundwater upwelling can provide SO4
2- to 

wetlands (Devito & Hill, 1997; Branfireun et al., 2002) providing even SO4
2--limited wetlands 

with a SO4
2- source. Periodic release of SO4

2- has been observed in wetlands and peatlands 

following water table drawdown causing the re-oxidation of reduced sulphur during dry summers 

(Wieder, 1985; Bayley et al., 1986; Coleman-Wasik et al., 2015). Upon rewetting, SO4
2- can be 

released into pore water allowing for sulphate-reducing bacteria to access this newly regenerated 

SO4
2- pool (Coleman-Wasik et al., 2015).  

Gold and base-metal mines have been known to have MeHg contamination problems (Grandjean 

et al., 1999; Winch et al., 2008; Winch et al., 2009). Sulphate-reducing bacteria has been found 
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in acidic mine tailings (Winch et al., 2009). Though these tailings can be very acidic, sulphate-

reducing bacteria have been found to be active in environments with pH ~2 (eg. Praharaj & 

Fortin, 2004).    

McCarter et al. (2017) found that after one year of simulated mining wastewater additions (27.2 

mg/L SO4
2-) to an Experimental Fen that there were increases in pore water MeHg, Total 

mercury (THg) and %MeHg (percent of THg found as MeHg). Despite these increases in SO4
2-, 

not all SO4
2--contaminated sites exhibit enhanced methylation or MeHg contamination issues. 

Johnson et al. (2016) found that there was no significant difference in MeHg pore water and 

solid phase accumulation in a wetland with long term, high concentration (> 100 mg/L) mine 

SO4
2- tailings additions. These findings are consistent with the observation that there are SO4

2- 

and S- optima for Hg bioavailability and methylation. Methylmercury production in wetlands 

with exposure to elevated SO4
2- loading does not respond proportionally to SO4

2- loading, and 

wetlands that are SO4
2--limited may exhibit a stronger methylation response than those with 

chronically elevated SO4
2- (Branfireun et al., 1999; Jeremiason et al., 2006; Mitchell et al., 

2008a; Johnson et al., 2016). 

1.4 Thesis Objectives 

Sulphate additions to peat has been shown to increase pore water MeHg concentrations through 

SO4
2- reduction by sulphate-reducing bacteria (Branfireun et al., 1999; Mitchell et al., 2008a). As 

mining and industrial development in the north continues, wetlands as wastewater treatment 

options may become more prominent form of wastewater treatment, yet we have incomplete 

knowledge about how the SO4
2--limited peatlands found at higher latitudes will respond in terms 

of Hg methylation to increased SO4
2- loading from both tailings-derived SO4

2-, as well as the 

discharge of other SO4
2--containing waters.    

To address these knowledge gaps, the objectives of this thesis are: 

1. To experimentally determine the impacts of multi-year SO4
2- addition on Hg methylation 

in a sub-arctic fen peatland (Chapter 2) and; 
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2. Assess the relative impacts of different levels of SO4
2- loading on MeHg production in 

sub-arctic peats using laboratory experiments with natural peats, simple SO4
2- solutions, 

and leached mine waste rock to simulate tailings-derived SO4
2- (Chapter 3).   
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Chapter 2  

2 Effect on Timing and Magnitude of Point Source Sulphate 

Loading on Methylmercury Production in Northern Peatlands 

2.1 Introduction 

Mercury (Hg) is released or re-emitted into the atmosphere through natural and anthropogenic 

process, with natural processes including outgassing of mercuriferous rocks and soils, wild fires, 

volcanoes and erosion, and anthropogenic sources including coal burning, artisanal gold mining 

and waste burning (see Schroeder & Munthe, 1998; Taylor et al., 2005; Driscoll et al., 2013; 

U.S. EPA, 2015). Anthropogenic sources have increased the atmospheric concentration of Hg by 

approximately 3 times since the pre-industrial era (Lindberg et al., 2007) with the majority of the 

atmospheric Hg found as gaseous elemental Hg (GEM).  The atmospheric residence time of Hg 

has been estimated to be from several months to a year (Pirrone & Mason, 2009) allowing it to 

travel long distances and be deposited in regions far from the original source (Jaffe et al., 2005; 

Durnford et al., 2010). Mercury is transported long distances in the atmosphere as GEM and is 

then oxidized and deposited largely as divalent inorganic Hg (Hg(II)) through wet (precipitation) 

and dry (particulate) deposition (Lindqvist & Rodhe, 1985). This Hg can then be converted into 

methylmercury (MeHg) by sulphate (SO4
2-) and iron-reducing bacteria as a by product of their 

microbial metabolism (Compeau & Bartha, 1985; Kerin et al., 2006; Gilmour et al., 2013). 

Mercury enters bacterial and algal cells through the cell wall by passive diffusion of HgCl2 and 

HgS (Mason et al., 1996; Benoit et al., 1999). Active Hg uptake by SO4
2- and iron-reducing 

bacteria has also been identified and the type of uptake can depend on which thiol-containing 

compounds are present (Schaefer et al., 2011). Mercury methylation occurs inside sulphate-

reducing bacteria via enzyme-mediated methyl transfer from methylcobalamin (Choi & Bartha, 

1993; Choi et al., 1994) and is then excreted from the cell as MeHg.  

Much of the fundamental research on methylation and sulphate-reducing bacteria was conducted 

on lake sediments (Korthals & Winfrey, 1987; Gilmour et al., 1992) where it was determined 

that anaerobic conditions (Olson & Cooper, 1976; Callister & Winfrey, 1986) and pH are 
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important controls on Hg methylation rates (Ramlal et al., 1985). One aspect that pH can control 

is the fraction of available Hg for methylation through interactions with dissolved organic matter 

(DOM) where DOM is less negatively charged at lower pH levels and thus less likely to complex 

with Hg(II) (Haitzer et al., 2003; Kelly et al., 2003).  

The reduction of SO4
2- in SO4

2--rich environments can lead to a buildup of sulphide that can 

inhibit microbial activity (Compeau & Bartha, 1983; Benoit et al., 1999). Research in the Florida 

Everglades identified a SO4
2- optima for MeHg production where there is enough SO4

2- for 

sulphate-reducing bacteria to metabolize but not enough reduction that sulphide concentrations 

inhibit methylation  (Gilmour et al., 1998; Benoit et al., 2001; Langer et al., 2001; Jay et al., 

2002; Drott et al., 2007). Sulphide concentrations can play an important regulatory role in 

methylation as HgS(s) precipitates from solution, making this Hg less bioavailable (Björnberg, 

1988; Benoit et al., 1999). In sulphidic environments, sulphide can out-compete other ligands for 

Hg complexation as the solubility constant for Hg(II) and HgS(s) is extremely low (Ks = 10-52) 

indicating that in the presence of sulphide, essentially all Hg would precipitate to the solid phase 

(Björnberg, 1988; Dyrssen & Wedborg, 1991). In aquatic environments, it has been suggested 

that solid phase organic matter may control Hg partitioning between aqueous and solid phase 

(Hammerschmidt et al., 2008; Hammerschmidt & Fitzgerald, 2006). As sulphur species and 

DOM exert a large control over Hg speciation in wetlands, it is important to examine these 

variables to determine which may be contributing to changes in MeHg concentrations.  

 

As sites of SO4
2- reduction, wetlands (particularly peatlands) have been identified as sources of 

MeHg to downstream aquatic systems (St. Louis et al., 1994; Branfireun et al., 1996; Loseto et 

al., 2004). Mercury methylation does not occur uniformly in peatlands naturally with hot spots of 

methylation occurring at the peatland-upland interface (Mitchell et al., 2008b) or at locations of 

groundwater upwelling where in both cases, solutes (e.g. available carbon, SO4
2-) are delivered 

to different areas where methylation can then occur. It is well established that the zone of highest 

MeHg concentrations is near the mean annual water table position where anoxia is maintained, 

and temperature and nutrient supply are optimal for sulphate-reducing bacterial growth (see 

Branfireun et al., 1996). Over a large array of watersheds, there has been a positive relationship 

observed between proportion of the watershed being wetland area and MeHg concentration and 

flux (Grigal, 2002) all indicative of peatlands as significant sources of MeHg to the environment.  
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Since the industrial period began, atmospheric SO4
2- deposition from coal burning and other 

processes resulted in a considerable increase causing environmental acidification, especially in 

regions near heavily industrialized areas (Likens & Bormann, 1974). Successful regulations have 

since been put in place to minimize SO4
2- release from industrial activity (Driscoll et al., 2001). 

The relationship between sulphur and Hg/MeHg in Boreal peatlands was not documented until 

the late 1990s and early 2000s (Branfireun et al., 1999, 1998; Branfireun & Roulet, 2002).  Since 

these studies, most research has looked at the impact of atmospherically deposited SO4
2- on 

MeHg production in peatlands (Jeremiason et al., 2006; Åkerblom et al., 2013) as this is the 

dominant source to catchments.  

Sulphate additions have been found to increase SO4
2- concentrations in peatlands (Branfireun et 

al., 1999; Coleman-Wasik et al., 2012) which are typically SO4
2- limited. Mesocosm 

experiments were able to show that the combined additions of SO4
2- and labile carbon was able 

to best stimulate Hg methylation rather than SO4
2- alone (Branfireun et al., 1999; Mitchell et al., 

2008a). Coleman-Wasik et al. (2012) found that after SO4
2- additions ceased, MeHg 

concentrations were able to, relatively quickly, fall back to near-background concentrations. 

Drying and subsequent rewetting of the same SO4
2- amended peatland resulted in SO4

2- 

regeneration and increased MeHg concentrations (Coleman-Wasik et al., 2015) pointing to the 

potential for SO4
2- additions to cause long term changes in MeHg cycling.  

Methylmercury contamination has been associated with gold and base-metal mines (Grandjean et 

al., 1999; Winch et al., 2008; Winch et al., 2009) which can have very sulphur-rich geologies. 

Sulphate-reducing bacteria have been found in mine tailings (Winch et al., 2009) and even 

though these tailings can be very acidic, SO4
2- reducers have been found to be metabolically 

active in environments with pH ~2 (e.g. Praharaj & Fortin, 2004).  Johnson et al. (2016) 

demonstrated no significant difference in MeHg pore water and solid phase accumulation in a 

wetland with long term, high concentration (>100mg/L) mining SO4
2- amendments and a non-

amended wetland in the same area,, suggesting that wetlands with chronically elevated SO4
2- 

additions may not have the same response to SO4
2- loading as wetlands that are SO4

2- limited 

(Johnson et al., 2016).  
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Much less is known about how SO4
2- loading from mining processes may affect northern 

peatlands that naturally receive much lower SO4
2- deposition. McCarter et al. (2017) found that 

after only a year of simulated wastewater additions (containing SO4
2-), MeHg concentrations, 

THg concentrations, and %MeHg (percent of THg found as MeHg) all had multi-fold increases 

in an experimental fen in the James Bay Lowlands. Sulphate was found to have moved quickly 

through the peatland (McCarter et al., 2017) indicating the potential for large spatial variation in 

net MeHg production.  As this study was only for one year of simulated wastewater additions, it 

was unknown what the implications would be for multi-year additions of SO4
2- on MeHg 

production, nor what would happen to MeHg production after additions were stopped.  

Therefore, the objective of this study was to evaluate the impact of multi-year SO4
2- additions 

and recovery on MeHg concentrations in a simulated wastewater treatment fen peatland. 

To address this, we repeated wastewater (and subsequent SO4
2-) loading as reported in McCarter 

et al. (2017), for one year (2015), and in a subsequent year (2016), resampled without any 

wastewater additions (recovery year). We repeated the SO4
2- loading in order to determine if 

there was a cumulative impact on MeHg production and then sampled a subsequent recovery 

year without wastewater loading to assess carry over and rate of recovery.  

2.2 Site Description 

This study site (Experimental Fen) was instrumented in the summer of 2013 and nutrient 

additions, water sampling, and intensive hydrological monitoring began the following year. It is 

located in the Hudson/James Bay Lowlands (HJBL) in northern Ontario, Canada (52˚51’17 N, 

83˚56’34 W) approximately 90km West of Attawapiskat, Ontario near the De Beers Group of 

Companies Victor Diamond Mine. The peatland complex that the Experimental Fen resides in is 

characterized by a 1.5–2.5m layer of peat over the Hudson Platform which consists of limestone, 

mudstone, dolostone and evaporites (Singer & Cheng, 2002). During the Quaternary period, the 

retreat of the Laurentide Ice Sheet, deglaciation and formation of the Tyrell Sea (~8,000 years 

ago) left behind glacial tills and marine silts and clays that are between 10 and 30 m thick 

(Glaser et al., 2004). Relatively low hydraulic conductivity (5.2 x 10-5 m/day) prevents enhanced 

groundwater recharge from the overlying fen and minimizes the effects of the water table 

drawdown from the nearby open pit mine (Whittington & Price, 2013). This peatland formed due 
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to the poor drainage in the area, continued isostatic rebound of the HJBL at 1 m/century (Hunter, 

1970) and thus flattening of the landscape resulting in the accumulation of peat deposits and 

eventually leading to a peatland-dominated region over the HJBL (Riley, 2011).  

The Experimental Fen (Figure 2.1) is approximately 225 m long and shows a pool-ridge-pool 

pattern with the direction of the water flow perpendicular to the peat ridges. To the East and 

West of the Experimental Fen are bogs, to the North lies a large pool (used to draw water for 

hydrologic loading) and to the South is a North branch of North Granny Creek (McCarter & 

Price, 2017).  

 

Figure 2.1: Map of the Experimental Fen with SO4
2- added at the arrow at the top of the fen 

(2014 and 2015) and flowing down the length of the fen with pore water sampling locations 
denoted by the filled circles and 2016 solid sample locations denoted by the open circles 
(Modified from McCarter et al., 2017). 
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Ridges were divided into three different sections based on similar MeHg concentrations and 

ancillary water chemistry data. The 25m ridge which was 25m away from the wastewater 

additions as the upper ridge, the 40 m, 62 m and 81 m ridges which were 40 m to 81 m away as 

the middle ridges and the 105 m, 140 m, 198 m, 210 m and 225 m ridges which were called the 

lower ridges. Each sampling section had approximately the same number of sample locations 

(Figure 2.1) with the most dense sampling occurring in the 25m ridge where we expected to see 

the largest changes.  

Two reference fens (52˚47’01 N, 83˚53’12 W and 52˚47’00 N, 83˚53’19 W) located near the 

Experiment Fen were chosen and sampled periodically (THg, MeHg, DOC, SO4
2-) to be used as 

a baseline for changes seen in the Experimental Fen. These two locations have similar 

topography, vegetation and peat depth to the Experimental Fen. Three small well transects were 

set up in the pools and ridges, as well as two pond wells at each site, to monitor natural water 

chemistry and hydrology changes. 

2.3 Methods 

During the 2014 and 2015 summer field season (May-August), simulated wastewater was added 

to an Experimental Fen in the James Bay Lowlands. Over 38,000 L and 30,000 L of water was 

pumped into the Experimental Fen each day during the summer field season in 2014 (July 11 – 

August 31) and 2015 (July 4 – August 14), respectively. The simulated wastewater contained 

27.2 mg/L SO4
2-, 27.2 mg/L nitrate, 9.1 mg/L ammonium, 7.4 mg/L phosphate and 47.2 mg/L 

chloride, similar to actual wastewater measured at the mine site (McCarter et al., 2017). Water 

for the experiment was pumped in from a nearby pond where it was then mixed with 

concentrated fertilizer and added as a point source to the top of the fen (Arrow at the top of 

Figure 2.1). For a full description of the experimental design see McCarter et al. (2017). Field 

hydrologic data was collected as well as various water and solid samples throughout the three 

field seasons. 

All %MeHg values were calculated on an individual sample basis then those values were used to 

provide averages for %MeHg. Distribution coefficients for THg and MeHg were also calculated 

[log Kd = log ([Hg]solid/[Hg]porewater); µg/L] for each solid sample location with corresponding 
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pore water samples. Solid samples were taken at 3 (10 – 15cm, 20 – 25 cm, 30 – 35 cm below 

surface) depths but average MeHg and THg concentrations over all depths at each sample 

location were used to calculate distribution coefficients for both the reference site and 

Experimental Fen. All in text values are (± one standard deviation). 

2.3.1 Precipitation and Air Temperature 

The local meteorological station located near the De Beers Group of Companies Victor Diamond 

Mine has 9 years of temperature data available (2006-2015).  Summer precipitation data was 

collected at the site using a tipping bucket rain gauge (Texas Instruments TE525M-L tipping 

bucket rain gauge) with values being totaled every 20 minutes. Longer term climate data was 

retrieved from Environment Canada (http://climate.weather.gc.ca/climate_normals) Moosonee 

(~250km Southeast of the field site) which were both used to collect meteorological data for this 

site.  

2.3.2 Water Sample Collection and Analysis  

Every ~7-10 days the wells and piezometers were purged the day before sampling. The pH was 

recorded using a YSI 650-01 Series Handheld with 600XL-B-0 YSI Sonde equipped with pH 

probe by rinsing the YSI sample cup and probe 3 times with water from each well then filling the 

cup and screwing in the probe to take the final reading. The probes were calibrated the morning 

before every sampling event and the pH probe used pH 4, 7 and 10 standards to calibrate. 

Mercury samples were collected in double-bagged 250mL PETG bottles using a peristaltic pump 

with Teflon tubing and only taken from certain wells throughout the fen. Between each Hg 

sample the lines were rinsed with 18.2 MOhm/cm DI water to eliminate cross-contamination of 

samples and sample lines were rinsed with sample prior to collection. Surface (pond) water 

samples were collected using a ~3 m long PVC pipe with a three prong extension clamp attached 

to the end to allow reaching to the center of large ponds. This clamp was outfitted with a nitrile 

glove that was changed between samples. All sample bottles were environmentalized three times 

prior to filling and all Hg samples were collected using the “clean hands, dirty hands” method 

(EPA Method 1669) for ultra-trace sampling. Field duplicates were collected every ~10 samples 

and field and lab blanks were collected for QA/QC. Samples were vacuum filtered in a PTFE-
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outfitted modified desiccator using Macherney-Nagel 0.45 µm glass microfiber filters within 36 

hours of collection. After filtering, samples were preserved using OmniTrace Ultra EMD 

Millipore HCl to 1% v/v. Before and after filtering samples were stored in a dark refrigerator (4-

6˚C).  

Water samples for all analytes other than Hg were collected into sterile 50 mL Environmental 

Express Flipmate® filtration bottles using a peristaltic pump with C-Flex and Teflon tubing. 

Environmental Express Flipmate® bottles come with two caps, one for storage and one for 

filtration with the filtration cap accepting two threaded sample bottles – one empty and one with 

unfiltered sample. A port on the side of the filtration cap allows for vacuum pressure to be 

applied and the sample is pulled through a 0.45 µm filter in the filter cap into the empty cup. 

Between sampling events, all sample lines were rinsed with 10% HCl for 20 minutes and 18.2 

MOhms DI water for 20 minutes to prevent contamination. Prior to sampling, sample was run 

through the Teflon lines to minimize sample cross-contamination. Field duplicates were 

collected every ~10 samples and field blanks were collected periodically for QA/QC. Samples 

were stored in a cooler with icepacks in the field then transferred to a refrigerator (4-6˚C) in the 

on site laboratory until shipment back to Western University for analysis. All water samples 

were filtered within 36 hours of collection using Macherney-Nagel 0.45 µm glass fiber filters.  

2.3.2.1 Water Chemical Analyses 

Ions and Dissolved Organic Carbon:  Waters were analyzed for anions (only SO4
2- is reported 

here) on a Dionex ICS-1600 Ion Chromatograph in accordance with EPA Method 300.0 using 

0.5 mL sample aliquots and diluted using 18.2 MOhm deionized water when required (sample 

concentration > 100 mg/L). Analytical duplicates were run every 10 samples and field duplicates 

were collected every ~10 samples and were both expected to fall within ±15% of each other. 

Matrix spikes and check standards were run every 10 samples and were also expected to fall 

within ±15% of the expected value. Samples were rerun if they did not meet proper QA/QC. The 

instrument was calibrated to analyze samples between 0.5 mg/L and 100 mg/L and the reporting 

limit was 0.05 mg/L.  
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DOC samples were analyzed on an OI Analytical Aurora 1030W Combustion TOC Analyzer 

using a wet oxidation method (minimum detection limit = 0.2 mg/L). A minimum 7 mL of 

sample was used for analysis. Analytical duplicates were completed on 10% of samples, matrix 

spikes were done on 20% of the samples and a set of three check standards were completed in 

each run for both DOC and ions and were all expected to fall within ±15% of their expected 

values. Samples that failed to meet QA/QC were rerun. The instrument was calibrated to analyze 

samples with concentrations between 0.5 mg/L and 50 mg/L, with a reporting limit of 0.5mg/L.  

Methylmercury: MeHg was analysed in accordance with EPA Method 1630 (U.S. EPA, 1998), 

briefly those methods included the following: 40 mL aliquots with 1% ammonium pyrrolidine 

dithiocarbamate, distilled for 3 hours using nitrogen gas at 125˚C for ~3 hours from Teflon 

distillation vessels, through polyfluorinated plastic tubing into glass vials. Ascorbic acid was 

added to 30 mL sample aliquots, samples were shaken and left uncapped for 10 minutes to allow 

for removal of free halogens. 2M acetate buffer was added to adjust the sample pH to ~4.5 and 

sodium tetraethyl borate (NaBEt4) was added to ethylated MeHg and samples were capped. 

Samples were purged with argon gas and analyzed for MeHg on a Tekran© Model 2700 

Automated Methyl Mercury Analysis System by gas chromatography and detection by cold 

vapour atomic fluorescence spectrometry (CVAFS). The Biotron Analytical Services Laboratory 

method detection limit (MDL) for MeHg analysis was 0.006 ng/L and the method reporting level 

(MRL) was 0.18 ng/L. Recovery of MeHg matrix spikes (mean ± standard deviation) was 106 ± 

1.53% (n = 43) in 2014, 95.3 ± 1.43% (n = 38) in 2015 and 95.3 ± 2.00% (n = 40) in 2016 and 

sample duplicate recovery was 100 ± 1.80% (n = 24) in 2014, 101 ± 0.81% (n = 22) in 2015 and 

98.4 ± 1.14% (n = 17) in 2016. 

Total Mercury: To analyze THg in water samples, bromine monochloride (BrCl) was added to 

25 mL sample aliquots, shaken, left uncapped for 10 minutes then stored overnight for BrCl 

oxidation. The following day, hydroxylamine hydrochloride (HA) was added, samples were 

shaken and left uncapped for 30 minutes to allow for free halogen removal.  Finally, stannous 

chloride was added to convert all Hg species present in the sample to GEM. Gaseous elemental 

Hg was purged with high purity nitrogen gas from aqueous solution, captured on a gold trap, 

thermally desorbed and quantified using CVAFS on a Tekran© 2600 Mercury Detector 

according to EPA Method 1631 (U.S. EPA, 1999) for THg. The Biotron Analytical Services 
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Laboratory reports a MDL of 0.048 ng/L and an MRL of 0.144 ng/L for water samples run for 

THg. Recovery of THg matrix spikes (mean ± standard error) was 96.1 ± 2.30% (n = 30) in 

2014, 98.6 ± 1.27% (n = 41) in 2015 and 103 ± 1.22% (n = 26) in 2016 and sample duplicate 

recovery was 99.1 ± 3.33% (n = 18) in 2014, 101 ± 1.83% (n = 22) in 2015 and 102 ± 2.03% (n 

= 12) in 2016. 

For both Hg methods, method blanks and quality control standards were acidified to 1% v/v 

instead of 0.5% v/v. 20% of the samples run were analytical duplicates, 5% matrix spikes and 

quality control standards were run periodically throughout the run.  

2.3.3 Peat Sampling and Analysis 

Peat field samples were collected at 10-15 cm, 20-25 cm and 30-35 cm below the surface and 

approximately 90 g wet weight of peat was collected in a transect down the fen. Samples were 

collected in 10.16 cm x 15.24 cm plastic bags and duplicates were collected every ~10 samples 

for QA/QC. Samples were stored in a cooler with ice packs while in the field then frozen in the 

on-site lab and kept in the dark for shipment back to Western University. Samples were freeze-

dried for 4 days. The peat was then ground and homogenized using a KitchenAid coffee grinder 

by splitting the sample and pulse grinding the peat 10 times for 1 second each time and placing 

the ground sample in a new bag.  

Total Sulphur: Total sulphur samples were sent to the Ontario Forest Research Institute (OFRI) 

in Sault Ste. Marie, Ontario. The method used for percent total sulphur analysis is combustion of 

the peat at 1350˚C on an Eltra Helios C/S Analyzer. OFRI reports a MDL of 0.004%. 

Methylmercury: Solid sample MeHg data was obtained by digesting ~100 mg of peat in 2 mL 

of 25% KOH in methanol for 4 hours at 82˚C in Teflon bombs. Samples were left to cool for 1 

hour before being diluted with 8 mL of 18.2 MOhm deionized water and vortexed for 10 seconds 

to ensure the samples were homogenous. Samples were then transferred to 15 mL falcon tubes 

and stored in the fridge overnight for analysis the following day (sample digestion timing does 

not allow for instrument start up and calibration curve building on the same day). The following 

day samples were brought to room temperature, centrifuged, diluted with distilled water and 

made up to 30 mL with 500 µL 2M buffer and 30 µL NaBEt4. Samples were shaken and left to 
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react for 30 minutes with NaBEt4 before being run on a Tekran© Model 2700 Automated Methyl 

Mercury Analysis System with 10% analytical duplicates (101.81 ± 6.72%, n = 10) and 10% 

matrix spikes (97.53 ± 5.52%, n = 5).  

Total Mercury: The samples were then run on the Milestone DMA-80 direct Hg analyzer 

according to EPA Method 7473 (U.S. EPA, 2007). The calibration detection limit was 1 ng. 

Every 10 samples, analytical duplicates were analyzed (105.66 ± 6.80%, n = 5) and were 

required to fall within ± 15% of each other. A certified reference material (CRM), in this case 

MESS-3 (0.091 ± 0.009 mg/kg Hg) and IAEA 158 (0.132 ± 0.014 mg/kg Hg), was run at the 

beginning and end of each run. Blanks were analyzed at the start of each run and following every 

CRM (mean: 0.022 ng (± 0.019), n = 10). 

Distribution coefficients (LogKd) were calculated [logKd = log([Hg]solid/[Hg]porewater); µg/L] using 

the solid phase Hg concentrations and dissolved Hg concentrations for each individual sample. 

Average distribution coefficients were averaged over the 3 replicates of each addition type.  

2.4 Results 

2.4.1  Precipitation and Temperature 

The average temperature and precipitation during July and August was 15.6˚C and 154 mm 

calculated from the near site 9-year data collection. The average temperature and precipitation 

for Moosonee (July and August between 2014 and 2016) was 14.9˚C and 89 mm (Environment 

Canada, 2016) which agrees relatively well with the values from the near site meteorological 

station. During 2015, however there was above average precipitation at the site (~300 mm vs. 

long term average of ~120 mm over the summer) (McCarter & Price, 2017).  

2.4.2 Pore Water Chemistry 

pH:  pH at the reference site averaged 5.17 (± 0.04) in 2014, 5.12 (± 0.57) in 2015 and 5.40 (± 

0.34) in 2016 and remained consistent over the summer field season. pH values fluctuated 

between year at the Experimental Fen with a value of 4.89 (± 0.54) in 2014 (before the additions 

started) and dropped to 4.64 (± 0.45) at the end of the additions in 2014. Before wastewater 
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additions began in 2015, the average pH value over the entire fen was 5.15 (± 0.46) and at the 

end of additions in 2015, this value had dropped to 4.83 (± 0.40). pH values in 2016 rose to an 

average of 5.60 (± 0.31) at the beginning of 2016 and dropped down to 4.89 ± (0.43) by the end 

of the summer.  

Methylmercury: Pre-addition MeHg concentrations in the experimental fen ranged from 0.035 

– 1.88 ng/L. This is slightly higher than the average MeHg concentration found at the reference 

fens that were 0.10 ng/L (± 0.03), 0.075 ng/L (± 0.018), and 0.082 ng/L (± 0.037) in 2014, 2015 

and 2016, respectively.  

After the first simulated wastewater additions in 2014, mean MeHg concentrations in the upper 

ridge (25 m from addition source) was 5.20 ng/L (± 2.57) by the end of the 2014 additions; an 

increase of 40 times the pre-addition MeHg concentration (Figure 2.2). The middle ridges also 

showed an increase in MeHg concentration to an average of 1.35 ng/L (± 0.96) from a pre-

addition average of 0.11 ng/L (± 0.03).  The furthest sampling locations down the Experimental 

Fen showed the least change in MeHg concentration at 0.20 ng/L (± 0.12) but were still higher 

than pre-addition (0.14 ng/L ± 0.06) and reference fen concentrations.  

The 2015 pre-addition MeHg concentration in the upper ridge averaged 0.92 ng/L (± 0.40) which 

was more than 7 times higher than the 2014 pre-addition MeHg concentrations (0.13 ± 0.03), and 

higher than reference fen concentrations (Figure 2.2). Methylmercury concentrations increased 

the most in the upper ridge, ending the 2015 field season at an average MeHg concentration of 

4.15 ng/L (± 3.38) but showed a large range in concentration (1.46 ng/L – 13.93 ng/L) 

throughout the ridge at the end of the season. The middle ridges had the second largest increase 

in MeHg concentration during the 2015 additions, increasing from 0.62 ng/L (± 0.23) pre-2015 

additions to 3.23 ng/L (± 2.14) by the end of the season. The smallest increase in MeHg 

concentration in 2015 was in the lower ridges where the MeHg concentrations increased from 

0.16 ng/L (± 0.12) pre-addition to 0.28 ng/L (± 0.19) post additions.  

The MeHg concentrations in 2016 all decrease from the end of 2015 field season values and 

remain relatively consistent throughout the field season (Figure 2.2). These MeHg 

concentrations decrease but do not fall back to pre-addition values or reference site values.  The 

largest MeHg concentrations remain in the upper ridge with an average of 0.72 ng/L (± 0.39) 
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over the entire field season. The middle ridges and lower ridges averaged 0.64 ng/L (± 0.26) and 

0.20 ng/L (± 0.11) over the 2016 field season, respectively.  

 

Figure 2.2: Mean MeHg concentration (top), THg concentration (middle) and % of THg as 
MeHg (bottom) in peat pore waters before, during and after additions over the three year (2014 - 
2016) experiment broken down into the upper ridge (25m), middle ridges (40m – 81m) and 
lower ridges (105m – 220m). Year 1 and 2 sampling split into June (before additions), July and 
August sampling events. Recovery Year sampling split into June, July and October sampling 
events.  

Total Mercury:  Total mercury at the reference sites averaged 1.83 ng/L (± 0.51), 3.04 ng/L (± 

0.88) and 2.28 ng/L (± 0.38) during the 2014, 2015 and 2016 field seasons respectively. After the 
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first wastewater additions in 2014, THg concentrations more than doubled from 2.56 ng/L (± 

0.51) (pre-addition) to 6.73 ng/L (± 2.13) (end of the field season) in the upper ridge. THg in the 

middle ridges remained relatively unchanged increasing only slightly (2.71 ng/L (± 0.28) to 2.89 

ng/L (± 0.26)) over the course of the 2014 addition whereas THg in the lower ridge decreased 

from 4.30 ng/L (± 1.14) to 2.34 ng/L (± 1.32) over the course of the experimental addition.  

Total mercury pre-addition concentrations increase from 2014 to 2015 in the upper ridges and 

the middle ridges averaged 4.60 ng/L (± 1.24) and 4.77 ng/L (± 1.17) in 2014 and 2015 

respectively, averaging 2 ng/L higher in 2015. Total Hg concentrations in the upper ridge 

increased over the course of the additions ending with a final concentration of 6.86 ng/L (± 

4.05), similar to the THg concentration at the end of the 2014 field season. The middle ridges, 

however, increased much more in 2015 than 2014, with the end of season THg concentration in 

2015 (6.34 ng/L (± 2.74)) more than doubling the 2014 end-of-season concentration. Lower 

ridges THg concentrations were consistent throughout the 2015 field season (mean: 3.57 ng/L (± 

0.96)).  

In 2016, THg concentrations were relatively consistent at all locations throughout the field 

season. The upper ridge and middle ridges started the 2016 field season at concentrations similar 

to those from pre-addition 2014 with the upper ridge at 2.99 ng/L (± 0.56) and the middle ridges 

at 2.90 ng/L (± 0.49).  The lower ridges started with the highest THg concentration in 2016 at 

3.03 ng/L (± 0.46). All three of the locations ended the 2016 field season with THg 

concentrations similar to that from the 2014 pre-addition sampling averaging 2.68 ng/L (±0.71), 

3.00 ng/L (± 0.46) and 2.54 ng/L (± 0.48) at for 2014, 2015 and 2016 respectively.  

Percent Methylmercury:  Percent MeHg at the reference sites averaged 6.07% (± 3.36), 2.77% 

(± 1.19) and 3.70% (± 1.64) over the 2014, 2015 and 2016 field seasons respectively. Percent 

MeHg was highest in the upper ridge at 5.02% and increases by almost 15 times over the 2014 

field season resulting in the highest %MeHg of all the sample locations (~74% average %MeHg 

in the upper ridge) followed by the middle ridges which averaged a little more than half the 

upper ridges final 2014 value (averaging >44% %MeHg). The lower ridges tripled over the 2014 

field season. The 2015 field season follows a similar pattern to the 2014 field season, with the 

largest increases seen in the closest two locations and little change seen in the farthest locations. 
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The middle ridges in 2015 reached a higher %MeHg once the additions had started than 2014 at 

3.97% (± 0.50) compared to 26.21% (± 16.60) in 2015. %MeHg in 2016 remained consistent 

throughout the season and does not show an increasing pattern as seen in the previous two field 

seasons.  

Sulphate:  Pore water SO4
2- concentrations varied throughout the fen but generally the highest 

concentrations were at the top of the fen closest to the addition site. Average pore water SO4
2- 

concentration was 9.51 mg/L (± 8.61) and 1.74 mg/L (± 3.01) during the 2014 and 2015 

Experimental Fen wastewater additions, respectively. In 2016, the average SO4
2- concentration at 

the Experimental Fen was 0.43 mg/L (± 0.65) compared to the reference sites average of 0.20 

mg/L (± 0.18) in 2016. Sulphate concentrations in the upper ridge averaged 13.42 mg/L (± 8.66), 

4.18 mg/L (± 3.96) and 0.62 mg/L (± 0.52) in 2014, 2015 and 2016, respectively with the 2016 

value being much lower without the additions of SO4
2-. The large variability as seen in the 

standard deviation is due to the presence of non-uniform preferential flow paths which deliver 

more SO4
2- to some locations over others (McCarter & Price, 2016). Lower SO4

2- concentrations 

were measured in the lower ridges of the fen in 2015 (0.65 mg/L (± 0.94)) compared to 2014 

(0.86 mg/L (± 2.05)), and even lower in 2016 (0.17 mg/L (± 0.11)). Average SO4
2- 

concentrations at the reference site were 0.28 mg/L (± 1.10), 0.41 mg/L (± 0.27), and 0.20 mg/L 

(± 0.18) in 2014, 2015 and 2016, respectively.  

Dissolved Organic Carbon:  Pore water dissolved organic carbon concentrations were similar 

among sites and relatively invariant over the years and averaged 32.5 mg/L (± 13.7) in 2014, 

36.3 mg/L (± 12.4) in 2015 and 34.4 mg/L (± 8.1) in 2016 over the entire site. Average DOC 

concentrations at the reference sites for each year were 39.4 mg/L (± 7.6) in 2014, 33.0 mg/L (± 

11.1) in 2015 and 33.4 mg/L (± 8.0) in 2016 respectively.  

2.4.3 Solid-Phase Peat Chemistry 

Methylmercury: Methylmercury concentrations in the 0m and 25m ridges were elevated above 

background though relatively low compared to the 40m and 62m ridge concentrations. 

Methylmercury concentrations in the 0 m and 25 m ridges were elevated above background but 

relatively low compared to the 40 m and 62 m ridges. The highest MeHg concentration was 12.8 
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ng/kgdw (10cm – 15cm below surface) and occurred 40m from the wastewater additions followed 

closely by 10.8 ng/kgdw (10cm – 15cm below surface) and 10.5 ng/kgdw (20cm – 25cm below 

surface) at the 62m location (Figure 2.3). After the 62m ridge the concentrations are more 

similar to that seen in the 0m and 25m ridges. The average MeHg concentration of all the depths 

combined was highest at the 62m location, followed by the 40m location. Methylmercury 

concentrations were lowest at the top and bottom of the fen, peaking in the middle. There did not 

seem to be any consistent pattern with depth. The reference site average peat MeHg 

concentration in 2016 was 0.65 ± 0.06 µg/L. 

Total Mercury: Total mercury concentrations did not show any consistent pattern throughout 

the length of the fen with the highest average concentration at 81m and the lowest at 140m 

(Figure 2.3). Reference sites average peat THg concentration was 104.9 ± 25.7 ng/kgdw. 

 

Figure 2.3: Solid mean MeHg concentration (top), THg concentration (middle) and percent THg 
as MeHg (bottom) for solid peat samples taken during the 2016 recovery field season ordered on 
the y-axis from shallow to deep (10 cm – 15 cm, 20 cm – 25 cm, 30 cm – 35 cm below surface). 
Reference values (at right) for mean MeHgdw, THgdw, and %MeHgdw. 

Percent Methylmercury: The %MeHg remained low ranging from 0.51% to 4.37% in the first 

two ridges (0 m and 25 m). The 62 m location had the highest %MeHg value at 18.5% in the 
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upper 10 cm – 15 cm. The 62 m sample location had the highest average increase in %MeHg. 

The average %MeHg value at the reference sites in 2016 was 0.62 % (± 0.17). 

Total Sulphur: Percent total sulphur (%TS) from the solid peat samples increased in various 

locations throughout the Experimental Fen above reference site values. The 140m sample 

location was also the lowest for %TS as well as MeHg concentration, THg concentration, and 

%MeHg. Reference site %TS averaged 0.142% (± 0.050) in 2016 with the majority of the 

sample locations at the Experimental Fen having higher %TS than the reference site. In some of 

the sample depths in the locations closer to the SO4
2- additions, such as the 25 m ridge (mean: 

0.242% (± 0.066)) and 40 m ridge (mean: 0.269% (± 0.019)), the %TS was almost double the 

average from the reference site.  

Distribution Coefficients: The 25 m and 40 m MeHg LogKd values were the lowest values from 

the Experimental Fen at 0.2 – 0.3 lower than the average for the Experimental Fen and 0.3 – 0.4 

lower than the average for the reference sites (Table 2.4). The 62 m value was the highest as seen 

in Table 2.4 and was 0.4 higher than the Experimental Fen average. The variation in LogKd 

values for the Experimental Fen was approximately two times that of the reference sites. Total 

mercury LogKd was relatively consistent throughout the Experimental Fen and similar to the 

average value calculated from the reference sites.  

Table 2.4: Distribution coefficients calculated for each 2016 solid sample location using 
corresponding pore water and solid phase MeHg concentrations and THg for both the 
Experimental Fen and average reference site value (± 1 standard deviation). 

 Distance 
(m) 

Methylmercury 
(LogKd)  

Total Mercury 
(LogKd) 

Upper Ridge 25 3.6 4.6 
Middle Ridges 40 3.7 4.7 
 62 4.5 4.6 
 81 4.2 4.5 
Lower Ridges 105 3.8 4.8 
 140 3.9 4.7 
 225 4.0 4.4 
Exp Fen Average  3.9 (± 0.29) 4.6 (± 0.12) 
Reference Sites  4.0 (± 0.14) 4.6 (± 0.16) 
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2.5 Discussion 

2.5.1 Porewater Mercury  

Response to Multi-Year Sulphate Loading:  Methylmercury concentrations and %MeHg 

increased in the Experimental Fen in both 2014 and 2015 in response to the simulated 

wastewater additions to values well above those reported in the literature for natural peatlands 

(Heyes et al., 2000; Branfireun et al., 2002), as well as the unimpacted reference fens studied 

here.  There is evidence that the addition of SO4
2- in the simulated wastewater that was added to 

the Experimental Fen in 2014 and 2015 stimulated the activity of sulphate-reducing bacteria 

which, in turn, resulted in a net increase in MeHg production through biotic methylation though 

sulphate-reducing bacteria were not investigated in these experiments.      

Moreover, MeHg concentrations and %MeHg at peat ridge locations relatively close to the point 

of SO4
2- addition were above those reported in other short and long-term peatland SO4

2- addition 

experiments (Branfireun et al., 1999; Mitchell et al., 2008a; Coleman-Wasik et al., 2012; 

Åkerblom et al., 2013).  This suggests that despite the low Hg and SO4
2- deposition in this 

pristine, high latitude peatland, methylation potential is very high.  This is reinforced by the 

observations reported in McCarter et al. (2017) that showed a sharp increase in MeHg 

concentrations and %MeHg only days after the initiation of the first wastewater addition.   

The highest MeHg concentrations were spatially constrained to the uppermost ridges of the 

Experimental Fen.  This is likely due to the rapid reduction of other terminal electron acceptors  

(e.g. nitrate) in the wastewater and the activation of SO4
2- reduction due to the presence of excess 

SO4
2- but, at least initially, without the inhibitory effects of the presence of free sulphide.  

Despite an expected increase in sulphide both within and across years due to the addition of large 

amounts of SO4
2-, there was no clear indication of complete sulphide inhibition of Hg 

methylation. The significant addition of water during the experimental additions (~35 000L/day) 

would have decreased water residence time and increased pore water turnover, potentially 

flushing excess sulphide from the fen, though no direct sulphide measurements were part of this 

study.  2015 was also a much wetter than average year, contributing to this pore water flushing.  
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Moreover, the low loading of SO4
2- at this location historically may afford more opportunity for 

solid-phase interactions and incorporation into the organic sulphur pool.    

A shift in the balance of the activity of Hg methylators and demethylators (Marvin-Dipasquale & 

Oremland, 1998) as SO4
2- was consumed along the hydrological flow path is a possible 

explanation for lower net MeHg concentrations down-gradient, however no direct measurements 

of these processes were made as part of this study.   

Higher pre-addition MeHg concentrations in 2015 than in 2014 was an indication of the carry 

over of MeHg that was produced in the previous year, the continued availability of the previous 

year’s excess SO4
2- for methylation, the re-oxidation of the previous years reduced sulphur to 

SO4
2-, making it available for methylation (Coleman-Wasik et al., 2016), or some combination of 

all three.  Mitchell et al. (2008c) measured elevated MeHg concentrations and %MeHg in peat 

porewaters early in the spring during snowmelt. They conclude that this MeHg was produced in 

the previous fall, and preserved in pore waters. We suggest a similar mechanism here.  

Total mercury concentrations also increased during the wastewater additions over time in both 

2014 and 2015. This can be accounted for by the production of MeHg contributing to the overall 

increase in THg concentration. Changes in partitioning from the solid phase was not evident in 

changes in THg LogKd values from samples taken in 2016 (post-addition). There was ~5% of the 

increase in THg that was not accounted for by changes in the MeHg concentration which could 

simply be analytical variability and acceptable method-based cumulative error, and cannot be 

overinterpreted. 

Pore water SO4
2- concentrations increased across the Experimental Fen during the additions in 

2014 and 2015. The largest increase was in the ridges closest to the wastewater additions (25 m 

and 40 m). Dissolved organic carbon fluctuated between years but did not show any significant 

change between years. Sulphate additions do not seem to have affected DOC concentration after 

or during the two years of additions.  

Response in Post-Addition Recovery Year:  Methylmercury concentrations in the post-

addition year were also elevated similar to second year pre-addition values, reinforcing the idea 

of carry-over of MeHg produced in the previous season.  Importantly, MeHg concentrations 
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remained similar at all of the sampling locations throughout the entire field season, with only the 

lower ridges returning to approximately pre-addition background concentrations. Although 

samples were only taken at three times, there was no evidence of temperature-driven seasonality, 

and no evidence of enhanced methylation at the upper or middle sampling locations in the 

absence of fresh SO4
2- loading, suggesting that the recovery year MeHg concentrations are a 

legacy of the previous two years of SO4
2- addition, rather than a continued increase in net MeHg 

production. Coleman-Wasik et al. (2012) showed a similar pattern of recovery after the cessation 

of multi-year peatland SO4
2- additions with an initial decrease and then a maintenance of lower 

but still elevated concentrations two years later. 

2.5.2 Solid Phase Sulphur 

After the 2 years of wastewater additions, solid phase sulphur (measured as %TS) increased in 

the Experimental Fen. This increase was seen most clearly at the 25m and 40m sample locations 

that were closest to the additions. Changes to the amount of solid sulphur present in the 

Experimental Fen can impact dissolved MeHg concentrations in the future. As Coleman-Wasik 

et al. (2015) found, under future drought conditions, SO4
2- regeneration from reduced sulphur 

pools can stimulate MeHg methylation. So although the wastewater additions have stopped, 

fluctuations in water table could cause SO4
2- release, stimulating SO4

2--reduction and Hg 

methylation.  

2.5.3 Aqueous-Solid Phase Distribution 

We observed increases in both the solid and dissolved phase MeHg concentration indicating that 

indeed, pore water increases in MeHg were the result of a net production of MeHg, rather than a 

shift in partitioning (Skyllberg, 2008). The pattern of increased MeHg in peat with the highest 

concentrations in the middle ridges after 3 years suggests that enhanced methylation of dissolved 

inorganic Hg closer to the wastewater discharge point increased MeHg in porewaters, which 

were then transported down the hydrological gradient and subsequently sorbed to the solid peat.  

The solid peat appears to serve as an effective sink for the excess MeHg produced as a result of 

the wastewater additions.  This is supported by the observation that there was no change in the 

MeHg concentration at the surface water discharge point of the fen, indicating that despite 
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significantly enhanced methylation in the upper locations in the fen, this MeHg did not travel 

more than a few 10s of meters before it was sorbed to the solid phase.    

Distribution coefficients (LogKd) calculated for these sub-arctic fens are within the range of 

those reported for THg in the Great Lakes and northern Ontario (Rolfhus et al., 2003; Branfireun 

et al., 2005) and MeHg in peatlands (Heyes et al., 2000).  Lower values of LogKd for MeHg 

from the upper ridge suggests a disequilibrium between the dissolved and solid phase, which is 

consistent with active MeHg production and higher pore water concentrations at this location.  . 

Conversely, The 62m ridge had the highest LogKd for MeHg supporting the conclusion that 

these mid-fen locations were a sink for MeHg. The lower variability in THg LogKd indicates that 

the increase in pore water THg was smaller than for MeHg relative to the large pool in solid 

phase.  Although site-wide averages were the same between the experimental fen and the 

reference fens, the variability in LogKd for both THg and MeHg in the experimental fen clearly 

reflect spatially heterogeneous disequilibria. Within-site processes, flowpaths, and 

biogeochemical ‘hot spots’ must be carefully considered in any study such as this.  

2.5.4 Conclusions 

In this three year, field-based experiment we were able to study how a relatively nutrient poor 

fen responded to increased hydrologic and nutrient loading and monitor the changes in MeHg 

concentration and monitored a subsequent recovery year to determine if there were any legacy 

effects. Relatively nutrient poor, northern fens have the ability to produce large amounts of 

MeHg when stimulated with SO4
2-. Northern fens have the ability to buffer the transport of the 

MeHg they produce through phase partitioning while active with potentially long term changes 

to LogKd for MeHg. Years following any kind of wastewater or SO4
2- addition have the potential 

to continue to produce elevated MeHg concentrations. Solid phase MeHg and sulphur content are 

also affected by these nutrient additions, both remaining elevated a year after waste water 

additions ceased. Providing enough interaction time between the peat and pore water before 

discharge into a large body of water should minimize MeHg export.  
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Chapter 3  

3 Evaluating the Impact of Sulphate Additions on Net 

Methylmercury Production in Pristine Sub-Arctic Peats  

3.1 Introduction 

Mercury (Hg) is an atmospherically transported contaminant that has increased an estimated 2 to 

3-fold in the atmosphere since the industrial revolution (~1850) (Lindberg et al., 2007). Mercury 

is released into the atmosphere primarily as gaseous elemental Hg (GEM) and can travel 

hemispherically with an estimated residence time of ~6 months to 2 years (Lindqvist & Rodhe, 

1985; Schroeder & Munthe, 1998). Once Hg is deposited into the environment, it can enter food 

chains leading to health complications in higher trophic level species, including humans 

(Mergler et al., 2007). 

Once Hg is deposited as Hg(II) it can be methylated by sulphate (SO4
2-) and/or iron reducing 

bacteria in the aquatic environment (Compeau & Bartha, 1985; Kerin et al., 2006; Gilmour et al., 

2013). Methylmercury is produced as a byproduct of the metabolism of sulphate-reducing 

bacteria. It has been proposed that Hg enters the bacterial cell through passive transport of 

lipophilic Hg species like HgCl2 and HgS through the lipid membrane (Mason et al., 1996; 

Benoit et al., 1999). Active Hg uptake has also been identified by SO4
2- and iron reducing 

bacteria and depends on the thiol chemistry present in the uptake media (Schaefer et al., 2011). 

Once MeHg has been formed, it is then released from the cell into the environment where it can 

then be transported or partitioned to the solid phase.  

Although there are ecosystem differences, the literature indicates that SO4
2- regulates the activity 

of sulphate-reducing bacteria and in turn, MeHg production, in the vast majority of freshwater 

systems (Mitchell et al., 2008; Stickman et al., 2016). Sulphate-reducing bacteria are obligate 

anaerobes, and are naturally found in wetlands where the reducing conditions that they require 

are found. Mercury methylation requires the presence of specific nutrients and substrates (SO4
2-), 

bioavailable Hg and a labile carbon source which are present in varying quantities in northern 



52 

 

peatlands. In peatlands, SO4
2- availability has been found to limit MeHg production more than 

presence of labile carbon substrates and are thus an important regulator for MeHg production in 

wetlands (Mitchell et al., 2008). Significant spatial variation in SO4
2- distribution and loads as 

well as redox processes within wetlands contribute to variant and transient Hg methylation 

capabilities across individual wetlands and wetland types (Mitchell & Gilmour, 2008; Tjerngren 

et al., 2012).  

Sulphate reducing bacteria reduce SO4
2- to sulphide, that can inhibit Hg methylation. Sulphide 

regulates Hg availability by binding to Hg molecules as HgS(s) and precipitating from solution, 

thus removing available Hg (Björnberg, 1988). When sulphide concentrations are high enough, 

the majority of Hg can be found as HgS(s) (Björnberg, 1988; Dyrssen & Wedborg, 1991) 

therefore limiting the supply of Hg for methylation by sulphate-reducing bacteria.  Gilmour et al. 

(1998) found that across a nutrient gradient in the Florida Everglades, MeHg increased most in 

the more pristine regions. When specifically examining sulphur, a similar pattern was found by 

Johnson et al. (2016) in wetlands that were heavily impacted by high concentrations of SO4
2-; the 

normally positive relationship between SO4
2- loading and MeHg concentrations did not hold.  

Although it has been demonstrated that simulated wastewater containing SO4
2- (McCarter et al., 

2017) and simulated atmospheric SO4
2- deposition (e.g. Jeremiason et al., 2006) increases Hg 

methylation, it is not known exactly how varying levels of additions, nor SO4
2- from other 

sources may impact methylation. Mine wasterock tailings can contain sulphide-bearing minerals 

(e.g. iron sulphide) which when dissolved in water can generate high concentrations of SO4
2- and 

lead to acid mine drainage problems (see Akcil & Koldas, 2006). Fresh sulphur-bearing 

wasterock can deliver a pulse of SO4
2- to a system during rainfall events leading to a cyclic 

pattern of SO4
2- additions in the surrounding environments. Sulphate additions from mining 

wastewater, wasterock and/or pit dewatering can vary in sulphur concentration, anywhere from 

~100 mg/L to over 1000 mg/L (Wiessner et al., 2005; Kaldec & Wallance, 2009; Steinback, 

2012 Wu et al., 2013; Johnson et al., 2016). Mining SO4
2- impacts on MeHg production in 

waters and sediments have been examined in various water bodies (e.g. streams, lakes) (Berndt 

& Bavin, 2012; Bailey & Johnson, 2015) but minimal information has been published on mining 

impacts on wetland-specific MeHg production. Where some treatment wetlands in the past have 

been exposed to high SO4
2- concentrations from acid mine drainage sites (Sheoran & Sheoran, 
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2006), the concentrations used in these experiments are much lower which are less common in 

the literature. 

Therefore the objectives of this study were to: 

(1) Experimentally determine the relationship between SO4
2- and MeHg production in pristine 

northern peats across a range of SO4
2- concentrations, and; 

(2) Evaluate the impact of SO4
2- derived from sulphur-bearing mining waste rock on Hg 

methylation in pristine northern peats. 

To address these objectives, two laboratory column experiments were undertaken.  Experiment 1 

added SO4
2- to anaerobic peat columns at a range concentrations (1 mg/L, 5 mg/L and 30 mg/L) 

in a simple solution to assess relative net MeHg production in pristine subarctic peats that, under 

natural conditions, have very low MeHg concentrations, but high rates of net MeHg production 

under simulated waste water SO4
2- additions (McCarter et al., 2017; Chapter 2, this thesis).  

These SO4
2- concentrations were chosen based on the field results from Chapter 2 of this thesis. 

Experiment 2 was designed to more closely mimic field conditions that have been observed at 

the mine site of interest. Sulphate solutions were generated from a column packed with crushed 

mine waste rock that is known to leach SO4
2- (T. Ternes, Pers. Comm.), which was then 

delivered to anaerobic peat columns to assess the potential net increase in MeHg due to the 

delivery of runoff and leachate from mine waste rock stockpiles in peatland-dominated 

landscapes. 

3.2 Methods 

3.2.1 Peat Sampling and Preparation 

Approximately 60 kg of wet peat was shipped back from the reference site (52˚47’01 N, 

83˚53’12 W) at the end of the 2016 field season (September 30, 2016). To collect the peat, the 

top 10cm of living vegetation and near surface peat was removed and the next 40 cm (10-50cm 

below the surface) was sampled, as this is the zone of water table fluctuation, more persistent 

anaerobic conditions, and known zone of Hg methylation (Branfireun et al., 1996). This peat was 
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kept fully saturated in a sealed bag in a cooler that was stored overnight in a fridge at ~4˚C and 

then shipped to the Biotron Facility at the University of Western Ontario where it was 

immediately put into a walk-in fridge (~4-6˚C)  

Peat was manually homogenized in a nitrogen glove bag and stored in lab-grade plastic bags in at 

~4˚C until the columns were packed. Columns were packed to the same approximate bulk 

density as calculated in the field. The field bulk density value used to pack the columns was 0.08 

g/cm3 which was chosen as it fell within reported bulk density values reported previous for the 

Experimental Fen (McCarter & Price, 2017) and other research sites located nearby (Whittington 

& Price, 2006).  

Waste rock is rock that is removed from a mining area that does not contain the mineral(s) of 

interest. Waste rock piles at the De Beers Victor Diamond Mine are located a short distance from 

the open pit mine where it is piled and layered over time. For Experiment 2, the Environment 

Department at the De Beers Victor Diamond mine provided large rocks from the open pit mine 

(these rocks had not sat in a waste rock pile). This wasterock was dominantly 

limestone/dolostone and had been found to leach SO4
2- over time (Pers. Comm. Brian 

Steinback). The large rocks that were sent were then ground and homogenized to be used to fill 

waste rock columns. Waste rock columns were filled with ground waste rock in a nitrogen glove 

bag to ensure columns were anaerobic.  

3.2.2 Experimental Design 

The three SO4
2- concentrations (1 mg/L, 5 mg/L, 30 mg/L) were chosen based on field data from 

Chapter 2 at different locations throughout the fen to show a range of MeHg responses to SO4
2- 

loading. The 1 mg/L concentration was chosen based on low MeHg production in locations 

furthest from the field SO4
2- loading location where average SO4

2- concentrations were below 1 

mg/L. 5 mg/L SO4
2- was chosen since the highest MeHg concentrations were in the upper ridge 

(~25m from the SO4
2- additions) and were close to averaging a 5 mg/L SO4

2- concentration. 

Finally, 30 mg/L SO4
2- was chosen as the concentration that was added to the fen was 27.2 mg/L 

SO4
2- so this was rounded to 30 mg/L SO4

2- for the column experiments.  
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12 Kontes® Chromaflex™ glass chromatography columns (30 cm x 4.8 cm) with Teflon fittings 

were used in these experiments. For the first SO4
2- addition experiment, 12 individual columns 

were fed three different SO4
2- concentrations (1 mg/L, 5 mg/L, 30 mg/L) from 20 L pre-prepared 

carboys. These carboys were periodically sampled to ensure there was no shift in concentration 

from their original values. 0.16 cm i.d. Teflon tubing was connected to the pump Masterflex 

platinum silicone tubing (1.42 mm i.d.) using Teflon barbed lure locks on either side. Pumps 

were turned on to fill the tubing with solution before they were attached to the bottom of the 

columns as to not push air into the columns. Teflon tubing was then connected to the bottom of 

the chromatography column using Teflon fittings. Teflon tubing was also connected to the top of 

the column and directed into a 15 L waste bucket emptied during every sampling event. Each 

column had a cover made of dark fabric to block light into the column during the additions.  

A twelve channel Carter Manostat® digital peristaltic pump was used to deliver the SO4
2- 

solutions to the columns. The flow through the columns was set to a realistic rate based on 

hydraulic conductivity and hydraulic gradient measured in the first ridge of the field site (Colin 

McCarter, Pers. Comm.), producing a solution delivery volume of 15 mL/hour (0.83 cm/hour).  

Column outlet samples were collected on varying 24 hour intervals (every 24 hours for first 3 

days, then every 48-168 hours for duration) in sterile 250 mL PETG bottles taking approximately 

4 hours to collect 60mL of water required for analyses.  Sample bottles were bagged and kept 

dark in closed, small coolers on ice while the samples were being collected. After collection 

samples were filtered through ashed 0.45µm glass filters (Macherney-Nagel). A 2.2 mL aliquot 

of filtered sample was set aside for SO4
2- and DOC analyses, and the remainder was acidified 

with EMD Millipore OmniTrace® HCl to 1% v/v within 2 hours of being collected and stored in 

the dark at ~4˚C until analyzed for THg and MeHg.   

3.2.3 Water Chemical Analyses 

Ions and Dissolved Organic Carbon: Water samples were analyzed for SO4
2- on a Dionex ICS-

1600 Ion Chromatograph following U.S. EPA Method 300.0 using 0.5 mL sample aliquots and 

diluted using 18.2 MOhm deionized water, when required (sample concentration > 50 mg/L). 

Analytical duplicates were run every 10 samples and field duplicates were collected every ~10 

samples and both analytical and field duplicates were required to fall within ± 15% of each other. 
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Matrix spikes and check standards were run every 10 samples and were also expected to fall 

within ±15% of the expected value. Samples were rerun if they failed to meet the proper QA/QC. 

The instrument was calibrated to analyze samples between 0.5 mg/L and 50 mg/L and the 

reporting limit was 0.05 mg/L. 

Dissolved organic carbon was measured on an OI Analytical Aurora 1030W Combustion TOC 

Analyzer using a wet oxidation method (minimum detection limit = 0.2 mg/L). A 2 mL sample 

aliquot was used and diluted to 8 mL total volume due to small sample volume. Analytical 

duplicates, matrix spikes and check standards were run every 10 samples and were expected to 

fall within ± 15% of expected value. Field duplicates were also expected to fall within ± 15% of 

each other. If samples failed to meet QA/QC, samples were rerun. The instrument was calibrated 

to analyze samples with concentrations between 0.5 mg/L and 50 mg/L, with a reporting limit of 

0.5 mg/L.  

Methylmercury:  Methylmercury concentrations were measured by cold vapour atomic 

fluorescence spectroscopy (CVAFS) using U.S. EPA Method 1630 (U.S. EPA, 1998). 20mL of 

sample was diluted with 20 mL of 18.2 MOhm deionized reagent water. 1% ammonium 

pyrrolidine dithiocarbamate (APDC) was added and the sample distilled in Teflon® distillation 

vessels for 3 hours at 125˚C while being purged with Ultra High Purity 5.0 nitrogen gas.  

Distillate was collected in glass receiving vials. Ascorbic acid was added to 30mL of distillate, 

samples were shaken and left uncapped for 10 minutes to remove Cl. 2M acetate buffer was 

added to adjust the sample pH to ~4.5 and sodium tetraethyl borate (NaBEt4) was added to 

ethylated MeHg and samples were capped. Samples were purged with argon gas and analyzed 

for MeHg on a Tekran© Model 2700 Automated Methyl Mercury Analysis System by gas 

chromatography and detection by cold vapour atomic fluorescence spectrometry (CVAFS). The 

Biotron Analytical Services Laboratory method detection limit (MDL) for MeHg analysis was 

0.006 ng/L and the method reporting level (MRL) was 0.18 ng/L. Recovery of MeHg matrix 

spikes (mean ± standard deviation) was 90.5 % (± 7.3, n = 15) and sample duplicate recovery 

was 102.1% (± 6.9, n = 15).  

Total Mercury: Total Hg concentrations were also determined by CVAFS in accordance with 

U.S. EPA Method 1631 (U.S. EPA, 1999).  Bromine monochloride was added to 15 mL of 
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sample diluted with 10 mL of 18.2MOhm deionized water), shaken, left uncapped for 10 minutes 

then stored overnight for bromine monochloride oxidation. The following day, hydroxylamine 

hydrochloride was added to neutralize the bromine monochloride, samples were shaken and left 

uncapped for 30 minutes to allow for free halogen removal. Finally, 20% stannous chloride was 

added to convert Hg(II) to Hg(0). Gaseous Hg(0) was purged with high purity nitrogen gas from 

aqueous solution, captured on a gold trap, thermally desorbed and quantified using CVAFS on a 

Tekran© 2600 Mercury Detector. The Biotron Analytical Services Laboratory reports a MDL of 

0.048 ng/L and an MRL of 0.144 ng/L for water samples run for THg. Recovery of THg matrix 

spikes (mean ± standard deviation) was 93.1% (± 7.0, n = 13) and sample duplicate recovery was 

101.4% (± 6.5, n = 16). 

For both Hg analytical methods, method blanks and quality control standards were acidified to 

1% v/v instead of 0.5% v/v. 20% of the samples run were analytical duplicates, 5% matrix spikes 

and quality control standards were run periodically throughout the run.  

3.2.4 Column Peat Sampling and Analysis 

After the final water sampling event, columns were extruded intact using an acid washed, long 

glass stir stick with a 250mL PETG bottle cap attached to the end which was acid rinsed between 

samples to eliminate cross-contamination. The peat was stored in sealed plastic bags at -25˚C. 

Entire peat samples from the first experiment were homogenized, and peat samples from the 

second experiment were sub-sectioned into three 10cm sections (upper, middle, lower). All peat 

samples were then freeze-dried and homogenized for analyses of and THg, MeHg and total 

sulphur. 

Total Sulphur: Total sulphur samples were sent to the Ontario Forest Research Institute (OFRI) 

in Sault Ste. Marie, Ontario. The method used for percent total sulphur analysis is combustion of 

the peat at 1350oC on an Eltra Helios C/S Analyzer. OFRI reports a method detection limit of 

0.004%. 

Methylmercury: Methylmercury in peat was determined by digesting ~100mg of peat in 2mL 

of 25% KOH in methanol for 4 hours at 82˚C in 60 mL sealed Teflon digestion vessels 

(Savillex®). Samples were left to cool for 1 hour before being diluted with 8mL of DI water and 
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vortexed for 10 seconds to ensure the samples were homogenous. Samples were then transferred 

to 15mL falcon tubes and stored in the fridge overnight for analysis the following day (samples 

are not run on same day as the digestion process does not allow enough time for instrument start 

up and calibration curve building within the same day). The following day samples were brought 

to room temperature, centrifuged, diluted with distilled water and made up to a total volume of 

30mL with 500µL 2M acetate buffer and 30µL NaBEt4. Samples were shaken and left to react 

for 30 minutes with NaBEt4 before being run on a Tekran© Model 2700 Automated Methyl 

Mercury Analysis System with 10% duplicates (96.98 ± 7.93%, n = 7) and 10% matrix spikes 

(85.28 ± 7.79%, n = 8).  

Total Mercury: Solid peat samples were analyzed for THg on a Milestone DMA-80 direct Hg 

analyzer according to U.S. EPA Method 7473 (U.S. EPA, 2007). The calibration detection limit 

was 1 ng. Every 10 samples, analytical duplicates were analyzed (100.00 ± 8.93%, n = 6) and 

were required to fall within ± 15% of each other. A certified reference material (CRM), in this 

case MESS-3 (0.091 ± 0.009 mg/kg Hg) and IAEA 158 (0.132 ± 0.014 mg/kg Hg), was run at 

the beginning and end of each run. Blanks were analyzed at the start of each run (mean: 0.022 ± 

0.019 ng, n = 10) as well as following every CRM.  

Distribution coefficients were calculated [logKd = log([Hg]solid/[Hg]porewater)] using the solid 

phase Hg concentrations and dissolved Hg concentrations for each individual sample. Average 

distribution coefficients were averaged over the 3 replicates of each addition type.  

3.3 Results 

3.3.1 Experiment 1 – Continuous Sulphate Addition 

3.3.2 Water Chemistry 

All replicated experimental results are presented as means with ± Standard Deviation unless 

otherwise indicated. 

Methylmercury: Over the first ~120 hours, MeHg in the the 1 mg/L SO4
2- treatment almost 

doubled with average values increasing from 0.28 ± 0.04 ng/L to 0.55 ± 0.04 ng/L (Figure 3.1). 

For the remainder of the experiment (120 hours to 216 hours) the 1 mg/L addition only increased 
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0.07 ng/L with a final MeHg concentration of 0.62 ± 0.06. MeHg concentrations in the 5 mg/L 

SO4
2- additions increased from 0.25 ± 0.01 ng/L to 0.60 ± 0.06 ng/L in the first 120 hours. After 

the 120 hour sampling point, the MeHg concentrations increased more rapidly than the previous 

120 hours to 1.02 ± 0.10 ng/L at 168 hours then 1.82 ± 0.18 ng/L at 216 hours with the final 

MeHg concentration being more than seven times the first sampling event concentration. The 5 

mg/L SO4
2- addition had the largest increase in MeHg concentration out of all the SO4

2- 

additions. MeHg concentrations in the 30 mg/L SO4
2- treatment increased from 0.25 ± 0.03 ng/L 

to 0.47 ± 0.04 ng/L over the first 120 hours of SO4
2- additions. After the 120 hour sample event, 

the MeHg concentrations of the 30 mg/L SO4
2- addition increased more rapidly. The 216 hour 

sampling event was the highest MeHg concentration from the 30 mg/L SO4
2- additions and ended 

with a MeHg concentration of 1.23 ± 0.11 ng/L. The 5 mg/L and 30 mg/L SO4
2- additions 

displayed a similar pattern in MeHg concentration over time with larger increases seen in the 5 

mg/L additions. The control columns MeHg concentrations remained relatively similar 

throughout the additions with an average concentration of 0.23 ± 0.04 ng/L over the 216 hours of 

additions. The control columns did not display a similar concentration to either the 5 mg/L/30 

mg/L or 1 mg/L SO4
2- additions as the concentration remained steady over the duration of the 

additions. The mass of SO4
2- added over the course of the 1 mg/L additions produced a mass of 

MeHg of 1.72 ng. The other continuous additions of 5 mg/L and 30 mg/L produced 2.83 ng and 

2.03 ng of MeHg, respectively.  

  

Figure 3.1: Mean MeHg concentration, THg concentration and %MeHg for pore waters from 
the first column experiment with control, 1 mg/L, 5 mg/L and 30 mg/L SO42- (all values are 
means of 3 replicate columns ± Standard Error). 

Total Mercury: Concentrations of THg for all experimental treatments during the first 120 

hours decreased as depicted in Figure 3.1. At 24 hours, THg concentrations were similar among 
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all treatments, averaging 10.79 ng/L (± 0.93) for all treatments. Over the first 120 hours, all 

treatment THg concentrations decrease by at least 50%. After the first 120 hours, THg 

concentration for the 5 mg/L and 30 mg/L treatments increase, with the 5 mg/L SO4
2- treatment 

producing the largest THg concentration, followed by the 5 mg/L treatment then the 1 mg/L 

treatment. Total mercury concentration for 1 mg/L SO4
2- addition remained low. The THg 

concentrations for the control columns decrease over the duration of the additions with the final 

concentration being 3.33 ng/L (± 0.25), approximately a third of the 24 hour THg concentration.  

Percent Methylmercury: All experimental additions had similar %MeHg values for the first 

120 hours but control peat columns was lower during this time, never reaching over 10% MeHg 

over the course of the experiment. There is a two step increasing pattern seen for the 

experimental treatments (controls not included) where the %MeHg values stabilize between the 

96 and 120 hour sampling times then continue to increase after this point at varying paces. 

Patterns for %MeHg mirrored the previous results with 5 mg/L being the highest followed by 30 

mg/L and finally 1 mg/L (Figure 3.1). 

Sulphate: After the first 24 hours, none of the columns had 100% breakthrough of SO4
2- where 

breakthrough is the percent of SO4
2- passing through the columns. By 48 hours, the 30 mg/L 

addition had 100% breakthrough of SO4
2-, while the 1 mg/L treatment averaged 61% (± 17) and 

the 5 mg/L treatment averaged 93% (± 3). Over the course of the experimental additions, the 30 

mg/L SO4
2- would remain at ~100% breakthrough while the other additions fluctuated and 

generally SO4
2- breakthrough decreased over time. Sulphate breakthrough at the end of the SO4

2- 

additions were 16% (± 1) and 52% (± 3) for the 1 mg/L and 5 mg/L treatments, respectively. 

During Experiment 1, 3.6 mg, 18 mg and 108 mg were added during the 1 mg/L, 5 mg/L and 30 

mg/L treatments respectively over the 10 day experiment. The mass of SO4
2- that passes through 

the columns was 1.29 mg (35.8% of SO4
2- added), 11.84 mg (65.8% of SO4

2- added) and 91.21 

mg (84.5% of SO4
2- added) for the 1 mg/L, 5 mg/L and 30 mg/L additions respectively.  

Dissolved Organic Carbon: Dissolved organic carbon concentrations averaged 63.60 mg/L (± 

4.3) at the 24 hour sampling point at all the experimental treatments. Concentrations of DOC 

were highest at the beginning of the SO4
2- additions and dropped down to between 16.5 mg/L 

and 20.8 mg/L at 120 hours and remained relatively constant after that point. Dissolved organic 
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carbon concentrations did not differ greatly between treatments though columns with SO4
2- 

additions had slightly higher DOC concentrations by the end of the additions with the control 

columns averaging 14.7 mg/L (± 0.7) DOC at 216 hours and 1 mg/L, 5 mg/L and 30 mg/L 

averaging 17.7 mg/L (± 1.3), 17.7 mg/L (± 1.8), and 16.2 mg/L (± 0.2), respectively. 

3.3.3 Peat Chemistry 

Methylmercury: All of the experimental SO4
2- additions increased in solid phase MeHg above 

the control columns after 10 days of additions. Methylmercury concentrations in solid peat 

samples averaged 0.77 µg/kgdw and 0.78 µg/kgdw higher than the control columns which 

averaged 0.77 µg/kgdw after 10 days of additions for the 1 mg/L and 5 mg/L additions, 

respectively (Figure 3.2). The 30 mg/L SO4
2- addition increased the least over the 10 days of 

additions ending at 0.55 µg/kgdw higher than the control columns.  

Total Mercury: Average THg concentrations were 73.3 µg/kgdw (± 4.8), 76.8 µg/kgdw (± 13.4) 

and 66.7 µg/kgdw (± 5.4) for 1 mg/L, 5 mg/L and 30 mg/L SO4
2- additions respectively, while 

peat control columns averaged 63.8 µg/kgdw (± 4.8) (Figure 3.2).  

Percent Methylmercury: Percent MeHg in the peat almost doubled in all experimental 

treatments, with the largest average %MeHg in the 1 mg/L SO4
2- treatment at 2.09% (± 0.24). 

The 5 mg/L and 30 mg/L SO4
2- treatments increased the %MeHg to 2.04% (± 0.17) and 1.97% 

(± 0.18) after the 10 days of additions. The control columns %MeHg averaged just 1.20% (± 

0.13) after the 10 days of additions.  

Sulphur: Peat average %TS were 0.109% (± 0.004), 0.114% (± 0.003), and 0.111% (± 0.003) 

after the 10 days of 1 mg/L, 5 mg/L and 30 mg/L SO4
2- additions, respectively. The control 

columns averaged 0.103% (± 0.003) after the 10 days of additions. All experimental treatments 

showed slight increases in %TS after 10 days of additions compared to the control columns.  
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Figure 3.2: Mean MeHg concentration, THg concentration, %MeHg and %Total Sulphur (%TS) 
of solid peat samples from column Experiment 1 after 10 days of varying SO4

2- additions 
presented as a bulk core average (all values ± Standard Error). 

3.3.4 Experiment 2 – Waste Rock Sulphate Additions 

3.3.5 Water Chemistry 

Methylmercury: Aqueous MeHg concentration during waste rock additions was highest coming 

from the waste rock into peat treatment over the 20 days of additions (Figure 3.3). During the 

first 120 hours of additions, the wasterock additions columns have a small increase around 48 

hours that then drops off until 120 hours. After the first ~120 hours of additions the MeHg 

concentration in the waste rock addition columns increased from 0.56 ng/L (± 0.06) at 120 hours 

to 1.09 ng/L (± 0.08) at 192 hours to approximately double the average concentration compared 

to the peat control columns (0.50 ng/L (± 0.01)). Both the peat control columns and waste rock 

control column’s MeHg concentrations remained relatively consistent and distinctly lower than 

the experimental treatment throughout the 20 days of additions. The wasterock additions which 
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delivered a pulse of SO4
2- produced 2.85 ng MeHg over the first 8 days, 3.63 ng MeHg over the 

first 11 days of additions and 7.50 ng total.  

Total Mercury: Total mercury concentrations for the experimental and control treatments 

decreased over time. Total mercury concentration in the experimental treatment (waste rock + 

peat) decreases the least over the 20 days of additions dropping from 9.82 ng/L (± 0.45) at 24 

hours to 3.56 ng/L (± 0.16) at 480 hours.  

Percent Methylmercury: Percent MeHg increases the most in the waste rock additions column 

but is followed very closely by the peat only control column. After 20 days of additions, the 

waste rock additions columns reach a %MeHg value of 32.71% (± 2.67) while the peat control 

column, although elevated, only reached 26.65% (± 5.45) at the 20 day mark (Figure 3.3). The 

peat only control columns were not actually producing much MeHg, it remains relatively 

consistent, but the THg concentrations drop causing the perception of increase %MeHg values.  

 

Figure 3.3: Mean MeHg concentration, THg concentration and %MeHg for pore waters from 
the Experiment 2 with waste rock SO4

2- additions to peat columns plus MeHg and THg controls 
(all values ± Standard Error). 

Sulphur: Sulphate concentrations rapidly decreased over the course of the SO4
2- additions, 

unlike the continual additions from Experiment 1, the SO4
2- additions from the waste rock 

decrease over time (Figure 3.4). After 24 hours, SO4
2- concentrations remained below 5 mg/L for 

the duration of the 20 days of additions. Based on the samples taken, the mass of SO4
2- leaving 

the columns, 31.06 mg was lost in the first 11 days and 31.49 mg after the entire 20 days.  
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Figure 3.4: Experiment 2 Mean SO4
2- Concentrations from Waste Rock Flowing into Peat 

Columns during 20 Days of Additions (all values ± Standard Error). 

3.3.6 Peat Chemistry 

Methylmercury: For Experiment 2, the solid peat columns were broken down into ~10cm 

blocks as the inlet (closest to the additions), middle and outlet (farthest from the additions) as 

seen in Figure 3.5. Methylmercury concentrations were higher in peat with the waste rock SO4
2- 

additions in all instances with average concentrations of 1.36 µg/kgdw (± 0.07), 2.12 µg/kgdw (± 

0.13) and 1.95 µg/kgdw (± 0.15) at the inlet, middle and outlet of the columns, respectively with 

the largest concentration in the middle 10 cm section. The average concentrations of MeHg in 

the inlet, middle and outlet of the peat only columns was 1.06 ng/kgdw (± 0.02), 1.41 µg/kgdw (± 

0.04) and 1.35 µg/kgdw (± 0.07), respectively, with the highest concentration again in the middle 

section. 

Total Mercury: Total mercury concentrations were higher in the peat only control columns than 

in the waste rock addition columns at the inlet (65.02 µg/kgdw (± 2.64) vs. 58.90 µg/kgdw (± 

8.67)) and in the middle (67.78 µg/kgdw (± 6.54) vs. 64.67 µg/kgdw (± 4.67)) of the column. The 

waste rock addition columns, however, averaged higher at the outlet of the columns at 73.38 

µg/kgdw (± 8.41) compared to the peat only control columns outlet average of 59.65 µg/kgdw (± 

2.62). 
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Percent Methylmercury: %MeHg increased in all experimental columns at the inlet, middle 

and outlet sections with average %MeHg values of 2.34% (± 0.22), 3.28% (± 0.27) and 2.68% (± 

0.22), respectively. The highest average %MeHg value was in the middle section of the columns.  

Total Sulphur: %TS in peat was highest at the outlet of the experimental columns (0.115% (± 

0.004)) with the middle (0.108 (± 0.004)) and inlet (0.106% (± 0.001)) coming in at similar 

values. The middle section of the columns was the only location to have higher %TS in the peat 

only control columns (0.113% (± 0.001)) than the waste rock treatments.  

3.4 Discussion 

3.4.1 Methylmercury and Sulphate  

All SO4
2- additions to these pristine peats resulted in an increase in MeHg concentration in peat 

pore waters as well as solid phase accumulation in as little as 10 days of additions, similar to 

previous SO4
2- addition experiments (Jeremiason et al., 2006; Mitchell et al., 2008). 

Methylmercury concentrations for the 5 mg/L and 30 mg/L SO4
2- additions continued to increase 

to the end of Experiment 1 suggesting a lack of complete inhibition of methylation by either 

changes in inorganic Hg bioavailability through sulphide complexation (Björnberg, 1988; 

Dyrssen & Wedborg, 1991) or sulphide toxicity to sulphate-reducing bacteria (Reis et al., 1992). 

This, combined with the 100% breakthrough of added SO4
2- in the 30 mg/L experiment suggests 

that the sulphate-reducing bacteria community were unable to utilize all of the added SO4
2- due 

to limits on total sulphate-reducing bacteria biomass, metabolism, or both.  In fact, the two peaks 

in MeHg concentrations observed over Experiment 2 which was twice as long as Experiment 1 

suggests that with additional time, the sulphate-reducing bacteria community responded to the 

increase in available SO4
2- by moving into growth phase (Zwietering et al., 1990).  Given the 

almost complete absence of available SO4
2- in these peats under field conditions (see Ulanowski 

& Branfireun, 2013), it is not surprising that there would be a lagged response in SO4
2- reduction 

and Hg methylation as these microbial communities grow in response to these additions (Rolfe et 

al., 2012).  



66 

 

 

  

  

Figure 3.5: Mean MeHg concentration, THg concentration, %MeHg and %Total Sulphur (%TS) 
of solid peat samples from column Experiment 2 after 10 days of varying waste rock SO4

2- 
additions and control peat columns (all values ± Standard Error). 

Another explanation for this lag could be the lagged growth in the bacterial community due to 

the SO4
2- addition waste water being oxygenated. Bacteria using oxygen may have thrived at the 

start of the additions with the oxygen being removed at the inlet of the column then the sulphate-

reducing bacteria were able to start growth once the oxygen was removed and reducing 

conditions moved up the column. Total microbial biomass and metabolism were not measured as 

part of this study, and would lend support to this contention.   

The total mass of MeHg produced from each of the experimental treatments varied. The largest 
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wasterock additions, the MeHg is higher at 9 days of 5 mg/L additions than the 8 days of 

wasterock additions but the 11 days of wasterock additions generates a larger mass of MeHg 

than the 9 days of 5 mg/L. These two additions are similar in mass after the 8-11 days of SO4
2- 

additions though the SO4
2- delivery methods are quite different. Although up to this point, these 

two additions have had different SO4
2- deliveries (continuous vs. pulse) the output of MeHg mass 

was quite similar.  

Total mercury (and DOC) both started at high concentrations and decreased as the additions 

continued which was due to the disturbance caused by homogenizing the peat and packing the 

column. Total Hg concentrations in pore waters also increased near the end of the SO4
2- additions 

as MeHg concentrations increased while DOC concentrations remained relatively consistent after 

the 120 hour decrease.  Similar initial flushing patterns in solutes such as DOC have been 

observed in other experiments (see Dieleman et al., 2016).  

The SO4
2- breakthrough that was seen at the beginning of the additions for both of the 

experiments was important as it meant the area affected by the SO4
2- additions now becomes 

much larger. When the SO4
2- that breaks through at the beginning of the additions makes contact 

with anaerobic peat layers, there would then be potential for Hg methylation to occur in areas 

much larger than the site of the additions. With increased SO4
2- concentrations/masses being 

added, more SO4
2- was passing through the columns meaning that with increasing concentration 

of SO4
2- there is an increase in area affected as more SO4

2- passes through the column to move 

through an area. The lowest concentration of SO4
2- (1 mg/L) was able to remove 64.19% of the 

SO4
2- being added in a 30 cm column which is the most efficient SO4

2- removal out of all of the 

experiments. Increasing the SO4
2- concentration up to 5 mg/L meant that only 34.2% of the SO4

2- 

added was getting removed by the column. The large jump from 1 mg/L to 5 mg/L and even 

larger difference between 1 mg/L and 30 mg/L (15.6% removed) indicates that the peat is not 

very efficient at removing the higher masses of SO4
2-. 
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3.4.2 Changes in Solid-Phase Methylmercury and Sulphur 

Accumulation 

Increases in MeHg concentrations in peat were found in all experimental treatment columns, 

which indicates rapid partitioning of newly formed MeHg in pore waters to the solid phase. 

Increases in both pore water and in solid phase MeHg are indicative of net MeHg production 

rather than just changes in partitioning due to shifts in pH or porewater chemistry (Skyllberg, 

2008). 

From Experiment 2, more detailed information on the distribution of MeHg and sulphur was 

revealed by dividing the column up into 3 equal 10 cm sections at the end of the experiment. The 

lowest MeHg concentration in the columns was found in the 10 cm at the inlet where oxygenated 

water was being added to the columns. This addition of low ionic strength water to the column 

likely affected the binding kinetics of the MeHg already present in the column as the peat only 

controls also had a decrease in MeHg at the inlet (Figure 3.5). This decrease affected the MeHg 

in this section of the column as the MeHg was likely surface bound (more loosely bound) and 

would have more interaction with the SO4
2- additions. Again, as the SO4

2- additions water was 

oxygenated there was likely a redox gradient somewhere within that first 10cm near the inlet as 

in the other two sections of the column the MeHg accumulation is greater. A similar advection 

and partitioning pattern was seen in the field scale experiment (Chapter 2) though at a much 

larger scale where the MeHg was produced in the upper ridges and then partitioned to the solid 

peat in the lower ridges. This is similar to what was seen in Experiment 2 as the higher peat 

MeHg concentrations are in the lower two sections of the column.  

%TS in Experiment 1 was higher in the experimental treatments than in the peat controls but in 

Experiment 2, %TS was similar in both the wasterock addition as well as peat controls with no 

clear pattern shown. The total mass of SO4
2- added to the waste rock columns was not properly 

sampled so the peaks in both the initial SO4
2- moving coming off of the waste rock columns was 

missed due to not sampling early enough and the peak breakthrough in the peat column was 

missed as the breakthrough peak should have been observed at 36.1 hours and samples were 

taken at 24 hours and 48 hours. Based on the concentrations of SO4
2- coming out of the peat 

columns we can derived a minimum value of SO4
2- coming off the waste rock but have no exact 
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value.  This then makes the mass entering the columns difficult to compare as the wasterock 

mass seems most similar to the 5 mg/L addition but is actually underestimated.  

3.5 Conclusions 

Pristine peats from relatively SO4
2- limited locations such as this high latitude location have 

substantial methylation potential when supplied with SO4
2-, rapidly increasing pore water MeHg 

concentrations.  Higher concentrations of SO4
2- do not correspond to proportionally higher 

MeHg concentrations. In these pristine peats, the largest MeHg concentrations corresponded to 

the 5 mg/L SO4
2- additions and similar to previous work (Gilmour et al., 1998), the highest SO4

2- 

concentrations did not correspond to the highest MeHg concentration.  Given increases in MeHg 

concentrations and SO4
2- breakthrough observed at higher concentrations in particular, the range 

of concentrations of SO4
2- presented in this data set will have the ability to promote Hg 

methylation as well as deliver SO4
2- downgradient possibly enhancing methylation well beyond 

the point of discharge.   We also saw increased %TS in solid peat leading to the potential for 

SO4
2- regeneration and more long-term enhanced MeHg production even after SO4

2- releases are 

stopped. 

Investigations into possible bacterial community shifts and/or biomass changes would help 

explain the mechanism behind the increase in MeHg more than just SO4
2- reducing bacteria 

activity. Sulphate source and delivery also seemed to affect methylation as slight different 

responses in MeHg concentrations. This was shown by the different delivery methods 

(continuous vs. pulse) though more data from Experiment 1 would be required to make any hard 

conclusions about absolute MeHg mass produced as the experiment was cut short. By comparing 

the first 10-11 days of both experiments, it is clear that SO4
2- from wasterock has the ability to 

produce MeHg, similar to simple SO4
2- solutions. Future work should include longer SO4

2- 

additions of varying concentrations to try to further elucidate the effects different SO4
2- additions 

have on both peat and peat pore waters. 
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Chapter 4  

4 Conclusions 

4.1 General Conclusions 

The peatland-dominated Hudson-James Bay Lowlands (HJBL) in northern Canada covers over 

300 000 km2 of northern Manitoba, Ontario and Quebec. With both climate change and land use 

change pressures increasing in the north and even in these remote wetland dominated regions of 

Canada, it is important to consider how these changes may affect MeHg production including the 

loading of nutrients like SO4
2- to previously ‘pristine’ peatlands and peat soils. The lack of 

research in this particular area is not necessarily due to lack of interest or concern but largely due 

to the logistical and operational constraints associated with remote research. The purpose of the 

research presented in this thesis was to improve our understanding of how lower SO4
2- 

concentrations and SO4
2- from waste rock runoff affects MeHg production in these pristine 

northern peatlands. To accomplish this, both field and lab based experiments were used to 

attempt to tease out how different concentrations and sources of SO4
2- affect MeHg production 

and recovery.  

The findings of this thesis indicate that MeHg production is stimulated over a large range of 

SO4
2- concentrations as well as two different delivery methods (pulse and continuous) and 

sources (simple solutions, and waste rock leachate). Current research in SO4
2--impacted mining 

sites have concentrations of SO4
2- above 100 mg/L being added with little to no current impact 

on MeHg production. The research presented here indicates that SO4
2- concentrations may indeed 

exceed that which can be reduced immediately by bacteria causing an increase in MeHg 

concentration, but that excess SO4
2- may continue to move down the hydrologic gradient and 

then stimulate methylation at locations that are further from the SO4
2- source.  

4.2 Implications 

During SO4
2- additions, MeHg production can be high in certain areas and multi-year SO4

2- 

additions can leading to a movement of the area of greatest methylation away from the source of 
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SO4
2-. After SO4

2- additions cease, MeHg concentrations are still elevated, possibly through SO4
2- 

regeneration in wetting and drying peat. Under future climate change conditions, it is predicted 

that temperatures in the north will increase and along with this temperature increase, there is a 

predicted increase in decomposition (see Davidson & Janssens, 2006). Increasing decomposition 

can mean that not only the sulphur that has been incorporated into the solid peat can be released 

but that the MeHg that has been partitioned to the solid phase can also be released. Moreover, 

increased temperatures will also lead to a first-order increase in microbial metabolism, and thus, 

methylation.  This multi-pronged effect may increase MeHg production by re-introducing legacy 

sulphur, increasing pore water DOC, bioavailable Hg, and MeHg concentrations that can be 

transported downstream to be bioaccumulated in the aquatic food web.  

4.3 Limitations 

The lab-based experiments had quite a few limitations as this was the first attempt at column 

experiments using this specific approach.  For both the field and lab based experiments, 

examining the bacterial community composition before and after SO4
2- could have provided 

interesting insight into bacterial community composition and metabolism. From the column 

experiments measuring for microbial community composition and biomass changes from before 

and after SO4
2- additions would help determine if the increased MeHg response was from 

increased efficiency of already present bacteria or community growth of certain sulphate-

reducing bacteria. Sulphide sampling at the outflow of the columns over time would also provide 

interesting insight into how the microbial communities were responding (with an increase in 

sulphide corresponding to increased sulphur reducer activity). Sampling for dissolved organic 

carbon (DOC) was done in all of the above experiments but aside from flushing, no significant 

DOC changes were identified as carbon quality was not analyzed. Changes in carbon quality 

may have been occurring during these additions even if significant changes in concentration 

weren’t identified, and measures of carbon quality such as lability, would be of value.  

Increasing sampling frequency of the column experiments for ions would allow for the capture of 

SO4
2- break though as that was missed in Experiment 2 (Chapter 3). Increasing the sampling 

frequency as well as the duration of the sampling for the column experiments would also be 

suggested as to better capture the trend in MeHg production. In the future a minimum of 3 weeks 
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(21 days) would be recommended to hopefully see the columns reach steady state (e.g. wasterock 

additions, Chapter 3, Experiment 2). 

4.4 Future Work 

Future work should focus on the potential for SO4
2- priming effects from SO4

2- additions and 

their effect on MeHg production. Peat from previously SO4
2- impacted sites with the sample 

additions from Experiment 1 (Chapter 2). If the increase in MeHg that was seen in Chapter 2 

were from increased bacterial community growth from the SO4
2- additions then with the 

community already present, there may be a more efficient Hg methylating community present. 

By using peats from other, more southern peatlands, with greater atmospheric SO4
2- deposition, 

there may also be a natural difference in MeHg response simply due to location and access to 

SO4
2- that may be identified. By using the same SO4

2- additions on more southerly peats, it may 

be found that this MeHg response would be even more pronounced in these peats. To examine 

the impacts of increased temperature from climate change, peat columns could be warmed prior 

to and/or during SO4
2- additions to simulate climate change temperature increases. Increasing 

temperature may not only increase the release of MeHg and sulphur from decomposition but also 

increase the methylation rates.  
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