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Abstract 

Cuticular hydrocarbons (CHCs) are produced by insects and primarily used to prevent 

desiccation. In Drosophila, certain compounds have secondary roles as infochemicals that 

may act during courtship to influence mate choice. Certain CHCs may stimulate courtship 

with heterospecifics or act to repel conspecifics. The CHC profile produced by an 

individual is the result of the interaction between its genetic background and the 

environment, though the genes that underlie species differences in CHC production and 

how the environment can modulate the abundance of individual compounds within a 

species is not well known. Here, candidate gene CG5946 was found to be involved in 

species differences in the production of 7,11-heptacosadiene and 7-tricosene in hybrids 

between D. melanogaster and D. simulans. In addition, diet, but not microbial content, was 

found to influence the proportion of long-chain CHCs produced by D. melanogaster. This 

study provides insight into the factors influencing CHC production in Drosophila. 
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Chapter 1 

1 General Introduction 

1.1 Species 

The question of what constitutes a species has been a central theme in biology since its 

inception. Historically, taxonomists have separated individuals into groups based on traits 

such as morphological similarity, but the advent of modern methods such as DNA 

sequencing has seen the decline of such limited classification schemes. The use of 

morphology to separate individuals into species can result in errors on both ends of the 

scale: evolutionarily distinct but morphologically similar organisms can be classed together 

due to convergent evolution, and members of the same species may be separated into 

different taxa if males and females are sexually dimorphic or if individuals are collected at 

different life stages (phase polymorphism - as in the case of locusts and grasshoppers) 

(Pener and Yerushalmi, 1998). Nowadays, tens of different species concepts exist, each of 

which can yield wildly varying counts of apparent species when looking at the same 

organisms. The most basic definition of a species is that it is the largest non-arbitrary 

evolving unit above the level of the individual, but what this definition involves in a 

biological setting is the topic of heated debate (reviewed in: Coyne and Orr, 2004). 

Darwin himself expressed doubts about whether or not species are things that 

actually exist in nature or whether they are simply concepts that act as useful 

approximations, stating: 

“…I look at the term species, as one arbitrarily given for the sake of 

convenience to a set of individuals closely resembling each other…” 

(Darwin, 1859) 

It is clear that we see patterns in nature that we naturally tend to group together, however 

the basis for this classification is difficult to resolve. Darwin recognized that the forms 

observed in nature are continuous, not discrete, and so cannot be easily separated into 

distinct species groups using any one criterion (Darwin, 1859). DNA sequencing has 
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confirmed that the continuous nature of species is also true at the genetic level – groups 

can have large genotypic and phenotypic variation, and yet be widely accepted to be a 

single species. Indeed, the process of evolution requires that populations exhibit variation. 

If species develop gradually via evolution, how then can we choose where to delimit where 

one species ends and another begins if a continuum between different forms exists? As 

Leclerc states: 

“In general, the more one increases the number of divisions, in the case of 

natural products, the nearer one comes to the truth; since in reality 

individuals alone exist in nature, while genera, orders, classes exist only in 

our imagination.” (Leclerc, G-L., 1766) 

The more variables we include in our species definition, the closer we come to classifying 

individuals as species. While this definition may come closest to the truth, it is not as 

functionally useful as other species definitions. The species concepts in use today are 

largely delimited using the trait or traits preferred by the particular scientist performing the 

classification, but the traits useful for one clade may prove entirely irrelevant in another, 

as is the case for many species concepts between sexually and asexually reproducing 

organisms. It is possible that a functional, unifying concept of what constitutes a species 

cannot be found that will successfully describe all of the forms of life observed in nature.  

Although it appears that any species groupings that we make are based on artificial 

divisions, the adoption of operational species concepts can be useful in asking questions 

about how lineages evolve and diverge over time. Accepting this, we can make use of 

species concepts that separate species based on a diverse set of traits to attempt to gain 

insight into which methods produce the most consistent results and what this means in 

terms of how speciation occurs. By examining the diversity of life that we observe today 

in the context of these different species concepts, we can hopefully begin to understand the 

factors that lead to divergence in nature, and how the different groups that we call species 

are able to form and remain distinct over time. 
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1.2 The biological species concept 

One of the most widely used species concepts in sexually reproducing taxa is the biological 

species concept (BSC). The modern version of this concept was introduced by Ernst Mayr 

(1942), and states that species are groups of actually or potentially interbreeding natural 

populations, which are reproductively isolated from other such groups. The BSC uses the 

traits involved in reproduction and mate choice to delineate what makes a species distinct 

from other such groups. This species concept is useful in sexually reproducing taxa, as it 

can differentiate species living in sympatry regardless of whether they are reproductively 

isolated due to behavior, genetic incompatibility, or some other factor or a combination of 

factors. This means that even if two individuals could produce viable offspring if forced to 

mate in an artificial environment, if they fail to reproduce in nature for any reason and there 

is no or low observed gene flow between the groups, they can be classified as distinct 

species. 

 Although the BSC can be very useful, it also has limitations that prevent it from 

being used as a universal species concept. First among these is the fact that the BSC cannot 

be used to distinguish asexual or clonally reproducing taxa, or those groups that switch 

between sexual and asexual forms of reproduction.  In addition, it is not possible to use the 

BSC to determine whether geographically isolated populations are reproductively isolated, 

or whether they would experience gene flow if brought into contact with one another 

(reviewed in: Coyne and Orr, 2004). Some versions of the definition include geographic 

isolation as a reproductive isolating barrier, where others treat this interpretation as too 

simplistic: shouldn’t we call populations that have no genetic or behavioural differences a 

single species, regardless of the fact that they may inhabit a non-contiguous range (Sobel 

et al., 2010)? Another problem with the BSC is its inability to distinguish fossil species, 

since it is not possible to determine whether extinct taxa could have experienced gene flow 

based on external morphology alone.  

 Despite the fact that the BSC has a number of practical drawbacks, its key feature, 

the fact that it distinguishes species based on reproductive capability, meshes well with the 

theory of evolution. Since evolution happens via changes in allele frequency within 
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populations over time (Curtis and Barnes, 1989) and is the force that produces the distinct 

groups that we recognize as species, it is clear that the ability of different populations to 

exchange genetic content via sexual reproduction is key in determining their evolutionary 

path. The use of a species concept that is based upon whether or not this gene flow can 

happen between populations is therefore particularly relevant in looking at species within 

an evolutionary context. 

1.3 Reproductive isolating barriers 

If species are to remain distinct when their range overlaps with that of another group 

(sympatric species), they must evolve a system of reproductive isolation that impedes gene 

flow between the groups. If such a system does not exist the populations will either merge 

into one species or one of the species (typically the rarer one) will go extinct (reviewed in: 

Rhymer and Simberloff, 1996). Reproductive barriers most often develop in allopatry and 

are usually the result of overall genetic displacement between groups, often as a side effect 

of adaptation to different local environments (reviewed in: Seehausen et al., 2014). These 

barriers can be reinforced when species come into secondary contact, especially when 

hybrids suffer reduced fitness, since they will be less able than their non-hybrid peers to 

survive and reproduce (Oritz-Barrientos et al., 2004). Alternatively, it has been suggested 

that reproductive barriers can evolve rapidly in sympatry, where a single species will split 

into two distinct groups due to forces such as assortative mating or divergent selection 

between the incipient species (Orr and Smith, 1998; Rieseberg et al., 2002; reviewed in: 

Coyne and Orr, 2004). If directional selection acts in different directions on members of a 

single population, which can be due to differential degrees of preferences and traits due to 

underlying genetic variability, specialization on different resources, or some other factor, 

this will lead to divergent selection and can result in restricted gene flow between members 

of a population, eventually leading to speciation (Rieseberg et al., 2002; reviewed in 

Servedio, 2016). The degree to which speciation occurs in sympatry is controversial, since 

the evolution of isolating barriers is slow and any gene flow rapidly purges the barriers that 

may begin to evolve between species that still live in close contact (reviewed in: Coyne 

and Orr, 2004; reviewed in: Servedio, 2016). Most models of sympatric speciation require 

linkage between the genes underlying preference for resources or traits and those involved 
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in reproductive isolation, such that divergent selection within a population is coupled with 

a reduced propensity or ability to mate so that gene flow is reduced as populations diverge 

(Friesen et al., 2007). 

Reproductive isolating barriers are broadly classed into two groups: pre- and 

postzygotic barriers. Postzygotic barriers act following the formation of the gamete, and 

result in hybrids that are sterile or inviable (intrinsic postzygotic isolation), or those that 

cannot survive or find mates due to the interaction between the hybrid genetic background 

and the environment (extrinsic posyzygotic isolation) (reviewed in: Seehausen et al., 

2014). Prezygotic isolating barriers are those that act prior to the formation of a gamete 

and they typically act by preventing mating in the first place (reviewed in: Coyne and Orr, 

2004), but there are also postmating, prezygotic isolating barriers, as is seen in copulatory 

and gametic isolation (Ludlow and Magurran, 2006). More common is behavioural 

isolation, in which some aspect of the courtship ritual of the individuals involved does not 

align with the expected signals such that the partner is not recognized as an appropriate 

mate (Dobzhansky, 1937; Martin and Hosken, 2003).  

 Despite the fact that individuals that are prezygotically isolated from one another 

may be genetically compatible, they do not experience gene flow in nature due to 

differences that prevent mating in the first place. The reinforcement of prezygotic isolating 

barriers occurs between species that are also postzygotically isolated, since investing 

resources into a hybrid that will not be able to survive or reproduce is costly and those 

individuals that are able to discriminate against heterospecifics will have a fitness 

advantage over those that are unable to discriminate (Dobzhansky, 1937).  

1.4 Mate choice 

The fitness of a sexually reproducing individual is dependent upon their ability to find an 

appropriate mate (Dobzhansky, 1937; reviewed in Andersson and Simmons, 2006). Mate 

choice is typically more important for the sex that invests more heavily in reproduction 

(Trivers, 1972; Burley, 1977). The sex that invests more heavily in reproduction is often 

the more ‘choosy’ partner, as choosing wrong is more costly to that partner, and this sex is 
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the one whose preferences are largely responsible for driving sexually selected traits 

(Trivers, 1972). In most cases this is the female of the species since females typically invest 

more resources into both gamete production (egg vs. sperm) and into raising offspring, 

though there are some examples of species in which the male is responsible for caring for 

and raising offspring and where males are the more discriminating sex, as in the 

buttonquail, Turnix suscitator (Starck, 1991).  

 Sexual selection often selects for traits that are actively detrimental to the survival 

ability of an animal (reviewed in: Kokko and Jennions, 2014). This is the case in songbirds 

such as the long-tailed widowbird, Euplectes progne. Females preferentially mate with 

males with longer tail feathers, however these feathers make it difficult for males to fly by 

adding significant drag, making them less capable hunters and easier prey (Craig, 1980). 

 Especially in those cases where postzygotic isolation exists between sympatric 

species, those individuals that are the most successful at preferentially mating with 

conspecifics will have the highest fitness (reviewed in: Coyne and Orr, 2004). Some of the 

most important factors in choosing a mate are ensuring that it is a) of the correct species, 

and b) a high quality mate. Choosing a mate of the wrong species is far more costly than 

choosing a low quality mate within the same species, as often this means that fecundity 

will be reduced to zero rather than simply being lowered (Kozak et al., 2008). The signals 

that are involved in species recognition can overlap with, or be distinct from, those that are 

used to assess the quality of a conspecific individual. Individuals that are able to navigate 

both axes will produce the most offspring, which will inherit the genes underlying both 

species-specific preferences and traits.  

Although courtship and mating rituals vary widely across taxa, recognition of 

potential mates ultimately stems from the ability of an animal to assess a conspecific’s 

identity and quality by integrating multiple sensory cues. These can come in the form of 

auditory, visual, tactile, gustatory and/or olfactory signals (Horth, 2007; Griffith and Ejima, 

2009; Ward and McLennan, 2009). Of the many signals used to recognize and assess 

potential mates, chemical signals in particular are widely used in a variety of animal 
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groups, since they can be sensed using multiple modalities (gustatory, olfactory, and/or 

tactile) (reviewed in: Johansson and Jones, 2007).  

1.5 Cuticular hydrocarbons and chemical signaling in insects 

Chemical communication is widely used by insects to transfer information both within and 

between species. The signals used in this communication range from small volatile 

molecules to long-chain hydrocarbon molecules that must be detected at close range 

(Jackson and Morgan, 1993). Chemical signals can induce behaviours such as aggregation, 

courtship, and aggression both within and between species (reviewed in: Ali and Morgan, 

1990). In addition, chemical signals can provide information about nestmate status and 

caste, dominance, species, and sex (Howard and Blomquist, 2005; reviewed in: Blomquist 

and Bagnères, 2010).  

Cuticular hydrocarbons (CHCs) are chemical compounds produced by all insects 

that are used for desiccation resistance and, in some species, chemical communication, 

including communication related to mating. CHCs are fatty-acid derivative molecules that 

form a waxy outer layer on the cuticle of the insect (Howard and Blomquist, 2005; 

reviewed in: Blomquist and Bagnères, 2010). They are produced in the oenocytes of the 

insect, which are specialized cells that are closely associated with the fat body and 

participate in fatty acid metabolism. These compounds are then transported to the cuticle 

(reviewed in: Blomquist and Bagnères, 2010), though the mechanisms involved in this 

transport are not well characterized. The major classes of CHCs are alkanes, alkenes, and 

methyl-branched hydrocarbons, and their primary role is to act as anti-desiccant molecules 

that prevent the insect from drying out and help to maintain an appropriate water balance 

(reviewed in: Blomquist and Bagnères, 2010). Long-chain saturated CHCs provide greater 

desiccation resistance than shorter chain and unsaturated or branched CHCs (Chung and 

Carroll, 2015).  

In some insects, certain CHCs have developed a secondary role as infochemicals. 

CHCs that provide information within species are called pheromones while those that 

convey information between species are called allomones or kairomones, depending on 
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whether the emitter or the receiver benefits from the release of the compound (reviewed 

in: Ginzel, 2010). Insects display a CHC profile that is characteristic of their species that 

can be comprised of some 10-100+ unique compounds in various amounts (reviewed in: 

Blomquist and Bagnères, 2010). Some insects such as Drosophila show sexual dimorphism 

in the types or amounts of CHCs that they produce, and different profiles will be found on 

juvenile vs. adult insects (reviewed in: Bontonou and Wicker-Thomas, 2014).  

In their role as infochemicals, CHCs largely provide information about the species, 

sex, nestmate status and caste of an individual (Howard and Blomquist, 2005; reviewed in: 

Blomquist and Bagnères, 2010). They are especially important in social insect societies, 

where the CHC profile of an individual can give nestmates information about the tasks a 

certain worker performs, as in the red harvester ant Pogonomyrmex barbatus (Greene and 

Gordon, 2003). In this species workers, foragers, patrollers, and nest-maintenance workers 

have distinct CHC profiles. When patrollers, whose job it is to search for food, return to 

the nest and interact with foragers, the foragers will exit the nest to retrieve food. Foragers 

are able to distinguish between returning patrollers and returning nest-maintenance 

workers based on their CHC profiles, and the return of nest-maintenance workers does not 

induce foraging activity (Greene and Gordon, 2003). 

CHCs can also be used to act as dominance cues, as in the wasp species Polistes 

dominulus (Sledge et al., 2001). These wasps have societies where a single alpha-female 

acts as a de-facto queen and is responsible for producing all offspring in the colony. When 

a group of females founds a new colony all females initially have identical CHC profiles; 

however, the alpha-female will become chemically distinct as soon as the first workers are 

born. If the alpha-female is removed from the colony, another female will establish herself 

as alpha, and her chemical profile will change accordingly. It has been suggested that using 

chemical signaling to convey dominance is an adaptation in these wasps, as behavioural 

dominance in the form of fighting for rank can come at high risk to the individuals involved 

(Sledge et al., 2001). 

Another widespread use for CHCs in insects is related to mimicry and deception. 

Many insects, rather than raising their own young, will lay eggs in a host’s nest and use 
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chemical mimicry to convince the host to care for the alien young (Dettner and Liepert, 

1994; reviewed in: Howard and Blomquist, 2005). Parasites can either mimic the CHC 

profile of the host by synthesizing the compounds involved de novo or they can acquire 

them via physical contact with their host insects (reviewed in: Howard and Blomquist, 

2005). In another use of chemical mimicry, the parasitoid Lysiphelebus cardui attacks 

aphid colonies that are tended by the ant Lasius niger. Lysiphelebus cardui has evolved to 

mimic the CHC profile of the aphids such that the ants treat the parasitoid as though it were 

itself an aphid, allowing it to freely move amongst the ants and aphids (Liepert and Dettner, 

1996). 

One of the most important uses for CHCs is in their role as sex pheromones in some 

insects. Insects are able to detect the CHC profile of a potential mate and determine whether 

it is the same species, the proper sex, and whether or not it is sexually mature based on the 

relative abundance and types of CHCs that it produces (Howard and Blomquist, 2005; 

reviewed in: Blomquist and Bagnères, 2010). If the wrong profile is presented mating is 

unlikely to occur, making CHCs and the genes underlying their biosynthesis an important 

factor in both mate selection within a species, as well as prezygotic reproductive isolation 

and the maintenance of distinct species that live in sympatry.  

1.6 Reproductive isolation in Drosophila 

Drosophila melanogaster is part of the melanogaster subgroup of Drosophila, which 

includes eight other species (Ko et al., 2003). These sibling species are the most genetically 

similar to D. melanogaster; however D. melanogaster exhibits intrinsic postzygotic 

isolation with all of its sibling species and forms inviable or sterile interspecies hybrids 

(Matute and Coyne, 2010; Cattani and Presgraves, 2012). Flies in the melanogaster 

subgroup also show high levels of prezygotic behavioural isolation (Ritchie et al., 1999; 

McNabey, 2012; Matute, 2014). Courtship in Drosophila involves several steps at which 

species-specific cues are exchanged (detailed below in Section 1.7). Divergence in both 

the signals presented by flies and their perception by potential partners is responsible for 

the prezygotic isolation observed between D. melanogaster and its sibling species when 

they exist in sympatry (Savarit et al., 1999; Billeter et al., 2009). 
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The prezygotic barriers observed in Drosophila are strongly isolating, as evidenced 

by the fact that although the ranges of many of these species overlap, hybrids are found 

only very rarely in nature (Cattani and Presgraves, 2012). While the species will hybridize 

in the lab, they are reluctant to do so (reviewed in: Coyne and Orr, 2004). Since gene flow 

between these sibling species does not take place in nature, they represent complete/distinct 

species under the BSC. 

1.7 The Drosophila courtship ritual 

Courtship in Drosophila takes place in a series of well-defined steps. At each step, different 

sensory modalities are utilized to determine whether or not courtship and copulation will 

proceed (Griffith and Ejima, 2009). The female is ultimately responsible for deciding 

whether copulation will occur in most Drosophila species (Greenspan, 1995), although 

males courting heterospecific females may court at lower frequency than when courting 

conspecifics (Ellis and Carney, 2009).  

During courtship, the male first approaches the female, orients himself towards her, 

then extends one of his forelegs to tap her on the abdomen (reviewed in: Spieth, 1974). The 

male has both gustatory and olfactory receptors on the last segment of his tarsus, allowing 

for the detection of chemical signals found on the female’s abdomen (Amrein and Thorne, 

2005; Joseph and Carlson, 2015). The male will then proceed to ‘sing’ a species-specific 

courtship song by vibrating his wings at a precise frequency (Ritchie et al., 1999). The 

female assesses the male’s song using auditory cues, and recent work suggests that tactile 

cues in the form of substrate vibrations generated by the male thumping his abdomen on 

the substrate are also involved at this stage (Fabre et al., 2012). If the female accepts the 

male’s song, he will move behind her and lick her genitals, once again sampling her 

chemical profile (Joseph and Carlson, 2015). Finally, he will attempt courtship by curling 

his abdomen towards the female’s genitals. If at any point during courtship either fly 

determines that their potential partner is not an appropriate mate, courtship will be 

terminated and copulation will not occur (reviewed in: Spieth, 1974). Females may display 

a variety of rejection behaviours such as extrusion of the ovipositor, spreading her wings, 
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kicking, or running away from the male (Connolly and Cook, 1973; reviewed in: Spieth, 

1974). 

1.8 Chemical signaling in Drosophila courtship 

Drosophila species utilize a variety of chemical cues in addition to CHCs to determine 

whether or not to court or mate with a potential partner. For example, cis-vaccenyl acetate 

(cVA) is produced in the male ejaculatory bulb and is transferred to the female during 

mating. It is a volatile compound that can be sensed at range using olfactory receptors by 

male and female flies alike. cis-Vaccenyl acetate is strongly repellent to males, and if a 

male perceives cVA on a female he will avoid courting her as the presence of cVA serves 

as an indicator that she has mated recently. cis-Vaccenyl acetate will remain on the female 

for several days following mating, and will diminish as she becomes receptive to mating 

once more (Jallon, 1984; Datta et al., 2008; Yamamoto and Kohanezawa, 2013). 

As in all other insects, Drosophila species produce a unique blend of CHCs that are 

found on their cuticle. The majority of the CHCs produced by Drosophila have not been 

found to have any role as infochemicals, acting mainly to confer the insect with desiccation 

resistance (reviewed in: Bontonou and Wicker-Thomas, 2014). These compounds are non-

covalently bound to the cuticle of the insect and for the most part are sensed only at close 

range or when directly contacted using gustatory or olfactory receptors (Howard and 

Blomquist, 2005; reviewed in: Bontonou and Wicker-Thomas, 2014; Joseph and Carlson, 

2015). The type and relative abundance of CHCs is dependent on the sex, species, maturity 

level and overall health of the fly (Howard and Blomquist, 2005; reviewed in: Bontonou 

and Wicker-Thomas, 2014). The compounds that are active as sex pheromones may act as 

attractants or as repellent molecules, depending on the identity of the fly that perceives 

them. Both the type and the ratios of different compounds are important in determining 

whether a particular CHC profile will be attractive or repulsive to a con- or heterospecific 

partner (Savarit et al., 1999). 

In some Drosophila species, flies are sexually monomorphic in the type and 

abundance of CHCs that they produce while in other species, such as D. melanogaster, 
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flies are sexually dimorphic both in the quantity and type of CHCs that they produce. For 

example, D. melanogaster males produce high levels of 7-tricosene (7-T) and do not 

produce 7,11-heptacosadiene (7,11-HD) at all, whereas females produce lower levels of 7-

T and 7,11-HD represents their most abundant CHC (Antony and Jallon, 1982).  

Despite the fact that certain sex pheromones have been shown to induce courtship 

in Drosophila (Billeter et al., 2009), recent evidence indicates that an important role for 

CHCs may be to act as repellent signals and serve to prevent interspecific mating, rather 

than as attractants that increase intraspecific courtship and copulation (Dweck et al., 2015). 

Drosophila flies will court potential mates vigorously when they first encounter them 

(McRoberts and Tompkins, 1987; Griffith and Ejima, 2009), and a negative signal to 

prevent further courtship is needed once a partner is recognized as a heterospecific. This is 

supported by the fact that flies whose oenocytes have been ablated that are unable to 

produce any CHCs are universally attractive to heterospecific flies (Dweck et al., 2015). 

In D. melanogaster/D. simulans pairs, D. simulans males that would normally court D. 

melanogaster females at only low levels will court oenocyteless D. melanogaster females 

as vigorously as they court D. simulans females (Billeter et al., 2009). When the D. 

melanogaster-specific compound 7,11-HD is added to the cuticle of the oenocytless flies, 

normal D. simulans activity is restored and males avoid courting the D. melanogaster 

females, indicating that 7,11-HD is repellent to D. simulans males and that species-specific 

positive cues are not necessarily required for the initiation of courtship in these Drosophila 

species (Savarit et al., 1999). 

1.9 CHC perception in Drosophila 

CHCs are perceived during courtship using both olfactory and gustatory receptors (Amrein 

and Thorne, 2005; Joseph and Carlson, 2015). Olfactory receptors are located on the third 

antennal segments and the maxillary palps and are able to detect CHCs at close range, 

whereas gustatory receptors are located on the tarsi and proboscis of the fly and must make 

direct contact with the CHCs in order to detect them (reviewed in: Bontonou and Wicker-

Thomas, 2014; Hu et al., 2015). The attractive or repellent nature of a particular compound 

is highly dependent on the identity of the perceiving fly. In D. melanogaster, flies are 
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sexually dimorphic in their perception of CHCs: males find high levels of 7-T to be 

repellent, as this is more indicative of a male profile, whereas females are attracted to 

higher levels of 7-T (reviewed in: Bontonou and Wicker-Thomas, 2014). Drosophila 

melanogaster males also have more (~50) taste bristles than females (~37) on their 

forelegs, indicating that taste may be more important for males than for females during 

courtship (Amrein and Thorne, 2005). This makes sense in the context of the Drosophila 

courtship ritual, where males repeatedly tap females on the abdomen to sample their 

chemical profile. 

Several odorant and gustatory receptors have been found to be involved in the direct 

perception of pheromones, and the removal of these receptors or of the neurons expressing 

them typically results in dramatically reduced courtship propensity or the loss of 

discrimination ability in some capacity in males. Three gustatory receptors in particular 

have been found to be key mediators of courtship in males: gustatory receptor 32a (Gr32a), 

Gr33a and Gr39a (Amrein and Thorne, 2005). Gr32a is the receptor responsible for the 

male’s ability to discriminate conspecific from heterospecific flies on the basis of their 

CHC profiles (Fan et al., 2013). When Gr33a is removed, either by a loss-of-function 

mutation or by ablation of Gr33a-expressing neurons, males court other males at much 

higher frequency, indicating that removal of the Gr33a receptor causes loss of sex 

discrimination capability in males. In addition, males lacking active Gr33a lose the ability 

to discriminate between young and old virgin females (typically males prefer young virgin 

females over old ones) (Hu et al., 2015). Finally, Gr39a (in addition to Gr33a) has been 

found to be another gustatory receptor important in the males’ ability to distinguish male 

from female partners (Watanabe et al., 2011).  

Several odorant receptors have also been found to be important in the male 

perception of sex pheromones in Drosophila. Key among these are odorant receptor 47b 

(Or47b) and Or67d. Both of these odorant receptors are known to express the male isoform 

of fruitless, FruM (Zhuang et al., 2016). Similar to Gr33a, Or47b was found to be 

responsible for the male preference of younger vs. older virgin females (Zhuang et al., 

2016). In addition, Or47b was recently found to be important in the detection of the 

compound methyl laurate, which might represent a basal attractant CHC across Drosophila 
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species (Dweck et al., 2015). Or67d is responsible for the detection of cVA in both males 

and females in Drosophila (Kurtovic et al., 2007).  

1.10 Genes underlying CHC biosynthesis in Drosophila 

CHCs in Drosophila are synthesized using modified fatty acid biosynthetic 

pathways. Long-chain fatty acids (LCFAs) are used as precursors to modification either 

through the addition of methyl groups or via desaturation reactions, and these LCFAs can 

be produced by fatty acid metabolism in either the fat body or the oenocytes (Wicker-

Thomas et al., 2015). LCFAs are produced using acetyl-CoA as a precursor, which is then 

converted to malonyl-CoA using an acetyl-CoA carboxylase (ACC). A fatty acid synthase 

(FASN) then incorporates further malonyl-CoA subunits onto the acyl-CoA, adding two 

carbons at a time to the growing chain (Pennanec’h et al. 1991; Dembeck et al., 2015). In 

Drosophila, this process results in the production of LCFAs that are 14, 16, or 18 carbons 

in length. At this point or following transport to the oenocytes, the linear n-alkanes may be 

modified via desaturation or addition of a methyl group (reviewed in: Blomquist and 

Bagnères, 2010; Dembeck et al., 2015). Oenocyte-specific enzymes then incorporate 

further units of malonyl-CoA onto the chain in order to form very long-chain fatty acids 

(VLCFAs). The final step in CHC biosynthesis involves the release of the VLCFA from 

its CoA side-group, a decarboxylation process that is catalyzed by cytochrome p450 

enzymes and which results in the shortening of the chain by one carbon (Dembeck et al., 

2015) (see Figure 1.1 for an overview of CHC biosynthesis). The resultant hydrocarbon is 

then exported to the cuticle via a mechanism that is as yet unknown. 

 There are several enzymes known to be responsible for modifying linear n-alkane 

chains to produce the known sex pheromones in Drosophila. In D. melanogaster, the two 

most abundant male sex pheromones are 7-T and 7-pentacosene (7-P), both of which are 

alkenes with the double bond at the 7th carbon (Jallon, 1984; reviewed in: Bontonou and 

Wicker-Thomas, 2014). In females, the most abundant sex pheromones are 7,11-HD and 

7,11-nonacosadiene (7,11-ND), both of which are dienes with double bonds at positions 7 

and 11 (Jallon, 1984; Pechine et al., 1985). All of these compounds share a double bond at 

the ω7 position, indicative of a common biosynthetic pathway for the initial desaturation 

step. This desaturation is carried out by the Desaturase 1 (Desat1) gene, which is expressed 
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in both the oenocytes and fat body and encodes a Δ9 fatty acyl-CoA desaturase (Dallerac 

et al., 2000); the Δ symbol indicates that the desaturase generates a double bond at a fixed 

position in relation to the carboxyl group of a fatty acid). This desaturase introduces a 

double bond at the ω7 position of 16-carbon LCFAs and results in the production of 

monoenes, which are further elongated to form the VLCFAs that are the mature CHCs 7-

T and 7-P (reviewed in: Bontonou and Wicker-Thomas, 2014). Some of these monoenes 

will instead have a second double bond introduced prior to elongation and will become the 

female compounds 7,11-HD or 7,11-ND (Gleason et al., 2009). Interestingly, Desat1 

expression has been found to regulate not only the production of sex pheromones within 

Drosophila but also how these CHCs are perceived, indicating that a single gene can be 

responsible for both phenotype and behavioural response to that phenotype (Houot et al., 

2010).  

Populations of D. melanogaster that inhabit African and Caribbean areas produce 

high amounts of the compound 5,9-heptacosadiene (5,9-HD), which is a positional isomer 

of 7,11-HD. Populations from all other areas produce low amounts of 5,9-HD and high 

amounts of 7,11-HD, although these differences have not been found to be involved in the 

behavioural isolation between these populations (Coyne et al., 1999).  Desat2, similarly to 

Desat1, encodes a Δ9 fatty acyl-CoA desaturase, and differences in the expression of this 

gene between populations of D. melanogaster were found to be 
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Figure 1.1: Overview of fatty acid biosynthetic processes in Drosophila. All processes 

shown may take place in the oenocytes, while the boxed steps may take place in either the 

oenocytes or fat body. LCFA = long-chain fatty acid; VLCFA = very long-chain fatty acid; 

CHC = cuticular hydrocarbon. 
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responsible for this difference, where females of African and Caribbean strains express 

Desat2 but males and all other D. melanogaster populations do not (Dallerac et al., 2000; 

Takahashi et al., 2001). 

DesatF, also known as Fad2, is responsible for the production of the diene CHCs 

in D. melanogaster. Despite being present in every species in the melanogaster subgroup, 

this gene is only expressed by D. melanogaster females (Chertemps et al., 2007). The 

DesatF gene encodes an enzyme that converts ω7 monoene LCFA precursors into dienes 

by introducing a second double bond at the 11th carbon (ω indicates that the double bond 

is between the seventh and eighth carbons from the methyl end). The resultant LCFAs are 

then elongated and decarboxylated into the VLCFAs 7,11-HD and 7,11-ND to become the 

mature female sex pheromones (Legendre et al., 2008). Chertemps et al. discovered that 

this elongation is carried out by the product of the gene eloF, which encodes an elongase 

that participates in an enzyme complex that is capable of elongating both dienes and 

monoenes (Chertemps et al., 2007). Finally, a decarbonylase identified as CYP4G1 is 

responsible for carrying out the last step in CHC biosynthesis, in which aldehydes that have 

been released from CoA by an acyl-CoA reductase are converted to mature hydrocarbons 

(Qiu et al., 2012). This process results in the shortening of the carbon chain by one carbon, 

which is released as CO2 (Qiu et al., 2012). 

The relative abundance of the CHCs produced by flies is dependent upon the 

activities of the key enzymes discussed here. If Desat1 is partially inhibited, relatively 

lower levels of unsaturated CHCs will be produced (Labeur et al., 2002). Likewise, if 

DesatF is partially inhibited, there will be a buildup of the precursor monounsaturated fatty 

acids, leading to relatively higher levels of the monoene sex pheromones 7-T and 7-P and 

lowered levels of the dienes 7,11-HD and 7,11-ND (Wicker-Thomas et al., 2009). In 

species that do not produce the enzymes necessary to generate dienes, proportionately 

higher levels of monoenes are produced, as none of the precursors are funneled into the 

production of dienes. 
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1.11 Role of generalized metabolism in CHC biosynthesis 

Sex pheromone biosynthesis is intricately connected with the lipid metabolism that is 

responsible for overall fly health (Kuo et al., 2012a; Wicker-Thomas et al., 2015). If fatty 

acid metabolism in the fat body is hindered, pheromone production is dramatically reduced 

(Wicker-Thomas et al., 2015), despite the fact that the oenocytes contain all enzymes 

necessary to synthesize the sex pheromones de novo – it seems that crosstalk and LCFA 

shuttling between the oenocytes and fat body must be required for proper pheromone 

biosynthesis. Similarly, when juveniles are fed diets containing excess lipid content, adult 

pheromone levels are seen to drop dramatically (Wicker-Thomas et al., 2015). This likely 

results from overall LCFA biosynthesis being downregulated in adult flies that receive their 

necessary lipids from their diet rather than from de novo biosynthesis. Since the 

desaturation enzymes involved in sex pheromone biosynthesis reactions require these 

LCFAs as precursors in order to make the VLCFAs that will become the mature sex 

pheromones, adult flies that do not synthesize their own LCFAs are unable to produce high 

levels of sex pheromones. 

 Since CHC production utilizes existing fatty acid biosynthetic processes that are 

necessary for overall health and energy storage of the fly, it has been suggested that, in 

addition to their roles as species-specific signals, CHCs may represent honest signals of 

the overall health of the fly (Kuo et al., 2012b). The CHC profile of a fly could therefore 

assist in determining not only that a potential partner is of the appropriate species, sex and 

maturity level, but also that it is a high quality individual.  

Within-species, CHC profiles of flies can change dramatically based on differences 

in diet, temperature, and relative humidity (Rouault et al., 2004; Etges et al., 2006; 

Carvalho et al., 2012; Fedina et al., 2012; Kuo et al., 2012a; Bontonou et al., 2013). Flies 

reared on different diets begin to mate assortatively after relatively few generations (Dodd, 

1989), and this effect was recently found to be mediated by their gut microbial content 

(Sharon et al., 2010; Najarro et al., 2015). It is possible that the way that flies sense 

individuals that were raised on the same diet is via some form of chemical communication, 

implicating differences in the CHC profiles between these flies as a potential candidate. 
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The adult CHC profile of a fly is partially dependent upon the larval diet (Etges et al., 2006; 

Wicker-Thomas et al., 2015); since larvae are restricted to the food source that their eggs 

were laid on, this means that the location a female chooses for laying her eggs can have an 

effect on the CHC profile, and hence attractiveness, of her adult offspring. If different 

microbial species are present on different food sources or if different food sources allow 

for the differential maintenance of the same microbial species, this could lead to assortative 

mating based solely on where a female lays her eggs and not on underlying genetic factors. 

This effect would fail to result in the start of speciation between populations if females did 

not also preferentially lay their eggs on the same food source they were raised on, as 

random oviposition sites would allow for free gene flow between populations, but it offers 

an intriguing avenue of research into how traits involved in mate recognition can change 

rapidly in response to environmental cues.  

1.12 Factors influencing CHC profiles in Drosophila 

The range of unique CHCs that can be produced by a fly is dependent upon its genetic 

background, while the quantity of specific compounds can also be modified via interaction 

with the environment. Since the CHC profile of a fly is key in determining its reproductive 

success, both the genes underlying CHC production and how this production can change 

in response to different environmental factors are important in studying the evolution of 

mate choice and behavioural isolation in Drosophila. In examining the evolution of 

behavioural prezygotic barriers, it is therefore important to look at both the existing genetic 

factors that are present between species that cause them to be behaviourally isolated, and 

to examine how potential barriers may come to evolve in the first place. In this study, I 

therefore aim to: a) identify genes that underlie species differences in CHC production 

between two reproductively isolated sibling species of Drosophila: D. melanogaster and 

D. simulans, and b) look at how the CHC profiles within D. melanogaster change in 

response to differences in both diet and microbial content. This should yield insight into 

the genetics underlying extant behavioural isolation, as well as probe into how phenotypic 

plasticity in sexually selected traits may allow for the onset of behavioural isolation within 

a single species group. 
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Chapter 2  

2 Genes underlying species differences in CHC 
production between Drosophila melanogaster and D. 
simulans 

2.1 Introduction 

How species diverge and remain distinct is of key import in the study of the evolutionary 

processes that give rise to these groups. Of particular interest are the genetic mechanisms 

underlying the isolating barriers that arise between different groups, especially those that 

exist between groups that have diverged relatively recently. The genetic differences found 

between more recently formed species are more likely to be represent some of the most 

basal possible changes that may give rise to or maintain these species as distinct groups. 

Currently, little is known about the genetic basis of behavioural isolation between species 

and the genes that may be involved early in the speciation process that result in changes in 

behaviour and mating propensity. In Drosophila, courtship utilizes chemical 

communication at several steps (reviewed in: Fernández and Kravitz, 2013), indicating that 

the differential expression or perception of chemical cues may represent a key factor in the 

behavioural phenotype expressed by different Drosophila species that results in their 

reproductive isolation. Here, I sought to discover the genetic basis for the isolating mating 

behaviour observed between Drosophila melanogaster and D. simulans by exploring the 

genes involved in differential sex pheromone biosynthesis between these species. 

2.1.1 Reproductive isolation between D. melanogaster and D. 

simulans 

Drosophila melanogaster and D. simulans are a well-suited model system for exploring 

the genetic basis of chemical communication and behavioural isolation. This species pair 

diverged in sympatry approximately 5.4 mya (Sousa-Neves and Rosas, 2010). As in other 

species in the melanogaster subgroup, they are both prezygotically and postzygotically 

isolated from one another. Sterile hybrids that are the same sex as the D. melanogaster 

parent can be produced, while hybrids of the sex opposite to the D. melanogaster parent 
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are inviable and fail to develop (Yamamoto, 1992; Matute et al., 2014). Males from both 

species will court heterospecific females, but at reduced frequency compared to conspecific 

courting (Ellis and Carney, 2009). However, the species pair is asymetrically behaviourally 

isolated due to female behaviour: D. melanogaster females will accept D. simulans males 

at low frequency, but the reciprocal cross is observed only very rarely (Cobb and Jallon, 

1990). This behavioural isolation is due, at least in part, to differences in sex pheromones 

between the species (Savarit et al., 1999; Coyne, 1996). 

2.1.2 Differences in chemical cues between D. melanogaster and 

D. simulans 

Drosophila species, as in many other insects, utilize cuticular hydrocarbons (CHCs) both 

for desiccation resistance and to communicate during courtship (reviewed in: Blomquist 

and Bagnères, 2010; Howard and Blomquist, 2005). These fatty-acid derivative molecules 

are loosely associated with the cuticle of the fly, and are typically detected using olfactory 

and gustatory receptors only when flies come into close contact (Joseph and Carlson, 2015; 

Amrein and Thorne, 2005). Drosophila melanogaster is sexually dimorphic in the types of 

CHCs that it produces, whereas D. simulans is sexually monomorphic. Typically, males 

from monomorphic Drosophila species are reluctant to court females from dimorphic 

species (reviewed in: Bontonou and Wicker-Thomas, 2014). Four sex pheromones in 

particular that are produced by one or both of these species: 7,11-heptacosadiene (7,11-

HD), 7,11-nonacosadiene (7,11-ND), 7-tricosene (7-T) and 7-pentacosene (7-P) have been 

studied extensively. Since D. melanogaster and D. simulans respond differently to the 

presence or ratios of these key CHCs, this differential perception can explain part of the 

behavioural isolation between these species. 

7,11-Heptacosadiene is produced solely by D. melanogaster females, and 

represents the most abundant CHC in these flies (Antony and Jallon, 1982). This compound 

acts as a stimulant to D. melanogaster males, but is strongly repellent to D. simulans males 

(Coyne et al., 1994). Drosophila melanogaster females lacking 7,11-HD are courted 

vigorously by D. simulans males, indicating that it serves as one of the major species-
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specific antiaphrodesiac signals between D. melanogaster and D. simulans (Billeter et al., 

2009).  

Similar to 7,11-HD, 7,11-ND is also only produced by D. melanogaster females, 

and it is known to stimulate conspecific males and to act as an antiaphrodesiac to 

heterospecifics, though to a lesser degree than 7,11-HD (Jallon, 1984). Both 7,11-HD and 

7,11-ND were found to induce wing vibration in D. melanogaster males, with 7,11-HD 

causing the most profound stimulatory effect (Antony and Jallon, 1982). 

7-Tricosene and 7-P, found on the cuticles of male flies in all species of the 

melanogaster subgroup (reviewed in: Bontonou and Wicker-Thomas, 2014), comprise 

more than half of total male CHCs. The ratio between these compounds has been found to 

be dependent upon the latitude at which fly populations live, consistent with the fact that 

7-P provides greater resistance to desiccation and is typically found at higher amounts in 

fly populations that live in warmer environments (Rouault et al., 2004). In D. 

melanogaster, both males and females produce 7-T and 7-P, however females produce very 

low levels of both compounds. Drosophila melanogaster females are stimulated by 

exposure to high levels of 7-T, whereas 7-T acts as an antiaphrodesiac to D. melanogaster 

males, allowing them to avoid male-male courtship (Thistle et al., 2012). In D. simulans, 

7-T is the most abundant sex pheromone found on the cuticles of both male and female 

flies, who differ only in the relative abundances and not the identities of their CHCs 

(reviewed in: Bontonou and Wicker-Thomas, 2014). Male D. melanogaster flies 

interacting with D. simulans females are repelled due to the presence of high amounts of 

7-T, indicative of a male profile (Thistle et al., 2012). 7-Tricosene has also been found to 

stimulate wing vibration in D. simulans males (Jallon, 1984), but not in D. melanogaster 

males (Antony and Jallon, 1982). 

 Hybrid females produced by D. melanogaster females that have been crossed to D. 

simulans males have overall CHC profiles that are intermediate between the parental 

profiles, but that are semi-dominant for the D. melanogaster profile (Coyne, 1996; Pardy, 

2012). These hybrid flies produce high levels of 7,11-HD and low amounts of 7,T, which 

is more consistent with a D. melanogaster female profile. Other, less well-studied CHCs 
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also differ in amount in the hybrid vs. parental CHC profiles, which may be important as 

the way that flies perceive CHC profiles is dependent not only upon the types of 

compounds found but upon their relative abundances compared to other CHCs and the 

overall bouquet of compounds that are present (Ferveur and Sureau, 1996).  

2.1.3 Chromosomal regions underlying CHC differences between 

D. melanogaster and D. simulans 

Although some key genes have been identified (see section 1.1.0), the genetic basis of CHC 

production is in general not well known. Previous work has identified that the genes 

underlying the CHC profiles of D. melanogaster/D. simulans hybrids map entirely to the 

3rd chromosome (Coyne, 1996). Deficiency mapping was used to walk along the third 

chromosome and identify smaller regions that may be responsible for the hybrid CHC 

profile, uncovering 5 regions that each contain between 63 and 230 genes (Pardy, 2012). 

These regions must each contain at least one gene that is responsible for some of the species 

differences in CHC production that is observed between D. melanogaster and D. simulans. 

These maps are important not only in identifying the genes that may be acting between 

species, but also in looking at those genes that underlie CHC production in general. Since 

the behavioural isolation between D. melanogaster and D. simulans is partially modulated 

by their different CHC profiles, it is necessary to discover which specific genes within the 

large regions uncovered by deficiency mapping are contributing to the differences in CHC 

profiles between these species. 

2.1.4 Candidate gene disruptions 

In order to discover which individual genes may be acting to affect species differences in 

CHC production between D. melanogaster and D. simulans, a version of deficiency 

mapping was used in which individual candidate genes (rather than large regions) are 

disrupted, as per Pasyukova et al., 2000. Drosophila melanogaster fly stocks are available 

in which individual genes have been rendered nonfunctional, either by the insertion of a 

transposable element or deletion of nucleotides. These stocks are hemizygous (have only 

one homolog) for the candidate gene of interest, which is maintained over a balancer 
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chromosome to prevent the recovery of recombinant offspring (the balancer chromosome 

itself reduces recombination rates, and if recombination does occur recombinant offspring 

are not viable). When D. melanogaster stocks containing a gene disruption are crossed to 

wild-type (WT) D. simulans flies, hybrids are produced that differ from WT hybrids only 

in the absence of the D. melanogaster copy of the candidate gene. If the CHC profile of 

disrupted hybrids differs significantly from the WT hybrid, this disrupted gene must 

therefore be responsible for the difference. 

In my research, I tested individual candidate genes on the 3rd chromosome to 

attempt to narrow down which genes contribute to CHC differences between D. 

melanogaster and D. simulans. In choosing candidates, I searched within areas uncovered 

by Pardy (2012), as well as along the entire length of the 3rd chromosome, for candidate 

genes. Candidate genes were chosen based on (1) whether they are involved in fatty acid 

biosynthetic processes, namely those putatively involved in desaturation, elongation, and 

decarboxylation reactions, identified either through experimentation or inferred function 

based on protein domains; or (2) if they are known to interact with or take part in pathways 

shared with the products of those genes already known to be involved in CHC biosynthesis, 

such as Desat1 (Dallerac et al., 2000), Desat2 (Coyne et al., 1999) and DesatF (Fad2) 

(Chertemps et al., 2007).  
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2.2 Methods 

2.2.1 Maintenance of Drosophila stocks 

Drosophila stocks were maintained on a standard cornmeal-yeast diet (Bloomington 

Drosophila Stock Center standard recipe) at 24°C on a 14:10 hour light:dark cycle at 76% 

relative humidity. Wild-type (WT) D. melanogaster line BJS (London, ON) was obtained 

from Dr. B. Sinclair and WT D. simulans line FC (Florida City, USA) was obtained from 

Dr. J. Coyne. Balancer stock 3703 (w1118/Dp(1;Y)y+; CyO/nub1 b1 snaSco lt1 stw3; 

MKRS/TM6B, Tb1) and gene disruption stocks (see Table 2.1) were obtained from the 

Bloomington Drosophila Stock Center. 

2.2.2 Drosophila crosses 

Newly-emerged flies (0-8h) were collected under light CO2 anesthesia and separated by 

sex to ensure virginity. Drosophila melanogaster disruption line flies (Dis) were crossed 

with a balancer stock (Bal) to generate F1 offspring that have a copy of chromosome 3 

containing a disrupted gene and a homologous balancer chromosome that prevents 

recovery of recombinant offspring (Dis/Bal). Offspring were selected on the basis of the 

phenotype imparted by a dominant visible marker present on the balancer chromosome. 

Dis/Bal D. melanogaster virgin female flies were then crossed with either WT male D. 

melanogaster BJS (3 crosses/line, 5 females x 5 males) or WT male D. simulans FC (a 

minimum of 10 crosses and an average of 15 crosses/line, 10 females x 25 males) flies. A 

greater number of females and males were used in the interspecies cross due to the reduced 

mating activity for this cross. Female F1 hybrid offspring were collected under light CO2 

anesthesia and separated 0-8h after eclosion based on the presence (inherited Bal) or 

absence (inherited Dis) of the dominant visible marker. See figure 2.1 for an overview of 

the crossing scheme. 

In many cases, crosses between Dis/Bal D. melanogaster females and WT D. simulans 

males were unsuccessful. These crosses resulted in hybrids that either failed to eclose or 
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that eclosed but did not survive to testing age (5 days) in high enough numbers. For some 

stocks, no larvae were observed in any interspecific cross (see Table 2.1). 
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Figure 2.1: Crossing scheme for testing candidate genes involved in CHC 

biosynthesis.Four possible genotypes, shown at the bottom, are produced by inter- and 

intraspecific crosses. Sim/Dis individuals have no copies of the D. melanogaster copy of 

the candidate gene; Sim/Bal has a single copy; Mel/Dis has a single copy; and Mel/Bal has 

two copies.  
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2.2.3 Candidate genes identified using STRINGdb 

Candidate genes tested are listed in Table 2.1. As mentioned, candidate genes were chosen 

from regions spanning the third chromosome that either: a) occur within regions found to 

significantly affect CHC profiles between D. melanogaster and D. simulans (Pardy, 2012); 

b) are involved in fatty acid biosynthetic processes; or c) are known to interact with the 

protein products of genes that have been previously shown to be involved in species 

differences in CHC production between D. melanogaster and D. simulans. The genes 

Desat1, Desat2 and DesatF are known to be involved in CHC biosynthesis in Drosophila 

(Dallerac et al., 2000; Coyne et al., 1999; Chertemps et al., 2007) and were used as starting 

points to query STRINGdb for any known interacting partners. STRING is a freely 

available service that accepts a protein as input and searches for other proteins that may 

associate with the query. STRING searches for evidence of this interaction via 

experimental evidence and using known homologs of the protein of interest in other species 

(Jensen et al., 2009), and provides a good starting point in looking for proteins that may 

interact with the protein of interest. Since there is already strong evidence for the 

involvement of Desat1, Desat2 and DesatF in the synthesis of the D. melanogaster sex 

pheromones, any proteins that interact with them represent good candidates for other 

proteins that may be involved in the pheromone biosynthetic process. I therefore looked 

for the top interacting partners of the products of these three genes based on the STRINGdb 

output that are also located on the third chromosome and used these as candidate genes. 
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Table 1: Candidate genes for species differences in CHC production between D. 

melanogaster and D. simulans 

Stock1  Genotype1 Affected gene2 Gene function2 Cytological 
region2 

1 - Stocks that produced enough interspecific offspring to test3 

25101 w*; st1 fafBX3/TM6B, Tb1 CG1945 - faf thiol-dependent 
ubiquitin-specific 
protease activity 

 

100D2-100D2 

51074 y[1 w*; 
Mi{y+mDint2=MIC}sitMI08264/TM
3, Sb1 Ser1 

 

CG5278 - sit fatty acid elongase 
activity 

94B4-94B4 

54496 y1 w*; 
Mi{y+mDint2=MIC}bondMI09426 
CR44062MI09426 

 

CG6921 - bond fatty acid elongase 
activity 

94B4-94B4 

  CR44062 uncharacterized 

 

94B4-94B4 

51122 y1 w*; 
Mi{y+mDint2=MIC}CG33110MI08

895/TM3, Sb1 Ser1 

 

CG33110 fatty acid elongase 
activity 

94B4-94B4 

16264 y1 w1118; 
PBac{y+mDint=3HPy+}C040 

 

CG42857 ucharacterized 85E10-85E10 

35100 y1 w*; Mi{y+mDint2=MIC}Oct-
TyrRMI01223/TM3, Sb1 Ser1 

 

CG7485 - Oct-
TyrR 

Tyramine 1 class 
receptor 

79B1-79B2 
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Stock1  Genotype1 Affected gene2 Gene function2 Cytological 
region2 

14660 y1; P{y+mDint2 wBR.E.BR=SUPor-
P}vermKG07819 ry506/TM3, Sb1 
Ser1 

 

CG8756 - verm Chitin-binding 76C1-76C3 

27232 y1 w*; 
P{w+mC=EP}SREBPG8480 

 

CG8522 - 
SREBP 

Transcriptional 
activator 

76C5-76C6 

19706 y1 w67c23; P{w+mC 
y+mDint2=EPgy2}BaldspotEY05228 

 

CG3971 - 
Baldspot 

fatty acid elongase 
activity 

73B4-73B5 

12612 w1118; 
P{w+mGT=GT1}CG5946BG01087 

 

CG5946 oxidoreductase 
activity 

68E1-68E1 

2 - Stocks that produced interspecific offspring that died before testing age3 

22471 y1 w67c23; P{w+mC 
y+mDint2=EPgy2}E(z)EY21318 

CG6502 - E(z) Histone 
methyltransferase; 
involved in 
development 

 

67E5-67E5 

33478 y1 w*; 
Mi{y+mDint2=MIC}Acp76AMI0201

9 

CG3801 - 
Acp76A 

Non-inhibitory serpin 
serine endopeptidase 
inhibitor family 

 

75F5-75F5 

17835 w1118; 
PBac{w+mC=RB}CG10096e0027

6 CG10097e00276 

CG10096 fatty-acyl-CoA 
reductase (alcohol-
forming) activity 

 

87B9-87B9 

  CG10097 fatty-acyl-CoA 
reductase (alcohol-
forming) activity 

87B9-87B9 
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Stock1  Genotype1 Affected gene2 Gene function2 Cytological 
region2 

 

33155 y1 w*; 
Mi{y+mDint2=MIC}CG15531MI01

928/TM3, Sb1 Ser1 

 

CG15531 oxidoreductase 
activity 

99E2-99E2 

23359 y1 w67c23; 
Mi{ET1}Elo68alphaMB01772 

 

CG32072 - 
Elo68α 

fatty acid elongase 
activity 

68A6-68A6 

24819 w1118; 
Mi{ET1}Octbeta3RMB04794 

 

CG42244 - 
Octβ3R 

Octopamine receptor 
activity 

87B15-87C1 

24490 Sod1X-39 e1/TM3, Sb1 Ser1 CG11793 -  
Superoxide 
dismutase 1 

 

Superoxide dismutase 68A7-68A7 

44999 y1 w*; 
Mi{y+mDint2=MIC}Ir67bMI08762/
TM3, Sb1 Ser1 

 

CG12303 - 
Ir67b 

ligand-gated ion 
channel 

67E3-67E3 

59181 y1 w*; 
Mi{y+mDint2=MIC}Ir67cMI13686/
TM3, Sb1 Ser1 

 

CG32058 - 
Ir67c 

ligand-gated ion 
channel 

67E3-67E3 

42321 y1 w*; 
Mi{y+mDint2=MIC}CG14395MI05

388 

 

CG14395 ucharacterized 87C4-87C5 

18896 w1118; 
PBac{w+mC=WH}Octbeta2Rf05

679 

CG33976 - 
Octβ2R 

octopamine receptor 
activity 

87C1-87C2 
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Stock1  Genotype1 Affected gene2 Gene function2 Cytological 
region2 

 

23491 w1118; Mi{ET1}HugMB02782 CG6371 - Hug myostimulatory 
hormone activity; 
neuropeptide receptor 
binding 

 

87B15-87B15 

3 - Stocks that produced no interspecific offspring3 

16668 y1 w67c23; P{w+mC 
y+mDint2=EPgy2}Snx3EY05688 

 

CG6359 - Snx3 phosphatidylinositol 
binding 

87C3-87C3 

18180 w1118; 
PBac{w+mC=RB}Not10e03672 

 

CG18616 - 
Not10 

uncharacterized 87C3-87C3 

18297 w1118; 
PBac{w+mC=WH}CG11598f0015

0 

 

CG11598 hydrolase activity; 
lipase activity 

87C3-87C3 

11299 w1118; 
PBac{w+mC=PB}CG6225c03494/
TM6B, Tb1 

 

CG6225 metalloaminopeptidas
e activity 

87C3-87C3 

13113 w1118; 
P{w+mGT=GT1}FoxKBG01104 

 

CG11799 - 
FoxK 

RNA pol II 
transcription factor 

68A7-68A7 

6347 In(1)wm4h; JIL-13/TM3, Sb1 
Ser1 

 

CG6297 - JIL-1 histone kinase activity 68A5-68A6 
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Stock1  Genotype1 Affected gene2 Gene function2 Cytological 
region2 

15573 y1 w67c23; P{w+mC 
y+mDint2=EPgy2}CG43693EY0259

0/TM3, Sb1 Ser1 

CG7888; 
CG43693  

amino acid 
transmembrane 
transporter activity 
(both genes) 

 

68A3-68A3; 68A2-
68A2 

19084 w1118; 
PBac{w+mC=WH}CG32081f0758

7 

CG32081 amino acid 
transmembrane 
transporter activity 

 

68A1-68A2 

15006 y1 w /l ; P{w+mC 
y+mDint2=EPgy2}CG5946EY0

0183 

 

CG5946 oxidoreductase 
activity 

68E1-68E1 

63777 w1118; 
PBac{w+mC=IT.GAL4}Oct-
TyrR0774-G4 

 

CG7485 - Oct-
TyrR 

Tyramine 1 class 
receptor 

79B1-79B2 

26177 verm76BDx-6 red1 e4/TM6B, Sb1 
Tb1 ca1 

 

CG8756 - verm Chitin-binding 76C1-76C3 

11563 P{ry+t7.2=PZ}Baldspot02281 
ry506/TM3, ryRK Sb1 Ser1 

CG3971 - 
Baldspot 

fatty acid elongase 
activity 

 

73B4-73B5 

21352 y1 w67c23; P{w+mC 
y+mDint2=EPgy2}JIL-1EY04795 

 

CG6297 - JIL-1 histone kinase activity 68A5-68A6 

11623 ry506 
P{ry+t7.2=PZ}Dlc90F04091/TM3
, ryRK Sb1 Ser1 

CG12363 - 
Dlc90F 

dynein intermediate & 
light chain binding 

 

91A2-91A2 
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Stock1  Genotype1 Affected gene2 Gene function2 Cytological 
region2 

25491 w1118; Mi{ET1}Dnai2MB06262 

 

CG6053 - Dnai2 uncharacterized 68D2-68D2 

40225 y1 w*; 
Mi{y+mDint2=MIC}Kif19AMI05463 

 

CG9913 - 
Kif19A 

ATP binding; 
microtubule motor 
activity 

88A9-88A9 

35507 w*; 
P{w+mC=EP}Klp67A322b24/TM6
B, Tb1 

CG10923 - 
Klp67A 

ATP binding; 
microtubule motor 
activity 

67B2-67B2 

     

1 Disruption line stock numbers and genotypes from the Bloomington Drosophila Stock 

Center. 

2 Disrupted gene(s), putative gene function, and the cytological location of the candidate 

gene(s) in D. melanogaster are from Flybase (Gramates et al., 2017). 

3 Only those stocks that produced interspecific offspring could be tested for their CHC 

content. 
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2.2.4 Disruption testing 

Four genotypes are generated from disruption line x pure species crosses depending on the 

copy of chromosome 3 they receive: Mel/Bal; Mel/Dis; Sim/Bal; and Sim/Dis (Mel=WT D. 

melanogaster BJS copy of chromosome 3; Sim=WT D. simulans FC copy of chromosome 

3; Dis=D. melanogaster chromosome 3 with a candidate gene disrupted; Bal=D. 

melanogaster balancer chromosome TM6b). Offspring with genotypes Mel/Bal, Mel/Dis, 

or Sim/Bal contain a complete copy of the D. melanogaster chromosome 3. The D. 

melanogaster CHC profile is semi-dominant over the D. simulans profile in hybrids 

between these species (Coyne, 1996), so flies with these genotypes should all display 

melanogaster-like CHC profiles. Sim/Dis flies contain a complete copy of the D. 

melanogaster chromosome 3 except for a single disrupted candidate gene. If the disrupted 

gene contributes to the dominant D. melanogaster CHC profile, the hybrid CHC profile 

should appear more simulans-like than the WT hybrid since the recessive D. simulans 

genotype will be unmasked at this locus. Candidate genes were tested in a version of 

complementation analysis, in which disruption of a particular D. melanogaster gene 

partially restores the D. simulans CHC phenotype if this gene is involved in species 

differences in CHC production and the semi-dominant D. melanogaster profile observed 

in hybrids. After accounting for differences due to species (melanogaster  vs. hybrid) and 

genotype (Dis vs. Bal), I am looking for a significant species x genotype interaction. 

2.2.5 Extraction and chromatography of CHC content 

Virgin female flies were aged 5 days to ensure sexual maturity. Two hours after lights-on 

on day 5, flies were washed in 100 µL of hexane containing 100 ng of n-hexacosane internal 

standard; flies were gently vortexed for one minute to extract any CHCs present on the 

cuticle. Flies were then removed from the hexane using forceps, placed into an open 

Eppendorf tube and allowed to air-dry. Due to low variance in CHCs between samples of 

the same genotype (Moehring lab, unpublished data), only five flies from each of the four 

genotypes were analyzed, for a total of 20 flies assayed per line. Samples were analyzed 

on an Agilent Technologies (Wilmington, USA) 7890A gas chromatograph (GC), fitted 
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with an HP5 (5% phenyl methyl siloxane) column (30.0 m x 250.00µm internal diameter) 

and a flame ionization detector (at 310 °C). Samples (1 µL) were pulse-injected in splitless 

mode (at 200 °C with a pulse of 206 kPa for the first 1.4 min) and eluted with the following 

temperature program: 60°C for 0.5 min, increasing to 190°C at 120°C/min then increasing 

to 260°C at 7°C/min, then finally to 310°C at a rate of 120°C/min, where it was maintained 

for 3.5 min. Hydrogen was used as the carrier gas at a flow rate of 2.5 mL/min. 

2.2.6 Analysis of CHC data 

Gas chromatograph output was analyzed using Agilent Chemstation software to determine 

the total area of each compound that was detected. The internal standard is used as both a 

landmark for identifying CHCs and to correct for differences in injection volume so that 

different samples may be compared. Compounds were identified based on their retention 

times in comparison to that of the internal standard and using previous data analyzed using 

the same GC and parameters. Data was adjusted based on the size of the internal standard 

peak by multiplying the area of each peak within a sample so that the internal standard 

peaks across samples were equal. The average mass of flies (either pure D. melanogaster 

or hybrid D. melanogaster/D. simulans) was used to correct the GC output to control for 

possible variation in CHC abundance due to the body size of the flies. For each fly, the 

total peak area of each compound that was detected was scored; these values were then 

compared across the four genotypes.  

Data were analyzed using a two-way ANOVA (α=0.05) to compare the mean areas 

of each compound and determine if any compounds differ significantly across the four 

genotypes, and to determine whether this difference is due to the interaction between 

genotype (Bal or Dis copy of chromosome 3), between species (D. melanogaster or D. 

melanogaster/D. simulans hybrid), or is the result of the genotype x species interaction. 

The interaction term is of greatest interest in this study as it indicates that a particular 

disrupted gene is implicated in species differences in CHC production. A post hoc 

assessment was performed to confirm that any significant genotype x species interactions 

were due to differences in the Sim/Dis genotype, and that changes are in the expected 

direction, with the amount of the compound being more similar to D. simulans due to 



   

 

 

44 

having the D. simulans allele unmasked. It has been suggested that the relative amounts of 

certain compounds may also play a role in the perception of the total CHC profile in 

Drosophila (Ferveur and Sureau, 1996; Savarit et al., 1999). Therefore, in addition to 

comparing the total areas of each compound, relative abundance of each compound, in 

which the area of the peak of interest was divided by the total area of all peaks excepting 

that of the internal standard, was also compared. A false discovery rate (FDR) correction 

was used to account for multiple tests on the same data (1 ANOVA per compound, 10-12 

compounds per line, 10 lines). 

2.2.7 Sequence alignment 

DNA sequences from D. melanogaster and D. simulans were gathered using sequences 

available on Flybase (Gramates et al., 2017). Sequences were compared using BLASTn 

(for nucleotide alignment) or translated protein sequences were aligned using BLASTp 

(BLAST: Altschul et al., 1990).  
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2.3 Results 

2.3.1 Candidate genes that are inviable in hybrids 

Some candidate genes could not be tested, either due to a total lack of hybrid production 

because of a lack of interspecific mating, or due to hybrids that were unable to survive to 

the testing age of five days. Candidate genes that, when disrupted, resulted in no larvae 

being produced are listed in Table 2.1, section 3. It is possible that the absence of larvae is 

because D. melanogaster females that are hemizygous for these candidate genes have a 

reduced propensity to mate with D. simulans males, and thus no mating occurred.  

Alternatively, mating could have occurred, but F1 offspring died as eggs and never hatched 

into larvae. 

 Some candidate gene disruption lines were successful in mating and producing 

offspring with D. simulans, but produced offspring that did not eclose from the pupal case 

to produce viable adults, or produced adults that consistently died within one or two days 

and thus did not survive to testing age (listed in Table 2.1, section 2). The candidate genes 

being tested in these cases must have a dramatic effect on the health of hybrid flies when 

no D. melanogaster alleles are present and only the D. simulans allele is able to be 

expressed. 

2.3.2 Candidate genes in viable hybrids 

Females of ten candidate gene disruption lines were able to reproduce with D. simulans 

males and produced enough offspring that lived until day five to test. The disruption lines 

that were successfully tested are listed in Table 2.1, section 1. All hybrid flies (Sim/Dis and 

Sim/Bal) produced more total (~2.5 fold more) CHCs than pure D. melanogaster flies 

(Mel/Dis and Mel/Bal), despite hybrids having a slightly smaller body size. In all candidate 

gene disruption lines that were tested, relative abundance and peak area comparisons both 

yielded a single significant result, which was for the disruption of candidate gene CG5946. 
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2.3.3 Disruption of candidate gene CG5946 

Of the 10 disruption lines that generated enough interspecific offspring to test, one showed 

significance due to the species x genotype interaction in the Sim/Dis hybrids. In this stock 

candidate gene CG5946 was disrupted; Sim/Dis hybrids with this disruption had 

significantly higher levels of 7-T and a significant decrease in 7,11-HD when quantified 

using either total peak area or relative abundance (Figures 2.2 and 2.3; see appendix A). 

Proteins that may interact with the product of CG5946 were identified using STRINGdb 

(Figure 2.4). None of the remaining 9 lines showed significant differences in any of the 

compounds identified in either total peak area or relative abundance (Figures 2.5, 2.6 and 

2.7; see appendix A). 
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Figure 2.2: Average peak area and relative abundance of CHCs when CG5946 is 
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disrupted. Bars represent the mean (±SD) total peak area or relative abundance of 

compounds extracted from the cuticles of 5-day old females of each genotype (Mel/Bal, 

Mel/Dis, Sim/Bal, Sim/Dis). a) Average peak area of each of the compounds detected across 

the four genotypes; b) average relative abundance of each compound across the four 

genotypes. 
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Figure 2.3: Average peak area and relative abundance of 7-T and 7,11-HD when 

candidate gene CG5946 is disrupted.  Bars represent the mean (±SD) total peak area or 

relative abundance of 7-T and 7,11-HD extracted from the cuticles of 5-day old females of 

each genotype (Mel/Bal, Mel/Dis, Sim/Bal, Sim/Dis). a) Average peak area of 7-T 

(pgenotype=7.661x10-4, phybrid=2.403x10-6, pinteraction=3.196x10-4, two-way ANOVA, =6.046, 

4 d.f.); b) Average relative abundance of 7-T (pgenotype=2.461x10-4, phybrid=3.592x10-6, 

pinteraction=1.650x10-5, two-way ANOVA, t=10.08, 4 d.f.); c) average peak area of 7,11-HD 

(pgenotype=1.648x10-4, phybrid=7.235x10-7, pinteraction=4.258x10-5, two-way ANOVA, t=-

12.60, 4 d.f.); d) average relative abundance of 7,11-HD (pgenotype=3.490-2, 

phybrid=7.578x10-3, pinteraction=5.239x10-3, two-way ANOVA, t=-12.75, 4 d.f.). 
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Figure 2.4: Proteins potentially interacting with cyt-b5 and CG5946 in D. 

melanogaster. From the STRING database (Jensen et al., 2009). a) Protein interaction map 

centered on Cyt-b5. Different coloured lines represent the different lines of evidence used 

to form associations between putatively interacting proteins. b) Evidence and total score 

for interaction between Cyt-b5 and its top 10 interacting partners. 
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Figure 2.5: Average peak area and relative abundance of CHCs when CG1945, 

CG5278 or CG6921/CG44062 are disrupted. Bars represent the mean (±SD) total peak 

area or relative abundance of compounds extracted from the cuticles of 5-day old females 

of each genotype (Mel/Bal, Mel/Dis, Sim/Bal, Sim/Dis). Average total peak area (a, c, e) 

and average relative abundance (b, d, f) of compounds when CG19456 (a, b) CG5278 (c, 

d), or CG6921/CG44062 (e, f) is disrupted. 
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Figure 2.6: Average peak area and relative abundance of CHCs when CG33110, 

CG42857 or CG7485 are disrupted. Bars represent the mean (±SD) total peak area or 

relative abundance of compounds extracted from the cuticles of 5-day old females of each 

genotype (Mel/Bal, Mel/Dis, Sim/Bal, Sim/Dis). Average total peak area (a, c, e) and 

average relative abundance (b, d, f) of compounds when CG33110 (a, b) CG42857 (c, d), 

or CG7485 (e, f) is disrupted. 
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Figure 2.7: Average peak area and relative abundance of CHCs when CG8756, 

CG8522 or CG3971 are disrupted. Bars represent the mean (±SD) total peak area or 

relative abundance of compounds extracted from the cuticles of 5-day old females of each 

genotype (Mel/Bal, Mel/Dis, Sim/Bal, Sim/Dis). Average total peak area (a, c, e) and 

average relative abundance (b, d, f) of compounds when CG8756 (a, b) CG8522 (c, d), or 

CG3971 (e, f) is disrupted. 
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2.4 Discussion 

In order to determine which genes contribute to CHC production and differences between 

D. melanogaster and D. simulans, I tested candidate genes involved in fatty acid 

biosynthetic processes in a version of complementation analysis. I compared the CHC 

profiles of hybrid offspring to determine whether any compounds shifted dramatically in 

abundance when hybrids lack a D. melanogaster copy of a particular candidate gene, 

resulting in the unmasking of the D. simulans allele at that locus. Many of the candidate 

gene disruption lines failed to mate or to produce enough healthy offspring to test in 

interspecific crosses with D. simulans, however 10 lines were successfully crossed to D. 

simulans and their CHCs were examined. Of the 10 candidate genes tested, the disruption 

of one, CG5946, had a significant effect on CHC production in hybrid individuals, causing 

a significant increase in 7-T and a significant decrease in 7,11-HD, both changes that 

represent a more simulans-like profile. This indicates that the D. melanogaster gene 

CG5946 is partially responsible for the semi-dominance of the D. melanogaster over the 

D. simulans CHC profile, and its disruption allows the recessive D. simulans profile to 

show through, although disruption of this gene only partially restores the D. simulans CHC 

profile. It must be noted here that depending on the disruption line being studied, only the 

10-12 most abundant compounds were able to be detected. Female D. melanogaster flies 

typically produce 53 known CHCs, though many of these are produced at very low levels 

(Foley et al., 2007). This means that the majority of CHCs were not able to be detected; it 

is therefore possible that some of the lines tested may have displayed differences in some 

of their less abundant compounds that I was not able to assess. 

The gene CG5946 is located in the left arm of chromosome 3 at cytological position 

68E1. Flies deficient in the nearby region 67E2-68A7 were found to have significantly 

increased levels of 7-P and decreased levels of 7,11-HD, but the region that CG5946 falls 

into was not tested (Pardy, 2012). 

 CG5946 is predicted to code for a protein, CG5946, that has not been 

experimentally characterized, but whose domains have been inferred via homology. The 
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major functions of CG5946 according to GO ontology are cholesterol metabolism, electron 

transport and fatty acid desaturation (UniProt, 2017: E1JHY0). CG5946 is a 

transmembrane protein that has two conserved domains: a transmembrane helical domain, 

and a ferredoxin reductase-type FAD-binding domain. It is predicted to be an 

oxidoreductase that is capable of accepting electrons from NAD(P)H and reducing 

cytochrome b5 through use of an FAD cofactor (UniProt, 2017: E1JHY0). This offers a 

possible explanation of the observed effects on CHCs, namely, a reduction in diene levels 

and an increase in monoenes, that result from its deletion. In the desaturation reactions that 

produce monoenes and dienes, three enzymes are involved that form a complex: a 

desaturase, a cytochrome b5 enzyme, and a cytochrome b5 reductase, of which CG5946 is 

one (reviewed in: Shanklin and Cahoon, 1998). Electrons are passed from the cytochrome 

b5 reductase to cytochrome b5 and then to the desaturase enzyme, which oxidizes the alkane 

into an alkene (or the monoene into a diene) with the concurrent reduction of O2 to 2H2O 

using the electrons that were passed on from cytochrome b5
 (reviewed in: Borgese et al., 

1993). Cytochrome b5 is able to accept electrons from a number of different cytochrome 

b5 reductase enzymes, so the deletion of a single one is not enough to completely ablate 

the ability of the flies to produce alkenes, however it does result in a reduction of the 

amount of electrons being funneled to the different desaturase enzymes. Although direct 

interaction has yet to be shown, CG5946, via cytochrome b5, is predicted to interact with 

the products of Desat1, Desat2 and Fad2 (also called DesatF; Figure 2.4), all of which are 

desaturases (responsible for introducing double bonds into hydrocarbons). These genes 

have previously been shown to be involved in Drosophila sex pheromone production 

(Dallerac et al., 2000; Coyne et al., 1999; Chertemps et al., 2007); it is possible that 

CG5946 does not directly complex with any of these desaturases, but acts by passing 

electrons to cytochrome b5 which then provides these desaturase enzymes with the 

reducing power needed to carry out their reactions, introducing double bonds into 

hydrocarbons. Also of note as a potential interacting partner for CG5946  (or, more likely, 

downstream of CG5946 via cytochrome b5) is Acetyl-CoA carboxylase (ACC), another 

enzyme involved in fatty acid biosynthesis (Dembeck et al., 2015). 

There are seven possible transcripts of CG5946 of various lengths that are predicted 

to be produced by different splice variants in D. melanogaster, all of which share the 
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transmembrane and FAD-binding domains (Gramates et al., 2017; UniProt, 2017: 

E1JHY0). Drosophila simulans has a homologous gene, GD12773, which is predicted to 

produce two known and four putative transcripts (Gramates et al., 2017; Hu et al., 2013). 

The gene regions of CG5946 in D. melanogaster and GD12773 in D. simulans share 90% 

sequence identity (BLAST: Altschul et al., 1990). The majority of the difference between 

these regions is restricted to the upstream and intronic regions of the genes. The upstream 

region of the D. simulans GD12773 contains one putative promoter region; D. 

melanogaster CG5946 contains 2 putative promoter sequences, one of which matches 

exactly the D. simulans promoter (Neural Network Promoter Prediction: Reese, 2001).  

Five of the D. simulans transcripts correspond to six of the D. melanogaster 

transcripts (two of the D. melanogaster sequences have identical coding sequences), while 

one D. simulans and one D. melanogaster transcript are unique to each respective species 

(BLAST: Altschul et al., 1990). The unique D. simulans transcript is translated into a 

peptide that differs only from other D. melanogaster and D. simulans transcripts in the N-

terminal region (the remainder of the peptide is identical or shares 98% sequence identity 

with several other D. simulans and D. melanogaster peptides, but this combination of the 

8 amino acid N-terminal sequence combined with the remainder of the peptide is not found 

in D. melanogaster). Since the N-terminal region is involved in targeting polypeptides to 

the ER, it is possible that the resultant protein is directed to a different subcellular location 

following translation (Lodish et al., 2000). The unique D. melanogaster transcript is 

translated into a peptide which is truncated at the C-terminal end compared to other 

possible transcripts, but still contains the catalytic and transmembrane domains, so is likely 

still functional (Gramates et al., 2017).  

The translated proteins of the different transcripts are 98% identical to their 

homologues, containing only 2-5 non-synonymous mutations (Gramates et al., 2017). All 

D. simulans transcript variants share the I51V (isoleucine to valine: D. melanogaster to D. 

simulans, counted from the start of the FAD binding domain) and S78T (serine to 

threonine) substitutions within the putative FAD binding domain of the protein. I51V 

occurs two positions before the conserved active site R-x-Y-[ST] domain, which is required 

for hydrogen bonding with the FAD cofactor. Despite these changes, protein structure and 
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activity are not likely to change since both of these substitutions are found in FAD binding 

domains of other species’ proteins, and do not represent a change in charge or hydrophobic 

interactions in the proteins, and are thus unlikely to alter structure and function (reviewed 

in: Dym and Eisenberg, 2001). 

Since the activity of the protein is likely the same in D. melanogaster and D. 

simulans, the changes in CHC abundance observed in the hybrids is most likely the result 

of differential expression in D. simulans and D. melanogaster. This is supported by the 

presence of an additional predicted upstream promoter sequence in D. melanogaster that 

is not present upstream of the D. simulans gene (Neural Network Promoter Prediction: 

Reese, 2001). This differential expression could be due to differences in where the genes 

are expressed, the exact timing of expression, or in the expression levels within tissues. 

Expression data does not exist for D. simulans, but in D. melanogaster CG5946 has been 

found to be highly expressed in cells of the proboscis, ejaculatory duct, fat body, heart, 

spermathecae, head, oviduct, and the second antennal segment (Genevestigator: Hruz et 

al., 2008; Bgee: Bastian et al., 2008), although detailed information about individual 

transcript splice variant expression is lacking. It is possible that different transcripts are 

targeted to different functions depending where they are expressed. Although transcripts 

expressed in the fat body are likely solely used for fatty acid biosynthesis based on the role 

of cytochrome b5 reductases in fatty acid biosynthetic processes generally (reviewed in: 

Borgese et al., 1993), another cytochrome b5 reductase Cpr which, alongside CG5946, is 

expressed in the antennae, has been suggested to have a role in clearing the antennae and 

preventing the accumulation of chemical signals, allowing the fly to receive new signals 

again more quickly (Hovemann et al., 1997). Since both Cpr and CG5946 act to pass 

electrons onto cytochrome b5, it is possible that CG5946 is used in a similar role in the 

antennae. This is especially interesting considering the role of the antennae in sensing 

pheromones (via olfactory receptors located on the antennae: Zhuang et al., 2016); if a 

single gene could act both to alter the biosynthesis and perception of chemical signals, this 

could represent a good candidate for a gene implicated in the formation of prezygotic 

isolating barriers. This dual-role for genes involved in both the expression and perception 

of a trait has been noted before, as in Desat1 where changes in the expression of this gene 

can affect both the perception and expression of certain CHCs (Bousquet et al., 2012). 
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Since CG5946 may act upstream of Desat1, this could represent an intriguing line of 

inquiry into whether or not CG5946 may also have effects both on perception and 

expression of CHCs. The antennal expression of CG5946 could also explain the findings 

of Edwards et al. in 2009, who discovered that disruption of CG5946 resulted in 

significantly decreased inter-male aggression scores; it is possible that this decreased 

aggression is due in part to a reduced ability to detect other males via smell once the 

antennae become ‘clogged’ and clearing is reduced due to the lack of CG5946. 

In conclusion, I showed that the D. melanogaster gene CG5946 is implicated in 

species differences in the production of the most abundant sex pheromones in hybrids 

between D. melanogaster and D. simulans. CG5946 therefore represents a gene that may 

be responsible for some of the prezygotic reproductive barriers that exist between these 

species, since it contributes to the D. melanogaster pheromone profile that is partially 

responsible for the behavioural isolation observed between these species. 



   

 

 

68 

2.5 Bibliography 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local 
alignment search tool. Journal of Molecular Biology. 215:403-410. 

Amrein, H. and Thorne, N. 2005. Gustatory perception and behaviour in Drosophila 
melanogaster. Current Biology. 15:673-684. 

Antony, C. and Jallon, J-M. 1982. The chemical basis for sex recognition in Drosophila 
melanogaster. Journal of Insect Physiology. 28:873-880. 

Bastian, F., Parmentier, G., Roux, J., Moretti, S., Laudet, V. and Robinson-Rechavi, M. 
2008. Bgee: Integrating and comparing heterogeneous transcriptome data among 
species. In Data Integration in Life Sciences. 5109:124-131. 

Billeter J.C., Atallah J., Krupp J.J., Millar J.G. and Levine J.D. 2009. Specialized cells 
tag sexual and species identity in Drosophila melanogaster. Nature. 461:987–991.  

Blomquist, G.J. and Bagnères, A-G. 2010. Insect hydrocarbons: Biology, biochemistry, 
and chemical ecology. Cambridge: Cambridge University Press. 

Bontonou, G. and Wicker-Thomas, C. 2014. Sexual communication in the Drosophila 
genus. Insects. 5:439-458. 

Borgese, N., D’Arrigo, A., De Silvestris, M. and Pietrini, G. 1993. NADH-cytochrome 
b5 reductase and cytochrome b5 isoforms as models for the study of post-
translational targeting to the endoplasmic reticulum. Federation of European 
Biochemistry Societies. 325:70-75. 

Bousquet, F., Nojima, T., Houot, B., Chauvel, I., Chaudy, S., Dupas, S., Yamamoto, D. 
and Ferveur, J.F. 2012. Expression of a desaturase gene, desat1, in neural and 
nonneural tissues separately affects perception and emission of sex pheromones in 
Drosophila.  Proceedings of the National Academy of Sciences USA. 109:249-254. 

Chertemps, T., Duportets, L., Labeur, C., Ueda, R., Takahashi, K., Saigo, K. et al. 2007. 
A female-biased expressed elongase involved in long-chain hydrocarbon 
biosynthesis and courtship behavior in Drosophila melanogaster. Proceedings of 
the National Academy of Sciences USA. 104:4273–4278. 

Cobb, M., and Jallon, J-M. 1990. Pheromones, mate recognition and courtship 
stimulation in the Drosophila melanogaster species sub-group. Animal Behaviour. 
39:1058-1067. 

Coyne, J., Mah, K. and Crittenden, A. 1994. Genetics of a pheromonal difference 
contributing to reproductive isolation in Drosophila. Science. 265:1461-1464. 



   

 

 

69 

Coyne, J.A. 1996. Genetics of differences in pheromonal hydrocarbons between 
Drosophila melanogaster and D. simulans. Genetics. 143:353-364. 

Coyne, J.A., Wicker-Thomas, C. and Jallon, J-M. 1999. A gene responsible for a 
cuticular hydrocarbon polymorphism in Drosophila melanogaster. Genetic 
Research. 73: 189–203. 

Dallerac, R., Labeur, C., Jallon, J-M., Knippie, D.C., Roelofs, W.L. and Wicker-Thomas, 
C. 2000. A Δ9 desaturase gene with a different substrate specificity is responsible 
for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. 
Proceedings of the National Academy of Sciences USA. 97:9449–9454. 

Dembeck, L.M., Böröczky, K., Huang, W., Schal, C., Anholt, R.R. and Mackay, T.F. 
2015. Genetic architecture of natural variation in cuticular hydrocarbon 
composition in Drosophila melanogaster. eLife. 4:e09861. 

Dym, O. and Eisenberg, D. 2001. Sequence-structure analysis of FAD-containing 
proteins. Protein Science. 10:1712-1728. 

Edwards, A.C., Zwarts, L., Yamamoto, A., Callaerts, P., Mackay, T.F. 2009. Mutations 
in many genes affect aggressive behaviour in Drosophila melanogaster. BMC 
Biology. 7:29. 

Ellis, L.L. and Carney, G.E. 2009. Drosophila melanogaster males respond differently at 
the behavioural and genome-wide levels to Drosophila melanogaster and 
Drosophila simulans females. Journal of Evolutionary Biology. 22:2183-2191. 

Fernández, M.P. and Kravitz, E.A. 2013. Aggression and courtship in Drosophila: 
pheromonal communication and sex recognition. Journal of Comparative 
Physiology A. 199:1065-1076. 

Ferveur, J.F. and Sureau, G. 1996. Simultaneous influence on male courtship of 
stimulatory and inhibitory pheromones produced by live sex-mosaic Drosophila 
melanogaster. Proceedings of the Biological Society. 22:967-973. 

Foley, B., Chenoweth, S.F., Nuzhdin, S.V. and Blows, M.W. 2007. Natural genetic 
variation in cuticular hydrocarbon expression in male and female Drosophila 
melanogaster. Genetics. 175: 1465-1477. 

Gramates LS, Marygold SJ, dos Santos G, Urbano J-M, Antonazzo G, Matthews BB, Rey 
AJ, Tabone CJ, Crosby MA, Emmert DB, Falls K, Goodman JL, Hu Y, Ponting L, 
Schroeder AJ, Strelets VB, Thurmond J, Zhou P and the FlyBase Consortium. 
2017. FlyBase at 25: looking to the future. Nucleic Acids Research. 45:D663-D671. 

Hovemann, B.T., Sehlmeyer, F. and Malz, J. 1997. Drosophila melanogaster NADPH-
cytochrome P450 oxidoreductase: pronounced expression in antennae may be 
related to odorant clearance. Genetics. 189:213-219. 



   

 

 

70 

Howard, R.W. and Blomquist, G.J. 2005. Ecological, behavioural, and biochemical 
aspects of insect hydrocarbons. Annual Review of Entomology. 50:371-393. 

Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., Widmayer, P., 
Gruissem, W. and Zimmermann, P. 2008. Genevestigator V3: a reference 
expression database for the meta-analysis of transcriptomes. Advances in 
Bioinformatics. 420747. https://genevisible.com/tissues/DM/UniProt/E1JHY0 

Hu, T.T, Eisen, M.B., Thornton, K.R. and Andolfatto, P. 2013. A second-generation 
assembly of the Drosophila simulans genome provides new insights into patterns of 
lineage-specific divergence. Genome Research. 23:89-98. 

Jallon, J-M. 1984. A few chemical words exchanged by Drosophila during courtship and 
mating. Behavioural Genetics. 14:441-478. 

Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., 
Julien, P., Roth, A., Simonovic, M., Bork, P. and Von Mering, C. 2009. String 8—a 
global view on proteins and their functional interactions in 630 organisms. Nucleic 
Acids Research. 37. 

Joseph, R.M. and Carlson, J.R. 2015. Drosophila chemoreceptors: A molecular interface 
between the chemical world and the brain. Trends in Genetics. 31:683-695. 

Lodish, H., Berk, A. and Zipursky, S.L. 2000. A single internal topogenic sequence 
directs insertion of some single-pass transmembrane proteins. In Molecular Cell 
Biology, 4ed. New York: W.H. Freeman. 

Matute, D.R., Gavin-Smyth, J. and Liu, G. 2014. Variable post-zygotic isolation in 
Drosophila melanogaster/D. simulans hybrids. Journal of Evolutionary Biology. 
27:1691-1705. 

Pardy, J. 2012. The genetic basis of cuticular hydrocarbon production in Drosophila 
melanogaster and D. simulans. Electronic Thesis and Dissertation Repository. 832. 

Pasyukova, E.G., Vieira, C. and Mackay, T.F. 2000. Deficiency mapping of quantitative 
trait loci affecting longevity in Drosophila melanogaster. Genetics. 156:1129-1146. 

Reese, M.G. 2001. Application of a time-delay neural network to promoter annotation in 
the Drosophila melanogaster genome. Computational Chemistry. 26:51-56. 

Rouault, J.D., Marican, C., Wicker-Thomas, C. and Jallon, J-M. 2004. Relations between 
cuticular hydrocarbon (HC) polymorphism, resistance to desiccation and breeding 
temperature; a model for HC evolution in D. melanogaster and D. simulans. 
Genetica. 120:195-212. 

Savarit F., Sureau G., Cobb M. and Ferveur J.F. 1999. Genetic elimination of known 
pheromones reveals the fundamental chemical bases of mating and isolation in 
Drosophila. Proceedings of the National Academy of Sciences USA. 96:9015–9020. 



   

 

 

71 

Shanklin, J. and Cahoon, E.B. 1998. Desaturation and related modifications of fatty 
acids. Annual Review of Plant Physiology and Plant Molecular Biology. 49:611-
641. 

Sousa-Neves, R. and Rosas, A. 2010. An analysis of genetic changes during the 
divergence of Drosophila species. Public Library of Science. 5:e10485. 

Thistle, R., Cameron, P., Ghorayshi, A., Dennison, L. and Scott, K. 2012. Contact 
chemoreceptors mediate male-male repulsion and male-female attraction during 
Drosophila courtship. Cell. 149:1140-1151. 

The UniProt Consortium. 2017. UniProt: the universal protein knowledgebase. Nucleic 
Acids Research. 45:D158-D169. 

Yamamoto, M.T. 1992. Inviability of hybrids between D. melanogaster and D. simulans 
results from the absence of simulans X not the presence of simulans Y 
chromosome. Genetica. 87:151-158. 

Zhuang, L., Sun, Y., Hu, M., Chenxi, W., La, X., Chen, X., Feng, Y., Wang, X., Hu, Y. 
and Xue, L. 2016. Or47b plays a role in Drosophila males’ preference for younger 
mates. Public Library of Science. 6:160086



   

 

 

72 

Chapter 3 

3 Environmental influence on CHCs in Drosophila 
melanogaster  

3.1 Introduction 

Mate recognition and discrimination against heterospecifics is essential for the 

maintenance of species when distinct species come into contact, especially if hybrids suffer 

reduced fitness (Cramer et al., 2016; reviewed in: Coyne and Orr, 2004). If individuals also 

discriminate against or preferentially mate with specific members of their own species, 

however, this non-random mating can inhibit gene flow within the species and begin the 

processes that eventually lead to the development of genetic isolating barriers between 

groups that were once considered a single species (Morris and Lundberg, 2011).  

In Drosophila, cuticular hydrocarbons (CHCs) are key mediators of mate choice 

and recognition during courtship (reviewed in: Bontonou and Wicker-Thomas, 2014). The 

profile of CHCs that are expressed by an individual is dependent upon both its genetic 

background and the environment in which it lives and develops. Dramatic changes in CHCs 

due to the interaction of genotype with the environment can take effect within a single 

generation and affect large numbers of the population if they share similar environmental 

conditions, whereas genetic changes that alter CHC production are typically slow to reach 

high levels of prevalence in a population, a process which may take many generations 

(reviewed in: Ingleby, 2015). This means that individuals of the same species that develop 

in different environments may display dramatically different CHC profiles, despite their 

genetic compatibility. Since CHCs are intrinsically involved in the recognition of mates in 

Drosophila, it is possible that changes in CHC profiles result due to differences in 

environmental conditions and can lead to prezygotic isolating barriers. Here, I sought to 

determine how environmental changes related to the diet and gut microbiota impact the 

CHC profile of D. melanogaster flies. 
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3.1.1 Assortative mating in Drosophila 

Within the same species, drosophilid flies can display high variability in the amounts of 

CHCs that they produce (Ingleby et al., 2013). Flies with identical genotypes can express 

dramatically different CHC profiles if raised in different environments. Differences in diet 

can lead to assortative mating based on the ancestral diet type, and this preference is lost if 

flies are treated with antibiotics, indicating that the gut microbiota is responsible for this 

preference (Dodd, 1989; Sharon et al., 2010). It is possible that since CHCs are so 

intimately involved in mate choice and recognition, they are the signals that are being 

altered by microbial content that allows flies to mate assortatively. This theory is supported 

by the evidence that CHCs change due to both diet type and antibiotic treatment that 

eliminates all commensal microbes (Sharon et al., 2010), although limited compounds 

were tested and a direct link between CHC variation and assortative mating was not tested. 

The selective assortative mating of flies raised in similar environments, and the response 

of CHCs to antibiotic treatment, indicates that the different microbial species maintained 

by flies raised on different food sources may be able to affect both preference for and 

expression of particular CHCs, if CHCs are indeed the mechanism by which flies are 

mating assortatively. It is not clear, however, precisely how microbial species impact the 

CHC profile expressed by flies independently of diet, and which compounds in the profile 

are affected. In order to uncover how microbes are acting to alter Drosophila mating 

preferences and to determine if this preference is mediated by CHCs, it is necessary to first 

understand how microbial content, diet, and the interaction of the two are able to affect the 

range of CHCs produced by flies.  

3.1.2 Dietary effects on CHCs 

Diet has been found to have a profound effect on the abundances of individual compounds 

and on the total amounts of CHCs produced in D. melanogaster flies. Fedina et al. (2012) 

tested the CHC profiles of female flies raised on high or low concentrations of yeast and 

sugar and discovered that they had opposite effects on CHC biosynthesis: high yeast 

concentrations led to a lower proportion of long-chain CHCs (which represents a more 

attractive profile (Kuo et al., 2012)) and less attractive short-chain profiles, while high 
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sugar concentrations yielded the opposite results (a less attractive long-chain profile, 

represented by a greater proportion of long-chain CHCs, and a more attractive short-chain 

profile). Despite these changes in CHCs, the authors found that neither diet type altered 

female attractiveness to males significantly, and concluded that the diets tested led to 

overall neutral changes in CHC profiles, where some attractant compounds increased in 

prevalence while others decreased within each diet type, leading to no net change in 

attractiveness of the flies. Of particular note is that total abundance of CHCs was found to 

be similar regardless of diet type early in life, but later in life flies fed diets with higher 

yeast contents had dramatically increased (nearly two-fold) total CHC levels, regardless of 

the sugar content of their food. Yeast mainly provides flies with protein, but is also a source 

of lipids, fatty acids, and various vitamins (Fedina et al., 2012). Increased dietary yeast 

could be causing increased CHCs by increasing total CHC production, increasing 

hydrocarbon transport to the cuticle, or some combination of the two.  

3.1.3 Insulin signaling  

One of the ways in which diet acts to impact CHC production is through insulin/insulin-

like growth factor signaling (IIS) (Kuo et al., 2012). Insulin/insulin-like growth factor 

signaling signaling is known to be intimately involved in the aging process, with greater 

levels of IIS leading to shorter-lived flies (Clancy et al., 2001; Kuo et al., 2012). 

Insulin/insulin-like growth factor signaling levels are tied to protein levels, with lower 

protein levels resulting in less IIS and longer-lived flies that age more slowly than flies fed 

high protein content (Fedina et al., 2012). When IIS is knocked down in Drosophila, 

expression of genes involved in CHC biosynthesis including eloF, Desat1, Desat2 and 

DesatF increases. Female flies that have IIS knocked down are longer-lived but less 

attractive to males, and display higher proportions of long-chain CHCs (representative of 

a less-attractive CHC profile) (Kuo et al., 2012). When IIS is genetically increased, on the 

other hand, expression of eloF and Desat1 decreases, flies are more attractive, and lifespan 

is reduced (Clancy et al., 2001; Kuo et al., 2012). Flies fed diets rich in protein (like those 

raised on high yeast diets) that experience high levels of IIS age more quickly than their 

low-protein counterparts, but are generally more attractive than flies with low IIS (Kuo et 

al., 2012). Increased dietary protein therefore has a positive effect on the attractiveness of 
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flies and acts to decrease their lifespan, a process which is mediated by increased IIS in 

response to increased protein levels.  

3.1.4 Commensal microbial species in Drosophila 

The Drosophila gut microbiome typically contains some 30 or more distinct microbial 

species, dominated by species of the genera Lactobacillus and Acetobacter (Wong et al., 

2011). The microbial species present and their relative abundances within the Drosophila 

gut are mainly based upon the type of food the flies are reared on, and is not closely linked 

to the host Drosophila species (Staubach et al., 2013). Microbial species are passed linearly 

from parents, primarily the mother, to offspring. When the female lays an egg, she 

defecates on it; when larvae emerge from the egg and eat the chorion (eggshell) and 

surrounding food, they also consume the feces, allowing microbial species contained 

within to take up residence in their guts (reviewed in: Dillon and Dillon, 2004). 

3.1.5 Impact of commensals on Drosophila phenotype 

In addition to their effect on CHCs, gut microbes have been shown to affect other aspects 

of Drosophila fitness. Flies that have had their commensal microbes eliminated are able to 

survive, however they undergo slowed development, likely due to reduced levels of IIS 

(Shin et al., 2011; Newell and Douglas, 2014). Neither the adult body size of axenic (germ-

free) flies nor their fecundity has been found to differ from that of conventionally raised 

flies, however they do show a reduced metabolic rate (Ridley et al., 2012). Axenic flies 

also display elevated glucose and triglyceride levels (Newell and Douglas, 2014). When 

species normally found in the guts of drosopholid flies from the genera Acetobacter and 

Lactobacillus are reintroduced either individually or together to axenic flies, only those 

flies with species from both genera together displayed triglyceride levels that were similar 

to those of conventionally raised flies (Newell and Douglas, 2014), indicating that these 

two genera alone were able to recapitulate the effect on lipid metabolism of the entire 

normal microbial complement. The authors showed that only Acetobacter species were 

associated with a reduction in triglyceride levels towards normal levels, and that 

Lactobacillus species helped to promote Acetobacter abundance, rather than directly 
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affecting triglyceride levels. Interestingly, axenic flies that were found to have reduced 

levels of IIS recovered normal development in food supplemented with acetic acid, a 

byproduct of Acetobacter species metabolism (Shin et al., 2011). It is possible that one of 

the ways that commensals influence the host is by modulating IIS signaling levels, and 

Acetobacter species in particular seem to be important in influencing the fly’s nutritional 

phenotype. Although altered triglyceride levels are indicative of overall changes in fatty 

acid metabolism which may affect CHC levels, no data exists for how individual microbial 

species impact the CHC profile of flies, and how diet may modulate this interaction. 

3.1.6 Environmental influences on CHCs 

The underlying genetic complement is ultimately responsible for determining the types of 

compounds that may be produced by a fly, but the total amounts and ratios of each CHC 

will be dependent upon its interaction with the environment, both in the larval stage and 

during its adult life. Both diet and microbial content have been shown to impact the CHC 

profiles and attractiveness of flies (Sharon et al., 2010; Fedina et al., 2012; Kuo et al., 

2012); however, since the gut microbiota itself modulates how flies process their food 

source and likewise food source dictates the types and amounts of different microbial 

species that may be supported by the host fly, it is necessary to separate how gut microbial 

content and diet independently affect the CHC profiles of flies, and how their interaction 

may give rise to the distinct CHC profiles that may form the basis for mating bias.  I 

therefore sought to independently test how each factor influences CHCs in female D. 

melanogaster flies by altering microbial composition across two different food types, one 

in which protein is replete and IIS is presumed to be high, and one in which protein 

concentration is lower and IIS should be reduced. Flies that were raised conventionally, 

axenic flies, and flies to which individual species of (presumed) Acetobacter or 

Lactobacillus were added were tested and their CHCs profiles compared.  
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3.2 Methods 

3.2.1 Maintenance of Drosophila stocks 

Stocks were maintained in 30 mL vials at 24°C on a 14:10 hour light:dark cycle at 76% 

relative humidity. Drosophila melanogaster line Canton-S (obtained from Dr. Anne 

Simon) was used. Drosophila stocks were maintained on a standard cornmeal-yeast diet 

(CMY) (Bloomington Drosophila Stock Center standard recipe). 

3.2.2 Diet and microbial treatment groups 

When assayed, Drosophila were either maintained on the standard CMY diet or were 

transferred to a modified diet that was identical but for a reduction by half of the yeast 

concentration compared to the standard diet (half-yeast, HY). Flies raised on HY food 

should have lowered levels of IIS, due to reduced protein content in their diets (Fedina et 

al., 2012). Within each of the two diet types, one of six treatment types was used to vary 

the microbial composition of the flies (12 treatments in total): i) a control stock of 

conventionally raised flies; ii) axenic flies; iii) axenic flies to which microbes had been 

reintroduced from control fly (i) feces; iv) axenic flies to which a (presumed; see section 

3.25 below) Acetobacter species has been added; v) axenic flies to which a (presumed; see 

section 3.2.5 below) Lactobacillus species has been added, and vi) axenic flies to which 

both presumed Acetobacter and Lactobacillus species have been added. Flies were added 

to their respective treatment vials following mild CO2 anesthesia on CO2 pads that were 

covered by a fresh kimwipe each time to avoid contamination from the CO2 pads 

themselves.  

3.2.3 Generation of axenic flies via antibiotic treatment 

Axenic flies were generated by cultivating flies on a diet (either CMY or HY) 

supplemented with 50 µg/mL tetracycline, 200 µg/mL rifampicin and 100 µg/mL 

streptomycin, as per Sharon et al (2010). Flies were confirmed to be axenic by crushing 

and streaking on MRS (10 g/L peptone; 8 g/L meat extract; 4 g/L yeast extract; 20 g/L 



   

 

 

78 

glucose; 2 g/L dipotassium hydrogen phosphate; 5 g/L sodium acetate trihydrate; 2 g/L 

triammonium citrate; 0.2 g/L magnesium sulfate heptahydrate; 0.05 g/L manganous sulfate 

tetrahydrate; 1.5% agar) and BHI (brain-heart infusion, porcine, 1.5% agar) agar plates and 

incubating at 30°C. Flies treated with antibiotic did not produce colonies on either type of 

plate after 4 days of incubation, confirming the absence of any species present in 

conventionally reared flies that grow under these conditions, whereas control flies streaked 

onto these plates display isolated colonies after overnight growth and widespread growth 

over the entirety of the plates after 4 days. Axenic flies may still harbor varieties of bacteria 

that do not grow well on either MRS or BHI media or that require strictly anaerobic 

conditions for growth. Flies that developed from eggs that were laid on the antibiotic-

supplemented food (rather than adults that were transferred from regular food) were used 

in all cases. 

3.2.4 Reintroduction of normal microbial content to axenic flies 

Male or virgin female flies that had been raised in typical lab conditions were transferred 

to CMY or HY food after collection under light CO2 anesthesia and allowed to live for a 

period of 5 days in order to transfer their feces (containing their gut microbes) to the food. 

Flies were then removed, and newly-eclosed (0-8 hours old, collected under light CO2 

anesthesia on a fresh kimwipe) axenic flies were added to the vials. To confirm that the 

offspring of these axenic flies were able to take up microbes from the media via fecal 

ingestion, 5 day old adult offspring of the axenic flies were homogenized in sterile DI water 

and streaked on MRS and BHI agar plates, and colony growth was observed. Five flies per 

treatment were homogenized and streaked to confirm the absence or presence of microbial 

species.  

3.2.5 Isolation and cultivation of Drosophila gut microbial species 

Flies grown under normal conditions (five total, pooled) were crushed via mortar and pestle 

in 1.5 mL of DI water in a sterile Eppendorf tube and vortexed. A 100 µL aliquot of the 

solution was streaked onto either MRS or BHI agar plates. MRS media is used for the 

cultivation of Lactobacillus species (De Man et al., 1960) and BHI can be used to grow 
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Acetobacter species (Sharafi et al., 2010); these species represent the most abundant 

bacterial families found in Drosophila (Wong et al., 2011). Colonies on MRS and BHI 

plates all had similar morphology both within and between plates (smooth, white colonies). 

Both Lactobacillus and Acetobacter species are known to form colonies with this 

morphology; although the different media types were selected for optimal growth of their 

target bacterial species, it is possible that species isolated on both media types were the 

same species. PCR using general 16S rRNA primers (forward: 16SA1: 5’- 

AGAGTTTGATCMTGGCTCAG-3’; reverse:  16SB1: 5’ – TACG 

GTACCTTGTTACGACTT-3’) was performed as per Ridley et al. (2012) in order to 

identify the genus of the species isolated, but was unsuccessful using these primers. 

Individual colonies from each MRS (putative Lactobacillus species) and BHI (putative 

Acetobacter species) were then used to inoculate MRS or BHI liquid broth, respectively, 

and were grown with shaking at 30°C. Glycerol stocks of both species were generated and 

stored at -80°C for future testing or species determination. 

3.2.6 Introduction of isolated microbial species to axenic flies 

Individual colonies from plates streaked with presumed microbial species Acetobacter or 

Lactobacillus were grown overnight in liquid culture. Cells were then centrifuged and re-

suspended in sterile DI water to a final concentration of 108 CFU/mL. Three separate 

bacterial treatments were added to the surface of either HY or CMY food, as per Newell 

and Douglas (2010): 50 µL of the re-suspended cells of presumed species Acetobacter or 

Lactobacillus, or 25 µL of each to the same vial. Newly-eclosed axenic flies were then 

added to the treated vials and allowed to reproduce. 

3.2.7 Collection of flies and extraction of CHC content 

Freshly-eclosed flies (0-8 hours of age) from each of the treatment types were collected via 

mild CO2 anaesthesia 0-12 hours after eclosing. Flies were then separated based on sex and 

females were transferred to collection vials that had been treated in the same way as the 

vials they had been laid in (both in terms of diet type and microbial treatment). Female flies 

were aged to 5 days and CHCs were extracted 2 hours after lights-on as previously 
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described (see section 2.2.5). Five flies from each treatment type (12 treatments total; 6 per 

diet type) were analyzed. 

3.2.8 Analysis of CHC content of flies 

Gas chromatography conditions and analysis of GC output was performed as previously 

described (see section 2.2.6) to determine the total peak area of each compound that was 

detected and to adjust this area based on the area of the internal standard peak. Fourteen 

compounds were compared, as these are the compounds that were most consistently 

identified using this method. The average mass of flies from each of the separate treatments 

was used to adjust the GC output to control for possible variation in CHC abundance due 

to the body size of the flies by multiplying the peak areas obtained from the GC output by 

a ratio between the average mass of control flies for that diet type and the average mass of 

flies from the relevant treatment type. Data were analyzed using both one-way (comparing 

within diet type to look for differences in CHCs due to microbial species) and two-way 

ANOVA (comparing within and between diet type to look for differences due to diet, 

microbial species, or their interaction) to compare the mean peak area of each compound 

and determine if any compounds differ significantly across or within the different treatment 

types. As previously described, the relative abundance of compounds was also compared 

(see section 2.2.6). A false discovery rate (FDR) correction was used to account for 

multiple tests on the same data (3 ANOVAs and 5 comparisons per compound, 14 

compounds). 
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3.3 Results 

3.3.1 Impact of gut microbiota on CHCs 

Microbial content was not found to have a significant effect on any of the CHCs measured, 

or on total CHC abundance (Figure 3.1; see appendix B). Axenic flies did not show 

significantly different CHC levels to control flies or to flies to which conventional microbes 

had been reintroduced, or to gnotobiotic flies to which individual microbial species had 

been introduced. 

3.3.2 Impact of diet on CHCs 

Similar to the results found in Chapter 2, significance or non-significance of relative 

abundances mirrored the results for total peak areas of compounds; in all cases where a 

significant change in the total peak area of a compound was observed, this compound was 

also found to significantly differ in relative abundance, and in no cases did a compound 

differ significantly in relative abundance and not in total peak area.  

Across all treatment types, diet (CMY vs HY) was found to have a significant effect on the 

abundance of 7,11-HD, 2-methylhexacosane (27-Br), n-heptacosane (C-27), and 2-

methyloctacosane (29-Br) (p<0.0002, ANOVA, n=5 for all compounds). Flies fed a half-

yeast diet had significantly higher levels of each of these compounds than flies fed a CMY 

diet, and this effect was independent of microbial content (Figures 3.2 and 3.3; see 

appendix B). 
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Figure 3.1: Effect of microbial treatment on CHCs in female D. melanogaster flies. 

Bars represent the mean (±SD) total peak area or relative abundance of compounds 

extracted from the cuticles of 5-day old females from each of the microbial treatments. WT 

= wild-type (control); Ab = antibiotic treated (axenic flies); Re = reseeded with control 

microbes; Act = presumed Acetobacter species added to axenic flies; Lac = presumed 

Lactobacillus species added to axenic flies; AL = both presumed Acetobacter and 

Lactobacillus species added to axenic flies. a) Average total peak area of compounds across 

the treatment types; b) average relative abundance of compounds across the treatment 

types.  
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Figure 3.2: Effect of diet type on CHCs in female D. melanogaster flies. Bars 

represent the mean (±SD) total peak area or relative abundance of compounds 

extracted from the cuticles of 5-day old females from each of the diet types (CMY 

or HY). a) Average total peak area of compounds across the diets; b) average 

relative abundance of compounds across the diets. 
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Figure 3.3: Average total peak area of specific CHCs in flies fed a CMY or a HY diet. 

Bars represent the mean (±SD) total peak area or relative abundance of compounds 

extracted from the cuticles of 5-day old females from each of the diet types (CMY or HY).  

a) Average peak area of 7,11-HD (pdiet=1.530x10-4, ANOVA, t=-7.208, d.f.=29); b) 

average peak area of 27-Br (pdiet=1.698x10-4, ANOVA, t=6.800, d.f.=29); c) average peak 

area of C-27 (pdiet=1.538x10-4, ANOVA, t=-6.737, d.f.=29); d) average peak area of 29-Br 

(pdiet=4.458x10-4, ANOVA, t=-7.529, d.f.=29). n=30 for each diet type.  
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3.4 Discussion 

The environment in which a fly is reared may have a direct effect on its attractiveness as a 

mate (Kuo et al., 2012). This effect may be mediated in part by differential expression of 

CHCs depending on the diet and microbial complement present in the flies. Since mate 

preference can change with microbial content (Sharon et al., 2010) and CHC profiles 

represent a key component in mate choice, discovering how exactly CHCs change with 

microbial content is the first step in determining whether or not they may represent a 

potential mechanism by which commensals are acting to affect mate choice. Here, I looked 

at how microbial species isolated from the guts of laboratory-reared D. melanogaster 

impact the CHC profiles of female flies, and if this effect could be modulated by diet. 

 Despite previous results that found that flies treated with antibiotics showed a 

dramatic decrease in several of their most abundant CHC compounds when compared to 

conventionally reared flies (Sharon et al., 2010), the CHCs of flies in this study remained 

unchanged across all microbial treatment types, including antibiotic treatment. Flies raised 

conventionally had CHC profiles that were indistinguishable from axenic flies, or from 

those flies to which presumed microbial species had been reintroduced. It is possible that 

antibiotic treatment, while successful in removing aerobic species as evidenced by the lack 

of colony growth on MRS or BHI media following treatment, was unsuccessful in 

removing all microbial species from the flies, although a study using the same methods to 

generate axenic flies did find changes in CHCs (Sharon et al., 2010). Possibly certain 

anaerobics or species that are difficult to cultivate in a lab setting persist within the flies, 

and these species may be the ones responsible for the conventional CHC profile, while 

their removal results in the shifts in CHC abundance in response to antibiotic treatment that 

were previously noted by Sharon et al (2010). Alternatively, as was noted in chapter 2, 

only a small subset of the total CHC complement was able to be studied here; Sharon et al. 

found that microbial complement impacts some of those compounds that were not able to 

be detected in this study, but those compounds that were detected both here and by Sharon 

et al. did not show the same trends due to microbial treatment. Finally, it is possible that 

microbial species may only have a large impact on CHCs when flies are fed diets that are 
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very low in nutritive content, as was studied in Sharon et al. (2010). In order to more 

reliably determine whether or not microbial content may affect CHCs, future work in which 

axenic flies are generated in a different manner (e.g. via dechorionation (Ridley et al., 

2012)) or in which flies are raised on a far less nutritious diet and microbial effects tested 

should be done to confirm whether the CHC profiles of truly axenic flies are markedly 

different from those of conventionally reared flies, and whether microbes are perhaps more 

important and have greater effect on CHCs in less nutritious circumstances. If it is true that 

CHC profiles remain unchanged regardless of microbial complement, even between 

conventional and axenic flies, another explanation must be found for the assortative mating 

due to gut microbial complement that was observed in the study by Sharon et al. (2010). 

For example, it is possible that microbes are acting to alter perception and behaviour at 

some other step of the courtship ritual, such as during the male’s wing-song, rather than 

influencing the biosynthesis of chemical signals in the flies. 

 Despite conflicting results when microbial species were altered across different 

treatments, flies raised on different diets showed clear trends in CHC changes across the 

different diet types. Flies fed a diet that was low in yeast had increased levels of long-chain 

CHCs, with no significant changes in any short-chain compounds. In particular, HY flies 

had significantly increased amounts of long-chain CHCs 7,11-HD, 27-Br, C-27, and 29-

Br. This is consistent with previous studies that found that higher concentrations of dietary 

yeast led to a more attractive long-chain CHC profile that had lower levels of long-chain 

CHCs (Fedina et al., 2012). Reducing the yeast concentration below balanced levels was 

found here to have the opposite effect on long-chain CHCs, leading to larger amounts of 

these compounds and a presumably less attractive profile. Although 7,11-HD is a known 

attractant molecule (Coyne et al., 1994), no role in mating for 27-Br, C-27 or 29-Br has 

been suggested, although a higher proportion of long-chain CHCs generally is known to 

represent a less attractive profile (Kuo et al., 2012). Flies that have been fed diets that have 

reduced yeast concentrations have lower levels of dietary protein, and therefore 

presumably have reduced levels of IIS (Fedina et al., 2012). As shown by Kuo et al. (2012), 

this results in increased expression of CHC biosynthetic genes such as eloF, Desat1, 

Desat2 and DesatF, which explains the increased proportion of long-chain CHCs being 

produced by these flies with low levels of IIS.  
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 Although 7,11-HD is conventionally thought of as an attractant in Drosophila and it 

is known to stimulate courtship behaviours such as wing vibration (Antony and Jallon, 

1982), an increase in this compound alongside other long-chain CHCs has been shown to 

represent a less attractive CHC profile (Kuo et al., 2012). This may be explained by the 

suggestion that the major role of 7,11-HD is to negate or cover up the repellent effect of 

the cVA that is transferred from males to females and marks them as mated rather than to 

act as a general attractant, as the application of 7,11-HD to oenocyteless flies that are 

unable to produce any CHCs was not found to result in a decrease in mating latency, calling 

into question its role as an aphrodisiac (Billeter et al., 2009). Although higher levels of 

7,11-HD have not been found to have a repellent effect on D. melanogaster males, it seems 

likely that an increase in this compound is neutral besides the context in which a female 

has already been mated once, and is not enough to limit the detrimental effect of an overall 

longer-chain CHC profile on attractiveness. 

  Total amounts of CHCs did not differ significantly between the diet types, indicating 

that some compounds in HY flies must have decreased in abundance with the concomitant 

and significant increase in certain long-chain compounds, though not enough to reach the 

significance threshold. It is possible that many compounds saw a slight decrease in relative 

abundance, or that some of the compounds that could not be detected here were altered. 

This is consistent with previous studies that have found that diet only impacts total CHC 

amounts later in life (day 23+), and that flies fed widely varying diets produced very similar 

amounts of total CHCs early in life (Fedina et al., 2012). 

 Diet has a clear effect on CHC profiles in D. melanogaster, with the role of microbes 

in CHC biosynthesis somewhat more clouded due to contradictory results. Flies that are 

raised in less nutritious circumstances, here represented by the HY condition, display CHC 

profiles that are consistent with overall less attractive profiles (Kuo et al., 2012) than those 

of flies raised in conditions where protein is replete. This makes sense in the context of 

CHCs as chemical signals used in mate choice, as an honest signal of the nutritional state 

of a fly is important in the recognition of quality mates (reviewed in: Bontonou and Wicker-

Thomas, 2014; Howard and Blomquist, 2005; Kuo et al., 2012). More work must be done 

in order to determine whether microbial content can influence CHC levels, and if so, 
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whether these changes can be sensed by flies raised in a similar environment and lead to 

assortative mating.  

 CHC profiles are complex, with the relative abundances of certain compounds as 

well as their absolute amounts factoring into the perception of that profile; it would be 

interesting to discover if microbial species are able to affect CHC profiles so that they give 

accurate information not only about the overall health of the fly, but also about which 

commensals it was reared with, without interfering with (or possibly by its interference 

with) the honest signals of the fly’s nutritional state. It is possible that diet and microbial 

content have distinct roles in mate choice, where diet acts to modulate CHCs to give signals 

pertaining to the overall health of the fly, and microbial content acts in some currently 

unknown way to signal a common environmental background that leads to assortative 

mating. If diet alters CHCs in a predictable way wherein flies from highly nutritious 

environments are more attractive, these flies should always be more attractive and be 

preferentially mated with, regardless of the diet the choosing flies were raised on. It is only 

when microbes are introduced that flies begin to mate assortatively with individuals raised 

in similar conditions; it is therefore necessary that microbial content must be able to alter 

some trait(s) and/or the preference for that trait, rather than simply acting to make flies 

more healthy generally (in which case the healthiest flies would be preferentially chosen, 

rather than those from the same environment). Future work examining how perception 

changes in flies with different microbial complements is needed to elucidate how flies are 

discriminating against those that were raised in different environments.
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Chapter 4 

4 Conclusions and future work  

In studying speciation, there are two major areas of inquiry that can be used to lead to the 

refinement of what we consider to be a species: the concept of how one group can, over 

time, split into two and how, once they have split, these groups can be maintained as 

distinct entities and avoid collapsing into a single group that experiences free gene flow. If 

we can understand how and why groups differentiate over time, we can, perhaps, come 

closer to understanding the parameters that define a species and hopefully come to a 

concrete and universal resolution as to what a species really is. 

 In sexually reproducing species, mate choice and sexual selection are key factors 

in determining the course of evolution, as it will determine whether or not gene flow may 

occur between genetically compatible groups and is one of the forces that may ultimately 

lead to the development of genetic, as well as behavioural, incompatibilities (reviewed in: 

Jones and Ratterman, 2009; Carson, 2003). In Drosophila, chemical communication is of 

primary import in mate choice (reviewed in: Stieger and Stökl, 2014). The expression of 

different CHC profiles is the result of the interaction of the genetic background of an 

individual with the environment in which it was raised (Foley et al., 2007; reviewed in: 

Ingleby, 2015), and has been found to constitute a prezygotic reproductive barrier in 

Drosophila (reviewed in: Bontonou and Wicker-Thomas, 2014). I therefore sought to 

discover precisely how environmental changes can influence the CHC profile expressed 

by flies of the same currently accepted species, and what genetic factors are present 

between species that have already diverged into distinct groups that may influence their 

CHC profiles. I discovered that a D. melanogaster gene, CG5946, and its D. simulans 

homolog GD12773 lead to differences in the abundance of sex pheromones between these 

species and their hybrids, potentially through differential expression. I also confirmed that 

within the species D. melanogaster, flies that are raised on different diet types show altered 

CHC profiles, although gut microbial content was not found to have an effect on the CHCs 

of these flies. 
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While the environment may influence CHC expression rapidly within a single 

generation, genetic changes that can influence CHCs represent more stable prezygotic 

barriers that may be maintained over many generations. If species are to diverge in 

sympatry, it is necessary that flies first begin to mate non-randomly within the population, 

and that this non-random mating becomes genetically fixed in order to stably prevent the 

gene flow that impairs the development of reproductive isolating barriers (reviewed in: 

Coyne and Orr, 2004). Since CHCs are intrinsically involved in mate choice in Drosophila, 

it seems plausible that environmentally-caused changes to CHCs may be some of the initial 

factors that, if altered, could affect mate choice and cause flies to begin mating non-

randomly. Studying how CHCs can be affected within a generation within a single species 

may therefore help to answer questions about how single groups may initially split into 

independent populations, whereas studying the existing genetic variation giving rise to 

different CHC profiles across species can yield insights into how these initial transient 

changes might become stably integrated into the genome over the course of evolutionary 

time. 

Although this study has uncovered some of the factors that may affect Drosophila 

CHC profiles, a link must be established between the altered CHCs and the mating 

preferences and success of these flies in order to establish that these alterations can 

influence mating propensity within and between species. In particular, it would be 

beneficial to discover whether hybrids lacking the D. melanogaster copy of CG5946, 

which produce a more simulans-like CHC profile, are more or less attractive to D. simulans 

males than their pure D. melanogaster mothers or WT hybrids. It would also be interesting 

to discover where and when this gene is expressed in both D. melanogaster and D. 

simulans, and how its product may function outside of fatty acid metabolic processes. With 

respect to how environment may influence CHCs within a species, it remains to be 

determined whether the altered CHC profiles of flies, as the result of their diet, also impacts 

their attractiveness to males, and whether or not males from the same diet preferentially 

mate with females that share their diet. In other words, whether the same parameters that 

are able to alter CHC expression are also able to alter perception and preference; future 

studies should therefore seek to establish a link between the altered CHC profiles found 

here and their effects on attractiveness and mate choice in Drosophila. 
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Appendices 

Appendix A: Average total peak area and relative abundance of compounds in disruption lines  

Table A1: Average total peak area of compounds for disruption of CG5946. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-22 1.991007304 0.843988273 1.999238744 0.523591697 4.457694898 1.080722597 3.891153033 0.581299319 0.5459 

23-Br 0.051042388 0.004559301 0.051796824 0.003101615 20.40383872 2.61474343 12.80134039 2.01837336 0.1454 

7-T 5.038981158 0.831492859 2.676822518 2.278044829 23.28659576 3.111528198 58.67263348 10.13743212 0.0003 

C-23 20.08020903 2.522961956 21.37260484 11.20117994 69.56069608 14.30861696 53.47067934 1.636044648 0.1408 

C-24 2.620828756 0.516535365 2.28826755 0.636105742 3.141872407 2.874092274 4.764961808 2.737409971 0.4275 

7,11-PD 15.70977621 3.012589629 1.862928946 3.134072862 56.98352089 13.39612177 47.20679678 5.454457227 0.6531 

25-Br 0.051042388 0.004559301 0.051796824 0.003101615 15.30108803 1.599665131 13.22871219 3.808978717 0.4101 

7-P 15.26141953 2.256842591 27.56874026 1.705174193 15.31026218 4.003030256 27.84019992 5.854694296 0.9610 

C-25 10.53278103 1.11706281 16.57089771 2.066159479 28.413742 5.424206696 21.38403683 3.514509954 0.0190 

7,11-HD 48.54487746 8.737886841 55.89977009 5.509375647 163.2067694 10.57634947 86.32153143 10.57191232 4.258E-05 

 
1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A2: Average relative abundance of compounds for disruption of CG5946. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-22 0.016461807 0.005771679 0.01567372 0.005666091 0.011047094 0.001713559 0.011779212 0.000941477 0.7597 

23-Br 0.00042733 2.28539E-05 0.00040002 4.60076E-05 0.051514496 0.00987941 0.03875351 0.003793918 0.0706 

7-T 0.041993179 0.003943705 0.019527298 0.016645624 0.058049228 0.002919074 0.177514363 0.02053708 1.65E-05 

C-23 0.167484214 0.001770949 0.159155235 0.074094688 0.172740996 0.020568036 0.16314962 0.013954926 0.9783 

C-24 0.021779648 0.002304728 0.017971987 0.006856087 0.007528222 0.006683047 0.014049472 0.006601678 0.1697 

7,11-PD3 0.130386908 0.011952933 0.01399887 0.02352253 0.142800927 0.034811707 0.143283276 0.010166274 0.0019 

25-Br 0.00042733 2.28539E-05 0.00040002 4.60076E-05 0.038343348 0.004252996 0.039677585 0.007304482 0.7873 

7-P 0.128352415 0.021581647 0.213278538 0.029472848 0.038397606 0.010619891 0.083906736 0.009109973 0.1190 

C-25 0.089666006 0.021916615 0.127284698 0.011896759 0.070622333 0.007429339 0.065850031 0.016573528 0.0445 

7,11-HD 0.403021163 0.027760666 0.432309613 0.066816525 0.408955751 0.028600916 0.262036196 0.019964457 0.0052 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term. 
3Entry passes FDR, but differences are not due to Sim/Bal vs Sim/Dis (due to Mel/Dis).
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Table A3: Average total peak area of compounds for disruption of CG1945. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-22 2.79837885 1.364635923 3.597406818 2.427633182 2.460684768 2.785597911 7.588926709 3.124758196 0.28784 

23-Br 0.052268547 0.005492879 0.416206701 0.739706219 11.73968087 4.740209289 13.18477922 3.317996711 0.0574 

7-T 6.48087717 2.153861567 6.967889893 2.022614174 91.24138836 24.23827367 102.5340594 38.58209436 0.0027 

C-23 22.44098495 3.203358308 34.37785811 6.680661298 55.78537954 10.03282321 98.39459208 26.36499847 0.2960 

C-24 2.769681424 0.644251335 3.395100098 0.768529557 2.117081396 2.68318584 8.542836004 2.984584576 0.0986 

7,11-PD 8.733223506 1.327476498 11.36666637 2.802353152 48.64451453 18.8674347 61.00857181 17.62750909 0.1416 

25-Br 0.052268547 0.005492879 10.40551996 1.852275437 17.93871797 13.50663072 25.1064418 11.62133759 0.1385 

7-P 0.052268547 0.005492879 17.12887537 6.848535725 0.065520368 0.015930069 65.06440225 24.99018386 0.0187 

C-25 10.40222188 0.594360462 16.05850891 1.879861503 18.95500859 3.784655016 41.33848907 11.63613461 0.0413 

7,11-HD 62.60674353 6.620821071 71.41541197 16.6433741 109.4450236 10.49762477 126.4023154 42.53006479 0.6386 

 
1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A4: Average relative abundance of compounds for disruption of CG1945. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-22 0.02335394 0.00894914
2 

0.02029073
6 

0.01417764
1 

0.00604273
5 

0.00678313
2 

0.01349879
2 

0.00325890
5 

0.2746 

23-Br 0.00045235
4 

5.43984E-05 0.00224528
5 

0.00394493
2 

0.03288532
8 

0.01209795 0.02474077
9 

0.00497253
1 

0.1713 

7-T 0.05457770
5 

0.01353705
6 

0.03928085
1 

0.00838073
9 

0.25169776
2 

0.03068694
1 

0.18471603
6 

0.04052068 0.0143 

C-23 0.19251665
9 

0.00667618 0.19625528
9 

0.03651275
3 

0.15796087 0.03599796 0.18225874
9 

0.01270994
2 

0.4549 

C-24 0.02403156
5 

0.00565171
4 

0.01951521
9 

0.00488115
1 

0.00517287
9 

0.00644755
9 

0.01541797
4 

0.00179509
8 

0.0122 

7,11-PD 0.07482594
9 

0.00307183 0.06448245
3 

0.01193401 0.13228945 0.03317232
7 

0.11232833
7 

0.00695717
9 

0.6035 

25-Br 0.00045235
4 

5.43984E-05 0.06004587
6 

0.01408954
6 

0.05041042
4 

0.04023475
4 

0.04425392
9 

0.00650427
7 

0.0100 

7-P 0.00045235
4 

5.43984E-05 0.09764888
7 

0.03667800
9 

0.00018140
4 

1.80986E-05 0.11678611
8 

0.00722802
5 

0.3195 

C-25 0.09047857
2 

0.01346330
2 

0.09238885
8 

0.01471430
5 

0.05403733
7 

0.01468053
7 

0.07662959
8 

0.00879373
9 

0.1414 

7,11-HD 0.53885854
9 

0.01432658
2 

0.40784654
5 

0.09250672
1 

0.30932181
2 

0.04144878 0.22936968
7 

0.06913672
4 

0.3392 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A5: Average total peak area of compounds for disruption of CG5278. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-22 1.30165791
8 

1.78900823 1.81600730
5 

0.12424298
9 

2.24139829
7 

0.05333803
1 

3.27160322
3 

0.68796143
3 

0.5973 

23-Br 0.04371540
2 

0.01000886
2 

0.04243615
3 

0.00184850
4 

26.6742417
3 

11.6827560
7 

26.4318344
4 

12.1025721
5 

0.1539 

7-T 2.05302911
2 

2.83158983
9 

5.16939707
4 

0.63471612 32.3974622
4 

8.16356733
2 

54.8820803
6 

8.88846894
1 

0.2450 

C-23 25.0475260
5 

4.48789132
7 

22.2139542
9 

3.63476326
7 

58.0999764
9 

9.91034050
3 

51.7735696
7 

2.66389421
5 

0.6848 

C-24 2.61759859
1 

1.37962019
7 

1.66749042 0.54709644
7 

1.00008576
2 

1.34722127
3 

3.83661007
1 

5.30549984
5 

0.3245 

7,11-PD 10.0709889 0.20348121 8.97322492 1.88924741
2 

80.4998394
6 

51.4598638
9 

64.629002 14.9372443
8 

0.4141 

25-Br 14.9860178
8 

0.85650085
5 

9.51318001
3 

3.62788887 22.6693237
9 

1.33189379
4 

21.3860082
9 

1.38059754
9 

0.6080 

7-P 0.04371540
2 

0.01000886
2 

9.85935712
3 

2.79480310
7 

24.6149073 6.79339650
8 

16.7658896
2 

6.36452146
2 

0.1539 

C-25 11.2906941
6 

0.36084243
9 

9.54841659
9 

0.64356449
9 

20.8504602
6 

1.66425602
3 

15.4789994
1 

2.08322689
8 

0.3395 

7,11-HD 73.3675221
1 

8.04375099
6 

61.7488633
6 

3.31809340
9 

102.980947
2 

45.7701533
7 

94.0865433
2 

40.4101282
2 

0.2309 

 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A6: Average relative abundance of compounds for disruption of CG5278. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-22 0.00942268
7 

0.01296481
6 

0.01392494
8 

0.00127427
1 

0.00621351
2 

0.00146137
2 

0.01139963
6 

0.00372749
8 

0.9449 

23-Br 0.00031153
2 

7.96975E-
05 

0.00032530
2 

2.16954E-
05 

0.06997810
5 

0.01332983
3 

0.05680905
1 

0.02084811
6 

0.2393 

7-T 0.01430604
1 

0.01971152
6 

0.03955065
8 

0.00394550
6 

0.08715636
2 

0.00056619
3 

0.18356587 0.05487621
4 

0.0291 

C-23 0.17837538
1 

0.03680654
5 

0.16987673
1 

0.02390589
5 

0.16511744
6 

0.06928297 0.17208190
2 

0.01988438
9 

0.8053 

C-24 0.01873069
7 

0.01031533
8 

0.01282456
7 

0.00448773
6 

0.00326470
4 

0.00446444
8 

0.01466558 0.01735312
3 

0.2609 

7,11-PD 0.07152290
1 

0.00053479
4 

0.06858356
2 

0.01288231
4 

0.20536792
9 

0.08528264
2 

0.18043219
2 

0.00868652
5 

0.7371 

25-Br 0.10637438
1 

0.00313770
7 

0.07321025 0.02948483
3 

0.06351493
4 

0.01998387 0.07736475
1 

0.00740495
8 

0.1623 

7-P 0.00031153
2 

7.96975E-
05 

0.07578866 0.02316332
7 

0.07088615 0.03656793
7 

0.06221698
7 

0.00943745 0.0900 

C-25 0.080243 0.00478350
6 

0.07310113
2 

0.00323601
9 

0.05857655
8 

0.01960183 0.05151533 0.00223167
2 

0.9961 

7,11-HD 0.52040184
9 

0.04271516
1 

0.47281419
1 

0.01446212
9 

0.26992430
1 

0.05331614
4 

0.1899487 0.06650576
3 

0.5862 

 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A7: Average total peak area of compounds for disruption of CG6921/CG44062. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-22 1.71411462
7 

0.82206344
8 

1.91495148
1 

0.65961315
9 

6.75260354
7 

2.76970788
2 

3.89115303
3 

0.58129931
9 

0.2594 

23-Br 0.05104238
8 

0.00455930
1 

0.05179682
4 

0.00310161
5 

23.6158478
4 

3.01503437
4 

12.8013403
9 

2.01837336 0.0829 

7-T 5.48215988
5 

2.66033795
3 

5.88148370
7 

2.00446351
7 

50.9681704
3 

11.5665232 58.6726334
8 

10.1374321
2 

0.3825 

C-23 21.0544466
6 

3.86379541
3 

28.0941556
9 

1.54289838
9 

74.2549559
7 

12.4546805
3 

53.4706793
4 

1.63604464
8 

0.0517 

C-24 2.13674636
2 

0.73132269
3 

2.86311318
9 

0.44704358
4 

4.83716946
4 

1.29062426
2 

4.42219730
5 

1.13797801
4 

0.3814 

7,11-PD 12.2466098
9 

0.59455737
4 

8.80832961 3.46877841
2 

68.3706907
8 

2.57893318 47.2067967
8 

5.45445722
7 

0.0654 

25-Br 0.05104238
8 

0.00455930
1 

0.05179682
4 

0.00310161
5 

14.3261528
3 

1.64912553
6 

13.2287121
9 

3.80897871
7 

0.6584 

7-P 20.0283001
1 

0.47137469
5 

28.1703396
3 

0.66586920
1 

15.2420671
1 

5.07423656
4 

27.8401999
2 

5.85469429
6 

0.8102 

C-25 11.0015963
3 

0.96629740
1 

16.5708977
1 

2.06615947
9 

23.4005378
7 

3.15137172
5 

21.3840368
3 

3.51450995
4 

0.0077 

7,11-HD 48.5448774
6 

8.73788684
3 

55.8997700
9 

5.50937564
7 

122.881286
3 

6.71281390
8 

86.3215314
3 

10.5719123
2 

0.0301 

 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A8: Average relative abundance of compounds for disruption of CG6921/CG44062. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-22 0.01384391
7 

0.00557179
5 

0.01274263
2 

0.00361132
6 

0.01438387
6 

0.00613740
6 

0.01178866
7 

0.00095319
8 

0.7831 

23-Br 0.00041848
3 

1.84174E-
05 

0.00034962
1 

8.89405E-
06 

0.05109258
2 

0.01373723
1 

0.03878403
6 

0.00381413 0.1753 

7-T 0.04373123
3 

0.01853564
6 

0.03910593
3 

0.01093312
4 

0.13594852
4 

0.00648975
9 

0.17765703
7 

0.02064094
9 

0.0301 

C-23 0.17138734
7 

0.01402270
3 

0.18966094
8 

0.00450390
2 

0.17683445 0.01800538
4 

0.16322853 0.01324477
5 

0.0730 

C-24 0.01748780
1 

0.00532775
4 

0.01933233
1 

0.00277636
9 

0.01157544
9 

0.00229682
9 

0.01333169
2 

0.00233489
7 

0.9827 

7,11-PD 0.10077718
9 

0.00870879 0.05865665
9 

0.02034504
5 

0.15888699
3 

0.01929667
2 

0.14338144
8 

0.00998497
9 

0.1754 

25-Br 0.00041848
3 

1.84174E-
05 

0.00034962
1 

8.89405E-
06 

0.03448974
2 

0.00165468
8 

0.03972961
5 

0.00751162
5 

0.2661 

7-P 0.16569454
1 

0.02483671
9 

0.19049844
4 

0.01076913
4 

0.03593763
6 

0.00967567
9 

0.08399718
4 

0.00952363
5 

0.2201 

C-25 0.09125709
5 

0.01791642
6 

0.11281972
2 

0.02255839
9 

0.06332266 0.00772295
9 

0.06586176 0.01635142
6 

0.3610 

7,11-HD 0.39498391
1 

0.03094159
1 

0.37648408
8 

0.00849381
5 

0.31752808
9 

0.03416689
6 

0.26224003 0.02012535
9 

0.2469 

 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A9: Average total peak area of compounds for disruption of CG33110. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-21 4049.06944
4 

1539.81826
3 

678.113264 855.176850
9 

1289.61617 1121.96368
8 

2036.98918
8 

1930.26888 0.1074 

C-22 216.465320
7 

24.7299195
8 

316.363677
5 

20.4902940
3 

739.008903
9 

57.1138395
6 

823.132106
3 

259.662998
1 

0.9356 

23-Br 37.0220592 1.14067224
5 

300.079380
6 

59.8192478
4 

1886.21131
3 

135.103958
8 

1382.16705
9 

334.464212
8 

0.0615 

7-T 37.0220592 1.14067224
5 

545.495792
6 

30.3866638
8 

1580.04589
5 

352.344589 1863.87660
3 

17.9615757
7 

0.5763 

C-23 295.932103 319.005340
5 

2919.6401 2404.32756
8 

6069.46377
6 

1743.50016
2 

6217.34196
6 

4978.39274
4 

0.5952 

C-24 344.932670
9 

3.30107157
2 

427.179306
5 

102.027169
7 

810.990020
6 

46.3176250
3 

663.070849
6 

96.8400485
1 

0.2128 

7,11-PD 2029.94534
7 

368.150538
2 

1999.45261
6 

21.8246585
7 

11513.6308
6 

270.147966
3 

7959.80594 1260.57463
3 

0.0424 

7-P 1624.57073
5 

355.520898
9 

1127.75470
5 

182.586121
9 

2073.46417
3 

411.178781
4 

1705.66864
1 

1531.13812 0.8105 

C-25 2694.19774 703.020474
2 

2851.41439
5 

816.770072
1 

3795.15900
6 

74.8241544
4 

4524.91122
6 

462.372921
3 

0.3457 

7,11-HD 7871.01448
8 

6619.29347
7 

14249.7127
7 

5489.33455
9 

10655.8139
1 

5529.22599
9 

14989.5672
5 

7913.08187
8 

0.9143 

27-Br 913.668150
7 

334.511798
9 

1547.05576 679.790438
8 

599.831256
9 

19.7935122
3 

1265.89656
9 

264.804254
3 

0.7904 

C-27 4863.94919
8 

1086.08514
5 

3764.54647
1 

1044.87256
9 

1216.42748
4 

420.778685
9 

2738.34716
8 

122.881746
3 

0.0707 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A10: Average relative abundance of compounds for disruption of CG33110. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-21 0.17482663
7 

0.10429236
3 

0.01820048
8 

0.02118411
2 

0.02817739
9 

0.01987394
2 

0.05107011
7 

0.05477083
2 

0.1045 

C-22 0.00880758
6 

0.00115832
8 

0.01090134
8 

0.00331473
2 

0.01784263
4 

0.00288647
7 

0.01768392
7 

0.00113506
9 

0.5338 

23-Br 0.00153338
7 

0.00041970
1 

0.01084491
8 

0.00590778
5 

0.04557158 0.00762732
8 

0.02998251
7 

0.00036671
5 

0.0218 

7-T 0.00153338
7 

0.00041970
1 

0.01882833 0.00588789 0.03748221
4 

0.00056124
4 

0.04166206
1 

0.01018650
2 

0.1906 

C-23 0.01060566
8 

0.01018455
6 

0.08649907
8 

0.04665578
6 

0.14285225
5 

0.00734825
3 

0.12500166
6 

0.07609511
8 

0.2153 

C-24 0.01424962
2 

0.00360802
2 

0.01424633
8 

0.00188284
2 

0.01962789
9 

0.00356626
4 

0.01456428
6 

0.00159957
7 

0.2734 

7,11-PD 0.08190919
1 

0.00524071
2 

0.06958338
4 

0.02470421 0.27977883
5 

0.06007089
6 

0.17455781
9 

0.01700744
2 

0.1228 

7-P 0.06524571
7 

0.00168168
3 

0.04048834
4 

0.02073012 0.04933538
8 

0.00198404
7 

0.04252153
9 

0.04395619
3 

0.6296 

C-25 0.10763307
5 

0.00189125
7 

0.09422965
3 

0.00783456
6 

0.09269590
9 

0.02379392
1 

0.09995300
6 

0.01535773
4 

0.3772 

7,11-HD 0.29147067
2 

0.19390973
6 

0.46194144
2 

0.00993115
3 

0.24365308
7 

0.07304678
7 

0.31298599
2 

0.09193866
4 

0.5626 

27-Br 0.03601736
6 

0.00460677
7 

0.04961801
4 

0.00400131
2 

0.01455921
9 

0.00299017
2 

0.02908260
2 

0.01311767 0.9338 

C-27 0.20616769
1 

0.09377181
5 

0.12461866
2 

0.01151021
8 

0.02842358
1 

0.00321136
8 

0.06093446
7 

0.01280618
6 

0.1661 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.



 

 

107 

Table A11: Average total peak area of compounds for disruption of CG42857. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-21 256.638265
8 

114.210066 2140.99867
8 

1389.83064
7 

1347.34814
8 

1177.03584
9 

972.554634
5 

629.155726
5 

0.1293 

C-22 37.7482889
9 

4.75768201
1 

876.936745 358.258547
1 

904.270501
3 

355.381627
9 

1288.36085
3 

1017.53074
3 

0.1419 

23-Br 37.7482889
9 

4.75768201
1 

40.3283535
1 

8.92697134
2 

600.082758
7 

93.0691644
3 

566.801174
3 

166.720469 0.0067 

7-T 37.7482889
9 

4.75768201
1 

40.3283535
1 

8.92697134
2 

7813.45378
5 

5415.35080
7 

7226.20917
4 

2933.34105
5 

0.0170 

C-23 2957.53591
1 

950.26083 4402.26454
6 

2969.66619
4 

8702.29577 3732.51771
8 

7342.36154
6 

5826.33130
8 

0.0985 

C-24 37.7482889
9 

4.75768201
1 

1032.78798
3 

342.039320
5 

907.882990
4 

304.346768
6 

1939.61737 1912.12417
9 

0.7773 

7,11-PD 418.852261
9 

426.517538
4 

161.153042
5 

44.3668716 10681.7835
6 

3764.25235
6 

4835.68485
6 

1853.22457
1 

0.0109 

7-P 486.657485
7 

147.729914
2 

153.476730
6 

147.692891
2 

9425.76753
4 

8298.75366
8 

7744.18722
2 

5830.11606
9 

0.0228 

C-25 2567.59757 591.320711
1 

3454.69298
4 

701.338785
9 

3834.19919
8 

447.681724
4 

4369.59534
3 

1971.04932
5 

0.1406 

7,11-HD 11098.4434
6 

4734.75341 13125.9118
8 

3031.35724
5 

10214.4816
3 

2255.57775
8 

10121.1610
9 

5043.68133
2 

0.1549 

27-Br 945.564268
7 

175.697680
3 

1212.45428
8 

269.14142 537.646848
5 

134.339560
6 

1177.65800
7 

559.113831
5 

0.7465 

C-27 4701.30893
9 

896.773411
6 

4870.81739
6 

2049.12321
2 

1645.60379
4 

327.728928
6 

2313.98180
1 

489.029591
3 

0.6359 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A12: Average relative abundance of compounds for disruption of CG42857. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-21 0.01128291
1 

0.00595076 0.06410104
8 

0.03746073
4 

0.05127887
5 

0.05898990
1 

0.02340203
3 

0.02231179
5 

0.0260 

C-22 0.00168243
9 

0.00041065
2 

0.02774153
6 

0.00904111
8 

0.01415102
2 

0.00483576
6 

0.02454128
2 

0.01179761
5 

0.0395 

23-Br 0.00168243
9 

0.00041065
2 

0.00129098
9 

0.00024144
9 

0.00983258
9 

0.00462804 0.01246925
7 

0.00491611
5 

0.3320 

7-T 0.00168243
9 

0.00041065
2 

0.00129098
9 

0.00024144
9 

0.12402969
7 

0.07982090
7 

0.14439732
3 

0.02268179
1 

0.5836 

C-23 0.12520511
8 

0.01827564
6 

0.13520926
2 

0.07046112
4 

0.15477416
3 

0.04392469
5 

0.13037842
2 

0.07529568 0.5078 

C-24 0.00168243
9 

0.00041065
2 

0.03275113
6 

0.00803293
9 

0.01327321
1 

0.00696572
7 

0.03513908
2 

0.02269766
7 

0.4237 

7,11-PD 0.01504406
3 

0.01318055 0.00514664
4 

0.00123371
6 

0.17548385
8 

0.04650799
1 

0.11139749
6 

0.05936462
2 

0.1330 

7-P 0.02138331
3 

0.00797142
6 

0.00474277
9 

0.00399229
5 

0.12995425
9 

0.09929796
3 

0.14545763
4 

0.05684781
6 

0.5399 

C-25 0.11067520
4 

0.01633220
4 

0.11026967
5 

0.01631151
9 

0.06777058
1 

0.01170928
1 

0.08779846
4 

0.01990236
7 

0.1807 

7,11-HD 0.45737651
1 

0.09043625
5 

0.41869110
7 

0.08221158
4 

0.21615500
4 

0.07614118
8 

0.21171833
9 

0.09603013 0.6640 

27-Br 0.04182803
4 

0.01099896
3 

0.03852082
2 

0.00586557
8 

0.01093361
6 

0.00451446
1 

0.02300747
8 

0.00574909
4 

0.03008 

C-27 0.21047509
3 

0.05861094
4 

0.16024401
4 

0.07483981
6 

0.03236312
5 

0.00936946 0.05029319
1 

0.01617964
5 

0.1352 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A13: Average total peak area of compounds for disruption of CG7485. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-22 2.37020311
6 

1.27686056
9 

1.69313784
7 

0.36202460
2 

1.03053212
3 

1.39027893
1 

3.08370119
4 

0.378741 0.2586 

23-Br 0.04371540
2 

0.01000886
2 

0.04243615
3 

0.00184850
4 

26.6742417
3 

11.6827560
7 

26.4318344
4 

12.1025721
5 

0.1554 

7-T 2.82104571
7 

3.91772933
7 

5.27110207
3 

1.46295264
5 

32.3974622
4 

8.16356732
6 

54.8820803
6 

8.88846894
1 

0.1136 

C-23 24.8273858
4 

4.79921661
3 

22.2139542
9 

3.63476326
7 

58.0999764
9 

9.91034050
8 

51.7735696
7 

2.66389421
5 

0.7930 

C-24 2.22689125
8 

1.02554535
5 

1.87621606
4 

0.23034681
8 

1.59866964 2.19374671
2 

2.74694425
5 

1.24350839
2 

0.8488 

7,11-PD 10.0709889 0.20348120
9 

8.97322492 1.88924741
2 

80.4998394
6 

15.4598638
8 

64.629002 14.9372443
8 

0.4637 

25-Br 14.9860178
8 

0.85650085
1 

9.51318001
3 

3.62788887 23.5730865
2 

2.61000730
4 

33.7855461
4 

10.0040027
2 

0.6765 

7-P 0.04371540
2 

0.01000886
2 

9.25378475
9 

1.93839445
7 

25.9518506
1 

8.68411987
1 

21.3056518 12.7847147 0.2276 

C-25 11.2906941
6 

0.36084244
3 

9.54841659
9 

0.64356449
9 

20.8504602
6 

1.66425602
9 

15.4789994
1 

2.08322689
8 

0.42392 

7,11-HD 73.3675221
2 

8.04375098
5 

61.7488633
6 

3.31809340
9 

102.980947
2 

25.7701533
6 

94.0865433
2 

20.4101282
2 

0.2342 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A14: Average relative abundance of compounds for disruption of CG7485. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-22 0.01687399
4 

0.00964690
5 

0.01307743
5 

0.00330939
3 

0.00330640
4 

0.00452264
2 

0.00848321
2 

0.00093509
3 

0.3073 

23-Br 0.00030935
9 

8.25241E-
05 

0.00032664
7 

2.73795E-
05 

0.06964374
2 

0.01437518
7 

0.06985305
2 

0.01669949
5 

0.2988 

7-T 0.01933675
3 

0.02682627
4 

0.04031116
5 

0.00961596
4 

0.08660136 0.00844199
5 

0.15602779
6 

0.06025769
2 

0.0311 

C-23 0.17557364 0.04063209
7 

0.17027542
8 

0.02106300
4 

0.16351549
6 

0.06618020
7 

0.14362168
7 

0.02601099
2 

0.7939 

C-24 0.01582981 0.00783696
3 

0.01439354
6 

0.00118952
3 

0.00514161
3 

0.00711801
9 

0.00806741
5 

0.00524468
9 

0.8224 

7,11-PD 0.07092439
3 

0.00133312
2 

0.06871668
2 

0.01174606
8 

0.20475922
3 

0.08805894
7 

0.17553254
1 

6.47499E-
05 

0.7708 

25-Br 0.10546216
1 

0.00191729
4 

0.07372496 0.03085164
2 

0.06587187
7 

0.02296103
6 

0.09105253
8 

0.00609272 0.2112 

7-P 0.00030935
9 

8.25241E-
05 

0.07146801
5 

0.01777791
3 

0.07446196
4 

0.04130025
1 

0.05532732
4 

0.02191456 0.1064 

C-25 0.07959500
2 

0.00564398
3 

0.07333346
6 

0.00198756
9 

0.05804842
1 

0.01853253
4 

0.04252366 0.00418565
1 

0.9756 

7,11-HD 0.51578552
8 

0.03651455 0.47437265
6 

0.00636419
9 

0.26864990
1 

0.05733635
6 

0.24951077
6 

0.05199209
1 

0.7321 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A15: Average total peak area of compounds for disruption of CG8756. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-21 1552.63537
6 

2653.64570
8 

342.556332
1 

523.20695 4652.85854 6348.35837
8 

1966.02846
6 

2307.67219
9 

0.6540 

C-22 48.1574443
4 

7.37502806
6 

44.0084364
3 

5.46283772
4 

1445.03487
8 

117.885363
7 

896.380143
6 

473.367164
8 

0.07888 

23-Br 48.1574443
4 

7.37502806
6 

44.0084364
3 

5.46283772
4 

1369.04333
7 

1181.00627
4 

686.710652
5 

392.112023
2 

0.0034 

7-T 48.1574443
4 

7.37502806
6 

44.0084364
3 

5.46283772
4 

6838.45828
3 

2956.27356
8 

4325.61727
2 

1369.59818
1 

0.0103 

C-23 3528.30933
1 

2533.73829 3972.38283
8 

1810.97817
5 

10280.8116
9 

5378.50073 7730.27707
5 

5717.86656 0.4913 

C-24 48.1574443
4 

7.37502806
6 

44.0084364
3 

5.46283772
4 

1171.51495
4 

276.933956
3 

645.288447
5 

468.874567
1 

0.1123 

7,11-PD 1126.89449
5 

571.586029 913.221443
4 

78.6766091
2 

12032.5330
3 

4395.79517
1 

4501.44210
8 

2831.21901
4 

0.0223 

7-P 555.195955
7 

418.680822 892.324851
7 

97.1443880
7 

2943.07440
3 

1362.64137
5 

3681.43996
4 

2494.64649
4 

0.7505 

C-25 2429.62597
9 

1258.69313
1 

2075.22837
3 

719.732805
1 

4876.94546
7 

1943.72462
6 

4237.18507
5 

1813.38366
7 

0.8894 

7,11-HD 13232.2157
7 

8992.22312
9 

11357.4952
1 

3396.82813
1 

24684.3522
2 

16992.4353
8 

13157.2275
5 

5951.90098
4 

0.3604 

27-Br 1303.84673
7 

956.426266
1 

1124.63382
8 

462.310502
3 

1030.63838 531.580562
1 

1698.64962
3 

581.352794
9 

0.1742 

C-27 4055.34876
4 

1661.41895
3 

4108.94042 2906.88217
5 

3557.04431
7 

1475.40372
2 

6474.58843
8 

3995.99427
7 

0.2341 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A16: Average relative abundance of compounds for disruption of CG8756. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-21 0.03515901
1 

0.04957247
3 

0.01207870
5 

0.01781553
4 

0.06249929 0.07899508
7 

0.04023451
5 

0.04740022
7 

0.9879 

C-22 0.00238142
9 

0.00150762
6 

0.00195852
4 

0.00075731
6 

0.02103696
4 

0.00679365
2 

0.01784050
7 

0.00875046
9 

0.6295 

23-Br 0.00238142
9 

0.00150762
6 

0.00195852
4 

0.00075731
6 

0.01992537 0.01825505 0.01341280
2 

0.00771208
1 

0.5517 

7-T 0.00238142
9 

0.00150762
6 

0.00195852
4 

0.00075731
6 

0.10565951
1 

0.06126365
7 

0.08691149
2 

0.01994131
6 

0.5800 

C-23 0.12078793 0.05858572
4 

0.15606075 0.03282090
2 

0.13174307
1 

0.02064758
9 

0.14268517
2 

0.07907745
6 

0.6537 

C-24 0.00238142
9 

0.00150762
6 

0.00195852
4 

0.00075731
6 

0.01626659
5 

0.00319722
7 

0.01353117
9 

0.00904420
5 

0.6434 

7,11-PD 0.05033947
4 

0.03181745
2 

0.03956438
4 

0.01210737
4 

0.16315873
7 

0.03288192
9 

0.08729226
4 

0.05657743
6 

0.1030 

7-P 0.02163543
1 

0.00955123
5 

0.03907311
5 

0.01348860
3 

0.03825384
7 

0.00698206
6 

0.08478878
3 

0.07401241
1 

0.4595 

C-25 0.09295941
4 

0.01804478
8 

0.08540219
6 

0.02389216
8 

0.06464816
5 

0.00566667
9 

0.08177640
7 

0.02389942
7 

0.2264 

7,11-HD 0.46134340
6 

0.15185294
6 

0.46580536 0.10052666
9 

0.31540912
4 

0.11637439
5 

0.25197362
2 

0.07893144
3 

0.5660 

27-Br 0.04336691
5 

0.00882349
5 

0.04511629
5 

0.01175708
5 

0.01377887
1 

0.00591254
7 

0.03475460
2 

0.01207440
4 

0.0775 

C-27 0.16488270
3 

0.07248356
1 

0.1490651 0.06644939
3 

0.04762045
6 

0.01421263
5 

0.14479865
6 

0.12514084
5 

0.1826 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A17: Average total peak area of compounds for disruption of CG8522. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-22 2.66527073
1 

0.76081030
7 

3.12415669
6 

2.88499784
5 

1.58088388
5 

2.62929023
5 

8.70100021
4 

4.09041479
6 

0.1137 

23-Br 1.97462596 0.80587378
1 

1.06080746
1 

1.76253277
4 

13.6124015
7 

3.22251247
9 

14.9104273 6.18090321
2 

0.8865 

7-T 4.70397748
5 

1.84845771
8 

6.38886873 2.01004865
6 

105.834587
9 

6.85186126
3 

130.214655
7 

62.6484887 0.0636 

C-23 22.3944096
4 

3.87585579
5 

32.8858910
3 

7.32059140
1 

59.0450273
6 

17.1047649
1 

107.51236 35.5695088
5 

0.2579 

C-24 2.4249495 0.35390098
4 

2.41405641 0.62446258 7.52428503
8 

4.45904447
3 

8.65017997
6 

3.53493308 0.0189 

7,11-PD 8.16248048
6 

2.41754250
8 

11.9960691
4 

3.06641284
6 

52.2431783
4 

22.7428079
7 

68.0764922
5 

25.5421758
1 

0.2386 

25-Br 2.93840213
8 

4.99155212
9 

11.0567260
4 

2.19560594
6 

0.06471248
9 

0.00394264
2 

28.0682667
9 

13.7642881
5 

0.0430 

7-P 0.05335313
5 

0.00618058
3 

16.3971199
8 

8.19395305 0.06471248
9 

0.00394264
2 

72.8332834
5 

31.2991222 0.0274 

C-25 10.3839501
4 

0.72656272
8 

16.0667090
3 

2.30226311
3 

19.1520596
6 

2.99555250
3 

41.2699161
6 

11.2901629
6 

0.0988 

7,11-HD 61.1119278
1 

7.23505792
3 

78.4155980
3 

11.0221242
7 

154.623067
2 

7.77574080
9 

132.975491
2 

51.3966917
6 

0.2571 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A18: Average relative abundance of compounds for disruption of CG8522. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-22 0.02253121
4 

0.00417736 0.01646254
3 

0.01498430
4 

0.00370290
7 

0.00614518 0.01378389
5 

0.00167007
7 

0.1346 

23-Br 0.01658166
6 

0.00560801
5 

0.00551046
2 

0.00911048
1 

0.03311042
5 

0.00892523
6 

0.02444199
6 

0.00325093
9 

0.7785 

7-T 0.03944887
2 

0.01141802
5 

0.03511174
8 

0.00825815
7 

0.25655787
5 

0.02671453
2 

0.20630893
2 

0.03026112
3 

0.0999 

C-23 0.19084753
1 

0.01370031
8 

0.18136005
4 

0.02517572
7 

0.14200856
7 

0.03703748 0.17958429 0.01627994
5 

0.1387 

C-24 0.02084277
9 

0.00311918
4 

0.01329912
5 

0.00234539
8 

0.01851118
7 

0.01158646
7 

0.01404965 0.00085775 0.6746 

7,11-PD 0.06904915
5 

0.01505979
9 

0.06617690
1 

0.01176453
7 

0.12510004
7 

0.05009246 0.11181930
7 

0.00359177
4 

0.7458 

25-Br 0.02785595
5 

0.04744316
1 

0.06121090
5 

0.00771982
2 

0.00015666
5 

1.22368E-
05 

0.04449294
5 

0.00786163
3 

0.7069 

7-P 0.00045855 5.41909E-
05 

0.08965843
1 

0.03832698
3 

0.00015666
5 

1.22368E-
05 

0.11720048
6 

0.00813091 0.2533 

C-25 0.08950188
8 

0.01069960
1 

0.09038644 0.01902835
5 

0.04621633
5 

0.00605244
5 

0.07058361
1 

0.01289290
3 

0.1572 

7,11-HD 0.52288239
2 

0.01610081
8 

0.44082338
9 

0.08946733 0.37447932
8 

0.02922847
8 

0.21773488
8 

0.01123589
4 

0.2153 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.



 

 

115 

Table A19: Average total peak area of compounds for disruption of CG3971. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-21 2450.37180
8 

2168.71693 635.613843
4 

245.011411
7 

4285.51421
4 

2528.61332
1 

1080.00690
8 

482.960606
5 

0.9501 

C-22 320.067167
7 

100.977714
4 

350.028071
1 

30.1508713
9 

951.378917
8 

148.552101
8 

744.435795
4 

201.796409
2 

0.2442 

23-Br 42.7660951
3 

6.54394771
1 

39.7156470
1 

4.67961088
7 

1409.69215
3 

246.546171
2 

696.054981 56.2927439
9 

0.0338 

7-T 42.7660951
3 

6.54394771
1 

39.7156470
1 

4.67961088
7 

3210.05062
7 

3120.28762
7 

3038.67316 478.133958
8 

0.0708 

C-23 2153.48870
8 

435.565159
7 

1092.68987
6 

994.031923
9 

8231.96055
8 

958.890435
9 

5436.59506
5 

2799.39752
4 

0.1763 

C-24 458.230936
9 

39.6333170
6 

556.252018
5 

44.3377348
2 

1115.01114
3 

214.915396
5 

858.912616
4 

326.691308
6 

0.24081 

7,11-PD 2419.24510
4 

1458.04267
5 

1565.92139 216.859592
6 

7222.35599
2 

1741.50945
8 

5671.19146
1 

563.793760
2 

0.3757 

7-P 2934.35241
7 

2351.55994
1 

1365.62405 30.3915529
2 

1688.13528
6 

29.0367558
6 

3952.74554
6 

831.444387
6 

0.3029 

C-25 2977.50134
7 

258.360168
1 

2636.89414
6 

275.511509
5 

3395.19025
4 

1348.02784
7 

4701.40217 1144.04264
2 

0.3749 

7,11-HD 16456.4020
8 

13964.5155 6438.82353
7 

1254.30147 7122.91951
6 

3872.42928
5 

11562.2205
8 

1883.50996
8 

0.9158 

27-Br 1018.98265
1 

60.2861182
9 

948.908582
8 

100.700629
7 

1082.77377
4 

108.196125
4 

1041.28373
2 

203.299793
4 

0.3681 

C-27 5898.01858
9 

490.069086
7 

6324.83313 712.198620
1 

1791.86231 104.819573
5 

3023.16007
3 

814.887388
7 

0.5195 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Table A20: Average relative abundance of compounds for disruption of CG3971. 

Compound 
Mel/Bal1 SD Mel/Dis1 SD Sim/Bal1 SD Sim/Dis1 SD p1,2 

C-21 0.05876576
1 

0.02598179
6 

0.02989645
2 

0.01509425
6 

0.05537860
9 

0.02801937
2 

0.02766777
1 

0.01738955
2 

0.9724 

C-22 0.00926759
8 

0.00238692
1 

0.01596297
1 

0.00074085
7 

0.02348548
7 

0.00282094
1 

0.01769117
2 

0.00109442
9 

0.0108 

23-Br 0.00129896
3 

0.00053925
9 

0.0018358 0.00045560
7 

0.02802964
9 

0.01295785
1 

0.01688308
1 

0.00221547
3 

0.2777 

7-T 0.00129896
3 

0.00053925
9 

0.0018358 0.00045560
7 

0.04795963
6 

0.02509178
7 

0.07310446
8 

0.00398672 0.2427 

C-23 0.07208918
3 

0.05141499
1 

0.04710188
2 

0.03896262
8 

0.17334576
1 

0.07647505
3 

0.12577696
3 

0.04042423
9 

0.7819 

C-24 0.01418430
7 

0.00674469
1 

0.02537863
1 

0.00134140
4 

0.02780679
3 

0.00167869 0.02016942
7 

0.00355900
8 

0.0282 

7,11-PD 0.06398350
3 

0.00399009
5 

0.07248067
3 

0.01944759
1 

0.13973266
8 

0.05746338
3 

0.13728558
4 

0.01547863
3 

0.8172 

7-P 0.07251624
5 

0.02332860
2 

0.06272811
7 

0.00967973
5 

0.04154202
3 

0.01225216
4 

0.09455463
2 

6.12008E-
05 

0.0340 

C-25 0.0921598 0.04379945
6 

0.12010836
4 

0.00336244
8 

0.12788440
9 

0.00428530
9 

0.11206311
6 

0.00372211 0.2347 

7,11-HD 0.39990511
1 

0.15545448
7 

0.29151887
2 

0.01846304
1 

0.23347069
1 

0.14349033
3 

0.27799848
6 

0.01359898 0.3669 

27-Br 0.03178522
5 

0.01588142
5 

0.04321728
8 

0.00113866
1 

0.03551780
7 

0.00738596
2 

0.02494940
8 

0.00040094
5 

0.1510 

C-27 0.18274534
1 

0.08744897
9 

0.28793514
9 

0.00570950
4 

0.06584646
7 

0.01998468
2 

0.07185589
3 

0.00433171
8 

0.1940 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the interaction term.
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Appendix B: Average total peak area and relative abundance of compounds in microbial and diet experiments 

Table B21a: Average total peak area for compounds across different microbial treatments 

Compound 
WT1 Ab1 Re1 Act1 Lac1 AL1 p1,2 

7-T 2.638559578 3.500658452 2.322500122 2.019668601 2.066895877 2.224742661 0.0215 

C-23 13.33369949 7.720498279 7.194778755 6.58732764 7.484761049 6.142216675 0.0966 

6.82 14.24256869 15.22927868 14.45087358 14.67446919 15.46389912 15.24225829 0.9588 

C-24 2.303596441 2.343949323 2.654187161 2.976672836 2.559918859 3.095863785 0.1136 

7,11-PD 8.690257431 8.894918376 8.341649004 9.577814296 8.355588103 9.897478037 0.8210 

25-Br 11.98105437 11.55258061 9.631078833 10.54025468 9.485488605 10.39617116 0.7627 

7-P 8.359083029 10.3020166 9.035678807 10.58396619 9.205302388 10.74601888 0.4608 

C-25 10.36899813 11.6019637 10.70138126 13.84803177 11.74463516 11.4310775 0.3116 

7,11-HD 65.01286746 72.62943201 65.25117784 73.25410428 63.60148092 73.06737347 0.7444 

27-Br 9.724613699 10.07499553 9.096681777 12.53054535 8.426737861 9.40955485 0.0518 

10.09 11.81721053 13.03416974 13.78889116 14.54041544 14.06637608 14.20924402 0.4771 

9-H 9.433610948 9.774222175 9.344265071 12.6661994 10.04231616 11.90108908 0.3489 

C-27 2.781075135 2.62888924 2.734496877 2.708974192 2.449764665 2.474893421 0.9801 

29-Br 53.9467929 55.52403894 50.70108928 65.95309343 54.80459985 56.68815664 0.1494 
1Bolded entries pass the FDR cutoff. 
2 The p-value is for the treatment (microbial type) term.
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Table B21b: SD Values for total peak areas from table B21a 

Compound 
SD WT SD Ab SD Re SD Act SD Lac SD AL 

7-T 
0.95112989 1.659450948 0.912616252 0.730606529 0.394771812 0.409106745 

C-23 
12.64196736 3.515998187 2.260585368 2.323972102 3.90811769 1.774694514 

6.82 
2.29337838 4.67759229 3.004763239 4.963780467 2.445862934 2.810711622 

C-24 
0.418644519 1.02427118 0.277992728 0.912042684 0.64028526 0.426639513 

7,11-PD 
3.050322562 3.741274391 3.511824144 2.447533564 2.450782384 2.786266701 

25-Br 
6.927663599 5.386333004 2.541143227 3.794018641 2.164434378 1.787478621 

7-P 
3.703986936 5.054153839 2.24692985 2.451921781 2.234178443 2.413628092 

C-25 
3.083382737 5.158989417 2.682411644 3.452808757 2.695798316 1.431746737 

7,11-HD 
41.50148031 31.44510262 25.18600088 17.9284164 11.0972504 9.412791414 

27-Br 
5.136716658 3.79332619 2.423558013 3.985986101 1.097200704 3.462410144 

10.09 
3.154442072 2.099105088 4.249747788 3.847840168 2.744741435 2.087064648 

9-H 
2.77743117 5.013872606 2.948616384 2.540808488 2.153557232 5.097707949 

C-27 
2.009589901 1.859857056 1.00796877 1.565564963 0.377682168 0.567370589 

29-Br 
23.68084054 19.13770996 14.73829481 18.32939056 6.378590771 11.85721723 
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Table B22a: Average relative abundance of compounds across different microbial treatments 

Compound 
WT1 Ab1 Re1 Act1 Lac1 AL1 p1,2 

7-T 
0.0108027 0.014774576 0.010636895 0.007966497 0.009449925 0.009596153 0.0414 

C-23 
0.043158843 0.032489148 0.03357913 0.026329848 0.03306367 0.02651799 0.2109 

6.82 
0.066718758 0.065142327 0.068572338 0.059087855 0.070315587 0.064498364 0.5304 

C-24 
0.011820417 0.010127855 0.013069706 0.011698328 0.011779029 0.013317538 0.4485 

7,11-PD 
0.040161682 0.043109665 0.037591043 0.038488911 0.037537015 0.041348668 0.8378 

25-Br 
0.056848696 0.046700808 0.045309391 0.041153197 0.043206967 0.044403058 0.1792 

7-P 
0.035162945 0.042974547 0.042422729 0.042853316 0.041630891 0.045378458 0.34309 

C-25 
0.054157731 0.050594524 0.050310934 0.054722688 0.053219446 0.049013697 0.9211 

7,11-HD 
0.27889936 0.305828804 0.295795699 0.28936395 0.288774234 0.309188076 0.7935 

27-Br 
0.045950919 0.042082409 0.043073814 0.049035206 0.038767986 0.038960055 0.0153 

10.09 
0.059659277 0.059476001 0.066057518 0.05796437 0.063881356 0.060448507 0.8456 

9-H 
0.044395328 0.04346292 0.045342144 0.050572 0.045773502 0.048832622 0.8984 

C-27 
0.012892573 0.009828944 0.012851562 0.010356587 0.011397364 0.010457345 0.3865 

29-Br 
0.239370771 0.233407472 0.235387097 0.260407247 0.25120303 0.238039469 0.3145 

 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the treatment (microbial type) term.
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Table B22b: SD Values for relative abundances from table 22a 

Compound 
SD WT SD Ab SD Re SD Act SD Lac SD AL 

7-T 
0.004417096 0.007545484 0.002316952 0.00230601 0.001629342 0.002315567 

C-23 
0.025031068 0.010433607 0.006020691 0.008488361 0.012402528 0.008295666 

6.82 
0.019285917 0.008083313 0.008894713 0.01857899 0.006129645 0.008042672 

C-24 
0.004512574 0.004651147 0.003148342 0.001896352 0.003034699 0.00277495 

7,11-PD 
0.01507428 0.009913167 0.007078922 0.009884192 0.007755251 0.007561577 

25-Br 
0.028981226 0.00794601 0.005976905 0.009135325 0.008595328 0.007984555 

7-P 
0.010915085 0.012198998 0.003746193 0.009457388 0.007924927 0.007995806 

C-25 
0.027812761 0.014378295 0.005985873 0.006227649 0.007371161 0.008783452 

7,11-HD 
0.117246804 0.040829171 0.034719336 0.025481642 0.022673538 0.016872275 

27-Br 
0.008061652 0.006088058 0.008151136 0.004973207 0.00579613 0.010544573 

10.09 
0.023393781 0.018353588 0.018095554 0.012573939 0.006694053 0.00808487 

9-H 
0.01573742 0.019271201 0.016646416 0.006379943 0.007559203 0.015735993 

C-27 
0.005147269 0.004900635 0.003337278 0.004540701 0.002689401 0.001893499 

29-Br 
0.049176552 0.025375068 0.013928812 0.027184434 0.025404929 0.025939824 
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Table B23: Average total peak areas for compounds across different diet types 

Compound 
CMY1 SD1 HY1 SD1 p1,2 

7-T 
2.422986604 0.188318073 2.50135516 0.233469388 0.7643 

C-23 
9.624746719 1.598082422 6.529680577 0.541625297 0.0477 

6.82 
13.85082882 0.680384279 15.91695369 0.639691212 0.0270 

C-24 
2.526107284 0.156270689 2.785288851 0.127752476 0.1830 

7,11-PD 
8.129343245 0.563745339 9.789891837 0.595764228 0.0449 

25-Br 
10.19949808 0.907466185 10.99604468 0.759363812 0.4899 

7-P 
9.036115341 0.614993699 10.37457329 0.653161262 0.1088 

C-25 
11.08645034 0.617366659 12.14557884 0.721615617 0.24395 

7,11-HD 
55.94202037 4.520089821 81.66345829 3.98980168 1.44301E-05 

27-Br 
7.834096363 0.539812101 11.92027999 0.671851731 2.92575E-06 

10.09 
12.86994048 0.627857902 14.28216184 0.62013836 0.1053 

9-H 
10.23657905 0.671569449 10.8173219 0.825622804 0.5892 

C-27 
1.8887464 0.195255307 3.370618109 0.245906854 1.59179E-05 

29-Br 
46.27052608 2.342245485 66.26873094 2.969476886 3.01822E-07 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the diet type term.
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Table B24: Average relative abundance of compounds across different diet types 

Compound 
CMY1 SD1 HY1 SD1 p1,2 

7-T 
0.011652813 0.001052462 0.009422769 0.000614756 0.0646 

C-23 
0.040132434 0.002980484 0.024913775 0.0015306 0.2103 

6.82 
0.069709674 0.003015908 0.061735402 0.001687276 0.0276 

C-24 
0.013028003 0.000827629 0.010909621 0.000480334 0.0303 

7,11-PD 
0.042043 0.002266133 0.037369328 0.001498069 0.1104 

25-Br 
0.050831511 0.003465582 0.041709195 0.001758671 0.0141 

7-P 
0.043551633 0.001927327 0.039922662 0.001783881 0.1729 

C-25 
0.056865822 0.003001613 0.047140519 0.002091551 0.0105 

7,11-HD 
0.274161785 0.013298344 0.315121589 0.005019066 0.0044 

27-Br 
0.040345802 0.001693681 0.045610994 0.001406269 0.0060 

10.09 
0.066377072 0.003229856 0.056118605 0.002594201 0.01386 

9-H 
0.050655662 0.002615999 0.042137177 0.002804883 0.0382 

C-27 
0.009756639 0.000807413 0.012838152 0.000669632 0.0052 

29-Br 
0.230888151 0.006179863 0.255050211 0.004958536 0.0036 

1Bolded entries pass the FDR cutoff. 
2 The p-value is for the diet type term.



 

 

123 

Curriculum Vitae 

 
Name:		 	 Heather	Ward	
	
Post-secondary		 University	of	Waterloo	
Education	and		 Waterloo,	Ontario,	Canada	
Degrees:		 	 2010-2015	B.Sc.	
	

The	University	of	Western	Ontario	
London,	Ontario,	Canada	
2015-2017	(in	progress)	M.Sc	

	
	

Honours	and		 Natural	Sciences	and	Engineering	Research	Council	(NSERC)	
Awards:	 		 CGS-M	
	 	 	 2016-2017	
	

Ontario	Graduate	Scholarship	(OGS)	(Declined)	
2016-2017	

	
Related	Work		 Teaching	Assistant	
Experience		 	 University	of	Waterloo	

2014	
	
Teaching	Assistant	
The	University	of	Western	Ontario	
2015-2017	

	
Presentations:	
Ward,	H.	and	Moehring,	A.J.	Evolution	2017,	Portland,	OR.	The	genetic	basis	for	
cuticular	hydrocarbon	biosynthesis	in	Drosophila.	Oral	Presentation.	
	
Ward,	H.	and	Moehring,	A.J.	BGRF	2017,	The	University	of	Western	Ontario.	The	
genetic	and	environmental	basis	for	CHC	production	in	Drosophila.	Lightning	Talk	
Oral	Presentation.	
	
Ward,	H.	and	Moehring,	A.J.	OE3C	2016,	University	of	Toronto.	The	genetic	and	
environmental	basis	for	cuticular	hydrocarbon	biosynthesis	in	Drosophila.	Lightning	
Talk	Oral	Presentation.	
	
	
	


	The genetic and environmental basis for CHC biosynthesis in Drosophila
	Recommended Citation

	Microsoft Word - Heather_Ward_final_thesis_post_defense.docx

