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Abstract

The evolving of cellular networks within the last decade continues to focus on

delivering a robust and reliable means to cope with the increasing number of users and

demanded capacity. Recent advancements of cellular networks such as Long-Term Evolu-

tion (LTE) and LTE-advanced offer a remarkable high bandwidth connectivity delivered

to the users. Signalling overhead is one of the vital issues that impact the cellular behav-

ior. Causing a significant load in the core network hence effecting the cellular network

reliability. Moreover, the signaling overhead decreases the Quality of Experience (QoE)

of users.

The first topic of the thesis attempts to reduce the signaling overhead by devel-

oping intelligent location management techniques that minimize paging and Tracking

Area Update (TAU) signals. Consequently, the corresponding optimization problems are

formulated. Furthermore, several techniques and heuristic algorithms are implemented

to solve the formulated problems.

Additionally, network scalability has become a challenging aspect that has been

hindered by the current network architecture. As a result, Cloud Radio Access Networks

(C-RANs) have been introduced as a new trend in wireless technologies to address this

challenge. C-RAN architecture consists of: Remote Radio Head (RRH), Baseband Unit

(BBU), and the optical network connecting them. However, RRH-to-BBU resource allo-

cation can cause a significant downgrade in efficiency, particularly the allocation of the

computational resources in the BBU pool to densely deployed small cells. This causes a

vast increase in the power consumption and wasteful resources.

Therefore, the second topic of the thesis discusses C-RAN infrastructure, partic-

ularly where a pool of BBUs are gathered to process the computational resources. We
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argue that there is a need of optimizing the processing capacity in order to minimize the

power consumption and increase the overall system efficiency. Consequently, the optimal

allocation of computational resources between the RRHs and BBUs is modeled. Fur-

thermore, in order to get an optimal RRH-to-BBU allocation, it is essential to have an

optimal physical resource allocation for users to determine the required computational

resources. For this purpose, an optimization problem that models the assignment of re-

sources at these two levels (from physical resources to users and from RRHs to BBUs) is

formulated.

Keywords: LTE, Location Management, Tracking Area (TA), Tracking Area List (TAL),

MME pooling, SON, C-Ran, LTE, RRH, BBU, Resource allocation, Power consumption,

Computer resource allocation.
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Chapter 1

Introduction

1.1 Historical Overview of Cellular Networks

Since early eighties, mobile network has gained fair attention from both industry

and academia. It all started when the First Generation (1G) of the analog cellular

networks has been introduced as the Advanced Mobile Phone System (AMPS). After ten

years, the Second Generation (2G) was launched to support mobile phones and limited

data connection in the (2.5G) extension. With the support of General Packet Radio

Service (GPRS), the (2.5G) networks use the circuit switching for the voice and the packet

switching for the data transmission. The evolution continued with introducing the third

generation that enables faster speeds with better efficiency and quality of service. The

fourth generation then has introduced two standards called WiMAX and Long Term

Evolution (LTE) enhances the capability of packet switching to provide the users an

astonishing performance. LTE has gained more attention than WiMAX, as it supports

higher speeds, better performance, and scalable bandwidth.

1.2 Motivation

Wireless technologies continue to be challenged with the momentous traffic that

affects bandwidth. Moreover, the continuous proliferation of hand-held devices and their

applications generate a surge of signaling traffic with a greater percentage than the user

data traffic. The signaling traffic initiated each time there is a transmission or reception

of packet streams between the UEs and mobile network despite the actual size of data

traffic. Nokia Siemens Networks has predicted the increase of signaling in the coming

years will be up to 50% faster than the growth of data traffic. In addition, LTE experi-

ences more signaling overhead than other 3G technologies due to its flat IP architecture

that do not contain a medium entity such as Radio Network Controller (RNC) between
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the base station and the core network [6]. For instance the average signaling overhead is

42% more than HSPA per subscriber.

Paging and Tracking Area Updates (TAU) have the most significant signaling im-

pact on the Evolved Packet Core (EPC), specifically on the Mobility Management Entity

(MME). Paging and TAU are essential functions for UE location management. They are

used to track the user’s location and provide constant updates to the EPC. Paging and

TAU are defined as follows:

1. Paging: messages sent by the MME to locate a particular UE in a Tracking Area

(TA).

2. Tracking area update: messages sent by UEs to the MME when they move from

one tracking area to another.

To identify the UE location, the LTE core network pages the latest tracking area that

the UE was registered to. The paging signal is received by all of the cells that reside in

the same tracking area. Additionally, the UE will update the core network by sending a

tracking area update (TAU) signal once it moves from one tracking area to another.

Tracking Area (TA) is the area in which the MME can locate a specific user within

a defined set of cells. This technique is used in LTE and was originally inherited from

previous 2G and 3G technologies. However, TA has a number of limitations that have

led to the introduction of the new concept of Tracking Area List (TAL), whereby several

TAs are grouped into a single TAL. TAL has the same functionality as TA but with the

added flexibility of a set of TAs within the TAL. Thus, TAL can alleviate the signaling

load due to triggering TAU each time a UE moves from one cell to another.

Several studies have investigated cell-to-TA/TAL assignment problem as they used

various techniques to optimize the system by minimizing the signaling overhead. At

present, none have investigated TA/TAL-to-MME assignment, which has the same im-

portance as investigating cell-to-TA/TAL assignment. TA/TAL-to-MME allocation is

vital for minimizing the signaling overhead gained from the TAU-to-core network, espe-

cially in the MME. The MME receives a large amount of signaling traffic resulting from

several UEs, each making different requests. As a result, it is more valuable to consider

a mechanism to intelligently relate and distribute the signaling load to the MME dur-

ing cell-to-TA/TAL construction. LTE has introduced the concept of MME pooling, in
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which the number of clustered MMEs can perform the mobility management function as

one MME. Consequently, this decreases the amount of signaling incurred during various

procedures such as MME relocation. Ultimately, determining the type of MME pooling

versus the TA/TAL allocation will give more accurate control and allow optimization of

the signaling overhead resulting from paging and TAU.

In Release 8, 3GPP introduced the concept of a Self-Organizing Network (SON)

that provides a methodology for planning, managing, and optimizing mobile networks

in order improve performance efficiency and system reliability. SON has been widely

accepted in industry and academia [7, 8]. 3GPP has also released different use cases for

LTE, offering self-optimizing and self-healing paradigms. In this context, adaptive TA

list management can be used as an SON use case as in [9], which can further reduce the

signaling load. Therefore, the second part of the thesis introduces different techniques

that relate the TA list to the behavior of the mobile network would further optimize the

signaling overhead. Thus, cell-to-TAL assignment can be engineered dynamically while

the UE is in continuous movement. The system keeps analyzing the mobility pattern

and continuously updates the TA assigned to the list. Thus, the frequency of TAU will

be reduced significantly. In this part, the mobility pattern is obtained using a fluid flow

model to estimate the handover correlation between cells.

Due to the complexity of the original model, the third part of the thesis uses

the evolutionary artificial techniques in optimizing the location management techniques

when applied in a large-scale network. Three algorithms are implemented namely; Parti-

cle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Gravitational Search

Algorithm (GSA). To the best of our knowledge, the proposed study is the first to include

these algorithms.

In recent years, PSO, ABC and GSA have been considered to be reliable and

promising evolutionary algorithms for locating the global optima for a variety of opti-

mization problems in different contexts with rapid rate of convergence as seen in different

applications [2, 4, 10, 11]. The three selected algorithms belong to different heuristic

search families such as PSO relies on swarming and nature behavior of birds [1], ABC

stands on colony structure and the main role of three main groups within the colony [3]

and GSA is based on gravity laws and mass interactions between particles [5]. The ob-

tained simulation results illustrate the effectiveness of the proposed approach in finding
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minimum total signaling overhead resulted in paging and tracking area update. Moreover,

the applied optimization techniques offer an efficient solution for large scaled problems

that need fast convergence. Lastly, The results show that the power consumption of the

user equipment hand-held devices is minimized as well.

In the last part of the thesis Cloud Radio Access Network (C-RAN) is considered

for optimizing the data traffic. C-RAN has been introduced as a new paradigm that has

succeeded in bringing forth a new era to the world of wireless communications. C-RAN

was first introduced by China Mobile, one of the key wireless operators in China. The

advantages of cloud computing have influenced researchers in both academia and indus-

try to integrate the cloud paradigm into different applications. Featuring a simple yet

clever solution that splits up conventional base stations into two independent entities,

namely a Remote Radio Head (RRH) and a Baseband Unit (BBU), connected through

an optical high-speed transport network. Cloud computing enables real-time centralized

processing through a virtualized BBU pool. In addition, the cloud architecture provides

several advantages for C-RAN in numerous aspects, such as reducing the total CAPEX

and OPEX as well as providing flexibility by distributing the capacity of the system.

The separation of the computational resources from the RRH has resulted in a

significant reduction of power and has increased spectral efficiency. Moreover, the RRHs

are deployed as small cells that can be densely distributed in a way that causes minimum

interference. Thus, the distance between the User Equipment (UE) and RRHs is mini-

mized, allowing for a more stabilized throughput gain. In addition, the implementation

of BBU pools help to alleviate the energy cost of transmission and reception between the

RRH and the BBU.

However, the efficiency of C-RAN is heavily dependent on the processing resources

available in the BBU pool. In other words, there is a tight correlation between the

efficiency of the mapping of computing resources from BBU to RRH and the overall

performance of the system. The dense deployment of small cell imposes the necessity of

distributing and allocating the resources for RRHs in the BBU pool intelligently. In 2006,

the consumed electricity of data centers was estimated as 1.5% of the total generated elec-

tricity which is similar to the annual consumption of around 5.8 million households [12].

Consequently, various studies have been conducted to shade the light on the importance

of alleviating the power consumption of cloud data centers. In [13], authors presented
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various methodologies for resource management in cloud data centers in order to increase

their energy efficiency. A workload predictions through machine learning and stochastic

theory [14] is an example of different study proposed an energy-aware framework for cloud

data centers. The study has concluded that the utilization of Virtual Machines (VMs) is

a key aspect in the power consumption of cloud data centers where a less utilized VMs

leads to significant increase of VMs’ requests. As a result, more physical resources will be

accommodated. Therefore, resource scheduling between RRH and BBU is essential for

efficient and reliable C-RAN implementation. In order to quantify these resources, the

system calculates the computing requirements of each RRH and accordingly distributes

the resources available within the BBU pools.

On the other hand, the computing requirements of each RRH are related to the

scheduling of the physical resources to the users such that the Quality of Service (QoS) is

satisfied. Because of this, the system has two levels of scheduling, each of which carries

the same importance. The system first ensures user satisfaction by suitably distributing

the physical resources and then schedules the baseband processing requirements simul-

taneously to all the BBU pools. Therefore, it is vital to optimize the scheduling process

at each level. Moreover, optimizing computing resources in cloud systems is important

because of the increased demand caused by intensive applications. In addition, network

operators seek to minimize the cost of expanding resources while also having adequate

computing resources available for instant processing.

1.3 Evolved Packet Core (EPC) Architecture

EPC offers the core functionality for LTE technology as an end to end IP based

core network. EPC was introduced in 3GPP Release 8; it has the ability of transferring

packets from the user equipment to the other end such as internet, VoIP, and etc., in IP

based architecture. It also supports other technologies like 2G and 3G.

1.3.1 EPC Key Roles

• Session Management. The main function of EPC is that it handles the establish-

ment of UE session by assigning bearers with specific quality of service require-
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ments.

• Security and Privacy. Considered to be one of the essential functions of EPC. EPC

is responsible for authenticating and providing encryption to UE for privacy.

• Mobility Management. EPC has the ability of tracking users among their move-

ments between different cells as well as managing handovers and location registra-

tion.

• Policy and Charging Control. It has the role of categorizing users’ policies and

enforcing the quality of service accordingly.

1.3.2 EPC Essential Components

The essential elements of EPC are depicted in Figure 1.1, and explained as follows:

MME 

S-GW P-GW

HSS

INTERNET
S1-U S5

S6a

S8

S1-MME

S11

SGi

SIGNALS

TRAFFIC

Figure 1.1: Evolved Packet Core (EPC) architecture.

• Mobility Management Entity (MME). The core element of EPC and the main

source of intelligence is that in one hand performs a management role of the User
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Equipment activities with the core network such as initiating the connectivity to

the network, assigning resources, roaming and handovers. Moreover, MME provides

various security procedures to protect the user authentication and integrity. On

the other hand, it is also compatible with different legacy technologies such as 2G,

3G, and wireless.

• Policy and Charging Rules Function (PCRF). Manages and controls the

services dynamically among the users, and applies policy enforcement and flow-

based charging via the Policy and Charging Enforcement Function (PCEF).

• Serving Gateway (S-GW). Acts as an access node between eNodeB node and

PDN Gateway (P-GW). S-GW also maintains a valid path to the core network

to allow mobility of different terminals in the E-UTRN technology or with other

3GPP standards.

• Packet Data Network (PDN) Gateway (P-GW). A gateway that leads to the

external data network. In addition, P-GW has PCEF which enforces the operator-

defined rules for allocating the resources and filtering the packets.

• Home Subscriber Server (HSS). A centralized data base for storing user infor-

mation used for authentication and authorization.

1.4 Cloud Radio Access Network Architecture

Wireless networks have faced an increasing demand to cope with the exponential

growth of data traffic. The conventional architecture of wireless networks has hindered

the evolution of network scalability. However, the introduction of cloud technology has

brought tremendous flexible and scalable on demand resources. As a result, Cloud Radio

Access Networks (C-RANs) have been introduced as a new trend in wireless technolo-

gies. C-RAN architecture mainly consists of three parts: Remote Radio Head (RRH),

Baseband Unit (BBU), and the optical network that connects them. These essential

components are shown in Figure 1.2 and explained in the subsequent subsection.
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Figure 1.2: Cloud Radio Access Network (C-RAN) architecture.

1.4.1 C-RAN Essential Components

C-RAN has on demand centralized processing resource pool that contains multiple

processing resources in its own. C-RAN contains three essential components as the

following:

1. Remote Radio Head (RRH): RRH is responsible to transmit the radio frequency

(RF) signal in the downlink and carries the baseband signal to the virtualized

BBU pool in the uplink. RRH has the same role of a simple traditional system of

offering the signal coverage for the users in a simplified manner due to the BBU

role performing most of the signaling processing operations. Therefore, RRH simple

architecture allows having a large number of RRHs distributed with a reduced total

CAPEX.

2. Baseband Unit (BBU) Pool: Contains set of soft processing BBU nodes each
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of which functions to process the basband signals and performs the optimization

for the radio resource allocations. The set of the software defined BBUs are located

in a centralized site. The processing resources are dynamically allocated based on

the scheduling of users and channels’ conditions.

3. Transport Network: A high-speed transport network that connects between the

BBU nodes in the pool and the RRUs. The transport network can be applied

through various technologies such as microwave transmission or optical fiber.

1.5 Thesis Objectives and Contributions

LTE technology have imported the circuit and packet network of 2G/3G to new

flatter IP-network architecture. The new IP paradigm has significantly changed the be-

havior of control plane signaling. As the base station controller (BSC)/RNC has been

eliminated from the new architecture. Instead, the control signaling is distributed be-

tween the eNB and MME. This indeed introduces simpler network architecture and more

efficient data traffic handling. In spite of all these the advantages mentioned earlier,

the signaling has the potential to increase due to the direct connectivity between the

E-UTRAN and the MME [15], it is estimated that the average number of messages per

subscriber delivered to MME is multiplied by approximately 3 to 4 times when compared

to the conventional SGSN [16].

In this context, the signaling overhead is studied for both uplink and downlink.

An efficient and novel algorithm that enables a significant reduction of the TAU and

paging signaling traffic is defined. To the best of our knowledge, the proposed design

is the first that includes MME in the system optimization. Two schemes have been in-

vestigated, namely, the distributed MME scheme and the centralized MME scheme. In

these schemes, both overlapping TAL assignment and efficient mapping of the MME to

the TA/TAL are considered. Furthermore, a heuristic algorithm is presented as a low-

complexity approach that gives a sub-optimal solution.

The second part of the thesis intends to enable adaptive online cell-to-TAL assign-

ment in order to further investigate the proposed pooling schemes. UEs are usually in

continuous movement and their coordination is not static. Hence, the initial static assign-

ment for cell-to-TAL will gradually become ineffective over a specific period. Therefore,
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there is a need to revise the TA assignment constantly in order to suit the current mobility

state. Unlike conventional TA, the TAL concept allows TA assignment to be modified

without interruption of service. This is an advantage of TAL over conventional TA,

because TAL provides greater flexibility to the system. Moreover, LTE allows for an

auto-reconfiguration feature that adapts the network configuration whenever there is a

change in the UE statistics, such as movement patterns and loads.

The third part targets solving the problem of minimizing the signaling overhead

using three evolutionary artificial algorithm. The selected algorithms belong to different

heuristic search families each of which has been tested for the speed of convergence un-

der different initial random values. Moreover, the reliability of the algorithms are tested

based on the relative standard deviation value for the objective function. The three al-

gorithm have proven to be reliable for solving the problem of minimizing the signaling

overhead when deployed in a large-scale scenario.

The fourth part discusses C-Radio Access Network infrastructure particularly the

Baseband Unit (BBU) where a pool of BBUs gather to process the baseband signals. We

argue that there is a need of optimizing the processing capacity in order to minimize the

power consumption and increase the overall system efficiency.

A formulated optimization model depicting the two levels of scheduling (from phys-

ical resources to users and from RRHs to BBUs) in C-RAN environment is presented.

To the best of our knowledge, this study is the first to propose a complete optimization

model formulating a strategy for both ends. In the level comprised between cells and

users, resources are distributed among users, which have different QoS requirements. As

a consequence, the system has to optimize resource allocation accordingly while main-

taining other aspects such as availability of physical resources, satisfying the QoS, and

continuity of service. In the RRH and BBU level, computing requirements need to be

processed instantly in the available BBU pool available while maintaining power con-

sumption and optimizing computing resources. This model is an NP-HARD problem

because of the two levels resource assignments. The problem of finding optimal assign-

ment is known to be intractable to be solved in a polynomial time [17, 18]. Therefore, the

model is simplified into two sub-problems using the proposed decomposition model. In

addition, two heuristic solutions of lower complexity are proposed to solve both problems.
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1.6 Thesis Organization

The thesis is divided into six chapters. Chapter two introduces a model that re-

lates the tracking area list to the mobility management entity (MME) which enables

more control and adds intelligence to the system. Two MME pooling schemes are in-

vestigated namely, centralized and distributed MME schemes. The proposed model is

NP-hard; thus, the problem can be simplified with a few assumptions (which do not vio-

late the constraints of the problem) to become a solvable linear problem (LP). Moreover,

a low-complexity heuristic algorithm is developed by determining the percentage use of

the lists/MME in each cell.

Chapter three attempts to improve the intelligence of location management tech-

niques. As an extension of Chapter one, a Self-Organizing Network (SON) that enables

dynamic reconfiguration of cell-to-TAL/MME is introduced. A decomposition model that

reduces the original formulated problem to two sub-problems is proposed, each of which

is solved optimally. In addition, a smart cell-to-TAL selection scheme is proposed to

prioritize potential cells that might be visited by a user equipment (UE). Our method is

shown to outperform several state-of-the-art methods presented in the literature. Finally,

a heuristic algorithm is presented to obtain a less complex solution than the optimal one.

Chapter four focuses on solving the problem of minimization the signaling overhead

caused by the location management messages by deploying three evolutionary algorithms

namely; particle swarm optimization (PSO), artificial bee colony (ABC), gravitational

search algorithm (GSA). Furthermore, the chapter presents a comparison between all of

the listed algorithms in terms of objective function minimization and algorithm’s speed

of convergence when applied to large scale network. The deployed algorithms guarantee

yielding the minimum values of the signaling overhead for TAU, paging and the consumed

battery power of the user.

Chapter five discusses the optimal allocation of computational resources between

the RRHs and BBUs is modeled. Furthermore, in order to get an optimal RRH-to-BBU

allocation, it is essential to have an optimal physical resource allocation for users to
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determine the required computational resources. For this purpose, an optimization prob-

lem that models the assignment of resources at these two levels (from physical resources

to users and from RRHs to BBUs) is formulated. Due to the high complexity of the

formulated problem, a decomposition model was adopted to solve it by formulating two

Binary Integer Programming (BIP) sub-problems that model the allocation at each level.

Furthermore, two low complexity heuristic algorithms were developed to solve each of

the resulting BIP sub-problems.

Chapter six concludes the thesis and highlight a summery of findings.
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Chapter 2

Intelligent LTE Mobility Management

Through MME Pooling

2.1 Introduction

The 3rd generation partnership project (3GPP) has developed the long term evo-

lution (LTE) technology to accommodate the increasing data traffic and improve system

capacity [19]. LTE offers lower latency, superior speeds, and better quality of service

(QoS) performance for mobile networks. A major component of the LTE system is the

evolved packet core (EPC) which consists of for main elements: Serving Gateway (S-GW),

PDN Gateway (P-GW), Home Subscriber Server (HSS), and the mobility management

entity (MME). The MME provides the control-plane support to user equipment (UE)

in its domain such as bearer management, paging, handover and tracking area updates

[20]. Handling all these functions causes significant signaling overhead at the MME as

it needs to handle an average of 290,000 messages per second [6]. This will result an

increase of Capital Expenditures (CAPEX) and Operating Expenditures (OPEX) when

trying to handle the growing signaling overhead [21]. Two signaling flows dominate the

overhead at the MME namely; Paging that is defined as a control message sent by the

MME to locate a particular UE in a Tracking Area (TA), and Tracking area update

which is another control message sent by UEs to the MME when they move from one

tracking area to another.

The concept of tracking area is introduced within LTE. It is defined to be the area

in which it is possible to track a UE while it is in the idle mode. A tracking area is formed

by grouping a collection of cells together. This concept is known in other technologies.

For example, it is called a Routing Area (RA) in GPRS and UMTS and a Location Area

(LA) in GSM.

A UE has three basic mobility states:
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1. Active mode: the UE can send or receive data to/from the network, and its location

is known to the core network.

2. Idle mode: the UE does not send or receive data, and the core network only knows

the latest TA that the UE registered to.

3. Detached mode: the UE is in a state of seeking (or registering with) a new cell.

To identify the UE location, the LTE core network pages the latest tracking area that

the UE was registered to. The paging signal is received by all of the cells that reside in

the same tracking area. Additionally, the UE will update the core network by sending a

Tracking Area Update (TAU) signal once it moves from one tracking area to another.

However, there are some limitations that are associated with the conventional TA

concept. One inevitable limitation when designing intelligent dynamic cells for TA allo-

cation is the service interruption that occurs whenever a cell is assigned to a new TA,

making dynamic allocation impractical to implement [22]. Another drawback is the sig-

nificant overhead caused by the ping-pong effect of a UE located at the edge between

two different TAs. Moreover, in the TA concept, cells cannot have different perspectives

toward each other. This means that if cell A considers cell B to be located in the same

TA, cell B cannot have a different perception of cell A. This considerably limits the

flexibility of TA design [22]. Finally, TA has a transitive property. For example, if cell

A and B are in the same TA and cell B and C are in the same TA, then cell C and A

will explicitly be in the same TA [22].

Release 8 of 3GPP introduced a new concept known as tracking area list (TAL),

which groups a set of TAs into lists that are then assigned to UEs. This property miti-

gates the significant impacts of paging and TAU signaling. Moreover, TALs have a clear

advantage over standard TAs in terms of minimizing the ping-pong effect that affects

UEs that frequently move from one TA to another. In addition, TALs overcome the TA

limitations mentioned above. This introduces a flexible cell to TA allocation and reduces

the high uplink traffic. Each cell is responsible for determining the TAL for each UE

residing in it. The Mobility Management Entity (MME) is capable of tracking each UE

in the latest TAL that the UE was registered to.

In this context, the signaling overhead is studied for both uplink and downlink.

An efficient and novel algorithm that enables a significant reduction of the TAU and
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paging signaling traffic is defined. To the best of our knowledge, the proposed design

is the first that includes MME in the system optimization. Two schemes have been in-

vestigated, namely, the distributed MME scheme and the centralized MME scheme. In

these schemes, both overlapping TAL assignment and efficient mapping of the MME to

the TA/TAL are considered. Furthermore, a heuristic algorithm is presented as a low-

complexity approach that gives a sub-optimal solution.

It is noteworthy that there is a correlation between TAU and paging: the more

cells assigned to a TA/TAL, the smaller the number of TAU storms to the core network

(specifically to the MME). In contrast, the paging signaling spreads will increase as the

number of cells assigned to the TA/TAL increases.

Several studies have investigated cell-to-TA/TAL assignment problem as they used

various techniques to optimize the system by minimizing the signaling overhead. At

present, none have investigated TA/TAL-to-MME assignment, which has the same im-

portance as investigating cell-to-TA/TAL assignment. TA/TAL-to-MME allocation is

vital for minimizing the signaling overhead gained from the TAU-to-core network, espe-

cially in the MME. The MME receives a large amount of signaling traffic resulting from

several UEs, each making different requests. As a result, it is more valuable to consider

a mechanism to intelligently relate and distribute the signaling load to the MME dur-

ing cell-to-TA/TAL construction. LTE has introduced the concept of MME pooling, in

which the number of clustered MMEs can perform the mobility management function as

one MME. Consequently, this decreases the amount of signaling incurred during various

procedures such as MME relocation. Ultimately, determining the type of MME pooling

versus the TA/TAL allocation will give more accurate control of (and allow optimization

of) the signaling overhead resulting from paging and TAU procedures.

This chapter is organized as follows. Section 2.2 introduces the literature works

performed within this field. Section 2.3 presents the system model and formulates the

problem for both the centralized and distributed schemes. Section 2.4 describes the

heuristic algorithm developed to solve the optimization problem. The simulation param-

eters and results are discussed in Section 2.5. Finally, Section 2.6 concludes the chapter.
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2.2 Related work

Mobility management in different technologies has been thoroughly investigated in

the literature. For instance, a study of GSM technology [23] constructed an analytical

model for a location area overlapping mechanism to reduce the signaling cost caused by

the ping-pong effect; four selection policies were studied to determine the appropriate

percentage of overlapping of LAs. Other works also examined GSM location area mech-

anisms [24, 25, 26].

In LTE systems, the tracking area list design for large networks has been scarcely

explored. In [27], an analysis of LTE mobility management was introduced to evaluate

the performance of paging and TAUs in terms of signaling overhead. Three sequential-

paging schemes are proposed: paging either the cell itself, the TA of the cell, or the TAL

of the cell. Results show that the performance relies on different aspects such as the

number of users, the paging overhead, and the polling cycles. In [22, 28, 29, 30], Razavi

et al. proposed different algorithms for exploiting the TAL concept. An approach for

allocating and assigning TALs in large networks is proposed in [22]. The authors built

a framework for comparing the TAL concept to the standard TA. The cell load and UE

handover statistics were used as metrics to optimize TAL allocation.

In [28], the authors introduced dynamic TAL assignment that takes advantage of

LTE’s reconfiguration flexibility. The mobile network environment does not always have

a steady state in which the load and UE movement remains constant. Frequent changes

in the network behavior trigger the need for an adaptable network configuration in which

the load of the cells and the TAL assignment are frequently updated. Thus, a dynamic

cell-to-TAL assignment that enables optimized assignment for each time interval was

suggested. The authors proposed a rule of thumb method that depends on a TAU and

paging signaling overhead trade-off. It is claimed that the proposed solution outperforms

both conventional TA and the static TAL scheme.

Additionally, a low complexity linear programming model based on overlapping

TAL techniques (to mitigate the TAU signaling overhead and to keep the paging over-

head under a certain limit) was introduced in [29]. In [30], another overlapping TAL

model that linearly optimizes the total signaling overhead at the site level was devel-

oped. The study concluded that an optimum solution could be achieved by assigning



17

each site a single TAL that was allocated to each user registered to that site.

In all of the aforementioned studies, the TA has only one cell and most TAL schemes

were compared with the conventional TA. In [31], the authors introduced an algorithm to

mitigate the signaling burst that is caused by the simultaneous movement of bulk users

such as train passengers. The suggested algorithm selectively discovers the location of the

TAU burst and creates a rule so as to overcome congestion in the next time interval. In

[32], an adaptive algorithm using a movement-based scheme in which the TAL is derived

periodically was introduced. The algorithm sets a movement threshold for all TALs and

then assigns them to users based on their mobility characteristics.

In [20], a comparison between distributed and centralized MME architectures with

respect to the signaling loads was performed. A multicast paging scheme is used instead

of the regular unicast paging scheme. Despite the novelty of the idea, the authors did

not discuss the formulation of the system in detail. For example, determining the op-

timal connection of the centralized MME scheme with the TA/TAL formulation is not

discussed.

In [33], the authors proposed a solution to support high-speed mobile users by re-

locating data anchor gateways based on the user mobility and activity pattern. Authors

have also introduced handover management mechanism that chooses a suitable target

base stations in order to minimize the mobility anchor relocation signaling. In [34], a

scheme was presented that contains a set of SGW service areas each of which serves a

group of cells or tracking areas. As a result, this can significantly minimize the frequent

SGW relocation associated with UE handover.

2.3 System model

2.3.1 Problem definition

We attempt to determine optimal assignment of overlapping tracking area lists (TALs)

for a given set of cells (enB) such that the overall signaling load for both TAU and paging

is minimized. Both centralized and distributed MME pool schemes will be examined to

determine the performance of both schemes; in the centralized MME scheme, one MME

is to be assigned to one TAL , whereas in the distributed MME scheme, one MME
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is assigned to one TA. However, TA-to-cell assignment is expensive and would cause

service interruption in the cell; therefore, it would not be feasible to consider. This

section highlights the notation used in this model.

2.3.2 Design hypothesis

The following points summarize the design hypothesis that is used in this chapter:

• The number of cells that is assigned to each TA is one. (The terms TA and cell

will be used interchangeably.)

• In the distributed MME scheme, the number of TAs that is assigned to the MME

is one.

• In the centralized MME scheme, the number of TAs/cells that is assigned to the

MME is equal to the number of TA/cells that is assigned to the TAL.

• The tracking update cost is ten times greater than the paging cost, as in [35].

• Cell load are not considered in this design. Figures 2.1 and 2.2 depict the two

schemes.

MME

TA/Cell

TA/Cell

TA/Cell

MME

TA/Cell

TA/Cell

TA/Cell

      TAL 1       TAL 2

Figure 2.1: Centralized MME pooling scheme
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TA/Cell

TA/Cell

TA/Cell TA/Cell

TA/Cell

TA/Cell

      TAL 1       TAL 2

MME MME MME MME MME MME

Figure 2.2: Distributed MME pooling scheme

2.3.3 Important notation

The following system of notation is used in the system model:

• Decision variables

X lst
ij =

{
1, if node i and j belongs to the same list lst,

0, Otherwise.

OMlst=

{
1, if list lst belongs to MME M,

0, Otherwise.

Y TAi =

{
1, if node i belongs to tracking area TA,

0, Otherwise.

• Parameters

CTu(i): Total signaling cost of TAU in cell i.

Cu: TAU cost of UE moving from one list to another.

U : Average number of UEs.

UEi: Total number of UEs served by cell i.
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ρ: Paging arrival rate

Hij : The probability that a user moves from cell i to cell j.

Cρ: Paging cost of particular user equipment.

CTρ(i): Total paging cost in cell i.

Cuρ(i) : Total paging and TAU overhead in cell i.

σlsti : Percentage use of each list lst in cell i.

ω: The cost of MME relocation during handover.

L: Total number of lists.

κ: Maximum number of TAs that are assigned to list lst.

2.3.4 Problem formulation

The problem is addressed using a centralized MME scheme and a distributed MME

scheme.

2.3.4.1 Centralized scheme

In this scheme, each TAL is assigned to particular MME. The objective function

consists of two parts, as in [30], namely, TAU and paging overhead. In 2.1, the objective

function is used to minimize the total amount of signaling overhead for all nodes. The

total amount of signaling overhead is calculated by adding the total paging and TAU

overhead, as presented in equation 2.2.

min
N∑
i

Cuρ(i) (2.1)

CTρ(i) + CTu(i) = Cuρ(i), ∀i ∈ N (2.2)

Equation 2.3 calculates the total resulting paging signaling overhead in cell i by paging

all cells within the same list of cell i. The first term calculates the summation of all users

in cell i multiplied by the percentile use of each list lst used in node i. To clarify the first

term further, each user might have different lst depending on the list usage in each cell.

The summation checks every list with its usage percentage and multiplies it by the total

number of users in that cell. The second term of the equation checks each cell j that is

within list lst and multiplies the number of users in that cell by the usage percentage of
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list lst used in cell j. Figure 2.3 depicts an example of the different cells covered by two

lists.

Figure 2.3: Three cells covered by two different lists

CTρ(i) = ρ .Cρ(
L∑

lst=1

UEi.σ
lst
i +

(
L∑

lst=1

N∑
j,i6=j

UEj . X
lst
ij .σlstj )), ∀i ∈ N

(2.3)

Equation 2.4 is the total TAU cost function, which is a summation of the probability of

users crossing between two different cells that are not in the same list, multiplied by the

cost of the tracking update. The value of ω is added to the cost once the user moves

from cell i to j.

CTu(i) = U.Hij .Cu(
L∑

lst=1

ω. OMlst. σ
lst
i (1−X lst

ij )),

∀i, j, i 6= j ∈ N

(2.4)

Constraint 2.5 ensures that the number of TAs inside the TAL lst do not exceed the limit

defined in the standard. Constraint 2.6 ensures fair usage of lists inside each cell i, this

constraint is vital to ensure a fair usage of MMEs and enhances the system load balance.
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In 2.7, the constraint creates a strict policy for any i and j that exist in the list; j and

i should also be in the same list. Lastly, 2.8,2.9 and 2.10 are used to create boundaries

for the decision variables.

N∑
i

σlsti .X lst
ij = 1, ∀lst ∈ L (2.5)

N∑
ij,i6=j

X lst
ij 6 κ, ∀lst ∈ L (2.6)

X lst
ij = X lst

ji , ∀lst ∈ L, ∀i, j, i 6= j ∈ N (2.7)

σlsti ≥ 0 (2.8)

OMlst ∈ 0, 1 (2.9)

X lst
ij ∈ 0, 1 (2.10)

2.3.4.2 Distributed scheme

The only difference between the distributed scheme and the centralized scheme is

the TAU method, which assigns each TA to specific MME. As a result, an additional

signal load will be gained from the MME relocation that is equivalent to the number of

TAs multiplied by the signaling load gained from any UEs that move from cell i to j, as

shown in equation 2.11. In this context, S-GW relocation is not considered.

CTu = (U.Hij .Cu(
L∑
lst

ω. Y TAi +

σLi (1−X lst
ij )) , ∀i, j, i 6= j ∈ N

(2.11)

The optimization problem described above is a Mixed-Integer Nonlinear Program

(MINLP) with quadratic equality constraints. This is a well-known NP-hard problem

that cannot be solved to optimality. Therefore, we transform it into a linear program

(LP) by making two valid assumptions:

• Assume that each MME handles a single list, and thus, the variable OMlst is known

a priori.
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• Assume that we know the number of TALs and which cells are included in each

list, i.e., the values of X lst
ij , are known a priori.

Using these assumptions, we can solve the problem to optimality. Despite the efficient

techniques to solve LPs, lower-complexity algorithms can be developed to solve such

problems for large scale scenarios.

2.4 Heuristic Algorithm

In this section, we develop a heuristic algorithm to find the usage percentage of each

list for each cell in the system. In order to justify the need for the heuristic algorithm,

we must first discuss the complexity of the decomposition algorithm. The original prob-

lem presented is intractable since the model is a mixed-integer nonlinear programming

(MINLP) problem with quadratic equality constraints, which is a well-known NP-hard

problem that is difficult to solve to optimality. It was assumed that one set of decision

variables was known in order to be able to transform the problem to a solvable linear

programming problem. This was done for bench-marking purposes. However, such an

assumption may not be possible in a realistic environment. Hence, a heuristic algorithm

is proposed that solves the problem without making any assumptions about any of the

decision variables. The decision variables are determined by finding the number of lists

each cell belongs to and sending these lists with equal percentage to the users’ equip-

ment residing in the cell. The pseudo-code for the algorithm is depicted in Algorithm 1.

The algorithm is divided into 3 phases. In lines 3-10, the number of lists that each cell

belongs to is determined by performing an exhaustive search of all lists. The percentage

use of each list in each cell is calculated in lines 11-14. The signaling overhead of both

schemes is calculated in lines 17-22 using the appropriate equations. In the proposed

heuristic solution, the lists that each cell belongs to are used equi-probably. In contrast,

the optimal solution distributes each list equally among the cells in it. The complexity

of the suggested algorithm is of order O(LN) where L is the number of lists and N

is the number of users. The motivation behind the suggested heuristic is that we seek

to minimize the signaling overhead caused by tracking area update requests. This is

done by sending to each cell all the lists/MME it belongs to, thus increasing the pool

of lists/MME, which contain different cells, available for its users. This will reduce the
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Algorithm 1 Heuristic Algorithm

2: Input: lst = {1, 2, .., L}: all lists
TA = {1, 2, ..., N}: all tracking areas
X lst
ij : Cells-to-list binary indicator

3: Output: σlsti : percentage use of list lst in cell i
4: for i ∈ N do
5: define li = φ
6: for lst ∈ L do
7: if i ∈ lst then
8: update li = {li ∪ lst}
9: else
10: continue
11: end if
12: for lst ∈ li do
13: σlsti = 1

||li||
14: end for
15: end for
16: end for
17: Calculate:
Cρ(i) as per equation (2.3)

18: if Centralized Scheme then
19: Calculate:

CTu(i) as per equation (2.4)
20: else
21: Calculate:

CTu(i) as per equation (2.11)
22: end if
23: Calculate:

N∑
i
Cuρ(i) =

N∑
i

(
Cρ(i) + CTu(i)

)

TAU overhead because it will become less probable that users will send a TAU request

while performing handovers.

2.5 Performance evaluation

To evaluate the performance of both the centralized scheme and the distributed

scheme, we perform MATLAB simulations and compare the results of the optimal and

heuristic solutions. The built-in MATLAB function linprog is used to solve the linear

programming problem. We study the performance using the signaling overhead of each
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scheme with respect to two parameters, namely, the number of TALs and the average

handover probability. The simulation assumes there are 10 cells, each having a different

number of users. The number of users is uniformly distributed with an average of 100.

The number of tracking are lists varies between 3 and 5 lists.

Figure 2.4 evaluates the paging overhead performance of both schemes for three

different number of lists. We note that both the centralized and distributed schemes have

the same paging signaling overhead; this is caused by the cost being the same in both

schemes. The same is noted for the heuristic approach. However, the optimal scheme

clearly outperforms the heuristic one because the heuristic cares about the number of

lists that each cell belongs to rather than the content of each list.

Figure 2.5 shows the TAU cost. It is noted that the centralized scheme outperforms

the distributed scheme due to the differing MME relocation cost calculation. In the

centralized scheme, this cost is reduced by the percentage use of the list in each cell.

However, in the distributed scheme, there is a fixed cost for every MME relocation, thus

increasing the signaling overhead. The total signaling overhead is shown in Figure 2.6.

It is noticed that it follows the same trend as the TAU. This result is expected because

it is assumed that the TAU cost is the dominant cost (CTu >> CTρ). It is noted that

the distributed scheme results are very close to the optimal. This is because of the MME

reallocation weight factor has the dominant impact on the equation of the distributed

scheme. Thus the gap between the optimal and the heuristic is small. On the other

hand, in the centralized scheme, the weight factor is multiplied by the usage percentage

of each list resides in the cell. Therefore, the gap is much wider in this scheme.

Figure 2.7 shows the total signaling overhead as a function of the average han-

dover probability. As expected, the signaling overhead increases as the average handover

probability increases because the TAU will increase because of the higher number of

handovers. Moreover, the centralized scheme outperforms the distributed scheme. As

discussed above, this result is due to the fixed cost of the handover. Therefore, the sig-

naling overhead due to the TAU increases as the number of handovers increases, resulting

in an increase in total overhead.
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Figure 2.4: Paging signaling overhead cost
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Figure 2.5: TAU signaling overhead cost

2.6 Conclusion

Tracking idle users is essential in cellular networks. The concept of the TA is

introduced in LTE as the area in which idle UEs can be tracked. The TAL is a new
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Figure 2.6: Total signaling overhead cost for different number of lists
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Figure 2.7: Total signaling overhead cost for different handover probabilities

concept introduced in release 8 of 3GPP for LTE networks. A TAL contains a set of

TAs that is sent to the UEs in an attempt to reduce both the paging overhead and the
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TAU signaling overhead. In this chapter, an optimization problem was formulated that

aims to minimize the total signaling overhead. Two schemes were introduced, namely,

a centralized scheme that allocates cells to specific lists with each list being handled by

a single MME and a distributed scheme that allocates cells to specific lists but with

each tracking area being handled by a single MME. The optimization problem is an

MINLP that is shown to be NP-hard. Therefore, it is transformed into a linear problem

by assuming the knowledge of the cell-to-list allocation. Also, a heuristic algorithm is

developed that finds the usage percentage of each list by determining the number of lists

that each cell belongs to.

MATLAB simulations showed that the overhead increases as the number of lists

increases. Moreover, the centralized scheme outperforms the distributed scheme because

the MME relocation cost in the centralized scheme is multiplied by the percentage use

of the list in each cell. On the other hand, the relocation cost is fixed in the distributed

scheme. Thus, the signaling overhead due to the tracking area update is much larger

at the MME level. Furthermore, the optimal solution outperforms the heuristic because

the heuristic determines the decision variables by finding the number of lists that each

cell belongs to, whereas the optimal solution focuses on the content of each list and

distributes it equally among the cells in it.
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Chapter 3

Dynamic SON-Enabled Location

Management in LTE Networks

3.1 Introduction

Various mobility management techniques have been investigated extensively from

different perspectives, such as overlapping, dynamic, and static cell-to-TAL assignment.

The current chapter is an extension of the previous chapter, which introduced cell-to-TAL

assignment with two MME pooling schemes. Centralized and distributed MME pooling

schemes were investigated in order to explore the difference between both schemes stat-

ically [36]. In this context, we intend to enable adaptive online cell-to-TAL assignment

in order to further investigate the proposed pooling schemes. UEs are usually in contin-

uous movement and their coordination is not static. Hence, the initial static assignment

for cell-to-TAL will gradually become ineffective over a specific period. Therefore, there

is a need to revise the TA assignment constantly in order to suit the current mobility

state. Unlike conventional TA, the TAL concept allows TA assignment to be modified

without interruption of service. This is an advantage of TAL over conventional TA,

because TAL provides greater flexibility to the system. Moreover, LTE allows for an

auto-reconfiguration feature that adapts the network configuration whenever there is a

change in the UE statistics, such as movement patterns and loads.

In release 8, 3GPP introduced the concept of a Self-Organizing Network (SON)

that provides a methodology for planning, managing, and optimizing mobile networks

in order improve performance efficiency and system reliability. SON has been widely

accepted in industry and academia [7, 8]. 3GPP has also released different use cases for

LTE, offering self-optimizing and self-healing paradigms. In this context, adaptive TA

list management can be used as an SON use case as in [9], which can further reduce the

signaling load. In addition, introducing different techniques that relate the TA list to
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the behavior of the mobile network would further optimize the signaling overhead. Thus,

cell-to-TAL assignment can be engineered dynamically while the UE is in continuous

movement. The system keeps analyzing the mobility pattern and continuously updates

the TA assigned to the list. Thus, the frequency of TAU will be reduced significantly.

In this chapter, the mobility pattern is obtained using a fluid flow model to estimate

the handover correlation between cells. One way to measure the efficiency of a dynamic

system is to examine the UE battery life. Therefore, the UE’s battery consumption in

static and dynamic techniques will be compared.

The contributions of this chapter can be summarized as follows:

1. A dynamic cell-to-TAL problem is proposed and formulated as a mixed integer

non-linear programming (MINLP) problem with quadratic equality constraints.

This approach is different from the previous approach presented in [36], where the

problem was solved statically by finding the optimal assignment once.

2. The problem is solved using a decomposition model that divides the problem into

two sub-problems. The decomposition model allows optimal assignment of cell-

to-TAL dynamically instead of having it known a priori in a static fashion as in

[36].

3. A new heuristic algorithm differs from the one proposed in the previous chapter and

constitutes of two sub-problems in the same manner as the decomposition model.

The algorithm dynamically diversifies the TALs among the cells which helps in

reducing the TAU signaling load.

4. The proposed dynamic technique is realized through an SON scheme along with

a new smart cell selection approach instead of the conventional ring-based cell

selection presented in the literature.

5. The proposed algorithms are compared with three state-of-the-art methods pre-

sented in the literature : [7],[9], and [37].

The remainder of this chapter is organized as follows. Section 3.2 reviews studies on mo-

bility management techniques. Section 3.3 presents a detailed description of the system

model and formulates the problem for both the centralized and the distributed schemes.
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Section 3.4 describes the heuristic algorithm developed to solve the optimization prob-

lem. Section 5.4 discusses the simulation parameters and results. Finally, Section 3.6

concludes the chapter.

3.2 Related Work

A considerable amount of research effort has been devoted to the study of location

management in various technologies, specifically in terms of location management, which

has not changed much in recent years. In this context, we essentially highlight two major

sources of signaling that are directly related to location management: TAU and paging.

Numerous studies have discussed the issue of signaling burst caused by TAU and paging.

Most of these approaches have investigated the signaling overhead when configuring LA

or TA having the same properties. Few researchers have addressed the signaling overhead

from the perspective of TAL construction, even though TAL has greater importance and

flexibility than LA or TA. In fact, most studies have failed to provide a rigid framework

that can provide technical support and is applicable to real-world scenarios.

As an example of previous proposals for older technologies, an overlapping location

area mechanism was proposed in [23] for GSM technology. The purpose of the study was

to minimize the signaling load resulting from the ping pong effect. The study introduced

four selection policies for determining the location area (LA) percentage. Similar related

studies have been conducted [24, 25, 26].

Furthermore, TAU and paging techniques have been investigated for the purpose

of reducing the signaling load. Several studies [38, 39, 40] have discussed a number of

methods, such as timer-, velocity-, and movement-based ones. However, the aforemen-

tioned methods are not commonly used in the current TA/TAL approach.

Few studies have discussed the signaling load in terms of steering the load through

the control-plane elements, such as MME or service gateway (S-GW). In one study [20], a

concept that enables two modes of MME distribution, namely centralized and distributed

MME, has been introduced. The study proposed analysis of both architectures in terms

of the signaling load resulting from user mobility. The authors also presented a compari-

son between multicast and unicast paging. While the study reported some findings using

distributed and centralized MME architectures, it did not discuss the fundamentals of
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TA/TAL construction that allow further exploration of both architectures. Furthermore,

the authors did not illustrate how the MMEs are allocated and implemented in their

model. Another study [33] has proposed a model that supports high-mobility users by

relocating data plane gateways on the basis of the UE’s mobility pattern, thereby mini-

mizing the relocation frequency.

In [34], the authors defined the concept of S-GW service area, where a pool of

S-GWs serves TAs or cells. The objective is to eliminate frequent disconnections that

occur when the UE moves to a different cell or TA. The concept focuses specifically on

active users whose Quality of Service (QoS) can be degraded significantly during S-GW

re-allocation.

A number of studies have proposed dynamic TA/TAL techniques that can opti-

mize the signaling overhead periodically [28, 32, 41]. In [28], the authors explored the

advantage of dynamic TAL configuration by introducing a ”rule of thumb”. The ap-

proach attempts to minimize the signaling overhead on the basis of the TAU and paging

correlation. It succeeded in reducing the overhead to a greater extent than conventional

TA. In the proposed model, dynamic configuration is achieved after a fixed period, which

does not yield accurate results in environments having UEs moving at different speeds.

In [32], the authors introduced an adaptive model that constructs a suitable TAL for

each user in a set of cells represented as an individual TA. The adaptive configuration is

triggered periodically on the basis of a defined movement threshold. This model does not

clearly indicate the feasibility of the solution when dealing with a large-scale scenario.

Moreover, the authors did not provide a detailed description of the physical parameters of

the system, such as the cell radius and the users’ velocity. In [41], the authors presented

a dynamic model that allows TAs to be configured as user mobility patterns change.

The algorithm tends to use the graph correlation coefficient method, which measures

the similarities in user mobility behavior within a certain period and triggers new TA

construction. The approach is expensive owing to the high cell-to-TA reconfiguration

cost.

Other studies have deployed TA/TAL configuration as an SON use case, e.g., [9].

The system implements procedures and protocols based on the UE behavior pattern.

Consequently, the TA/TAL is configured periodically to minimize the signaling burst.

The study proposed adapting the TAL configuration depending on the user mobility
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pattern using a set of femto-cell mesh networks. Each TAL can be configured dynami-

cally on the basis of the UE’s mobility status. Despite the novelty of the algorithm, the

model does not specify some major design aspects, such as the advantage of overlapping

TALs in the cells, which can contribute significantly toward minimizing the signaling

load.

TAL has been explored and modeled in [22, 29, 30, 27, 7]. In [22], the authors

proposed a model for TAL that can be applied to a large-scale scenario, and they showed

the advantages of TAL over the conventional TA concept. Thus, they tried to provide

an abstraction of the TAL design and its benefits. In [29], the same authors proposed an

optimization model based on overlapping TALs, which would allow a cell to distribute

different TAL portions to a set of users residing in that cell in order to alleviate the

TAU signaling load whilst restricting the paging load within a defined limit. In [30],

the authors formulated a linear programming (LP) model based on overlapping TALs

in large-scale scenarios and compared it with the conventional TA technique. Mobility

management in LTE was also investigated in [27]. Paging and TAU were analyzed in

terms of signaling. Three sequential paging schemes were presented, namely cell-TAL,

TA-TAL, and cell-TA-TAL, whereby the MME first requests the cell to page the UE, and

if the cell fails to allocate the UE, the MME sends another request to all cells residing in

the TA or TAL. This can also be done in a different order. The authors concluded that

the results vary with the number of users, paging schemes, and polling cycles. Thus, the

selection of potential paging schemes will depend on several factors, such as minimizing

the signaling cost of paging and TAU or reducing the number of polling cycles. Lastly,

the performance of TAL was modeled and analyzed in [7]. The study investigated TAL

modeling from several aspects, e.g., limited number of TAs in the TAL, and introduced

two call-handling models that can provide a more realistic view of the system. The total

signaling cost was calculated and the optimal TAL for UEs was determined. However,

the authors did not verify the validity of the model in large-scale scenarios. Moreover,

the model did not emphasize the design of overlapping TALs or the distribution of TALs

within the system.
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3.3 System Model

3.3.1 Problem Definition

The objective of the problem is to minimize the signaling overhead due to TAU

and paging in the core network. Furthermore, our model seeks to achieve load balancing

through different MMEs. The same concept presented in our previous chapter [36] will

be applied along with an SON dynamic algorithm; the latter enables periodic cell-to-

TAL/MME configuration. The model consists of two pooling schemes, namely centralized

and distributed schemes. The following table (Table 3.1) summarizes the notations used

in the system model.

3.3.2 Preliminaries

In order to design a valid model for minimizing the signaling load, we first show

that paging and TAU have a tight correlation that can be used for constructing a TAL. A

TAL consists of a number of TAs, each of which can be represented as one cell. The size

of each TAL has a direct influence in terms of signaling. In other words, as the number

of cells accommodated inside a TAL increases, the paging signaling load increases and

the TAU signaling load decreases, and vice versa. This is a result of the TAU and paging

mechanisms. A TAU signal is triggered to update the user’s location within the MME.

This is done whenever a user moves to a cell that is in a different TAL. A paging signal

is triggered to locate the user by messaging all the cells of the last TAL to which the user

was registered. As the number of cells within a list increases, fewer TAU are required

because the probability that the user changes the list has decreased. However, paging

would increase because the MME would need to send messages to a larger group of cells

in order to accurately determine the location of the user. Thus, the signaling overheads

due to TAU and paging are inversely proportional. This can be clarified in the following

equations 3.1 and 3.2. Let us assume that X l
ij is the cell-to-list assignment, where cells i

and j reside in list l. Further, the constant costs of paging and TAU are denoted by Cρ

and Cu, respectively. We can now express the initial cost functions of paging and TAU

caused by a UE as follows:
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Table 3.1: Table of Notations

CTu(i) : Total signaling cost of TAU in cell
i.

Cu : TAU cost of UE moving from one
list to another.

UEi : Total number of UEs served by
cell i.

ρ : Paging arrival rate.
U : Average number of UEs.

Hij : Probability that a user moves
from cell i to cell j.

Cρ : Paging cost of particular user
equipment.

CTρ(i) : Total paging cost in cell i.
Cuρ(i) : Total paging and TAU overhead

in cell i.
L : Total number of lists.
N : Total number of cells.
lst : Individual list.
κ : Maximum number of TAs that

are assigned to list lst.
ω : Cost of MME relocation during

handover.

HX lst(i) : Inter-list handover rate of users in
cell i.

OMlst =

{
1, if list lst belongs to MME M ,
0, otherwise

Y TAi =

{
1, if node i belongs to TA,
0, otherwise

Decision Variables

σlsti : Usage ratio of each list lst in cell
i.

X lst
ij =

{
1, if nodes i and j belong to lst,
0, otherwise
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• The cost function of paging a specific UE within a certain cell i is given by

Cρ ∗
L∑
l

(
σli +

N∑
j=1,j 6=i

σljX
l
ij

)
(3.1)

In order to clarify the equation above (3.1), let us assume that cell 1 and 2 are in

the same list 1, the value of X1
12 is set to 1, all other variables are either set to

one or zero depending on whether or not they belong to the same list. Equation

(3.1) calculates the cost function of paging a specific user belonging to particular

cell which is cell 1 in this example. Thus, variable X1
12 would be multiplied by

the usage ratio of list 1 in cell 1 (denoted as σ1
1) as well as a constant value of the

paging cost Cρ. The value of σ1
1 is 1 since cell 1 only belongs to one list which is

the only list provided to the cell. Similarly, σ1
2 is also one since cell 2 belongs to

one list only. Therefore, the core network would page every cell belonging to list 1

that the intended user is within (cells 1 and 2 in this example).

• The cost function of TAU generated by a specific user crossing two cells that are

not within the same TALs l is given by

Cu ∗
L∑
l

σli(1−X
l
ij) (3.2)

Equation (3.2) is to calculate the tracking area update cost generated by a specific

user moving from cell i to cell j. Let us assume that a user moves from cell 2 to

cell 3 that is not within the same list (e.g, cell 2 belongs to list 1 and cell 3 belongs

to list 2). The TAU cost would be multiplied by one for each two cells that are

not within the same list. Note that the same reasoning given for the paging cost is

used here for the value of σ and hence, σ1
2 is set to 1 whereas σ2

2 is set to 0 because

cell 2 belongs to list 1 and not list 2. Therefore, the user would incur a signaling

overhead equal to the TAU cost Cu.

3.3.3 Design Hypothesis

As stated previously, the model consists of two MME pooling schemes. The cen-

tralized MME pooling scheme allocates each TAL to an individual MME element. On
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the other hand, the distributed MME pooling scheme allocates each TA or cell to an

individual MME element. Note that in our architecture, a TA always contains only one

cell; this simplifies the problem and avoids the cell-to-TA assignment constraint. Fur-

ther, in this context, a cell or TA can be used interchangeably and will have the same

constraint.

The model have two levels of configuration: cell/TA-to-TAL/MME assignment, which

can be handled periodically by the core network as illustrated in the first sub-problem,

and TAL/MME-to-UE assignment, which will be handled through each cell as explained

in the second sub-problem. First, in terms of cell-to-TAL/MME assignment, the system

considers the mobility pattern of the UEs within the cells and dynamically assigns or

re-assigns the cells inside the TALs in order to minimize the TAU signaling overhead.

Second, in terms of TAL-to-UE assignment, each node will assign a number of TALs to

a portion of UEs residing within that cell with a defined usage ratio, denoted by σlsti .

The decision variable σlsti determines the usage ratio of each TAL within each cell. This

results in overlapping TAL assignment to cells. Furthermore, this technique can also

provide load balancing through the MMEs in the centralized pooling scheme, because

each MME represents an individual TAL.

3.3.3.1 Cell/TA-to-TAL/MME Assignment

We attempt to determine the optimal cell/TA-to-TAL/MME assignment in the central-

ized pooling scheme, while the distributed scheme considers cell-to-TAL assignment only.

In the centralized scheme, each TAL can be allocated to each MME on a one-to-one ba-

sis. Alternatively, in the distributed scheme, each cell is represented as a TA that is

assigned to an individual MME. LTE has defined the maximum number of TAs that can

be allocated to a TAL to be 16. As a basic definition for the assignment constraint, we

can use the binary decision variable X lst
ij to determine whether cells i and j reside in the

same tracking area list. The constant κ is the maximum number of TAs in the TAL as

described in the following equation:

N∑
i

N∑
j,j 6=i

X lst
ij 6 κ, ∀lst ∈ L (3.3)
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The purpose of the above-mentioned constraint is to allocate a maximum of 16 cells/TAs

to each TAL. However, to eliminate the redundancy of cell/TA combinations in each

TAL, another constraint should be considered as follows:

X lst
ij = X lst

ji , ∀lst ∈ L, ∀i, j, i 6= j ∈ N (3.4)

We can represent X lst
ij as a matrix having different cell/TA-to-TAL/MME combinations.

To describe the search space that X lst
ij can have, let us assume that the maximum number

of cells/TAs in a list is 3 and that there are 3 lists or MMEs. Therefore, there will be

3 x 3 possible combinations of the binary variable X lst
ij generated in the system. The

following matrix shows the choices that list lst can have.

X lst
ij =


1 2 3

1 0 1 0

2 0 0 1

3 1 0 0

 (3.5)

From the aforementioned information, the number of cell-to-TAL combinations can be

generalized as L × N . In this context, a dynamic algorithm is proposed to periodically

update the cell-to-TAL configuration. A cell can have a number of neighboring cells

that are initially arranged as rings. Numerous studies, e.g., [7],[9],[37] have considered

periodically expanding or eliminating the cells arranged as rings. In fact, the ring-based

assumption is not entirely efficient in terms of minimizing the signaling load. This is

because the concept of rings might involve cells that have a low probability of being vis-

ited owing to their mobility behavior. Conversely, our technique involves analyzing the

average mobility behavior of the UEs over a certain period and expanding or eliminating

specific cells not strictly included in the entire ring. In other words, the proposed tech-

nique selects a cell to be included or eliminated from a pool of cells that is not restricted

directly to the surrounding neighbors of the current cell. This can significantly minimize

the signaling load caused by frequent TAL updates and lead to the inclusion of a greater

number of potential cells that are located outside the ring and have a higher probability

of being visited by the UEs. Thus, it is an efficient scheme whereby cells can be chosen

selectively rather than in terms of group of rings. Figure 3.1 shows the difference between
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the proposed smart selection method and the ring selection method. We note that the

smart technique allows different selection shapes, such as the one depicted in orange. On

the other hand, the ring selection technique, shown in green, can only include all the

surrounding cells, regardless of their probability of being visited.

Figure 3.1: Ring neighbor selection versus smart cell selection

3.3.3.2 TAL-to-UE

Each TAL is assigned to UEs via their serving cells. TALs are distributed among

the users based on the number of lists that the cell belongs to. This is because if a cell

is assigned to multiple lists, the UEs need to have access to these multiple lists.

3.3.4 Problem Formulation

The original model that was proposed in previous chapter [36] is used as a base

model for both the centralized and the distributed pooling schemes. The objective of the

model is to minimize the signaling overhead resulting from both TAU and paging. The

model is modified and divided into a bi-objective minimization problem as follows:
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• Objective function

min α

N∑
i

Cuρ(i) + β
N∑
i

HX lst(i) (3.6a)

• Cost functions

Cuρ(i) = CTρ(i) + CTu(i), ∀ i ∈ N (3.6b)

HX lst(i) =
L∑

lst=1

UEi.Hi,j .(1−X lst
ij ) (3.6c)

• Centralized pooling-TAU cost

CTu(i) = UEi.Hij .Cu(
L∑

lst=1

ω. OMlst. σ
lst
i (1−X lst

ij )),

∀ i, j, i 6= j ∈ N

(3.6d)

• Distributed pooling-TAU cost

CTu(i) = (UEi.Hij .Cu(
L∑
lst

ω. Y TAi +

σLi (1−X lst
ij )) , ∀ i, j, i 6= j ∈ N

(3.6e)

• Paging cost

CTρ(i) = ρ .Cρ(
L∑

lst=1

UEi.σ
lst
i +

(
L∑

lst=1

N∑
j,i6=j

UEj . X
lst
ij .σlstj )), ∀ i ∈ N

(3.6f)

• Constraints
L∑

lst=1

X lst
ij .σ

l
i = 1, ∀ i ∈ N (3.6g)

N∑
ij,i6=j

X lst
ij 6 κ, ∀ lst ∈ L (3.6h)
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X lst
ij = X lst

ji , ∀lst ∈ L, ∀ i, j, i 6= j ∈ N (3.6i)

0 ≤ σlsti ≤ 1 (3.6j)

OMlst ∈ 0, 1 (3.6k)

X lst
ij ∈ 0, 1 (3.6l)

The objective function (3.6a) is divided into two parts. The first part minimizes the

signaling overhead caused by TAU and paging and the second part minimizes the inter-list

handover. Both parts have equivalent weights in terms of importance and are represented

as α and β. The first part of (3.6a) contains two cost functions, as shown in (3.6b), which

combines the cost function of TAU in the centralized scheme, as in (3.6d), and that in

the distributed scheme, as in (3.6e), along with the second term, which has the paging

cost function, as in (3.6f). In the centralized scheme, the signaling load is determined

by first calculating the number of UEs that reside in a cell i and have a probability of

moving to another cell that is not within the same list, and then multiplying that number

by the cost of inter-MME reallocation (ω) and the usage ratio of each list (σlsti ). In the

distributed scheme, the cost of MME reallocation is multiplied by the number of UEs

that travel from one tracking area to another. The paging cost function (3.6f) calculates

the signaling load of paging messages that are triggered by the UEs inside the lists. The

cost considers the percentage of the overlapping lists used in cell i multiplied by the

decision variable X lst
ij that determines whether cell i and the neighboring cell j belong to

the same list. The second part of (3.6a) considers estimating the inter-list handover rate

of the average number of UEs in a cell i, as given in (3.6c). Constraint (3.6g) ensures

fair usage by a set of cells for every list/MME. Moreover, the load of MMEs is balanced

throughout the cells under each assigned MME. Constraints (3.6j), (3.6k), and (3.6l) are

the boundary constraints.

3.3.5 Decomposition Model

The previous model is a mixed-integer nonlinear programming (MINLP) problem

with quadratic equality constraints. This problem is a well-known NP-hard problem

that is difficult to solve to optimality [42]. In our previous chapter, the binary decision

variable was defined in the model and cell-to-TAL/MME assignment was done statically.
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In this context, we want to have dynamic cell-to-TAL/MME assignment based on the

UE mobility patterns. Therefore, we propose a decomposition model that consists of two

sub-problems, each of which is defined as follows:

Sub-problem 1. In a given set of cells that serve a number of UEs, find the optimum

cell-to-TAL/MME assignment allocated periodically to minimize the inter-list handover

rate of UEs traveling from a cell to another cell that is not within the same list TAL.

Sub-problem 2. In a given set of TALs/MMEs that are overlapping and used by a

number of cells, find the optimum usage ratio of each TAL/MME to be given to a number

of UEs that are located inside a cell such that the signaling overhead is minimized.

3.3.5.1 Sub-problem 1 Formulation

min
N∑
i

HX lst(i) (3.7a)

HX lst(i) =
L∑

lst=1

UEi.Hi,j .(1−X lst
ij ), ∀ i, j, i 6= j ∈ N (3.7b)

N∑
i

X lst
ij ≥ 1, ∀ lst ∈ L (3.7c)

(3.6h) and (3.6i) (3.7d)

(Hi,j − Limit).X lst
ij ≥ 0, ∀ i, j, i 6= j ∈ N, ∀ lst ∈ L (3.7e)

The objective function (3.7a) tries to create a suitable X lst
ij that tends to minimize the

occurrence of UEs moving between cells that are not within the same TAL. The cost

function (3.7b) calculates the cost of the handover rate of UEs crossing cells belonging to

different TALs. Constraint (3.7c) assigns at least two cells to every list lst. Constraint

(3.7d) is used to satisfy the conditions of X lst
ij formulation and limit the number of TAs

inside each TAL. Finally, constraint (3.7e) prioritizes the cells having a higher probability

of being visited for inclusion in the same list, as indicated by the UE mobility patterns.

This constraint is calibrated and modified on the basis of the UE average speeds.
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3.3.5.2 Sub-problem 2 Formulation

min
N∑
i

Cuρ(i) (3.8a)

Cuρ(i) = CTρ(i) + CTu(i), ∀ i ∈ N (3.8b)

CTu(i) = (3.6d) or (3.6e) based on pooling scheme (3.8c)

CTρ(i) = ρ .Cρ(
L∑

lst=1

UEi.σ
lst
i +

(
L∑

lst=1

N∑
j,i6=j

UEj . X
lst
ij .σlstj )), ∀ i ∈ N

(3.8d)

L∑
lst=1

X lst
ij .σ

l
i = 1, ∀ i ∈ N (3.8e)

0 ≤ σlsti ≤ 1 (3.8f)

X lst
ij ∈ 0, 1 (3.8g)

The description of the objective function and significance of the constraints have been

addressed in our previous subsection.

3.3.6 Mobility Pattern Model

We use the fluid flow model to simulate the mobility behavior of the users in the

system. The fluid flow model is a well-known model that is commonly used in the

literature. The model depicts the traffic flow rates of UEs moving out of a closed region

represented as a cell or base station. For a certain cell i with perimeter L, UE density

Ui, and average UE velocity v, the average number of cell crossings per unit time is

calculated as follows:
Ui.L.v

π
(3.9)

In this context, cells are hexagonal in shape with side length R; hence, L is replaced with

6R.
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3.3.7 SON Capability through MME

Self-Organizing Network is a paradigm that seeks to minimize the operation ex-

penses related to network re-organization in order to achieve higher efficiency and Quality

of Experience (QoE) [43]. However, it is vital to deliver an updated version of TAL due

to the rapid changes in the mobility patterns of the UEs. The MME can be involved

in triggering the self-optimizing capability through the network by sending the updated

TALs to the base stations. The purpose of dynamic cell-to-TAL/MME reassignment is

to alleviate the signaling overhead that results specifically from the movement of UEs

from one cell to another cell that is not in the same TAL/MME. The dynamic algorithm

will set a timer to trigger the desired changes in the TALs accurately and to distribute

them among the cells. Two vital factors tend to have a major impact on the algorithm:

the average handover rate of the UEs between the cells, and the given value of LIMIT

that prioritizes the combinations of cells to be allocated within the same list or MME.

The parameter LIMIT can be chosen by the network operator as a control parameter to

prioritize cells over others in order to reduce the required TAU. Moreover, the value of

LIMIT is related to the average handover rate between cells or the average UE velocity.

Equation (3.7e) shows the relation between LIMIT and the average handover rate. We

can see that as the value of LIMIT increases, a greater number of cells having a higher

handover rate between each other are included in the same list. In this context, we

assumed that LIMIT can have different values related to the UE average velocity. A

detailed description of the dynamic algorithm is provided in the next subsection.

3.3.8 Dynamic TAL Algorithm

The proposed dynamic algorithm mainly focuses on Sub-problem 1, which plays

the role of allocating suitable combinations of cells in each TAL/MME. This tends to

minimize the handover rate between cells that are not in the same TAL/MME. As men-

tioned earlier, a timer will be used to trigger the frequent update of cell-to-TAL/MME

assignment. Furthermore, the TAL/MME is updated within a selective set of cells that

are determined by the value of LIMIT, which varies periodically corresponding to the

UE mobility patterns. The timer is adjusted by
R

v
, which determines the average time

required for the UEs to cross a certain cell. This defines the problem’s time horizon as the
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optimization problem takes place within the system. Pseudo-code depicted in Algorithm

2 explains the mechanism of the proposed SON dynamic algorithm in the model. In line

1, the algorithm initializes the input values, which include the number of TALs/MMEs

used in the system and the number of TAs, which is equivalent to the number of cells.

Further, both the average velocity rate and the average number of UEs in each cell are

determined. Finally, the cell radius and the initial cell-to-list assignment are given. The

output of this algorithm is the optimized cell-to-TAL/MME assignment. In lines 4-6, at

a given time, the algorithm calculates the average crossing rate of UEs residing in each

cell in order to determine the handover rate Hij between the cells. Then, the LIMIT

value is calibrated to selectively choose the neighboring cells of any cell i that have the

highest handover rate and allocate those neighboring cells to the same list or MME. In

lines 7-8, the initial assignment is modified by either eliminating or retaining the old cells

that had previously been allocated to the lists. This is achieved by solving Sub-problem

1. In lines 9-15, a timer is set to estimate the average time needed for a UE to leave the

cells. The timer determines the optimal frequency with which the model should reassign

the cells to the lists. Moreover, the system randomly changes the values of the UEs in

every event prior to the trigger time and keeps calculating the signaling cost by solving

Sub-problem 2.

3.4 Heuristic Algorithm

3.4.1 Algorithm Description

This section describes the development of a heuristic algorithm that depends on

equal distribution of the TAL/MME load among the relevant cells. This approach has

the advantage of minimizing the TAUs among the cells in a less complex manner. In

this context, the current heuristic algorithm differs from the preceding one presented in

[36]; it follows the same concept as the optimal formulation, which divides the original

algorithm into two sub-problems. The first sub-problem provides a new method for

assigning cells to TALs/MMEs by selecting the cells having the highest values of UE

crossing rates such that the TAU frequency is minimized. The cell-to-list assignment will

also be performed dynamically by defining the timer in the manner described above for
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Algorithm 2 SON Dynamic Algorithm

2: Input: lst = {1, 2, ..., L}: All lists = MMEs
TA = {1, 2, ..., N}: All tracking areas
UE: Average number of UEs in cell i
vRange = [v0 : vmax]
v = Random such that v ∈ vRange
Ui: Density of UEs in cell i
R: Cell diameter
UEi: Initial number of UEs in cell i ∈ TA.
X lst
ij : Initial random cell-to-TAL/MME assignment

3: Output: X lst
ij : Optimized cell-to-TAL/MME assignment

4: for t ∈ TotalT ime do
5: define UE

ij
r = Ui.L.v

Π : Average crossing from i to j

6: define Hij = UE
ij
r

UEi
7: update LIMIT
8: Calculate Sub-problem 1:
9: update X lst

ij

10: for t′ ∈ (R/v) do
11: Calculate Sub-problem 2:
12: for i ∈ N do
13: update UEi = Rand(UE)
14: end for
15: end for
16: end for
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the dynamic algorithm (Algorithm 2). Pseudo-code shown in Algorithm 3 describes Sub-

problems 1 and 2 of the heuristic algorithm in detail. In line 2, the essential parameters

required in the algorithm are defined. The output of Sub-problem 1 is the heuristic cell-

to-TAL/MME assignment. In lines 4-14, the algorithm calculates the UE crossing rates

based on their average speeds and then sets the value of X lst
ij that corresponds to the

maximum crossing rates between the cells. Line 16 defines the input of Sub-problem 2.

The output of Sub-problem 2 is the usage ratio of the lists in each cell. In lines 18-30,

the usage ratio of each list to which a cell belongs is determined by performing a search

of all the lists that serve the cells. The ratio is calculated by distributing the usage of

the TALs/MMEs that serve the cells with equal percentages. Finally, in lines 31-37,

the signaling overhead of both schemes is calculated using the appropriate equations.
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Algorithm 3 Heuristic Algorithm

2: Sup-Problem 1

3: Input: lst = {1, 2, ..., L}: All lists = MMEs

TA = {1, 2, ..., N}: All tracking areas

UE: Average number of UEs in cell i

vRange = [v0 : vmax]

v = Random such that v ∈ vRange
Ui: Density of UEs in cell i

R: Cell diameter

UEi: Initial number of UEs in cell i ∈ TA.

X lst
ij : Initial random cell–to-TAL/MME assignment

4: Output: X lst
ij : Optimized cell-to-TAL/MME assignment

5: define UE
ij
r = Ui.L.v

Π : Average crossing rate from i to j

6: define Hij = UE
ij
r

UEi

7: for i ∈ N do

8: for lst ∈ L do

9: if UE
ij
r = MAX then

10: SET X lst
ij = 1

11: else

12: continue

13: end if

14: end for

15: end for

16: Sup-Problem 2

17: Input: lst = {1, 2, .., L}: All lists

TA = {1, 2, ..., N}: All tracking areas

X lst
ij : Cell-to-list binary indicator

18: Output: σlsti : Usage ratio of list lst in cell i

19: for i ∈ N do

20: define NL = φ

21: for lst ∈ L do

22: if i ∈ lst then

23: update NL = {NL ∪N}
24: else

25: continue

26: end if

27: for N ∈ NL do

28: σlsti = 1
||NL||

29: end for

30: end for

31: end for

32: Calculate:

Cρ(i) as per (3.6f)

33: if Centralized Scheme then

34: Calculate:

CTu(i) as per (3.6d)

35: else

36: Calculate:

CTu(i) as per (3.6e)

37: end if

38: Calculate:
N∑
i
Cuρ(i) =

N∑
i

(
Cρ(i) + CTu(i)

)
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3.4.2 Algorithm Complexity

To justify the need for the heuristic algorithm, we must first discuss the com-

plexity of the decomposition algorithm. The original problem presented in (4.5) is in-

tractable since the model is a mixed-integer nonlinear programming (MINLP) problem

with quadratic equality constraints, which is a well-known NP-hard problem that is diffi-

cult to solve to optimality [42]. Therefore, the decomposition model has been adopted to

solve it. Sub-problem 1 has O(L
N
κ ) complexity because each list can have at most κ cells

among N available cells with possible overlap. Sub-problem 2 has O(LN2) complexity

because the usage ratio of each list in all the cells is calculated for each cell. Hence,

the total complexity of the decomposition algorithm is O(L
N
κ ) + O(LN2) = O(L

N
κ ).

On the other hand, the heuristic algorithm has much lower complexity. Using the pro-

posed heuristic algorithm, Sub-problem 1 has O(LN) complexity because a decision as

to whether each cell belongs to the list is taken in each iteration. Sub-problem 2 also

has O(LN) complexity because the usage ratio of each list within each cell is calculated.

Therefore, the total complexity of the heuristic algorithm is O(LN), which is much lower

than that of the decomposition algorithm.

3.5 Performance Evaluation

To evaluate the performance of the proposed models, we performed MATLAB sim-

ulations at four different speeds, categorized as very slow (0–8 m/s), slow (8–16 m/s),

normal (16–25 m/s), and fast (25–33 m/s). The decomposition and heuristic models

were implemented and compared with each other. We note that each sub-problem has

the same importance; thus, the weight factors α and β were assigned values of 1. The

simulation tested the models statically and dynamically in the case of the centralized

and distributed schemes. The dynamic algorithm presented in Algorithm (2) was im-

plemented in the decomposition and heuristic algorithms, whereas the same analogy

provided in our previous chapter was used for the static algorithm. Moreover, a random

algorithm was added in the evaluation for the purpose of providing a simpler approach

to replace Sub-problem 1, as it generates random cell-to-TAL/MME allocation dynami-

cally. Moreover, the random technique enables us to evaluate the effectiveness of frequent
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random allocation without prior knowledge of the signaling overhead. This approach of-

fers a less complex solution that does not affect the core network. The total signaling

overhead of the TAU and paging combination was employed as a performance metric

for the proposed algorithms. We used MATLAB’s built-in functions intlinprog and

linprog to optimally solve Sub-problems 1 and 2, respectively. The simulation assumed

an environment of 10 cells, each having a different number of UEs. The number of UEs

was distributed uniformly among the cells with an average of 100 users.

3.5.1 Total Signaling Cost

Figure 3.2 shows the average total signaling overhead caused by paging and TAU at

different speeds for the decomposition-based algorithms, namely the dynamic, random,

and static algorithms, in the case of the centralized scheme. We note that the SON

dynamic algorithm outperforms the static and random algorithms. On the other hand,

the random optimal algorithm shows better performance in terms of the signaling over-

head. This is because the random algorithm dynamically changes the TAL in a random

manner, whereas the static algorithm maintains the same TAL at all times. We also note

that the UE speed has a significant impact as it exceeds 25 m/s.

Figure 3.3 shows the average total signaling overhead at different speeds for the

decomposition-based algorithms in the case of the distributed scheme. The results show

the same trends as those of the centralized scheme. Furthermore, we can conclude that

the centralized scheme outperforms the distributed scheme because of the frequent MME

relocation in the latter case.

A comparison between the decomposition and heuristic algorithms is shown in

Figures 3.4 and 3.5. Figure 3.4 shows the comparison in the case of centralized scheme,

where it is observed that the heuristic approach shows acceptable behavior at lower speeds

compared to the decomposition model. This is because the decision variable sigma di-

versifies the TAL/MME pool, thereby minimizing the TAU signaling and the overall

signaling cost. Figure 3.5 shows a comparison between the decomposition and heuristic

methods in the case of distributed scheme. The heuristic algorithm offers a near-optimal

solution compared to the optimal decomposition model. This is a result of the dominant

value of the MME relocation weight, which has a major effect on the signaling in the

case of the distribution scheme.
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Figure 3.2: Total signaling overhead cost for the centralized scheme
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Figure 3.3: Total signaling overhead cost for the distributed scheme
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Table 3.2 summarizes the average percentage improvement in the random and dy-

namic assignment algorithms compared to the static algorithm. In the centralized case,

the random algorithm shows an improvement of 8%–16.45%, while the dynamic algo-

rithm shows an improvement of 25.23%–34.98%. Similarly, the random algorithm results

in an improvement of 6.53%–9.37% and the dynamic algorithm results in an improvement

of 15.74%–18.88% in the distributed case.
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Figure 3.4: Total signaling overhead cost in the centralized scheme for decomposition
algorithm vs. heuristic algorithm

Table 3.2: Average Improvement Percentage

Parameter Random Dynamic

Total Signaling
Cost-Centralized

[+8%,+16.45%] [+25.23%,+34.98%]

Total Signaling
Cost-Distributed

[+6.53%,+9.37%] [+15.74%,+18.88%]

Power Consump-
tion

[+16.6%,+17.7%] [+28.83%,+39.32%]

3.5.2 Power Efficiency

In this subsection, we discuss the efficiency of the proposed dynamic approach in

terms of power consumption. One way to measure the efficiency of the SON dynamic
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Figure 3.5: Total signaling overhead cost in the distributed scheme for decomposition
algorithm vs. heuristic algorithm

model is to evaluate the UE battery life. It is estimated that each TAU procedure

consumes around 10 mW of a regular smart-phone battery. The results in Figures 3.6

and 3.7 depict the average total battery consumption for one UE in an hour. Figure 3.6

compares the dynamic, random, and static approaches. The figure indicates significant

power savings in the dynamic approach compared to the static approach. In addition,

the random dynamic approach shows slightly lower power consumption than the static

approach. Figure 3.7 compares the dynamic decomposition and heuristic solutions. It is

clear that the decomposition solution performs better. However, the heuristic solution

offers near-optimal results at slow speeds. Table 3.2 summarizes the power savings in the

random and dynamic assignment algorithms compared to that in the static algorithm.

The power savings range from 16.6% to 17.7% for the random algorithm and from 28.83%

to 39.32% for the dynamic algorithm.

3.5.3 Related Work vs. Our Approach

This subsection compares the latest related methods in the literature with our ap-

proach. Three studies have been considered in the comparison: [9],[7], and [37]. The
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Figure 3.6: Average total UE power consumption (mW)
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Figure 3.7: Average total UE power consumption (mW) for decomposition algorithm
vs. heuristic algorithm



55

authors proposed three different approaches that dynamically solve the problem of cell-

to-TA/TAL assignment for the purpose of minimizing the total signaling overhead due

to TAU and paging signals. Specifically, two of the studies, i.e., [9] and [37], have pro-

posed a SON mechanism to enhance the intelligence of their algorithms. However, we

note that none of the aforementioned studies have included MME realization in their

solutions, which is an important factor in the signaling overhead. Consequently, both

MME realizations are adapted in the compared studies in order to ensure accurate and

fair comparison. All the compared studies use the ring-based approach for cell-to-TAL

assignment.

Figures 3.8 and 3.9 show the total signaling overhead in the centralized and dis-

tributed schemes. The key difference between our technique and other related methods is

that our algorithm uses a smart technique for choosing the candidate cells to be assigned

in TAL, whereas the other methods use the conventional cell-to-TAL assignment [7],[9],

[37]. The smart selection technique outperforms the ring-based techniques because the

smart selection assignment of cells alleviates the frequent TAU signaling by decreasing

the probability of the UE moving from one cell to another cell that is not in the same

tracking area list. Furthermore, the smart selection technique includes a greater number

of cells that are more likely to be visited by the UE; thus, it is very efficient, especially

for UEs moving at high speeds. Another key metric for the variation in the results is the

overlapping TAL, which increases the probability of fewer TAU updates caused by the UE

when it travels from one cell to another. Finally, the method for triggering the dynamic

configuration or SON technique is also an important factor that affects minimization of

the signaling overhead. The SON technique is used in [9], and it facilitates the transition

between stages through timers and an activation threshold for triggering the dynamic

configuration. The authors statically solved the problem of cell-to-TAL assignment until

the activation threshold was reached. Although the activation threshold is not defined

clearly, the technique used is too complicated to be implemented in a real-world scenario,

especially with the rapid variation in UE velocity. Another SON technique was proposed

in [37], where the authors introduced an overlapping TAL scheme solved statically in a

manner similar to [9] until a threshold was reached. The main difference in this study is

the introduction of the overlapping TAL technique, which offers the advantage of lower

TAU signaling overhead. However, no available SON technique for solving TAL assign-
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ment has adapted the triggering scheme based on the velocity variation related to the

UEs. Our scheme continuously adapts the TAL assignment based on the average UE

velocity.

Figure 3.10 shows the power consumption of the related methods and our method.

The comparison has been made at different speeds. Our method achieves greater power

savings, which vary from +32.7% to +46.9%.

Table 3.3 summarizes the given comparison in terms of the average improvement
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Figure 3.8: Total signaling overhead cost comparison between our algorithm
(centralized) and related methods

percentage between our method (SON Dynamic/Smart) and the related methods. Our

method outperforms the related methods significantly in terms of the centralized and

distributed schemes as well as in terms of power consumption. For instance, the SON

Dynamic/Smart algorithm in the case of the centralized scheme outperforms the method

proposed in [37] by +23.87% to +28.82% which uses overlapping and SON techniques.

The lower percentage is taken in the case of the lowest speed while the higher percentage

is taken in the case of the highest speed, as shown in Figure 3.8.
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Table 3.3: Average Improvement Percentage Compared With Related Methods

Algorithm Used Overlapping SON-Enabled
SON Dynamic/Smart
Algorithm Centralized

SON Dynamic/Smart
Algorithm Distributed

Power Consumption

Ref [7]
√

× [+30.8%,+35.69%] [+17.51%,+18.49%] [+36.48%,+39.85%]
Ref [37]

√ √
[+23.87%,+28.82%] [+14.62%,+16.11%] [+28.73%,+32.66%]

Ref [9] ×
√

[+36.69%,+42.37%] [+20%,+21.27%] [+42.84%,+46.91%]
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3.6 Conclusion

SON, a new concept introduced in release 8 of 3GPP for LTE networks, is a promis-

ing paradigm that enables self-planning, self-managing, and self-optimizing of networks.

Therefore, SON has been widely accepted across different applications. A number of

SON use cases have been proposed to overcome increasing operational expenses. In this

context, we proposed a SON approach to alleviate the signaling overhead caused by TAU

and paging. We used SON as an enabler to perform dynamic cell-to-TAL/MME reconfig-

uration. Our approach can be considered as a SON use case that significantly minimizes

the signaling overhead. Furthermore, two schemes used in the previous work, namely the

centralized and distributed MME pooling schemes, were implemented and investigated

dynamically. We used the well-known fluid flow model to simulate the movement of UEs

within the system. The model consists of two sub-problems derived from our original

NP-hard problem formulation. The first sub-problem is a binary integer programming

problem, whereas the second is a linear programming problem. In addition, a new smart
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selection method was proposed to intelligently select the potential cells in the TAL/MME.

Our method was shown to outperform conventional ring selection, which is commonly

used in the literature. Finally, a less complex heuristic solution was proposed, which is

easy to implement and gives a sub-optimal result. The results showed that the dynamic

decomposition solution also achieves greater power saving than previous methods.
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Chapter 4

Optimal Location Management in LTE

Networks using Evolutionary Techniques

4.1 Introduction

In this chapter, the signaling overhead caused by the location techniques is stud-

ied. The concept of TAL is implemented and optimized using the evolutionary artificial

optimization techniques. The goal is to minimize the total signaling overhead caused

by TAU and paging. To the best of our knowledge, the proposed study is the first to

include evolutionary artificial techniques in optimizing the location management tech-

niques. Three techniques are implemented namely; Particle Swarm Optimization (PSO),

Artificial Bee Colony (ABC), and Gravitational Search algorithm (GSA).

In recent years, PSO, ABC, and GSA have been considered to be reliable and

promising evolutionary techniques for locating the global optima for a variety of opti-

mization problems in different contexts with rapid rate of convergence as seen in different

applications [2, 4, 10, 11]. In general, the optimization technique converges to the opti-

mal solution in the search space with a predefined size where the size is defined through

a number of optimized parameters satisfying some constraints. Evolutionary algorithms

differ from one to another such that no specific technique could achieve best results for all

optimization problems. Furthermore, some heuristic techniques may converge to the op-

timal solution faster than the others for specific problems and slower for other problems.

Therefore, the three selected algorithms belong to different heuristic search families. For

example, PSO relies on swarming and nature behavior of birds [1], ABC stands on colony

structure and the main role of three main groups within the colony [3] and GSA is based

on gravity laws and mass interactions between particles [5]. The obtained simulation

results illustrate the effectiveness of the proposed approach in finding minimum total

signaling overhead resulted in paging and tracking area update. Moreover, the applied
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optimization techniques offer an efficient solution for large scale problems which need fast

convergence. Lastly, the results show that the power consumption of the user equipment

hand-held devices is minimized as well.

The remainder of this chapter is organized as follows. Section 4.2 reviews stud-

ies on mobility management techniques. Section 4.3 presents a detailed description of

the system model and discusses the problem definition, design hypothesis and problem

formulation. Section 4.4 describes the used heuristic evolutionary algorithms to solve

the optimization problem. Section 4.5 discusses the performance evaluation and results.

Finally, Section 4.6 concludes the chapter.

4.2 Related Work

The previous two chapters discussed the TAU and paging signaling overhead with

regards to TAL construction with the perspective of relating the management mobil-

ity entity with TAL. Both the studies proposed a centralized and a distributed MME

scheme. The centralized scheme relates each TAL construction to one MME, whereas

the distributed scheme relates each TA which represents each cell to one MME. Both

the studies explore the significance of having different distribution of MME to the whole

system and the total signaling overhead effect. However, the second chapter proposed a

static technique that distributes the cells to tracking are lists in fixed time. It is shown

that the centralized technique offers a more optimized signaling overhead when com-

pared to the distributed one. Whereas the third chapter proposed an intelligent dynamic

technique that redistributes the cells among the tracking area lists within a defined time

calculated by a proposed smart selection scheme. The smart selection scheme helps in-

cluding the cells that are more probable to have large handover between each other in

the same list. The study showed a significant improvement in optimizing the signaling

overhead.

Various heuristic techniques have been proposed to solve the problem of location

management in different technologies. In [44] the author has proposed a solution for

partitioning the location area in GSM based on the Genetic Algorithm (GA). The pro-

posed solution seeks to avoid the bad resource utilization in terms of bandwidth along

with increasing the efficiently of cells partitioning. However, the proposed solution was
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initial and did not cover most of the problem constraints such as the number of the cells

in the location area, the dimension of the cells, and the mobility behavior of the users.

Similar study that uses a modified GA to solve the problem of finding an optimal location

areas configuration of wireless network has been proposed in [45]. The study introduced

several modifications in the Genetic Algorithm properties specifically in the mutation

operation. The authors argued that the design of an optimal location area configuration

relies on different parameters related to the properties of the location area. In [46] the

same authors proposed another solution that jointly uses the GA with the Hopfield neu-

ral network for finding the optimal configuration of location areas. The hopfield neural

network is used to expedite the convergence of the solution.

A hybrid GA and PSO solution has been proposed in [47] for solving the minimiza-

tion of local management overhead cost. Both algorithms have combined to improve the

quality of the solution and increase the speed of convergence. The proposed solution

allows crossover operation that can improve the diversity of fitness values. The authors

have shown that the proposed solution has much better successful convergence rate than

other solutions proposed in the literature.

An integer programming model has been presented in [48] to solve the TA recon-

figuration problem. The study offered a dynamic reconfiguration procedure which has

been compared to the performance of Tabu search and genetic algorithms. The proposed

algorithm, however, has high complexity in spite its ability to outperform the tabu search

and genetic algorithms and cannot be applied in the large-scale network.

Few studies have used the evolutionary optimization techniques in some LTE net-

work applications. Authors in [49] proposed a joint particle swarm optimization and

genetic algorithm to solve a resource allocation problem for the sake of maximizing the

throughput for the user under the minimum rate requirements and the maximum trans-

mission power constraints. The two techniques have been jointly used to enhance the

speed of the convergence while finding the optimal solution.

A more detailed study by the same authors which follows the same approach was

addressed in [50]. The proposed study uses the same techniques to solve the radio re-

source allocation problem in order to maximize the energy efficiency in the system under

the quality of service constraints. The problem consisted of three sub-problems namely:

resource blocks allocation, power distribution, and modulation schemes assignment prob-
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lem.

A different problem related to the propagation model was tackled using the parti-

cle swarm optimization algorithm in [51]. The authors developed an online propagation

correction model based on users’ measurement information. The developed model helps

improving the planning of the LTE network under the realistic conditions by analyzing

the diverse behavior of the mobile user equipment.

4.3 System Model

4.3.1 Problem Definition

The objective of this study is to minimize the total signaling overhead caused by

paging and TAU. Two studies have been proposed earlier in chapter two and three,

which implement various methods to minimize the total overhead. Chapter two pro-

posed a study that minimizes the overhead gain by using two pooling schemes namely;

centralized and distributed. Both approaches relate the TAL distribution to MME in

the system. It is found that the centralized scheme outperforms the distributed one.

Chapter three presents a Self Organizing dynamic technique that can minimize the total

signaling overhead instantaneously. This chapter differentiates from the previous ones

by implementing evolutionary artificial optimization techniques. Three techniques are

used, each of which is implemented to minimize the total overhead caused by paging and

TAU. The optimization techniques used allow implementing the optimization in a large

scale network. It is worth mentioning that only the centralized scheme is used since it

has better performance than the distributed algorithm in terms of minimizing the total

signaling overhead.

4.3.2 Paging and TAU Trade-off

Paging and TAU are the essential methods for locating idle users within the cellular

network. The signaling resulted by TAU takes place whenever a user travels from cell

to another that is not within the same TAL. On the other hand, paging signaling takes

place whenever a user need to be located by the core network. The signaling cost of

both paging and TAU is directly dependent on the size of TAL. In other words, the
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relation between TAU and paging is inversely proportional and dependent on the size of

TAL. Therefore, the higher the number of cells that are assigned to TAL, the lesser the

signaling overhead caused by TAU and the more signaling overhead caused by paging

and vice versa. This is due to the large number of cells that are accommodated within

the lists in which yields to less probable users travel from one cell to another that is not

within the same list. On the contrary, paging signaling overhead would increase because

of the large number of cells that would be paged to locate a certain user.

4.3.3 Design Hypothesis

As stated previously, the centralized MME pooling scheme is used in this context which

allocates each TAL to an individual MME element. In this model, a TA would represent

one cell as this simplifies the problem and avoids the cell-to-TA assignment to impose

additional complexity. This is because of the fact that Cell-to-TA reallocation yields to

service interruption. Moreover, it must be mentioned that in this context, cell and TA

can be used interchangeably and will have the same constraints. Figure 4.1 shows the

centralized MME pooling schemes.

MME 1 MME 2

      TAL 1       TAL 2

TA/Cell

TA/Cell

TA/Cell TA/Cell

TA/Cell

TA/Cell

Figure 4.1: Centralized MME pooling scheme
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The model presents two tiers of assignment: The first handles the Cells-to-TALs/MMEs

assignment that takes place in the core network, whereas the second tier handles the

TALs/MMEs to UEs assignment for each cell in the system. In terms of Cells-to-

TALs/MMEs assignment, the system calculates the mobility pattern of the UEs within

the cells and assigns or reassigns the cells inside the TALs/MMEs with the purpose of

minimizing the TAU and paging signaling overhead. On the other hand, TALs/MMEs-

to-UEs assignment, each cell distributes a number of TALs to a portion of UEs by an

estimated usage ratio known as σlsti . Variable σlsti is a decision variable that determines

the usage ratio of each TAL/MME at each cell. This enables an overlapping of TALs

among the cells thus facilitating more variety of cells to be accommodated within the

lists. Table 4.1 summarizes the important notations used in the system model.

Table 4.1: Table of Notations-Part I

CTu(i) : Total signaling cost of TAU in cell
i.

Cu : TAU cost of UE moving from one
list to another.

UEi : Total number of UEs served by
cell i.

ρ : Paging arrival rate.
Hij : Probability that a user moves

from cell i to cell j.
Cρ : Paging cost of particular user

equipment.
CTρ(i) : Total paging cost in cell i.
Cuρ(i) : Total paging and TAU overhead

in cell i.
L : Total number of lists.
N : Total number of cells.
lst : Individual list where lst is a sub-

set of L.
κ : Maximum number of TAs that

are assigned to list lst.
ω : Cost of MME relocation during

handover.

HX lst(i) : Inter-list handover rate of users in
cell i.



66

Table of Notations-Part II

Decision Variables

σlsti : Usage ratio of each list lst in cell
i.

X lst
ij =

{
1, if cells i and j belong to lst,
0, otherwise

Optimization Variables

x : position of particle, food source or
agent.

v : velocity of particle or agent.
a : agent acceleration.
J1 : Cost function 1 to be minimized.
J2 : Cost function 2 to be minimized.
J : Total cost function.
N : Population size.
P : Number of parameters to be op-

timized.
P : Probability of food source.
G : Gravitational constant.
M : Mass of agent.
F : Gravitational force.
R : Euclidean distance.
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4.3.3.1 Cell/TA-to-TAL/MME Assignment

The model seeks to determine the optimal assignment of cell/TA-to-TAL/MME

in centralized pooling scheme. Each TAL represents a particular MME as a one-to-one

basis. In this study, the assignment of Cells-to-TAL/MME is defined by a binary decision

variable X lst
ij which indicates whether cells i and j reside in the same tracking area list.

As an example of the search space the decision variable X lst
ij can have, let us

assume, the maximum number of cells/TAs in a list is 2 and that there are 3 lists or

MMEs. Therefore, there will be 2 x 3 possible combinations of the binary variable X lst
ij

generated in the system. The following matrix denoted as X1 shows an example of the

choices that list 1 can have:

X1 =


1 2 3

1 0 0 0

2 0 1 1

3 0 1 1

 (4.1)

The example shows that cells 2 and 3 are in list one so the values of X1
22, X1

33, X1
23

and X1
32 are set to 1 whereas the rest is set to zero. From the aforementioned informa-

tion, the number of cell-to-TAL combinations can be generalized as L × N and can be

represented in the following matrix:


X1

11 X1
12 . . . X1

1N

X1
21 X1

22 . . . X1
2N

...
...

. . .
...

X1
N1 X1

N2 . . . X1
NN

 . . .

XL

11 XL
12 . . . XL

1N

XL
21 XL

22 . . . XL
2N

...
...

. . .
...

XL
N1 XL

N2 . . . XL
NN


Another vital aspect related to the assignment of cells to TALs is the maximum

number of cells within the list. The following Equation 4.2 is to limit the number of cells

within the list where the constant κ is the maximum number of TAs in the list:

N∑
i

N∑
j,j 6=i

X lst
ij 6 κ, ∀lst ∈ L (4.2)
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In addition to limiting the number of cells, a different constraint is needed in order

to eliminate the redundancy of cell/TA assignment in each TAL as shown below:

X lst
ij = X lst

ji , ∀lst ∈ L, ∀i, j, i 6= j ∈ N (4.3)

4.3.3.2 TAL-to-UE

The assignment of the lists to the users takes place through each cell. As mentioned

earlier, each TAL is associated to each MME than can be assigned to more than one cell.

This can be modeled by the following constraint:

N∑
ij,i6=j

X l
ij 6 κ, ∀ l ∈ L (4.4)

4.3.4 Problem Formulation

The original model that was proposed in chapter two is used as a base model for

both the centralized and the distributed pooling schemes. In this context, the formulation

of the problem considers the centralized scheme owing to its significant performance

advantage over the distributed scheme. The objective of the model is to minimize the

signaling overhead resulting from both TAU and paging. The model is modified and

divided into a bi-objective minimization problem as follows:

• Objective function

minJ = min (αJ1 + βJ2) (4.5a)

• Cost functions

Cuρ(i) = CTρ(i) + CTu(i), ∀ i ∈ N (4.5b)

J1 =
N∑
i

Cuρ(i) (4.5c)

HX lst(i) =
L∑

lst=1

UEi.Hi,j .(1−X lst
ij ) (4.5d)

J2 =
N∑
i

HX lst(i) (4.5e)
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• Total TAU cost

CTu(i) = UEi.Hij .Cu

[ L∑
lst=1

ω. OMlst. σ
lst
i (1−X lst

ij )

]
,

∀ i, j, i 6= j ∈ N

(4.5f)

• Total Paging cost

CTρ(i) = ρ .Cρ

[ L∑
lst=1

UEi.σ
lst
i +

L∑
lst=1

N∑
j,i6=j

UEj . X
lst
ij .σlstj

]
, ∀ i ∈ N

(4.5g)

• Constraints
L∑
l=1

X lst
ij .σ

l
i = 1, ∀ i ∈ N (4.5h)

N∑
ij,i6=j

X lst
ij 6 κ, ∀ lst ∈ L (4.5i)

X lst
ij = X lst

ji , ∀lst ∈ L, ∀ i, j, i 6= j ∈ N (4.5j)

0 ≤ σlsti ≤ 1 (4.5k)

OMlst ∈ 0, 1 (4.5l)

X lst
ij ∈ 0, 1 (4.5m)

The objective function (4.5a) denoted as J is divided into two parts. The first part

denoted as J1 minimizes the signaling overhead caused by TAU and paging; the second

part denoted as J2 minimizes the inter-list handover. Both parts are weighted with

factors represented as α and β. These weights can be controlled by the service provider

as parameters to prioritize an objective value over the other. The first part of (4.5a)

contains two cost functions, as shown in (4.5b), which combines the cost function of

TAU as in (4.5f), along with the second term, which has the paging cost function, as in

(4.5g). The tracking area update signaling overhead of each cell is determined by first
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calculating the number of UEs that reside in a cell i ∈ N which have the probability to

move to another cell that is not within the same list, and then multiplying that number

by the cost of inter-MME reallocation (ω) and the usage ratio of each list (σlsti ) in cell i.

The paging cost function (4.5g), on the other hand calculates the signaling load of paging

messages that are triggered by the UEs inside each cell i served by each list. The cost

considers the percentage of the overlapping lists used in cell i multiplied by the decision

variable X lst
ij which determines whether a cell i and the neighboring cell j belong to the

same list. The second part of (4.5a) considers estimating the inter-list handover rate

of the average number of UEs in a cell i, as given in (4.5d). Constraint (4.5h) ensures

fair usage by a set of cells for every list/MME. Moreover, the load of MMEs is balanced

throughout the cells under each assigned MME. Constraints (4.5k), (4.5l), and (4.5m)

are the boundary constraints.

4.3.5 Mobility Pattern Model

We use the fluid flow model to simulate the mobility behavior of the users in the

system. The fluid flow model is a well-known model that is commonly used in order to

simulate the mobility pattern of the users. The model depicts the traffic flow rates of

UEs moving out of a closed region represented as a cell or base station. For a certain

cell i with perimeter L, UE density Ui, and average UE velocity v, the average number

of cell crossings per unit time is calculated as follows:

Ui.L.v

π
(4.6)

In this context, cells are hexagonal in shape with side length R; hence, L is replaced with

6R.

4.4 Evolutionary Optimization Techniques and

Implementation-4

The following three subsections give a brief description of the three optimization tech-

niques involved in objective function minimization of the proposed algorithm. The ob-
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jective function is defined as a minimization problem to minimize the total signaling

overhead caused by TAU and paging. Table 4.2 shows a brief summery of the techniques

that are used in this study,

Table 4.2: A brief summery of ABC, GSA, and PSO techniques

Metric
Technique Name

ABC GSA PSO

Based on Nature life of bees in
the colony

Newton’s law of grav-
itations

Social behaviors of
birds swarming and
fish schooling

Complexity High Fair Low
Advantages High quality solution Good convergence

rate
Easy to handle the
constraints

4.4.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic optimization technique based on

the social behaviors of birds swarming and fish schooling. It implements a set of particles

in the space to find the optimal solution [1], [2]. Each particle in the space is a candidate

solution with swarming velocity and position. The total number of particles in the space

represents the whole population. The optimal solution is defined by its best position

and the algorithm is employed to guarantee the swarming of particles in the proximity

towards the optimal solution in order to increase the probability of fast convergence.

Therefore, the updated velocity and position of each particle can be obtained from (4.7)

and (4.8) respectively as follows:

vi,j(t) = α(t)vi,j(t− 1) + c1r1(xEi,j(t− 1)

− xi,j(t− 1)) + c2r2(xEE
i,j (t− 1)− xi,j(t− 1))

(4.7)

xi,j(t) = vi,j(t) + xi,j(t− 1) (4.8)

with j = 1, 2, . . . ,P and P is the number of parameters to be optimized, i = 1, 2, . . . ,N
and N is the population size. Each of the size and number of populations should be

selected with respect that the best position is equal or very close to the optimal solution.

xEi,j and xEE
i,j represent the local and global solutions respectively, r1 and r2 represent
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random numbers between 0 and 1, α (t) is decremental inertia factor and can be selected

such that α (t) = 0.99α (t− 1). In general, the iterative solution starts by t = 1 and

ends by N such that t = 1, . . . ,N . The personal and social influence of each particle are

defined by c1 and c2 respectively. Figure 4.2 depicts the graphical illustration of PSO

algorithm.

Generate initial population, 

velocity, weight 

Evaluate objective function

Update the particle velocity

Update the particle position

Objective Function Evaluation

Update local best for each 

particle

Update global best

Stopping 

criteria met

Stop

Iteration = Iteration + 1

Weight updating

Set local best = current 

objective function

Search for global best

Yes

NoNo

Figure 4.2: PSO computational flowchart [1, 2].
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4.4.2 Artificial Bee Colony

Artificial Bee Colony (ABC) algorithm was first introduced in 2005 as a global

optimization approach to mimic the natural life of bees in the colony [52]. The structure of

colony is divided into groups namely; employed, onlooker and scout bees. The employed

bees are responsible for searching randomly for the available sources (solutions) of food.

This can be done by marking the position with best food as the best position. Once

the position is marked, the employed bees dance to other bees to indicate the amount

of nectar in the allocated source. Onlookers can differentiate between good and bad

source of food by the duration of dance and the speed of shaking. The longer dance with

higher speed of shaking refers to better food. It notes mentioning that scouts search for

the source of food without referring to the food quality. Based on the nectar quality

(solution’s quality), scouts can be chosen to be employed bees and vice versa [52, 3].

Employed and onlooker bees are determined to find the optimal food source whereas

scouts control the search process [3]. Food source position in the search space is modeled

as follows:

xnewij = xoldij + α(xoldij − xkj) (4.9)

The objective function is represented by the amount of nectar. The representation of the

probability of onlooker bees for selecting a food source is depicted in the following:

Pi =
Ji∑N
i=1 Ji

(4.10)

where i = 1, 2, . . . ,N with colony size is defined by 2N , j = 1, 2, . . . ,P with P represents

the number of parameters to be optimized, j representisthe number of positions with P
dimension, Ji is the associated objective function of ith, k is a random number within

the colony size where k ∈ (1, 2, . . . ,N ), α is a random number between 0 and 1. The

ABC algorithm is illustrated as a flowchart Figure (4.3)

4.4.3 Gravitational Search Algorithm

Gravitational Search Algorithm (GSA) is a meta-heuristic technique based on New-

ton’s laws of gravitations. It was first introduced in 2009 [5]. The algorithm follows the
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Figure 4.3: ABC computational flowchart [3, 4].

gravitational law: ”for any two objects, every object is attracted to the other object by

a force which is directly proportional to their mass and inversely proportional to their

square distance”. According to gravity principle, the gravitational force F can be defined

between any two agents by:

F = G
M1M2

R2
(4.11)

whereM1 andM2 represents masses of agent 1 and 2,R = ||Xi(t), Xk(t)||2+ε represents

the Euclidean distance between the two agents i and k with Xi(t) =
[
xi,1, . . . , xi,P

]
, ε

represents a small positive constant and G represents the gravitational constant. G is

defined at any instant time t or equivalently at the current iteration in the GSA algorithm
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by the following:

G(t) = G(t0)exp

(
−βt
T

)
(4.12)

with G(t0) is the initial value of gravitational constant at time t0 = 1, β is a positive

constant and T is the final research time which can be assigned by number of iterations.

The agent acceleration is given by:

ai,j(t) =
Fi,j(t)
Mi(t)

(4.13)

where i = 1, . . . ,N with N is number of agents and j = 1, . . . ,P with P is number of

optimized agents within the agent. The force of particle xi,j is Fi,j and Mi is the mass

of particle i. The velocity of each agent is:

vi,j(t+ 1) = αivi,j(t) + ai,j(t) (4.14)

The range of velocity is correlated to the position boundaries by a factor 1/λ where λ is

called the speed division factor. Finally, the position is can be given as follows:

xi,j(t+ 1) = xi,j(t) + vi,j(t+ 1) (4.15)

where xi,j(t+ 1) and vi,j(t+ 1) are the position and the velocity of parameter j in agent

i at time t+1 or at the next iteration respectively. Also, αi is a random number between

0 and 1. A small set Kbest is used to include the best solution through the search history

with small size. After every iteration, the small set Kbest is updated if the algorithm find

better results. A detailed explanation of the GSA is given in [5] and the flowchart in Fig

(4.4) gives the synopsis of the algorithm [5, 53].

4.4.4 Implementation of the Optimization algorithms

For all the three algorithms, the assignment of Cells-to-TAL/MME X lst follows

that X lst =
[
X1, X2, . . . , XL

]
, X l is a square matrix with ndimension such that [n, n] =

size
(
X l
)

for all l = 1, 2, . . . , L. According to (4.1), X l is symmetric and the non-zero
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Figure 4.4: GSA computational flowchart [5].

row is repeated in a systematic order within list l. From the other side, the decision

variable σl is a row vector with ndimension. Also, the order of zero components in the

non-zero row in X l matches the order of zero components in σl. Similarly, the order of

one components in the non-zero row in X l matches the order of non-zero components

in σl. Let’s define a new variable σ̄l with ndimension for all l = 1, 2, . . . , L such that

σ̄l is an auxiliary variable to be optimized. Hence, the total number of parameters to

be optimized P is defined according to P = (n+ n) × L such that the first n denotes

the optimized parameters of non-zero rows in X l, the second n denotes the optimized

parameters of the row vector σ̄l and L denotes number of lists. It should be noted that
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for each iteration, we have for any non-zero row r in the list l

X l
r = xi,2(l−1)n+1:n(2l−1)

σ̄l = xi,n(2l−1)+1:2nl

(4.16)

where, xi,j be defined in each optimization algorithm. Next, we have

σlj =

0, if X l
r,j = 0

σ̄lj , if X l
r,j = 1

(4.17)

σl =
σl

N∑
j
σlj

(4.18)

where σl =
[
σl1, . . . , σ

l
N

]
for j = 1, . . . , N . Optimization algorithms are employed to

obtain the minimum objective function. Recall (4.5a)

J = αJ1 + βJ2 (4.19)

where J1 and J2 be defined in (4.5) also α and β are weighting factors which can be

selected arbitrarily to give almost equal weights for both objectives. In fact, the proper

selection of α and β will enable the final solution to be very close to the best compromise

solution between J1 and J2.

In the case of PSO algorithm, it can be easily deduced that (4.16) represents particles

to be optimized P in each iteration i for i = 1, 2, . . . ,N with N being the population

size and the remaining steps can be easily followed from the flow chart in Figure 4.2, in

addition to [1]. For the case of ABC algorithms, (4.16) denotes the position of the source

food and (4.19) denotes the quality of the allocated food. In this case, N is the number

of sources and it represents half the colony size. Finally, the current quality sources with

size N are joined to the best sources that are obtained during previous iterations with

size N to formulate the complete colony size 2N . Then, (4.10) is employed to provide

ranking from best (minimum) to worst (maximum) sources (objectives). Now, we keep

half of the colony size N which includes the best (minimum) sources (objectives) or more

specifically, the colony with size 2N is sorted in ascending order and we only keep the
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first half N and go for the next iteration process. For the implementation of GSA, (4.16)

represents number positions and the rest of the steps are illustrated in the flow chart in

Figure 4.4 [5].

4.5 Performance Evaluation and Simulations

In order to evaluate the performance of each techniques, a simulation is performed

at different speeds categorized as very slow (0–8 m/s), slow (8–16 m/s), normal (16–25

m/s), and fast (25–33 m/s). The simulation is built with an environment that has a

total number of 30 cells, each of which has an average of 100 users. The number of users

is distributed in a uniform fashion among all the cells in the system. In addition the

number of lists that are used in the system is 10. It is worth stating that the number

of lists is also equivalent to the number of MME that are used in the system. Table 4.3

shows the configured simulation parameters values.

Table 4.3: Simulation Parameters & Values

Parameter Value

Number of cells N 10

Average number of

users

100 per cell i

Number of TAs 10

Paging rate ρ 0.05

UE speeds 0,8,16,25 and 33

m/s

Cell Radius 500 m

TAU to Paging cost 10:1

The simulation tests the convergence of each technique used in this study. There

are 30 cells in the system where 16 cells are to be allocated within each list. The number

of decision variables of the first stage is similar to the ones in the second stage. This

is because the first stage is for optimizing the allocation of the candidate cells within

each list whereas the second stage is for optimizing the procedure of overlapping the lists
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and MMEs within the cells themselves. This implies optimizing 600 decision variables

resulting from the combination of 30 cells in each list for the 10 lists to be chosen from.

The 600 decision variables comprise of 300 of X lst
ij and 300 of σlsti . As such, the problem

has been defined as an optimization problem and the minimum objective is attained

through one of the well-known evolutionary techniques. In fact, each of PSO, ABC and

GSA has been employed to obtain the minimum cost function and to compare the three

techniques in terms of minimum cost and convergence rate. For fair comparison, we

selected same values of each of P and N in the all three optimization algorithms. The

setting parameters of PSO and GSA are presented in Table 4.4, whereas, there is no

setting parameters for the ABC algorithm. The setting parameters in Table 4.4 were

selected arbitrarily after set of trials.

Table 4.4: The Setting Parameters of optimization techniques

PSO
Parameter c1 c2 α (1)

Setting 2 2 0.99

GSA
Parameter β λ ε G(t0) Kbest

Setting 7 6 0.00001 1000 4

4.5.1 Total Signaling Cost

In this subsection, the total signaling of paging and tracking overhead is evaluated

for each algorithm at each of the aforementioned speeds. The test is conducted to eval-

uate the convergence of the objective function J and its influence on the total signaling

overhead. To guarantee the robustness of each optimization algorithm during the search

process, each algorithm is employed to solve the problem five times considering random

initialization.

The precision of convergence is measured through the standard deviation and means

values. Furthermore, the uncertainty of different measurements is evaluated by the coef-

ficient of variance or what is known as the Relative Standard Deviation (RSD).

Table 4.5 shows the minimum values of the objective function at different range

of speed. The table depicts five experiments of the converged values along with the

their mean and standard deviation values. It can be noticed that the convergence of the
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objective function J for the three optimization algorithms is guaranteed under random

initialization values such that J -RSD is approximately around 1% of the objective func-

tion mean value J -MEAN as seen in Table 4.5 at various speeds range. In the sense of

Paging, TAU, and Power, the RSD was almost less than 3% of their associated mean

value as shown in Table 4.6. Therefore, the data listed in tables 4.5 and 4.6 prove effec-

tiveness of the three optimization algorithms ABC, PSO and GSA in solving the problem

and in particular ABC which recorded the most significant results.

In addition to the aforementioned observations, Table 4.5 also shows that the

Table 4.5: Minimum values of the Five Experiements for the Obective Funtion at
Various Speeds Range

Experiment index 1 2 3 4 5 Mean ± STD
Speed Range 0-8 m/s

J

PSO 199140 205820 205010 200869 205777 203323 ± 3107
ABC 200730 194610 200350 201017 196109 198563 ± 2981
GSA 206120 207360 205130 203749 208657 206203 ± 1906

Speed Range 8-16 m/s

J

PSO 216200 213450 215930 217647 212739 215193 ± 2039
ABC 211250 211380 212850 214280 209372 211826 ± 1845
GSA 217950 221770 218830 221970 217062 219516 ± 2238

Speed Range 16-25 m/s

J

PSO 246930 250440 241810 244939 247847 246393 ± 3236
ABC 239090 242860 243660 244324 239416 241870 ± 2447
GSA 245740 245030 248280 248804 243896 246350 ± 2114

Speed Range 25-33 m/s

J

PSO 296700 290450 299520 298010 293102 295556 ± 3712
ABC 286510 289410 291510 291597 286689 289143 ± 2482
GSA 301690 299180 294080 300770 295862 298316 ± 3244

tracking area update dominates the signaling overhead at all the tested techniques. This

is because the value of tracking area update cost Ct is ten folds the value of paging cost

Cρ.

Figure 4.5 shows the behavior of the convergence procedure at various speeds range.

The results indicate a significant performance difference of the artificial bee colony algo-

rithm among others algorithms. It can noticed from Figure 4.5 that PSO shows faster

transient convergence relative to ABC and GSA especially during the first 50 iterations at

vr = [0, 8], vr = [8, 16], vr = [16, 25] and vr = [25, 33]. However, as illustrated in Figure
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Table 4.6: Average and Standard Deviation Minimum values at last iteration of
Convergence for Various Speeds Range

Speed Range (m/s) 0-8 8-16 16-25 25-33
Metric Algorithm Mean ± STD

Paging
PSO 1508 ± 12.5 1504 ± 11.2 1521 ± 23.8 1497 ± 16
ABC 1517 ± 23 1535 ± 10.5 1545 ± 28.4 1531 ± 31.6

(Signals) GSA 1503 ± 10 1503 ± 18 1529 ± 11.1 1520 ± 25

TAU
PSO 98589 ± 3026 103790 ± 1714 118866 ± 3308 144436 ± 2826
ABC 92190 ± 2586 96927 ± 1754 109353 ± 2936 133503 ± 2391

(Signals) GSA 99958 ± 1972 105840 ± 2730 117496 ± 2012 143680 ± 1254

Power
PSO 59.15 ± 1.8 124.54 ± 2.05 222.87 ± 6.4 357.48 ± 7
ABC 55.31 ± 1.5 116.31 ± 2.1 205.03 ± 5.5 330.41 ± 6

(mW) GSA 59.96 ± 1.2 127 ± 3.2 220.3 ± 3.7 355.6 ± 3

4.5, ABC shows faster convergence rate to the minimum solution at various speeds range.

Figure 4.6 depicts the influence of the tracking area update and paging with regards to

the convergence time. Moreover, it is observed that tracking area update and paging have

trade-off relation as shown in iteration 250. The objective function adjusts the values of

TAU and paging, as the TAU signaling overhead increases the paging decreases due to

their trade-off explained in subsection 4.3.2.

However, the artificial bee colony succeeded to give better results for the tracking area

update as shown in Figure 4.6 which has the dominant value to influence the objective

function as mentioned earlier. Therefore, the artificial bee colony outperforms particle

swarm optimization as well as gravitational search algorithm in term of the total signaling

overhead. This is further translated in Figure 4.7 that shows the average total signaling

overhead at different speed for the applied techniques. It is noticed that ABC technique

achieves the minimum values of the total signal overhead as it has been influenced by the

lower of triggered TAUs. Whereas the performance of GSA and PSO algorithm is nearly

similar as it has been influenced by the increased number of the triggered TAUs that is

shown in Figure 4.6.

4.5.2 Power Efficiency

In addition to evaluating the total signaling overhead, this subsection aims to eval-

uate the power consumption of the user equipment’s battery. It is estimated that each
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Figure 4.5: Objective function minimization

TAU signal triggered from a regular smart-phone consumes about 10 mW. The values

of the total power consumption of each algorithm is shown at the bottom of Table 4.6.

The estimated values of the power are taken for each user equipment in hourly basis.

In addition, Figure 4.8 shows the converged values of each algorithm. It is clear that

the power consumption resulted by using ABC outperforms the other two algorithms in

terms of power consumption. This is because the power consumption of the battery is

solely dependent on the TAU which is shown to perform better with the ABC algorithm

as in Figure 4.6 and Table 4.6. Another observation is that faster speed has a signifi-

cant impact on the power consumption performance. It is noticed that faster speed can

increase the power consumption by approximately six folds.
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4.6 Conclusion

Cellular networks have been one of the most vital technology enablers allowing

a large spread of network connectivity. In recent years, LTE and LTE advance are

considered the fastest wireless networks. However, the rapid increase of new devices and

various applications pose various performance challenges, especially in terms of signaling

overhead. Consequently, this can raise a crucial concern related to the availability of

the system. One of the important causes of signaling overhead is location management

that allocates the idle users and tracks their movement within the system. Tracking area

update and paging are triggered whenever the idle user moves from one cell to another

that is not within the same tracking area list and to page an idle user respectively.

In this study, tracking area update and paging have been investigated with the aim

to minimize the total signaling overhead. A centralized TAL-to-MME scheme is used

as it has been explored previously [22] to be the most suitable design for minimizing

the signaling overhead. Three evolutionary algorithms have been used that belong to

different heuristic search families namely, Particle Swarm Optimization, Artificial Bee

Colony, and Gravitational Search Algorithm. The three algorithms’ convergence has
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been tested to obtain the minimum value. It is found that the minimum values of the

three algorithms are guaranteed. Five experiments have been conducted under different

random initialization values and it is found that the relative standard deviation for the

objective function is around 1%, whereas it was around 3% for the paging, tracking area

update, and power. Hence, the three applied optimization algorithms have proven to be

efficient for solving the problem. Furthermore, ABC has recorded the best convergence

results among others algorithms.
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Chapter 5

Power-Aware Optimized RRH to BBU

Allocation in C-RAN

5.1 Introduction

Since the last decade, wireless networks have gained tremendous attention allowing

new technologies to rise and favoring a vast increase in the number of hand-held devices.

On the other hand, the proliferation of new applications and the exponential growth rate

of devices per user have affected the performance of wireless technology in various ways.

First, there has been an impact on performance caused by the tremendous volume of

data traffic along with the total signaling overhead because of the rapid movement of a

large number of users [36]. These problems can degrade the level of service, especially

what is known as the Quality of Experience (QoE) of the users. Part of the impact can

be seen as loss of availability and extensive delay. This indeed triggers a demand for

new concepts and technologies. Several researchers have striven to introduce better and

more effective solutions that favor availability, reliability, cost efficiency, and Quality of

service.

In order to face the aforementioned challenges, Cloud Radio Access Network (C-

RAN) has been introduced as a new paradigm that has succeeded in bringing forth a

new era to the world of wireless communications. C-RAN was first introduced by China

Mobile, one of the key wireless operators in China. The advantages of cloud comput-

ing have influenced researchers in both academia and industry to integrate the cloud

paradigm into different applications. Featuring a simple yet clever solution that splits up

conventional base stations into two independent entities, namely a Remote Radio Head

(RRH) and a Baseband Unit (BBU), connected through an optical high-speed transport

network. Cloud computing enables real-time centralized processing through a virtualized

BBU pool. In addition, the cloud architecture provides several advantages for C-RAN
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in numerous aspects, such as reducing the total CAPEX and OPEX as well as providing

flexibility by distributing the capacity of the system.

The separation of the computational resources from the RRH has resulted in a

significant reduction of power and has increased spectral efficiency. Moreover, the RRHs

are deployed as small cells that can be densely distributed in a way that causes minimum

interference. Thus, the distance between the user equipment (UE) and RRHs is mini-

mized, allowing for a more stabilized throughput gain. In addition, the implementation

of BBU pools help to alleviate the energy cost of transmission and reception between the

RRH and the BBU.

However, the efficiency of C-RAN is heavily dependent on the processing resources

available in the BBU pool. In other words, there is a tight correlation between the

efficiency of the mapping of computing resources from BBU to RRH and the overall

performance of the system. The dense deployment of small cell imposes the necessity of

distributing and allocating the resources for RRHs in the BBU pool intelligently. Thus,

resource scheduling between RRH and BBU is essential for efficient and reliable C-RAN

implementation. In order to quantify these resources, the system calculates the comput-

ing requirements of each RRH and accordingly distributes the resources available within

the BBU pools.

On the other hand, the computing requirements of each RRH are related to the

scheduling of the physical resources to the users such that the Quality of Service (QoS) is

satisfied. Because of this, the system has two levels of scheduling, each of which carries

the same importance. The system first ensures user satisfaction by suitably distributing

the physical resources and then schedules the baseband processing requirements simul-

taneously to all the BBU pools. Therefore, it is vital to optimize the scheduling process

at each level. Optimizing computing resources in cloud systems is important because of

the increased demand caused by intensive applications. In addition, network operators

seek to minimize the cost of expanding resources while also having adequate computing

resources available for instant processing.

In this work, a formulated optimization model depicting the two levels of scheduling

is presented. To the best of our knowledge, this study is the first to propose a complete

optimization model formulating a strategy for both ends. In the level comprised between

cells and users, resources are distributed among users, which have different QoS require-
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ments. As a consequence, the system has to optimize resource allocation accordingly

while maintaining other aspects such as availability of physical resources, satisfying the

QoS, and continuity of service. In the RRH and BBU level, computing requirements

need to be processed instantly in the available BBU pool available while maintaining

power consumption and optimizing computing resources. This model is an NP-HARD

problem because of the two levels resource assignments. The problem of finding optimal

assignment is known to be intractable to be solved in a polynomial time [17, 18]. There-

fore, the model is simplified into two sub-problems using the proposed decomposition

model. In addition, two heuristic solutions of lower complexity are proposed to solve

both problems.

The rest of this chapter is organized as follows. Section 5.2 presents literature

within the field of mobility management techniques. Section 5.3 presents a detailed de-

scription of the system model and discusses presents the formulation of the problem

along with its complexity analysis. The simulation parameters and results are discussed

in Section 5.4. Finally, Section 5.5 concludes the chapter.

5.2 Related Work

C-RAN is an emerging technology that is vastly growing at a fast pace. As a result,

C-RAN has succeeded in gaining the attention of both the academia and the industry.

Various studies have been made to tackle a number of aspects in order to overcome the

challenges that might be encountered. These studies can be categorized into three levels,

where each level is focused on the main elements of C-RAN: RRH, BBU, and fronthaul.

In this section, several studies are highlighted in order to shed light on the latest ad-

vancements in C-RAN optimization.

In [54], authors discussed the computing capability needed to run C-RAN. The au-

thors managed to model the relative computing resource consumption that corresponds

to the users’ end by characterizing the relationship between resource consumption in the

BBU and the signal transmitted to the users. The authors concluded that the comput-

ing resources consumed by the BBU increase significantly in a non-linear fashion. They

also suggested that user distribution has a critical impact on BBU computing resource

consumption.
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Authors in [55] attempted to enhance wireless access capability by using Virtual

Base Stations (VBSs) which help in reducing interference. Each virtual base station is

a cluster of multiple base stations, which can be freely used by the users in the system.

Despite the novelty of the idea, numerous strategies might be required to realize “no-

edge” wireless networks, such as using different time slots and sub-bands. Moreover, an

advanced power control mechanism is needed for guaranteeing the QoS delivered to each

user.

Another dynamic clustering algorithm was presented in [56], which used a greedy

multi-objective optimization technique. The authors sought to improve the energy ef-

ficiency of the RRHs by using a clustering technique, while also increasing the joint

capacity of RRHs in the system. A linear model along with a scalarization method were

posited in order to solve the non-linear optimization problem. The designed model has

been implemented in the downlink.

A different technique was proposed in [57], where the authors designed a greedy

algorithm for the purpose of minimizing power consumption of both the RRHs and the

transport network. The authors focused on the joint selection of RRHs by enabling an on

and off mechanism that resulted in minimizing the power consumption of the transport

network. Moreover, the ability of turning off RRHs was achieved with the help of two

group sparse beamforming methods, namely the bisection and iterative methods.

In [58], a self-organizing C-RAN was presented for the sake of improving the QoS

at the end points. The idea of the study was to reduce the number of blocked cells

in the system in such a way that increases the QoS of the users. The self-organization

mechanism aimed to dynamically adjust the mapping of resources between BBUs and

RRHs with the help of a third-party server. The server, called “Host Manager”, was

located inside the BBU pool, which optimizes the load conditions, and chooses the best

configurations using genetic algorithms. However, the messages and the complexity of

the added server is unknown, and can be exponential.

In [59], the authors proposed a load-aware method that minimizes the number of

active BBUs required to process RRH computational resource demands. The authors

introduced what they called a lightweight load-aware algorithm that dynamically opti-

mizes the BBU pooling gain. The mapping of RRHs to BBUs is based on many-to-one

mapping. The authors claim that their approach delivers an almost optimal performance,
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by using the well-known First Fit Decreasing (FFD) algorithm.

An interference-aware resource allocation and consolidation (CoRAC) TDD C-RAN

is proposed in [60, 61]. The study presents a dynamic method for re-configuring and map-

ping the resources between RRHs and BBUs based on the utilization status of the BBUs

and the cross-sub-frame Co-Channel Interference (CCI). This approach relies on virtually

clustering the cells, making the downlink (DL) and uplink (UL) configurations dependent

on the performance of a group of cells. Thus, performance gain depends on the cross

relation of the DL/UP physical resources and the RRH-to-BBU mapping. Although this

cross multi-objective optimization is desirable, the physical re-configuration and adapta-

tion of the uplink and downlink may highly increase the complexity of the system.

In [62], the authors proposed two-stage iterative heuristic algorithm aims to min-

imize the network power consumption of C-RAN. The proposed solution focuses on the

hybrid backhaul that constitutes of a wireless and wireline connections. The first stage of

the solution solves the network power consumption by implementing a joint BS selection

and beanforming optimization problem. The second stage is for solving the transmit

power consumption of the wireless links. The study, however, has not considered the

power consumption of either the BBU pool or the cloud physical resources.

Energy efficient resource assignment allocation in Heterogeneous C-RAN was stud-

ied in [63, 64] . Authors in [63] attempted to maximize the energy efficiency in the

OFDMA-based H-CRAN that is correlated to RB and power assignments. An enhanced

Soft Fractional Frequency Reuse (S-FFR) scheme was proposed in order to ameliorate

the performance of users that are located in the cell center zone. In [64], the authors

investigated the energy efficient of the Control Data Separation Architecture (CDSA)-

based H-CRAN. The authors introduced a model for alleviating the power consumption

for the CDSA-based H-CRAN networks. The model is constrained by the average mini-

mum data rate and the limited capacity of the fronthaul. Both studies [63, 64] have not

depicted the impact of the proposed model on the BBU pool.
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5.3 System model

5.3.1 Problem definition

This work attempts to minimize the power consumption in computer resources that

results from processing the cellular network baseband computational requirements. In

order to achieve the aforementioned goal, the number of baseband units (BBUs) used to

process the baseband computational requirements need to be minimized. The BBUs’ use

is related to the users’ requirements. Therefore, the model satisfies the Quality of Service

requirements of the users by maximizing the aggregated data rate while minimizing the

power consumption of the BBUs. Thus, the model achieves a high system performance by

delivering an enhanced user Quality of Experience while reducing the power consumption

that occurs in the processing units.

5.3.2 Preliminaries

In this work, the downlink transmission of C-RAN is considered. Let |M | be the

total number of BBUs; each BBU j ∈ M serves a number of RRHs by offering their

processing resources, which correspond to three main functions related to baseband pro-

cessing, namely coding, modulation, and FFT. The system has a total of |N | cells/RRHs,

and each RRH is denoted as i where i ∈ N . According to [65] the computing resources

requirements for modulation and coding can be approximated as a linear function of the

modulation and coding scheme (MCS). The MCS is therefore estimated by the trans-

mission data rate associated to each user. In contrast, the FFT function has constant

computational requirements. The computing resource requirements for the baseband

processing for each user can be written as follows [54]:

Lbk = θ log(1 + SINR) + LB (5.1)

where θ is the experimental parameter and LB is the constant complexity of the FFT

function. For each cell i the computing resource requirements for coding, modulation

and FFT 50%, 10% and 40%, respectively [66].
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5.3.3 Channel Model

Both the distance-dependent macroscopic path loss (MPL) and the shadow fading

path loss components are considered. Equation (5.2) models the macroscopic path loss

between the RRH and a user at distance d in an urban environment [67]:

MPLdB(d) = 40(1− 4× 10−3hb) log10(d/1000)

−18 log10(hb) + 21 log10(fc) + 80
(5.2)

where hb represents the base station antenna height (in meters) and fc represents the

carrier frequency in MHz.

On the other hand, it is assumed that the shadow fading path loss component can be

represented as a Gaussian random variable with standard deviation σ, expressed in dB.

Hence, the total path loss between the RRH and the user is as follows: [67]

PLdB,(RRH,k)(d) = MPLdB(d) + log10(Xk) (5.3)

where Xk represents the log-normal shadow fading path loss of user k. Consequently,

the linear gain between the RRH and user k is as follows: [67]

G(RRH,k) = 10
−PLdB,(RRH,k)/10

(5.4)

5.3.4 Design Hypothesis

There are two essential components of the C-RAN architecture that are considered,

namely the RRHs and the pool of BBUs where all the baseband processing is performed.

We can say that a number of virtual BBUs are coupled and mounted onto several physical

machines located in the data center. Therefore, each physical machine can represent a

centralized pool containing a number of BBUs. Moreover, a single BBU can have either

a one-to-one or a one-to-many relationship with the RRHs.

There are a finite number of BBU entities mapped into a BBU pool, with each BBU entity

having an equivalent computing processing capacity represented as Million Operations

Per Time Slot (MOPTS) and a finite number of cells serving the user equipment. The

processing capacity available at the pool of BBUs is greater than the total computer
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resources required for all the cells in the system. Figure 5.1 depicts the architecture of

the system, and shows multiple RRHs colored differently. These RRHs are served by the

BBUs available in their coverage area. Moreover, the same coloring scheme is applied

at the BBU end, which indicates that the BBUs serve a number of RRHs within their

coverage range. It should be noted that RRHs have variable processing requirements,

which are related to the users’ requirements during each time slot. There are a total of

|K| users in the system, each of which is denoted as k, where k ∈ K. RRHs are connected

to the BBU pool via an ideal fronthaul that has enough capacity resources. Table 5.1

explains the different notations that are used in the system model.

5.3.5 Problem Formulation

The problem expressed in (5.5) was formulated to minimize the number of BBUs

used to process the computational requirements while maximizing the users’ data rate.

Equation (5.5a) presents α as the number of bins to be minimized, as described in the

cost function (5.5b), and presents β as the data rate to be maximized, as given in the

second cost function (5.5c). The problem is subject to various constraints (5.5d, 5.5e,

5.5f, and 5.5g) to ensure that the limited computational resources that each bin can

have is not violated, that each RRH is assigned to a BBU, and that the minimum rate

requirement for each user is met.

• Objective function

min
[
α− β

]
(5.5a)

• Cost functions

α =

|M |∑
j

|N |∑
i

|K|∑
k

Oik.L
b
k.Bj (5.5b)

β =

|K|∑
k=1

|RB|∑
rb=1

[
B. xrbk . log2

1 +
P k

(i,k)
.Grb

(i,k)

N0.B

] (5.5c)

Subject to
|K|∑
k=1

xrbk = 1; ∀ rb ∈ RB (5.5d)
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Table 5.1: Table of Notations

Ppool : Power consumption of the BBUs
pool.

P totj : Total power consumption of an
individual BBU j.

Pi : Power consumption of RRH/Cell
i.

PTOT : Total power consumption.

P
pool
st : Static power consumption of an

individual pool s.

P
j
st : Static power of each BBU ob-

tained by well-known procedures.

Lj : Available computing resources in
each BBU j.

L
j
i : Total computing resources given

by BBU j to cell i.
LtotJ : Total computing resources used

by BBU j.
|N | : Total number of RRHs/Cells.
|M | : Total number of BBUs.
|RB| : Total number of RBs.
|K| : Total number of users.
B : RB bandwidth (typically 180

KHz).
P(i,k) : Constant transmission power

from RRH i to user k.

Grb
(i,k)

: Channel condition between RRH
i and user k on RB rb

N0 : Noise
rk,th : Minimum data rate requirement

of user k.

Oik =

{
1, if user k is served by cell i,
0, otherwise

Decision Variables

Bj =

{
1, if BBU j is used,
0, otherwise

X
j
i =

{
1, if cell i uses BBU j,
0, otherwise

xrbk =

{
1, if user k is allocated RB rb,
0, otherwise
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|N |∑
i

Li.X
j
i 6 Bj .L

j ; ∀j ∈M (5.5e)

|N |∑
i

X
j
i = 1; ∀j ∈M (5.5f)

|RB|∑
rb=1

B. xrbk . log2

1 +
P(i,k).G

rb
(i,k)

N0.B

 ≥ rk,th; ∀ k ∈ K (5.5g)

5.3.6 Decomposition Model

The problem stated in (5.5) is a binary integer programming (BIP) problem. Con-

sequently, finding the global optimal solution can be computationally expensive due to

the large size of the search space for both the resource-block-to-user-allocation as well

as the RRH-to-BBU allocation. Therefore, different techniques can be used to solve the

problem. A decomposition model that divides the problem into a two-stage resource

allocation problem is proposed and can be described as follows:

Sub-Problem 1 Definition. In a given system that has N cells that serve K UEs,

find the optimum allocation of physical resources in each cell in order to satisfy the QoS

requirements of the users in terms of data rate. In other words, the system strives to

maximize the data rate for the users under the minimum rate requirement constraint.

The baseband processing requirements that are needed to maximize the data rate for each

user are aggregated and ready to be sent to the next stage of allocation. Figure 5.2 shows

that each user has three different tasks involving baseband processing requirements.

Sub-Problem 2 Definition. For a given set of computational requirements Li ex-

pressed in MOPTS which arise from each cell i ∈ N , and a set of BBUs M each of

which has Lj processing resources pooled into a set of physical clusters, find the optimal

allocation of Li to be packed into an optimized number of BBU processing units, Bj, so

that total power consumption is minimized. The assignment of cell resources to the BBU

is denoted as a binary variable, X
j
i .
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Figure 5.2: Users to RRHs baseband processing requirements.
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5.3.6.1 Sub-Problem 1 formulation

This part of the problem is to ensure that the users’ QoS requirement is satisfied

by maximizing the aggregated data rate for the users. The following equations formulate

the objective function and the constraints for yielding maximum aggregated data rate

for the users allocated in each cell:

• Objective function

max β =

[ |K|∑
k=1

|RB|∑
rb=1

B. xrbk . log2

1 +
P(i,k).G

rb
(i,k)

N0.B

] (5.6a)

Subject to
|K|∑
k=1

xrbk = 1; ∀ rb ∈ RB (5.6b)

|RB|∑
rb=1

[
B. xrbk . log2

1 +
P(i,k).G

rb
(i,k)

N0.B

] ≥ rk,th;

∀ k ∈ K

(5.6c)

xrbk ∈ {0, 1};∀rb ∈ RB,∀ k ∈ K (5.6d)

where xrbk is a binary variable indicating whether user k is allocated RB rb, as shown in

constraint (5.6d), and B is the bandwidth of an RB. Constraint (5.6b) states that an RB

can only be assigned to one cell user. Constraint (5.6c) is the minimum rate requirement

for each cell user.

The complexity of the above sub-problem for each cell is of order O(2|RB.K|),

where |RB| is the total number of RBs within the cell and |K| is the total number of users.

As a result the total complexity for all the cells within the system is O(|N |.2|RB.K|),
where |N | is the total number of cells.

5.3.6.2 Sub-Problem 2 formulation

This part is conventionally formulated as a bin packing problem that represents each

BBU as a bin with finite computing resources, expressed in MOPTS. On the other hand,

the cell traffic loads are defined as items that need to be packed into BBU bins.



99

In this context, we intend to model each aspect of the system that is related to

the baseband computational resources required by the users. The baseband processing

requirements of users are aggregated at the cell level during every time slot and are

mapped to the BBU pool. As discussed earlier, the objective is to minimize the number

of BBU units so that the total power consumed by the system is minimized. Therefore,

the problem expressed in (5.7) aims to minimize the total number of BBUs Bj serving

the cells (5.7a). Equation (5.7b) aggregates the baseband computing requirement of each

user k served by each cell i. The variable Oik is a binary indicator showing whether

user k is served by cell i, and Lbk are the baseband processing requirements of user k.

Equation (5.7c) calculates the total computational resource consumption of each BBU j

in the system, obtained from the number of cells assigned to it. Equation (5.7) subject

to multiple constraints. Constraint (5.7d) limits the computational resources required

for the cells served by a specific BBU j to its maximum computational resources Lj .

Constraint (5.7e) ensures that each cell i is assigned to one BBU j, while more than one

cell can be assigned to a single BBU j. Lastly, constraints (5.7f) and (5.7g) limit the

value of binary variables X
j
i and Bj to be either 0 or 1.

• Objective function

minα =

|M |∑
j

|N |∑
i

Bj (5.7a)

• Cost functions

Li =

|K|∑
k

Oik.L
b
k; ∀i ∈ N (5.7b)

Ltotj =

|N |∑
i

Li.X
j
i ; ∀j ∈M (5.7c)

Subject to
|N |∑
i

Li.X
j
i 6 Bj .L

j ; ∀j ∈M (5.7d)

|N |∑
i

X
j
i = 1; ∀j ∈M (5.7e)

X
j
i ∈ 0, 1; ∀i ∈ N (5.7f)
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Bj ∈ 0, 1; ∀j ∈M (5.7g)

The complexity of the above sub-problem is of order O(2|N |.N), where |N | is the total

number of cells within the system. This is because the maximum possible number of user

bins is equal to the number of cells to be packed. Furthermore, there are 2|N | possible

packing combinations of the cells within each bin.

5.3.6.3 Decomposition Model Mechanism

As the name of the model suggests, the original problem is divided into two sub-

problems which can be sequentially solved. Algorithm (4) presents a way of solving the

two sub-problems. Line 1 shows the input of the problem, which is the total resource

blocks, the number of cells, the available BBUs, and the total number of users served

by each cell. Line 2 shows the output, which are the aggregated baseband computing

requirements each cell demands and the allocated computing requirements for all cells

that are packed into the BBUs. Lines 2 to 7 are for solving the first sub-problem for each

user k served by cell i. The goal is to determine the total baseband resources required

at each cell in the system. Line 8 is to calculate the processing requirements of each cell

in terms of MOPTS. Lines 10 to 15 are for solving the second sub-problem, which is to

process the required baseband resources for each cell into the BBU pool in accordance

with their maximum capacity. The output of this algorithm is the assignment of cells to

BBUs, the BBUs used, and the total utilization of each BBU.

5.3.7 Heuristic Algorithm

In this section, a heuristic algorithm is developed in order to solve a problem

with a lower complexity than the decomposition model.The heuristic algorithm follows

the same concept of the decomposition model by dividing the problem into two sub-

problems, namely a resource block allocation problem and a bin packing problem. The

first sub-problem of the heuristic algorithm seeks to first satisfy the minimum data rate

requirement by efficiently allocating the resource blocks to users in a sequential manner.

This insures that the proposed solution delivers the Quality of Service (QoS) requirements

to the users. The second step of the first sub-problem is to allocate the remaining physical

resource blocks in such a manner that maximizes the aggregated data rate for the users.
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Algorithm 4 Decomposition Mechanism

2: Input: rb = {1, 2, ..., RB}: Total number of Resource Blocks
i = {1, 2, ..., N}: Total number of cells
j = {1, 2, ...,M}: Total number of BBUs
k = {1, 2, ..., K}: Total number of users served by each cell

3: Output: Li: The aggregated baseband computing requirements of each cell and the
allocation of computing resources for all cells associated to BBUs.

4: for i ∈ N do
5: for k ∈ K do
6: Solve the first sub-problem (5.6)
7: calculate Lbk from Equation (5.1)
8: end for

9: calculate Li =
|K|∑
k
Oik.L

b
k

10: end for
11: for i ∈ N do
12: for j ∈M do
13: Solve the second sub-problem (5.7)

14: Output X
j
i , Bj , and Ltotj

15: end for
16: end for

The second sub-problem is to pack the aggregated baseband computational requirements

of each cell into the BBU pool in such a way that the power consumption of the physical

resources is minimized. A first fit decreasing bin packing algorithm is used in this part

to minimize the number of BBUs used. The computational requirements of the cells are

modeled as items to be packed into the BBUs, which are modeled as bins.

Algorithm (5) presents the proposed heuristic algorithm along with its mechanism. In the

first part (lines 3 to 12), each user’s minimum rate constraint is satisfied by sequentially

allocating resources to the users. To do so, RBs with the best channel gains Grb
(i,k)

are

allocated for each user until the rk,th threshold is reached, which is calculated based

on if the rate expression in equation (5.6a) satisfies the minimum rate. In the second

part (lines 13 to 17), the remaining RBs are allocated according to the channel gains in

such a manner that would maximize the aggregated user rate. In line 18, the algorithm

then calculates the baseband processing requirements of each user Lbk. The requirements

are aggregated at the cell level, as shown in line 19. The second sub-problem is solving

the allocation of the computational requirements of each cell Li to the BBUs M at the

backhaul. The computational requirements are modeled as items to be packed in bins that
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represent the BBUs. The bin packing algorithm that is used is the first fit decreasing

bin packing algorithm written in lines 24 to 32. The FFD sorts the computational

requirements of each cell in a decreasing order. After that, each cell i ∈ N is packed into

an available BBU j ∈M in the system. The output of the algorithm is the set of BBUs

that are specified to serve cells Bj , the assignment of cells to BBUs X
j
i , and the total

computational resource consumption of each BBU Ltotj .

5.3.8 Complexity Analysis

This subsection discusses the complexity of each of the proposed algorithms.

5.3.8.1 Decomposition Model

The complexity of the decomposition algorithm sub-problem 1 for each cell is of

order O(2|RB.K|), where |RB| is the total number of RBs within the cell and |K| is the

total number of users. As a result the total complexity for all the cells within the system

is O(|N |.2|RB.K|), where |N | is the total number of cells.

Whereas the complexity of the decomposition algorithm sub-problem 2 is of orderO(|N |.2|N |),
where |N | is the total number of cells within the system. This is because the maximum

possible number of user bins is equal to the number of cells to be packed. Furthermore,

there are 2|N | possible packing combinations of the cells within each bin. Hence, the

total complexity of the decomposition model is O(|N |.(2|RB.K| + 2|N |)).

5.3.8.2 Heuristic Algorithm

The order of complexity of the heuristic algorithm targeting the first sub-problem is

O(|K||RB|), where |RB| is the total number of RBs available and |K| is the total number

of users in the system. In addition, the complexity of the heuristic algorithm for solving

the second sub-problem is of order O(|N | log |N |), where |N | is the total number of cells.

Therefore, the total complexity of the heuristic algorithm is O(|K||RB|+ |N | log |N |).
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Algorithm 5 Heuristic Algorithm/Mechanism

2: Sup-Problem 1
3: Input: rb = {1, 2, ..., RB}: Total number of Resource Blocks

i = {1, 2, ..., N}: Total number of cells
k = {1, 2, ..., K}: Total number of users served by each cell

4: Output: Li: The aggregated baseband computing requirements of each cell.
5: for i ∈ N do
6: for k ∈ K do
7: while rk < rk,th do

8: find gk,rb = max
rb ∈ RB

{Grb
(i,k)
}

9: set xrbk = 1
10: calculate rk
11: update RB = RB \ rb
12: end while
13: end for
14: for rb ∈ RB do
15: find gk,rb = max

rb ∈ RB
{Grb

(i,k)
}

16: set xrbk = 1
17: update RB = RB \ rb
18: end for
19: calculate Lbk from Equation (5.1)

20: calculate Li =
|K|∑
k
Oik.L

b
k

21: end for
22: Sup-Problem 2
23: Input: j = {1, 2, ...,M}: Total number of BBUs

Li where i ∈ N : Computing requirements of cell i

24: Output: X
j
i , Bj , and Ltotj

25: Sort Li of all cells in decreasing order
26: for i ∈ N do
27: for j ∈M do
28: if Li ∈ i fits in BBU j then
29: Pack Li in BBU j.
30: Break the loop and pack the next object Li.
31: end if
32: end for
33: end for
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5.3.9 Generalized C-RAN Energy Consumption (GCEC)

Model

In this context, the energy model presented in Equation (5.8) is based on the previ-

ous model posited in [68], which was inherited from the well-known EARTH model [69].

However, we have generalized the model so that we can analyze the power consumption

of our system and any other model related to C-RAN. In the original model, the authors

calculated the power of the BBU pool by adding the power of a group of RRHs to the

power of the single BBU that served them. This assumption can redundantly add more

power for the same RRH if the system allows more than one BBU to serve a single RRH.

In contrast, the generalized model calculates the total power consumption by concatenat-

ing the added power consumed by all the BBU pools and all the RRHs simultaneously

in each time slot. This allows for either using a single or multiple BBUs to serve each

RRH in the system.

Equation (5.8b) evaluates the power consumption of each pool of BBUs by adding the to-

tal power consumed by each BBU j belonging to the pool and the static physical power of

the hardware that is hosting the pool. The power consumption of each BBU is calculated

in (5.8c) by adding the total resources used in the BBU (noted as LtotJ and multiplied

by the weight factor of power ω) and the static power consumption of the well-known

procedures related to BBUs. Moreover, equation (5.8d) shows that the power consumed

by each RRH relies on the number of resource blocks that are allocated to each user, the

power amplifier efficiency PA, the radio frequency power consumption RF , and the num-

ber of transceiver antennas NTRX . The antenna output power is calculated in equation

(5.8e), which was obtained from the EARTH model [32].

• GCEC Model

PTOT =

|S|∑
s

Ppool +

|N |∑
i

Pi (5.8a)

Ppool =

|M |∑
j

P totj + P
pool
st (5.8b)

P totj = ω.LtotJ + P
j
st; ∀j ∈M (5.8c)

Pi =
Pout
PA

+ PRF .NTRX (5.8d)
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Pout = m.|RB|+ n (5.8e)

5.4 Performance Evaluation and analysis

5.4.1 Simulation Parameters:

A system simulation using MATLAB was performed on an Intel Core i7-4770 CPU

by adopting a realistic LTE system model. The system was tested under three different

configuration options (150, 100, or 50 BBUs/Cells). The average number of users per

cell was 30, moving at various speed ranges: 8-16, 16-25, 25-33, 33-50 m/s. In addition,

the minimum rate requirement for cellular users was assumed to be 36 kbps [70]. As

per [70], it was shown that a typical VoLTE call generates a traffic with an equivalent

minimum rate requirement of 36 kbps. Therefore, this work assumes that each user has

a minimum rate requirement of 36 kbps in each scheduling time slot. Since this work

tackles the problem at the bit level, it is assumed that the rate requirement must be

satisfied in each time slot for all users. Moreover, the number of physical machines used

was ten, each of which represents a pool of BBUs. The BBUs were clustered as virtual

machines in each physical machine. A different number of virtual machines was used for

each configuration; more specifically 15, 10, or 5, respectively. Table 5.2 summarizes the

simulation parameters of the system.

5.4.2 Results:

5.4.2.1 Computational Resource Consumption

Figure 5.3 shows the aggregated computational resource consumption of the differ-

ent BBUs for the three considered configurations at different speeds. Several observations

can be made. Our first observation is that the average computational resource consump-

tion decreases as the speed increases. This is to be expected since the channel condition

becomes worse as the users’ speed increases. This results in a worse SNR and hence

lower computational requirements. Our second observation is that as the number of

BBUs increases, the better distribution of the required computational resources among

the BBUs results in a more balanced consumption. Consequently, the packing efficiency
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Table 5.2: Simulation Parameters & Values

Parameter Value
Carrier frequency 2 GHz
Bandwidth 10 MHz
Number of RBs 50
Number of subcarriers per RB 12
Subcarrier spacing 15 KHz
RB Bandwidth 180 KHz
eNodeB Tx power 20 W
Slot duration 1 ms
Average Number of Cellular
Users

30

Cell-level user distribution Uniform
Log-normal shadowing standard
deviation

8 dB

θ 8
LB 58
w 3.75 W

P
j
st 1.25 W

P
pool
st 200 W

improves, since it becomes easier to pack the items into the BBUs. This is so because

having a smaller BBU size makes it easier to allocate the computational resources among

the different BBUs.

Figure 5.4 shows the average BBU computational resource consumption at differ-

ent speeds for both the decomposition model and the heuristic model. The first obser-

vation that can be made is that the computational resource consumption decreases as

the speed increases. This follows from the previous figure in which the same observation

was made and is illustrated by the fact that a lower number of BBUs was needed to

satisfy the requirements as the speed increased. This is also evident for the data rate as

it decreases when the speed increases as noticed in the right hand figure. This is because

higher speeds is synonymous with worse channel conditions and hence lower data rate. It

can also be seen that both the BIP-based solution and heuristic solution achieve a much

higher average data rate than the considered threshold for the different configurations

at various speeds. This illustrates that the data rate is indeed maximized as per the

formulated optimization problem. The second observation is that the heuristic method

achieves close to optimal performance. This coincides with the results from [67] in which

the greedy algorithm was shown to have a close to optimal performance when compared

to the BIP-based solution. Hence, the computational requirements of the heuristic so-
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Figure 5.5: Average BBU computational resource utilization for the BIP and the
heuristic models.

lution are expected to be close to those of the BIP-based solution since the resource

allocation of both solutions yielded similar results.

Figure 5.5 shows the average BBU computational resource utilization. It should be

noted that both the BIP and the heuristic models perform efficiently at different speeds.

The average utilization of the BBU is between approximately 80 to 95%, which indicates

a highly efficient allocation in both the BIP and the heuristic models. This results in a

lower power consumption for both the BBUs and the physical machines.
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5.4.2.2 Power Consumption

Power consumption of the system is an important metric to be investigated. It

is worth noting that the power consumption is considered in this work rather than the

energy consumption because service providers prefer to have a holistic overview of their

system’s performance. Hence, the average consumption over time is of more interest to

the service provider than the instantaneous consumption. Therefore, the power consump-

tion of the different configurations is evaluated. In particular, the average BBU power

consumption and that of the physical machines used to host the BBUs is shown below.

Figure 5.6 shows the average BBU power consumption at different speeds. Similar

to the trend in Figure 5.4, the average power consumption of the BBUs decreases as

speed increases. This is because the computational resources decreased and therefore

less power is needed to perform the required computations. Furthermore, it can be seen

that the heuristic solution achieved close to optimal performance here as well. This was

expected since it is known that the FFD bin packing algorithm achieves close to optimal

results. It is worth noting that the heuristic solution consumes less power since the com-

putational resource consumption is lower. This does not mean that the heuristic solution

outperforms the BIP-based solution in terms of power, but rather that the BIP-based

solution yields a better resource allocation that results in higher computational resource

requirements which is translates to a higher power consumption.

Figure 5.7 shows the average power consumption of the physical machines used to

host the BBUs. A similar trend to that observed in Figs. 5.4 and 5.6 can be seen in this

case. Since the computational resource consumption of the BBUs decreases as the speed

increases, less physical machines are required to host these BBUs. Thus, less power is

needed by the physical machines to host the BBUs serving the cells within the system.

Moreover, the heuristic solution was seen to achieve close to optimal results similar to

those seen in Figure 5.6.

5.4.2.3 Scalability Analysis

The scalability of the system has been analyzed in terms of aggregated computational

resource consumption and corresponding power consumption. Two parameters have been

considered, namely the number of RBs and the average number of users.
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Figure 5.8 shows the average computational resource and power consumption of

the 150 BBUs for different number of RBs. Similar to previous figures, it is noticed that

as the speed increases, the computational resource and power consumption decreases.

Moreover, it is noticed that as the number of RBs increases, the average computational

resource consumption increases and consequently the average power consumption in-

creases. This is expected since more RBs means more resources can be allocated to

users. This leads to users transmitting at higher rates which results in the higher compu-

tational resource and power consumption. Furthermore, it is observed that the increase

is linear, which supports the scalability of the system. Figure 5.9 shows the average

computational resource and power consumption of the 150 BBUs for different average

number of users. The same trend in terms of the computational resource and power

consumption is observed. Additionally, it can be noticed that as the speed increases, the

rate of increase of both computational resource and power consumption becomes higher.

On top of that, the figure shows that as the average number of users increases, the con-

sidered parameters increase in a logarithmic manner. This further cements the notion

that the system is scalable.

5.5 Conclusion

C-RAN technology is a new paradigm that changes the way wireless networks work

with the help of cloud computing that enables wireless operators to overcome two of their

most major concerns, namely scalability and availability. In addition, cloud computing

enables implementing other futuristic aspects such as serving heterogeneous networks

under one umbrella. Despite the countless advantages that cloud computing provides, it

is probable that a large waste of resources may occur due to the lack of optimal alloca-

tion procedures, consequently resulting in significant power losses in the system. This

would be particularly serious when the resources are intended to serve large scale sys-

tems containing dense, small cells. As a result, optimizing resource allocation is crucial

to achieve high efficiency. In this work, an allocation problem was modeled to determine

the optimal allocation of resources between RRH and BBU. In addition, the compu-

tational resources required by each user were determined by modeling the assignment

of the physical resources of the RRHs to the users. The formulated problem is one of
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high complex problems and was solved using the proposed decomposition model. It was

noted that the proposed model is highly efficient for BBU allocation. Furthermore, the

power consumption and the computational resource consumption of the BBUs decreases

as the channel worsens. Lastly, a heuristic solution was developed to follow the same

criteria of decomposition model and has been observed that it can offer close to optimal

performance with less power consumption.
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Chapter 6

Conclusion

6.1 Introduction

This chapter summarizes the contributions of this thesis and the conclusions drawn

from the results obtained.

6.2 Summary of Contributions

Wireless networks are facing various challenges that demand continuous and rapid

improvement. Long-Term Evolution (LTE) is a preferred wireless technology because

of its satisfactory performance. Owing to an exponential increase in demand and new

potential applications, the core network of LTE, which is known as the Evolved Packet

Core (EPC), is affected by a surge in signaling caused by a variety of control functions.

The signaling overhead decreases the users’ Quality of Experience (QoE). Furthermore,

the rapid growth of data traffic triggers the demand of innovative paradigm such as C-

RAN technology. C-RAN has influenced researchers in both academia and industry to

bring forth a new era of cellular networks. However, the dense C-RAN architecture im-

poses several concerns in terms of power consumption whereby optimization techniques

are needed to enhance the overall performance. This thesis aims to present practical

models for two sides namely; the signaling overhead caused by the location management

techniques and optimizing the power consumption resulted in the rapid growth of the

data traffic in the C-RAN environment.

Chapter two tackled the problem of the signaling overhead for both uplink and

downlink. An efficient and novel algorithm that enables a significant reduction of the

TAU and paging signaling traffic was defined. To the best of our knowledge, the proposed

design is the first that includes MME in the system optimization. Two schemes were in-

vestigated, namely, the distributed MME scheme and the centralized MME scheme. In
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these schemes, both overlapping TAL assignment and efficient mapping of the MME to

the TA/TAL are considered. Furthermore, a heuristic algorithm is presented as a low-

complexity approach that gives a sub-optimal solution.

Chapter three intended to enable adaptive online cell-to-TAL assignment in order

to further investigate the proposed pooling schemes.Thus, cell-to-TAL assignment can be

engineered dynamically while the UE is in continuous movement. The system keeps ana-

lyzing the mobility pattern and continuously updates the TA assigned to the list. Thus,

the frequency of TAU will be reduced significantly. The proposed dynamic technique

was realized through an SON scheme along with a new smart cell selection approach

instead of the conventional ring-based cell selection presented in the literature. A new

heuristic algorithm differs from the one proposed in the previous chapter and constitutes

of two sub-problems in the same manner as the decomposition model was proposed. The

algorithm dynamically diversifies the TALs among the cells which helps in reducing the

TAU signaling load. The results showed that the centralized scheme outperforms the dis-

tributed one. Also, the heuristic algorithm offered sub-optimal results when compared

to the LP solution.

Chapter three introduced three evolutionary artificial algorithms namely; Particle

Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Gravitational Search Al-

gorithm (GSA), in order to solve the problem of minimizing the signaling overhead. It

was shown that ABC-based deployment is faster in convergence and can improve the

minimization of signaling better than other optimization heuristics considered. More-

over, the measured relative standard deviation (RSD) value of the applied algorithms

shows low uncertainty of around 1% for the objective function and 3% for the paging,

tracking area update, and power. Hence, the three applied optimization algorithms have

proven to be efficient and precise for solving the problem in a large scale environment.

Chapter four formulated an optimization model depicting the two levels of schedul-

ing (from physical resources to users and from RRHs to BBUs) in a C-RAN environment.

In the level comprised between cells and users, resources are distributed among users,

which have different QoS requirements. As a consequence, the system has to optimize

resource allocation accordingly while maintaining other aspects such as availability of

physical resources, satisfying the QoS, and continuity of service. In the RRH and BBU

level, computing requirements need to be processed instantly in the available BBU pool
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available while maintaining power consumption and optimizing computing resources. It

was observed that the computational resource requirements as well as the power con-

sumption of the BBUs and the physical machines decrease as the channel quality wors-

ens. Moreover, the developed heuristic solution achieved a close to optimal performance

while having a lower complexity. Lastly, the average utilization of the BBU’s resources

for both the BIP and the heuristic is between 80 to 95%, which indicates a highly efficient

utilization of the proposed solutions.

6.3 Future Work

The work of this thesis can be extended in several directions. For instance, a

methodology can be introduced to adapt the proposed heuristic algorithms dynamically

in order to mimic realistic networks with various number of cells and different mobility

patterns with the same aim being to minimize the signaling overhead. Another approach

is to incorporate a framework that has the ability to compress the signaling traffic as well

as to suitably allocate the cells to MMEs.

Another direction that can be investigated is to consider a heterogeneous user

traffic model and study its impact on both the computational requirement and power

consumption in a C-RAN environment. This allows for a better understanding and

portrayal of real life networks under different quality of service requirements.
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