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Abstract 

Arogenate dehydratases (ADTs) have been identified to catalyze the last step of 

phenylalanine (Phe) biosynthesis in plants. All ADTs have a transit peptide sequence that 

targets them into the chloroplasts where the biosynthesis of Phe happens. Subcellular 

localization studies using fluorescently tagged Arabidopsis thaliana ADTs demonstrated 

that all six ADTs localize to chloroplast stromules (stroma filled tubules). However, one 

member of this family, ADT5, was also detected in the nucleus. As dual targeting of 

proteins to different cell compartments is an indication of multifunctionality, ADT5 

nuclear localization suggests that this member of the ADT protein family is a 

moonlighting protein with a non-enzymatic role in the nucleus.  

In this study, first the nuclear localization of the ADT5 was confirmed by 

expression of ADT5-CFP under the regulation of ADT5 native promoter. Using confocal 

microscopy and Western blot analysis it was shown that ADT5 localizes into the nucleus. 

Next, different possible mechanisms that could result to the nuclear localization of ADT5 

were studied. It was tested if ADT5 can move directly from chloroplast stroma to the 

nucleus through stromules or if ADT5 enter the nucleus from cytoplasm using the nuclear 

import system. Data presented are consistent with a translocation from cytoplasm. A 

combination of an AQEH motif and a single amino acid Asn28 present in the N-terminus 

of ADT5 ACT domain were identified as potential protein interaction sites required for 

nuclear targeting of ADT5. Y2H screenings and protein-protein interaction analyses 

suggest that nuclear localization of ADT5 occurs through the interaction of the cytosolic 

portion of an ER membrane bound protein, PHOSPHOLIPID DIACYLGLYCEROL 

ACYLTRANSFERASE1 (PDAT1). A nuclear targeting sequence was identified in the 

N-terminal cytosolic portion of PDAT1. Hence, it is possible that PDAT1 piggybacks 

ADT5 into the nucleus through the nuclear import system. This study introduces ADT5 

as a moonlighting protein and identifies a possible mechanism for ADT5 nuclear 

translocation.  
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1 Introduction 

This study focuses on the characterization of AROGENATE DEHYDRATASE5 

(ADT5) in planta. ADT5 is a member of the ADT protein family that catalyzes the last 

step of phenylalanine (Phe) biosynthesis in Arabidopsis thaliana. This protein is found in 

two different subcellular compartments, the chloroplast and the nucleus, suggesting the 

possibility that ADT5 could have a second non-enzymatic role in the nucleus.   

1.1 Importance of phenylalanine 

Phenylalanine (Phe) is one of twenty amino acids that serve as building blocks in 

protein synthesis in all organisms. Only plants and microorganisms are able to synthesize 

Phe de novo while animals need to obtain this amino acid through their diet, making Phe 

an important dietary component for animals (Herrmann and Weaver, 1999). In addition to 

protein synthesis, in plants, Phe is a major precursor for the biosynthesis of secondary 

metabolites such as lignin, flavonoids and isoflavonoids (Herrmann and Weaver, 1999; 

Vogt, 2010). 

Lignin is one of the most abundant biopolymers on earth and more than 30% of the 

photosynthetic fixed carbon in vascular plants is directed into lignin biosynthesis (Maeda 

and Dudareva, 2012). It has an important structural role in strengthening cell walls and 

mechanical stability of plant cells (Vanholme et al., 2010). Furthermore, lignin solidifies 

the cell wall and defends plants against pathogens, fungi and bacteria (Frei, 2013). More 

recently, lignin has become of great importance for the biofuel industry due to its role in 

inhibition of microbial fermentation in cell walls, which decreases the efficiency of 

converting plant material into energy and causes revenue losses (Frei, 2013).  

Flavonoids and isoflavonoids are abundant in plants and have a wide variety of 

functions. They are responsible for the marvelous colors and aroma of flowers and fruits 

which are not only pleasant to humans but more importantly help to attract pollinators 

and consequently are involved in plants reproductive success (Samanta et al., 2011). The 

antioxidant characteristics of flavonoids protect plants against biotic and abiotic stresses 

and serve as a unique UV-filter. As stress and high light conditions cause the formation 

of highly reactive chemical species that damage the plant cell, flavonoids are known as 

components of detoxification and receive the electrons from these highly reactive 
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molecules and act as antioxidants (Zhou et al., 2016). Moreover, the antioxidant 

properties of flavonoids have an important effect on human health, hence flavonoids are 

suggested to be used in prevention and treatment of cardiovascular diseases, cancer and 

aging (Yao et al., 2004). 

The importance of Phe and its downstream products to plant and animal life explains 

the need to increase our knowledge of the enzymes and pathways involved in its 

synthesis.    

1.2 Phe biosynthesis and role of arogenate dehydratases 

Phe biosynthesis begins with a series of enzymatic reactions in the shikimate pathway 

which connect the metabolism of carbohydrates to the synthesis of aromatic amino acids 

(Herrmann and Weaver, 1999). Chorismate is the final product of the shikimate pathway 

and is the last common precursor for the biosynthesis of the three amino acids tyrosine 

(Tyr), tryptophan (Trp) and Phe (Herrmann and Weaver, 1999; Tzin and Galili, 2010). In 

Phe biosynthesis chorismate initially is converted to prephenate by chorismate mutase 

(CM) and then prephenate is converted to Phe via one of the two alternative routes 

(Figure 1; Maeda and Dudareva, 2012).  

In microorganisms, prephenate is first decarboxylated/dehydrated to phenylpyruvate 

by a prephenate dehydratase (PDT) and then transaminated to Phe by a phenylpyruvate 

aminotransferase (PPAT; Bentley, 1990; Tzin and Galili, 2010). In plants, these 

enzymatic steps occur in reverse order. Prephenate first undergoes transamination to 

arogenate by prephenate aminotransferase (PAT) and is then decarboxylated/dehydrated 

to Phe by an enzyme called arogenate dehydratase (ADT; Cho et al., 2007; Maeda et al., 

2010). 

Biosynthesis of Phe through the ADT pathway was shown first in chloroplasts of 

Nicotiana sylvestris and Spinacia oleracea where no PDT was detected (Jung et al., 

1986). Since then, ADT activity has been observed in chloroplasts of wide a range of 

plants and been predominantly accepted (Cho et al., 2007; Yamada et al., 2008; Chen et 

al., 2016). However, PDT activity is still observed in Arabidopsis and Petunia which has 

lead to the suggestion that PDT pathway exists in plants (Bross et al., 2011; Maeda and 

Dudareva, 2012; Yoo et al., 2013).  
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Figure 1 The final two steps of Phe biosynthesis. 

 Chorismate, the final product of the shikimate pathway is converted to prephenate 

by chorismate mutase. Prephenate can then be used for Phe biosynthesis via two 

pathways. In the prephenate pathway, prephenate is first dehydrated/decarboxylated by a 

prephenate dehydratase to phenylpyruvate, and then phenylpyruvate is transaminated to 

Phe by a phenylpyruvate aminotransferase. In the arogenate pathway prephenate is first 

transaminated to arogenate by a prephenate aminotransferase and then is 

dehydrated/decarboxylated by an arogenate dehydratase to Phe. 

 

Purple arrow: PDT pathway, green arrow: ADT pathway, red: ADT enzyme. 

ADT: arogenate dehydratase, CM: chorismate mutase, PPAT: phenylpyruvate 

aminotransferase, PAT: prephenate aminotransferase, PDT: prephenate dehydratase. 

 

Modified from Tzin and Galili (2010). 
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1.3 AROGENATE DEHYDRATASE family  

A family of six ADTs were identified for the first time in A. thaliana based on their 

high degree of sequence similarities to bacterial PDTs (Cho et al., 2007; Ehlting et al., 

2005). Further analysis demonstrated that these enzymes predominantly produce Phe 

through the arogenate pathway (Cho et al., 2007; Bross et al., 2011) and were named 

ADTs (ADT1: At1g11790, ADT2: At3g07630, ADT3: At2g27820, ADT4: At3g44720, 

ADT5: Atg22630 and ADT6: At1g08250). Today families of ADTs have been identified 

in many different plant species, including five ADTs in Oryza sativa, three in Petunia 

hybrida and nine in Pinus taeda (Maeda et al., 2010; Yamada et al., 2008; El-Azaz et al., 

2016). The presence of multiple isoforms of these enzymes suggests that ADTs might 

have evolved different properties or they might have faced different transcriptional and/or 

post-translational regulatory processes to gain distinct functional roles. For instance, 

aside from arogenate, two members of A. thaliana ADTs (ADT1 and ADT2) as well as 

two members of ADT family in Petunia are able to use prephenate as a substrate meaning 

that they can act as ADTs and PDTs (Cho et al., 2007; Bross et al., 2011; Maeda et al., 

2010). Furthermore, genetic analysis demonstrated that ADTs are expressed ubiquitously 

but in a tissue-specific manner and they preferentially contribute to biosynthesis of 

specific downstream secondary metabolites (Corea et al., 2012b). For instance a study of 

A. thaliana mutants demonstrated that ADT4 and ADT5 play a dominant role in lignin 

biosynthesis in stem tissues (Corea et al., 2012a) while ADT1 and ADT3 have a high 

contribution to anthocyanin biosynthesis in leaves (Chen et al., 2016).  

Plant ADTs have three domains: an N-terminal transit peptide (TP) responsible for 

targeting the proteins into the chloroplasts, an internal catalytic domain (CAT) catalyzing 

the decarboxylation/dehydration reaction and a C-terminal ACT domain (aspartokinase-

chorismate mutase-TyrA) (Cho et al., 2007). The ACT domain is involved in allosteric 

regulation mediated by ligand binding (Vivan et al., 2008). Both catalytic and ACT 

domains are conserved in ADTs and PDTs across plants, fungi and bacteria while TP 

sequences are unique to plant ADTs (Cho et al., 2007; Bross et al., 2011). Alignments of 

six full-length A. thaliana ADTs show high sequence similarity in CAT domain and ACT 

domain (62-98% and 61-92% similarity, respectively) but the TP sequences are far more 

diverse (Figure 2).  
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Figure 2 Amino acid sequence alignment of A. thaliana ADTs. 

 Amino acid alignments of A. thaliana ADTs, reveal a high degree of sequence 

similarity. (ADT1: At1g11790, ADT2: At3g07630, ADT3: At2g27820, ADT4: 

At3g44720, ADT5: Atg22630 and ADT6: At1g08250). The most conserved sequences 

are found in the catalytic domain (62-98%) and ACT domain (61-92%), while the transit 

peptide sequence are less conserved. It is not known whether the I-region is part of the 

transit peptide or the catalytic domain. 

  

Green: ACT domain, light blue: I-region, pink: catalytic domain, yellow: transit peptide. 

Shading within the sequences indicates amino acid conservation; Black: 100%, medium 

grey: 75%, light gray: 50%, white <50%, numbers: amino acid position.  

 

Adapted from Styranko (2011). 
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In addition, there is a short sequence of 17 amino acids immediately upstream of 

the CAT domain of ADTs that is more conserved than TP sequences and does not exist in 

PDTs. This region is called the intermediate region (I region) as it is not clear if it 

actually belongs to the CAT domain of plant ADTs or to the TP and its importance is still 

unknown (Figure 2).  

1.4 Subcellular localization of ADTs 

Fluorescently tagged fusion proteins and studies of their subcellular localization 

have revolutionized the approaches toward identifying the functional roles of proteins in 

cell (Sparkes and Brandizzi, 2012). Using these tags, new and unexpected roles have 

been identified for members of protein families. For example, dual localization of a 

member of A. thaliana hexokinase family in chloroplasts and mitochondria led to 

identifying two roles for this protein in glucose metabolism and glucose signaling (Karve 

et al., 2008).  

According to prediction programs like ChloroP (Emanuelsson et al., 1999) the TP 

targets ADTs to chloroplasts which is consistent with the enzymatic role of ADTs in Phe 

biosynthesis in chloroplasts (Jung et al., 1986; Cho et al., 2007). First experimental 

observations of A. thaliana ADTs identified they localize as punctuated patterns in 

chloroplasts (Rippert et al., 2009). Later, it was demonstrated that most A. thaliana ADTs 

are targeted to the stromules of chloroplasts (Figure 3A, Bross et al., 2017). Stromules are 

stroma-filled projections of the chloroplast membrane and can from in different shapes 

like elongated tubes or short protrusions (Gray et al., 2001; Gunning, 2005; Köhler and 

Hanson, 2000) (Figure 3B). In confocal microscopy, chloroplast autofluorescence can be 

seen as red ovoid structures due to the presence of chlorophyll II in the thylakoid 

membrane. Since stromules do not contain thylakoids they do not autofluoresce, however 

they can be visualized in the presence of a stroma targeted, fluorescently tagged protein 

(Gray et al., 2001).  

In addition to stromule, two of the A. thaliana ADTs have additional subcellular 

localization patterns suggesting novel and non-enzymatic roles for these proteins (Bross 

et al., 2017). 
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Figure 3 Stromule structure. 

 Two membranes surround chloroplasts, the inner and outer membranes that are 

separated by the intermembrane space. The stroma is a protein-rich fluid within the 

chloroplast. Thylakoids are another membrane system located within the stroma of 

chloroplasts. Thylakoids have the photosynthetic components and chlorophyll, which is a 

pigment and causes chloroplast auto fluorescence in confocal microscopy. Stroma-filled 

protrusions formed by the chloroplast membranes are named stromules and since they do 

not contain thylakoids, they do not autofluoresce and hence are not visible in confocal 

microscopy unless a fluorescent fusion protein accumulates there. Stromules are variable 

in size and shape and they can form as long tubes or short protrusions. They can bud off 

and form vesicles. 

  

A) A laser scanning confocal microcopy picture presenting the stromule localization of 

ADT4-CFP in N. benthamiana. Chloroplasts autofluoresce as red round structures and 

ADT4-CFP localizes in short protrusions stromules.  

B) Schematic showing the chloroplast and stromules structure. 

 

Adapted from Bross et al. (2017). 
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ADT2 localizes at the equatorial plane of chloroplasts as a ring structure (Figure 4A left). 

Co-localization of ADT2 with a known/well described chloroplast division protein FtsZ 

(Vitha et al., 2001) showed that both proteins formed a ring at the same time in the same 

place (Figure 4B, Abolhassani Rad et al. Manuscript submitted). ADT2’s role in 

chloroplast division is further substantiated as chloroplast morphology was affected in 

A. thaliana adt2 mutant lines and proper expression of FtsZ requires the presence of 

ADT2 (Bross et al., 2017). Furthermore, transmission electron microscopy of adt2 

mutant lines demonstrated that adt2 lines have long and misshapen chloroplasts (Figure 

4C left) compared to the ovoid and uniform size of wild type chloroplasts (Figure 4C 

right, Abolhassani Rad et al. Manuscript submitted). Taken together this evidence 

suggests that ADT2 is one of as yet unidentified components required for chloroplast 

division.  

Moreover, ADT5 was observed in the nucleus in N. benthamiana and A. thaliana 

(Bross et al., 2017). The nuclear localization of ADT5 was confirmed by co-expression of 

ADT5-CFP and a nuclear membrane marker (NUCLEOPORIN-1) NUP1-YFP in 

N. benthamiana (Figure 4A right). Chloroplast targeting of ADT5 by TP and the 

enzymatic role of this protein is clear, however how this protein localizes into the nucleus 

and what function ADT5 has in the nucleus is yet unknown.  

1.5 Moonlighting: the process of multitasking 

The unique and different localization patterns of ADT2 and ADT5 in the ADT family 

suggest that these two ADTs are moonlighting proteins. Moonlighting refers to proteins 

that perform multiple autonomous and often unrelated roles (Jeffery, 1999). Different 

roles of moonlighting proteins are not due to different RNA splice variants or to gene 

fusions and are not separated in different protein domains (Huberts and van der Klei, 

2010; Espinosa-Cantú et al., 2015). The existence of moonlighting proteins was first 

reported when vertebrates crystallins were found to have an enzymatic role in low levels 

in many tissues, in addition to a structural function in the eye lenses in high levels 

(Piatigorsky, 2003). Since then, an increasing number of moonlighting proteins have been 

identified (Mani et al., 2015) and among them enzymes very commonly have a second 

non-enzymatic function including functions as structural components and as gene  
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Figure 4 ADT2 and ADT5 localization patterns. 

 ADT2 and ADT5 are the only members of the ADT family in A. thaliana that 

have dual localization pattern. 

 

A) Confocal images showing the localization patterns of ADT2-CFP and ADT5-CFP 

transiently expressed in N. benthamiana leaves.  

Left: ADT2-CFP localizes as a ring at the equatorial plane of chloroplasts. 

Right: ADT5- CFP localizs into the nucleus and the nuclear localization was confirmed 

by co-expression of the nuclear membrane marker NUP1-YFP with ADT5-CFP.  

B) ADT2-CFP (left) and FtsZ-YFP (middle) co-expressed and both fusion proteins were 

detected as a chloroplast ring (right).  

C) Chloroplasts in Arabidopsis adt2 mutant lines as observed by transmission electron 

microscopy. Long and misshapen chloroplasts were observed containing several starch 

granules (left) and wild type chloroplast has almond shape with one or two starch 

granules surrounded with thylakoids and stroma.  

Scale bars are 5 μm for confocal images (A and B), 2 μ for C (left) and 500 nm for C 

(right). 
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transcription or translation regulators. For instance, a citrate synthase in Tetrahymena has 

an enzymatic activity in mitochondria while in the cytosol it can polymerize to form 

14 nm filaments which acts as a cytoskeleton protein (Kojima et al., 1997). Another 

example is HEXOKINASE1 (HXK1) in A. thaliana an enzyme in glucose metabolism in 

mitochondria, which in the nucleus is part of a transcription factor protein complex that is 

involved in transcription of glucose signaling genes (Cho et al., 2006).  

Different mechanisms have been proposed for multifunctioning of moonlighting 

proteins such as different subcellular localizations, cell types, homodimerization of 

proteins or heterodimerization and interaction with other proteins, the availability of the 

substrates and cofactors or in many cases a combination of these parameters (Jeffery, 

2016). SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION3 (STAT3) 

is an example of a moonlighting protein in Mus musculus that has two distinct functions 

in two different cell compartments (Wegrzyn et al., 2009). It acts as a transcription factor 

in the nucleus and has a second function in the electron transport chain during cell 

respiration in mitochondria. However, one important question about moonlighting in 

different cell compartments is how these proteins localize to different membrane 

enclosed organelles in the cell. In the following sections different possible routes for dual 

localization of proteins in the cell are described. The main focus will be on the dual 

localization of proteins in the chloroplast and nucleus.    

1.6 Dual targeting of a protein in the cell 

Having a single gene product dually targeted to different destinations is one 

mechanism to diversify protein function without increasing genome size. In dual 

targeting, either exactly the same protein or a shorter version of the protein can localize 

into different organelles. However to be able to enter to membrane-enclosed organelles in 

the cell specific targeting mechanism are necessary to make the dual targeting possible 

(Karniely and Pines, 2005). Some proteins such as dual targeted chloroplast and 

mitochondrial proteins have an ambiguous targeting signal that can be recognized by the 

import system of both organelles (Silva-Filho, 2003). One good example of these proteins 

is pea glutathione reductase (GR). GR is dually targeted to mitochondria and chloroplast 

by an N-terminal 60 amino acid signal peptide that can be recognized by both stromal 
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processing peptidase in the chloroplast import system and mitochondrial processing 

peptidase in the mitochondrial import system (Rudhe et al., 2004). Other proteins have 

two targeting signals and which signal is used depends on the cell physiology, the 

availability of receptors or the affinity of each signal for its target (Karniely and Pines, 

2005). For example the type II NAD(P)H dehydrogenase (ND) protein family in 

A. thaliana has seven members and typically are located in mitochondria by an N-

terminal mitochondrial targeting signal (Elhafez et al., 2006), however three members of 

this family have a C-terminal peroxisomal targeting signal that target them into the 

peroxisome (Carrie et al., 2008).  

Dual targeting of proteins with either an ambiguous signal or two targeting signals is 

dependent on the accessibility of the signals. There is evidence that process like protein 

folding or interactions with other proteins can mask the targeting signals. Similarly, 

modifications of the protein sequence can alter the affinity of the targeting signal for its 

target and change the population of the protein in different compartments (Yogev and 

Pines, 2011). For example, Cytochrome P4501A in mammals has a N-terminal bipartite 

signal including ER targeting sequence followed by a mitochondrial targeting sequence. 

The mitochondrial localization of this protein is dependent on cleavage of the ER 

targeting signals by cytosolic endoprotease that activates the cryptic mitochondrial 

targeting signal (Addya et al., 1997). 

Retrograde movement of one protein from one compartment to another in the cell is a 

method that has been purposed for dual localization of proteins (Yogev and Pines, 2011). 

This relocalization of proteins is a mechanism that allows response to changes within the 

cell or in environment. Although, the mechanism of retrograde movement is not fully 

understood, there is evidence that mitochondrial or chloroplast proteins relocalize to the 

nucleus suggesting a communication system between these organelles in the cell, which 

will be discussed more specifically for chloroplast and nucleus in the following section.   

1.7 Plastid to nucleus retrograde signaling 

Chloroplasts are photosynthetic organelles evolved from cyanobacteria that were 

engulfed by a eukaryotic cell through endosymbiosis (Dyall et al., 2004). It is estimated 

that the chloroplast genome of A. thaliana has about 100 genes, while more than 3000 
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proteins are recognized for chloroplast functioning, this means the majority of chloroplast 

proteins are encoded in the nucleus, translated in the cytoplasm and post translationally 

targeted to the chloroplast (McFadden, 2001; Leister, 2003). Therefore, chloroplasts and 

nucleus have a complex signaling system to ensure proper expression and targeting of 

proteins in plant cells (Bobik and Burch-Smith, 2015). For example, in response to 

environmental stresses, pathogen defense or chloroplast biogenesis, retrograde signals 

from the chloroplast communicate with the nucleus to regulate the expression of specific 

genes (Barajas-López et al., 2013). The first evidence of retrograde signaling and 

regulation of nuclear genes is based on experiments performed with the albostrians 

barley mutant (Bradbeer et al., 1979). It was shown that chloroplast-synthesized RNAs 

acted as signals to regulate the expression of nuclear genes encoding the photosynthetic 

components phosphoribulokinase and D-glyceraldehyde-3-phosphate NADP+ 

oxidoreductase (Bradbeer et al., 1979). Since then, several chloroplast metabolites have 

been proposed to act as retrograde signals like reactive oxygen species (ROS) (Galvez-

Valdivieso and Mullineaux, 2010) and redox signals (Baier and Dietz, 2005). Recently, 

proteins with dual location in the chloroplast and nucleus have been suggested as 

retrograde signals. One such protein is PTM (PHD type transcription factor with 

transmembrane domain) in A. thaliana. PTM is associated with the outer membrane of 

chloroplasts and a truncated form of this protein has been detected in the nucleus (Sun et 

al., 2011). Several domains have been identified in the PTM protein sequence including a 

DNA-binding domain, a transcription activation domain and a plant homeodomain at its 

N-terminus and four transmembrane domains at the C-terminus (Sun et al., 2011). In 

response to the photooxidative stress, PTM was released to the cytosol from the 

chloroplast membrane through proteolytic cleavage and the N-terminal cleaved fragments 

containing the transcription activation domain accumulated in the nucleus (Sun et al., 

2011). However, the molecular mechanism of transferring the protein from the cytosol to 

the nucleus is unknown. Another example is WHIRLY1 from A. thaliana. This protein 

contributes to plastid genome stability in chloroplasts (Maréchal et al., 2009) and in the 

nucleus acts as a transcription factor for pathogen response genes (Isemer et al., 2012). 

Expression of WHIRLY1 tagged with a GFP in the chloroplast genome and detection of 

the full-length fusion protein in the nucleus of the same cell suggested direct 
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translocation of the proteins from the chloroplast into the nucleus (Isemer et al., 2012). 

However, the mechanism of this translocation remains to be investigated.     

1.8 Possible role of stromules in molecule trafficking  

Stromules are highly dynamic and they can extend from the surface of the plastids 

like chloroplasts, amyloplasts, leucoplasts and chromoplasts (Natesan et al., 2005). They 

are morphologically extremely variable from tissue to tissue and at different stages of 

plant development (Köhler and Hanson, 2000). The primary function of stromules has not 

been clearly elucidated, however some possible functions have been proposed. Stromules 

increase the plastid surface area without increasing the plastid volume, potentially 

increasing the plastid capacity to translocate metabolites and macromolecules to other 

areas of the cell (Natesan et al., 2005). Consistent with this role, transfer of fluorescently 

labeled proteins between plastids have been shown to occur through stromules (Kwok 

and Hanson, 2004a). In addition, stromules have been reported to position closely to 

other organelles like mitochondria (Gunning, 2005), endoplasmic reticulum (Schattat et 

al., 2011), and nuclei (Kwok and Hanson, 2004b). The close association of the stromules 

and nuclei suggests that stromules can facilitate the transport of macromolecules and 

metabolites between these two organelles. Although the translocation mechanism of 

macromolecules through the stromules is not well understood, there are some suggestions 

based on experimental observations. For instance, stromules can form vesicles and this 

process is referred to as shedding (Gunning, 2005). It has been suggested that these 

vesicles can transport stromal proteins to another plastid. Alternatively, they might 

dispose of plastid proteins by sending them into vacuoles (Hanson and Sattarzadeh, 

2011). Recent studies suggest the possibility of physical interaction between chloroplasts 

and nuclei specifically in response to pathogens in A. thaliana and N. benthamiana 

(Caplan et al., 2015). Stromule formation in these plants was induced and close 

connection of the stromule and nucleus was observed which correlated with accumulation 

of the chloroplast-localized N RECEPTOR INTERACTING PROTEIN1 (NIRP1) 

defense protein in the nucleus (Caplan et al., 2015). These results suggest a direct 

translocation of the NIRP1 from the chloroplast to the nucleus through the stromules, 

however the exact mechanism of nuclear entry remains unsolved.   
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1.9 Nuclear pore complex and nuclear import system 

To enter the nucleus, proteins must cross the inner and outer membranes of the 

nuclear envelope (NE). The inner membrane is adjacent to the nuclear lamina and carries 

only proteins specific to the nucleus. The outer membrane is continuous with the 

endoplasmic reticulum (ER) membrane and is studded with ribosomes on its cytoplasmic 

side. The space between the two membranes is connected to the ER lumen (Raikhel, 

1992; Boruc et al., 2012). Despite the complexity of the NE, genetic material is not 

totally isolated from the rest of the cell as the nuclear pore complexes (NPC) provide a 

gateway for exchanging mRNA and proteins between nucleus and cytoplasm (Raikhel, 

1992). Water, sugars, ions and proteins smaller than 40 kDa diffuse freely into the 

nucleus from the cytoplasm; however, passage of macromolecules is restricted and the 

NPC prevents the passing of non-specific large proteins into the nucleus (Wente and 

Rout, 2010; Parry, 2015). Therefore, many proteins active in the nucleus have at least one 

targeting signal, a nuclear localization signal (NLS), which consists of one or two clusters 

of basic residues (Rout and Aitchison, 2001). Classical NLSs (cNLSs) are composed of 

basic amino acids lysine (K) and arginine (R) that are recognized by nuclear receptors, 

known as importins, and are well conserved in eukaryotes (Kosugi et al., 2009a). 

Classical NLSs are divided in two major groups: Monopartite and bipartite NLSs. 

Monopartite NLSs have only a single cluster of basic amino acids and can be further 

subdivided to class one which is a continuous sequence of at least 4 basic residues 

(PKKRKKV) and class two which is represented by one or two basic amino acids with 

any other amino acids in between (PAAKRVKLD) (Raikhel, 1992). Bipartite NLS 

contains two clusters of basic residues separated by a 10-12 amino acid linker for 

example SPPKAVKRPAATKKAGQAKKKKLDKEDES, the first cluster has at least 

two basic residues and the second cluster has at least 3 basic residues and both clusters 

cooperate in binding to importin proteins, with the linker probably facilitating the 

interaction (Raikhel, 1992). Although the putative consensus sequences of classical NLSs 

have been defined, there are three classes of noncanonical NLSs identified 

experimentally that do not match the classical NLSs (Kosugi et al., 2009a). Class three 

has KRXWFXXAF and class four has (P/R)XXKR(K/R) core sequence where X can be 

any amino acid. Class five of the noncanonical NLSs LGKR(K/R)W is specific to plants 
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and has been identified in A. thaliana where as the other classes are functional in 

mammals, yeast and plants (Kosugi et al., 2009a).  

In the nuclear protein import system, importin proteins and shuttling factors including 

GTP-binding protein Ran mediate the translocation of cargo proteins (proteins that need 

to get transported into the nucleus) from the cytoplasm into the nucleus (Wente and Rout, 

2010). Importin is a type of karyopherins that transports cargo proteins into the nucleus 

by binding to the NLS and has two subunits: importin α and importin β. Different 

isoforms of importin proteins have been identified in different plant species; for example, 

there are 8 predicted isoforms of importin α and 17 of importin β in A. thaliana (Merkle, 

2011). Ran proteins are small soluble proteins that are known as molecular switches and 

are important for nuclear import and export. There is a high RanGDP concentration in the 

cytoplasm and a high RanGTP concentration in the nucleus which establish a gradient 

inside and outside of the nucleus and determines the direction of protein transport (Cook 

et al., 2007; Wente and Rout, 2010). Importin β has the main shuttling role in protein 

translocation. This protein has a cargo-binding domain that binds to the NLS of a cargo 

protein as well as a NPC binding domain that interacts with the NPC. Importin β also has 

a binding domain to bind a Ran GTP to complete the transporting complex (Cook et al., 

2007). In the cytoplasm RanGDP binds importin β-cargo and this protein complex passes 

through the NPC. In the nucleus RanGDP disassociates importin β, which releases the 

cargo in the nucleus. Then RanGTP binds Importin β in the nucleus and the complex is 

exported to the cytoplasm through the NPC for further shuttling (Wente and Rout, 2010). 

Although, importin β proteins can bind directly to cargo proteins and translocate 

cargo protein to the nucleus, most of the time the NLS of the cargo protein is recognized 

by an adaptor protein, importin α, which then binds to importin β (Riddick and Macara, 

2007). The cargo-importin α-importin β complex translocate through the NPC into the 

nucleus by association of RanGDP to importin β. Importin α in the nucleus is exported to 

the cytosol by a specific protein called CAS, which also promotes the release of cargo 

protein from the adaptor (Riddick and Macara, 2007; Merkle, 2011). Adaptor proteins are 

suggested to provide more control on cargo accumulation in the nucleus under different 

cellular conditions and help the organism respond to environmental stimuli (Riddick and 

Macara, 2007).  
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1.10 Protein-protein interactions and nuclear targeting 

Many molecular processes in the cell are mediated by molecular complexes that are 

composed of different numbers of proteins established by protein-protein interactions 

(PPI). Some protein assemblies are stable in the cell due to of their continuous role as 

macromolecular protein complexes, like ATP synthase. However, there are protein 

interactions in cells that are transient and they are only found in certain cellular contexts 

like specific times, specific tissues or external factors. For example activation of gene 

expression by interaction with transcription factors activates a gene promoter in pathogen 

defense (de Las Rivas and Fontanillo, 2010). In many cases protein interaction is a 

mechanism of gaining multifunctionality and study of PPIs has lead to reveal unknown 

functions of many proteins. For example and as mentioned before, a monomer of citrate 

synthase in Tetrahymena has an enzymatic activity in mitochondria, however by forming 

homo-oligomers it acts as a cytoskeleton protein in the cytosol (Kojima et al., 1997). In 

addition, PPI has been identified as a fascinating import mechanism for cargo proteins 

without targeting signals into different compartments of the cell, termed a “piggyback” 

mechanism (Thoms, 2015; Genoud et al., 2008). For example the nuclear localization of 

light-activated phytochrome A photoreceptor proteins (PHYA) in A. thaliana has been 

identified to depend on interaction with FAR-RED ELONGATED HYPOCOTYL1 

(FHY1) in the cytoplasm (Genoud et al., 2008). FHY1 has a NLS and piggybacks PHYA 

into the nucleus through the NPC. 

Protein interactions can be determined by small or large-scale screens with different 

technologies. Binary methods study the physical interactions between protein pairs and 

co-complex methods determine physical interactions among group of proteins (Yu et al., 

2008). Yeast Two Hybrid (Y2H) and Biomolecular Fluorescence Complementation assay 

(BiFC) are two common binary assays that are used to study PPIs of plant proteins (de 

Las Rivas and Fontanillo, 2010; Kerppola, 2006). These methods were used to identify 

binary interactions between ADTs in A. thaliana and it was found that all six AtADTs are 

able to form hetero- and homodimers (Styranko, 2011). In planta dimerization of ADTs 

was detected in the chloroplast stromules, however, ADT5 homo-dimers and ADT5-

containing hetero-dimers had nuclear localization (Styranko, 2011).  
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1.11 Research goals and objectives 

ADT5 is a member of the ADT protein family in A. thaliana and has an enzymatic 

role in the decarboxylation/dehydration of arogenate to Phe in Phe biosynthesis in 

chloroplasts. Aside from the chloroplast and more specifically stromule localization, 

ADT5 was detected in the nucleus. The nuclear localization of ADT5 is intriguing and 

suggests a moonlighting role. However, not is much known about how ADT5 localizes to 

the nucleus or its potential role in the nucleus. These questions form the basis of my 

thesis. The specific objectives of my project are: 

1. To confirm the nuclear localization of ADT5 and identify the localization of ADT5 

under the control of the native ADT5 promoter.  

2. To identify how ADT5 translocates into the nucleus. Three different possibilities were 

examined:  

a) Direct translocation from chloroplast to the nucleus through stromules. 

b) Cytosolic translocation of ADT5 using the nuclear import system. 

c) Interaction with other proteins to piggyback into the nucleus. 

3. To identify the possible sequence within ADT5 that makes it distinct from other ADTs 

and enables the nuclear localization of this protein. 
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2 Material and Methods 

2.1 Media, solutions and media additives 

2.1.1 Media 

For preparing solid media 15 g agar was added to 1 liter of liquid media except 

for Murashige and Skoog (MS) medium and Revised Medium for Organogenesis of 

Nicotiana plumbaginifolia (RMOP) medium that 7 g agar was used. 

Lysogen broth (LB) 

For 1 L: 10 g tryptone, 5 g yeast extract, 10 g NaCl. 

Murashige and Skoog (MS) medium 

For 1 L: 4.43 g Murashige and Skoog nutrient mix (Sigma M 5519), 40 g sucrose, 

pH 5.8. 

Regeneration medium 

For 1 L: RMOP, 250 μl BAP, 26 μl NAA, 100 μl thiamine, 2 ml myo-inositol. 

RMOP medium 

For 1 L: 4.43 g Murashige and Skoog nutrient mix pH 5.8, 30 g sucrose, pH 5.8. 

Rooting medium 

For 1 L: RMOP, 5 ml spectinomycin (50 mg/ml). 

Synthetic Dextrose (SD) medium 

For 1 L: 20 g glucose, 6.7 g yeast nitrogen base, 1.5 g appropriate drop out 

powder. 

Yeast Extract and Beef (YEB) medium 

For 1 L: 5 g beef extract, 1 g yeast extract, 5 g peptone, 5 g sucrose, 0.49 g 

MgSO4. 

Yeast Peptone Dextrose Adenine (YPDA) medium 

For 1 L: 20 g glucose, 10 g yeast extract, 20 g peptone, 40 mg adenine 

hemisulfate. 

2.1.2 Solutions and buffers 

Cellulose solution  

For 50 ml: 0.75 g cellulose R10 (Yakult Pharmaceutical, 216016), 0.2 g 

macerozyme® R10 (Yakult Pharmaceutical, 202051), 3.65 M mannitol, 1 ml 1 M KCl, 1 
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ml 1 M morpholino ethanesulfonic acid (MES) (Sigma M8250) pH 5.7, 0.5 ml 1 M 

CaCl2, 17.5 μl β-mercapto ethanol (BME) (Sigma M6250) and 0.5 ml bovin serum 

albumin (BSA) (Sigma A6793). 

DNA coating mixture  

For 5 shots: 50 μl 0.6 μm gold particles (Bio-Rad 165-2262), 50 μl 2.5 M CaCl2, 

20 μl 0.1 M spermidine (Sigma S2626). 

Fertilizer solution  

For 1 L: 0.25 g water-soluble fertilizer N: P: K=20: 8: 20 (Plant Products, 

Brampton, ON, Canada). 

Floral dip solution 

For 500 ml: 25 g sucrose, 100 μl Silwet L-77 (Plant Media 30630216-2). 

Flotation medium  

For 50 ml: 10 g sucrose, 0.5 ml 1 M MES (Sigma M8250) pH 5.7 and 1 ml 1 M 

KCl.  

Gamborg’s solution 

For 1 L: 3.2 g Gamborg B5 medium and vitamins (RPI 20200), 20 g sucrose, 

10 ml 1 M MES (Sigma M8250) and 1 ml 200 μM 4’-hydroxy 3’, 5’- 

dimethoxyacetophenone (acetosyringone) (Sigma D134406). 

Hexadecyl Trimethyl Ammonium Bromide (CTAB) extraction buffer  

For 500 ml: 10 g CTAB (Sigma 855820), 20 ml 0.5 M Ethylene Diamine 

Tetracetic Acid (EDTA) pH 8, 140 ml 5 M NaCl, 50 ml 1 M Tris-HCl pH 8. 

Phosphate Buffered Saline (PBS) 

For 1 L: 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4, pH 7.4.    

Protein Extraction Buffer (PEB)  

For 100 mL: 96 ml PBS, 100 μl Tween-20, 2 g poly vinyl poly pyrrolidone 

(PVPP), 200 μl 0.5 mM EDTA pH 8, 1 ml 100 mM phenylmethanesulfonylfluoride 

(PMSF), 100 μl 1 mg/ml leupeptin, 2 g 100 mM L-ascorbate. 

Seed sterilization solution 

For 100 ml: 20 ml 5% bleach, 100 μl 2% sodium dodecyl sulfate (SDS). 

Washing solution  

For 50 ml: 18.2 g mannitol, 0.8 ml 1M MES (pH 5.7), 4 ml 1 M KCl.  
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X-Gluc solution 

For 100 ml: 1 ml 100 mM 5-bromo-4-chloro-3-indolyl-glucuronide (X-Gluc) 

(Thermo ScientificTM B1691), 20 ml methanol, pH 7.0. 

2.1.3 Media additives 

Acetosyringone 

For 200 mM stock: 196.2 mg acetosyringone (Sigma D134406) dissolved in 5 ml 

dimethyl sulfoxide (DMSO). Final concentration of 200 μM was used. 

Amino acid dropout powder 

For 25 L: 1 g adenine hemisulphate, 0.5 g L-arginine-HCL, 2.5 g L-aspartic acid, 

2.5 g L-glutamic acid, 0.75 g L-isoleucine, 1.5 g L-leucine, 0.75 g L-lysine-HCl, 0.5 g L-

methionine, 1.25 g phenylalanine, 9.35 g L-serine, 5 g L-threonine, 1 g L-tryptophan, 

0.75 g L-tyrosine, 0.5 g uracil, 3.72 g L-valine, 2 g L-histidine HCl. 

Antibiotics 

Stock solution of ampicilin (100 mg/ml), gentamycin (50 mg/ml), kanamycin (60 

mg/ml), spectinomycin (50 mg/ml), streptomycin (50 mg/ml) was prepared by dissolving 

each in MiliQ water. Aureobasidin A (500 μg/ml) and rifampicin (25 mg/ml) dissolved in 

absolute ethanol and dissolved in dimethyl sulfoxide (DMSO), respectively. Stocks were 

added to the media after autoclaving to a final concentration of 100 μg/ml, 200 ng/ml, 

15 μg/ml, 60 μg/ml, 10 μg/ml, 50 μg /ml and 50 μg /ml for ampicilin, aureobasidin A, 

gentamycin, kanamycin, rifampicin, spectinomycin and streptomycin, respectively. 

Benzyl Amino Purine (BAP)  

For 4 g/L stock: 0.2 g BAP (Sigma B3408) dissolved in 1 ml 1 N NaOH and mix 

with 49 ml MiliQ water. Final concentration of 1 mg/L was used. 

Myo- inositol  

For 50 g/L stock: 2.5 g myo-inositol (Sigma I5125) dissolved in 50 ml MiliQ 

water. Final concentration of 0.1 g/L was used. 

1-Naphthalene Acetic Acid (NAA) 

For 4 g/L stock: 0.2 g NAA (Sigma 317918) dissolved in 1 ml 1 N NaOH and mix 

with 49 ml MiliQ water. Final concentration of 0.1 mg/L was used. 
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Thiamine 

For 10 mg/L stock: 0.5 g thiamine hydrochloride (Sigma 47858) dissolved in 

50 ml MiliQ water. Final concentration of 1 mg/L was used. 

X- α-Gal 

For 20 mg/ml stock: 100 mg X-α-Gal (Clontech 630407) dissolved in 5 ml dimethyl 

formamide. Final concentration of 20 μg/ml was used. 

2.2 Organisms and growth conditions 

2.2.1 Bacterial strains and growth conditions 

Escherichia coli DH5α (Invitrogen 11319019) was used for maintenance of 

plasmids. For liquid cultures cells were grown in LB media at 250 rpm at 37°C for 16-18 

hours. Appropriate antibiotic was added to media for selection of cells harboring 

plasmids.  

Agrobacterium tumefaciens LBA4404 (NCCB accession PC2760) and GV3101 

(kindly provided by Dr. Grbic, Western University, London, ON; Hellens and 

Mullineaux, 2000) were used for plant transformations. A. tumefaciens liquid cultures 

were grown at 250 rpm at 28°C for 16-48 hours in YEB or LB medium supplemented 

with appropriate antibiotics.  

2.2.2 Plant material and growth conditions 

All plants were grown in growth chambers at 22°C with a 16/8 hours light/dark 

photoperiod at a light density of 110 μmol-2s-1 unless specified otherwise.   

 A. thaliana wild type (Columbia-0; TAIR accession number CS907) seeds were 

used in this study. A. thaliana seeds were first germinated on MS media and then 

transferred onto soil. Prior to this seeds were sterilized using sterilization solution and 

shaken gently for 10 minutes followed with 5 washes with MiliQ water to remove the 

sterilization solution. Then seeds were transferred onto MS medium and vernalized at 

4°C in the dark for 3 days and then transferred into a growth chamber for 2 weeks. If 

there was a need of selection, appropriate selectable components were added to the 

media. After 2 weeks germinated seedlings were transferred to soil and grown in the 

growth chamber. To maintain the humidity pots with seedlings were covered with clear 
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covers in the growth chamber for the first 2 days and after that they exposed to the 

environment.  

Nicotiana benthamiana and Nicotiana tabacum (Male sterile 81V9) seeds were 

kindly provided by Dr. Menassa, Agriculture and Agrifood Canada, London, ON. 

N. benthamiana seeds were sown on soil and grown in a growth chamber for 4-6 weeks. 

Plants were watered with water-soluble fertilizer every other day.  

N. tabacum seeds were first sterilized with 70% ethanol and rinsed twice with 

MiliQ water. Then they were grown on MS medium in sterile Magenta boxes. Plants 

were grown for 4 weeks in a growth chamber and used for chloroplast genome 

bombardment. Transplastomic tobacco plants were potted and transferred to the green 

house with a 16/8 hours light/dark photoperiod. Green house temperature was 26°C at 

day and 18°C at night. 

2.2.3  Yeast strains and growth conditions 

Saccaromyces cerevisiae AH109 (Clontech 630444; MATα, trp1-901, leu2-3 112, 

ura3-52, his3-200, gal4Δ, gal80Δ, LYS2::GAL1-UAS-GAL1TATA-HIS, GAL2-UAS-

GAL2TATA-ADE2, URA3::MEL1-UAS-MEL1TATA-lacZ, MEL1) and Y187 (Clontech 

630457; MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3 112, gal4Δ, gal80Δ, 

MEL1, URA3::GAL1UAS-gal1TATA-lacZ) were used. Yeast cells were grown on 

appropriate YPD or supplemented SD medium at 30°C and liquid cultures were shaken at 

220 rpm unless specified otherwise. 

2.3 Cloning procedures and construct design 

2.3.1 Primer design  

Gateway primers were designed (Appendix 1) to amplify full length and truncated 

ADT5 (At5g22630), ADT4 (At3g44720) and ADT2 (At3g07630) sequences as well as full 

length IMPA6 (At1g02690) and PDAT (At5g13640) based on the coding sequences 

available on TAIR. All forward primers were designed with 5’att sites and the reverse 

primers were designed with 3’att sites. For cloning of the native promoter into the pCB5, 

the forward primer was designed with 5’ MauBI and reverse primer was designed with 3’ 

XhoI restriction site using the genomic sequence of the ADT5 available on TAIR. All 

primers for generating the transplastomic plants were designed to amplify full length and 
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truncated ADT5, ADT4, ADT2 sequences and added 5’ and 3’ NheI restriction sites. In 

addition, some internal gene specific primers were designed for sequencing purposes. All 

primers were tested for melting temperature, balanced GC content, self- complementary 

and primer pair complementary using DNAMAN (Lynnon BioSoft, Version 6). 

2.3.2 Polymerase chain reaction conditions 

A standard PCR condition (denaturation of the template 1 minute at 95°C, 

annealing of the primers at 55°C, extension 3 minutes at 72°C, 25-30 cycles of 

amplification) was used. All PCR reactions were performed using Taq polymerase (New 

England BioLabs®
Inc M0273) to establish the conditions prior to using Phusion®

Inc high-

fidelity DNA polymerase (New England BioLabs®
Inc M0530S). For both polymerases, 

reactions were set up according to the recommended company protocols. Previously 

cloned ADT sequences (Cho et al., 2007) were used for cloning ADT sequences and an 

A. thaliana cDNA library from 14 days old seedlings (kindly provided by Dr. Cui) was 

used as template for cloning of IMPA6 and PDAT sequences.  

2.3.3 Plasmid DNA isolation and sequencing 

Plasmid DNA was isolated from E. coli using the QIAprep Spin Miniprep Kit 

(QIAGEN 12123) following the manufacture’s protocol. The same kit was used for 

isolating plasmid DNA from yeast cells with a small modification. At the very first step 

425-600 micron glass beads, acid washed (Sigma G8772) were added to the samples to 

break down the cell wall and release plasmid DNA. For sequence confirmation of the 

constructs, all the samples were sent to the sequencing laboratory at London Regional 

Genomic Center at the Robarts Research Institute (Western University). Sequence results 

were analyzed using the DNAMAN (Lynnon BioSoft, Version 6).  

2.3.4 Cloning systems and plasmid strains 

Two cloning systems were used in this project: Gateway® and ligation cloning. 

All the plasmids used in this study are listed in Appendix 2. In the Gateway® system 

(Hartley et al., 2000) PCR fragments were introduced into pDonor221 vector (Invitrogen 

1236017) using a BP Clonase (Invitrogen 11789020) and BP recombination reaction. 

Resulting entry vectors were sequenced to confirm that no PCR errors were introduced 
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and sequences were in frame. The confirmed fragments were recombined into a 

destination vectors using LR Clonase (Invitrogen 11791020) to generate expression 

vectors.  

Different Gateway® destination vectors were used in this project based on the 

purpose of the experiments (Appendix 2): To determine subcellular localization plant 

expression vectors pEarlyGate 101 and pEarlyGate 102 (Earley et al., 2006) and for 

promoter analysis pKGWFS7 (Karimi et al., 2002) were used. The Gateway® modified 

compatible expression vectors pGBKT7-DEST (GAL4-DB) and pGADT7-DEST 

(GAL4-TA) were used for Y2H experiments (Clontech 630489 and 630490 modified by 

Lu et al. 2010). The Gateway® modified compatible expression vectors pEarleyGate201-

YN, pEarleyGate 202-YC (Earley et al., 2006; Lu et al., 2010) were used for BiFC 

assays. Restriction enzyme digestion reactions were used for confirmation of proper 

insertion. 

For ligation-dependent cloning, PCR amplified DNA fragments and desired vectors 

were first digested with appropriate restriction enzymes and fragments separated on 

0.7 % (w/v) agarose gel. Then digested products were visualized and the desired digested 

PCR fragments and digested vectors were removed and gel purified using QIAquick Gel 

Extraction Kit (QIAGEN 28704). Digested PCR fragments were cloned into vectors 

using T4 DNA ligase (Thermo ScientificTM EL0014) and sequenced to confirm that no 

PCR errors were introduced and sequences were in frame. The pCEC4 vector (Kolotilin 

et al., 2013) was used for chloroplast genome bombardment and pCB-ADT5 (Bross et al., 

2017) was used for expression of ADT5 with it’s native promoter (Appendix 2).  

2.4 Bacterial and yeast transformations 

E. coli chemical competent cells were prepared as described (Renzette, 2011) and 

transformed using the Chemically Competent E. coli transformation protocol (Invitrogen 

C4040-03 Manual). A. tumefaciens electroporation competent cells were prepared and 

transformed using a Gene Pulser II system (Bio-Rad) as described (Wise et al., 2006) 

with the following settings: 2 kV, 400 Ω, 25 μF. Immediately after transformation E. coli 

and A. tumefaciens cells recovered at 37°C and 30°C, respectively, for 1 hour in non-

selective medium before transferring on selective medium.   
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Yeast competent cells were prepared using the Fast Yeast TransformationTM kit (G-

Biosiences GZ-1) and used for transformation according to the manufacture’s 

instructions. To increase the efficiency of transformation, cells were incubated at 30°C 

for 3 hours before plating on selective medium. 

2.5 Plant transformations 

2.5.1 Transient transformation of N. benthamiana  

Agrobacterium cells harboring desired constructs were grown to an optical 

density of 0.8 (OD600). Cells were collected by centrifugation at 1000 g for 30 minutes 

and resuspended in Gamborg’s solution to the final OD600 of 1 and incubated with gentle 

shaking for 1 hour at 21°C. To increase the expression of the transgenes, Agrobacterium 

cells harboring p19 at OD600 of 1 was used in all transient expression experiments. The 

p19 vector encodes a 19 kDa protein from Cymbidium ringspot virus (CymRSV) that 

suppresses post transcriptional gene silencing (Silhavy et al., 2002; Voinnet et al., 2003). 

Therefore, Agrobacterium cells harboring the desired construct and Agrobacterium cells 

harboring p19 in a 1:1 ratio suspension were used for infiltration of the abaxial leaf 

epidermis of 4 weeks old N. benthamiana plants using a 1 ml syringe (Kapila et al., 

1997). The fluorescence signals were detected by confocal microscopy 4-5 days after 

infiltration (dpi). 

2.5.2 Chloroplast genome transformation of N. tabacum 

A biolistic method was used to generate transplastomic plants (Verma et al., 

2008). Briefly, 5 μg of desired plasmid DNA was gold-coated using the coating mixture 

at room temperature. The coated plasmids were washed twice with 70% ethanol and 

following a wash with 100% ethanol. 10 μl of the coated DNA was used per 

transformation. 8-10 week old plants were used for bombardment with Bio-Rad PDS-

1000/ HeTM Biolistic Delivery system (Bio-Rad 165-2257) under sterile conditions. For 

each constructs, 10 leaves abaxial side up were bombarded. 

Bombarded leaves were kept in the dark for 2 days at 22°C on RMOP plates. 

Then the leaves were cut into 5 mm2 pieces and placed on RMOP medium containing 

spectinomycin for selection of cells containing transformed chloroplasts. Leaves were 

incubated in a growth chamber for 6 weeks and were inspected weekly for the appearance 



 

 

30 

of green calli. Positive transformed calli were identified by PCR and regenerated for 

2 generations on regeneration medium. The regenerated plantlets were rooted on rooting 

medium and after 4 weeks were potted and transferred to the green house. Young 

plantlets were covered with clear covers for 2 days after transferring to the green house to 

help them to adjust. 

2.5.3 Stable transformations of A. thaliana  

Agrobacterium cells harboring desired constructs were transferred to the wild type 

A. thaliana plants at flowering stage using the floral dip method (Zhang et al., 2006). 

Briefly, Agrobacterium cells were grown to an OD600 of 1.5-2 and were collected by 

centrifugation at 4000 g for 10 minutes at room temperature. Cells were gently 

resuspended in dipping solution. Then the aerial parts of the A. thaliana plants were 

dipped into the cell suspension for 10 seconds. Transformed plants were covered with 

clear plastic bags for 1 day in the room temperature in the dark and then transferred into 

the growth chamber for one month until dry seeds were collected. Seeds were placed on 

MS media containing kanamycin and transgenic plants were selected after two weeks. 

Germinated transformed seedlings were transferred to soil and allowed to grow to 

maturity and seed collection. 

2.6 Plant genomic DNA isolation 

To extract the genomic DNA from A. thaliana or N. tabacum leaves the Fast Plant 

Genomic DNA isolation method was used (Murray and Thompson, 1980). Briefly, 30 mg 

leaf material were placed in a 2 ml Eppendorf tube and dipped in liquid nitrogen. Frozen 

tissue samples were grounded using pestles and mixed with 300 μl of CTAB extraction 

buffer by vortexing. Then 300 μl chloroform was added to the tube and mixed well by 

inverting several times. Samples were centrifuged at 10.000 g for 10 minutes and the 

upper aqueous phase was transferred to a fresh tube. 300 μl isopropanol was added to the 

solution and mixed well by inverting the tube several times and centrifuged at 12.000 g 

for 10 minutes. The supernatant was removed and the pellet was washed with 300 μl 70% 

room temperature ethanol. Pellet was dissolved with 50 μl MiliQ water. 
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2.7 Bimolecular Fluorescence Complementation Assay 

The Bimolecular Fluorescence Complementation assay (BiFC) was used to test for 

protein-protein interactions in planta (Kerppola, 2006). Desired genes were recombined 

into modified pEarlyGate 201-nYFP and pEarlyGate 202-cYFP (section 2.3.4) where 

each has a half N-terminal and C-terminal fragments of YFP (Lu et al., 2010). Constructs 

were transformed into Agrobacterium cells and were transiently co-expressed in 4 weeks 

old N. benthamiana leaves. Infiltrated leaf samples were inspected 3 dpi by confocal 

microscopy for detection of the YFP signal. Interaction of the fused proteins would bring 

the two half of the yellow fluorescence protein within proximity and emit its fluorescence 

signal (Kerppola, 2006).  

2.8 Confocal microscopy 

To visualize the fluorescent fusion proteins, the abaxial epidermal cells of the leaf 

disc (9 mm) were imaged using Lecia SP2 and Olympus FV3000 confocal laser scanning 

microscope equipped with 63x water immersion objective lens. Chlorophyll and CFP 

were imaged with a 405 blue diode laser and emission was detected from 440 nm to 

485 nm and from 630 nm to 690 nm, respectively. For imaging GFP a 488 nm argon laser 

was used and emission was detected from 500 nm to 525 nm and YFP was excited with a 

514 nm argon laser and its emission was collected from 540 nm to 550 nm. For 

colocalization experiments, CFP and YFP emissions were detected sequentially to avoid 

crosstalk of fluorophore pair (Shaner et al., 2005) . Chlorophyll II, YFP, CFP and GFP 

fluorescence was colored red, yellow, cyan and green, respectively.     

2.9  Y2H assay and cDNA library screening 

Y2H assays (Chien et al., 1991) were used to detect and analyze protein-protein 

interactions in vivo. Desired genes were cloned into pGADT7-DEST (has an N-terminal 

GAL4-AD domain) and pDGBKT7-DEST (has an N-terminal GAL4-BD) (Lu et al., 

2010) and transformed pairwise into yeast AH109 cells using Fast Yeast 

TransformationTM kit (G-Biosiences GZ-1). Transformed cells were grown to a cell 

density of 5 x 106 cells/ml and then spotted on appropriately supplemented SD medium. 

Results were recorded 3-7 days after spotting. Three reporter genes, ADE2, HIS3 and 
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MEL1, at three different chromosomal locations in yeast cells AH109 were used. ADE2 

and HIS3 are genes required in yeast for adenine and histidine biosynthesis and MEL1 

encodes for an enzyme called α-galactosidase that if expressed in the presence of X-α-

Gal produces a color change in the colonies. Growth of white cells in the absence of 

histidine and adenine in the medium and production of a blue pigment in the presence of 

X-α-gal indicates activation of the reporter genes and interaction.  

To identify potential interactors for ADT5 a commercial A. thaliana Y2H cDNA 

library (Mate and PlateTM Library- Universal Arabidopsis, Clontech 630487) was used 

following the recommended protocol (Clontech, 2010). This commercial library has been 

normalized, hence the representation of highly expressed genes like housekeeping genes 

has been reduced which increase the possibility of interactions with proteins with low 

expression level (Clontech, 2010). 

Briefly, AH109 cells harboring pGBKT7- ADT5 constructs were grown about 20 

hours to an OD600 of 0.8. Then, cells were combined with Mate and PlateTM Library yeast 

Y187 cells (Clontech 630487) in a 2 L flask with 45 ml 2x YPDA and incubated for 24 

hours slowly shaking at 30 rpm to induce mating. Cells were evaluated for the presence 

of diploid zygotes (three-lobed zygotes) using hemocytometer and a light microscope. 

Once zygotes were detected, cells were centrifuged at 1000 rpm for 10 minutes and the 

pellet was re-suspended in 2xYPDA and plated on appropriate SD medium. Plates were 

incubated at room temperature for 5 days. The three reporter genes (ADE2, HIS3 and 

MEL1) in addition of antibiotic resistance reporter gene AUR1 recommended by the 

manufacture for screening of Y2H libraries were used to identify colonies expressing a 

putative interactor. AUR1 encodes an enzyme called inositol phosphorylceramide 

synthase and enables the yeast cells to grow in presence of antibiotic aureobasidin A.  

2.10 Protoplast preparation 

To take better images of chloroplasts, protoplasts were isolated as described (Sheen, 

2011) and analyzed by microscopy. Briefly, 1 g of leaf tissue was cut into 0.5-1 mm 

strips and submerged in 5 ml cellulose solution; vacuum infiltrated for 30 minutes and 

incubated overnight in the dark at room temperature to digest the cell wall. Protoplasts 

were released by shaking at 80 rpm for 5 minutes. The solution with protoplasts was 
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filtered through 100 μm mesh filters and then centrifuged for 10 minutes at 620 rpm at 

4°C. The supernatant was removed and protoplasts were mixed with an equal volume of 

ice cold washing solution. The suspension was centrifuged for 10 minutes at 620 rpm at 

4°C and the supernatant was removed protoplasts were resuspended in 2.5 ml washing 

solution and transferred gently to the top of flotation medium and centrifuged for another 

10 minutes at 620 rpm at 4°C. Protoplasts floated on the top layer of the flotation medium 

and were transferred gently to ice cold washing solution. 300 μl of the suspension loaded 

on a cavity well microscopy slide (VWR 10118-600) and was visualized by confocal 

microscopy.   

2.11  Protein isolation and Western blotting 

For protein isolation three leaf discs (9 mm) were collected. Total soluble protein was 

extracted and quantified as described (Conley et al., 2009). Briefly, tissue samples were 

flash frozen with liquid nitrogen and homogenized with TissueLyser (Qiagen). Then 

200 μl PEB was added to the samples. Samples were centrifuged at 16.000 rpm 4°C for 

10 minutes and the supernatant was transferred to a fresh tube. The total soluble protein 

(TSP) concentration was quantified with a Bradford assay (Bradford, 1976). 10 μg of 

TSP from each sample was size separated using Mini-Protean® TGXTM Precast 4-20% 

(w/v) polyacrylamide gradient gel (Bio-Rad 456-1091).  

The fusion proteins were probed with a primary anti-GFP antibody (1:5000 dilution; 

Clontech 632380) that designed to recognize GFP and GFP derivatives including CFP. 

Then fusion proteins probed subsequently with a secondary goat anti-mouse IgG (H+L) 

horseradish peroxidase conjugated (1:3000 dilution; Bio-Rad 170-6516). Proteins were 

visualized with the enhanced chemiluminescence (ECL) detection kit according to the 

manufacture instruction (GE Healthcare, Mississauga, ON, Canada). 

2.12  Histochemical GUS staining 

To stain the plant tissues for GUS activity, GUS staining was performed as described 

(Crone et al., 2001). Seedlings or sections of plant tissues were immersed in 1 ml of fresh 

GUS solution and vacuum infiltrated for 15 minutes. Samples were incubated at 37°C 

overnight. Next day the staining solution was removed and samples were washed with 

75% ethanol and incubated at 37°C for 1 hour several times until tissues cleared and all 
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pigments removed. GUS stained tissues were imaged by microscope Nikon Ecolipse E 

800 (Champigny sur Marne, France).  

2.13 Sequence analysis 

Sequences for A. thaliana and different organisms were obtained from TAIR and 

NCBI, respectively. Multiple sequence alignments were performed with DNAMAN 

using an optimal sequence alignment and a BLOSUM protein weight matrix (Henikoff 

and Henikoff, 1992). The phylogenetic trees were generated using the Neighbor Joining 

method (DNAMAN Version 6; Saitou and Nei, 1987).  
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3 Results 

This study focuses on discovering the routes that account for ADT5 dual 

localization in planta.  

3.1 Nuclear localization of ADT5  

Subcellular localization studies of ADT-CFPs in planta demonstrated a nuclear 

localization for ADT5 in addition to the chloroplast stromule localization typically seen 

for all ADTs (Bross, 2011). However, some reports demonstrated that fluorescent tags, 

such as GFP or CFP, can get separated from fusion recombinant proteins in localization 

studies (Francin-Allami et al., 2011; Kaldis et al., 2013). Since the cleaved fluorescent 

products are small (25-27 kDa), they can easily diffuse into the nucleus (Wente and Rout, 

2010). To test if the fluorescence detected in the nucleus was due to the localization of 

ADT5-CFP or a CFP cleavage product, further experiments were necessary. Therefore, 

Agrobacterium cells harboring ADT-CFP constructs (pCB-ADTs) (Bross, 2011) were 

transiently expressed in N. benthamiana leaves. In each of the pCB-ADT plasmids, CFP 

is fused to the C-terminus of one of the six ADTs and the CaMV 35S promoter controls 

the expression of the fusion constructs. Since all transformations are performed in the 

presence of an Agrobacterium strain containing p19 (section 2.5.1), leaves also were 

transformed with this strain alone as a negative control. Furthermore, an Agrobacterium 

strain carrying a GFP plasmid was used to see the expression pattern of this fluorescent 

protein alone.  

Leaf samples were visualized at 4 dpi using confocal microscopy. In control 

infiltrated leaves expressing p19 no fluorescence was detected (Figure 5A) and GFP 

alone was present in the cytosol and nucleus (Figure 5B). The subcellular localization 

pattern of ADTs was as expected based on previous observations (Figure 6). With the 

exception of ADT6 that had a cytosolic localization pattern (Figure 6F) all ADTs were 

detected in the chloroplast and more specifically the stromules of chloroplasts (Figure 

6A-E). ADT5 was the only ADT observed in the nucleus (Figure 6E). Next, to determine 

that the CFP signal in the nucleus is due to the localization of ADT5-CFP and not the 

cleaved CFP, proteins were isolated from the same infiltrated leaf tissues used for 

confocal microscopy to perform a Western blot. 
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Figure 5 Expression pattern observed in control transformations in N. benthamiana. 

 N. benthamiana leaves were infiltrated either with Agrobacterium cells harboring 

p19 or harboring GFP plasmid alone to ensure that p19 does not produce fluorescent 

signals and to see the expression pattern of the fluorescent protein, respectively. 

 Chlorophyll fluorescence and fluorescent proteins are shown separately in the left 

and middle column, respectively, and a merged image is shown in the right column. 

Summary of the observations are shown on the right side of the panel. 

 

White arrows: Nucleus. 

C: Cytoplasm, N: Nucleus. 

Scale bars are 5 μm. 

(A) No signal was detected in p19 infiltrated leaves.  

(B) GFP alone was detected in the cytosol and nucleus. 
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Figure 6 Subcellular localization of ADT-CFPs in N. benthamiana leaves. 

 To ensure the nuclear localization pattern is specific to ADT5, all six ADTs were 

transiently expressed in N. benthamiana leaves and the localization of the fusion proteins 

was visualized by confocal microscopy at 4 dpi. 

 Chlorophyll fluorescence and CFP fluorescence are shown separately in the left 

and middle column, respectively, and the merged image is shown in the right column. A 

summary of the observations is shown on the right side of the panel. 

 

White arrow: Nucleus. 

C: Cytoplasm, N: Nucleus, S: Stromule. 

Scale bars are 5 μm. 

(A-D) ADT1, ADT2, ADT3 and ADT4 were detected in stromules. 

(E) ADT5 was detected in stromules and nucleus. 

(F) ADT6 was found mostly in the cytosol. 
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Using an anti-GFP antibody no band was detected in protein samples from 

N. benthamiana leaves expressing p19 only and a single band of 25 kDa in GFP samples 

as expected for the GFP (Figure 7). For all the ADT-CFP fusion proteins a distinct band 

of predicted size of approximately 75 kDa was detected (see figure legend for details). In 

addition to these bands, additional bands of higher molecular weight can be seen for all 

fusion proteins. These bands are consistent in size for ADT-CFP dimers (150 kDa), 

tetramers (300 kDa) and higher multimers. A faint band at the size of GFP (25 kDa) was 

detected for some of the ADTs consistent with the size of a cleaved CFP. However, no 

nuclear localization was observed for any of the ADTs except ADT5. Since CFP alone is 

small in molecular size and can diffuse to the nucleus, these results indicate that the level 

of cleaved CFP products for ADTs is not sufficient to accumulate in the nucleus and 

account for the signal detected by confocal microscopy. Hence, the observed CFP signal 

in the nucleus is indeed due to the localization of the ADT5-CFP.  

3.2 Nuclear localization of ADT5 using the native promoter 

Up to this point, all the ADT-CFP constructs were expressed using the CaMV 35S 

promoter. Therefore, it was suggested that the nuclear localization of ADT5 might have 

been due to overexpression of the recombinant protein by the constitutive CaMV 35S 

promoter (So et al., 2005; Kay et al., 1987). To ensure that ADT5 nuclear localization is 

not an overexpression artifact, it was expressed under the control of its native promoter 

(proNat5). Sequences 1 kb upstream of the ADT5 start codon were PCR-amplified using 

A. thaliana genomic DNA as a template. This fragment was recombined into a 

pKGWFS7 plant destination vector using the Gateway system (section 2.3.4) and the 

resulting construct was named proNat5:GFP:GUS. In this vector, the proNat5 sequences 

regulate the expression of the two reporter genes GFP and GUS.  

The proNat5:GFP:GUS construct was introduced into Agrobacterium GV3101 by 

electroporation. Agrobacterium cells containing proNat5:GFP:GUS were infiltrated into 

N. benthamiana leaves. The activity of proNat5 was identified by detecting a cytosolic 

GFP expression pattern in the infiltrated leaf samples by confocal microscopy at 5 dpi 

(Figure 8A). 
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Figure 7 Protein expression of ADT-CFPs in N. benthamiana. 

 Western blot showing the recombinant ADT-CFP proteins expressed in 

N. benthamiana leaves. Ten μg of total soluble protein was size-separated on a SDS-

PAGE, blotted with nitrocellulose membrane and detected with a GFP antibody. 

Predicted protein size for fusions ADT-CFP are ADT1: 71.5 kDa, ADT2: 70.0 kDa, 

ADT3: 74 kDa, ADT4: 73.8 kDa, ADT5: 73.8 kDa, ADT6: 72.7 kDa. Larger bands 

represent ADT dimers (150 kDa), tetramers (300 kDa) and higher multimers. As negative 

and positive controls, protein samples from P19 and GFP (25 kDa) infiltrated leaves were 

isolated and run on the gel next to the ADTs. 
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Figure 8 Expression pattern of GFP and GUS in N. benthamiana and A. thaliana 

using ADT5 native promoter. 

 To ensure the proNat5 is active transcriptionally, proNat5:GUS:GFP was 

transiently expressed in N. benthamiana and stably transformed into A. thaliana. 

 

(A) Activity of the proNat5 in regulating the GFP expression was examined in 

N. benthamiana leaves and visualized by confocal microscopy. At 5 dpi, the GFP signal 

was detected in the cytosol. 

Chlorophyll fluorescence and fluorescent proteins are shown separately in the left and 

middle columns, respectively, and the merged image is shown in the right column.  

Scale bars are 5 μm  

(B) Two week-old transgenic A. thaliana seedlings were stained with GUS solution and 

GUS expression was detected using light microscopy.  

 

Left: Gus expression was detected in the leaves and roots of the seedlings.  

Middle: At higher magnification, GUS expression was mainly observed at the leaf veins. 

Right: At higher magnification, GUS expression was detected at the root tips. 

Scale bars 1 mm. 
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The proNat5 activity was also examined in different tissues of stably transformed 

A. thaliana plants by GUS assay (section 2.12). The left image on Figure 8 shows the 

GUS expression pattern in 2 weeks old A. thaliana seedlings and GUS expression was 

detected mostly in the leaves and roots. Higher magnification images of a leaf and a root 

demonstrated that the GUS expression was mostly in the leaf veins (Figure 8B middle 

panel) and the root tip (Figure 8B right panel).  

Since the transcriptional activity of the proNat5 promoter was confirmed with 

reporter genes, the same sequence was cloned upstream of ADT5 to determine if ADT5 

can be detected in the nucleus. To do this, proNat5 was PCR-amplified with appropriate 

primers (Appendix 1) to introduce restriction enzymes 3’ MauBI and 5’ XhoI cut sites. As 

the CaMV 35S promoter in the pCB-ADT5 also had 3’ MauBI and 5’ XhoI, the two 

promoter sequences were exchanged (section 2.3.4). The new construct was named 

proNat5::ADT5:CFP and was sequenced to ensure that no errors were introduced by 

PCR. Then, proNat5::ADT5:CFP was transformed into Agrobacterium cells GV3101 by 

electroporation. Agrobacterium cells harboring proNat5::ADT5:CFP were co-infiltrated 

with p19 cells into N. benthamiana leaves (section 2.5.1). Agrobacterium containing p19 

and Agrobacterium carrying GFP vector were used as negative and positive controls, 

respectively. Expression of the recombinant proteins was visualized at 5 dpi by confocal 

microscopy. The localization of ADT5-CFP was detected in the chloroplast stromules as 

short protrusions and long projection structures (Figure 9A). In addition, it was detected 

in the nucleus (Figure 9B) and this demonstrates that the nuclear localization of ADT5 

happens under the regulation of its native promoter. As expected no signal was observed 

in the samples expressing p19 (Figure 9C) and a cytosolic and nuclear expression pattern 

was observed for GFP (Figure 9D). To ensure that the observed CFP signal in the nucleus 

was not due to cleaved CFP products, TSP was isolated from the same infiltrated leaf 

tissues used for confocal microscopy to perform a Western blot. 

No recombinant protein was detected in samples isolated from p19-infiltrated 

leaves while one band for GFP (25 kDa) and a band of degraded product of GFP 

(20 kDa) were detected (Figure 10). A distinct band at the expected size of ADT-CFP 

(73.8 kDa) was detected for samples from proNat5::ADT5:CFP-infiltrated leaves. In 

addition, one band at the size of the ADT5-CFP dimers (150 kDa) and a very faint band 
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Figure 9 Subcellular localization of the ADT5-CFP with proNat5 and control 

transformations in N. benthamiana. 

 Agrobacterium cells harboring proNat5::ADT5:CFP were co-infiltrated with 

Agrobacterium cells with p19 into the N. benthamiana leaves to determine the 

localization of ADT5-CFP. Agrobacterium cells with p19 and Agrobacterium cells with 

GFP alone were infiltrated individually as controls. Fluorescent signals were visualized 

by confocal microscopy at 5 dpi.  

 Chlorophyll fluorescence and fluorescent proteins are shown separately in the left 

and middle columns, respectively, and the merged image is shown in the right column.  

Scale bars are 5 μm. 

White arrows: Nucleus. 

 

(A) ADT5-CFP is detected in the chloroplast stromules as short protrusions and long 

protrusions.  

(B) ADT5-CFP is detected in the nucleus.  

(C) No signal is detected in leaf samples infiltrated with p19.  

(D) GFP is detected in the cytosol and nucleus.  
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Figure 10 Detection of ADT5-CFP expressed with proNat5 in transiently 

transformed N. benthamiana leaves. 

 Ten µg of TSP was size separated by SDS-PAGE, blotted with nitrocellulose 

membrane and detected with a GFP antibody. Expected sizes for ADT5-CFP and GFP 

are 73.8 kDa and 25 kDa, respectively. One band of the expected size for monomeric 

ADT5-CFP was detected and a second band was detected at 150 kDa, a size consistent 

with ADT5-CFP dimers. No band was detected for the p19 negative control. One band at 

the size of 25 kDa and a second band at approximately 20 kDa possibly a GFP degraded 

product were observed for the GFP positive control.  
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at size of GFP (25 kDa) were detected. Since it was found that amount of cleaved 

products were not sufficient to accumulate in the nucleus and account for the signal 

detected by confocal microscopy (section 3.1), it was concluded that nuclear localization 

of ADT5 was bona fide.  

3.3 Stromules, tunnels from chloroplasts to the nucleus? 
Stromules are projections from chloroplasts that increase the chloroplast surface area 

and potentially increase the trafficking of signals and metabolites from plastids to other 

plastid and organelles in the cell (Köhler and Hanson, 2000; Kwok and Hanson, 2004c; 

Hanson and Sattarzadeh, 2013). Accordingly, close positioning of plastids and nuclei in 

various tissues of N. tabacum and A. thaliana has been reported where stromules were 

observed to reside in grooves and in-folds of the nuclear envelope (Kwok and Hanson, 

2004b). These close contacts between stromules and nuclei suggest that a physical 

connection may exist that increases the communications between chloroplasts and 

nucleus.  

Transient expression of the ADT5-CFP proteins in N. benthamiana leaves displayed 

various stromule patterns (“dot” pattern, short protrusions and longer projections) from 

chloroplasts close to the nucleus (Figure 11). These stromule patterns and position close 

to the nucleus suggests possible roles for stromules in translocating ADT5 from 

chloroplasts to the nucleus. To test if stromules interact with the nucleus and transfer 

ADT5 from chloroplasts to the nucleus, ADT5-GFP fusion constructs were transformed 

into the chloroplast genome of N. tabacum and hence they were expressed in the 

chloroplast stroma instead of the cytosol. Several constructs were prepared: full-length 

ADT5 and N-terminal deletion constructs: IS5 (deletion of the TP) and S5 (deletion of the 

TP and I region). Appropriate sequences were PCR-amplified and 5’ and 3’ restriction 

enzyme NheI cut sites were introduced. PCR products were cloned into the chloroplast 

transformation vector pCEC4 by ligation (section 2.3.4). Deletion constructs were 

generated based on reports indicating that cleavage of transit peptides might be required 

for activation of proteins in the chloroplast (McFadden, 2001; Bobik and Burch-Smith, 

2015). Since it was not clear if the “I” region was part of the TP or not, two deletion 
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Figure 11 Close proximity of stromules and nucleus in N. benthamiana leaf samples 

expressing ADT5-CFP. 

 Transient expression of ADT5-CFP in N. benthamiana leaves was detected in the 

stromules with various patterns and nucleus. Confocal images were used to generate a 3D 

picture to show the close positioning of chloroplasts and stromules to the nucleus. 

Chlorophyll fluorescence and fluorescent proteins are shown separately in the left and 

middle column, respectively, and a merged image is shown in the right column.   

Scale bars are 5 μm (A) and 7 μm (B). 

 

(A) ADT5-CFP was often detected at the nucleus and the stromules of chloroplast 

surrounded the nucleus. 

(B) 3D image showing the stromules pattern and the close positioning of stromules and 

nucleus.  
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constructs were generated with and without the “I” region. The resulting plasmids were 

named ADT5-FL, ADT5-IS and ADT5-S (Figure 12). In these plasmids the ADT5 

coding sequences were fused to GFP and the expression of the fusion proteins was 

regulated by a tobacco plastid promoter PpsbA and TrbcL terminator (Kolotilin et al., 

2013). Similarly, constructs for ADT2 and ADT4 were generated as controls to compare 

the localization patterns of the expressed fusion proteins. It was expected that only 

ADT5-GFP would localize into the nucleus, as ADT4 and ADT2 have never been 

detected in the nucleus. In addition, the pCEC4-GFP (kindly provided by Dr. Menassa, 

Agriculture and Agrifood Canada, London, ON) was used as a control for stromal GFP 

expression, and transformation efficiency (GFP control).  

Plasmids were transformed into the chloroplast genome of N. tabacum by gene 

bombardment (section 2.5.2). After six weeks of incubation on antibiotic selective 

medium some green calli appeared on the bombarded leaf tissue. Positively transformed 

calli were identified by PCR using PpsbA forward and GFP reverse primers (Figure 13). 

Three positive calli for each ADT plasmid and two for GFP were transferred on 

appropriate media (section 2.5.2) for regeneration of transplastomic plantlets. Finally, the 

expression pattern of the fusion proteins in regenerated plantlets was analyzed by 

confocal microscopy. For comparison, an untransformed leaf sample from wild type 

N. tabacum was used as a negative control and a leaf of the transplastomic plantlets 

expressing GFP was used as a positive control. No GFP signal was detected in wild type 

leaf samples (Figure 14A) and the GFP signal was detected throughout the chloroplast 

stroma in GFP transplastomic plantlets (Figure 14B). Typical localization patterns for 

full-length (FL) ADT5, ADT4 and ADT2 are shown in Figure 15. ADT5-FL-GFP was 

accumulated at a low level and was detected as small dots around chloroplasts like 

stromules (Figure 15A) while no signal was detected for ADT4-FL-GFP (Figure 15B). In 

contrast, ADT2-FL displayed accumulation at higher levels and was clearly observed in 

all the chloroplasts as green patches like stromules (Figure 15C).  

Typical localization patterns for IS constructs are shown in Figure 16. ADT5-IS-

GFP was observed as a circular, distinct pattern surrounding most of the chloroplasts 

(Figure 16A). Similar to ADT4-FL-GFP, ADT4-IS-GFP did not accumulate and no 

signal was observed. 
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Figure 12 Schematic representation of full-length and deletion constructs used for 

chloroplast genome transformation in N. tabacum. 

 To determine if ADT5 can translocate from chloroplast directly into the nucleus 

through stromules, full-length ADT5 and two deletion constructs were generated. The 

same construct for ADT4 and ADT2 were generated as controls. Schematic not drawn to 

scale. 

 Full-length constructs include TP, CAT and ACT domain. IS constructs include I 

region, CAT and ACT domain. S constructs include CAT and ACT domain. 

 

ACT: ACT regulatory domain; CAT: catalytic domain; GFP: Green Fluorescence Protein 

tag; I: intermediate region; PpsbA: tobacco plastid promoter; TP: transit peptide, TrbcL: 

transcription terminator. 
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Figure 13 Genotyping of transplastomic calli. 

 DNA was extracted from calli and used as template for PCR amplification using 

PpsbA forward primer and GFP reverse primer to identify positive transplastomic calli. 

All PCR products were size-separated in 1% agarose gels. Predicted sizes for the 

amplified ADT-GFP fragments are as follow: ADT5-FL: 1447 bp, ADT5-IS: 1117 bp, 

ADT5-S: 1067 bp, ADT4-FL: 1442 bp, ADT4-IS: 1118 bp, ADT4-S: 1067 bp, ADT2-

FL: 1313 bp, ADT2-IS: 1073 bp and ADT2-S: 1019 bp, GFP control 200 bp.  

 

White arrows: positive calli used for further analysis.  

L: 1 kb or 1 kb plus ladders. 
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Figure 14 Controls in chloroplast transformation experiments. 

 A leaf sample of wild type N. tabacum and GFP control transplastomic plantlets 

(4 weeks old) were analyzed by confocal microscopy. 

 Chlorophyll fluorescence and GFP fluorescence are shown separately in the left 

and middle columns, respectively, and the merged image is shown in the right column.   

Scale bars are 5 μm.  

 

(A) No GFP signal is detected in wild type leaf samples.  

(B) Strong GFP fluorescence is observed in the stroma of chloroplasts in GFP expressing 

transplastomic plantlets leaves. 
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Figure 15 Localization pattern of ADT-FL-GFP in transplastomic plantlets. 

 To identify the localization pattern of ADT-FL-GFP fusion proteins, mesophyll 

cells of N. tabacum transplastomic plantlets (4 weeks old) were analyzed by confocal 

microscopy. 

 Chlorophyll fluorescence and GFP fluorescence are shown separately in the left 

and middle columns, respectively, and the merged image is shown in the right column.   

Scale bars are 5 μm.  

 

(A) ADT5-FL-GFP is detected in stromule around the chloroplasts.  

(B) No signal is detected for ADT4-FL-GFP.  

(C) ADT2-FL-GFP is observed in green patches stromules around chloroplasts. 
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Figure 16 Localization pattern of ADT-IS-GFP in transplastomic plantlets. 

 To identify the localization pattern of ADT-IS-GFP fusion proteins, mesophyll 

cells of N. tabacum transplastomic plantlets (4 weeks old) were visualized by confocal 

microscopy. 

 Chlorophyll fluorescence and GFP fluorescence are shown separately in the left 

and middle column, respectively, and the merged image is shown in the right column.   

Scale bars are 5 μm. 

 

(A) ADT5-IS-GFP is detected as circular patterns surrounding the most of the 

chloroplasts.  

(B) No signal is observed for ADT4-IS-GFP and the autofluorescence of chloroplasts do 

not seem to distribute evenly. 

(C) ADT2-IS-GFP is localized as big protrusions stromules. 
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However the chloroplast shapes were different compared to wild type oval 

chloroplasts (Figure 16B and Figure 14A). Similarly to ADT2-FL-GFP, the signal for 

ADT2-IS was strong and detected in big globular protrusions from the chloroplasts like 

stromules (Figure 16C). 

The expression patterns for short ADTs are shown in Figure 17. ADT5-S-GFP 

was not detected (Figure 17A) while ADT4-S-GFP appeared as small dot pattern 

stromules (Figure 17B). The expression of the ADT2-S-GFP generated a strong signal, 

and appeared as small disc and rod shapes mainly situated on the sides of chloroplasts 

(Figure 17C).  

Although the accumulation of the fusion proteins were different based on the 

ADT and length of the sequences, no nuclear localization of any of the fusion proteins 

was detected. To see if the expression pattern of the fusion proteins would change in 

mature plants, small plantlets were transferred to soil and moved to the greenhouse. In the 

mean time, the phenotype of the plants was observed to see if the expression of the ADT-

GFP fusion proteins in chloroplasts causes any changes in phenotype. The ADT4-FL 

plantlets did not survive in the greenhouse and the phenotype of transplastomic 

ADT5-FL, ADT2-FL, ADT2-IS, ADT5-S, ADT4-S and ADT2-S plants were similar to 

GFP control plants. In contrast, ADT5-IS and ADT4-IS had striking phenotypes. 

ADT5-IS plants had variegated leaves but otherwise the plants looked comparable to 

other transplastomic plants and they were able to produce seeds. ADT4-IS plants were 

dwarf, the leaves were pale in appearance, and plants grew slowly and did not produce 

flowers or seeds (Figure 18).  

Figure 19A shows a summary of leaf phenotype of the transplastomic plants. The 

mature transplastomic plant leaves were investigated by confocal microscopy for the 

presence of ADT-GFP within the chloroplast and/or nucleus. Several leaves were 

checked representing different developmental stages (from top of the plant to the bottom: 

young, intermediate and old leaves). While no signal was detected for ADT5-S-GFP and 

ADT4-IS-GFP, the localization pattern for ADT5-FL-GFP, ADT2-FL-GFP, 

ADT2-IS-GFP, ADT4-S-GFP and ADT2-S-GFP were the same as what had been 

observed in the plantlet stage. 
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Figure 17 Localization pattern of ADT-S-GFP in transplastomic plantlets.  

 To identify the localization pattern of ADT-S-GFP fusion proteins, mesophyll 

cells of N. tabacum transplastomic plantlets were visualized at 4 weeks old stage by 

confocal microscopy. 

 Chlorophyll fluorescence and GFP fluorescence are shown separately in the left 

and middle column, respectively, and the merged image is shown in the right column.   

Scale bars are 5 μm. 

 

(A) No signal is detected for ADT5-S-GFP.  

(B) ADT4-S-GFP is observed in small dot stromules.  

(C) The expression of the ADT2-S-GFP is as small disc shapes from chloroplast. 
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Figure 18 Phenotype of transplastomic GFP control, ADT5-IS and ADT4-IS plants. 

 Mature transplastomic GFP control, ADT5-IS and ADT4-IS at 4 months of age. 

Scale bar 1 m.  

 

(A) GFP-control plants grew tall with green leaves.  

(B) ADT5-IS plants had variegated leaves but grew the same as GFP control plants.  

(C) ADT4-IS plants grew very slowly compared to the GFP-control plants. Plants were 

dwarf and had pale leaves. 
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Figure 19 Leaf phenotype and localization pattern of ADT-GFP fusion proteins in 

transplastomic N. tabacum. 

 Phenotype of mature transplastomic plants and the localization pattern of the 

ADT-GFP fusion proteins were studied to see if there are any changes in phenotype of 

the plants or localization of the ADT-GFPs.  

 

(A) One intermediate leaf represents the leaf phenotype of transplastomic plants. No 

phenotype change was observed for most of the transplastomic plants (GFP, ADT5-FL, 

ADT5-S, ADT4-S, ADT2-FL, ADT2-IS AND ADT2-S). However, while ADT4-FL 

transplastomic plantlets did not survive in greenhouse, ADT5-IS had variegated leaves 

and ADT4-IS had pale leaves. 

(B) The ADT-GFP localization of the intermediate leaves is shown. GFP signal is 

detected in chloroplast stroma of the GFP control plants. ADT5-FL-GFP, ADT4-S-GFP, 

ADT2-FL-GFP and ADT2-IS-GFP show stromule localization. ADT5-IS-GFP is 

detected as circular, distinct pattern surrounding the chloroplasts and ADT2-S-GFP was 

detected as small disc and rod shapes mainly situated on the sides of chloroplasts.  

Only merged images are shown. 

Scale bars are 5 μm. 
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While no signal was detected for ADT5-S-GFP and ADT4-IS-GFP, the localization 

pattern for ADT5-FL-GFP, ADT2-FL-GFP, ADT2-IS-GFP, ADT4-S-GFP and 

ADT2-S-GFP were the same as what had been observed in the plantlet stage. Figure 19B 

shows a summary of the localization patterns observed in an intermediate leaf of 

transplastomic plants. As a striking localization pattern was detected for ADT5-IS-GFP, 

protoplasts were extracted from young, intermediate and old leaf samples of ADT5-IS 

plants to obtain more informative confocal images (Figure 20). As control, protoplasts 

were isolated from an intermediate leaf of GFP transplastomic plants. In the GFP control, 

GFP was detected in the stroma (Figure 20A). In young ADT5-IS-GFP leaf sample the 

GFP was observed as a ring around chloroplasts (Figure 20B) while long projection 

pattern stromules were detected in intermediate leaves. Some of the stromules seem to 

from bridges from one chloroplast to another (Figure 20C). In older leaves, the fusion 

proteins were observed in the stroma (Figure 20D). However, despite the long stromules 

observed in the intermediate leaves of ADT5-IS transplastomic plants, no extensions 

between chloroplasts and nuclei were observed and no signal was detected in the nucleus. 

As no GFP signal was detected for ADT5-S-GFP and ADT4-IS-GFP, total soluble 

proteins were isolated from leaves of ADT5 and ADT4 transplastomic plants to perform 

a Western blot and check for the presence of the ADT-GFP proteins (Figure 21). A band 

at the expected size of the fusion proteins was detected for ADT5-FL-GFP, ADT5-IS-

GFP and ADT4-S-GFP. However, no band was detected for ADT5-S-GFP and ADT4-IS-

GFP, consistent with the absence of a fluorescent signal. 

3.4 Does ADT5 have a nuclear localization sequence 

3.4.1 In silico analysis to identify a putative NLS in ADT5 

Small proteins (40 kDa and less) enter into the nucleus from the cytoplasm by 

passive diffusion and large proteins use the active importin-mediated system (Wente and 

Rout, 2010). ADT5-CFP (73.8 KDa) is too large to diffuse into the nucleus. Hence, it 

needs to be actively transported across the nuclear envelope, which often requires the 

presence of specific targeting sequences within the protein (Rout and Aitchison, 2001). 

Therefore, an in silico analysis was used to identify potential NLS in ADT5. 
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Figure 20 Protoplast images exhibiting patterns of ADT5-IS-GFP in young, 

intermediate and old leaves of transplastomic plants. 

 Protoplasts from leaf samples of ADT5-IS transplastomic plant at 6 months of age 

were extracted and the localization pattern of the ADT5-IS-GFP was detected by 

confocal microscopy. Protoplasts of the GFP control plants were visualized as control.  

 Chlorophyll fluorescence and fluorescence proteins are shown separately in the 

left and middle column, respectively, and the merged image is shown in the right column.   

Scale bars are 5 μm. 

 

(A) GFP signal is detected in all the stroma for the GFP control protoplasts. 

(B) In young leaves the ADT5-IS-GFP localization pattern is observed as long tubules all 

around the chloroplasts.   

(C) In intermediate leaves ADT5-IS-GFP is detected in the chloroplast stroma as well as 

long stromules from chloroplasts. Some of the stromules seem to from bridges from one 

chloroplast to another. 

(D) In old leaves the ADT5-IS-GFP signal is in the stroma and also it is observed as dot 

pattern stromules.  

White arrows: Long stromules. 
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Figure 21 Protein expression of ADT-GFPs in N. tabacum transplastomic plants. 

 Western blot showing the recombinant ADT-GFP proteins expressed in 

N. tabacum chloroplasts. Ten μg of total soluble protein was size separated on a SDS-

PAGE gel, blotted with nitrocellulose membrane and detected with a GFP antibody. 

Predicted protein size for fusions are ADT5-FL-GFP: 73.8 kDa, ADT5-IS-GFP: 67.8 

kDa, ADT5-S-GFP: 66.2 kDa, ADT4-IS-GFP: 67.8 kDa, ADT4-S-GFP: 66.3 kDa. 
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 The full-length ADT5 sequence was submitted to two programs: Predict Protein 

(LockTree2; Goldberg et al., 2012) and NLS Mapper (Kosugi et al., 2009b). The 

LockTree2 searches for potential organelle targeting sequences in protein sequences and 

ranks the likelihood of a subcellular localization by a confidence score ranging from 

0 (unreliable) to 100 (reliable). Using this program only a chloroplast targeting sequence 

(TP) at the N-terminus of ADT5 was detected with a confidence score of 100. The NLS 

Mapper is able to predict monopartite NLS or bipartite NLS connected by a linker of 15-

20 amino acids within proteins. The program searches for NLS in proteins and predict the 

nuclear localizations by a confidence score ranging from 1 to 10. Higher confidence score 

indicate a stronger NLS. Score confidence of 8, 9 and 10 indicates exclusive nuclear 

localization, 7 and 8 partial nuclear localization, 3, 4 and 5 both in the nuclear and 

cytoplasm localization and score 1 and 2 cytoplasm localization. Using this program no 

NLS was identified for ADT5.  

3.4.2 Generating truncated fusion proteins to find a NLS 

Computer programs were not successful to predict a NLS for ADT5. However 

prediction programs have been shown to miss the identification of NLSs (Krebs et al., 

2010). Hence, an experimental approach was used to identify any potential nuclear 

localization sequences within ADT5. To identify a region within ADT5 that may contain 

a NLS, deletion constructs were generated as follows: lacking the ACT regulatory 

domain (∆A), lacking ACT and CAT domains (∆AC) and lacking the transit peptide 

domain and I region (∆T). Full-length ADT5 and deletion fragments were PCR amplified 

using pCB5 vector (Bross, 2011) as template and appropriate gateway primers (Appendix 

1). Amplified fragments were recombined into the Gateway plant destination vector 

pEarlyGate102 (section 2.3.4). In this vector, fragments are cloned with CFP and their 

expression is regulated by the CaMV 35S promoter (Earley et al., 2006). Expression 

constructs were checked by restriction enzyme digestion reactions and verified constructs 

were named ADT5-FL, ADT5-∆A, ADT5-∆AC, ADT5-∆T (Figure 22). Analogous 

constructs were generated for ADT4 to be used as controls since ADT4 is the most 

similar in sequence to ADT5 but has never been observed in the nucleus. 



 

 

77 

Figure 22 Schematic representations of ADT5 and ADT4 full-length and deletion 

constructs. 

 To identify a NLS within ADT5, constructs were generated for full-length and 

deletion sequences. For comparison, analogous constructs were generated for ADT4. 

Schematic not drawn to scale.  

 Full-length constructs include: TP, CAT and ACT domains. ∆A: deletion ACT 

domain, ∆AC: deletion ACT and CAT domains, ∆T: deletion TP. The predicted protein 

size for fusion proteins are: ADT5-FL: 73.8 kDa, ADT5-∆A: 61 kDa, ADT5-∆AC: 

40 kDa, ADT5- ∆T: 58.6 kDa, ADT4-FL: 73.8 kDa, ADT4-∆A: 60.9 kDa, ADT4-∆AC: 

40 kDa and ADT4-∆T: 59.4 kDa.   

ACT: ACT regulatory domain; CAT: catalytic domain; CFP: Cyan Fluorescence Protein; 

35 S: CaMV 35S promoter; TP: transit peptide 



∆A  TP CAT      CFP                  35 S 

∆AC  TP CFP                  35 S 

∆T  CAT      ACT              CFP                  35 S 

FL TP CAT ACT                   CFP                  35 S 
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 To avoid diffusion into the nucleus due to the small size of the fusion proteins, all 

truncated fusion proteins were at least 40 kDa (see figure legend for details). All the 

constructs were introduced into Agrobacterium LBA4404 by electroporation and were 

co-infiltrated with p19 carrying cells into N. benthamiana leaves (section 2.5.1). The 

localization of the fluorescent fusion proteins was determined with confocal microscopy 

at 4 dpi. ADT5-FL fusion proteins were found in stromules and nucleus (Figure 23A). No 

signal was detected for ADT5-∆A (Figure 23B), ADT5-∆AC was seen in stromules, 

cytosol and nucleus and ADT5-∆T was observed in cytosol and nucleus (Figure 23C). 

While ADT4-FL only localized to the stromules (Figure 24A) the observations for 

truncated ADT4 fusion proteins were similar to ADT5. No signal was detected for 

ADT4-∆A (Figure 24B), ADT4-∆AC was seen in stromules, cytosol and nucleus (Figure 

24C) and ADT4-∆T were found in cytosol and nucleus.  

∆AC proteins were close to size exclusion limit (ADT5-∆AC: 40 kDa and ADT4-

∆AC: 40 kDa) and probably could diffuse into the nucleus. However, ∆T fusion proteins 

were too large to diffuse into the nucleus (ADT5-∆T: 58.6 kDa and ADT4-∆T: 59.4 

kDa), therefore the nuclear CFP signal could be as result of the fusion proteins or cleaved 

products. In addition, ADT5-∆A and ADT4-∆A were not detected by confocal 

microscopy and it was not clear if those fusion proteins did not express or if their 

accumulation was too low to be detected. Therefore, TSPs were isolated from the same 

infiltrated leaf tissues used for microscopy and a Western blot was performed for full 

length and truncated ∆A and ∆T proteins (Figure 25). As controls, isolated p19 and GFP 

proteins (section 3.2) were used. No band for p19 protein samples and one 25 kDa band 

for GFP protein samples were detected. For ADT5-FL and ADT4-FL samples only one 

band at the expected size at approximately 73.8 kDa was detected. One faint band was 

detected for ADT5-∆A but not at the expected size of the fusion protein (61 kDa), 

indicating a cleaved product but it was not detected by confocal microscopy. No band 

was detected for ADT4-∆A consistent with no signal in microscopy images. N terminally 

truncated proteins ADT5-∆T and ADT4-∆T both had a band at the expected size of the 

fusion protein and some cleaved products. The cleaved band in ADT4-∆T protein 

samples was more clear than the ADT5-∆T protein samples however it was still not clear 

if the nuclear localization of these proteins was due to the accumulation of fusion protein 
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Figure 23 Subcellular localization of ADT5-CFPs in N. benthamiana leaves. 

 To determine the localization pattern of fusion proteins, full-length and deletion 

ADT5 constructs were transiently expressed in N. benthamiana leaves and fusion 

proteins were visualized at 4 dpi.  

 Chlorophyll fluorescence and CFP fluorescence are shown separately in the left 

and middle columns, respectively, and the merged image is shown in the right column. 

Construct name is mentioned on the left side and a summary of the confocal observations 

is shown on the right side. 

 

White arrows: Nucleus. 

C: Cytoplasm, N: Nucleus, S: Stromule. 

Scale bars are 5 μm. 

 

(A) ADT5-FL is localized in the stromules and nucleus.  

(B) No CFP signal is detected for ADT5-∆A.  

(C) ADT5-∆AC is observed in the cytosol, chloroplasts and nucleus.  

(D) ADT5-∆T is found in the cytosol and nucleus. 
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Figure 24 Subcellular localization of ADT4-CFP in N. benthamiana leaves. 

 Full length and deletion constructs for ADT4 were transiently expressed in 

N. benthamiana leaves and localization pattern of ADT4-CFP proteins were analyzed at 

4 dpi.  

 Chlorophyll fluorescence and CFP fluorescence are shown separately in the left 

and middle columns, respectively, and the merged image is shown in the right column. 

Construct name is mentioned on the left side and a summary of the confocal observations 

is shown on the right side. 

 

White arrows: Nucleus. 

C: Cytoplasm, N: Nucleus, S: Stromule. 

Scale bars are 5 μm. 

 

(A) ADT4-FL is detected in the chloroplast stromules.  

(B) No CFP signal is detected for ADT4-∆A. 

(C) ADT4-∆AC is found in stromules and nucleus. It is also observed in the cytosol. 

(D) ADT4-∆T is observed mostly in the cytosol and it is also detected in the nucleus. 
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Figure 25 Protein expression of the full length and truncated ADT5 and ADT4 in 

N. benthamiana. 

 Total soluble proteins were isolated from N. benthamiana leaves infiltrated with 

ADT5-FL, ADT5-∆A, ADT5-∆T, ADT4-FL, ADT4-∆A, and ADT4-∆T. As controls, 

isolated proteins samples from GFP and p19 were used. Ten μg of TSP was size-

separated by SDS-PAGE, blotted with nitrocellulose membrane and detected with a GFP 

antibody. The predicted protein sizes for fusion proteins are ADT5-FL: 73.8 kDa, 

ADT5-∆A: 65.3 kDa, ADT5-∆T: 66.2 kDa, ADT4-FL: 73.8 kDa, ADT4-∆A: 65.3 kDa, 

ADT4-∆T 66.3 kDa and GFP: 25 kDa. 
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in the nucleus or cleaved fluorescent products.  

In summary, the deletion constructs did not directly identify a NLS in ADT5. 

However, the observations on confocal images and Western blot data suggest that the 

ACT domain might be important to ensure stable expression of ADT4 and ADT5 fusion 

proteins. 

3.4.3 Generating chimeric ADT5-ADT2 proteins  

As the deletion constructs did not clarify the location of a potential NLS within 

ADT5, an alternative approach was chosen. Domains were swapped between ADT5 

(nuclear localization) and ADT2 (no nuclear localization) to generate chimeric ADT5-

ADT2 fusion proteins. The advantage of this approach is the expressed chimeric proteins 

are all full length, above 70 kDa, which will avoid the possibility of diffusion or no or 

low accumulation due to lacking a portion of the protein. Since ADT2 was never 

observed in the nucleus, it was expected that only fusion proteins with an ADT5 domain 

containing a NLS would be able to enter into the nucleus. ADT5-ADT2 chimeric 

fragments, previously generated by Smith-Uffen (2014), were amplified and introduced 

into the plant destination vector pEarlyGate102. Resulting chimeric constructs were 

named “C” constructs (C1-C7) and are shown in Figure 26. C constructs were introduced 

into Agrobacterium GV3101 and then were co-infiltrated with p19-carrying 

Agrobacterium cells in N. benthamiana leaves. Localization of the fusion proteins was 

visualized at 4 dpi by confocal microscopy. ADT5-FL and ADT2-FL (Bross, 2011) were 

used as controls. As observed before (Figure 6) ADT2 was only present in stromules 

Figure 27A) while ADT5 was observed in the stromules and nucleus (Figure 27B). All 

chimeric fusion proteins were expressed and observed in the chloroplasts and specifically 

stromules (Figure 28) meaning that domain swapping did not interfere with the 

expression or accumulation of the proteins. Only three chimeric proteins (C1, C5 and C6) 

were detected in the nucleus (Figure 28A, Figure 28E and Figure 28F, respectively). 

These three chimeric proteins had only the N-terminal portion of the ADT5 ACT domain 

in common. Therefore, it was concluded that the ADT5 N-terminal ACT domain had 

sequences that target the fusion proteins into the nucleus.  
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Figure 26 Schematic representation of full-length and chimeric ADT2/ADT5 

constructs. 

 To identify the domain that potentially had the NLS, different domains were 

swapped between ADT5 and ADT2. Schematic not drawn to scale. 

 

ACT: ACT regulatory domain; CAT: catalytic domain; CFP: Cyan Fluorescence Protein; 

35 S: CaMV 35S promoter; TP: transit peptide. 

Dashed pattern: ADT2 domains, solid pattern: ADT5 domains. 

 



TP CAT ACT   35 S CFP                  ADT5-FL  

  35 S CFP                  ADT2-FL  

C1  CM   35 S CFP                  

C2  CM   35 S CFP                  

C3  CM   35 S CFP                  

CM   35 S CFP                  C4  

C5  CM   35 S CFP                  

CM   35 S       CFP                      C6  

CM   35 S       CFP                      C7  
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Figure 27 Subcellular localization of the ADT2-CFP and ADT5-CFP in 

N. benthamiana leaves. 

 To compare the expression pattern of ADT2-CFP and ADT5-CFP with the 

C constructs, N. benthamiana leaves were either infiltrated with Agrobacterium cells 

harboring ADT2-CFP or ADT5-CFP constructs. The localization pattern was visualized 

4 dpi by confocal microscopy.  

 Chlorophyll fluorescence and CFP fluorescence are shown separately in the left 

and middle column, respectively, and a merged image is shown in the right column. 

Construct name is shown on the left side and a summary of the confocal observations is 

shown on the right side. 

Scale bars are 5 μm. 

 

(A) ADT2-CFP is detected in the chloroplast stromules.  

(B) ADT5-CFP is detected in the stromules and nucleus. 
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Figure 28 Subcellular localization of the C1-C7 chimeric proteins in N. benthamiana 

leaves. 

 Agrobacterium cells harboring C constructs were transiently expressed in 

N. benthamiana leaves and the subcellular localization of the chimeric proteins was 

visualized at 4 dpi.  

 Chlorophyll fluorescence and CFP fluorescence are shown separately in the left 

and middle column, respectively, and the merged image is shown in the right column. 

Construct name and schematic is shown on the left side and a summary of the confocal 

observations is shown on the right side. 

 

C: Cytoplasm, N: Nucleus, S: Stromule. 

Scale bars are 5 μm. 

 

(A) C1 is observed in stromules and nucleus.  

(B), (C) and (D) C2, C3 and C4 are visualized only in stromules. 

(E) and (F) C5 and C6 are observed in stromules and nucleus. 

(G) C7 is found in stromules. 

Red box: N-terminal ADT5 ACT domain. 
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3.4.4 N- terminal ACT domain in silico analysis to find the NLS 

To identify the amino acid sequence unique to ADT5 and potentially responsible 

for targeting the fusion proteins into the nucleus, the ACT domain sequence of all six 

ADTs were aligned (Figure 29). ADTs are highly similar in their N-terminal ACT 

domain and there are more variations in the C-terminus of the ACT domain. A motif of 

4 amino acids (AQEH) at position 8 to 11 of ADT5 ACT domain was found unique to 

ADT5 and ADT4. The only difference between ADT4 and ADT5 is an asparagine (Asn) 

at position 28 N-terminus of ADT5 ACT domain which is substituted with an aspartic 

acid (Asp) in ADT4. However, an asparagine is present at the same position in ADT3, 

while neither ADT4 nor ADT3 has been observed in the nucleus. Therefore, it was 

concluded that presence of the AQEH motif and Asn28 in N-terminus of ADT5 ACT 

domain are potentially important for nuclear targeting of ADT5. In addition, the ACT 

domain sequence of ADT5 was submitted to the ISIS program (Ofran and Rost, 2007). 

This program predicts the protein-protein interaction sites. Interestingly, the histidine 

(His) in the AQEH motif and Asn28 were predicted as protein interaction regions in N-

terminal ACT domain. Hence, it was concluded that ADT5 nuclear localization could 

happen through protein-protein interactions.  

3.5 Protein-protein interaction and nuclear localization  

Protein complexes and protein-protein interactions mediate many molecular 

processes in the cell. For plants, protein interactions have been identified that allow 

proteins to piggyback into the nucleus (Genoud et al., 2008). Hence, ADT5 nuclear 

targeting may happen via interactions with other proteins as part of a piggyback system. 

To explore this possibility, protein interaction partners of ADT5 were identified. 

3.5.1 In silico analysis of potential ADT5 interactors 

Initially, to identify potential ADT5 interactors, the Bio-Analytic Resource for 

Plant Biology (BAR) (Waese and Provart, 2016) was used. The interaction viewer tool in 

this database shows for any given A. thaliana protein predicted or confirmed interacting 

proteins. Based on this website ADT5 has the following predicted interactors: ALPHA 

CRYSTALLINE DOMAIN 31.2 (ACD 31.2), ADT4, IMPORTIN ALPHA ISOFORM 6  
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Figure 29 Sequence alignment of ACT domain of six Arabidopsis ADTs. 

 An alignment of the ACT domain of six Arabidopsis ADTs was performed to find 

an amino acid sequence unique to ADT5 N-terminal ACT domain that potentially can 

target ADT5 into the nucleus. A motif of 4 amino acids (AQEH) at position 8 to 11 from 

ACT domains was found unique to ADT5 and ADT4. At position 28, Asn in ADT5 is 

substituted with Asp in ADT4.  

 

Light blue: N-terminal ACT domain, dark blue: C-terminal ACT domain, orange boxes: 

the identified motif unique to ADT4 and ADT5, yellow box: the identified position that 

one amino acid is different between ADT4 and ADT5.  

Numbers on the left are count acids from the beginning of the ACT domain. 
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Table 1 Predicted ADT5 interators in BAR database. 

Description Abbr. AGI NO. Function Localization Reference 

ALPHA- CRYSTALIN 

DOMAIN 32.1  

ACD 32.1 At1g06460 Heat response Peroxisomesa (Eubel et al., 2008) 

AROGENATE 

DEHYDTATASE 4 

ADT4 At3g44720 Phe biosynthesis Chloroplastsa (Bross et al., 2017) 

IMPORTIN ALPHA 

ISOFORM 6  

IMPA6 At1g02690 Protein import into 

nucleus 

Cytoplasma, nucleusa (Marín et al., 2012) 

ZIM 17 TYPE ZINC 

FINGER 3  

ZR3 At3g54826 Protein folding, 

protein import into 

mitochondrial matrix 

Mitochondriaa (Kluth et al., 2012) 

REDUCED LATERAL 

ROOT FORMATION 

RLF At5g09680 Lateral root formation Cytoplasma, nucleusb (Ikeyama et al., 2010) 

aExperimentally determined, bPredicted. 
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(IMPA6), ZIM 17 TYPE ZINC FINGURE 17 and REDUCED LATERA ROOT 

FORMATION (RLF; Table 1). Among these predicted interactors, IMPA6 was a prime 

candidate for guiding proteins into the nucleus. IMPA6 is a member of the importin α 

family in A. thaliana that acts as a cytosolic receptor and facilitates translocation of a 

wide range of proteins across the NPC (Smith et al., 1997). Therefore, it is possible that 

IMPA6 can interact with ADT5 and assist in the transfer into the nucleus through the 

nuclear envelope. As protein interactions listed on the BAR are based on large-scale Y2H 

screens or biochemical methods (Geisler-Lee et al., 2007) it is important to exclude the 

possibility of false positives. For this reason two protein-protein interaction assays were 

used: the Y2H assay that tests a binary interaction between the two proteins and BiFC 

assay that tests the protein interaction in planta.  

3.5.1.1 In vivo protein interaction of ADT5 and IMPA6  

The Y2H assay was used to confirm the interaction between ADT5 and IMPA6. 

The full-length coding sequences of IMPA6 and ADT5 were PCR amplified using 

primers, which incorporate att sites for Gateway cloning (Appendix 1). The PCR-

amplified fragments were recombined into Y2H gateway vectors pGBKT7-DEST 

(GAL4-DB) and pGADT7-DEST (GAL4-TA) (section 2.3.4). Each construct was 

transferred individually into the yeast AH109 strain and tested for self-interaction. Each 

strain was also co-transformed with a corresponding empty DB or TA vector, or a vector 

expressing an unrelated CRUCIFERINA (CRA1; accession At5g44120) DB- or TA-fusion 

constructs. CRA1 is a seed storage protein and is often used as a negative control in 

protein-protein interaction assays for ADTs (Kohalmi et al., 1998). Activation of the 

three reporter genes HIS3, ADE2 and MEL1 was evaluated and it was found that none of 

the ADT5 and IMPA6 fusion proteins (DB and TA-fusions) activated the reporters alone 

(Figure 30). As well, no interaction was observed between DB-ADT5, TA-ADT5 and 

TA-IMPA6 with either the corresponding empty vector or the CRA1 fusion protein 

(Figure 30B, Figure 30D and Figure 30E). However, DB-IMPA6 was able to activate all 

the three reporter genes in the absence of an interacting protein, and also activated the 

HIS3 when expressing with TA-CRA1 (Figure 30B and Figure 30C). Therefore, DB-

IMPA6 was not used for any further experiments and only the interaction ability of the  
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Figure 30 Control transformations and interactions involving ADT5 and IMPA6 

assayed by Y2H in Yeast AH109. 

 Yeast transformants were assayed for growth, histidine prototrophy (H), adenine 

prototrophy (A), α- galactosidase activity (M) as well as the activation of the all three 

reports simultaneously (3R). Growth of white cells in the absence of histidine, growth of 

white cells in the absence of adenine, and production of a blue pigment in the presence of 

X-α-gal indicates activation of the reporter genes and interaction. Growth of blue 

colonies is expected when all 3 reporters are activated simultaneously. 

 Activation of the reporter genes was tested for each construct alone, in 

combination with the corresponding empty construct and CRA1 constructs as controls as 

well as homo- and heterodimerization of ADT5 and IMPA6. 

 

(A) None of the DB and TA constructs were able to activate the reporter genes alone.  

(B) Co-transformation of TA-vector with corresponding DB vectors resulted no 

interactions except for DB-IMPA6.  

(C) No interaction was observed for TA-CRA1 corresponding DB vectors resulted no 

interactions except for DB-IMPA6. CRA1 was able to form homodimer. 

(D) No interaction was detected for TA-ADT5 and DB vector or DB-CRA1. ADT5 was 

able to form homodimer.  

(E) TA-IMPA6 did not interact with corresponding DB vectors. Homodimerization of 

IMPA6 was detected. 

(F) Table shows a summary of the interactions. 

 

A: adenine prototrophy; DB: GAL4 DNA binding domain; G: growth; H: histidine 

prototrophy; M: MEL1 α- galactosidase; TA: GAL4 transactivation domain; 3R: 3 

reporter genes simultaneously. 
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fusion proteins DB-ADT5 and TA-IMPA6 was evaluated. It was found that none of the 

reporter genes were activated and hence it was concluded that ADT5 and IMPA6 are not 

able to interact in the Y2H system (Figure 30E). 

3.5.2 In planta interaction of ADT5 and IMPA6 

As an alternative to Y2H system, the interaction of IMPA6 and ADT5 was 

examined with the in planta BiFC assay. With this assay the interaction of the proteins 

can be detected in a plant environment and the subcellular localization of the interactions 

can be visualized. IMPA6 and ADT5 were PCR amplified using primers, which 

incorporate the att sites for Gateway cloning system (Appendix 1). IMPA6 and ADT5 

were recombined into the BiFC vectors, pEarlyGate 201-nYFP and pEarlyGate 202-

cYFP (section 2.3). Verified constructs were transformed into Agrobacterium cells and 

were transiently expressed in N. benthamiana leaves. Prior to analysis of ADT5 and 

IMPA6 interaction, the constructs were infiltrated alone to ensure they cannot 

fluorescence in the absence of a corresponding protein. As well, YN-CRA1 and YC-CRA1 

were co-infiltrated with corresponding ADT5 and IMPA6 constructs to detect if random 

collisions that were not specific protein interactions lead to fluorescent signal. None of 

the ADT5 and IMPA6 fluoresced on their own and no fluorescence from random 

collisions was detected (Figure 31). Next dimerization of ADT5 and IMPA6 was tested 

and it was observed that both ADT5 and IMPA6 were able to form homodimers and 

heterodimers. The ADT5 homodimers were detected in the chloroplast stromules and 

nucleus (Figure 32A) and the IMPA6 homodimers were detected in the nucleus (Figure 

32B). The heterodimers of ADT5 and IMPA6 were observed only in the nucleus (Figure 

32C and Figure 32D). These data confirm that ADT5 and IMPA6 interact in planta. 

As only ADT5 was detected in the nucleus (Bross, 2011) it was tested if the 

interaction with IMPA6 was specific to ADT5. To do that, IMPA6 was co-infiltrated with 

other ADTs. All ADTs were able to interact with IMPA6 and the interaction was detected 

in the nucleus (Figure 33). On the basis of these observations it was concluded that ADT5 

and IMPA6 interact in planta however this interaction is not unique to ADT5.
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Figure 31 Control transformations ADT5 and IMPA6 fusion constructs in 

N. benthamiana. 

 ADT5 and IMPA6 YN- and YC- constructs were transiently expressed in N. 

benthamiana leaves alone or with corresponding YC-CRA1 and YN-CRA1 constructs and 

analyzed at 3 dpi. Expression combinations are identified to the left. 

 Chlorophyll fluorescence and YFP fluorescence are shown separately in the left 

and middle column, respectively, and the merged image is shown in the right column.  

Scale bars are 5 μm.  

 No YFP signal was detected in leaf samples infiltrated with fusion constructs 

alone or in combination with corresponding CRA1 constructs. 
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Figure 32 Interactions involving ADT5 and IMPA6 assayed by BiFC in 

N. benthamiana leaves. 

 To identify homodimerization and heterodimerization between ADT5 and IMPA6 

fusion proteins, corresponding constructs were co-infiltrated in N. benthamiana leaves. 

The proximity of two fusion proteins results in a functioning fluorophore. Yellow 

fluorescence indicates dimer formation. 

 Chlorophyll fluorescence and YFP fluorescence are shown separately in the left 

and middle column, respectively, and the merged image is shown in the right column. 

Summary of the observations are shown on the right side of the panel. 

 

C: Cytoplasm, N: Nucleus, S: Stromule. 

Scale bars are 5 μm. 

 

(A) ADT5 forms homodimers, which are detected in the stromules and nucleus.  

(B) IMPA6 forms homodimers, which are localized in the nucleus.  

(C) Heterodimerization of YN-ADT5 and YC-IMPA6 is observed in the nucleus.  

(D) Heterodimerization of YC-ADT5 and YN-IMPA6 is detected in the nucleus. 
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Figure 33 Interactions involving IMPA6 and ADT5 assayed by BiFC in 

N. benthamiana leaves. 

 Interactions between IMPA6 and ADTs were assayed by co-expression of 

corresponding IMPA6 and ADT constructs in N. benthamiana leaves using BiFC assay. 

The proximity of two fusion proteins results in a functioning fluorophore. Yellow 

fluorescence indicates dimer formation. 

 Only merged images are shown. Summary of the observations is shown on the 

right side of the panel. 

 

C: Cytoplasm, N: Nucleus. 

Scale bars are 5 μm  

All the six ADTs are able to form heterodimers with IMPA6 and the interactions are 

observed in the nucleus.  
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3.6 Identifying novel ADT5 interactors  

Since ADT5 is the only ADT that localizes into the nucleus, another mechanism 

must be in play for its import into the nucleus. It is possible that it interacts with other 

proteins and uses the piggyback system for transport in the nucleus. To gain a better 

understanding of ADT5 putative interactors, a large scale A. thaliana Y2H cDNA library 

screen was performed using yeast AH109 cells expressing DB-ADT5 (section 3.5.1.1) as 

bait and commercial Mate and Plate Library in yeast Y187 cells as pray (section 2.9). 

Mated cells were plated on two types of media: (A) selecting for activation of the HIS 

and ADE2 reporter genes and (B) selecting for activation of the AUR1 reporter. All plates 

were incubated at room temperature for 5 days. Viability of haploid AH109 harboring 

bait plasmid and Y187 cells harboring prey plasmids as well as diploids indicated that a 

mating efficiency of 3.3% was achieved (Appendix 3). Optimal mating efficiency using 

this library has a range of 2%-5% (Clontech, 2010).   

In the primary screening, 72 colonies were found on media A and 438 colonies on 

media B. Then, all the 72 colonies from group A and 26 colonies from group B were 

tested for activation of the three reporter genes HIS, ADE2 and AUR1 individually and 

simultaneously. None of the colonies from media B were able to activate the HIS or 

ADE2 reporter genes, therefore the rest of colonies in this group were not analyzed 

further. Sixty-seven colonies from media A were able to activate all three reporters. 

Plasmid DNA was isolated from these positive colonies and the insert of the prey 

plasmids were sequenced. Sequencing results were submitted to the TAIR website (The 

Arabidopsis Information Resource) to identify the genes of putative ADT5 interactors in 

A. thaliana genome. The screen identified 21 proteins as putative interactors including 3 

ADTs, 2 unknown proteins and 16 new interactors. All the interactors were classified in 

different groups based on their subcellular localization in the cell (Table 2). Seven 

proteins were classified as nuclear localized proteins.  

The ADTs were not processed further as ADTs hetero- and homodimerization 

were studied previously in our lab (Styranko, 2011). Some interactors were recognized 

more than once; in that case only one full-length sequence representative was used for 

further analysis. To evaluate the interaction between ADT5 and newly identified 

interactors, several control experiments were performed. For all analyses, activation of 
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Table 2 Putative ADT5 interactors identified by Y2H screening. 

                                 

Interactor Name 

             

Abbr. 

  

Identification 

Interactions 

Recoded 

                               

Function 

                      

Reference 

Proteins with nuclear localization 

SNF1 KINASEK HOMOLOG 

10 

KIN10 At3g01090 6 Protein binding, lipid 

biosynthesis 

(Zhai et al., 2017)   

NUCLEAR TRANSPORT 

FACTOR 2 

NTF2 At5g43960 1 Nucleo-cytoplasmic 

transport 

(Reichel et al., 2016) 

POLYPEPTIDE RNA-

BINDING KH DOMAIN  

PEP At4g26000 1 RNA processing (Lee et al., 2011) 

NUCLEOSOME/ 

CHROMATIN ASSAMBELY 

FACTOR D 

HMG At3g28730 4 DNA repair, DNA 

replication, 

(Launholt et al., 2007) 

EMBRYO DEFECTIVE 1507 BRR2 At1g20960 2 RNA splicing, embryo 

development 

(Golisz et al., 2013) 

EIN3-BINDING F BOX 

PROTEIN 1 

EBF1 At2g25490 1 Ethylene activated signaling 

pathway 

(Gagne et al., 2004) 

AROGENATE 

DEHYDRATASE 5 

ADT5 At5g22630 1 Phe biosynthesis (Bross et al., 2017) 

Proteins with ER localization 

PHOSPHOLIPID 

DISCYLGLYCEROL 

ACYLTRSNDFERSASE  

PDAT At5g13640 1 Glycerol metabolic process, 

Lipid metabolic process 

(Stahl et al., 2004) 

 

 

TRANSLOCON- 

ASSOCIATED PROTEIN 

TRAP At2g21160 1 Regulate the retention of ER 

proteins 

(Wang et al., 2008) 

Proteins with chloroplast localization 

AROGENATE 

DEHYDRATASE 6  

ADT6 At1g08250 34 Phe biosynthesis (Bross et al., 2017) 
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Interactor Name 

             

Abbr. 

  

Identification 

Interactions 

Recoded 

                               

Function 

                      

Reference 

AROGENATE 

DEHYDRATASE 2 

ADT2 At3g07630 2 Phe biosynthesis (Bross et al., 2017) 

TRAF LIKE FAMILY 

PROTEIN 

TRAF At5g26280 1 Unknown (Bao et al., 2014) 

DNAJ HEAT SHOCK 

FAMILY PROTEIN 

DJA6 At2g22360 1 Response to heat (Zhichang et al., 2010) 

Proteins with mitochondria localization 

MITOCHONDRIAL 

PYRUVATE CARRIERS1 

MPC1 At5G20090 1 Pyruvate transmembrane 

transporter 

(Li et al., 2014) 

2-OXOGLUTARATE 

DEHYDROGENASE 

2OXO* At5g65750 1 Response to cadmium ion (Millar et al., 1999) 

Proteins with golgi localization      

MANNAN SYNTHESIS 

RELATED 1 

MSR1 At3g21190 1 Transferring glycosyl 

groups 

(Wang et al., 2013) 

PHOSPHATIDYLININOSIT

OL 4-OH KINASE BETA1 

PI4KBE At5g64070 1 Phosphatidylinositol 

phosphorylation 

(Janda et al., 2014) 

Proteins with vacuole localizations 

SAPOSIN B DOMAIN-

CONTAINING PROTEIN 

SaBP* At3g51730 1 Lipid metabolic process (Carter, 2004) 

Proteins with cytosolic localizations 

PROTEIN PHOSPHATASE 

2C FAMILY PROTEIN 

PP2C* At1g47380 1 Protein dephosphorylation (Xue et al., 2008) 

Unknown proteins 

- Un1* At1g11125 5 - - 

- Un2* At2g47010 1 - - 

* Random abbreviations were made for analysis.
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four reporter genes HIS3, ADE2, MEL1 and AUR1 was recorded. When testing for self-

activation ability it was found none of them were able to activate the reporters alone 

(Figure 34). Then, the interactors were co-transformed with DB empty vector to see if 

they were able to activate the transcription of the reporter genes in the absence of ADT5. 

Some of the interactors including PEP, TRAF, DJA6, MSR1 and PI4K were able activate 

the reporter genes. These proteins were excluded from further analysis. The remaining 

ADT5 interactors were co-transformed with all six ADTs to determine if they were only 

interacting with ADT5 (Figure 35 and Figure 36). All the interactors where able to 

interact with at least one of the ADTs other than ADT5, except for one protein that was 

identified to specifically interact with ADT5 (Figure 37). The ADT5 specific interactor 

was PHOSPHOLIPID DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) which 

has a known enzymatic role in glycerol biosynthesis (Dahlqvist et al., 2000). This protein 

has been described as an integral protein present in the endoplasmic reticulum (ER) but it 

is also predicted to have a nuclear localization. Therefore, PDAT1 was a piggyback 

protein candidate and was used for further analysis. 

3.7 PDAT1 In silico analysis  

AtPDAT1 (At5g13640) was identified as an interactor specific to ADT5 in 

A. thaliana. This protein is 671 amino acids in length and has a calculated molecular 

weight of 74.15 kDa (The Arabidopsis Information Resource). PDAT was first 

characterized in three different oil seeds: sunflower, castor bean and Crepis palaestina 

and later on in yeast (ScPDAT), as an enzyme that catalyzes an acyl-CoA-independent 

formation of triacylglycerol as a homolog of human lecithin: cholesterol acyltransferase 

(HsLCAT) (Dahlqvist et al., 2000). In addition to PDAT1, five gene sequences with 

sequence similarity to ScPDAT and HsLCAT have been identified in the Arabidopsis 

genome database (AtLCAT1: At1g27480, AtLCAT2: At3g44830, AtLCAT3: At3g03310, 

AtPSAT1: At1g04010 and AtPSAT2: At4g19860) (Stahl et al., 2004). To identify the 

extent of sequence similarity between these A. thaliana sequences, an amino acid 

alignment was performed using the full-length sequences and a phylogenetic tree was 

generated (Figure 38A). It was found that A. thaliana sequence similarity values range 
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Figure 34 Control transformation for ADT5 interactors alone and with DB vector in 

Yeast AH109. 

 Each construct was transformed individually and co-transformed with DB vector 

in yeast AH109 and was assayed for growth, histidine prototrophy, adenine prototrophy, 

α- galactosidase activity and AURA1 activity as well as the activation of all four reporters 

simultaneously. Growth of white colonies in the absence of histidine, growth of white 

colonies in the absence of adenine, production of a blue pigment in the presence of 

X-α-gal and growth of white colonies in the presence of ABA indicate an interaction. 

Growth of blue colonies is expected when all 4 reporters are activated simultaneously. 

 None of the interactors were able to activate the reporter genes alone. However, 

some of them were able to interact with the empty DB-GAL4. 

 

Red boxes: Interactors that were able to activate the reporter genes in the absence of a 

second protein. 
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Figure 35 Interaction of ADT5 interactors with ADT1, ADT2 and ADT3 in Yeast 

AH109. 

 Each construct was co-transformed with DB-ADT1, DB-ADT2 and DB-ADT3 

vectors in yeast AH109 and was assayed for growth, histidine prototrophy, adenine 

prototrophy, α- galactosidase activity and AURA1 activity as well as the activation of all 

four reporters simultaneously. Growth of white colonies in the absence of histidine, 

growth of white colonies in the absence of adenine, production of a blue pigment in the 

presence of X-α-gal and growth of white colonies in the presence of ABA indicate an 

interaction. Growth of blue colonies is expected when all 4 reporters are activated 

simultaneously. 
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 Figure 36 Interaction of ADT5 interactors with ADT4, ADT5 and ADT6 in Yeast 

AH109. 

 Each construct was co-transformed with DB-ADT4, DB-ADT5 and DB-ADT6 

vectors in yeast AH109 and was assayed for growth, histidine prototrophy, adenine 

prototrophy, α-galactosidase activity and AURA1 activity as well as activation of the all 

four reporters simultaneously. Growth of white colonies in the absence of histidine, 

growth of white colonies in the absence of adenine, production of a blue pigment in the 

presence of X-α-gal and growth of white colonies in the presence of ABA indicate an 

interaction. Growth of blue colonies is expected when all 4 reporters are activated 

simultaneously. 
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Figure 37 Interactions of PDAT1 and ADTs in Yeast AH109. 

 PDAT1 was co-transformed with ADTs in yeast AH109 and was assayed for 

growth, histidine prototrophy, adenine prototrophy, α- galactosidase activity and AURA1 

activity as well as the activation of the all four reporters simultaneously. Growth of white 

colonies in the absence of histidine, growth of white colonies in the absence of adenine, 

production of a blue pigment in the presence of X-α-gal and growth of white colonies in 

the presence of ABA indicate an interaction. Growth of blue colonies is expected when 

all 4 reporters are activated simultaneously. 

 PDAT1 was only interacted with ADT5 and as a result all the four reporter genes 

were activated. 
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Figure 38 Phylogenetic analysis of A. thaliana PDAT/LCATs. 

A. Protein sequences were compared using DNAMAN and a rooted tree was 

generated with a bootstrap of 1000. Numbers at the branch points give the bootstrapping 

values and the horizontal scale indicates sequence divergence. Arabidopsis thaliana 

sequences: AtPSAT1: phospholipid sterol acyltransferase 1 (At1g04010), AtPSAT2: 

phospholipid sterol acyltransferase2 (At4g19860), AtLCAT3: lecitin cholesterol 

acyltransferase3 (At3g03310), AtLCAT1: lecitin cholesterol acyltransferase1 

(At1g27480), AtPDAT1: phospholipid diacylglycerol acyltransferase1 (At5g13640), 

AtLCAT2: lecithin cholesterol acyltransferase 2 (At3g44830). 

B. Homology matrix of amino acid sequences of six A. thaliana PDAT1 

homologs. Sequence similarity values range from 11.1% (AtPSAT1 versus AtLCAT2) to 

59.7% (AtPDAT1 versus AtLCAT2). 
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from 11.1% (AtPSAT1 versus AtLCAT2) to 59.7% (AtPDAT1 versus AtLCAT2; Figure 

38B). AtLCAT2 was identified as the most similar sequence in A. thaliana to AtPDAT1. 

 AtPDAT1 and AtLCAT2 have a N-terminal cytoplasmic tail, a transmembrane-

spanning region that anchors the proteins to the membrane (Sonnhammer et al., 1998) 

and the C terminus of the protein as well as an aromatic amino acid rich ER retrieval 

motif are localized in the lumen of the ER (Figure 39, Stahl et al., 2004; McCartney et al., 

2004). There are conserved residues in HsLCAT and A. thaliana sequences that have 

been shown to be required for phospholipase A activity (Stahl et al., 2004). 

When the full-length sequences of AtPDAT1 and AtLCAT2 were analyzed with 

the cNLS Mapper (Kosugi et al., 2009b) both AtPDAT1 and AtLCAT2 were found to 

have predicted NLSs. AtPDAT1 has a predicted bipartite NLS at positions 5 and 131 with 

a score of 6.4 and 7, respectively and AtLCAT2 has two predicted monopartite NLS at 

positions 29 and 116 with the scores of 6.8 and 8, respectively (Figure 39). In addition, 

the full-length sequences of AtPDAT1 and AtLCAT2 were submitted to SomeNA. This 

software predicts the DNA binding residues based on the amino acid sequence of the 

proteins (Hönigschmid, 2012). SomeNA identified a His at position 5 located at the N-

terminal cytosolic tail of AtPDAT1 as a DNA binding site (Figure 39). 

Next, a genome-wide search was performed using the PDAT1 amino acid 

sequence as query to perform a protein-protein BLAST against model organism 

sequences listed in the NCBI (National Center for Biotechnology Information database). 

Candidate proteins with higher sequence similarities were found in Capsella rubella, 

Glycine max (Soybean), yeast (Schizosaccharomyces pombe and Saccharomyces 

cerevisiae) humans (Homo sapiens), mice (Mus musculus) and bacteria (Microcystis 

aeruginosa and Mycobacterium tuberculosis). Multiple hits were identified in 

Arabidopsis and soybean and only one hit was identified for other organisms. In total 

20 sequences were identified and 35% were annotated as PDAT proteins, 20% LCAT, 

15% PSAT and 20% were other proteins with functions in lipid biosynthesis like 

phospholipase A. A phylogenetic analysis of the full-length sequences of 20 candidates 

and AtPDAT1 was carried out (Figure 40). The PDAT1 and LCAT2 sequences in 

Arabidopsis and PDATs from soybean and yeast grouped together (group I) whereas 

PSATs (except AtPSAT1), LSAT and GLYMA sequences grouped together (group II).  
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Figure 39 Alignment of PDAT1 and LCAT2 protein sequences from A. thaliana. 

 Identical amino acids in both sequences are shown with lines. Numbers on the 

right side of the sequences count the amino acids.  

 

Black asterisk: The active phospholipase A site similar to HsLSAT, Blue box: ER 

retrieval motif, Green triangle: DNA binding position, Orange box: Membrane spanning 

regions, Red box: NLS. 
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AtPSAT1 and GmPSATXI grouped together and microbial sequences had a separate 

branch. All the group I sequences were submitted to the cNLS Mapper (Kosugi et al., 

2009b) to identify potential NLS sequences and nuclear localizations. It was found that 

all the sequences in group I except GmPDAT3, have predicted NLS sequences.  

3.8 In planta identification of ADT5 and PDAT1 interaction  

For further assessment of the interaction of ADT5 with PDAT1, BiFC assays were 

performed to determine if the interaction could be detected in planta. The full-length 

coding sequence of PDAT1 was recombined into BiFC destination vectors (section 2.3). 

Prior to co-infiltration of ADT5 and PDAT1, each construct was infiltrated individually 

to ensure no fluorescence was detected in the presence of a single vector only (Figure 

41A and Figure 41B). By co-infiltration of YN-PDAT1 and YC-PDAT1 it was 

demonstrated that PDAT1 was able to form homodimers and the YFP signal was detected 

in the ER as indicated by outlining the cell and the nucleus, while excluded from the 

nucleus (Figure 41C). Reciprocal co-infiltration YN- and YC- ADT5 and PDAT1 fusions 

also showed that interactions were detected in the nucleus (Figure 41D and Figure 41E).  

Furthermore, to ensure the specificity of PDAT1 interaction with ADT5, PDAT 

fusion constructs were co-infiltrated with all other ADT constructs. The YFP signal was 

not detected for any of the other ADTs (Figure 42). Therefore, it was concluded that the 

PDAT1 interaction was specific to ADT5 and the detection of the YFP signal in the 

nucleus was due to the presence of ADT5 since PDAT1 homodimers were only detected 

in the ER.  
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Figure 40 Phylogenetic analysis of A. thaliana PDAT/LCAT sequences together with 

model organisms (landmark) PDAT/LCATs. 

 Protein sequences were aligned using DNAMAN and a rooted tree was generated 

with a bootstrap of 1000. Numbers at the branch points give the bootstrapping values and 

the horizontal scale indicates sequence divergence. Arabidopsis thaliana sequences: 

AtPSAT1: phospholipid sterol acyltransferase1 (At1g04010), AtPSAT2: phospholipid 

sterol acyltransferase2 (At4g19860), AtLCAT3: lecitin cholesterol acyltransferase 3 

(At3g03310), AtLCAT1: lecitin cholesterol acyltransferase1 (At1g27480), AtPDAT1: 

phospholipid diacylglycerol acyltransferase (At5g13640), AtLCAT2: lecithin cholesterol 

acyltransferase2 (At3g44830). Capsella rubella sequence: CrCARUB (XP_006286627). 

Glycine max sequences: GmPSAT XI: phospholipid sterol O-acyltransferase-like isoform 

XI (XP_003553502), GmLCAT4: lecithin cholesterol acyltransferase-like4 

(XP_003529428), GmLCAT3: phospholopase A (XP_003552461), GmGLYMA: 

hypothetical protein (04G047000), GmPDAT1: phospholipid diacylglycerol 

acyltransferase1 (XP_003541296), GmPDAT2: phospholipid diacylglycerol 

acyltransferase2 (XP_006592298), GmPDAT3: phospholipid diacylglycerol 

acyltransferase3 (XP_014619101), GmPDAT4: phospholipid diacylglycerol 

acyltransferase4 (XP_003528441). Microcystis aeruginosa sequence: MaLpqU: 

lipoprotein Lpqu (NP_215538). Mycobacterium tuberculosis sequence: MtRib HII: 

ribonuclease HII (WP_002798654). Mus musculus sequence: MmPLA2: Group XV 

phospholipase A2 precursor (NP_598553). Homo sapiens sequence: phosphatidylcholine-

sterol acyltransferase precursor (NP_000220). Saccharomyces cerevisiae sequence: 

phospholipid diacylglycerol acyltransferase (NP_014405). Schizosaccaromyces pombe 

sequence: phospholipid diacylglycerol acyltransferase p1h1 (NP_596330).  
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Figure 41 Control transformations and interactions involving ADT5 and PDAT1 

assayed by BiFC in N. benthamiana leaves. 

 YN- and YC-PDAT1 constructs were transiently expressed in N. benthamiana 

leaves alone, together and in combination with corresponding ADT5 constructs and 

analyzed at 3 dpi by confocal microscopy. Proximity of two fusion proteins results in 

functioning fluorophore. Accumulation of yellow fluorescence indicates dimer formation. 

Infiltration combinations are identified on the left. 

 Chlorophyll fluorescence and YFP fluorescence are shown separately in the left 

and middle column, respectively, and the merged image is shown in the right column. 

Summary of the observations is shown on the right side of the panel. 

 

E: ER, N: Nucleus. 

Scale bars are 5 μm. 

 

(A) and (B) No YFP signal is detected in leaf samples infiltrated with only YC-PDAT1 or 

YN-PDAT1. 

(C) YFP signal is detected in leaf samples co-infiltrated with YN-PDAT1 and YC-PDAT1 

in the ER. 

(D) and (F) Interaction of YN-PDAT1 and YC-ADT5 as well as YC-PDAT1 and 

YN-ADT5 is observed in the nucleus.  
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Figure 42 Interactions involving PDAT1 and ADTs assayed by BiFC in 

N. benthamiana leaves. 

 Interactions between PDAT1 and ADTs were assayed by co-expression of YN- 

PDAT1 or YAC-PDAT1 with corresponding YN- or YC-ADTs in N. benthamiana leaves 

and BiFC assay. Proximity of two fusion proteins results in functioning fluorophore. 

Accumulation of yellow fluorescence indicates dimer formation. 

 Chlorophyll fluorescence and YFP fluorescence are shown separately in the left 

and middle column, respectively, and the merged image is shown in the right column. 

  

Scale bars are 5 μm. 

No interaction is detected.  
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4 Discussion 

The dual localization of ADT5 in the chloroplast and nucleus suggests a novel 

non-enzymatic role for this protein in A. thaliana. This study focused on the possible 

routes for nuclear localization of ADT5 including direct translocation of the protein from 

chloroplast to the nucleus through stromules and nuclear targeting by interacting with 

other proteins. Using an A. thaliana large-scale cDNA library screening, I was able to 

identify a specific intractor of ADT5 named PHOSPHOLIPID DIACYLGLYCEROL 

ACYLTRANSFERASE1 (PDAT1). PDAT1 is an enzyme that catalyzes the biosynthesis 

of triacylglycerol in the ER. In silico analysis predicted a bipartite NLS as well as a DNA 

binding site at the N-terminus of PDAT1. Here it will discuss how this protein might 

mediate ADT5 translocation into the nucleus. My results suggest that ADT5 is a new 

moonlighting protein with non-enzymatic roles in the regulation of gene expression in the 

nucleus.    

4.1 ADT5 localizes to the stromules of chloroplast and into 
the  nucleus 

Dual localization of ADT5 in the stromules and nucleus was observed in 

N. benthamiana and A. thaliana (Bross, 2011; Howes, 2013). To confirm the nuclear 

localization of ADT5-CFP, all six ADT-CFP proteins were transiently expressed in 

N. benthamiana leaves. Fusion proteins were visualized by confocal microscopy and 

verified by Western blotting. Since there was no ADT-specific antibody available the 

ADT-CFP fusion proteins were detected by an anti-GFP antibody. This antibody has 

been shown to recognize GFP as well as GFP variants including CFP (Clontech 632380). 

The Western blot analyzing the ADT-CFP samples (Figure 7) showed a clear band at the 

expected size of the fusion proteins for all the ADTs including ADT5 as well as larger 

sizes consistent with ADT dimers or multimers (Figure 5). In addition to ADT bands, a 

faint band at 25 kDa corresponding to the size of CFP was detected. However, this band 

was detected more abundantly in samples for ADT1 and ADT3 and these proteins were 

never observed in the nucleus by confocal microscopy. Hence, it was concluded that 

ADT5 nuclear localization is not due to the CFP cleavage product. Moreover, expressing 

ADT5-CFP with its native promoter showed the same nuclear localization by confocal 
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microscopy and no cleaved products were detected by Western blotting (Figure 9 and 

Figure 10). Hence, ADT5-CFP indeed dually localizes into the chloroplasts and nucleus.  

4.2 Functional relevance of stromule localization of ADTs  

Stromules are dynamic structures that vary in size and shape, from small dots or 

projections to long elaborate tubules (Köhler and Hanson, 2000; Gunning, 2005). 

Although the formation of stromules has been the subject of debate, the importance of 

stromules in translocation of molecules and some proteins synthesized within the plastids 

to other cell compartments is generally accepted (Hanson and Sattarzadeh, 2013; Schattat 

et al., 2011; Caplan et al., 2015). Expression of ADT5, ADT4 and ADT2 fusion proteins 

in the chloroplast stroma resulted in accumulation of the proteins in stromules, similar to 

our previous observation when ADTs were transiently expressed in N. benthamiana 

leaves. Hence, localization of ADTs in stromules is consistent with the proposed role of 

stromules, as the end product of ADT enzymatic activity Phe, is required for protein 

synthesis and phenylpropanoid (for example lignin and flavonoids) biosynthesis in the 

cytosol (Boulter, 1970; Vogt, 2010; Dastmalchi et al., 2016). Therefore, it is feasible that 

high concentrations of Phe in stromules as a result of ADT activity can potentially 

facilitate Phe export into the cytosol through the large surface area of stromules. There 

are other stromule-localized enzymes with enzymatic products that are used in the 

cytosol. For example, geranylgeranyl diphosphate synthase (GGPS) that synthesizes 

geranylgeranyl diposphate (GGPP) from isopentenyl diphosphate and dimethylallyl 

diphosphate in Catharanthus roseus accumulates in the stromules to facilitate the export 

of the GGPP to the cytosol for production of geranylgeranylated proteins (Thabet et al., 

2011).  

4.3 Close positioning of chloroplasts and nucleus 

When transiently expressing ADT5, it was often observed that ADT5-CFP was 

localized to stromules in chloroplasts surrounding the nucleus at close proximity, and 

appears to make contact with the nucleus (Figure 11). This close proximity of stromules 

to the nucleus was recently explained as a result of high abundance of actin filaments 

around the nucleus (Erickson et al., 2017). Stromules are closely associated with actin 

filaments (Kwok and Hanson, 2003; Holzinger et al., 2007) and destabilization of actin 
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polymers in the cell decreases the stromules appearance (Kwok and Hanson, 2003; 

Howes, 2013). Therefore, more actin around the nucleus can increase stromule 

abundance in that area of the cell (Erickson et al., 2017). Frequent observations of 

stromules surrounding and anchoring to the nucleus provides a possibility of signal and 

macromolecule transfer directly from chloroplasts into the nucleus (Caplan et al., 2008, 

2015; Leister, 2012; Bobik and Burch-Smith, 2015). Furthermore, previous studies in our 

lab demonstrated that the ADT5-CFP nuclear localization was decreased by inhibition of 

stromule formation in N. benthamiana leaves (Howes, 2013). Therefore, it is possible that 

ADT5 translocate into the nucleus via stromules. To test this possibility, ADT5-GFP 

fusion constructs were generated (Figure 12) and transformed into the chloroplast 

genome of N. tabacum, where they are expressed and translated in the chloroplast stroma 

instead of the cytosol to see if the fusion proteins can directly transfer to the nucleus via 

stromules. Analogous constructs were generated for ADT2 and ADT4 as controls as they 

have never been detected in the nucleus. ADT5-IS-GFP was detected in long tubular 

stromules in transplastomic plants, and sometimes they appeared to elongate between 

chloroplasts. These type of stromule formations have been reported before and it was 

proposed that small proteins can transfer between the chloroplasts through the stromules 

(Hanson and Sattarzadeh, 2013). However no fluorescent signal was detected in the 

nucleus for any of the fusion proteins. Considering most reports on stromule-mediated 

protein transfers suggest that translocation from chloroplasts to the nucleus via stromules 

occurs under stress conditions, like abscisic acid or pathogen attack (Gray et al., 2012; 

Caplan et al., 2015) it is possible that no translocation of ADT5 to the nucleus was 

observed as transplastomic plants were grown under standard growth conditions.  

4.4 The importance of the ACT domain 

As ADT5 translocation to the nucleus through stromules was not detected, it 

raised the possibility that ADT5 translocation happens from the cytosol, as ADT5 is a 

nuclear encoded protein that is translated in the cytosol. For ADT5 import from the 

cytosol into the nucleus a NLS is needed. Using an in silico approach it was not possible 

to identify a NLS in the ADT5 sequence (section 3.4.1). However, it has been shown that 

computer programs can fail to identify NLSs. For example, a bipartite NLS with a 
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17 amino acid linker was missed by computer programs for members of the DOF 

transcription factor family in A. thaliana (Krebs et al., 2010). Similarly, predicting a NLS 

for ZIC3, a nuclear-localized protein with a zinc finger domain, was not possible by using 

the available programs as formation of the NLS for this protein is dependent on proper 

folding of the protein (Hatayama et al., 2008). Hence an experimental approach was used 

to identify potential NLSs in the ADT5 sequence. 

Two alternative approaches were used to identify if there is a functional NLS in 

ADT5. First, deletion constructs were generated and truncated fusion ADT5 and ADT4 

(control) proteins were transiently expressed in N. benthamiana leaves (section 3.4.2). As 

small proteins less than 40 kDa can diffuse into the nucleus (Wente and Rout, 2010; 

Parry, 2015), all the constructs were designed to express fusion-truncated proteins of at 

least 40 kDa. It was found that full-length ADT4 only localized in the stromules and full-

length ADT5 was detected in both stromules and nucleus. Surprisingly, all the truncated 

proteins for ADT4 and ADT5 were localized into the nucleus with the exception of 

ADT4-∆A and ADT5-∆A (lacking the ACT domain) that were not detected (Figure 23 

and Figure 24). As ADT4-∆AC and ADT5-∆AC were transit peptides tagged with CFP 

were small enough for diffusion (40 kDa), it was possible that these proteins diffused into 

the nucleus. However, localization of ∆T fusion proteins in the nucleus and no detection 

for ∆A proteins was interesting. Western blots showed bands consistent in size with 

cleaved CFP products especially for ADT4-∆T and might cause the fluorescence 

observed in the nucleus (Figure 25). No band at the expected cleavage product size of ∆A 

fusion proteins was detected on a Western blot. This is consistent with no detected CFP 

signal in confocal images, suggesting that the deletion of the ACT domain in ∆A fusion 

proteins interferes with the expression or accumulation of these fusion proteins. In 

summary, these data suggested an important role of the ACT domain in expression or 

accumulation of ADTs, but did not identify a NLS in ADT5. Therefore, a domain 

swapping approach was used between ADT5 and ADT2. All chimeric ADT2-ADT5 

fusion proteins were close in size to the full-length ADT proteins and too large for 

diffusion. Chimeric proteins were transiently expressed in N. benthamiana leaves and 

they were all detected in stromules (Figure 28). Interestingly, only 3 of the chimeric 

proteins (C1, C5 and C6) were detected in the nucleus. The only sequence common to 
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C1, C5 and C6 was the N-terminus of the ADT5 ACT domain (Figure 28). Therefore, the 

results of this experiment suggest that ACT domain is involved, in some capacity, in the 

nuclear localization of ADT5.  

The ACT (aspartokinase, chorismate mutase, TyrA; Aravind and Koonin, 1999) 

domain  is a ligand-binding domain and can be found in a wide variety of proteins that 

are involved in amino acid metabolism (Liberles et al., 2005). These include both 

metabolic enzymes and transcription factors. In fact, the ACT domain-containing 

transcription factors regulate the expression of other ACT domain containing proteins 

(Grant, 2006). For example, Lrp-like (leucine-responsive regulatory protein) transcription 

factor is a protein with an ACT domain and regulates expression of proteins involved in 

degradation or biosynthesis of amino acids (Leonard et al., 2001). The DNA binding 

capability of this protein depends on interactions between ACT domains and the 

formation of homodimer. Therefore, the ACT domain is generally referred to as “the 

regulatory domain in amino acid biosynthesis” in the SCOP (structural classification of 

proteins) database (Grant, 2006). The ACT domain-containing enzymes are allosterically 

regulated by ligand binding of end products in amino acid biosynthesis (Liberles et al., 

2005). In ADTs, binding of Phe to the ACT domain allosterically inhibits their enzymatic 

activity similar to what has been described for PDTs in microorganisms (Tzin and Galili, 

2010). A highly conserved motif “ESRP” located at the N-terminus of the ACT domain 

has been identified to be essential for Phe binding and feedback inhibition (Huang et al., 

2010). Mutations in this motif in A. thaliana ADT2 results in sensitivity changes for 

binding Phe and mutant plants show a severe phenotype including leaf morphology and 

dwarf and sterile plants (Huang et al., 2010). However, other evidence indicates that this 

motif in ADT4 and ADT5 is not sufficient to regulate their enzymatic activity (Chen et 

al., 2016). Plants overexpressing ADT4 and ADT5 were found to be insensitive to Phe 

and no feedback inhibition occurred. Phe concentration in overexpressed plants was high 

and consequently resulted in high anthocyanin levels (Chen et al., 2016). Transgentic 

plants overexpressing ADT4 and ADT5 had yellow/white leaves and some of the ADT4 

transgenic plants were dwarf and sterile, similar to the morphological phenotype of 

ADT2 mutants (Chen et al., 2016). Overall, these observations are similar to the 

morphological phenotypes of transplastomic ADT5-IS and ADT4-IS, which had pale 
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leaves, and were dwarf and sterile (Figure 18). Although the level of Phe or any 

secondary metabolites were not quantified in these transplastomic plants (as it was not 

the main focus of this thesis), the observed phenotypes are consistent with high 

accumulation of Phe and/or secondary metabolites. However, ADT2 transplastomic 

plants did not have any noticeable phenotype probably due to the feedback control of 

Phe. Chen et al. (2016) suggested that some specific amino acids are only present in 

ADT4 and ADT5 ACT domains that might cause the insensitivity to Phe.  

It is not unexpected that sequence changes have occurred in ACT domains over 

time. As the ACT domains are found in proteins from bacteria and archaea and they have 

an ACT or ACT like domain, this suggests that this domain appeared very early on 

(Grant, 2006). There are examples that this domain evolved to bind other ligands and 

molecules and perhaps participating in other cellular processes. For example, NikR 

transcription regulator binds nickel and has a role in the regulation of intracellular nickel 

levels (Schreiter et al., 2003). Similarly, YKoF protein that bind thiamine and are 

involved in thiamine transport (Goldschmidt et al., 2007). Although binding to amino 

acids was the original function of the ACT domain, it seems the role of the ACT domain 

as a regulatory domain is expanding.    

An alignment of the ACT domains of all six ADTs indicates that the AQEH 

motif in the N-terminus is unique to ADT4 and ADT5 (Figure 29). However, as ADT4 

was never detected in the nucleus, this motif is not sufficient for nuclear targeting. The 

only difference between the ADT4 and ADT5 N-terminal ACT domain is an asparagine 

(Asn) of ADT5 ACT domain, which is substituted with an aspartic acid (Asp) in ADT4. 

Therefore, I propose that the combination of AQEH and Asn28 is important for targeting 

ADT5 into the nucleus. A protein prediction interaction program (Ofran and Rost, 2007) 

supports this idea as it predicted both the histidine (His) in the AQEH motif and Asn28, 

are required for protein interaction in the ADT5 ACT domain. 

4.5 Involvement of the ACT domain in protein conformation 

There is no crystal structure available for plant ADTs, and all the predictions for 

ADT structures are based on PDT crystal structures generated for these bacterial PDTs 

(Tan et al., 2008; Vivan et al., 2008). Crystal structures for the PDTs indicate that CAT 
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domain and ACT domain are connected through a small linker that allows for the 

movement of ACT domain. In addition, it is shown that PDTs form tetramers (dimers of 

dimers) but a single PDT dimer is believed to be the basic catalytic unit. In a PDT 

homodimer, two catalytic domains form the catalytic cleft, which forms the active site 

(Tan et al., 2008). When Phe is not bound to the ligand-binding site, located at the 

N-terminus of the ACT domain, PDT dimers exist in an open conformation and 

prephenate has access to the catalytic cleft (Grant, 2006). However, when two Phe 

molecules simultaneously bind to the ACT domain of dimers, the ACT domains shift into 

a closed position, which decreases the accessibility of prephenate to the active site. This 

movement affects the entire protein and changes the overall conformation of the protein 

and the dimers. As the protein interaction sites important for nuclear targeting has been 

identified in the N-terminus of the ADT5 ACT domain, it is very possible that the overall 

conformation of the protein is important in the accessibility of the interaction site to the 

interaction partners.  

Six ADTs of A. thaliana have been shown to form homodimers and every 

combination of heterodimers (Styranko, 2011). This is consistent with data presented in 

this study where Western blots show bands larger than the expected size of ADT 

monomers but consistent in size with the formation of ADT dimers and multimers 

(Figure 7). However, it is still unknown if dimerization is required for the enzymatic 

activity of ADTs. 

4.6 Protein-protein interaction and nuclear localization  

The BAR database predicts 5 proteins that are able to interact with ADT5 (Table 

1). Among these, IMPA6 was the best candidate for being involved in nuclear targeting 

of ADT5. IMPA6 is a member of the A. thaliana importin family that transfer proteins 

into the nucleus through the nuclear import system and nuclear pores (Smith et al., 1997; 

Goldfarb et al., 2004). To confirm the interaction of ADT5 and IMPA6, a Y2H assay was 

used. Control transformations showed that DB-IMPA6 activated the reporters in the 

absence of an interacting protein (Figure 30B). Such self-activation has been reported for 

proteins that contain motifs that are capable of recruiting the transcription complex in 

Y2H assays (Piskacek et al., 2007). Therefore, only TA-IMPA6 was used to test for 



 

 

138 

possible interaction with ADT5, however no interaction was detected (Figure 30B). In 

addition to Y2H, the ADT5 and IMPA6 interaction was also analyzed using the BiFC 

assay in planta. The BiFC results indicate that IMPA6 and ADT5 are able to interact and 

form heterodimers and that interaction occurs in the nucleus (Figure 32C and Figure 

32D). However, this interaction was not specific to ADT5 as IMPA6 was able to interact 

with all ADTs (Figure 33). This type of assay cannot distinguish if ADTs other than 

ADT5 are directly interacting with IMPA6 or if an ADT5 homolog in N. benthamiana 

mediates the interaction and hence all translocate into the nucleus. This scenario is 

feasible as it has been shown that all heterodimers with ADT5 are detected in the nucleus 

(Styranko, 2011).  

Next, to identify interactors specific to ADT5, an Arabidopsis Y2H cDNA library 

screen was performed. Initially 21 putative ADT5 interactors were identified and based 

on their subcellular localizations 7 proteins were classified as nuclear proteins (Table 2). 

Control transformations showed that some of the interactors were able to activate the 

reporter genes in the absence of ADT5 and they were not used for further analysis 

(Figure 34). Among the remaining interactors, proteins with a role in lipid biosynthesis 

were observed several times (KIN10, SaBP and PDAT1) and interestingly PDAT1 was 

identified to specifically interact with ADT5 (Figure 35, Figure 36 and Figure 37).  

Additionally, a BiFC assay was performed to confirm the interaction of ADT5 

and PDAT1 in planta. BiFC results supported the Y2H data and it was found that PDAT1 

only interacts with ADT5 and the ADT5 and PDAT1 heterodimers were detected in the 

nucleus (Figure 41D and Figure 41E). Although interaction of ADT5 with an ER 

transmembrane protein was not expected, interaction of ADTs (ADT6) with an ER-

anchored isoflavone synthase (IFS2) in soybean has been reported recently (Dastmalchi 

et al., 2016).  

4.7 PDAT1 and its similarity to lipid synthesis enzymes  

Triacylglycerol (TAG) is a well-known lipid-based energy source. For a long 

time it was believed that DIACYLGLYCEROL ACYLTRANSFERASE (DAG) is the 

only enzyme that catalyzes the last step of TAG biosynthesis, a reaction that transfers the 

acyl from acyl-CoA to diacylglycerol in the ER (Ohlrogge and Browse, 1995). In 2000, 
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an enzyme called PHOSPHOLIPID DIACYLGLYCEROL ACYLTRANSFERASE 

(PDAT) was characterized as an enzyme that is also involved in the synthesis of TAG in 

yeast and plants but this enzyme acts independently of acyl-CoA (Dahlqvist et al., 2000). 

In Saccharomyces cerevisiae, LRO1 has been identified to encode a PDAT and was 

shown to have sequence similarity to animal lecithin:cholesterol acyltransferases (LCAT; 

Dahlqvist et al., 2000). Six gene sequences with sequence similarity to ScPDAT and 

HsLCAT were identified in the Arabidopsis genome database (AtLCAT1: At1g27480, 

AtLCAT2: At3g44830, AtLCAT3: At3g03310, AtPSAT1: At1g04010 and AtPSAT2: 

At4g19860) (Stahl et al., 2004) with AtPDAT1 being most similar to ScPDAT (28% 

amino acid identity). To identify the extent of sequence similarity between the 

A. thaliana sequences, an amino acid alignment was performed using full-length 

sequences (Figure 38A). Comparing the sequences, it was found that the A. thaliana 

sequences are diverse and the AtPDAT1 and AtLCAT2 shared the highest sequence 

similarity (59.7%; Figure 38B). Due to their sequence similarity, AtLCAT2 has been 

named AtPDAT2 in some reports (Pan et al., 2015).  

AtPDAT1 and AtLCAT2 have a short N-terminal cytoplasmic tail, a 

transmembrane-spanning region which anchors the proteins into the ER membrane and a 

large C-terminus ending in an aromatic amino acid-rich ER retrieval motif which is 

located in the lumen of the ER (Figure 39). Both AtPDAT1 and AtLCAT2 are predicted 

to have NLS using the cNLS mapper software (Kosugi et al., 2009a) and the SomeNA 

protein-DNA binding prediction software (Hönigschmid, 2012) identified His5 as a DNA 

binding residue in the AtPDAT1 sequence (Figure 39). Both, the DNA binding position 

and the NLS in the AtPDAT1 sequence are located in the N-terminus of the protein 

suggesting that this portion of PDAT1 may contain sequences allowing this protein to be 

targeted to the nucleus.  

An amino acid sequence alignment was performed with sequences most closely 

resembling PDAT1 in other model organisms in NCBI (National Center for 

Biotechnology Information). The sequences fall into three groups and AtPDAT1 and 

AtLCAT2 were found to be the most similar to the PDAT sequences from yeast and 

soybean in group I (Figure 40). No nuclear localization has been reported for any of these 

proteins from group I, however the cNLS Mapper program (Kosugi et al., 2009b) found 
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that all the sequences in group I except GmPDAT3, have predicted NLS sequences 

located in the N-terminal sequences of these proteins. This N-terminal sequence is not 

present in HsLCAT (Stahl et al., 2004), therefore it is apparently specific to PDATs and 

raises the possibility that these proteins are able to localize to the nucleus.  

4.8 ER membrane bound transcription factors 

Although, PDAT1 is an ER localized protein, it is possible that it can localize 

into the nucleus as it has a NLS sequence (Figure 39). In the nucleus, it might act as 

transcription factor as it has a predicted DNA binding site.  

TFs are translated in the cytoplasm and often they stay inactive until stimulation, 

upon which they translocate into the nucleus using the NLS nuclear transport system (Seo 

et al., 2008). Hence, activation of dormant transcription factors is an important molecular 

feature and several processes in the cell including posttranslational modifications and 

interaction with other proteins have been seen to regulate this activity (Espenshade and 

Hughes, 2007). One mechanism for the activation of TFs is the proteolytic cleavage of 

membrane-bound transcription factors (MTFs) which has been identified as an adaptive 

strategy to respond to environmental changes (Vik and Rine, 2000). Different TFs have 

been reported to be activated in this way, such as the yeast transcription factors SPT23 

and MGA2 (Chellappa et al., 2001). These proteins are associated with the ER membrane 

and when unsaturated fatty acids are needed, the transcription factor domain of these 

proteins is released and activate the transcription of OLE1, which encodes an enzyme 

involved in unsaturated fatty acid biosynthesis (Hoppe et al., 2005). Another example is 

the STEROL REGULATORY ELEMENT BINDING DOMAIN PROTEIN (SREBP), a 

mammalian transcription factor controlling lipid biosynthesis and an integral ER 

membrane protein (Magaña et al., 2000). Upon the cleavage of the N-terminal cytosolic 

portion of this protein that contains the transcription factor domain, the cleavage product 

localizes into the nucleus where it regulates the expression of genes controlling lipid 

biosynthesis (Brown et al., 2000). Furthermore, recent studies identified several plant TFs 

that are membrane proteins. Often these are ER membrane proteins that are linked to ER 

stress responses. For example, three members of the BASIC DOMAIN LEUCINE 

ZIPPER PROTEIN (bZIP) transcription factor family are ER membrane proteins (Iwata 
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and Koizumi, 2005; Liu et al., 2007). A truncated form of these proteins without the 

transmembrane domain has been shown to translocate into the nucleus. These examples 

are reminiscent of PDAT1 and the position of the NLS and DNA binding residues at the 

cytoplasmic N-terminus of PDAT is consistent with structures found in other ER 

membrane-bound TFs. It remains to be determined if this cytosolic domain is cleaved in 

PDAT1. 

4.9 ADT5: a moonlighting protein 

It is fascinating that in protein families as described here, members share a high 

degree of sequence similarity with a well-established catalytic role and sometimes one or 

a few members are moonlighting proteins (Mani et al., 2015). This phenomenon can be 

found in many organisms including plants. For example, MYO-INOSITOL 

PHOSPHATE SYNTHASE (MIPS) protein family in A. thaliana has 3 highly similar 

enzymes that catalyze the myo-inositol biosynthesis in the cytoplasm (Donahue et al., 

2010). However, MIPS1 is found to interact with histone methyltransferases ATXR5 and 

ATXR6 in the nucleus to control its own expression via chromatin changes in response to 

pathogens (Latrasse et al., 2013). Gaining a new function sometimes is possible through 

only a few changes in the amino acid sequence of proteins. For example, delta1 and 

delta2 crystalins in birds are 94% identical and differ only in 27 amino acid residues. 

However, these differences cause a change in conformational structure of the protein 

which results in delta2 acquiring an additional function (Piatigorsky and Horwitz, 1996; 

Sampaleanu et al., 2001). Therefore, if only a few changes are needed to gain a function, 

those changes could occur over a relatively short evolutionary time and give rise to 

multifunctional proteins. Following the initial functional change, further sequence 

alternations can then affect either one of the functions or both functions of the protein 

(Scott and Pillus, 2010; Sluchanko and Gusev, 2017). Sometimes even a single amino 

acid substitution is sufficient for a protein to gain multifunctionality. For example, the 

mitochondrial dihydrolipoamide dehydrogenase (DLD) is catalytically active as a 

homodimer and converts dihydrolipoic acid to lipoic acid (Carothers et al., 1989). It is 

found that a single amino acid substitution destabilizes the homodimer interface and 
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enables this enzyme to function as a protease via a hidden protease constitutive site 

(Babady et al., 2007). 

ADTs in A. thaliana share a high degree of sequence similarity and ADT4 has 

been identified to share the highest sequence similarity with ADT5 in CAT and ACT 

domains (84%; Bross et al., 2011). It is possible that only a few changes can define the 

nuclear localization of ADT5 and/or a new associated function. The AQEH motif in 

combination with the Asn28 could be such sequences that allow ADT5 to form new 

interactions, leading to new subcellular localization and/or new function in the nucleus 

without disrupting the enzymatic function of the protein.  

There are a growing number of dually targeted proteins to plastids and nucleus 

either with defined roles in both organelles or with a known function only in one of the 

organelles (Krause et al., 2012). One such protein is phosphate-iso-penthyltransferase 3 

an enzyme required for cytokinin biosynthesis in plastids. This enzyme is also found in 

the nucleus but the nuclear role of this protein is still not understood (Galichet et al., 

2008). Currently, the role of ADT5 in the nucleus is unknown. However, previous studies 

indicate that ADTs differentially contribute to the synthesis of downstream products of 

phenylpropanoid pathway (Corea et al., 2012a; Chen et al., 2016) and ADT5 has been 

identified to be important in biosynthesis of lignin (the Phe-derived cell structural 

components; Corea et al., 2012b). Therefore, it is possible that ADT5 regulates the 

expression of ADT genes or genes acting within the phenylpropanoid pathway to ensure 

that the gene products are available in an orchestrated fashion.   

4.10 Concluding remarks and future directions 

ADTs are important for Phe biosynthesis; however, ADT5 has been shown in 

this study to have a nuclear localization in addition to its stromule localization. 

Expression of truncated ADTs as well as chimeric ADT fusion proteins suggested that 

the ACT domain is important for stability of ADT4 and ADT5. In addition, presence of 

the AQEH motif in combination with Asn28 in the N-terminal region of the ACT domain 

was identified to be important for protein interaction. To ensure that these positions are 

involved in nuclear targeting of ADT5, Asp in ADT4 should be substituted to Asn to 

determine if this targets ADT4 into the nucleus. The reciprocal change in ADT5 
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(replacing Asn with Asp) should be resulted in no nuclear targeting. However, there 

might be still more residues involved in overall conformation of ADT5 that affect the 

interaction ability and the moonlighting function of ADT5. Unfortunately, the lack of 

structural information on ADTs, has greatly influenced our understanding and 

interpretation of our observations. So far, all the predictions are based on structural 

information from PDTs (that do not have a TP) consequently they may not accurately 

reflect the conformation of the full length ADT proteins. Therefore, future studies need to 

concentrate on determining the crystal structure of ADTs, especially ADT5.  

In addition, it has been shown in this study as well as in previous studies of the 

Kohalmi lab that ADTs are able to form dimers (Figure 7 and Styranko, 2011). There are 

many proteins whose functional activity relies on their ability to form dimers or 

multimers. For example PDTs are enzymatically active as dimers (Vivan et al., 2008). 

Therefore, it can be anticipated that the ADT5 enzymatic activity or its moonlighting 

function is dependent on dimerization. It is still not experimentally determined if 

dimerization is necessary for the active functionality of plants ADT. Therefore, crystal 

structure information can also greatly assist to better understand ADT5 function.   

The Y2H screen identified PDAT1 as a specific interactor of ADT5. Mutation of 

the identified putative interaction sites in ADT5 ACT domain can be used to validate 

them as PDAT1 interaction sites by Y2H. Moreover, the in silico analysis indicates that 

PDAT1 has a NLS in the N-terminal cytosolic portion. Although these data suggest that 

PDAT1 is able to localize into the nucleus, it should still be experimentally confirmed. It 

remains to be investigated if the full length PDAT1 or only the cytosolic portion of the 

protein can localize into the nucleus. Comparing transient expression of PDAT1 fused to 

N-terminal and C-terminal fluorescence tag proteins (for example YFP) can help to 

analyze the localization of PDAT1 by confocal microscopy. Western blot analysis further 

can demonstrate if a full length or truncated version of the protein localizes into the 

nucleus. 

The use of N. benthamiana as a host for ease and efficiency of transient 

expression of the A. thaliana proteins has been shown to achieve representative results 

(Howes, 2013; Bross et al., 2017). However, for more confirmation of ADT5 and PDAT1 

interaction it is important to determine if the same localization and interactions happen in 
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the natural environment of these enzymes, A. thaliana, ideally under the regulation of the 

native promoters. To this end, stably transformed A. thaliana plants expressing 

ADT5-CFP and YFP-PDAT1 can be generated. These transgenic plants can then be used 

for several analyses. First the localization of PDAT1 and ADT5 in the nucleus can be 

investigated in stable transformed plants. This will extend our observations of these 

proteins localization from leaves to other tissues. In addition co-immunoprecipitation 

(co-IP) can be performed with the total protein extracts from these A. thaliana lines to 

confirm the interaction of ADT5 and PDAT1. The co-IP can also lead us to identify new 

binding partners (if any) and potentially increase our understanding of ADT5 roles. 

Currently, we are limited by the lack of ADT5 and PDAT1 antibodies. However, as 

ADT5-CFP fusion proteins include either Flag or HA epitope tags (Earley et al., 2006) 

and YFP-PDAT1 has the YFP tag, commercially available antibodies can be used to 

perform the co-IP experiments using transgenic plants. Alternatively, efforts should be to 

taken to develop antibodies against ADT5 and PDAT1 that will allow a more direct 

detection. 

Although the predicted residue in PDAT1 as a putative DNA binding site is 

interesting, it seems unusual that a single amino acid is sufficient to bind DNA. Possibly 

there are still more residues required that are not predicted by computer programs. Hence, 

it is worthwhile to determine if PDAT1 can bind DNA through chromatin 

immunoprecipitation (ChIP), and if it can the sequences it binds should be determined by 

sequencing approaches. It is also suggested that ChIP analysis is performed for ADT5. 

As it is possible that PDAT1 only piggybacks ADT5 into the nucleus and the ADT5 

function in the nucleus is not related to its interaction with PDAT1.  

Understanding proteins as a whole by combining structural information, 

computational and experimental analyses will open a door to unknown aspects of protein 

functions. Perhaps alternative functions can be anticipated for proteins with dual 

localizations in the cell. This study provides evidence that introduces ADT5 as a potential 

multifunctional protein and it adds a new twist to moonlighting plant enzymes.  
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Appendices 

Appendix 1 Primers. 

             

Primer namea 

                                                                                                   

Sequence (5’ to 3’)b 

 

Direction 

Recognition 

sequence 

Annealing 

temperature (C) 

PRM-ADT5-F AATCCGCGCGCGGGAGCGATATGGATTGGACCATGTTC Forward MauBI 62 

PRM-ADT5-R TTCACTCGAGGATTTGAGTCGAAAAATGAAAAAATTGCT

GTTTATTTATTTTTTCTGGTAAGAGGAAACAAAAGAGTAA 

Reverse XhoI 62 

ADT5-FL-F TACATTGCTAGCCAAACCATTTCGCCTGCGTTCTCG Forward NheI 65 

ADT5-IS-F TACATTGCTAGCCCGTTAACGATAACAGATCTATCTCCCG

C 

Forward NheI 63 

ADT5-S-F TACATTGCTAGCCGTGTCGCGTATCAAGGAGTTCCG Forward NheI 63 

ADT5-R ATTGTAGCTAGCTACGTCTTCGCTAGGTAACGTGGACCAT

G 

Reverse NheI 64 

ADT4-FL-F TACATTACTAGTCAAGCCGCAACGTCGTGTGATCT Forward SpeI 63 

ADT4-IS-F TACATTACTAGTCCGTTGACTATTACTGATCTATCTCCGG

CAC 

Forward SpeI 64 

ADT4-S-F TACATTACTAGTCGTGTAGCTTACCAAGGCGTTCCC Forward SpeI 62 

ADT4-R ATGTTAACTAGTTGCTTCTTCTGTGGATGTCATGGACC Reverse SpeI 62 

ADT2-FL-F TACATTACTAGTGCAATGCACACTGTTCGATTGTCG Forward SpeI 61 

ADT2-IS-F TACATTACTAGTAAGCCGTTATCATCGAACCAGCTCAC Forward SpeI 61 

ADT2-S-F TACATTACTAGTCGTGTTGCGTATCAGGGAGTACGAG Forward SpeI 61 

ADT2-R ATGTTAACTAGTCTGCTTGTTGTCGAGCATTGTAGTGTCCA

CTGGGTAGCTTC 

Reverse SpeI 62 

pEG102-

ADT5-FL-F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCAAACC

ATTTCGCCTGCG 

Forward attB1 67 

pEG102-

ADT5-FL-R 

GGGGACCACTTTGTACAAGAAAGCTGGGTTTACGTCTTC

GCTAGGTAACG 

Reverse attB2 68 
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Primer namea 
                                                                                                  

Sequence (5’ to 3’)b 

       

Direction 

Recognition 

sequence 

Annealing 

temperature (C) 

pEG102-

ADT5-A-R 

GGGGACCACTTTGTACAAGAAAGCTGGGTAATAGACTA

GAACCATGCAACGG 

Reverse attB2 67 

pEG102-

ADT5-AC-R 

GGGGACCACTTTGTACAAGAAAGCTGGGTTAAGAGTAG

ATCCATGAGACGG 

Reverse attB2 68 

pEG102-

ADT5-T-F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCGTGTC

GCGTATCAAGGAGTTCCG 

Forward attB1 69 

pEG102-

ADT4-FL-F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAAGCCGCA

ACGTCGTG 

Forward attB1 68 

pEG102-

ADT4-A-R 

GGGGACCACTTTGTACAAGAAAGCTGGGTACGCTAGGG

CTTGCGGGTGAGAG 

Reverse attB2 68 

pEG102-

ADT4-AC-R 

GGGGACCACTTTGTACAAGAAAGCTGGGTATAGACTAG

AACCATGCAACGG 

Reverse attB2 68 

pEG102-

ADT4-T-F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCGTGTA

GCTTACCAAGGCGTTCCC 

Forward attB1 68 

IMPA6-FL-F GGGGACAAGTTTGTACAAAAAAGCAGGCTCTTCTTACA

AACCAAGCGCG 

Forward attB1 83 

IMPA6-FL-

RY 

GGGGACCACTTTGTACAAGAAAGCTGGGTGTCAACCAA

AGTTGAATCCACC 

Reverse attB2 85 

IMPA6-FL-

RBi 

GGGGACCACTTTGTACAAGAAAGCTGGGTGACCAAAGT

TGAATCCACC 

Reverse attB2 84 

Plip-FL-F GGGGACAAGTTTGTACAAAAAAGCAGGCTCTATGCCCC

TTATTCATCGG 

Forward attB1 82 

Plip-FL-RBi GGGGACCACTTTGTACAAGAAAGCTGGGTGCAGATTAV

GGTCAATACG 

Reverse attB2 84 

Plip-FL-R 

 

GGGGACCACTTTGTACAAGAAAGCTGGGTTCAGCTTCA

GGTCAATACG 

Reverse attB2 83 

Plip-FL-R GGGGACCACTTTGTACAAGAAAGCTGGGTTCAGCTTCA

GGTCAATACG 

Reverse attB2 83 
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Primer namea 
                                                                                          

Sequence (5’ to 3’)b 

   

Direction 

Recognition 

sequence 

Annealing 

temperature (C) 

Plip-FL-R GGGGACCACTTTGTACAAGAAAGCTGGGTTCAGCTTC

AGGTCAATACG 

Reverse attB2 83 

Seq PRM-ADT5 TGCAAGAGTACACGTCATTCCTCAG Forward  65 

GFP-seq-R CCCGGTGGTGCAGATGAAC Reverse  61 

Seq ADT5-FL ACGCCATGGTCCACGTTACC Forward  60 

PpsbA-F CCAAGATTTTACCT Forward  60 
aFL: full length, IS: I region and short form, S: short form, A: ACT domain, AC:ACT and CAT domain, T: transit peptide, pEG102: 

pEarlyGate 102, PRM: Native promoter, : deletion primer, RY: Yeast-S-Hybrid primer, Bi: Bi-molecular Fluorescence. Seq: 

Sequencing primers. 
bBold: nucleotides added to provide a docking for the restriction enzymes or promote efficient recombination; Underline: sequence 

complementary to template, Italic: nucleotide added to adjust frame.  
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Appendix 2 List of vectors. 

       Fusion Domains b   

Plasmid name Promoter a N C Selectable Marker(s)c Host(s)d 

pDONOR221 - - - kanr E. coli 

pEarlyGate101 35S35S - YFP kanr, ccdB, BAR E. coli, Agro, Plant 

pEarlyGate102 35S35S - CFP kanr, ccdB, BAR E. coli, Agro, Plant 

pEarlyGate201-YN 35S35S HA Tag YFP-N kanr, ccdB, BAR E. coli, Agro, Plant 

pEarlyGate202-YC 35S35S Flag Tag YFP-C kanr, ccdB, BAR E. coli, Agro, Plant 

pKGWFS7 - - GFP, GUS spr, ccdB, kanr E. coli, Agro, Plant 

pCB5 35S35S - CFP genr, BAR E. coli, Agro, Plant 

pCEC4 PpsbA - GFP ampr, spr E.coli, Plant 

pGBKT7-DEST ADH1 cMyc Tag, 

GAL4-BD 

- kanr, TRP1 E. coli, Yeast 

pGADT7-DEST ADH1 HA Tag, 

GAL4-AD 

- ampr, LEU2 E. coli, Yeast 

P19 35S35S - - kanr Agro 

GFP 35S35S - - kanr Agro 

GFP PpsbA - - ampr, spr E.coli, Plant 
a35S35S: Cauliflower Mosaic Virus 35S, PpsbA: Photosystem II protein D1, ADH1: ALCOHOL DEHYDROGENASE 1, 
bA tag or additional domain fused at the N- or C- terminus of the protein. YFP- N or YFP- C has N or C terminal half of YFP. 
ckanr: kanamycin resistance, ccdB: bacterial negative selectable marker, BAR: Basta resistance, spr: spectinomycin resistance, ampr: 

ampicillin resistance, genr: gentamycin resistance, TRP1: tryptophan prototrophy, LEU2: leucine prototrophy. 

dAgro: A. tumefaciens.



 

 

1
6

1
 

 

Appendix 3 Viability of yeast populations. 

Yeast Populations Cells/mL 

DB-ADT5 in haploid AH109 2 x 107 

TA-cDNA in haploid Y187 yeast 3 x 106 

Diploids 1 x 105 
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