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Figure 3.15. Volcano plots illustrating differentially expressed contigs between midguts of 4th instar T. ni larvae raised on 

different diets. A) Comparison between potato and cabbage-raised: the left vertical dotted line represents -3 fold change; the 

right vertical dotted line represents +3 fold change; the horizontal dotted line represents p-value of 0.001; red dots represent 

significantly downregulated genes; blue dots represent significantly upregulated genes. B) Comparison between cabbage and 

artificial-raised. C) Comparison between potato and artificial-raised. All three plots follow similar trends and had the same 

filtering criteria applied, though only A is colored and delineated.  
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Using a cut-off of  ≥ 3 absolute fold change and a FDR-corrected p-value of ≤ 0.001, the 

total number of contigs significantly differentially expressed for cabbage vs artificial diet: 

was 1,985, potato vs cabbage: 1,118, and potato vs artificial diet: 1,753. There were 132 

shared between all diets. Figure 3.16 shows the number of uniquely and commonly 

expressed significantly differential contigs.  

 

Figure 3.16.  Venn diagram describing the number of contigs significantly differentially 

expressed in midguts of 4th instar T. ni raised on three diets.  

Within the contigs that were significantly differentially expressed, gene categories  

corresponding to products involved in the PM’s architecture, synthesis, and function were 

selected for further analysis: structural (peritrophins, mucins, glycoproteins, lipases, 

response to pathogen [REPAT] proteins), delivery (gelsolin, annexin, microvesicles), 

framework (chitin synthase, chitinase, chitin deacetylase), and hormonal effectors 

(ecdysterone, juvenile hormone). The comparisons between cabbage vs artificial diet, 

potato vs cabbage, and potato vs artificial diet, together with the overall summary, are 

presented in Tables 3.2, 3.3, 3.4, and 3.5 respectively.  
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From the compilation of data in Table 3.5, of all the gene categories of interest, contigs 

corresponding to chitinase and chitin deacetylase were most uniformly downregulated as 

a function of increasing diet toxicity. Contigs of peritrophins and genes induced by 

juvenile hormone were also predominantly downregulated. Contigs of mucins, lipases, 

and genes induced by ecdysone were a mix of up and down-regulated. The sole contigs 

for a glycoprotein and REPAT gene were upregulated.  

When gene contigs had a combination of up or down-regulation, their cumulative effects 

on the host organism are unclear, as the extent to which these effects are additive, 

multiplicative, or antagonistic has yet to be fully studied. 

The overall top 50 significantly differentially expressed genes between cabbage vs 

artificial diet, potato vs cabbage, and potato vs artificial diet are listed in Tables 3.6, 3.7, 

and 3.8 respectively.
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Table 3.2. Differentially expressed contigs in midguts of cabbage raised compared to artificial diet-raised 4th instar T. ni. 

 

Gene 

Category 

 

Contig ID 

Max* 

Group 

Mean 

Fold 

Change 

FDR p-

value 

 

Sequence Description 

 

Regulation 

Chitinase 8386 0.79 -18.24 0 PREDICTED: chitinase 2 Down 

 16243 11.88 -11.27 2.34E-14 PsChi-h for chitinase Down 

 17052 14.47 -10.46 2.34E-14 viral-like chitinase Down 

 gi|687027960 2.27 -11.07 0 chitinase 7 Down 

 gi|687056067 17.18 -10.39 4.35E-11 viral-like chitinase Down 

 gi|687094659 180.42 -17.07 0 chitinase (Cht) Down 

Peritrophin 5400 22.26 -3.18 2.83E-06 PREDICTED: peritrophin-1-like Down 

 gi|687043932 21.34 -4.44 3.30E-09 chitin binding peritrophin-A Down 

 gi|687108074 22.94 -3.18 4.44E-06 peritrophin-1-like Down 

Glycoprotein 18285 3.52 7.69 3.60E-06 
endocuticle structural glycoprotein ABD-

5-like 
Up 

Ecdysone 

Inducibles 
3024 2.58 4.23 3.33E-15 

PREDICTED: ecdysone-induced protein 

74EF isoform A 
Up 

 5946 2.13 -5.97 4.72E-05 PREDICTED: ecdysone receptor  Down 

 11211 46.66 -7.82 0 
PREDICTED: ecdysteroid-regulated 16 

kDa protein-like 
Down 

 16286 3.31 -3.95 1.07E-05 3-dehydrecdysone 3b-reductase Down 

 17757 187.15 54.3 0 ecdysone oxidase Up 

 18136 10.38 -3.1 2.10E-11 
20-hydroxy-ecdysone receptor - ecdysone 

receptor A isoform 
Down 

 gi|687085860 26.81 -3.64 1.31E-13 ecdysone oxidase Down 

 gi|687100743 20.36 -4.26 2.11E-10 ecdysone oxidase Down 
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Table 3.2. Differentially expressed contigs in midguts of cabbage-raised compared to artificial diet-raised 4th instar T. ni. 

(continued) 

 

*Max Group Mean = The maximum of the average group RPKM values between two group types. 

 

 

 

 

 

 

 

 

 

 

Gene 

Category 
Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

Juvenile 

Hormone 

Inducibles 

2789 2.55 -5.64 

 

5.34E-13 

 

juvenile hormone-inducible protein Down 

 9577 75.96 -4.35 0 
PREDICTED: juvenile hormone esterase-

like isoform 
Down 

 
11982 

 
37.19 -19.07 0 juvenile hormone esterase precursor (JHE) Down 

 18269 1.95 -24.2 8.41E-09 juvenile hormone binding-like protein Down 

 gi|687052097 20.2 -24.87 1.31E-13 juvenile hormone esterase precursor (JHE) Down 

Gelsolin 14408 13.91 3.73 7.69E-12 PREDICTED: gelsolin-like Up 

Mucins 5553 11.34 -3.62 8.03E-09 PREDICTED: mucin-2-like Down 

 8946 1.78 -3.91 4.33E-08 PREDICTED: mucin-2-like Down 

 gi|687085871 0.88 5 3.41E-05 PREDICTED: mucin-2-like Up 

Lipases 16375 173.6 -3.22 8.22E-05 insect intestinal lipase 6 Down 

 16377 190.3 3.17 3.37E-11 PREDICTED: lipase 1-like Up 
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Table 3.3. Differentially expressed contigs in midguts of potato-raised compared to cabbage-raised 4th instar T. ni. 

 

 

Gene 

Category 
Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

Chitinase 8386 3.65 -3.74 1.11E-08 probable chitinase 2 Down 

 15347 2.67 -3.26 1.26E-06 chitinase-related protein 1 Down 

 gi|687027891 0.49 -4.52 2.55E-09 chitinase-related protein 1 Down 

 gi|687094659 6.07 -4 6.04E-11 chitinase Down 

Chitin 

Deacetylase 
16131 7.14 -3.71 9.70E-09 chitin deacetylase 1 Down 

Ecdysone 

Inducibles 
11211 51.31 13.67 0 

PREDICTED: ecdysteroid-regulated 16 

kDa protein-like 
Up 

 
17757 

 
187.15 -74.94 0 ecdysone oxidase Down 

 18136 32.17 15.03 0 
20-hydroxy-ecdysone receptor - ecdysone 

receptor A isoform 
Up 

Juvenile 

Hormone 

Inducibles 

4247 255.11 3.55 0 juvenile hormone epoxide hydrolase-like Up 

 13294 41 -5.05 0 juvenile hormone epoxide hydrolase-like Down 

 15986 154.92 3.15 4.63E-11 juvenile hormone esterase-like Up 

 
16491 

 
110.22 -3.43 1.35E-14 juvenile hormone-inducible protein Down 

Mucins 16236 149.06 10.13 0 intestinal mucin Up 

 16269 150.99 10.31 0 insect intestinal mucin 2 Up 

REPAT gi|687115186 1.65 3.78 7.24E-05 REPAT34 Up 

Lipases 16200 153.46 4.29 9.51E-05 insect intestinal lipase 7 Up 

 16201 223.05 4.67 6.31E-05 insect intestinal lipase 6 Up 

 16325 211 4.11 3.14E-06 insect intestinal lipase 6 Up 

 16375 30.5 -4.66 1.02E-07 insect intestinal lipase 6 Down 
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Table 3.4. Differentially expressed contigs in midguts of potato-raised compared to artificial diet-raised 4th instar T. ni. 

 

 

 

 

 

Gene 

Category 
Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

Chitin 

Synthase 
gi|687040850 2.85 -13.43 1.48E-06 chitin synthase 1 Down 

 gi|687122461 2.03 -13.34 5.96E-05 chitin synthase A Down 

Chitinase 8386 115.73 -68.23 0 PREDICTED: chitinase 2 Down 

 11859 2.38 -5.86 7.11E-06 PREDICTED: chitinase 3 Down 

 15347 5.12 -3.71 1.77E-08 chitinase-related protein 1 Down 

 16243 11.88 -9.26 2.11E-13 PsChi-h mRNA for chitinase Down 

 17052 14.47 -13.27 0 viral-like chitinase Down 

 17700 4.3 -8.41 4.12E-07 chitinase mRNA Down 

 gi|687027891 2.18 -11.57 0 chitinase-related protein 1 Down 

 gi|687027960 2.27 -14.81 0 chitinase 7 Down 

 gi|687056067 17.18 -20.17 0 viral-like chitinase Down 

 gi|687094659 180.42 -68.27 0 chitinase Down 

 gi|687131816 6.23 -3.82 9.37E-13 PREDICTED: endochitinase A1-like Down 

Chitin 

Deacetylase 
11096 27.73 -5.71 0 chitin deacetylase Down 

 16131 25.48 -7.66 0 chitin deacetylase 1 Down 

 gi|687033646 22.13 -4 4.76E-12 chitin deacetylase 1 Down 
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Table 3.4. Differentially expressed contigs in midguts of potato-raised compared to artificial diet-raised 4th instar T. ni. 

(continued) 

 

 

 

 

 

 

Gene 

Category 
Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

Peritrophins 5400 22.26 -9.06 0 PREDICTED: peritrophin-1-like Down 

 16350 38.59 8.59 8.91E-04 peritrophin type-A domain protein 2 Up 

 gi|687043932 21.34 -10.55 0 chitin binding peritrophin-A Down 

 gi|687055341 1.28 -8.92 3.50E-05 PREDICTED: peritrophin-1-like Down 

 gi|687067717 1.4 -24.33 1.42E-05 PREDICTED: peritrophin-1-like Down 

 gi|687108074 22.94 -7.22 0 peritrophin-1-like Down 

Glycoprotein 18285 3.52 6.98 2.25E-04 
PREDICTED: endocuticle structural 

glycoprotein ABD-5-like 
Up 

Ecdysone 

Inducibles 

3024 

 
2.61 3.93 5.81E-12 

PREDICTED: ecdysone-induced protein 

74EF isoform A 
Up 

 6995 40.12 -4.55 1.49E-04 ecdysteroid-induced (E75) Down 

 5946 2.13 -4.15 6.38E-04 PREDICTED: ecdysone receptor Down 

 16286 3.31 -6.41 1.27E-09 3-dehydrecdysone Down 

 18136 32.17 4.85 0 20-hydroxy-ecdysone receptor Up 

 gi|687085860 26.81 -4.1 0 ecdysone oxidase Down 

 gi|687100743 20.36 -4.19 2.37E-10 ecdysone oxidase Down 

 gi|687128575 4.7 -3.46 7.01E-05 ecdysone receptor Down 
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Table 3.4. Differentially expressed contigs in midguts of potato-raised compared to artificial diet-raised 4th instar T. ni. 

(continued) 

 

 

 

Gene 

Category 
Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

Juvenile 

Hormone 

Inducibles 

11982 37.19 -26.82 0 
juvenile hormone esterase precursor 

(JHE) 
Down 

 14365 7.07 -5,811.56 1.19E-05 
juvenile hormone esterase-like; 

PREDICTED: esterase B1-like 
Down 

 16406 0.19 -8.01 8.38E-05 
juvenile hormone sensitive hemolymph 

protein 
Down 

 16491 215.29 -3.96 0 juvenile hormone-inducible protein Down 

 17075 500.51 -5.25 0 juvenile hormone esterase-like Down 

 17228 0.59 -25.24 9.61E-08 
PREDICTED: juvenile hormone epoxide 

hydrolase-like 
Down 

 18269 1.95 -78.03 5.64E-08 juvenile hormone binding-like protein Down 

 gi|687052097 20.2 -35.21 0 
juvenile hormone esterase precursor 

(JHE) 
Down 

Mucins 5197 1.1 -3.89 3.43E-07 PREDICTED: mucin-5AC-like Down 

 8946 1.78 -6.1 1.32E-13 PREDICTED: mucin-2-like Down 

 10541 0.79 -13.51 2.86E-06 PREDICTED: mucin-5AC Down 

 16236 149.06 11 0 intestinal mucin Up 

 16269 150.99 10.24 0 insect intestinal mucin 2 Up 

 17180 1.16 -7.66 6.59E-05 PREDICTED: mucin-5AC Down 

 gi|687093538 0.69 -12.24 7.70E-07 PREDICTED: mucin-5AC Down 

Lipases 16375 173.6 -15.02 0 insect intestinal lipase 6 Down 

 16377 446.23 6.75 0 PREDICTED: lipase 1-like Up 
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Table 3.5. Summary of differentially expressed contigs in midguts between all diet group pairs for 4th instar T. ni.  

Gene Category Contig ID Sequence Description 

Cabbage vs 

Artificial 

Regulation 

Potato vs 

Cabbage 

Regulation 

Potato vs 

Artificial 

Regulation 

Chitin 

Synthase 
gi|687040850 chitin synthase A NA NA Down 13x 

Chitinase 8386 probable chitinase 2 Down 18x Down 3x Down 68x 

 11859 probable chitinase 3 NA NA Down 5x 

 15347 chitinase-related protein 1 (ChiR1) NA Down 3x Down 3x 

 16243 PsChi-h for chitinase Down 11x NA Down 9x 

 17052 viral-like chitinase gene Down 10x NA Down 13x 

 17700 chitinase NA NA Down 8x 

 gi|687027891 chitinase-related protein 1 (ChiR1) NA Down 4x Down 11x 

 gi|687027960 chitinase 7 Down 11x NA Down 14x 

 gi|687056067 viral-like chitinase gene Down 10x NA Down 20x 

 gi|687094659 chitinase (Cht) Down 17x Down 4x Down 68x 

 gi|687131816 endochitinase A1-like NA NA Down 3x 

 11096 chitin deacetylase NA NA Down 5x 

Chitin 

Deacetylase 
16131 chitin deacetylase 1 (cda1) NA Down 3x Down 7x 

 gi|687033646 chitin deacetylase 1 (cda2) NA NA Down 4x 

 5400 
peritrophin-1-like, transcript variant 

X1 
Down 3x NA Down 9x 

Peritrophins 16350 peritrophin type-A domain protein 2 NA NA Up 8x 

 gi|687043932 chitin binding peritrophin-A Down 4x NA Down 10x 

 gi|687055341 peritrophin-1-like NA NA Down 9x 

 gi|687067717 peritrophin-1-like NA NA Down 24x 
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Table 3.5. Summary of differentially expressed contigs in midguts between all diet group pairs for 4th instar T. ni. (continued) 

 

Gene 

Category 
Contig ID Sequence Description 

Cabbage vs 

Artificial 

Regulation 

Potato vs 

Cabbage 

Regulation 

Potato vs 

Artificial 

Regulation 

Glycoprotein  18285 
endocuticle structural glycoprotein ABD-5-

like 
Up 7x NA Up 7x 

Ecdysone 

Inducibles 
3024 ecdysone-induced protein 74EF isoform A Up 4x NA Up 4x 

 6995 ecdysteroid-induced (E75) NA NA Down 4x 

 5946 ecdysone receptor transcript variant X2 Down 5x NA Down 4x 

 11211 ecdysteroid-regulated 16 kDa protein-like Down 7x Up 13x NA 

 16286 3-dehydrecdysone 3b-reductase Down 4x NA Down 6x 

 17425 ecdysteroid-regulated 16 kda protein Down 8x NA NA 

 17757 putative ecdysone oxidase Up 54x Down 75x NA 

 18136 20-hydroxy-ecdysone receptor Down 3x Up 15x Up 4x 

 gi|687085860 ecdysone oxidase gene Down 3x NA Down 4x 

 gi|687100743 ecdysone oxidase gene Down 4x NA Down 4x 

 gi|687128575 ecdysone receptor NA NA Down 3x 

Juvenile 

Hormone 

Inducibles 

2789 juvenile hormone-inducible protein Down 5x NA NA 

 4247 
juvenile hormone epoxide hydrolase 

precursor 
NA Up 3x NA 

 9577 juvenile hormone esterase-like isoform Down 4x NA  NA 

 11982 juvenile hormone esterase precursor (JHE) Down 19x NA Down 27x 

 13294 
juvenile hormone epoxide hydrolase-like 

protein 
NA Down 5x NA 

 14365 juvenile hormone esterase-like NA NA 
Down 

5,811x 

 15986 juvenile hormone esterase-like NA Up 3x NA 

 16406 
juvenile hormone sensitive hemolymph 

protein 
NA NA Down 8x 
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Table 3.5. Summary of differentially expressed contigs in midguts between all diet group pairs for 4th instar T. ni. (continued) 

 

Gene 

Category 
Contig ID Sequence Description 

Cabbage vs 

Artificial 

Regulation 

Potato vs 

Cabbage 

Regulation 

Potato vs 

Artificial 

Regulation 

Juvenile 

Hormone 

Inducibles 

16491 juvenile hormone-inducible protein NA Down 3x Down 4x 

 17075 juvenile hormone esterase-like NA NA Down 5x 

 17228 juvenile hormone epoxide hydrolase-like NA NA Down 25x 

 18269 juvenile hormone binding-like protein Down 24x NA Down 78x 

 gi|687052097 juvenile hormone esterase precursor (JHE) Down 25x NA Down 35x 

Gelsolin 14408 gelsolin-like Up 3x NA NA 

Mucins 5197 mucin-5AC-like transcript variant X2 NA NA Down 4x 

 5553 mucin-2-like Down 3x NA NA 

 8946 mucin-2-like Down 3x NA Down 6x 

 10541 mucin-5AC NA NA Down 13x 

 16236 intestinal mucin NA Up 10x Up 11x 

 16269 insect intestinal mucin 2 NA Up 10x Up 10x 

 17180 mucin-5AC NA NA Down 7x 

 gi|687085871 mucin-2-like Up 5x NA NA 

 gi|687093538 mucin-5AC NA NA Down 12x 

REPAT gi|687115186 REPAT34 NA Up 3x NA 

Lipases 16200 insect intestinal lipase 7 NA Up 4x NA 

 16325 insect intestinal lipase 6 NA Up 4x NA 

 16375 insect intestinal lipase 6 Down 3x Down 4x Down 15x 

 16377 lipase 3-like Up 3x NA Up 6x 
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Table 3.6. Top 50 differentially expressed contigs in midguts of cabbage-raised compared to artificial diet-raised 4th instar T.ni. 

 

 

 

 

Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

8807 5.43 4,710.44 3.69E-06 PREDICTED: protein split ends transcript variant X4 Up 

11607 10.42 -2,043.91 1.88E-04 rna-binding protein 1 isoform x3 Down 

gi|687032876 0.57 -1,344.53 4.72E-04 PREDICTED: mechanosensitive ion channel Down 

16439 5,485.97 994.23 0 18S ribosomal RNA gene Up 

4131 0.53 856.88 4.50E-04 
PREDICTED: tyrosine-protein phosphatase non-

receptor type 9-like 
Up 

gi|687083130 25.47 -660.96 2.10E-11 PREDICTED: uncharacterized LOC105391589 partial Down 

gi|687095027 1.34 647.25 9.54E-04 chromosome: chr8 Up 

16585 14.1 -640.74 0 arylphorin mRNA Down 

16441 1,404.47 -507.53 0 epididymal secretory protein e1-like Down 

18088 32.34 -375.87 0 
PREDICTED: uncharacterized LOC106720632 

transcript variant X3 
Down 

gi|687111713 6.76 -344.95 8.17E-09 PREDICTED: hormone receptor 3 Down 

gi|687066127 34.14 -327.14 0 osmosensing histidine protein kinase SLN1 Down 

16750 122.57 -311.51 0 facilitated trehalose transporter tret1-like Down 

16983 658.95 311.49 0 18S ribosomal RNA Up 

9056 5.77 -294.36 8.64E-09 CBS 6284 chromosome 3 Down 

7484 23.73 -286.72 0 PREDICTED: nuclear hormone receptor HR3 Down 

15414 9.46 -266 0 PREDICTED: organic cation transporter protein-like Down 
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Table 3.6. Top 50 differentially expressed contigs in midguts of cabbage-raised compared to artificial diet-raised 4th instar T.ni. 

(continued) 

 

 

 

 

Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

gi|687085342 53.06 -248.77 0 PREDICTED: nuclear receptor subfamily 6 group A Down 

gi|687126840 23.06 -227.88 0 PREDICTED: uncharacterized LOC105397725 Down 

10749 12.66 226.78 0 glucose oxidase-like enzyme mRNA Up 

5184 46.64 226.24 0 UDP-glycosyltransferase 39B4 Up 

gi|687042275 16.25 -224.63 3.84E-13 PREDICTED: eisosome protein SEG2 Down 

gi|687124701 3.92 -220.6 8.65E-08 PREDICTED: serine proteinase stubble-like Down 

16372 2,485.31 217.17 0 lebocin precursor Up 

gi|687066166 21.64 -216.92 4.20E-13 PREDICTED: uncharacterized LOC106137673 Down 

gi|687070620 36.77 -200.93 0 hormone receptor 4 (HR4) Down 

gi|687085654 13.06 190.97 0 genome assembly GPUH_scaffold0035729 Up 

2819 1.6 -189.59 2.11E-07 unknown secreted protein sequence id: Px-1534 Down 

gi|687122464 21.16 -178.08 0 
uncharacterized LOC106111980 for unknown secreted 

protein, sequence id: Pp-0370 
Down 

16101 6,335.94 174.25 0 serine protease, clone SR19, SR110 Up 

12888 19.49 -173.9 0 PREDICTED: allantoinase-like Down 

gi|687128779 2.61 171.29 7.78E-14 BAC, egg DNA Up 

gi|687118721 46.93 -163.53 0 PREDICTED: proline-rich extensin-like protein Down 

gi|687044229 25.63 -161.76 0 hormone receptor 4 Down 
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Table 3.6. Top 50 differentially expressed contigs in midguts of cabbage-raised compared to artificial diet-raised 4th instar T.ni. 

(continued) 

 

 

 

 

 

 

Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

gi|687040727 50.88 157.98 0 scaffold BTMF_scaffold0000231 Up 

gi|687075461 21.27 -155.57 0 PREDICTED: uncharacterized LOC105387535 Down 

gi|687041211 22.32 -152.29 0 hormone receptor 4 Down 

gi|687052737 6.84 -147.78 7.77E-07 PREDICTED: aminoacylase-1-like Down 

gi|687088903 24.93 141.11 0 BAC, egg DNA Up 

gi|687074443 45.3 -135 0 clone: fepM12H13 Down 

gi|687128305 1,375.86 114.6 0 beta-glucosidase precursor Up 

16608 501.16 -112.33 0 not available Down 

gi|687091878 9.8 -109.2 4.43E-11 UDP-glycosyltransferase Down 

gi|687064871 5.8 -109.12 1.65E-07 
PREDICTED: nuclear hormone receptor family member 

nhr-91-like 
Down 

gi|687099862 0.09 108.92 3.88E-07 BAC clone:520F12 Up 

16587 242.16 -107.61 0 18S ribosomal RNA Down 

6477 57.78 106.87 0 clone BAC 33J17 cytochrome P450 Up 

6491 138.08 -101.14 0 molt-regulating transcription factor HaHR3 Down 

gi|687066378 9.46 -100.66 1.84E-13 MHR3 mRNA Down 
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Table 3.7. Top 50 differentially expressed contigs in midguts of potato-raised compared to cabbage-raised 4th instar T.ni. 

 

 

 

 

Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

10039 12.57 -3,922.67 3.66E-05 not available Down 

18323 2,006.68 -3,567.27 0 cytochrome CYP324A6 Down 

10485 8.4 -3,376.69 2.46E-05 
PREDICTED: tRNA dimethylallyltransferase, 

mitochondrial mRNA 
Down 

gi|687104771 6.99 3,114.00 1.08E-04 
PREDICTED: ABC transporter A family member 2-

like 
Up 

5184 46.64 -3,015.11 0 UDP-glycosyltransferase 39B4 Down 

17848 1,464.79 -1,896.21 0 cytochrome P450 CYP321A5 Down 

gi|687040727 50.88 -1,467.35 0 scaffold BTMF_scaffold0000231 Down 

gi|687096244 6.7 1,289.23 8.93E-04 
PREDICTED: ATP-binding cassette sub-family A 

member 2-like 
Up 

15414 25.49 1,138.81 0 flavin-dependent monooxygenase FMO3B Up 

18929 12.9 -1,085.29 6.57E-11 PREDICTED: reticulon-1-A Down 

17635 180.12 -1,079.85 0 scaffold SMTD_scaffold0023335 Down 

16610 1,086.64 -1,052.15 0 PREDICTED: solute carrier family 19 member 1  Down 

17514 2,199.97 -880.63 0 cytochrome P450 CYP321A9 Down 

16439 5,485.97 -669.14 0 18S ribosomal RNA gene, internal transcribed spacer 1 Down 

gi|687078584 556.87 607.9 0 PREDICTED: pancreatic triacylglycerol lipase-like Up 

gi|687075186 718.46 483.68 0 PREDICTED: interleukin 5 receptor subunit Up 

gi|687085460 774.08 468.07 0 PREDICTED: pancreatic triacylglycerol lipase-like Up 
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Table 3.7. Top 50 differentially expressed contigs in midguts of potato-raised compared to cabbage-raised 4th instar T.ni. 

(continued) 

 

Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

gi|687069664 18.05 449.21 0 chromosome 4 sequence Up 

gi|687119103 10.67 432.37 0 
PREDICTED: ABC transporter A family member 1-

like 
Up 

2891 39.39 420.36 0 PREDICTED: DNA-binding protein D-ETS-6-like Up 

gi|687125436 1,112.45 -393.89 0 BAC, egg DNA Down 

gi|687038127 18.39 387.95 0 chromosome 8 sequence Up 

8320 6.32 373.17 0 PREDICTED: serine/threonine-protein kinase 10-like Up 

10706 68.93 370.49 0 PREDICTED: cytochrome b5 Up 

263 38.36 366.43 0 alcohol dehydrogenase Up 

gi|687127134 14.07 352.04 0 PREDICTED: cyanate hydratase Up 

10695 14.8 349.06 0 PREDICTED: protein FEV-like Up 

18364 48.92 -313.33 0 UDP-glycosyltransferase Down 

gi|687121575 13.43 311.51 0 clone L581 gallerimycin Up 

17013 256.26 -296.64 0 UDP-glycosyltransferase Down 

16983 658.95 -288.86 0 18S ribosomal RNA Down 

17974 208.31 -283 0 PREDICTED: UDP-glucuronosyltransferase 2B19-like Down 

1727 2.38 278.24 3.95E-14 PREDICTED: DNA-binding protein D-ETS-6-like Up 

18023 219.8 -265.8 0 UDP-glycosyltransferase 33F4 Down 

gi|687114672 121.34 233.82 0 hypothetical protein Up 

18111 18.8 -188.84 0 prophenoloxidase-activating proteinase-3 (PAP-3) Down 

gi|687048759 7.64 -182.14 1.27E-11 clone POP002-K09 Down 
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Table 3.7. Top 50 differentially expressed contigs in midguts of potato-raised compared to cabbage-raised 4th instar T.ni. 

(continued) 

 

 

 

 

 

 

 

 

Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

gi|687070335 0.9 176.15 5.71E-07 mitochondrion, partial genome Up 

gi|687119680 0.34 -170 5.63E-07 scaffold SMTD_scaffold0000668 Down 

16389 2,321.25 -159.05 0 PREDICTED: pancreatic triacylglycerol lipase-like Down 

7640 1.01 157.24 0 clone BA_Ba68O14 Up 

18608 19.69 -150.94 1.49E-10 UDP-glycosyltransferase 33F4 (UGT33F4) Down 

gi|687067156 10.16 -145.25 6.27E-13 scaffold TCLT_scaffold0000596 Down 

gi|687133666 4.48 -143.94 0 PREDICTED: uncharacterized oxidoreductase Down 

gi|687081553 3.3 -143.39 1.42E-06 RhoGEF domain containing protein Down 

16587 201.07 141.75 0 18S ribosomal RNA Up 

gi|687097466 1.54 136.54 2.20E-06 clone AC1_B5 microsatellite sequence Up 

gi|687103806 4.08 132.05 0 
PREDICTED: ABC transporter A family member 2-

like 
Up 

gi|687110487 6.75 127.68 2.20E-10 
PREDICTED: ATP-binding cassette sub-family A 

member 2-like 
Up 
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Table 3.8. Top 50 differentially expressed contigs in midguts of potato-raised compared to artificial diet-raised 4th instar T.ni. 

 

 

 

 

Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

14365 7.07 -5,811.56 1.19E-05 juvenile hormone esterase-like Down 

4131 2.18 3,310.68 1.44E-05 
PREDICTED: tyrosine-protein phosphatase non-

receptor type 9-like 
Up 

gi|687065638 25.11 -2,957.40 2.43E-05 PREDICTED: uncharacterized LOC101744039 Down 

8807 2.76 2,203.80 4.28E-05 PREDICTED: protein split ends transcript variant X4 Up 

16585 14.1 -1,751.48 0 arylphorin Down 

gi|687075461 21.27 -1,629.63 1.29E-04 PREDICTED: uncharacterized LOC105387535 Down 

gi|687066166 21.64 -1,621.14 1.27E-04 PREDICTED: uncharacterized LOC106137673 Down 

gi|687032876 0.57 -1,452.86 1.70E-04 
PREDICTED: piezo-type mechanosensitive ion 

channel component 
Down 

gi|687084284 0.41 1,296.74 2.25E-04 cryptochrome 2 mRNA Up 

gi|687080545 4.58 -1,180.27 2.97E-04 PREDICTED: uncharacterized LOC106714378 Down 

gi|687122464 21.16 -1,135.73 1.22E-13 uncharacterized LOC106111980 Down 

7484 23.73 -1,094.86 0 PREDICTED: probable nuclear hormone receptor HR3 Down 

gi|687066127 34.14 -954.67 4.08E-13 osmosensing histidine protein kinase SLN1 Down 

gi|687070620 36.77 -938.01 3.97E-13 hormone receptor 4 (HR4) Down 

gi|687084286 0.25 876.19 6.13E-04 cryptochrome 2 Up 

2819 1.6 -811.84 7.59E-04 unknown secreted proteinsequence id: Px-1534 Down 

gi|687083130 25.47 -784.14 3.09E-12 PREDICTED: uncharacterized LOC105391589 Down 



52 
 

Table 3.8. Top 50 differentially expressed contigs in midguts of potato-raised compared to artificial diet-raised 4th instar T.ni. 

(continued) 

Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

gi|687040383 31.39 -709.78 2.43E-09 PREDICTED: uncharacterized LOC105389919 Down 

gi|687116298 1.85 -483.69 1.86E-10 clone: fepM03P02 Down 

813 31.2 -473.75 0 UDP-glycosyltransferase UGT46A4 Down 

gi|687118721 46.93 -464.48 0 PREDICTED: proline-rich extensin-like protein EPR1 Down 

6343 6.17 -443.63 3.90E-10 PREDICTED: uncharacterized LOC101737971 Down 

gi|687111713 6.76 -402.04 1.52E-09 PREDICTED: hormone receptor 3 (Hr3) Down 

16258 3.07 -364.36 1.33E-14 arylphorin Down 

gi|687044229 25.63 -358.33 0 hormone receptor 4 Down 

9056 5.77 -346.02 1.69E-09 CBS 6284 chromosome 3 Down 

gi|687085342 53.06 -294.55 0 
PREDICTED: nuclear receptor subfamily 6 group A 

member 1 
Down 

6491 138.08 -289.31 0 molt-regulating transcription factor HaHR3 Down 

16750 122.57 -281.01 0 facilitated trehalose transporter tret1-like Down 

gi|687042275 16.25 -269.78 3.87E-14 PREDICTED: eisosome protein SEG2 Down 

gi|687041211 22.32 -258.58 5.11E-14 hormone receptor 4 (HR4) Down 

gi|687124701 3.92 -257.43 1.85E-08 PREDICTED: serine proteinase stubble-like Down 

18088 32.34 -241.89 0 PREDICTED: uncharacterized LOC106720632 Down 

18929 4.21 -206.7 1.73E-06 PREDICTED: reticulon-1-A Down 

gi|687074443 45.3 -201.9 0 clone: fepM12H13 Down 

1352 2.82 191.13 0 PREDICTED: uncharacterized LOC106093080 Up 

2424 48.98 -181.28 0 
beta-hexosaminidase subunit beta-like; beta-N-

acetylglucosaminidase 3 precursor 
Down 
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Table 3.8. Top 50 differentially expressed contigs in midguts of potato-raised compared to artificial diet-raised 4th instar T.ni. 

(continued) 

 

 

Contig ID 

Max 

Group 

Mean 

Fold 

Change 

FDR p-

value 
Sequence Description Regulation 

gi|687038127 18.39 161.34 0 chromosome 8 sequence Up 

gi|687125436 754.22 -152.21 0 BAC, egg DNA Down 

18364 39.53 -148.32 0 UDP-glycosyltransferase UGT33F1 Down 

gi|687060035 42.58 -138.95 0 PREDICTED: UDP-glucuronosyltransferase 2B18-like Down 

gi|687088378 12.8 -138.14 7.48E-14 thymosin beta-like protein Down 

gi|687133666 6.99 -133.61 0 PREDICTED: uncharacterized oxidoreductase Down 

gi|687072573 5.97 -133.44 1.78E-06 molting carboxypeptidase A Down 

gi|687091878 9.8 -130.24 3.70E-10 UDP-glycosyltransferase UGT33B12 Down 

gi|687101440 1.5 130.19 2.97E-06 43U chromosome 14 sequence Up 

16732 220.75 128.69 1.20E-05 clone: fwd-02H12 Up 

2891 39.39 123.4 0 PREDICTED: DNA-binding protein D-ETS-6-like Up 

gi|687059532 4.91 -123.16 2.84E-06 PREDICTED: glucose dehydrogenase Down 
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Chapter 4. Discussion 

In this thesis I have investigated the effects of diet on infection of T. ni larvae by an 

AcMNPV baculovirus. I first confirmed that raising T. ni larvae on different diets does 

alter the efficiency with which the virus infects insects by measuring the LD50 values 

using three different diets. The results showed that the LD50 for this virus varied from 3.1 

to 61.6 OBs when larvae were reared on different food sources (Figure 3.1). 

4.1 Physiological Differences in Gut pH with Different Diets 

To determine what conditions under the different diet regimes might be responsible for 

this effect on infection, I tested the pH of anterior midgut contents when the insects were 

fed different foods since it has been previously suggested that dietary changes in pH may 

play a role in the resistance to pathogens106.  

I found that pH can be significantly altered depending on diet (Figure 3.2). Cabbage-

raised larvae had the least alkaline pH in the midgut (mean 8.5) whereas potato and 

artificial diet-raised larvae had similar, more alkaline pHs (mean ~9.5) characteristic of 

what is reported in the literature.109 Cabbage is rich in vitamin C: ascorbic acid. However, 

despite having a significantly lower pH than the other diet categories, cabbage-raised 

larvae were not the least susceptible to baculovirus having an LD50 between artificial diet 

and potato-raised larvae (Figure 3.1). Therefore, the prediction that diet would result in 

alterations to the midgut pH was supported by my data, but the results were not consistent 

with this pH change contributing to the differences in virus infection observed. Lowering 

of the pH in the anterior midguts of cabbage-raised insects did not reduce their 

susceptibility to the virus. It is possible that since the altered pH remained above 8, this is 

still alkaline enough to dissolve OBs effectively while also preventing tannin-protein 

aggregation. 

4.2 Morphological and Transcriptional Differences in T. ni Midgut PM  

To determine what morphological differences might occur with different diets, I 

examined the PM of larvae raised on different food sources. Previous studies looking at 

AcMNPV baculovirus infections in T. ni reported that most infections occurred at the 
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anterior end of the PM, with a small percentage at the distal end68. This can be explained 

by the fact that this species secretes a type II PM66,67 which has weaker structural integrity 

at the point of origin, becomes thicker and hyper-coiled as additional components are 

added69,70, and then depleted in the posterior section of the midgut (Figure 3.3). 

Therefore I focussed my studies on the anterior region of the midgut. 

Larvae fed on artificial diet had thin (less than 1µm) and fragile PMs, with midgut RNA 

profiles showing high levels of chitinase transcribed, the protein products of which would 

actively degrade chitin material. A thin PM (Figures 3.7 and 3.8) would not provide a 

very effective barrier against viral infection, potentially explaining the low LD50 for 

larvae reared on artificial diet: 3.1 OBs (95% CI: 0, 39.1). The PM of larvae reared on 

cabbage, a preferred host plant, was also thin (less than 1µm) but more uniform and dense 

than those from larvae fed artificial diet (Figures 3.9 and 3.10). The lower transcript 

levels of chitinase observed in the midgut of these insects would result in less degradation 

than seen in the artificial diet treatment, potentially contributing to the significantly lower 

susceptibility to baculoviral infection of cabbage-raised larvae: LD50 = 16.6 OBs (95% 

CI: 8.4, 32.5). The LD50 for larvae raised on potato, a non-preferred and chemically 

defended host plant55,57, was higher than that for the other two treatments: LD50 = 61.6 

OBs (95% CI: 37.2, 102.1) (Figure 3.1). This could be explained, at least in part by the 

fact that the PM in potato-raised larvae had thicker and less organized layers (Figures 

3.12 and 3.13). The morphological differences are reflected in the RNA transcript profiles 

as larvae reared on potato had the lowest chitinase and chitin deacetylase transcript levels, 

resulting in the thicker less organised layers. Higher mucin and lipase levels in potato-

raised larvae compared to cabbage-raised larvae (but inconsistent changes compared to 

artificial-diet-raised larvae) suggests a PM with greater gel protective layering along the 

PM. The PM of larvae reared on potato also had more microvesicles. This is consistent 

with repair or reinforcement of the PM structure as the membranes of the microvesicles 

become partially soluble in alkaline pH, and when close to the intestinal lumen they 

release their contents and become incorporated into the PM88,89. Overall, the differentially 

expressed levels of chitinase, chitin deacetylase, REPAT, mucins, and lipases, considered 

alongside the TEM images, all indicate a PM that is more robust in potato-raised larvae. 

The level of diet toxicity and the corresponding effects on 4th instar T. ni PM physiology, 
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chitinase regulation levels, susceptibility to baculovirus, and anterior midgut pH are 

summarized in Figure 3.17. 

 

Figure 3.17. The peritrophic membrane physiology, chitinase expression levels, 

susceptibility to virus, and anterior midgut pH responses as a function of diet in 4th instar 

T. ni. In order of increasing toxicity are artificial diet, cabbage, and potato.  

Another feature of interest was the level of ecdysone and JH-inducibles in the midgut 

environment, as ecdysone and JH work antagonistically to coordinate molting, during 

which the insect’s chitin content is drastically altered. Ecdysone, among other roles, 

induces molting and molting is correlated with thicker PM growth95. Inversely, feeding 

reduces PM thickness. (Larvae molting, or soon to be entering a molting phase, cease 

feeding, so the two actions are exclusive.) Interestingly, larvae reared on potato also have 

increased transcript levels of ecdysone receptors and reduced levels of those for ecdysone 

oxidase. Ecdysone oxidase catalyzes ecdysone into 3-dehydroecdysone, diverting its 

conversion into the pre-hormone 20-hydroxyecdysone which acts on ecdysone receptors 

to stimulate molting117. Thus the former increases an inducer while the latter reduces a 

repressor, so both differential expressions levels could contribute to a PM state closer to 

that of molting insects in non-molting larvae. However, this is a hypothesis only as RNA 

transcript levels were measured in the midgut tissue and ecdysone was not directly 

measured.  
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4.3 Stress Associated with Plant Diet: Triggering of Immune Response 

It is intriguing that REPAT protein transcript levels were significantly upregulated in 

potato-raised larvae compared to cabbage-raised larvae, even though no pathogen 

challenge was introduced, suggesting a heightened basal immune system induced by a 

relatively toxic diet. It is possible that the uptake of sterols, exceptionally abundant in 

Solanaceous foliage118, can lead to membrane and cell damage. This in turn would trigger 

general stress responses that induce an immune response when T. ni feed on potato and 

may contribute to the low susceptibility of potato-raised larvae to AcMNPV. A 

lepidopteran midgut transcriptomic study comparing the responses of three Spodoptera 

species also detected considerably higher expression of genes associated with the insect 

immune response after feeding on maize leaves compared to pinto bean artificial diet119. 

4.4 Detoxification Gene Responses to Plant Allelochemicals 

The midgut’s ability to detoxify plant toxins is an essential characteristic of insects, 

especially generalists, for managing diet toxin diversity. Many cytochrome P450s are 

detoxifying enzymes involved in the functionalization step of detoxification120,121,122. 

Glutathione transferases (GSTs) convert lipophilic xenobiotics into hydrophilic 

compounds for excretion or sequestration123,124. UDP-glucosyl transferases (UGTs) 

detoxify benzoxazinoids by conjugation with a sugar125. All three major detoxifying 

enzyme families were represented in the top 50 most differentially expressed contig 

transcripts of midguts from potato-raised larvae versus cabbage-raised larvae (Table 3.7), 

and more so than in comparison of midguts from cabbage-raised larvae vs artificial diet-

raised larvae or potato-raised larvae vs artificial diet-raised larvae (Tables 3.6 and 3.8). 

These tended to be downregulated in midguts of potato-raised larvae. A similar response 

consisting of strong gene repression of detoxification enzymes was found using midgut 

transcriptomics of T. ni fed on tomato (Solanaceae) compared to Arabidopsis 

(Brassicaceae) – two different plants that share the same family as the plant diets used in 

this study126. The lower expression levels of detoxifying enzymes may be indicative of 

how larvae raised on potato are more negatively impacted when it comes to growth rate, 

as they take longer to reach pupation compared to the other two diet groups. The 

hypothesis put forth by Herde and Howe126 proposes that anti-nutritive proteins elicit 
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large-scale remodelling of digestive enzymes and that the metabolic costs associated with 

digestive flexibility constrains an insect’s ability to detoxify secondary metabolites. This 

hypothesis is supported by the varied defense-related plant compounds present in 

Solanaceae and by my results. However, the effects of lower detoxification enzyme levels 

and their impact on growth are difficult to isolate from the thickened PM structure 

observed in potato-raised larvae. A thicker PM reduces digestive rates and this would also 

result in decreased growth rates37. 

4.5 Future Challenges and Directions 

The results of this study underline the importance of taking into account the crop type 

when determining the dose of viruses used for effective control in an integrated pest 

management program, with consequences for application, time, and cost. The application 

of an insufficient dose of virus could result in unacceptable crop losses, especially if the 

pest is univoltine as there would be no opportunity for the virus to increase over 

successive generations. Furthermore, as the in vivo production of baculoviruses is 

expensive, if the dose required on a specific crop is high farmers may reject the option on 

financial grounds. My research has shown that the effect of food source on gut pH does 

not appear to be responsible for variation in viral infectiousness of AcMNPV baculovirus 

in T. ni. However, a very interesting finding was that gut pH did vary with the different 

diets tested. A useful line of future inquiry could involve testing for changes in other 

properties of the midgut resulting from different diets, such as the proteases and protease 

inhibitors present. Proteases can affect the structure of the PM and thereby how 

efficiently it can provide a barrier to pathogens78,127. Finding additional factors that 

modulate infectiousness of baculovirus could provide novel means for optimizing virus 

performance.  

Currently, one active field of research is molecular based biocontrol, specifically RNA 

interference (RNAi)128. However, the successful RNAi knockdown of genes in insects has 

been quite variable and it is becoming evident that while the overall machinery of RNAi 

response is generally conserved, specific components differ considerably depending on 

the class, family and even species level129,130,131. To date, there have as of yet been no 

successful systemic RNAi knockdowns in T. ni through feeding assays, but other methods 
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for introducing dsRNA such as injection are possible. This method of experimentally 

altering the levels of targets of interest such as chitin synthase or chitin deacetylase could 

be used to reduce the expression of these genes in cabbage-fed larvae. Additionally, any 

of the other proteins of interest from this studythat are associated with the PM could be 

target options – particularly those that were upregulated on a challenging diet, such as: 

glycoproteins, mucins, lipases, and REPATs. The knockdown of two essential PM 

proteins in the red flour beetle resulted in significant mortality and it was concluded that 

these proteins were essential for regulation of PM permeability, which is essential for 

survival and fat body maintenance132. By measuring PM thickness and virus susceptibility 

with such genes silenced, it would be possible to determine if particular genes and their 

corresponding enzymes contribute to the reduced viral susceptibility I observed in potato-

fed larvae. Ultimately, this approach might prove effective in improving the efficacy of a 

promising oral pathogen for use as a biopesticide and reduce the dosage of pathogen 

required for effective control, resulting in the desired control at a lower cost. 

4.6 Conclusion 

Baculoviruses potentially offer an effective alternative to insecticides as co-evolution 

with their insect hosts has resulted in biological properties that can be advantageous for 

agricultural purposes. They are also only one specific tool in a developing arsenal of 

existing and upcoming pest biocontrol possibilities. If used solely, the context in which 

they are applied needs to be considered for efficacy. If used in concert with other 

methods, their inclusion should be to counterbalance the drawbacks of those systems. My 

research offers a detailed study on the factors that underlay infection and susceptibility in 

a model baculovirus-host system. My findings suggest that in this model system, the 

effects of diet on virus infectivity are primarily mediated through alterations to the 

structure of the PM and not through changes to midgut pH. The changes in gene 

expression associated with these alterations provide leads for further experiments to 

identify the specific mechanisms involved. It is my hope that a better understanding of 

this pathogen-host relationship will lead to better informed applications of effective and 

convenient biocontrol techniques.
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