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Abstract
Tendon-based transmission is a common approach for transferring motion and forces in
surgical robots. In spite of design simplicity and compactness that comes with the ten-
don drives, there exists a number of issues associated with the tendon-based transmission.
In particular, the elasticity of the tendons and the frictional interaction between the tendon
and the routing result in substantially nonlinear behavior. Also, in surgical applications, the
distal joints of the robot and instruments can not be sensorized in most cases due to techni-
cal limitations. Therefore, direct measurement of forces and use of feedback motion/force
control for compensation of uncertainties in tendon-based motion and force transmission
are not possible. However, force/motion estimation and control in tendon-based robots are
important in view of the need for haptic feedback in robotic surgery and growing interest
in automatizing common surgical tasks.

One possible solution to the above described problem is development of mathematical mod-
els for tendon-based force and motion transmission that can be used for estimation and
control purposes. This thesis provides analysis of force and motion transmission in tendon-
pulley based surgical robots and addresses various aspects of the transmission modeling
problem. Due to similarities between the quasi-static hysteretic behavior of a tendon-pulley
based da Vinci® instrument and that of a typical tendon-sheath mechanism, a distributed
friction approach for modeling the force transmission in the instrument is developed. The
approach is extended to derive a formula for the apparent stiffness of the instrument. Con-
sequently, a method is developed that uses the formula for apparent stiffness of the instru-
ment to determine the stiffness distribution of the tissue palpated. The force transmission
hysteresis is further investigated from a phenomenological point of view. It is shown that a
classic Preisach hysteresis model can accurately describe the quasi-static input-output force
transmission behavior of the da Vinci® instrument.

Also, in order to describe the distributed friction effect in tendon-pulley mechanisms, the
creep theory from belt mechanics is adopted for the robotic applications. As a result, a
novel motion transmission model is suggested for tendon-pulley mechanisms. The de-
veloped model is of pseudo-kinematic type as it relates the output displacement to both
the input displacement and the input force. The model is subsequently used for position
control of the tip of the instrument. Furthermore, the proposed pseudo-kinematic model
is extended to compensate for the coupled-hysteresis effect in a multi-DOF motion. A
dynamic transmission model is also suggested that describes system’s response to high fre-
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quency inputs. Finally, the proposed motion transmission model was used for modeling of
the backlash-like hysteresis in RAVEN II surgical robot.

Keywords: Surgical Robotics, Tendon-Drive, Tendon-Pulley, Preisach Hysteresis Model-
ing, Backlash-Like Hysteresis, Transmission Modeling, Creep Theory

ii



Co-Authorship Statement

The thesis presented here has been written by Farshad Anooshahpour under supervision
of Dr. Ilia G. Polushin and Dr. Rajni V. Patel. Part of the materials in this thesis have
been published in peer-reviewed journal papers and refereed conference proceedings, or
are under review for publication. The research published in each paper has been conducted
by the principal author, and guided and supported by the co-authors who are the research
supervisors and Dr. Peyman Yademellat (in some publications) as listed below,

• F. Anooshahpour, P. Yadmellat, I. Polushin, R. V. Patel, “A Motion Transmission
Model for a Class of Tendon-Based Mechanisms with Application to Position Track-
ing of the da Vinci® Instrument,” IEEE Transaction of Mechatronics, (accepted sub-
ject to minor revisions).

• F. Anooshahpour, P. Yadmellat, I. Polushin, R. V. Patel, “A Motion Transmission
Model for Multi-DOF Tendon-Driven Mechanisms with Hysteresis and Coupling:
Application to a da Vinci Instrument,” IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, Vancouver, BC, IEEE, 2017 (accepted).

• F. Anooshahpour, P. Yadmellat, I. G. Polushin, R. V. Patel, “Modeling of Tendon-
Pulley Transmission Systems with Application to Surgical Robots: A Preliminary
Experimental Validation,” IEEE International Conference on Advanced Intelligent
Mechatronics (AIM), Munich, Germany, pp. 761-766, IEEE, 2017.

• F. Anooshahpour, I. Polushin, R. V. Patel, “Classical Preisach Model of Hysteretic
Behavior in a da Vinci Instrument,” IEEE International Conference on Advanced
Intelligent Mechatronics (AIM), Banff, AB, pp. 1392-1397, IEEE, 2016.

• F. Anooshahpour, I. Polushin, R. V. Patel, “Tissue Compliance Determination Using
a da Vinci Instrument,” IEEE International Conference on Robotics and Automation
(ICRA), Seattle, WA, pp. 5344-5349, IEEE, 2015.

• F. Anooshahpour, I. Polushin, R. V. Patel, “A Quasi-Static Modelling of the da Vinci
Laparoscopic Instrument,” IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Chicago, IL, pp. 1308-131, IEEE, 2014.

iii



Dedicated to:

my parents, Hamid and Pooran, for their faith in me,

&

my brothers, Farid and Mahdi for their support.



Acknowledgement

I would like to express my sincere appreciation and gratitude to my professors Dr. Ilia
G. Polushin and Dr. Rajni V. Patel for supervising my research during my PhD studies. I
would like also to thank Dr. Peyman Yadmellat for his collaboration and interest in this
topic. I would also thank my lab-mates, the people of CSTAR, for sharing their knowledge
and experience with me.

v



Funding

Farshad Anooshahpour was supported by an NSERC Collaborative Research and Train-
ing Experience (CREATE) program (Grant #371322-2009) on Computer-Assisted Medical
Interventions (CAMI).

vi



Table of Contents

Abstract i

Statement of Co-Authorship iii

Acknowledgement v

Sources of Funding vi

List of Tables xiii

List of Figures xiv

Nomenclature xxi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Belt-Drive Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 The Compatibility Condition . . . . . . . . . . . . . . . . . . . . . 20

vii



1.5.2 Conclusions on Belt-Drive Mechanics . . . . . . . . . . . . . . . . 20

1.6 Contribution and Overview of the Thesis . . . . . . . . . . . . . . . . . . . 21

1.6.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.4 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.5 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.6 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6.7 Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

References 25

2 Quasi-Static Modeling of Force Transmission in the da Vinci ® Instrument 32

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Quasi-Static Analysis of Tendon Force Transmission in the Presence of
Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Pull-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.2 Pull-Push Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 The Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.2 Instrument Parameter Identifications . . . . . . . . . . . . . . . . . 43

2.4.2.1 Identification of ηt and ηb . . . . . . . . . . . . . . . . . 44

2.4.2.2 Identification of Ktt and Ktb . . . . . . . . . . . . . . . 46

2.4.2.3 Identification of I . . . . . . . . . . . . . . . . . . . . . 47

2.4.3 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



References 49

3 Tissue Compliance Determination Using a da Vinci® Instrument 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Apparent Stiffness of a Tendon-Sheath Force Transmission System . . . . . 53

3.3 Combined Stiffness of the Instrument and the Environment . . . . . . . . . 59

3.4 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 The Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.1 First Set of Experiments . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.2 Second Set of Experiments . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

References 68

4 Classical Preisach Model of Hysteretic Behavior in a da Vinci® Instrument 70

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Classical Preisach Model of Hysteresis . . . . . . . . . . . . . . . . . . . . 73

4.3 Algorithm for Real-Time Calculation of L(t) . . . . . . . . . . . . . . . . 76

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 Model Identification . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.2 Output Force Estimation . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

ix



References 89

5 A Motion Transmission Model for a Class of Tendon-Based Mechanisms with
Application to Position Tracking of the da Vinci® Instrument 91

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Belt Drive Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Tendon Slip Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 The Motion Transmission Model . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Experimental Results and Model Validation . . . . . . . . . . . . . . . . . 106

5.5.1 Motion Transmission Analysis . . . . . . . . . . . . . . . . . . . 106

5.5.2 Model Identification . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5.3 Control results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.7 Appendix: Pseudo-Kinematic Model for a System With Large Constant
Pretension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

References 119

6 A Motion Transmission Model for Multi-DOF Tendon-Driven Mechanisms
with Hysteresis and Coupling: Application to a da Vinci® Instrument 122

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Case Study: The da Vinci® Surgical Instrument . . . . . . . . . . . . . . . 130

6.3.1 Forward and Inverse Kinematics . . . . . . . . . . . . . . . . . . . 132

x



6.3.2 Motion Transmission Model for the da Vinci® instrument . . . . . 133

6.4 Experimental Results and Model Validation . . . . . . . . . . . . . . . . . 136

6.5 Dynamic Effects in Motion Transmission - Preliminary Analysis . . . . . . 141

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

References 146

7 The Application of Motion Transmission Model of Tendon-Pulley Transmis-
sion to Surgical Robots: A Preliminary Experimental Validation 148

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2 Motion Transmission Model . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.3 Case Study: Experimental Results Using The RAVEN II Surgical Robot . . 154

7.3.1 Motion Transmission Analysis . . . . . . . . . . . . . . . . . . . 156

7.3.2 Model Identification . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

References 165

8 Conclusion and Future Work 167

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.2.1 Hybrid Force/Motion Transmission . . . . . . . . . . . . . . . . . 168

8.2.2 Advanced Theories for Tendon-Pulley Interaction . . . . . . . . . . 169

8.2.3 Mechanical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 169

References 171

Appendices

xi



A Relaxing The Zero-Pretension Assumption for the Pseudo-Kinematic Formula
of Dual Tendon-Surface Systems 172

xii



List of Tables

2.1 Values of ηt and ηb measured at the slack instants ts . . . . . . . . . . . . . 45

2.2 Constant I measured at the slack instants . . . . . . . . . . . . . . . . . . 47

4.1 Magnitude of the force response, maximum force estimation error, and
RMS force estimation error for input signals u1(t), u2(t), and u3(t). . . . . 85

5.1 The identified values of the model’s parameters . . . . . . . . . . . . . . . 107

5.2 The model estimation results in comparison to those of kinematics-based
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Position control RMSEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 Parameter identification results . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Identification results of the dynamic model . . . . . . . . . . . . . . . . . . 143

7.1 The identified values of model parameters . . . . . . . . . . . . . . . . . . 160

7.2 Identification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xiii



List of Figures

1.1 A minimally invasive lobectomy-brachythrapy surgery at London Health
Sciences Center (LHSC) in 2009 [1]. . . . . . . . . . . . . . . . . . . . . . 3

1.2 The da Vincir surgical system by Intuitive Surgical (©Intuitive Surgical
Inc. [2]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The EndoWrist® instrument as the end-effector of da Vinci surgical system
( ©Intuitive Surgical Inc.) [2]. . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The hands’ position and the view of the operation field available to the sur-
geon while working with the da Vinci® surgical system (©Intuitive Surgical
Inc.) [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 The RAVEN II surgical robotic system installed in CSTAR, London, ON,
Canada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 A representation of the slip and stick zones on the input/driving and out-
put/driven pulleys in a typical belt derive. Adopted from [3]. . . . . . . . . 10

1.7 A typical tendon-pulley transmission in surgical robots consists of serval
idlers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 Free-body diagram of a driven pulley of a belt-drive (left). The control
volume over the slip zone (right) . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 The driving and the driven pulleys in a belt-drive system. Adopted from [3]. 18

2.1 The da Vinci instrument (EndoWrist® grasper) [3]. . . . . . . . . . . . . . 33

2.2 A tendon on a curved surface with constant curvature . . . . . . . . . . . . 35

xiv



2.3 An infinitesimal element of the tendon [8] . . . . . . . . . . . . . . . . . . 37

2.4 A dual tendon-sheath (pull-pull) system. . . . . . . . . . . . . . . . . . . . 38

2.5 A typical input-output relation for a tendon-sheath mechanism in pull-pull
architecture [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 The experimental setup: the overall view (left); the force sensor close-up
(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7 Left plot: the input torque τin, the output torque τout, and the angular posi-
tion q1 (scaled) vs. time, the tip is locked (q2 ≡ 0). Right plot: τout and q1

(scaled) vs. τin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 Estimate η and the input torque (scaled) τin vs. time. . . . . . . . . . . . . 45

2.9 Estimates τ plout, τ
pp
out, and the measured torque τout vs. time. . . . . . . . . . 48

2.10 Measured output torque τout and estimate τ̄out vs. time, for different input
torque signals. Top plot: The input signal is τin = 0.06228 sin (2π · 0.05t)+

0.06228 sin (2π · 0.025t) (N·m). Middle plot: τin = 0.06228 sin (2π · 0.02t)+

0.06228 sin (2π · 0.014t) (N·m). Bottom plot: τin = 0.06228 sin (2π · 0.1t)+
0.06228 sin (2π · 0.03t) (N·m). . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 A tendon on a curved surface with a constant curvature (top); example of
tension distribution (bottom) [8] . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 a) Numerical simulation of transmission characteristics in a single tendon-
sheath system, where tendon is considered a chain of mass-spring-damper
elements sliding on a curved surface under conditions mentioned in the
legend. The input is sinusoidal displacement with 0.04Hz frequency. The
apparent stiffness in pushed, natural and pulled tendon is shown in the left
curve as dotted lines. here, ν = µL

R
is the dimensionless bending-friction

parameter. Unlike our study, the apparent stiffness is calculated as a ratio of
the output force Tout to the input elongation ξin but easily interchangeable
by considering Tout = Tine

−sgn(v)ν as shown in the right curve. b) The
experimental results for a 0.4Hz sinusoidal input force [9]. . . . . . . . . 56

3.3 A dual tendon-sheath (pull-pull) system [8]. . . . . . . . . . . . . . . . . . 57

xv



3.4 A typical input-output relation for a tendon-sheath mechanism in a pull-
pull architecture [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 The experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 A close look of the tip of da Vinci EndoWrist®grasper [13]. . . . . . . . . . 62

3.7 The silicone samples used in the first experiment. . . . . . . . . . . . . . . 63

3.8 First set of experiments: the input torque (top); the resulting rotation of the
input pulley (bottom). Blue, red, and green curves correspond to compliant,
semi-compliant, and rigid samples, respectively. . . . . . . . . . . . . . . 64

3.9 Experimental results: combined stiffness of the samples during palpation
(top); combined compliance of the samples during palpation (bottom). . . . 65

3.10 The artificial tissue with tumors implemented at different depth . . . . . . 65

3.11 Experimental results: combined compliance of the system when palpating
different areas of the artificial tissue. . . . . . . . . . . . . . . . . . . . . . 66

3.12 The artificial tissue with palpation regions (top); the corresponding distri-
bution of combined compliances (bottom). . . . . . . . . . . . . . . . . . . 67

4.1 EndoWrist™ instruments by Intuitive Surgical [4] . . . . . . . . . . . . . 71

4.2 Relay operator γ̂αβ(·), α, β ∈ R (left). Each point (α′, β′) of the triangular
subset {(α, β) ∈ R2, α ≥ β, α ≤ α0, β ≥ β0} corresponds to a single
relay operator γ̂α′β′ together with its scaling factor µ(α′, β′) (right). . . . . 73

4.3 The interface L(t) which results from increasing the input from u (t0) < β0

to u (t1) = α1, and its subsequent decrease to u (t2) = β1. . . . . . . . . . . 75

4.4 Notation for coordinates of vertices of L(t). . . . . . . . . . . . . . . . . . 77

4.5 A sample input signal (top); the resulting interface L(t) for t = 40 s and
t = 60 s (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 The experimental setup: the overall view (top); close-up of the instrument
tip fixed to a force sensor (bottom). . . . . . . . . . . . . . . . . . . . . . . 81

4.7 The input signal used for model identification (top); the resulting first-order
transition (reversal) curves (bottom). . . . . . . . . . . . . . . . . . . . . . 83

xvi



4.8 The mesh of experimentally obtained values fαβ , −5V ≤ u(t) ≤ 5V , with
resolution ∆α = ∆β = 1V . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.9 Input signal u1(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.10 Response to input signal u1(t), measured vs. estimated (top); the corre-
sponding input-output behavior (bottom). . . . . . . . . . . . . . . . . . . 86

4.11 Response to input signal u2(t), measured vs. estimated (top); the corre-
sponding input-output behavior (bottom). . . . . . . . . . . . . . . . . . . 87

4.12 Response to input signal u3(t) measured vs. estimated (top); the corre-
sponding input-output behavior (bottom). . . . . . . . . . . . . . . . . . . 88

5.1 (a) Slip and stick zones on the input and output pulleys of a belt drive
(adopted from [24]). (b) Free-body diagram of a driven pulley and the
control volume (dashed line) in a belt drive mechanism. . . . . . . . . . . . 95

5.2 (a) A typical tendon-pulley drive in a surgical robot consists of the input and
output pulleys as well as several idler pulleys for routing. The forward and
backward routing are not necessarily similar. (b) The proposed equivalent
dual tendon-surface system. Tendons’ interaction with the curved surfaces
accounts for tension decay and creeping effect in the original structure. (c)
Tendon slipping on a curved surface under an axial load Tin. . . . . . . . . 98

5.3 The experimental setup: the overall view (top); the instrument tip from the
point of view of the camera (bottom). . . . . . . . . . . . . . . . . . . . . 105

5.4 (a) An example of system’s response to a 0.1 Hz sinusoidal input displace-
ment (left); the hysteresis behavior (right). (b) System response to sinu-
soidal inputs with a fixed amplitude q1 max = π/12 rad and various frequen-
cies. (c) Minor hysteresis loops in the system’s response to the following
desired input signals: 5sin(2π/30 t)+5sin(2π/10 t) (left); 5sin(2π/30 t+

π)+5sin(2π/10 t) (middle); 10sin(2π/30 t+π/2)+7.5sin(2π/10 t) (right).107

xvii



5.5 The proposed model estimation results for: (a) sinusoidal commands with
frequencies of 0.05, 0.1, and 0.2 Hz, and (b) a multi-sinusoidal command
signal. The dash-dot red line is the motor (input) position, the solid black
line is the tip (output) position measured by the camera, and the dash blue
line is an estimate of the output position by the proposed model. . . . . . . 109

5.6 (a) Error distributions of the proposed model in comparison with those of
kinematics-based estimation along with (b) the absolute error probability.
Inputs are sinusoidal commands with frequencies of 0.05, 0.1, and 0.2 Hz,
and a multi-sine command with frequency range of 0.01-0.1 Hz. PM and
KM refer to as the proposed model and kinematics-based estimation, re-
spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 Control results for sinusoidal commands with frequency of (a) 0.01 Hz and
(b) 0.05 Hz. The transmission hysteresis with and without the proposed
model is shown in the bottom-right and top-right subfigures, respectively. . 113

5.8 Control results for sinusoidal commands with frequency of (a) 0.1 Hz and
(b) 0.2 Hz. The transmission hysteresis with and without the proposed
model is shown in the bottom-right and top-right subfigures, respectively. . 114

5.9 Control result for (a) an exponentially decaying sinusoidal command with
a frequency of 0.01 Hz, time constant of 0.025 sec and (b) a multi-sine
input command with five frequencies ranging from 0.015 Hz to 0.075 Hz. . 115

5.10 Hysteretic behavior of the proposed modelling approach versus the kinematics-
based estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1 The case study: a) the da Vinci EndoWrist® instrument - overall view;
b) wrist mechanism with markers; c) input pulleys at the actuator side,
grasping pulleys are visible, with roll and pitch pulleys behind them; and
d) the coordinate frames assigned to the wrist mechanism of the instrument. 124

6.2 (a) A schematic overview of a single DOF tendon-multipulley transmission
and (b) the tendon-surface based model to represent a one-DOF tendon-
multipulley system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xviii



6.3 Experimental setup, An EndoWrist® instrument with markers and a Micron
Tracker Camera (top), left and right camera view (bottom) . . . . . . . . . 131

6.4 A sinusoidal command to the pitch DOF (qp) of the instrument while grasp-
ing DOFs (qgr and qgl) are set free. A coupling effect with hysteretic be-
havior can be observed in the right and left grasps (θgl and θgr). Here the
frequency of command is 0.01 Hz and the amplitude is 30 degrees. . . . . . 134

6.5 Response of θgr (left) and θgl (right) to a sinusoidal signal θp(t) = 20 cos (0.01t)

deg. The hysteresis effect is negligible. . . . . . . . . . . . . . . . . . . . . 135

6.6 Model identification results for the right and left grasp. Four experiments
with the desired input amplitudes of 20, 15, 10, and 7 degrees. The per-
centages show the Goodness-of-Fit associated with the modeling result of
each separate experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.7 Model identified hysteresis in comparison with the system actual hysteresis
for four sinusoidal commands with desired input amplitudes of 20, 15, 10,
and 7 degrees. The percentages show the Goodness-of-Fit. . . . . . . . . . 139

6.8 Pitch identification results along with the right and left grasp couplings for
four sinusoidal commands with desired input amplitude of 20, 15, 10, and
7 degrees. The percentages show the Goodness-Of-Fit associated with the
modeling results for each separate experiment. . . . . . . . . . . . . . . . . 140

6.9 System hysteretic response to a swept-sine signal with constant amplitude
of 10 deg and varying frequencies from 0.05 Hz to 3 Hz. . . . . . . . . . . 143

6.10 Dynamic identification results for the right jaw for multi-sine signals in-
cluding (I) the training signal and (II)-(V) validation signals. The multi-
sine parameters are given in Table 6.2. . . . . . . . . . . . . . . . . . . . . 144

6.11 Dynamic identification results for multi-sine signals including (I) the train-
ing signal and (II)-(V) validation signals. The multi-sine parameters are
given in Table 6.2. PM and KM refer to as the proposed model and the
kinematics-based estimation, respectively. . . . . . . . . . . . . . . . . . . 145

7.1 The right arm of the RAVEN II® surgical robotic system installed at CSTAR,
London, ON, Canada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xix



7.2 (a) Slip and stick zones on the input and output pulleys of a belt drive
(adopted from [12]); (b) the tendon-surface interaction model of a one DOF
tendon-pulley system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3 Shoulder DOF responses to sinusoidal inputs with fixed amplitude of q1 =

10 degrees and frequencies of 0.1, 0.2 and 0.4 Hz (left); hysteretic behavior
of the shoulder DOF (right) . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.4 Elbow DOF responses to sinusoidal inputs with fixed amplitude of q1 = 10

degrees and frequencies of 0.1, 0.2 and 0.4 Hz (left); hysteretic behavior of
the elbow DOF (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.5 Insertion DOF responses to sinusoidal inputs with fixed amplitude of q1 =

25 mm and frequencies of 0.1, 0.2 and 0.4 Hz (left); hysteretic behavior of
the insertion DOF(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.6 Elbow DOF responses to sinusoidal inputs with peak-to-peak amplitude
of 20 degrees and frequency of 0.1 Hz, for different levels of pretension
(small, medium, and large). . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.7 Response of the elbow DOF to an exponentially decaying command signal. 158

7.8 System response to sinusoidal inputs with fixed amplitude and various fre-
quencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.9 (a) The system’s response to the multi-sine commands shown in Table 7.2
vs. the responses of the proposed model and the kinematics-based estima-
tion; (b) scaled up version of the plots in part a). . . . . . . . . . . . . . . . 162

7.10 The proposed model estimation results for sinusoidal commands with fre-
quencies of 0.1 and 0.2 Hz. The dash (red) line is the measured elbow
position by joint encoder, the dash-dot (black) line is the response of the
kinematics-based model, and the solid (blue) line is the response of the
proposed model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.11 (a) Error distributions of the proposed model in comparison with those
of the kinematics-based estimation for training and validation commands
given in Table 7.2; (b) absolute error probabilities. PM and KM refer to as
the proposed model and kinematics-based estimation, respectively. . . . . . 164

xx



7.12 The hysteretic behavior of the proposed model vs. the actual hysteretic
behavior of the elbow DOF, for sinusoidal commands with frequencies of
0.1 Hz (left plot) and 0.2 Hz (right plot). . . . . . . . . . . . . . . . . . . . 164

xxi



Nomenclature

Chapter 1: Symbols

Γ ≥ 0 denotes the wrapping angle.

Φ ∈ [0,Γ] is the slip zone within the wrapping angle.

ds is the length of an infinitesimal control volume in the slip zone.

r is the radius of the pulley.

θ ∈ [0,Φ] is the angular location of the control volume.

G = dm
dt

denotes the mass flow rate or the mass of a substance which passes the control
volume’s boundary per unit of time.

ρ is the density of the belt.

A(s) is the cross section area of the belt at point s.

V (s) is the speed of the belt at point s.

~P ∈ R2 denotes the linear momentum.

~F ∈ R2 is the net force applied to the surface of the control volume.

m is mass.

T (s) > 0 is the belt’s tension at point s.

~f ∈ R2 is Coulomb friction per unit length of the control volume.

~n ∈ R2 is normal force per unit length of the control volume.

Tt > 0 is the belt’s tension in the tighter span of the belt-drive.
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Ts > 0 is the belt’s tension in the looser span of the belt-drive.

τin is the torque applied to the input pulley of a multi-pulley system.

τout is the torque applied to environment by the output pulley of a multi-pulley system.

r1 > 0 is the radius of the input pulley of a two-pulley belt drive.

r2 > 0 is the radius of the output pulley of a two-pulley belt drive.

Vt is the speed of the belt in the tighter span of a two-pulley belt drive.

Vs is the speed of the belt in the looser span of a of a two-pulley belt drive.

q1 is the angular displacement of the input pulley.

q2 is the angular displacement of the output pulley.

ε(s) is the belt’s strain at point s.

E is the belt’s modulus of elasticity.

ref is a subscript corresponding to the belt’s reference condition.

dl(s) is the length of a material segment of the belt centering at point s.
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Chapter 2: Symbols

L is the length of the curved surface.

R is the radius of the curved surface.

x ∈ [0, L] denotes the position along the curved surface.

T 0(x) > 0 denotes the pretension distribution along the curved surface.

T (x) > 0 denotes the tension distribution along the curved surface.

Tin is the input force applied to the free end of the tendon.

xw = min{x ∈ [0, L] : Tine
µ
R
xsgn(v) = T 0(x)} is the farthest point of the acitve/slip length

from the point of application of Tin.

F denotes Coulomb friction force applied to an infinitesimal segment of the tendon within
the slip/active length.

N denotes the normal force applied to the infinitesimal segment of the tendon within the
slip/active length.

dθ is the bending angle of an infinitesimal element of the tendon.

sgn(v) determines the direction of the impending motion of an infinitesimal element of
the tendon.

µ is the coefficient of Coulomb friction.

d∆ denotes the elongation of an infinitesimal element of the tendon.

E is the tendon’s modulus of elasticity.

A is the cross section area of the tendon.

∆ is the total elongation of the tendon as a result of applying Tin to its free end.

ϕ ∈ [0, 1] denotes the normalized position along the curved surface.

Kt is the natural stiffness of the tendon.

τin is the torque applied to the input pulley of a multi-pulley system.

τout is the torque which the output pulley of a multi-pulley system applies to environment.
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η > 0 is a dimensionless parameter which represents the effect of both the friction and the
bending of the curved surface.

∆q is the change of pulley rotational displacement q after change in the direction of rota-
tion of the input pulley.

I is a constraint in dual-tendon systems that represents the pretension effect.
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Chapter 3: Symbols

Tin is the input force applied to the free end of the tendon.

x ∈ [0, L] denotes the position along the curved surface.

L is the length of the curved surface.

R is the radius of the curved surface.

ϕ ∈ [0, 1] denotes the normalized position along the curved surface.

T (ϕ) denotes the tension distribution along the curved surface.

∆ is the total elongation of the tendon as a result of applying the input force Tin to its free
end.

η > 0 is a dimensionless parameter which represents the effect of both the friction and the
bending of the curved surface.

sgn(v) determines the direction of the impending motion in the active length of the tendon.

T 0(ϕ) is the initial tension distribution within the tendon and along the curved surface.

ϕw ∈ [0, 1] is the normalized position of the farthest point of the acitve/slip length from
the point of application of Tin.

Kn is the natural stiffness of tendon

E is tendon’s modulus of elasticity.

A is the cross section area of tendon.

Kapp is the apparent stiffness of the tendon.

d∆ denotes an infinitesimal change in the total length of the tendon.

dTin is an infinitesimal change of the input force.

kmin−pullapp is the tendon’s minimum apparent stiffness resulting from a pulling input force.

kmin−pushapp is the tendon’s minimum apparent stiffness resulting from a pushing input force.

r1 is the radius of the input pulley.

r2 is the radius of the output pulley.
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τin is the torque applied to the input pulley of a dual-tendon system.

τout is the torque which the output pulley of a dual-tendon system applies to environment.

q is the rotational displacement of the pulley.

∆q is the change of pulley rotational displacement q after change in the direction of rota-
tion of the input pulley.

KDual
app denotes the apparent stiffness of a dual-tendon system.

Kenv is the environmental stiffness.

qJ11 is the rotation of the input pulley of the upper jaw in a gripping palpation.

qJ21 is the rotation of the input pulley of the lower jaw in a gripping palpation.

kDual−minapp denotes the minimum apparent stiffness of a dual-tendon system.
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Chapter 4: Symbols

γ̂αβ(·) is the relay operator with upper threshold α and lower threshold β.

u(t) is the input signal to the relay operators or the Preisach model.

µ(α, β) denotes the weighting function that scales the output of the relay operator γ̂αβ(·).

f(t) is the output signal of the Preisach model.

α0 is the largest of the upper thresholds αi between all the relay operators γ̂αiβj(·).

S+ denotes the set of relay operators switched positive.

S− denotes the set of relay operators switched negative.

L(t) is the stair-like interface link (or border polygon) which separates S+ and S− on the
limiting triangle.

fαβ denotes the first order reversal or the output of the system as a result of monotonically
increasing the input from below u(t) = β0 to u(t) = α then decreasing to u(t) = β.

L̂(t) is the matrix of vertices of the interface link L(t).

Fx is the output force measured with the force sensor.
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Chapter 5: Symbols

T1 > 0 is the belt span tension before the slip zone.

T2 > 0 is the belt span tension after the slip zone.

µs > 0 is the coefficient of the Coulomb surface friction.

Γ ∈ [0, π] is the wrapping angle.

Φ ∈ [0,Γ] is the angular length of the slip zone.

FR ∈ R2 is the joint normal force.

ṁ = dm
dt

denotes the mass flow rate or the mass of a substance which passes the control
volume’s boundary per unit of time.

V1 is the speed of tendon that enters the control volume.

V2 is the speed of tendon that leaves the control volume.

τf is the Coulomb frictional torque at joint axis.

µJ > 0 is the coefficient of Coulomb friction at the joint axis.

r′ is the inner radius of the pulley.

r is the outer radius of the pulley.

τload is the external loading torque.

li is the length of tendon at i-th span in a multi-pulley tendon drive.

Ls is the total length of the tendon in a multi-pulley tendon drive.

Ts > 0 is the initial preset tension along the tendon in a multi-pulley tendon drive.

L is the length of the curved surface.

R is the radius of the curved surface.

x ∈ [0, L] denotes the position along the curved surface.

Tin is the input force applied to the free end of the tendon.

T 0(x) > 0 denotes the pretension distribution along the curved surface.
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T (x) > 0 denotes the tension distribution along the curved surface.

µ > 0 is the coefficient of Coulomb friction at the surface.

sgn(v) determines the direction of the impending motion in the active length of the tendon.

xw = min{x ∈ [0, L] : Tine
− µ
R
xsgn(v) = T 0(x)} is the farthest point of the acitve/slip length

from the point of application of Tin.

η > 0 is a dimensionless parameter which represents the effect of both the friction and the
bending of the curved surface.

∆ is the total elongation of the tendon as a result of applying Tin to its free end.

Kn is the natural stiffness of the tendon.

q is the pulley’s rotational displacement.

ϕ ∈ [0, 1] denotes the normalized position along the curved surface.

r1 is the radius of the input pulley.

r2 is the radius of the output pulley.

τin is the torque applied to the input pulley of a dual-tendon system.

τout is the torque which the output pulley of a dual-tendon system applies to environment.

∆q is the change of pulley rotational displacement q after change in the direction of rota-
tion of the input pulley.

J(x(t)) denotes a switching function.

α1 is a parameter of motion transmission model that represents the effect of friction and
elasticity of the forward tendon-run.

α2 is a parameter of motion transmission model that represents the effect of friction and
elasticity of the return tendon-run.

β is a parameter of motion transmission model that represents the of geometry of the trans-
mission.

Λ is a constraint in dual-tendon systems that represents the pretension effect

kp denotes the proportional gain of the PID controller.

kd denotes the derivative gain of the PID controller.

kI denotes the integral gain of the PID controller.
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Chapter 6: Symbols

L is the length of the curved surface.

R is the radius of the curved surface.

µ is the coefficient of Coulomb friction.

x ∈ [0, L] denotes the position along the curved surface.

F is the input force applied to the free end of the tendon.

T (x) > 0 denotes the tension distribution along the curved surface.

T 0(x) > 0 denotes the pretension distribution along the curved surface.

sgn(v) determines the direction of the impending motion in the active/slip length of the
tendon.

d∆ denotes the elongation of an infinitesimal element of the tendon.

E is the tendon’s modulus of elasticity.

A is the cross section area of the tendon.

∆ is the total elongation of the tendon as a result of applying F to its free end.

Kn is the natural stiffness of the tendon.

η > 0 is a dimensionless parameter which represents the effect of both the friction and the
bending of the curved surface.

Til > 0 is the tension in the left-end side of the i-th tendon.

q is the angular position of the input pulley.

∆q is the relative change in the angular displacement of the input pulley after change in
the direction of rotation.

∆θ = θ(t)− θ0 is the relative change in the angular displacement of the output pulley after
change in the direction of rotation of the input pulley.

r1 is the radius of the input pulley.

r2 is the radius of the output pulley.
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S(x(t)) denotes a switching function.

Θ ∈ Rn×1 is the vector of output angular displacements.

B ∈ Rn×n is the rigid transmission matrix.

Q ∈ Rn×1 is the vector of input-pulley/motor displacements.

A ∈ Rn×n is the matrix of hysteretic transmission.

τin ∈ Rn×1 is the vector of input torques applied on the input pulleys of a multi-DOF
system.

βcij is a an element ofB that represents the rigid coupling effect of i-th DOF on j-th DOF
of a multi-DOF system.

(αtcij, αbcij) is a pair of elements ofA that represents the hysteretic coupling effect of i-th
DOF on j-th DOF of a multi-DOF system.

θp denotes the wrist’s pitch angle.

θgr denotes the wrist’s right grasp angle.

θgl denotes the wrist’s left grasp angle.

qp is the displacement of the input pulley of pitch DOF of the da Vinci instrument.

qgr is the displacement of the input pulley of the right-grasp DOF of the da Vinci instru-
ment.

qgl is the displacement of the input pulley of the left-grasp DOF of the da Vinci instrument.

l1 is the length of common normal between z1 and z2.

l2l is the distance of frame {l} from the rotation axis of the left and right jaws.

dl is the offset along z2l from plan xy of frame {l}.
jRi ∈ R3×3 is the orientation of frame {i} relative to frame {j}.

rmi is the radius of the input/motor pulley of i-th DOF of the da Vinci instrument.

rp is the radius of the pulley-like groove on the pitch link of the wrist mechanism.

rint is the radius of the intermediate pulley of the wrist mechanism.

rgr is the radius of pulley-like groove on the right jaw of the wrist mechanism.

rgl is the radius of pulley-like groove on the left jaw of the wrist mechanism.

xxxii



N is the total number of the experiments.

GOFi is the goodness-of-fit associated with the i-th experiment.

Mi is the total number of samples for the i-th experiment.

θ̂i is the estimated wrist angle using the proposed model for the i-th experiment.

b is the coefficient of viscous friction.

v(x) is the speed of tendon at point x.

γt is a parameter representing the dynamic effect of the forward tendon-run.

γb is a parameter representing the dynamic effect of the return tendon-run.
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Chapter 7: Symbols

τin is the torque applied to the input pulley of a dual-tendon system.

∆ is the total elongation of a tendon which has a frictional interaction with a curved sur-
face.

q is the angular position of a pulley.

∆q is the relative change in the angular displacement of the input/ouput pulley after change
in the direction of rotation of the input pulley.

r1 is the radius of the input pulley.

r2 is the radius of the output pulley.

ϕ ∈ [0, 1] denotes the normalized position along the curved surface.

ϕw ∈ [0, 1] is the normalized position of the farthest point of the acitve/slip length of the
tendon from the point of application of the input force.

S(x(t)) is a switching function.

αt is a parameter of motion transmission model that represents the effect of friction and
elasticity of the forward tendon-run.

αb is a parameter of motion transmission model that represents the effect of friction and
elasticity of the return tendon-run.

β is a parameter of motion transmission model represents the effect of geometry of the
pulleys.

Λ is a constraint in dual-tendon systems that represents the pretension effect.

γt is a parameter of motion transmission model that is related to the pretension effect of
the forward tendon-run.

γb is a parameter of motion transmission model that is related to the pretension effect of
the return tendon-run.

RMSE denotes the root mean square error.

GOF denotes the goodness of fit.
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Chapter 1

Introduction

1.1 Motivation

T endon driven surgical robots are currently the state of the art technology of mod-

ern robotic surgery. Designed for Minimally Invasive Surgery (MIS), these

robots require few keyhole incisions on the patient’s body that allow for inser-

tion of surgical instruments and an endoscope through a trocar in order to execute surgical

tasks. MIS procedures result in faster recovery, lesser pain and trauma, shorter hospital

stays, and considerably lesser expenses in comparison with traditional surgery. As a result,

there exists a growing demand for this new technology which is driven by both patients’

and healthcare system’s satisfaction.

Minimally invasive robotic surgical systems, however, also present some substantial chal-

lenges, which need to be addressed in the future generations of these robots. One limitation

of the current tendon-driven surgical robots is that they do not provide haptic feedback. In

particular, placement of force sensors at the tip of an MIS instrument is difficult with the

current sensor technology. As a result, when interacting with the tissue, surgeons are de-

prived of the sense of touch which normally plays an important role in many surgical tasks.

On the other hand, as the modern operating rooms are evolving towards implementation

of autonomous robotic technologies, there is a growing interest in autonomous supervised

execution of some routine surgical tasks. In particular, tasks such as tissue palpation and
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suturing can be executed by a robot under supervision of a surgeon. Joints of a typical sur-

gical robot, however, are frequently difficult to sensorize due to technical limitations such

as size restrictions and sterilization requirements. As a result, feedback control algorithms

cannot be implemented directly.

One potential solution to the issues described above lies in the development of precise

mathematical models of tendon-driven mechanisms. Such a model can be used for estima-

tion of the interaction forces as well as for implementation of high precision position track-

ing control algorithms. Development of precise models for tendon-driven surgical robots

and instruments, however, is a difficult task. In fact, they exhibit substantially nonlinear

behavior, typically in the form of a static hysteresis, which in some cases is accompanied

by tendon coupling effects. Modelling such a complex behavior represents a significant

challenge for researchers working in the area of tendon-based robotics.

This thesis aims at providing fundamental analysis and mathematical models for force and

motion transmission in tendon-pulley based mechanisms, which is currently a common

method of power transmission in surgical robotic systems. The proposed models and con-

trol algorithms are implemented and tested on various da Vinci® instruments as well as the

RAVEN II® surgical robot.

In the remaining part of this chapter, a brief historical overview of the emergence of Robot

Assisted Minimally Invasive Surgery (RAMIS) is presented, which is followed by a lit-

erature review on the existing mathematical models for tendon-driven transmission in in-

dustrial and robotic applications. At the end of this chapter, the structure of the Thesis is

discussed, and a brief description of the content of each subsequent chapter is presented.

1.2 Background

In the conventional open surgery, most of the pain, discomfort, and post-surgery morbidi-

ties are side effects of the process of opening way to the area of surgery rather than the

surgical procedure itself [4]. To address this issue, the Minimally Invasive Surgery (MIS)

(also called laparoscopic surgery) was developed over the last two decades of the twentieth

century. MIS is a result of integration of medical imaging technologies and advanced in-

strumentation. It allowed for the first time in history of medicine to perform surgery inside
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Figure 1.1: A minimally invasive lobectomy-brachythrapy surgery at London Health Sci-
ences Center (LHSC) in 2009 [1].

a patient’s body through just a few tiny ports [5]. Compared to the open surgery, the limited

invasion of MIS results in less skin and soft tissue trauma, fewer infections and hernias, less

post operative pain, faster recovery and, consequently, shorter hospital stays [6].

In spite of the advantages described above, conventional MIS also suffers from a number

of restrictions. For example, fixed entry ports effectively remove two translational degrees

of freedom from each instrument, thus severely decreasing dexterity. Restriction of the

instrument’s motion at the entry port also results in an undesirable fulcrum effect which, in

particular, makes hand-eye coordination difficult. In addition, an MIS surgeon is required

to maintain a non-ergonomic uncomfortable upright posture, and has to look at the monitor

in a direction away from the surgical site. The 2D picture on the monitor deprives the

surgeon of depth cues [7]. Last but not least, since the surgeons’ hands are no longer in

direct contact with the organs and tissues, important haptic cues are no longer available.

There is only a limited and deteriorated sense of touch through instruments’ handles [8].

Robot Assisted Minimally Invasive Surgery (RAMIS), also known as robot assisted la-

paroscopic surgery, is a sophisticated answer to the challenges of manual MIS. Due to their

inherent versatility, robots can potentially overcome most of the shortcomings of the MIS

mentioned above. The advantages of RAMIS can be appreciated by reviewing different as-

pects of the da Vinci® Surgical system (Intuitive Surgical Inc.). At present time, da Vinci®
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Figure 1.2: The da Vincir surgical system by Intuitive Surgical (©Intuitive Surgical
Inc. [2])

is the most well-known RAMIS system in existence1. This is a tendon-driven (specifically,

tendon-pulley based) robot which has a structure of a teleoperator, as shown in Figure 1.2.

The surgeon controls the master robot by holding the two control handles and looking at

a magnified 3D high-definition display while also maintaining a proper body posture and

hand-eye coordination. The slave robot, on the other hand, consists of up to four serial

manipulators each holding either an MIS instrument or a surgical endoscope. The motion

of the surgeon’s hands is captured and filtered by the master robot, and subsequently scaled

and translated into the motion of the slave robot. Each da Vinci tool (otherwise known

as the da Vinci EndoWrist® instrument) is a set of up to four tendon-pulley mechanisms

tightly packed into a casing with a narrow shaft. The tip has 4-DOF (degrees-of-freedom)

motion capability similar to the one of the human hand [10], [11].

Many issues typical for the manual MIS are solved in the da Vinci surgical system. In

particular, the fulcrum effect is compensated by an appropriately designed computer algo-

rithm. The missing degrees of freedom are restored by a new design of the instruments

which provides 4 DOF of the tip in addition to the 3 positioning DOFs of the manipulator

(Figure 1.3). The stereoscopic display at the master side provides 3D view of the surgi-

cal field using two independent cameras located at the tip of the surgical endoscope. The

hand-eye coordination is restored by a proper ergonomic design of the master console (see

1Four generations of the da Vinci Surgical System have been introduced so far. In 2015 alone, the total
number of procedures performed worldwide by the da Vinci Surgical system was around 650,000 operations,
of which 20% correspond to urology surgery, 48% to gynecology surgery, and 28% to general surgery [9].
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Figure 1.3: The EndoWrist® instrument as the end-effector of da Vinci surgical system (
©Intuitive Surgical Inc.) [2].

Figure 1.4: The hands’ position and the view of the operation field available to the surgeon
while working with the da Vinci® surgical system (©Intuitive Surgical Inc.) [2].
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Figure 1.5: The RAVEN II surgical robotic system installed in CSTAR, London, ON,
Canada

Figure 1.4). The advantages of RAMIS over conventional manual MIS is validated in sev-

eral studies such as [12], [13] and [14]. A similar RAMIS system which is mostly used

in academic and research environments is the RAVEN II surgical robot [15]. RAVEN II,

shown in Figure 1.5, is also a tendon-pulley based robot which is designed as an open plat-

form in order to boost research on surgical robotics and to provide a testbed for preoperative

and intra-operative data integration. Similarly to the da Vinci surgical robot, RAVEN II has

seven DOFs, which include three DOFs for positioning of the remote center of motion

and insertion and the four remaining DOFs for driving the surgical instrument. Although

RAVEN II is originally designed as a standalone robot, it however can be combined with a

haptic device to form a surgical teleoperator system.

In spite of all the advantages of the present day RAMIS systems, these robots do not pro-

vide haptic feedback. The mechanically separated master and slave robots result in the

laparoscopic tools be removed away from the surgeon’s hand, depriving the surgeons of

the sense of touch when interacting with the surgical task. The benefits of haptic feedback

in MIS, however, have been documented in many studies [16–18]. Lack of haptic feedback

may lead to poor force regulation resulting in application of excessive forces to healthy

tissues and/or insufficient forces while grasping and suturing. Also, without force feed-

back, surgeons are not able to make use of the haptic cues which can be obtained in manual

operations and partly in MIS by palpating the tissue [6].
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To address this problem, some researchers attempted to design laparoscopic instruments

with embedded force sensors. In [19], a pressure/tactile sensor was placed at the tip of an

experimental RAMIS instrument and the measured data was presented as a visual feedback

to the user. In [20], a sensorized prob was used as a robot’s end-effector in a master-slave

teleoperator system. The pressure sensed by the probe was integrated with the forces mea-

sured at the manipulator joints in order to improve estimation of the tool-tissue interaction

forces. Other researchers modified the commercial RAMIS instruments and equipped them

with some sensory devices. In [21], a piezoresistive sensor array on a da Vinci instrument

as well as a balloon-based tactile display on the master console of the da Vinci system were

implemented to form a closed-loop haptic force feedback system. At Canadian Surgical

Technologies and Advanced Robotics (CSTAR), a da Vinci instrument was sensorized us-

ing strain gauges attached to the tendons [22]; the forces at the tip were then estimated

assuming proportionality between the forces at the tip and the measured tendon strains.

In [23], this sensorized instrument was used in a master-slave telerobotic system, enabling

the operator to receive visual or haptic force feedback while performing surgery. In major-

ity of the existing sensor-based solutions, however, only one DOF (typically the grasping)

is equipped with force sensors. Among a few exceptions is a 6-DOF force-torque sensor

in the form of a Stewart platform mechanism developed by the German Aerospace Cen-

ter (DLR) [24]. The sensor is mounted close to the tip of the instrument and allows for

measurement of forces and moments in all DOFs.

Despite all the advancements in sensorized instruments, none of these technologies has

made its way into the market. In general, there is a number of obstacles for successful

sensorizing of surgical devices like a da Vinci instrument. Most of the existing force sensors

are too large to be mounted directly at the tip of the instrument, and they typically do not

tolerate the harsh chemical environment of the sterilization processes. Also, due to safety

considerations, the laparoscopic instruments are usually allowed for a limited number of

uses, typically around ten [25]. Force sensors, on the other hand, are expensive; as a result,

it is simply not economically feasible to use them in applications where they need to be

discarded after a few operations.

An alternative solution, which is pursued in this thesis, is based on estimation of the interac-

tion forces using an accurate mathematical model of a RAMIS instrument. The estimation

algorithm in this case would use the measurement of real-time data such as the input torque
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and displacement of the motors for estimating the output force and/or motion at the tip of

the instrument. For instruments with rigid linkage, such as those used in manual laparo-

scopic surgery, force estimation can be done relatively easily as the kinematic model of

such mechanisms are fairly accurate (for example, see [26]). However, for surgical robots,

implementation of flexible tendon-based transmissions may have substantial advantages

over rigid alternatives [27]. In the case of robots with tendon-based transmission mech-

anisms, the problem of force estimation becomes much more challenging. In particular,

compliance of the tendons and the frictions between the tendons and their routings (e.g.,

sheath or guiding pulleys) result in substantially nonlinear behavior.

Aside from force estimation, a sufficiently precise model of a laparoscopic instrument can

be used for the design of control algorithms that guarantee accurate trajectory tracking.

Even though currently existing surgical robotic systems have human-in-the-loop structure,

it appears that, in the future, substantial number of typical surgical tasks will be performed

using supervised automation. In [28], researchers from the University of California, Berke-

ley introduced a vision based method for supervised automation of multi-throw suturing

in a da Vinci surgical system. The same group also investigated automated tumor resec-

tion [29], debridement and pattern cutting [30], and palpation for locating subcutaneous

blood [31]. Automated suturing was also addressed in [32] and [33]. In [34] and [35], two

distinct semi-autonomous palpation techniques were developed that use Mitsubishi PA10

robot and a da Vinci instrument, respectively.

There is also a number of studies performed in the University of Washington’s BioRobotics

lab (e.g. [36]) mainly on motion control of RAVEN II. These works will be discussed

later in this chapter in greater detail, as RAVEN II has been one of the testbeds for the

models proposed in this thesis. This thesis is focused on development of force and motion

transmission models in tendon-pulley based robots and instruments.

1.3 Problem Statement

The present day surgical instruments and robots employ tendon-pulley transmission mech-

anisms to remotely actuate their distal joints. Tendons’ compliance and their frictional

interactions with the pulleys and/or with the routings result in a highly nonlinear trans-
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mission behavior which, in particular, includes input-output hysteresis. The major goal of

the research presented in this thesis is to develop a closed-form model(s) for tendon-pulley

transmission which can be successfully used in real-time force estimation and motion con-

trol algorithms.

A number of requirements can be formulated for such a model. First, since the joints and

the tip of a typical tendon-driven surgical robot are not sensorized, the model’s estimation

must only be based on the available actuator data that is motor’s current and position.

Second, the model must allow for relatively fast computations so it can be implemented

in real-time algorithms. Third, the model of interest must be able to explain all hysteretic

behaviors in force and motion transmission, including the hysteresis due to the coupling

between degrees-of-freedom.

Ideally, such a model should also provide an insight into the system’s behavior so it can

be helpful for the design of future robots. Finally, even though the motions that execute

typical surgical task are very slow, the model of interest should also describe adequately

the system’s response to high-frequency components in the input signal.

The research presented in this thesis addresses the aforementioned research questions.

Specifically, models for tendon-pulley transmission with the above described properties

are developed, and their applications to surgical robotics are implemented and tested. The

models developed in this thesis can potentially be applied to a wide range of robots and

mechanisms with tendon-pulley transmissions for the purpose of accurate motion control

and force estimation.

1.4 Literature Review

The idea of using belts (ropes, cables, tapes, or tendons) with pulleys to transmit power

to remote mechanisms has a long history. The high power-to-weight ratio and the simple

structure of the belt-pulley systems made it possible to transmit large amounts of power to

several end-users in early industries. Belt-pulleys, otherwise called belt drives, had been

widely in use until 1930’s, when they were largely replaced by electric power transmis-

sion. However, due to their unique properties, belt-drives are still in use in a number of

applications, such as in refrigerators, washing machines, and vehicle engines.
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Osborne Reynolds, a prominent British-Irish engineer and mathematician, was the first

to notice that in a steadily working belt-drive which consists of two identical pulleys the

speed of rotation of the driving and the driven pulleys is not the same. Also, the speed of

the belt in the tighter span is faster than that of the slacker span2. Thus, Reynolds concluded

that the belt must slip somewhere on the surface of pulleys, which in particular results in

unavoidable power loss [37]. The work of Reynolds, however, did not receive the attention

it deserved as the efficiency of the transmission apparatus was not a major concern in those

days [38]. In later years, the mechanics of belt drives was gradually developed to the point

where it explained Reynolds’ observations and provided more detailed analysis of belt-

pulley power transmission systems. Figure 1.6 illustrates a typical schematic overview of

a belt-drive system. A common approach for analysis of belt-drive mechanical systems

Figure 1.6: A representation of the slip and stick zones on the input/driving and out-
put/driven pulleys in a typical belt derive. Adopted from [3].

is based on the classical creep theory [39]. According to the creep theory, two distinct

zones are formed on the contact arcs of the pulleys in a belt-drive system in a steady state

condition: the stick zone and the slip zone. In the stick zone, no interaction exists between

the pulley and the belt, thus no moment is transferred. As a result, a constant tension is

maintained in this zone. In the slip zone, the Coulomb friction starts to develop which

stretch (or compress) the belt [40].

One of the goals of the belt-drive mechanics is to identify and estimate factors which

shorten the life-span of the belt in a steadily power transmitting application. Some of

these factors include belt fatigue due to cyclic tension change, belt wearing due to sliding

2The velocity of the belt in the tighter span is equal to the velocity of the surface of the driving pulley.
Similarly, velocity of the belt in the slacker span is equal to that of the driven pulley.
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on the pulleys, and belt’s transverse vibrations. The belt-drive mechanics also addresses

the design aspects such as the efficiency of transmission and the maximum transmissible

momentum [3, 41]. For mechanical applications, numerical solutions are frequently em-

ployed to calculate for the aforementioned factors. The belt-drive mechanics is discussed

in the next section, as it lays a foundation for understanding the notions and terminology

used in this thesis. A review of the belt-drive mechanics which utilizes the classical creep

theory can be found in [42].

In robotic applications, tendon-based transmission has been characterized either in the form

of tendon-sheath or tendon-pulley architectures. Compactness, design flexibility, low stiff-

ness, and light weight are some key features of the tendon drives that make them popular in

robotics. The application of this type of power transmission can be found mostly in robotic

hands and fingers, as well as in surgical robots. Examples of tendon-sheath transmission

in robotics include robotic hands [43], continuum robots [44], flexible NOTES robots [45]

and RAMIS robots [46]; examples of tendon-pulley transmission are robotic hands [47, 48]

and surgical robots such as da Vinci® and Raven II as mentioned before.

A tendon which is guided by a sheath (or canals, or tubes) provides more flexibility for

designers to easily route it over and around the links and obstacles in order to deliver

power to distal joints. Tendon-pulley, on the contrary, requires idler pulley(s) to change

direction which itself necessitates more design effort. On the other hand, a tendon in a

sheath typically experiences larger frictions due to the long contact arc so exhibit a harder

nonlinearity as compared to tendon-pulley [49, 50].

The dominant nonlinearity in tendon-sheath transmission is known as backlash-like hys-

teresis [49], which is a backlash with curves merging smoothly to the ascending and de-

scending branches of the hysteresis. This is different from the pure backlash as seen for

example in gear drives. In a series of studies performed during 1990’s, Kaneko and co-

authors presented a detailed static analysis of tendons sliding through a sheath in a single

and a dual-tendon arrangements. In [51] and [52], mathematical description of the dis-

tributed friction and the elongation of the tendons for a single tendon-sheath transmission

was given. Different from some previous studies, compliance of the tendons was taken

into account in these works. A numerical model was also developed which was based

on infinitesimal mass, spring, and friction elements. In [49], the authors studied behavior
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of a one-DOF finger actuated by a dual tendon-sheath mechanism. They provided a phe-

nomenological model of the backlash-like behavior, and showed experimentally that the

backlash-like behavior and stability of the closed loop control system are highly affected

by the magnitude of the input. This is known as direction dependency feature of the tendon

drives. The work [49] was followed in [53], where a partial differential equation model was

derived for dual tendon-sheath transmissions. A numerical simulation model was also pre-

sented with a similar assumption of infinitesimal lumped parameters. In general, work [53]

gives a detailed insight into the phases of transmission in a dual tendon-sheath mechanism.

Aside from numerical solutions, a few closed-form models have also been suggested in the

literature for single and dual tendon-sheath transmissions. Most of these are phenomeno-

logical models. In [54], a piecewise linear model that describes the backlash-like behavior

of a dual tendon-sheath mechanism is proposed, and a controller is subsequently designed

based on the smooth inverse model of the backlash. In [55], a modified Bouc-Wen model

and a Coleman-Hodgdon model were proposed for a single and a dual tendon-sheath mech-

anisms. In [56], a formula for estimating the width of the backlash in a pretension-free

catheter is suggested, which relates geometrical features of the sheath and tendon, such as

radius of curvature, bending angle, and the gap between sheath and tendon, to the width

of hysteresis. A three-mass model that describes a single tendon-sheath transmission is

suggested in [50].

On the other hand, nonlinear behavior of tendon-pulley mechanisms have received rela-

tively scarce attention in the literature. Tendon-pulley drives can be categorized into three

different configurations, namely N , 2N and N + 1, each representing the number of actu-

ators used in an N -DOF robot of that family. These configurations are compared in [57].

Tendon-pulley transmission of surgical robots belongs to class N , that is each joint is em-

powered by a single motor using two opposing tendons, whereas in 2N and N + 1 type

mechanisms, each tendon is actuated separately. In [58], the sensitivity of the design pa-

rameter of the 2N type transmission is discussed. In [59], the kinematic and control issue

of an N + 1 robotic finger is presented, and the effect of location of the force/displacement

sensor on the controller design and system stability is discussed. Prisco and co-authors [60]

derived a dynamic model for a class N robot manipulator based on the Lagrangian ap-

proach. The transmission configuration studied in [60] is similar to that of surgical robots;

specifically, for each degree of freedom of the robot there is a number of idle pulleys (see
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Figure 1.7: A typical tendon-pulley transmission in surgical robots consists of serval idlers.

Figure 1.7). In [60], each tendon is replaced with parallel spring and damper, positions

of all pulleys are assumed to be known/measured, and zero friction is assumed between

tendon and pulleys. However, friction at pulleys’ axes is addressed. The common point of

the above mentioned studies and many similar works in robotics is that they assume tendon

tensions [58, 59, 61] and/or joint positions [60] known (measured). In reality, majority of

the tendon-pulley based surgical robots are not fully sensorized; in other words, displace-

ments of the joints and idle pulleys are typically unknown and tensions cannot be measured,

while only motors’ current and position are available. A review of the literature on surgical

robots (e.g. in [23]) reveals that often tendon-pulley drives were treated as systems with

rigid linkage, and a simple linear proportionality formula was conventionally used to model

the transmission, while compliance of the tendons and the tendon-pulley frictions were not

considered.

In a recent set of studies conducted by a group of researchers at the University of Wash-

ington, an approach similar to [60] was developed to model the dynamics of tendon-pulley

transmission in a surgical application. Specifically, in [62], a one DOF dummy finger which

was actuated through a network of idlers was analyzed. In this work, the idlers were ig-

nored and tendons were replaced with parallel interconnections of two exponential springs

and two linear dampers, while the frictions were considered point contact resistive forces at

the pulleys’ axes. The approach was adopted for position control of the RAVEN II surgical

robot in [36], where an Unscented Kalman Filter (UKF) was used to estimate the system pa-

rameters when off-line and the states of the model when online. In [63], a stereo vision data

was fed into the UKF to improve the accuracy of the motion control algorithm. In [64],

the above described model was used to estimate the gripping force of the tendon-pulley



1.5. BELT-DRIVE MECHANICS 14

driven RAVEN II instrument. The suggested UKF algorithm uses the motor current and

the motor encoder readings for estimation. The proposed method, however, shows inac-

curacies for stiff transmissions [36], and does not explain the static input-output hysteretic

behavior. In [65], the frictional effect of a network of idler pulleys on a single tendon was

investigated. A formula was empirically derived which relates the network’s resistance to

the average wrap angles, average tension within the tendon, and the number of idlers.

There is also another set of studies in robotics which attributes the nonlinear behavior of

the tendon-pulley mechanism to tendon and pulley frictional interaction similar to the creep

theory for belt-drives. In [66], in order to estimate the transmission stiffness of a capstan-

drive, two slip zones and one stick zone were assumed on the surface of the driven pulley.

Similar approach was used in a number of studies such as [67] which is focused on the

motion transmission error due to tendon slip in a capstan-drive.

In this thesis, new mathematical models based on distributed friction are proposed for use

in surgical instrument and robots. In order to introduce the notions and terminology used

throughout the rest of this thesis, the elastic creep theory from belt-drive mechanics is

briefly outlined in the next section.

1.5 Belt-Drive Mechanics

At present time, it appears that the classical studies of belt-drive mechanics have made little

effect on the research on tendon-based robotic systems. In this thesis, in particular, simple

closed-form models of tendon-pulley transmission are developed which are based on the

notions and concepts of the belt drives mechanics and the creep theory. These models

are subsequently applied to different problems in surgical robotic systems. The material

presented in this section forms a background for the developments presented in the rest of

the thesis. In this sections, all vectors are marked with an arrow sign,→. No arrow means

the symbol represents either the corresponding magnitude of the vector or a scalar quantity.

As mentioned earlier, the main challenge associated with the belt-drive mechanics is to

properly describe the belt-pulley frictional interaction [68]. Below, the classical creep the-

ory which is the conventional approach for studying belt-drive systems is outlined.
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Figure 1.8: Free-body diagram of a driven pulley of a belt-drive (left). The control volume
over the slip zone (right)

The creep theory assumes that the interaction between the pulley and the belt is character-

ized by Coulomb friction which results in forming up one slip zone and one stick zone on

the contact arc of each pulley (Figure 1.6).

Consider an infinitesimal Eulerian control volume3 in the slip zone Φ < Γ of a driven

pulley shown in Figure 1.8 (left), where Γ is the wrapping angle. The control volume has

the length of ds = rdθ and is located at a fixed point s, θ ∈ [0,Φ] is the angular location of

ds, and r > 0 is the radius of the pulley. The steady state operation requires the mass flow

of belt that enters and leaves the control volume be equal (which represents the conservation

of mass). The mass flow rate G is then defined

G := ρA(s)V (s) = ρA(s+ ds)V (s+ ds) = const,

where the belt’s density, its cross-section area, and its linear velocity are denoted by ρ,A(s)

and V (s), respectively.

Additionally, for a single body of mass, Newton’s second law is

d

dt
~P = ~F (1.1)

3An Eulerian control volume is fixed in space, as opposed to Lagrangian control volume which moves
with the material elements along the stream.
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where ~P = m~V is the linear momentum and ~F is the external force applied to the mass.

This formula for the fixed Eulerian control volume is written as

d~P

dt
+ ~̇Pout − ~̇Pin = ~F , (1.2)

where ~̇Pin is the flow of belt’s momentum into the control volume, ~̇Pout is the flow of

belt’s momentum out of the control volume, and dP/dt is defined as the rate of change of

momentum inside the control volume due to fluctuations of flow properties, respectively4,

and ~F is the net force applied to the surface of the control volume. In the case of steady

state rotation of the belt derive, the variables in (1.2) are given as follows:

~̇Pin = G~V (s+ ds),

~̇Pout = G~V (s),
dP
dt

= 0,

~F = ~T (s) + ~T (s+ ds) + ~f + ~n,

(1.3)

where T (s) and T (s + ds) are belt’s tensions at the two ends of the segment, as shown in

Figure 1.8 (right), and ~f and ~n are Coulomb friction and normal force per unit length, re-

spectively. Gravity forces here are neglected in the net force applied to the control volume.

Force in (1.2) can be decomposed into the tangential and the normal force as follows [70],

T (s+ds)

(
cos

dθ

2

)
−T (s)

(
cos

dθ

2

)
+f(s)ds = G

(
V (s+ ds)

(
cos

dθ

2

)
− V (s)

(
cos

dθ

2

))
,

−T (s+ds)

(
sin

dθ

2

)
−T (s)

(
sin

dθ

2

)
+n(s)ds = G

(
−V (s+ ds)

(
sin

dθ

2

)
− V (s)

(
sin

dθ

2

))
.

For small dθ, the above two equations can be simplified as follows:

dT + f(s)ds = GdV, (1.4)

and

n(s) =
T (s)−GV (s)

r
. (1.5)

4For basic definitions and concepts the reader is referred to [69].
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Equation (1.4) relates change in belt’s tension dT with the contact friction f(s) and the

term GdV which is called creep acceleration. Equations (1.5) relates the normal force

n(s) to the tension T (s) and the centrifugal force GV (s) which acts normal to the pulley

surface [70]. In the classic creep theory analysis, the terms GdV and GV (s) are typically

ignored [40] as the mass flow rate of the belt can often be neglected, thus resulting in the

following new two equations:

dT + f(s)ds = 0, (1.6)

n(s) =
T (s)

r
. (1.7)

Equations (1.6) and (1.7) are valid as long as the belt has a negligible mass per unit length,

i.e. ρ ≈ 0, or moves with a very low operational velocity, i.e., V (s) ≈ 0. Using the

equation for dry Coulomb friction f(s) = µn(s), where µ > 0 is the Coulomb friction

coefficient, from (1.6) one can derive the following formula for the tension change in the

slip zone,

dT + µT (s)dθ = 0. (1.8)

By integrating (1.8) over the slip zone, the formula for tension distribution in the slip zone

is achieved as follows

T (θ) = Tt e
−µθ, (1.9)

where Tt = T (θ = 0) is the cable tension at the point where it leaves the pulley surface. At

the end of the slip zone (θ = Φ) the tension is

Ts = Tt e
−µΦ. (1.10)

In the whole stick zone, by definition, there is no interaction between the belt and the pulley,

thus the tension Ts remains constant.

In a two-pulley system, such as the one shown in Figure 1.9, the tension in the free span

does not change. Thus, from (1.10) one obtains the following formulas for tension change

in the driving and driven pulleys

Tt
Ts

= eΦ1 = eΦ2 , (1.11)

where Φ1 and Φ2 are the slip arcs on the driving and driven pulleys, respectively. Equation
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Figure 1.9: The driving and the driven pulleys in a belt-drive system. Adopted from [3].

(1.11) also confirms that the tension change over pulley surface is independent of the radius

of the pulley. Moreover, from the conservation of angular momentum within a control

volume assumed around the pulley, force equilibrium equations for the driving and driven

pulleys can be written:
τin = (Tt − Ts)r1,

τout = (Tt − Ts)r2.
(1.12)

where τin is the torque applied to the input, τout is the load torque, r1 is the radius of

the input pulley, and r2 is the radius of output pulley. From (1.12), a formula for force

transmission in the belt-pulley system of Figure 1.6 can be derived:

τout =
r2

r1

τin. (1.13)

A motion transmission formula can also be obtained. In the classical creep theory, it is

assumed that the belt sticks to the surface of pulley as soon as it arrives [40]. Thus, the

velocity of the belt at the tighter side Vt is equal to the surface velocity of the driving

pulley, and the velocity of the belt at the looser side Vs equals to the velocity of the surface

of the driven pulley,
Vt = r1q̇1,

Vs = r2q̇2,
(1.14)

where q1 is the angular displacement of the input pulley and q2 is the angular displace-

ment of the output pulley, respectively. Besides, one can write the following strain-stress

constitutive relation for the belt,

ε(s) =
1

EA
(T (s)− Tref (s)), (1.15)
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where the strain ε at a point s along the tendon is described as ([70])

ε(s) =
dl(s)

dlref (s)
− 1, (1.16)

and E is the modulus of elasticity. The subscript ref corresponds to an arbitrary reference

condition. If tendon in the slack condition is referenced, then Tref (s) = 0 and dlref (s)

is the length of the material segment dl(s) when not stretched or compressed. It is more

common, however, in the literature to reference a pretensioned condition, i.e. Tref (s) = Tp

and its corresponding elongation dlp. Equation (1.16) can be turned into a formula for the

velocity of tendon:

V (s) = (1 + ε(s))Vref , (1.17)

where V (s) = dl
dt

and Vref =
dlref
dt

. Substituting (1.15) in (1.17) results in the following

formula

V (s) =

(
1 +

T (s)− Tref
EA

)
Vref . (1.18)

Combining (1.14) and (1.18) gives us the following speed ratio [38]:

dq2

dq1

r2

r1

=
1 +

Ts−Tref
EA

1 +
Tt−Tref
EA

. (1.19)

Assuming small strains, i.e., ε << 1, we have

dq2

dq1

r2

r1

= 1 +
Ts − Tt
EA

. (1.20)

Substituting (1.12) into (1.20), the motion transmission formula is achieved as follows:

dq2

dq1

=
r1

r2

(
1 +

−τin
EAr1

)
. (1.21)

Equation (1.21) is the formula for motion transmission which is derived based on the clas-

sical creep theory. If the tendon is inelastic, i.e. E → ∞, formula (1.21) becomes the

following static relation:
dq2

dq1

=
r1

r2

, (1.22)

which is the motion transmission formula for rigid transmission. It is worth noting that the
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creep theory’s force transmission formula (1.13) is the same static proportionality formula

of rigid transmissions, whereas motion transmission equation (1.21) is a function of both

input torque τin and input displacement q1.

1.5.1 The Compatibility Condition

One important notion which must be introduced here is the compatibility condition which

is a physical constraint imposed on closed-loop belt/tendon systems. The compatibility

condition states that the sum of all elongations and compressions along the tendon must be

equal to zero, ∮
(dl − dlref ) = 0, (1.23)

where
∮

represents an integral over the tendon loop. Using (1.16) and (1.15), equa-

tion (1.23) can be rewritten in the following form,∮
ε dlref =

1

EA

∮
(T − Tref ) dlref = 0. (1.24)

Equation (1.24) represents an important property of tendon and belt drives (including

tendon-sheath transmission). Various forms of compatibility condition (1.24) are used

throughout this thesis.

1.5.2 Conclusions on Belt-Drive Mechanics

The classical creep theory is not the only method to describe the belt-drive mechanics.

More complex models that consider various additional belt properties, belt-pulley archi-

tectures, and friction models have been suggested in the past two decades. Betchel an co-

authors [70] updated the classical creep theory by simultaneously considering the two cen-

trifugal and creep-acceleration terms, as discussed earlier in this Chapter. Rubin [71] used

the same analysis to develop an exact solution for a multiple-pulley arrangement. Kong

et al. [41] incorporated belt’s bending stiffness into modelling. Some researchers worked

on alternative friction models. In [3], a formulation for belt-drive mechanics is suggested

which employs a creep-rate-dependent friction. To account for pre-slipping friction, the
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shear theory (also called the microslip theory) is developed [68]. A comparison between

the shear theory and the creep theory for multipulley belt drives is given in [39]. Another

interesting study is the work of Townsend et al. [38] which formulates the efficiency limit

of the belt drives based on the principles of thermodynamics.

The literature of belt mechanics offers a wide range of numerical solutions to compute belt

tensions, the slipping arcs, and the speed of rotation of the pulley(s) in multiple pulley

systems. These solutions, however, are usually not applicable for control and/or estima-

tion algorithms for tendon-drives in robotic applications as real-time computations in this

case can be very challenging. Moreover, belt mechanics, which mostly targets industrial

applications, ignores joint frictions and the effect of idlers, as the power loss due to these

factors is not significant compared to the power transmitted between the main input and

output(s). In robotic problems, however, precision usually matters. In particular, joint axis

friction and idlers might affect the performance of the robot. The effect of joint frictions

on tension distribution and the transmitted moment, in particular, is discussed in Chapter 5

of this thesis.

1.6 Contribution and Overview of the Thesis

The main goals of this thesis are: i) to provide extensive analysis of force and motion trans-

mission in tendon-pulley mechanisms; and ii) to develop novel models for force and motion

estimation for surgical robots. The approach taken in this thesis is to consider distributed

frictions along the tendon in order to explain the nonlinear behavior of the force/motion

transmission. The thesis can roughly be divided into two parts.

Chapters 2, 3, and 4 form the first part which deals with the issue of force transmission

in tendon-pulley based surgical instruments. Different models are introduced, and notions

such as distributed friction, the compatibility condition, and apparent stiffness of transmis-

sion are presented. A pure phenomenological model of the input-output behavior of a da

Vinci® instrument is also presented in this part.

The second part, consisting of Chapters 5, 6 and 7, provides analysis and models for motion

transmission in tendon-pulley surgical robots. A pseudo-kinematic model which relates the
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output displacement to the input displacement and the input torque is presented, which ef-

fectively reproduces the static backlash-like hysteresis effect. Also, the model is extended

to describe the coupling effects in a multi-DOF tendon-pulley instrument. Motion trans-

mission in Raven II surgical robot is also investigated in this part.

1.6.1 Chapter 2

Chapter 2 presents some initial observations related to the force transmission in a da Vinci®

instrument. The preliminary experimental measurements show a close similarity between

the behavior of a tendon-pulley instrument (in our case, the da Vinci instrument) and that of

a typical tendon-sheath mechanism. Therefore, based on the tendon-sheath analysis of [51]

and [52], two closed-form models are suggested for the da Vinci instrument in a quasi-static

condition. The two models are named the pull model and the pull-push model, respectively.

Both models use only the motor torque and the rotation to estimate the forces at the tip of

the instrument when it is locked in a force sensor. In particular, the compatibility condition

is used in this chapter to derive the pull-push model.

1.6.2 Chapter 3

The goal of Chapter 3 is to examine how the models developed in Chapter 2 can be used for

restoration of a fundamental functionality of the surgeons which is the ability to palpate.

The method developed in this chapter allows to determine a regional map of stiffness of

a tissue sample without using any force sensor and by just accounting for the available

inputs, i.e., the motor torque and the motor displacement. To this end, the quasi-static

analysis of Chapter 2 is extended to derive a formula that describes the apparent stiffness of

the instrument, from which the information about environmental stiffness can be extracted.

The method is experimentally validated.

1.6.3 Chapter 4

In contrast with the two previous chapters, in Chapter 4 a purely phenomenological ap-

proach is taken to model force transmission behavior of the da Vinci® instrument. Specif-
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ically, the applicability of the classic Preisach hysteresis approach for modelling tendon-

pulley mechanism is investigated. The experimental observations reveal that the two key

features of the Preisach hysteresis, which are the congruency and the wipeout properties,

can be detected in the input-output behavior of the da Vinci® instrument when its tip is

locked. The experimental results demonstrate that the developed approach allows for suffi-

ciently precise prediction of the forces at the tip of the instrument.

1.6.4 Chapter 5

From this chapter, the motion transmission behavior of tendon-pulley mechanisms is inves-

tigated. A model for a one DOF motion of the tip of the da Vinci® instrument is derived

based on the creep theory and tendon-slip analysis developed in Chapter 2 and 3. The de-

veloped model is of a pseudo-kinematic type; specifically, it relates the output displacement

to both the input displacement and the input force. The model is also investigated as a part

of a position control scheme, where the estimated position of the tip is used for computa-

tion of the position error. It is demonstrated that the proposed model-based controller can

effectively eliminate the hysteretic behavior of the transmission and provide high accuracy

positioning for various desired trajectories.

1.6.5 Chapter 6

In tendon-driven robots, the tendons that transmit motion/force to the distal links are routed

along the proximal links. As a result, the motion of the latter affects that of the former. This

is called the coupling effect. In this chapter, the novel motion transmission model which

was developed in the previous chapter is extended to cover the coupling effect. While con-

ventionally the coupling within a tendon-drive is represented with a single coupling matrix,

the proposed formula in this chapter has one additional matrix which accounts for the cou-

pling effect due to tendon elongation. The validity of the proposed coupling formula is

experimentally investigated. Also in this chapter, as a further extension, a preliminary dy-

namic model to deal with high-frequency inputs is suggested and experimentally evaluated.
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1.6.6 Chapter 7

In this chapter, based on the distributed friction approach which developed in the previous

chapters, the motion of the first three joints of the RAVEN II surgical robot is analyzed. Our

novel motion transmission model is applied to one of the joints of RAVEN II to demonstrate

the effectiveness of the approach. Also the effect of pretension on system behavior is

investigated for the first time. It is proven mathematically and shown experimentally that

increasing pretension in a tendon-pulley transmission reduces the width of backlash in

transmission. A complete derivation of the motion transmission formula in the presence of

considerable pretension is given in the Appendix.

1.6.7 Chapter 8

Chapter 8 concludes the thesis and presents some ideas for future work.
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Chapter 2

Quasi-Static Modeling of Force
Transmission in the da Vinci ®

Instrument

T wo simplified quasi-static models for the da Vinci instrument are proposed which

take into account distributed frictions and compliance of the tendons. These

models are derived from static analysis of the interaction of the tendons with a

curved surface. The curved-surface analogy is suggested based on the similarity between

the force transmission behavior of the tendon-pulley based da Vinci instrument and that of

a typical dual tendon-sheath mechanism. The key parameters of the models are identified,

and the performance of the models is experimentally evaluated. Experimental results ob-

tained suggest that a weighted combination of the outputs of the two models provides a

sufficiently close estimate of the output torque of the da Vinci instrument.

2.1 Introduction

The lack of haptic feedback is one of the major limitations of today’s surgical teleoperator

systems [1]. Without a proper haptic feedback mechanism, surgeons are deprived of the

The material presented in this chapter is published in the Proceedings of IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS 2014), Chicago, IL, 2014, pp. 1308-1313.
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Figure 2.1: The da Vinci instrument (EndoWrist® grasper) [3].

feeling of interaction with the tissue, which may lead to poor force regulation resulting in

application of excessive forces to healthy tissues and/or insufficient forces while grasping

and suturing. Also, without force feedback, surgeons are not able to make use of the haptic

cues which can be obtained in manual operations and partly in the traditional Minimally

Invasive Surgery (MIS) by palpating tissue [2]. There exist several obstacles for imple-

mentation of haptic feedback in surgical teleoperator systems, one of which is related to

difficulties in measuring the interaction forces between the tool and tissue. Most of the ex-

isting force sensors are too large to be mounted directly at the tip of the instrument, and they

also typically do not tolerate the harsh chemical environment of the sterilization processes.

Also, due to safety considerations, the MIS instruments allow for a limited number of uses,

typically around ten [3]. Force sensors, on the other hand, are expensive; as a result, it is

not economically feasible to use them in applications where they need to be discarded after

a few operations.

An alternative solution consists of development and implementation of an online algorithm

for estimation of the interaction forces at the tip of the instrument. Such an algorithm

would require precise knowledge of the mathematical model of the corresponding tool.

The major difficulty related to this approach is that the underlying mathematical models

of the laparoscopic instruments are complex and highly nonlinear, which makes the pro-

cesses of modelling and parameter identification difficult. For the da Vinci instruments

(such as the EndoWrist® grasper shown in Figure 2.1) which use tendon-pulley force trans-

mission, the nonlinearities come from the tendons’ compliance as well as frictions between



2.1. INTRODUCTION 34

the tendons and the pulleys. Tendon-based actuation systems have been used widely in

robotic applications because of their high power-to-weight ratio and simplicity of the de-

sign. Tendon-based power transmission can be either in the form of tendon-sheath mech-

anisms or tendon-pulley systems; examples of the former are the University of Bologna

robotic hand [4] and the flexible NOTES robotic system [5], while examples of the latter

are the UTAH/MIT hand [6] and the DLR robotic hands [7]. The corresponding literature,

however, is substantially richer for the case of tendon-sheath transmission in comparison

with the tendon-pulley transmission case. In the 1990’s, detailed static analysis for the case

of tendon-sheath transmission was performed by Kaneko and coauthors [8, 9]; in particular,

a numerical model was developed which was based on the infinitesimal mass, spring, and

friction elements. In [10], a partial differential equation model that describes the dynamic

behavior of a dual tendon-sheath system was proposed. A few closed-form models have

also been suggested in the literature, including a model of the backlash-like behavior of

a dual tendon-sheath system [11], and a three-mass model that describes a single tendon-

sheath transmission [12]. In the case of a tendon-pulley transmission, the modeling is even

more challenging as there is no general agreement on the source(s) of nonlinearity.

In this work, the quasi-static behavior of the da Vinci instrument is modelled using tendon-

sheath analysis. Our preliminary analysis demonstrates that the input-output behavior of

the da Vinci Instrument is closely similar to that of a dual tendon-sheath system. The

sheath-like effect can be accounted for by considering the effect of tendon slippage on the

surface of several idler pulleys on each forward and return tendon runs. Therefore, in this

study, the tendon-sheath analysis is used to describe the quasi-static behavior of the instru-

ment. We extend the available model of a single tendon-sheath transmission to the case of

a dual tendon-pulley system. Based on the mathematical model of a dual tendon-sheath

system, two simplified quasi-static models of the da Vinci instrument are proposed. Ex-

perimental results demonstrate that a certain linear combination of the outputs of the two

models provides a sufficiently close estimate of the output torque of the da Vinci instru-

ment.
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Figure 2.2: A tendon on a curved surface with constant curvature

2.2 Quasi-Static Analysis of Tendon Force Transmission

in the Presence of Friction

In this section, a quasi-static model of a single tendon moving on a curved sheath or a

curved surface is described; subsequently, the theory is extended to the case of two tendons

in a pull-pull configuration. The derivations below are based on the theory presented in [8,

9]. Consider a tendon slipping on a curved surface with length L and a constant radius of

curvature R shown in Figure 2.2 (top), where the interaction between the tendon and the

surface is described by the Coulomb friction model. The tendon is elastic, and its strain-

stress relation is described by Hooke’s law. Let x ∈ [0, L] denote the position along the

curve, and let T 0(x) be the initial tension distribution in the tendon. If a sufficiently large

input force Tin is applied to the free end of the tendon, the tension distribution over the

curve changes to T (x); an example of such a change is shown in Figure 2.2 (bottom).

More precisely, depending on the magnitude of the input force Tin, the tension change

propagates into a part of the tendon over the surface length described by x ∈ [0, xw), where

xw ≥ 0 depends on the input force Tin and the pretension T 0(x). The part of the tendon that

matches x ∈ [0, xw] is called the active length1 of the tendon. For an infinitesimal segment

of the tendon within its active length (shown in Figure 2.3), one can write the following

1Corresponding to the slip zone on the surface as explained in Chapter 1, under the classic creep theory.
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force balance equations,

dT = F = µN sgn(v), (2.1)

N = (2T + dT ) sin (dθ/2) ≈ Tdθ = (T/R)dx, (2.2)

where T , F , and N are the tension, the Coulomb friction force, and the normal force at a

point x ∈ (0, xw), respectively, v is the velocity of the element with respect to the surface,

dθ is the bending angle of the element, and µ ≥ 0 is the Coulomb friction coefficient. The

switching function sgn(x) is defined as:

sgn(x) =


1, if x > 0

0, if x = 0

−1, x < 0.

(2.3)

Substituting (2.2) into (2.1), one obtains the following equation

dT = (µT/R) sgn(v)dx, (2.4)

that describes the tension change in an infinitely small element of a tendon centred at x ∈
(0, xw). Integrating (2.4) results in the following formula for tension distribution within the

active length of the tendon x ∈ (0, xw)

T (x) = Tine
µ
R
x sgn(v). (2.5)

The upper bound xw of the active length of the tendon can be calculated according to the

formula

xw := min{x ∈ [0, L] : Tine
µ
R
x sgn(v) = T 0(x)}. (2.6)

The tension in the remaining part of the tendon does not change2. Overall, the tension

distribution in the presence of an external force Tin applied to the free end of the tendon is

2The assumption that the tension in the stationary part of the tendon does not change is used in [8, 9]. The
same assumption is also used in the classical creep theory in belt mechanics. More advanced theories, such
as the microslip theory [13], address the change of tension in the stationary part(s) also.
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Figure 2.3: An infinitesimal element of the tendon [8]

described by the formula

T (x) =

Tin e
µ
R
x sgn(v) 0 ≤ x ≤ xw,

T 0(x) xw < x ≤ L.
(2.7)

As Tin increases, the wave of tension propagates from the input side towards the opposite

end.

On the other hand, increased tension results in elongation of the tendon which is described

by Hooke’s law [14]. Specifically, the elongation of an infinitesimal element of the tendon

due to the change of tension from T 0(x) to T (x) is described by the following formula3

d∆(x) =
T (x)− T 0(x)

EA
dx, (2.8)

where d∆(x) is the elongation of the element dx, E is Young’s modulus, and A is the

cross-sectional area of the tendon. The total elongation ∆ can be found by integrating (2.8)

over the curve,

∆ =

∫ L

0

d∆(x) =
1

EA

∫ L

0

(T (x)− T 0(x))dx. (2.9)

Normalizing the upper limit of the integral in (2.9) by changing the integration variable to

ϕ := x/L results in the following formula

∆ =
1

Kt

∫ 1

0

(T (ϕ)− T 0(ϕ))dϕ, (2.10)

where Kt := EA/L is the total stiffness of the tendon.

The approach outlined above can be used for modeling of a dual pulley-tendon mechanism

3According to the notation introduced in Chapter 1, d∆(x) = dl(x)− dlref (x) and dx ≡ dlref .
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shown in Figure 2.4. In this case, the input pulley with radius r1 is connected to the out-

put pulley r2 using two tendons where, similar to the above considerations, each tendon

slips over a curved surface. For the sake of generality, it is assumed that the tendons may

have different transmission parameters. In quasi-static conditions, the input and the output

torques are related to the tendons’ tensions according to the following formulas

τin = (Ttl − Tbl)r1, τout = (Ttr − Tbr)r2, (2.11)

where Ttl, Tbl, Ttr, Tbr≥ 0 are the tensions in the tendon ends as shown in Figure 2.4. The

subscripts l, r, t, and b stand for left, right, top, and bottom, respectively.

Figure 2.4: A dual tendon-sheath (pull-pull) system.

Based on the assumptions made above, the formulas for tensions and elongations of the

two tendons can be written as follows:

Tt(ϕt) =

Ttl e−ηtϕt sgn(q̇1) ϕi < ϕwt,

T 0
t (ϕt) ϕt ≥ ϕwt,

(2.12)

Tb(ϕb) =

Tbl eηbϕb sgn(q̇1) ϕb < ϕwb,

T 0
b (ϕb) ϕb ≥ ϕwb,

(2.13)

∆i =
1

Kti

∫ 1

0

(Ti(ϕi)− T 0
i (ϕi))dϕi, (2.14)

where the subscript i = {t, b} represents the top and the bottom tendons in Figure 2.4,

respectively, and η := µL/R is a dimensionless parameter which represents the effects of
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both the bending and the Coulomb friction.

Assuming that the tendons’ slippages over the pulleys are negligible, we can relate the

elongations of the tendons to the rotation of the input and output pulley,

∆t = ∆q1r1 −∆q2r2, ∆b = ∆q2r2 −∆q1r1, (2.15)

where ∆q1 and ∆q2 are the changes of angles of rotation for the input and the output pulley,

respectively. The fact that the sum of elongations of the tendons ∆t and ∆b are zero, implies

that a stretch in one tendon is compensated by an equivalent shrinkage in the other tendon,

as long as none of the tendons has gone slack. In view of (2.14), the constraint equation

∆t + ∆b = 0 can be rewritten in the form∫ 1

0

(Tt(ϕt)− T 0
t (ϕt))dϕt = −

∫ 1

0

(Tb(ϕb)− T 0
b (ϕb))dϕb,

or ∫ 1

0

(Ttdϕt + Tbdϕb) =

∫ 1

0

(T 0
t dϕt + T 0

b dϕb) = I, (2.16)

where I is a constant. Equation (2.16) is an important constraint which holds in a dual

tendon-sheath system as long as none of the tendons becomes slack4.

2.3 Modeling

In [10], the overall backlash-like transmission characteristics of a typical tendons-based

transmission system in a pull-pull configuration have been demonstrated to have the shape

shown in Figure 2.5. More specifically, if an input torque with sufficiently low frequency

and sufficiently large amplitude is applied to the system shown in Figure 2.4, the response

of the system consists of the following four phases.

• Phase I, during which the input torque is being applied but the corresponding change

of tension has not yet been propagated to the output pulley; as a result, no change in

the output torque can be observed.

4This is a variation of the compatibility condition (1.24) introduced in Chapter 1.
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Figure 2.5: A typical input-output relation for a tendon-sheath mechanism in pull-pull
architecture [10].

• Phase II, during which the change in tension due to the input torque has already

reached the output pulley; however, the change in tension in the tendon that is being

pushed has not yet reached the other end.

• Phase III, during which both the pulled and the pushed tendons transfer the force to

the output pulley, i.e., the whole length of both the tendons is active.

• Phase IV, where the pushed tendon has become slack while the pulled tendon is

engaged in its whole length and is transferring force.

Even though the above four phases can typically be observed in practical systems, some

of them may be ignored for the sake of modelling simplicity. In this study, two simplified

models are used: i) a pull model which is based on Phases I and IV, and ii) a pull-push

model which is based on Phases I and III.

2.3.1 Pull-Model

Under zero pretension condition, the tendon does not transfer force when pushed. On the

other hand, if nonzero pretension exists, the tension distribution is described by equations

(2.7). In our first model, the pull model, it is assumed that the force is being transferred
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only through the pulled tendon, while the other (pushed) tendon does not transfer the force

and is considered slack. This assumption corresponds to Phase IV above. Moreover, it is

assumed that the tension propagates through the whole length of the tendon immediately;

in other words, one has ϕwt = ϕwb = 1 in (2.12). Based on the above two assumptions,

it follows from (2.12) that the tension in the tendon ends are described according to the

following formulas:
Ttr = K(q̇1) Ttl e

−ηt sgn(q̇1),

Tbr = (1−K(q̇1)) Tbl e
ηb sgn(q̇1),

(2.17)

where

K(x) :=

1 x > 0,

0 x < 0.

In particular, formula (2.17) implies that the tension in the pushed tendon is zero.

Equations (2.11), (2.17) describes the model of the system that corresponds to Phase IV.

The process of switching between Phases IV and I, on the other hand, is described by the

following equation

τ plout = K(Ttr)K(Tbr)τout + (1−K(Ttr)K(Tbr))τ
−
out, (2.18)

where τ plout is the output of the pull model, and τ−out is defined as τ−out(t) := τout(t
−), where

t− := sup {s ≤ t : K(Ttr(s))K(Tbr(s)) = 1}. In words, t−(t) is the last instant when the

model (2.11), (2.17) returned nonnegative tensions Ttr, Tbr. Equations (2.11), (2.17), (2.18)

constitute the pull model.

2.3.2 Pull-Push Model

The pull-push model corresponds to Phases III and I. During Phase III, both tendons are

fully active; assuming that the tension propagates immediately though the whole length

of the tendon (ϕwt = ϕwb = 1 in (2.12)), from (2.12) one concludes that the following

relations hold:

Ttr = e−ηu sgn(q̇1)Ttl, Tbr = eηd sgn(q̇1)Tbl. (2.19)
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Also, since none of the tendons is slack during Phase III, the constraint (2.16) holds. Sub-

stituting (2.19) in (2.16) results in

Tbl
sgn(q̇1)

ηd
(eηd sgn(q̇1) − 1)− Ttl

sgn(q̇1)

ηu
(e−ηu sgn(q̇1) − 1) = I. (2.20)

Equations (2.11), (2.19), and (2.20) describe the behavior of the model during Phase III.

The switching between Phases III and I is performed according to the following formula

τ ppout = K(Ttr)K(Tbr)K (q̇1(Ttr − Tbr)) τout + (1−K(Ttr)K(Tbr)K (q̇1(Ttr − Tbr)) τ−out,
(2.21)

where τ ppout is an output of the pull-push model, and τ−out is defined as τ−out(t) := τout(t
−),

where t− := sup{s ≤ t : K(Ttr(s)) = 1, K(Tbr(s)) = 1, and K(q̇1(s)(Ttr(s)−Tbr(s))) =

1}. The termK(q̇1(Ttr−Tbr)) ensures that the pulling force is always greater than the push-

ing force. Equations (2.11), (2.19), (2.20), and (2.21) describe the pull-push model.

2.4 Experimental Results

2.4.1 The Experimental Setup

The two simplified quasi-static models derived above have been used for modelling of the

EndoWrist™ grasper utilized in the da Vinci surgical robot. The EndoWrist™ grasper is a

state-of-the-art laparoscopic instrument which consists of four sets of tendon-pulley mech-

anisms in a highly compact arrangement. The mechanisms transmit power from the base

through a narrow shaft to the tip of the instrument and provide the tip with 4-DOF motion

capability similar to the one of the human hand [15]. For each degree of freedom, a sepa-

rate tendon is wrapped around several pulleys, including the input pulley which is attached

to the actuator and the output pulley attached to the tip. In order to identify the parameters

and evaluate the performance of the proposed models, experiments were conducted using a

specially designed setup shown in Figure 2.6. In this setup, the base of the da Vinci instru-

ment, in this case the EndoWrist™ grasper, is mounted on an actuation mechanism which

is fixed on a 6 DOF gripper. The shaft of the instrument is also fixed to the ground. On

the actuation holder, four Faulhaber DC motors apply torques to the input pulleys at the
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Figure 2.6: The experimental setup: the overall view (left); the force sensor close-up (right)

base of the instrument. The positions of the motors are read by incremental encoders with

2048 counts per turn. The amplifiers of motors are set to the voltage-to-current mode so

that the commanded voltage is proportional to the input torque. At the output side, the tip

of the instrument is fixed on top of an ATI Nano17 force sensor. The identification and the

model validation procedures in this paper have been performed for the gripping DOF of the

instrument; for other DOFs/configurations, similar procedures can be used.

2.4.2 Instrument Parameter Identifications

In order to utilize the above derived quasi-static models in the case of a dual tendon mech-

anism, four parameters have to be identified which are the friction-bending parameters ηt,

ηb and the stiffness parameters Ktt, Ktb. In addition, in the case of the push-pull model, the

constraint parameter I must be identified. The values of r1 = 2.6 mm and r2 = 2.4 mm

were obtained by direct measurement using a caliper. The method used in our identification

procedure is to apply sufficiently large input torque such that one of the tendons goes slack

while the other is fully tight, and subsequently identify the parameters of the tight tendon.

Following this method, a triangular wave of torque shown in Figure 2.7, left, is applied

to the input pulley. The amplitude of the input torque is 0.155 N·m which is sufficiently

large torque for the instrument under study, while the rate of change of the input torque is
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kept low at 0.015 N·m/sec in order to ensure the quasi-static conditions. Figure 2.7, right,

demonstrates the experimentally obtained hysteresis-type relationship between the magni-

tude of the input torque on one hand and the output torque and output displacement on the

other hand. This figure clearly demonstrates that the input-output behavior of the system

is quite similar to the one that characterizes the tendon-sheath transmission as shown in

Figure 2.5. The procedures for identification of parameters η, Kt, and I used in our work

are explained below.
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Figure 2.7: Left plot: the input torque τin, the output torque τout, and the angular position
q1 (scaled) vs. time, the tip is locked (q2 ≡ 0). Right plot: τout and q1 (scaled) vs. τin.

2.4.2.1 Identification of ηt and ηb

Assuming that large enough torque is applied to the mechanism in Figure 2.4 such that

one of the tendons is fully tight while the other is slack, it follows from (2.12) that ηi =

− ln (Tir/Til), where i = t if the top tendon is fully tight and the bottom one is slack, and

i = b in the opposite case. Then from (2.11) one obtains

ηi = − ln

(
τout r1

τin r2

)
. (2.22)

Therefore, under the condition that one of the tendons is fully tight and the other is slack,

the formula (2.22) is expected to return approximately constant values that would corre-

spond to either ηt or ηb (more precisely, the formula (2.22) would return the value of ηt if

the top tendon is tight and the bottom one is slack, and the value of ηb in the opposite case).
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The method that we use to determine the values of the friction-bending parameters ηt, ηb is

as follows. During the experiment, when the above described triangle wave of input torque

is applied to the instrument, an estimate of the parameter η is continuously calculated us-

ing the formula (2.22). The result of this experiment is illustrated in Figure 2.8, where

the value of ηi calculated using formula (2.22) is superimposed on a scaled input torque

curve. It is clearly seen that the curve ηi settles down to approximately constant values

when the magnitude of input torque is greater than certain threshold(s). The instants where

ηi settles down to approximately constant values are denoted by circles in Figure 2.8; for

convenience, we call these slack instants as at these instants one of the tendons goes slack.

Table 2.1 summarizes the values of ηt, ηb and the input torque τin at each slack instant; it

can be seen that these values are relatively consistent across the set of slack instants. Av-

eraging the experimentally obtained values of the friction-bending parameters ηt, ηb, one

gets ηt ≈ 1.1414 and ηb ≈ 1.1404, respectively.
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Figure 2.8: Estimate η and the input torque (scaled) τin vs. time.

Table 2.1: Values of ηt and ηb measured at the slack instants ts

time ts1=8.08 ts2=27.52 ts3=48.54 ts4=67.36 ts5=88.28
τin 0.1227 -0.1140 0.1299 -0.1115 0.1258
ηt 1.1236 - 1.1527 - 1.1479
ηb - 1.1430 - 1.1384 -
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2.4.2.2 Identification of Ktt and Ktb

Formula (2.14) implies that the tendons’ stiffnesses Ktt and Ktb can be calculated based on

known tension distributions at two different instants of time and the corresponding equiva-

lent elongations of the tendons. In our calculations, the two time instants are a slack instant

ts and the instant tp when the torque achieves its maximum value. Since between these

instants the pulled tendon remains fully tight and the pushed tendon fully slack, the corre-

sponding tension distributions can be calculated using formulas (2.12). On the other hand,

since the tip of the instrument is locked (∆q2 ≈ 0), the elongation of the tendon can be cal-

culated based on the amount of rotation of the input pulley between ts and tp. Specifically,

(7.2) implies that

∆t = −∆b = (q1(tp)− q1(ts))r1. (2.23)

Based on the tension distributions and the corresponding elongations, the tendons’ stiffness

can be calculated using (2.14). For example, if the top tendon is tight, then the tension

distribution at time ts is given by the formula

Tt(ϕt) = Ttl(ts)e
−ηtϕt = (τin(ts)/r1) · e−ηtϕt , (2.24)

while the tension distribution at time tp is

Tt(ϕt) = Ttl(tp)e
−ηtϕt = (τin(tp)/r1) · e−ηtϕt . (2.25)

Substituting (2.24) and (2.25) into (2.14) and using (2.23), one gets the following formula

for Ktt,

Ktt =
τin(tp)− τin(ts)

q1(tp)− q1(ts)
· (e−ηt − 1)

−r2
1ηt

. (2.26)

The formula for Ktb can be obtained in a similar manner. Experimental results give the

following average values of the stiffnesses: Ktt = 5.0664 · 104 N/m and Ktb = 5.0831 · 104

N/m.
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2.4.2.3 Identification of I

The constant I can be found based on the tension distribution in the tendons using formula

(2.16). At the instants where the bottom tendon goes slack, Tt(ϕt) is given by (2.24), and

Tb(ϕb) ≈ 0. Table 2.2 shows the corresponding values of I at different slack instances. On

average, I = 27.6984.

Table 2.2: Constant I measured at the slack instants

time ts1=8.08 ts2=27.52 ts3=48.54 ts4=67.36 ts5=88.28
I 28.1393 26.1471 29.7820 25.5756 28.8535

2.4.3 Model Performance

After all the parameters are identified, the performance of the suggested pull model and the

pull-push model can be evaluated. Figure 2.9 shows the responses of the two models with

the same triangular input torque signal together with the actual response of the da Vinci

instrument. One can observe that the actual response lies somewhere between the estimates

provided by the pull model and the pull-push model. Comparing the transmission behavior

of a dual-tendon transmission system reported in [8] and [10], one can conclude that the

behavior of such a system can be closely described by the pull-model when the pretension

of the mechanism is low, while it is more similar to the behavior of the pull-push model

when the pretension is high. Therefore, one possible solution is to use a linear combination

of both models, as follows:

τ̄out = w1τ
pl
out + w2τ

pp
out, (2.27)

where the coefficients w1 = 0.5904 and w2 = 0.4686 have been determined using the least-

squares identification procedure. The performance of the proposed model (2.27) has been

tested in several experiments; some of the results are shown in Figure 2.10. In this figure,

the responses of the actual da Vinci instrument are shown together with the corresponding

estimates obtained using the model (2.27), for different input torques τin(t). It can be seen

that the model (2.27) provides a sufficiently close estimate of the output torque in all these

cases.
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Figure 2.9: Estimates τ plout, τ
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out, and the measured torque τout vs. time.
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Figure 2.10: Measured output torque τout and estimate τ̄out vs. time, for different in-
put torque signals. Top plot: The input signal is τin = 0.06228 sin (2π · 0.05t) +
0.06228 sin (2π · 0.025t) (N·m). Middle plot: τin = 0.06228 sin (2π · 0.02t) +
0.06228 sin (2π · 0.014t) (N·m). Bottom plot: τin = 0.06228 sin (2π · 0.1t) +
0.06228 sin (2π · 0.03t) (N·m).
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Chapter 3

Tissue Compliance Determination Using
a da Vinci® Instrument

I n this Chapter, based on the Apparent Stiffness analysis of a dual tendon-sheath sys-

tem, we propose a method for using a surgical instrument of the classic da Vinci®

surgical robotic system (from Intuitive Surgical Inc.) for estimation of mechan-

ical properties of tissue. The performance of the method is experimentally evaluated by

comparing tissues with different stiffnesses and by localizing tumors in an artificial tissue

sample.

3.1 Introduction

Haptic feedback has been demonstrated to be beneficial for the performance of the Robotics-

Assisted Minimally Invasive Surgery (RAMIS) systems [1]. The technology, however, has

not yet been developed to the level that satisfies the expectations of clinicians, mostly due

to the complexity of mounting force sensors on the robotic instruments. A well-known

example of RAMIS systems is the da Vinci® (Intuitive Surgical, Sunnyvale, CA), which

provides surgeons with several advantages over conventional Minimally Invasive Surgery

The material presented in this chapter is published in the Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA 2015), Seattle, WA, 2015, pp. 5344-5349.
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(MIS), including hand-eye coordination, 3D stereoscopic vision, and motion scaling. How-

ever, it does not provide haptic feedback that can reflect tool-tissue interaction forces to the

surgeon’s hands [2, 3].

Palpation is one of the essential functions performed by a surgeon which provides invalu-

able intraoperative information of the mechanical properties of the affected organs. For

many tasks, such as tumor localization, palpation plays a major role in determining the

boundaries of tumors even in the presence of preoperative imaging data [3]. In MIS and

RAMIS, however, the surgeon’s hands are not in direct contact with the operative field.

As a result, the surgeon’s feel of touch is drastically deteriorated in the former case, while

completely disappears in the latter. To provide surgeons with haptic feedback, sensorized

laparoscopic devices have been developed [4–7].

In this Chapter, some preliminary results are presented that show feasibility of determining

a relative stiffness distribution in a tissue sample when doing palpation using the da Vinci

instrument. The study is a continuation of the work reported in [8], where a da Vinci in-

strument was modeled using quasi-static tendon-sheath analysis1. Here, the analysis of [8]

is further extended to derive a model that describes the apparent stiffness/compliance of

the instrument, from which information about stiffness/compliance of the environment can

subsequently be extracted. Based on the derived model, a method for determination of

environmental compliance is proposed and experimentally justified.

The Chapter is organized as follows. In Section 3.2, a model that describes the apparent

stiffness in tendon-sheath force transmission is derived, and subsequently extended to the

case of dual tendon-sheath mechanisms. Since the hysteresis in force transmission of a

typical dual-tendon mechanism has been shown to have four phases, in Section 3.3, the

apparent stiffness in each phase is analyzed together with its effect on the combined stiffness

of the system. Also, a method for estimation of the environmental compliance is proposed

in this section. The hypothesis of the chapter is given in Section 3.3. The experimental

setup is described in Section 3.5. In Section 3.6, two experiments are reported where

the performance of the method for environmental compliance discrimination and tumour

1The tendon-sheath analysis can be used to describe a tendon-pulley based instrument due to the fact
that both types of systems demonstrate similar behavior, as described in Chapter 2. Applicability of the
tendon-sheath analysis for tendon-pulley transmissions, nonetheless, can be further justified in a more rigor-
ous manner. This is elaborated in Chapter 5.



3.2. APPARENT STIFFNESS OF A TENDON-SHEATH FORCE TRANSMISSION
SYSTEM 53

Figure 3.1: A tendon on a curved surface with a constant curvature (top); example of
tension distribution (bottom) [8]

localization tasks is examined. Conclusions are given in Section 3.7.

3.2 Apparent Stiffness of a Tendon-Sheath Force Trans-

mission System

In this section, we derive a mathematical model that describes the apparent stiffness of a

tendon which slides on a curved surface or moves in a curved sheath. In this study, the

apparent stiffness of a tendon-drive is defined as the stiffness which is seen from the point

of view of the actuator. Subsequently, we extend the formula to the case of a dual tendon-

sheath system. In contrast with the case of a free tendon, the stiffness of a tendon-sheath

force transmission system is input-dependent and, therefore, not constant [9]. The deriva-

tions below are based on the quasi-static analysis of a dual tendon-sheath force transmission

system developed in [8].

The equations that describe the tension distribution T (ϕ) and the tendon elongation ∆ in

a single tendon-sheath mechanism (shown in Figure 3.1) in the presence of input force Tin
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can be written as follows [8]:

T (ϕ) =

Tin eϕη sgn(v) 0 ≤ ϕ ≤ ϕw,

T 0(ϕ) ϕw < ϕ ≤ 1,
(3.1)

∆ =
1

Kn

∫ 1

0

(T (ϕ)− T 0(ϕ))dϕ, (3.2)

where ϕ := x/L ∈ [0, 1] is a normalized position along a tendon with length L > 0, η :=

µL/R is a dimensionless parameter which represents the effects of both the bending and the

Coulomb friction where R > 0 is the curvature of the tendon and µ is the Coulomb friction

coefficient. Also, Kn := EA/L is the natural stiffness of the free tendon, where E denotes

the modulus of elasticity and A is the cross-sectional area of the tendon. Furthermore,

T 0(ϕ) is the initial tension distribution (pretension) before the application of the input

force Tin, T (ϕ) is the tension distribution after the input force Tin is applied, and ϕw is the

upper bound of the active length of the tendon, i.e., the part of the tendon where the tension

distribution changes as a result of application of the input force Tin [8]2. Also, v is the

speed of tendon’s motion in its active part; thus, sgn(v) essentially represents the direction

of the tendon’s motion in its active part.

Assuming the environmental stiffness is infinite, the apparent stiffness Kapp of the tendon

can be defined according to the formula

1

Kapp

:=
d∆

dTin
, (3.3)

where d∆ is the infinitesimal change of the tendon’s length resulting from an infinitesimal

change of the input force dTin. Combining (3.2) and (3.3) gives

1

Kapp

=
1

Kn

d

dTin

(∫ 1

0

(T (ϕ)− T 0(ϕ))dϕ

)
. (3.4)

On the other hand, the expression for tension distribution in (3.1) can be substituted for

2In accordance to the creep theory, the active length of the tendon can be called the slip zone of the
interaction.
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T (ϕ) in (3.4), resulting in the following formula:

1

Kapp

=
1

Kn

d

dTin

(∫ ϕw

0

Tin e
ηϕ sgn(v)dϕ

)
. (3.5)

The formula for apparent stiffness can therefore be found by integrating (3.5), which gives

1

Kapp

=
1

Kn

Tine
ηϕw sgn(v) dϕw

dTin
+

1

Kn

sgn(v)

η
(eηϕw sgn(v) − 1). (3.6)

The first term to the right-hand side of the formula (3.6) can be considered as the transient

part of the apparent stiffness which is dominant when change of tension just started to

propagate (i.e., when ϕw ≈ 0), and disappears as soon as the tension propagation reaches

to the other end, i.e., when ϕw = 13. Neglecting the transient part results in the following

formula for the apparent stiffness,

Kapp ≈ Kn
ηsgn(v)

eηϕw sgn(v) − 1
. (3.7)

Formula (3.7) implies that, as the upper bound of the active length ϕw moves from zero to

1, the apparent stiffness of the tendon changes from infinity to a certain minimum value.

In particular, if a tendon is active in its whole length, the apparent stiffness is equal to the

following minimum values that depend on the direction of motion sgn(v):

kmin−pullapp = Kn
η

1− e−η , (3.8)

and

kmin−pushapp = Kn
η

eη − 1
. (3.9)

The two formulas (3.8) and (3.9) were originally reported in [9, 10]. Figures 3.2(a) and 3.2(b)

(borrowed from [9]) illustrate the changes of apparent stiffness in a single tendon-sheath

force transmission system.

The theory presented above can be extended to the case of dual tendon-sheath force trans-

mission mechanisms such as the one shown in Figure 3.3. It is again assumed that the

3Based on the current assumptions on friction, applying Tin results in two independent stick and slip zone
in a way that dTin makes no change to the tendon in the stick zone. Therefore, dϕw

dTin
can not be exactly

defined. A more advanced friction model can potentially be used here.
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(a)

(b)

Figure 3.2: a) Numerical simulation of transmission characteristics in a single tendon-
sheath system, where tendon is considered a chain of mass-spring-damper elements sliding
on a curved surface under conditions mentioned in the legend. The input is sinusoidal dis-
placement with 0.04Hz frequency. The apparent stiffness in pushed, natural and pulled
tendon is shown in the left curve as dotted lines. here, ν = µL

R
is the dimensionless

bending-friction parameter. Unlike our study, the apparent stiffness is calculated as a ratio
of the output force Tout to the input elongation ξin but easily interchangeable by considering
Tout = Tine

−sgn(v)ν as shown in the right curve. b) The experimental results for a 0.4Hz
sinusoidal input force [9].
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environmental stiffness is infinite so that only the stiffness of the instrument is visible at

the input. As shown in [8], the tension distribution Ti(ϕi), the tendon elongation ∆i, and

Figure 3.3: A dual tendon-sheath (pull-pull) system [8].

the force balance between the input and the output sides of a dual tendon-sheath mechanism

are described by equations

Tt(ϕt) =

Ttl e−ηtϕt sgn(q̇1) ϕi < ϕwt,

T 0
t (ϕt) ϕt ≥ ϕwt,

(3.10)

Tb(ϕb) =

Tbl eηbϕb sgn(q̇1) ϕb < ϕwb,

T 0
b (ϕb) ϕb ≥ ϕwb,

(3.11)

∆i =
1

Kni

∫ 1

0

(Ti(ϕi)− T 0
i (ϕi))dϕi, (3.12)

τin = (Ttl − Tbl)r1, (3.13)

τout = (Ttr − Tbr)r2, (3.14)

respectively, where the subscript i ∈ {t, b} denotes the top and bottom tendons in Fig-

ure 3.3, Ttl, Tbl, Ttr, Tbr ≥ 0 are the tensions in the tendon ends as shown in Figure 3.3.

The subscripts l, r, t, and b stand for left, right, top, and bottom, respectively. Also, τin
is the input torque applied by the actuator, and τout is the output torque applied to the
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environment. Moreover, the following geometric relations are valid [8]:

∆t = ∆q1r1 −∆q2r2, ∆b = ∆q2r2 −∆q1r1, (3.15)

where ∆q1 and ∆q2 are changes of angles of rotation for the input and the output pulleys,

respectively.

As the environment is assumed to have infinite stiffness, one concludes that the motion of

the output end of the mechanism can be neglected,

∆q2=0. (3.16)

Combining (3.15) and (3.16), the following relation between the elongation of the tendons

and the rotation of the input pulley can be found

d∆t = −d∆b = r1dq1. (3.17)

Differentiating (3.13) with respect to q1 and using (3.17), one obtains the following formula

dτin
dq1

= r2
1

(
dTtl
d∆t

+
dTbl
d∆b

)
, (3.18)

where dTtl
d∆t

and dTbl
d∆b

are the apparent stiffnesses of the top and the bottom tendons, respec-

tively, defined by (3.3). The apparent stiffness of a dual-tendon system KDual
app is defined

as:

KDual
app = r2

1

(
Kt
app +Kb

app

)
, (3.19)

Using (3.7), one can now write the following formula that describes the apparent stiffness

of the dual-tendon system:

KDual
app ≈ r2

1Kn

( −ηt sgn(q̇1)

e−ηtϕtw sgn(q̇1) − 1
+

ηb sgn(q̇1)

eηbϕbw sgn(q̇1) − 1

)
, (3.20)

where dimensionless variables ϕtw and ϕbw represent the ratio of active length to the whole

length for the top and the bottom tendons, respectively. Also, in the above formula, v is

replaced by q̇1 as the motion of the active part of each tendon follows the rotation of the
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input pulley. The natural stiffness is assumed equal for both tendons; it is denoted by Kn.

Finally, if both tendons are active along their whole lengths, the apparent stiffness of the

dual tendon mechanism kDual−minapp is constant and equal to

kDual−minapp = r2
1(kmin−pullapp + kmin−pushapp ), (3.21)

where kmin−pullapp is the apparent stiffness of the pulled tendon, and kmin−pushapp is the apparent

stiffness of the pushed tendon, as defined by (3.8), (3.9).

3.3 Combined Stiffness of the Instrument and the Envi-

ronment

Suppose a dual-tendon mechanism such as a jaw of the da Vinci instrument with apparent

stiffness KDual
app is in contact with an unknown environment with stiffness Kenv. The stiff-

ness form the point of view of the actuator Kt has the following relation with the combined

stiffness of environment and the instrument:

1

Kt

=
1

KDual
app

+
1

Kenv

, (3.22)

where Kt = dτin/dq1 is a known value. Formula (3.22), however, is only valid if changes

of input force could affect the environment, i.e. one or both tendons are fully active. If so,

Kenv can be extracted from equation (3.22).

Figure 3.4 shows the four phases of transmission in a typical dual tendon-sheath mecha-

nism when a sinusoidal input torque with sufficiently high amplitude and sufficiently low

frequency is applied [11]. The corresponding combined stiffness in each phase is dis-

cussed below for the case where the top tendon is pulled and the bottom tendon is pushed

(i.e. q̇1 > 0); in the opposite case, similar justification can be given.

Phase I corresponds to the situation where the change of tension has not yet propagated

through the entire length of any of the tendons, so that ϕwt < 1 and ϕwb < 1. In this

case, as the changes in the input torque do not yet affect the output, the stiffness of the
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Figure 3.4: A typical input-output relation for a tendon-sheath mechanism in a pull-pull
architecture [11].

environment is not reflected through the instrument, and therefore the stiffness that the

actuator sees is only the apparent stiffness of the instrument:

1

Kt

=
1

KDual
app

, (3.23)

where KDual
app can be calculated using (3.20). Formula (3.20) implies that KDual

app decreases

from infinity to a minimum as ϕwt and ϕwb increase from 0 to 1.

Phase II corresponds to the situation where the change of tension has already propagated

through the whole pulled tendon, but not through the pushed one. In this case, ϕwt = 1 and

ϕwb < 1. In this case, the following equation is valid for the combined stiffness:

1

Kt

=
1

KDual
app

∣∣∣∣
ϕwt=1

+
1

Kenv

, (3.24)

where again formula (3.20) can be used to calculate KDual
app . As the pulled tendon is fully

active, the environmental stiffness is visible to the actuator. However, since the tension

continues to propagate through the pushed tendon (ϕwb < 1), the apparent stiffness of the

instrument continues to change as ϕwb grows.

Phase III corresponds to the situation where the change of tension has propagated to the

output side through both pulled and pushed tendons. In this case, ϕwt = ϕwb = 1. The
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apparent stiffness of the instrument during this phase is constant and is in series with the

stiffness of the environment, which results in the following formula:

1

Kt

=
1

kDual−minapp

+
1

Kenv

, (3.25)

where kDual−minapp is given by (3.21).

Phase IV corresponds to the case where the pulled tendon is fully active, while the pushed

tendon has become slack. In this case, ϕwt = 1 and the stiffness of the slack tendon can

be assumed zero. The combined stiffness is the apparent stiffness of the pulling tendon in

series with the stiffness of the environment.

1

Kt

=
1

kmin−pullapp

+
1

Kenv

, (3.26)

where kmin−pullapp is given by (3.8).

3.4 Hypothesis

As explained above, as the input torque increases, the system consecutively goes through

Phases I to IV. We hypothesize that, by applying a monotonically increasing or decreas-

ing input torque, one can reach to Phase III (or Phase IV) of transmission, in which the

environmental stiffness can be extracted from the measured combined stiffness using the

formula (3.25) (or (3.26)). In this manner, the stiffness of different tissue samples can be

compared. This hypothesis is experimentally validated in the subsequent sections.

3.5 The Experimental Setup

In order to investigate the hypothesis stated above, experiments have been conducted using

an EndoWrist®grasper mounted on an actuator set, as described in [8]. The experimental

setup is shown in Figure 3.5. The EndoWrist®grasper, shown in Figure 3.6, is a robotic

laparoscopic tool designed for the da Vinci RAMIS system. It is designed such that four

sets of tendon-pulley mechanisms facilitate the four degrees of freedom of the tip [12].
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Figure 3.5: The experimental setup.

Figure 3.6: A close look of the tip of da Vinci EndoWrist®grasper [13].

The actuator set consists of four Faulhaber DC motors with encoders, tightly arranged to

match the input pulleys of the instrument. At the distal side, the tip of the instrument is set

in straight configuration to grip artificial tissues held by a vice, as shown in Figure 3.5. The

gripping DOF of the instrument, which includes two tendon-pulley mechanisms, is used in

this study.
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Figure 3.7: The silicone samples used in the first experiment.

3.6 Results and Discussion

Two sets of experiments were conducted in order to demonstrate the possibility of using

the dual tendon-pulley instrument for the environmental stiffness estimation. In the first

set of experiments, the EndoWrist® grasper was used to discriminate between sample tis-

sues based on their compliances. In the second set of experiments, the capability of the

instrument for finding tumour-like elements in an artificial soft tissue was studied. In both

experiments, triangular torque signals were sent to the actuators of the grasping jaws. Since

the gripping DOF of the instrument includes two tendon-pulley mechanisms, the combined

stiffness formula of (3.22) has to be modified as follows,

Kt =
dτin

d(qJ1
1 − qJ2

1 )
, (3.27)

where qJ1
1 is the rotation of the input pulley of the upper jaw and qJ2

1 is the rotation of the

input pulley of the lower jaw.

3.6.1 First Set of Experiments

The aim of the first set of experiments was to determine if the above described method

allows for detection of changes of the environmental stiffness. A set of compliant, semi-

compliant and rigid silicone samples (Ecoflex® 00-20, Mold Star® 16, Crystal Clear® Series)

is studied in this experiment (Figure 3.7). The samples were palpated by the EndoWrist®

grasper and subsequently ranked in terms of their stiffnesses using the method described

above.
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Figure 3.8: First set of experiments: the input torque (top); the resulting rotation of the input
pulley (bottom). Blue, red, and green curves correspond to compliant, semi-compliant, and
rigid samples, respectively.

Figure 3.8 represents the applied torque and the measured rotation of the input pulleys of

the palpating experiments. The colours blue, red and green represent the case of compliant,

semi-compliant and rigid samples, respectively. The resulting combined stiffness, which is

found from (3.27), is illustrated in Figure 3.9 (top). As expected, in all cases, the combined

stiffness curves go from large values during phases 1 and 2 to approximately constant val-

ues. It is much more convenient, however, to represent the stiffness of interaction in the

form of combined compliance. The combined compliance curves are shown in Figure 3.9

(bottom). In this figure, the difference in combined compliance can be clearly seen during

the intervals of time when the input torque is sufficiently high. The difference in compli-

ance, however, is more identifiable when the sample is being released, in contrast with the

time when it is being pressed. This is probably because the samples do not exhibit linear

stiffness characteristics when squeezed.
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Figure 3.9: Experimental results: combined stiffness of the samples during palpation (top);
combined compliance of the samples during palpation (bottom).

3.6.2 Second Set of Experiments

In the second set of experiments, the instrument was used to find the location of a tumour-

like substance in an artificial tissue. A silicone-made artificial tissue was used which in-

cludes two strips of a harder material which emulate tumours (Figure 3.10). The EndoWrist®

grasper was used for palpating the tissue from one end to the other. The same input signal

as in the first experiment was applied to the input pulleys of the grasping DOFs to palpate

the areas shown in Figure 3.12 (top). Figure 3.11 shows the combined compliance of the

Figure 3.10: The artificial tissue with tumors implemented at different depth
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Figure 3.11: Experimental results: combined compliance of the system when palpating
different areas of the artificial tissue.

system when grasping different areas of the tissue. Here the colors blue, red and green

stand for tissue without a tumour, tissue with a tumour at the center, and the tissue with a

tumour at the surface, respectively. As can be seen from this figure, the combined compli-

ance of the parts of the tissue with tumours in it is visibly lower in comparison with the

empty tissue.

By averaging the combined compliance in the last two seconds of each cycle of releasing,

a compliance distribution map can be formed as shown in Figure 3.12 (bottom). The map

clearly shows the location of the tumours in the tissue. The experiment verifies that the

suggested method is feasible for localizing tumours regardless of their depth in the tissue.

3.7 Conclusion

Determining mechanical properties of the environment using cable-driven laparoscopic in-

struments such as those of the da Vinci surgical robotic system is a difficult task because of

the highly nonlinear behavior of the instrument and the technical complexities associated

with mounting sensors. This Chapter described a method for estimation of the compliance

of the environment which is based on analysis of the behavior of a dual tendon-sheath sys-

tem. The derived model suggests that, if a sufficiently large input torque is applied, the

stiffness of the environment becomes detectable at the actuator. The method for extraction
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Figure 3.12: The artificial tissue with palpation regions (top); the corresponding distribu-
tion of combined compliances (bottom).

of environmental compliance data from combined stiffness was tested in two preliminary

experiments, one using silicone samples and the other using artificial tissue with tumours.

The feasibility of determining the relative stiffness of these samples using the proposed

method was demonstrated. Further work is required to obtain a quantitative assessment of

the stiffness estimation that can be achieved using this approach. Work is in progress in

this context with the goal of determining the accuracy with which tumour localization can

be performed. To this end, an extensive study will be conducted using the dVRK (da Vinci

Research Kit) [14] and the da Vinci RAMIS system available at CSTAR.
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Chapter 4

Classical Preisach Model of Hysteretic
Behavior in a da Vinci® Instrument

T endon-based instruments are widely used in both robotic and manual minimally

invasive surgical procedures. Direct measurement of the interaction forces at

the tip of such instruments is difficult. As a result, methods for estimation of

these forces are of substantial interest. In this chapter, modeling of the input-output hys-

teretic behavior in a da Vinci instrument is addressed using the classical Preisach approach.

The performance of the developed model is experimentally evaluated. The results obtained

demonstrate that the classical Preisach model allows for sufficiently precise estimation of

the forces at the tip of the da Vinci instrument.

4.1 Introduction

In recent years, substantial advancements in Minimally Invasive Surgery (MIS) have been

achieved through incorporation of robotic technologies. Robot-Assisted Minimally Inva-

sive Surgery (RAMIS) can potentially solve some of the most significant problems as-

sociated with MIS, including restricted view of the operative field, difficulty in achiev-

ing precise control of the laparoscopic instruments, and limited sense of touch. At the

The material presented in this chapter is published in the proceeding of ”IEEE International Conference
on Advanced Intelligent Mechatronics (AIM), Banff, AB, pp. 1392-1397.IEEE, 2016”
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Figure 4.1: EndoWrist™ instruments by Intuitive Surgical [4]

present time, however, commercially available RAMIS systems do not provide haptic feed-

back [1, 2]. Some of the difficulties associated with haptic feedback are related to the fact

that, typically, RAMIS instruments have miniature tips (see Figure 4.1), which makes it

challenging to install force sensors. Also, RAMIS instruments must undergo sterilization

in the harsh environment of autoclave chambers, and must be disposed of after a few uses

due to safety considerations. Force sensors, on the other hand, are generally sensitive to

harsh environments and usually too expensive to be decommissioned after a few uses. A

possible alternative solution for restoration of the tool-tissue interaction forces at the tip of

a RAMIS instrument consists of designing an observer which generates an estimate of these

forces based on the measurements of torques and/or motions at the actuator end of the in-

strument. Implementation of such an observer would, however, require an appropriate and

sufficiently precise mathematical model of the instrument. A particular group of RAMIS

instruments on which our research is focused are the EndoWrist™ instruments designed for

the da Vinci surgical system [3]. These instruments utilize a compact set of tendon-pulley

mechanisms placed inside a narrow shaft, which transmit the power from the actuators to

the tip of the instrument. In particular, the input-output behavior of these instruments is

characterized by pronounced hysteresis effect which comes from the compliance of the

tendons as well as distributed friction between the tendons and their surroundings inside

the instrument.

In their previous work [5, 6], the authors developed an approach to quasi-static modelling

of such tendon-pulley mechanisms. The approach of [5, 6] is based on a first-principles

model that describes mechanical behavior of a pair of tendons sliding on curved surfaces.

As a result, a set of equations is obtained which relates the input motion/torque with the



4.1. INTRODUCTION 72

output torque in quasi-static conditions. The relationship depends on a number of parame-

ters as well as the initial tension distribution, all of which are typically unknown and have to

be identified. In this work, however, we explore a completely different set of ideas; specifi-

cally, we aim at development of a purely phenomenological model of input-output behavior

of a tendon-pulley force transmission system which is based on the classical Preisach model

of hysteresis [7].

In the literature, a number of studies have been reported that address phenomenological

modeling of tendon-based force/power transmission systems. In [8], a piecewise linear

model that describes the backlash-like behavior of a dual tendon-sheath mechanism is pro-

posed, and a controller is subsequently designed based on the smooth inverse model of the

backlash. In [9], a modified Bouc-Wen model and a Coleman-Hodgdon model were pro-

posed for single and dual tendon-sheath mechanisms. In [10], a formula for estimating the

width of the backlash in a pretension-free single tendon-sheath mechanism is suggested,

which relates geometrical features of the sheath and tendon, such as radius of curvature,

bending angle, and the gap between sheath and tendon, to the width of hysteresis. How-

ever, none of these works addressed specifically a da Vinci instrument or a closely similar

mechanism. Also, to the best of authors’ knowledge, applicability of the classical Preisach

hysteresis modeling to tendon-sheath and/or tendon-pulley mechanisms has not been ad-

dressed previously.

The objective of this work is to develop a phenomenological model that describes input-

output behavior of a da Vinci instrument using the classical Preisach approach to hys-

teresis modeling. Developed originally as a mathematical model for magnetization pro-

cesses, the Preisach hysteresis model has found numerous applications in many areas of

science and engineering, including ferromagnetism, piezoceramic actuators, and smart ma-

terials [7, 11]. Our choice of the Preisach model was motivated by the fact that our prelim-

inary experiments indicated that the input-output characteristics of the da Vinci instrument

satisfy two particular properties, specifically the wiping-out and the congruency proper-

ties. According to [7], these two properties are necessary and sufficient for a hysteresis

mechanism to be represented by the classical Preisach model. We demonstrate that appli-

cation of the Preisach approach to modelling of a da Vinci instrument allows for fairly close

prediction of the forces at the tip of the instrument.
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Figure 4.2: Relay operator γ̂αβ(·), α, β ∈ R (left). Each point (α′, β′) of the triangular
subset {(α, β) ∈ R2, α ≥ β, α ≤ α0, β ≥ β0} corresponds to a single relay operator γ̂α′β′
together with its scaling factor µ(α′, β′) (right).

The chapter is organized as follows. In Section 4.2, fundamentals of the Preisach hysteresis

model are explained. In Section 4.3, an algorithm for real-time calculation of the polygonal

interface in Preisach hysteresis model is presented; the algorithm is subsequently used in

our experimental investigation. The experimental setup is described in Section 4.4. In Sec-

tion 4.5, classical Preisach model of the da Vinci instrument is identified, and performance

of the developed model in estimating the output force is evaluated. Conclusions are given

in Section 4.6.

4.2 Classical Preisach Model of Hysteresis

In this section, a brief summary of the classical Preisach hysteresis model is given based

on the general theory presented in [7, 12]. The core building block of Preisach hysteresis

model is the relay operator γ̂αβ(·), where α, β ∈ R, α ≥ β, which is illustrated in Fig-

ure 4.2 (left). The output of the relay operator switches between 1 and −1 according to

the following rules. If the input u(t) is greater than the upper threshold α (u(t) > α),

the output γ̂αβ(u(t)) is equal to 1; if the input u(t) is smaller than the lower threshold β

(u(t) < β), the output γ̂αβ(u(t)) is equal to −1. If β ≤ u(t) ≤ α, the output depends on

the history of the input; specifically, it depends on direction from which the input u(t) has
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approached the relay loop. Informally, if the input u < β immediately before it entered the

relay loop, then γ̂αβ(u(t)) = −1; similarly, γ̂αβ(u(t)) = 1 if u > α immediately before it

entered the relay loop. 1

The classical Preisach model describes hysteretic behavior using a superposition of an in-

finite number of the above described relay operators γ̂αβ(·) scaled using a weighting func-

tion µ(α, β) ≥ 0. Both the relay operators γ̂αβ(·) and the weighting function µ(α, β) ≥ 0

are defined on a compact subset of a half-plane {(α, β) ∈ R2, α ≥ β}. This is illus-

trated in Figure 4.2 (right), where each point (α′, β′) of a triangular subset of the half-plane

{(α, β) ∈ R2, α ≥ β} can be mapped to a specific relay operator γ̂α′β′ and its weighting

coefficient µ(α′, β′). The overall formula that describes the classical Preisach hysteresis

model has a form

f(t) =

∫∫
α≥β

γ̂αβ(u(t))µ(α, β) dα dβ. (4.1)

The behavior of the classical Preisach model can be understood using geometric consid-

erations, as follows. Consider a triangular subset of a half-plane {(α, β) ∈ R2, α ≥ β}
satisfying α ≤ α0, β ≥ β0 with some bounds α0 > β0, see Figure 4.2 (right). Each point

(α, β) of this triangle corresponds to a relay operator γ̂αβ(·), while the bounds α0 and β0

represent the largest upper threshold and the smallest lower threshold, respectively, of all

relay operators. If the input signal u ≥ α0, then all relay operators are switched positive

(γ̂αβ(u) = +1 for all α, β), which results in that the overall output f is equal to its up-

per saturation limit f+. Similarly, if the input signal u ≤ β0, then all relay operators are

switched negative (γ̂αβ(u) = −1 for all α, β), and the overall output f is equal to its lower

saturation limit f−. If β0 < u(t) < α0, then some of the relay operators are switched

negative, while the rest are switched positive. Specifically, increasing the value of input

u(t) to some value α1 (β0 ≤ α1 ≤ α0) switches all relay operators γ̂αβ(·) with α ≤ α1

positive, while decreasing u(t) to some β1 (β0 ≤ β1 ≤ α0) results in all relay operators

γ̂αβ(·) with β ≥ β1 switched negative. The result of an increase of the input u(t) from an

initial value below β0 to α1 and its subsequent decrease to β1 is illustrated in Figure 4.3,

where the polygonal line L(t) represents the border between the set S+ of relay operators

1Mathematically, assuming u(t) is continuous, one can denote tα(t) := sup{τ < t : u(τ) > α},
and tβ(t) := sup{τ < t : u(τ) < β}, where sup(∅) = −∞. Then, γ̂αβ(u(t)) := 1 if tα > tβ , and
γ̂αβ(u(t)) := −1 otherwise.
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Figure 4.3: The interface L(t) which results from increasing the input from u (t0) < β0 to
u (t1) = α1, and its subsequent decrease to u (t2) = β1.

switched positive and the set S− of relay operators switched negative. Further decrease of

the input u(t) would result in the last (i.e., attached to the line α = β) link of L(t) moving

left, while increasing the input u(t) would result in emergence of a new horizontal link

which moves up as input increases.

Taking into account that γ̂αβ(u(t)) = +1 for (α, β) ∈ S+(t) and γ̂αβ(u(t)) = −1 for

(α, β) ∈ S−(t), formula (4.1) can be rewritten as follows,

f(t) =

∫ ∫
S+(t)

µ(α, β)dαdβ −
∫ ∫

S−(t)

µ(α, β)dαdβ. (4.2)

Formula (4.2), in particular, indicates that the instantaneous value of output f(t) depends

upon the shape of interface L(t) (i.e., the polygonal line that separates S+ and S−), which

in turn is defined by the history of the extremum values of the input signal u(t).

The weighting function µ(α, β) can in principle be identified using the following proce-

dure. Given α, β such that β0 ≤ β ≤ α ≤ α0, consider an input trajectory u(t) which starts

from an initial value u(t0) < β0, increases monotonically to u(t1) = α, and subsequently

decreases monotonically to u(t2) = β, t0 ≤ t1 ≤ t2. In response to such an input trajec-

tory, the output f(t) traces a so-called first-order transition (reversal) curve [7]. The final

value of f(t) at the end of this curve is denoted by fαβ , i.e., fαβ := f(t2). Using such a

procedure, the values of fαβ can in principle be experimentally obtained for all α, β satis-
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fying β0 ≤ β ≤ α ≤ α0 (in practice, fαβ can be obtained experimentally for some finite set

of spatially distributed sample points (α, β), and subsequently estimated in between these

points using some sort of interpolation procedure, as discussed below in Section 4.5.1).

The weighting function µ(α, β) can then be calculated according to the formula [7]:

µ(α, β) =
1

2
· ∂

2fαβ
∂α ∂β

. (4.3)

In practice, direct implementation of the Preisach model according to formulas (4.1) (or

(4.2)) and (4.3) may be difficult because of two reasons. First, real-time implementation

of double integration in (4.1) may require substantial computational resources. Second,

formula (4.3) requires double differentiation of an experimentally obtained function fαβ ,

which may greatly amplify the noise inherently present in the experimental data. In order to

avoid these pitfalls, one can use an alternative set of formulas that represents the response

of Preisach model directly in terms of fαβ and the polygonal line L(t). Specifically, it was

shown in [7] that formulas (4.1) (or (4.2)) and (4.3) are equivalent to the following:

f(t) = −f+ +

n(t)−1∑
k=1

(fαkβk − fαkβk−1
) + f ∗(t), (4.4)

where

f ∗(t) =

{
fαnu(t) − fαnβn−1 whenever u̇(t) < 0,

fu(t)u(t) − fu(t)βn−1 whenever u̇(t) > 0.
(4.5)

In the above formulas (4.4), (4.5), f+ is the upper saturation limit of the output f , n(t) is

the number of horizontal segments of the polygonal line L(t), and αk, βk are coordinates

of the corresponding vertices of L(t) (see Figure 4.4). Formulas (4.4), (4.5) will be used

for numerical implementation of the Preisach model in our work.

4.3 Algorithm for Real-Time Calculation of L(t)

The response of Preisach model (4.2) (or, equivalently, (4.4), (4.5)) depends upon the exact

form of the polygonal line L(t) which represents the interface between sets S+ and S−.

For our experiments, an algorithm for real-time calculations of L(t) was developed which
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Figure 4.4: Notation for coordinates of vertices of L(t).

is described as follows. At any given instant of time t, the interface L(t) is represented by

a matrix L̂(t) of the form

L̂(t) =

[
α1 α1 α2 · · · αn u(t) u(t)

β0 β1 β1 · · · βn βn u(t)

]
(4.6)

whenever u̇(t) > 0, and/or of the form

L̂(t) =

[
α1 α1 α2 · · · αn αn u(t)

β0 β1 β1 · · · βn−1 u(t) u(t)

]
(4.7)

whenever u̇(t) < 0. Each column of L̂(t) consists of (α, β) coordinates of the vertices of

the polygonal line L(t); thus, matrix L̂ completely describes the geometry of the interface

L(t). The developed algorithm for real-time calculations of L̂(t) consists of the following

steps.

Step 1. Initialization: The value of L̂(0), generally speaking, depends on the initial value

of the input u(0) as well as on the sign of u̇(0). In our experiments, the initial value of

the input signal is always equal to its lower saturation limit (u(0) = β0 = −5V ), which
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implies that

L̂(t) =

[
u(t) u(t)

β0 u(t)

]
(4.8)

is valid for t = 0 as well as for sufficiently small t > 0.

Step 2. Adding vertices: A new vertex is added to L(t) (which, in particular, corresponds

to adding a new column to L̂(t)) whenever the derivative of input changes its sign. Specif-

ically, the following two rules are to be executed:

• Adding vertices, Rule 1: If at t = t0 the input derivative changes sign from negative

to positive (strictly speaking, if there exist ε1, ε2 > 0 such that u̇(t) ≤ 0 for t ∈
(t0 − ε1, t0), inft∈(t0−ε1,t0) u̇(t) < 0, and u̇(t) > 0 for t ∈ (t0, t0 + ε2)), then L(t)

changes as follows:

L̂(t) =

[
α1 α1 · · · αn u(t)

β0 β1 · · · u(t) u(t)

]
for t ∈ (t0 − ε1, t0]

⇓ t = t0

L̂(t) =

[
α1 α1 · · · αn u(t) u(t)

β0 β1 · · · βn := u(t0) βn := u(t0) u(t)

]
.

• Adding vertices, Rule 2: If at t = t0 the input derivative changes sign from positive

to negative (strictly speaking, if there exist ε1, ε2 > 0 such that u̇(t) ≥ 0 for t ∈
(t0 − ε1, t0), supt∈(t0−ε1,t0) u̇(t) > 0, and u̇(t) < 0 for t ∈ (t0, t0 + ε2)), then L(t)

changes as follows:

L̂(t) =

[
α1 α1 · · · u(t) u(t)

β0 β1 · · · βn−1 u(t)

]
for t ∈ (t0 − ε1, t0]

⇓ t = t0

L̂(t) =

[
α1 α1 · · · αn := u(t0) αn := u(t0) u(t)

β0 β1 · · · βn−1 u(t) u(t)

]
.

Step 3. Deleting vertices: Vertices are deleted from L(t) (equivalently, a number of

columns of L̂(t) decreases) whenever the value of input equals either αn or βn−1. This
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represents the so-called wipe-out property of the Preisach model [7]. Specific rules are as

follows:

• Deleting vertices, Rule 1: If u(t0) = αn at some instant t0, then L(t) changes as

follows:

L̂(t) =

[
α1 α1 · · · αn αn u(t) u(t)

β0 β1 · · · βn−1 βn βn u(t)

]
⇓ t = t0

L̂(t) =

[
α1 α1 · · · u(t) u(t)

β0 β1 · · · βn−1 u(t)

]
.

• Deleting vertices, Rule 2: If u(t0) = βn−1 at some instant t0, then the following

changes are applied to L(t):

L̂(t) =

[
α1 α1 · · · αn−1 αn αn u(t)

β0 β1 · · · βn−1 βn−1 u(t) u(t)

]

⇓ t = t0

L̂(t) =

[
α1 α1 · · · αn−1 u(t)

β0 β1 · · · u(t) u(t)

]
.

The above described algorithm is used in our experiments for real-time calculation of the

interface L(t). An example of the algorithm’s performance is shown in Figure 4.5, where a

sample input signal is shown together with the resulting interface L(t) which was generated

by the above described algorithm.

4.4 Experimental Setup

In order to evaluate the applicability of the classical Preisach approach to modeling of the

input-output behavior in da Vinci instruments, an experimental setup was assembled as

shown in Figure 4.6. The setup is similar to the one used in [5], where it is described in

detail. An EndoWrist™ forceps is chosen for this study. The force transmission system
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Figure 4.5: A sample input signal (top); the resulting interface L(t) for t = 40 s and t = 60
s (bottom).

inside the instrument consists of four tendon-pulley mechanisms, tightly packed inside a

casing and a narrow tube. Each tendon-pulley mechanism transfers forces to one of the

four DOF of the distal tip, these include a pitch, a roll, and two griping DOFs, although

there is notable coupling between these DOFs. The input side of the instrument is fixed

in an actuator set, which consists of four Faulhaber® 2642W024CR Coreless DC Motors

equipped with Faulhaber® Magnetic Encoders Model R IE2-512 that provide 2048 counts

per revolution. The motors’ drivers are set to current mode; as a result, the torques applied

to the instrument by the motors are approximately proportional to the voltage commands

generated by the IO card. During the experiments, one of the jaws of the EndoWrist™

forceps is fixed to an ATI Nano 17 force sensor as shown in Figure 4.6 (bottom); the sensor

has a force resolution of 1/160 N (calibration SI-25-0.25) in all directions, with maximum

sensing range of ±25 N in the directions of the x and y axes, and ±35 N along the z-axis.

The force measurements are captured by a National Instrument PCI 6220 data acquisition

card. For the purposes of modelling, the force Fx is considered to be the output of the

system, while the voltage across the corresponding Faulhaber DC motor is the input. Other

components of the output force (such as Fz) appear to be relatively minor, and are neglected

in this study.
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Figure 4.6: The experimental setup: the overall view (top); close-up of the instrument tip
fixed to a force sensor (bottom).
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4.5 Experimental Results

4.5.1 Model Identification

The experimental investigation begins with identification of the Preisach model that de-

scribes the da Vinci instrument. To this end, a discretized set of first-order transition curves

was generated which covers the range of input signals −5V ≤ u ≤ 5V with resolution

∆α = ∆β = 1V. The maximal (α0 = 5V) and the minimal (β0 = −5V) values of the

input range were chosen experimentally such that the resulting output torque achieves its

upper and lower saturation limits, respectively. The input signal used during the identifi-

cation procedure is shown in Figure 4.7 (top). As can be seen, the first cycle of the input

signal begins with value u = β0 = −5V, which slowly increases to u = α0 = +5V,

and then slowly decreases back to u = −5V. While decreasing, the output force Fx is

sampled once per 1V drop of input. As a result of the first cycle, a set of values fαβ ,

α = 5V, β ∈ {−5V,−4V, . . . , 4V, 5V} is obtained. During second cycle, the input again

starts from u = β0 = −5V, increases to u = α0 − ∆α = +4V, and then decreases to

u = β0 = −5V while being sampled once per 1V drop; as a result, a set fαβ , α = 4V,

β ∈ {−5V,−4V, . . . , 4V, 5V} is obtained, etc.. The resulting first-order transition (rever-

sal) curves are shown in Figure 4.7 (bottom), while the mesh of obtained values of fαβ is

graphically illustrated in Figure 4.8.

An extension of fαβ to the continuous range (α, β) := {−5V ≤ β ≤ α ≤ 5V} is obtained

using an interpolation procedure described in [7, Section 1.4], as follows. Consider a mech

of points that covers the limiting triangle (α, β) := {β0 ≤ β ≤ α ≤ α0}. For each

point inside a rectangular cell (i.e., a cell with vertices (αi, βi), (αi−1, βi), (αi, βi−1), and

(αi−1, βi−1)), the value of fαβ is approximated according to the formula

fαβ = k0 + k1α + k2β + k3αβ, (4.9)

where k0, k1, k2, and k3 are coefficients obtained for each cell by matching the values of fαβ
at the (four) cell vertices. For each point inside a triangular cell (i.e., a cell adjacent to the

line α = β with vertices (αi, αi), (αi−1, αi−1), and (αi, αi−1)), a three-point interpolation
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Figure 4.7: The input signal used for model identification (top); the resulting first-order
transition (reversal) curves (bottom).

is used,

fαβ = k0 + k1α + k2β, (4.10)

where, again, k0, k1, and k2 are obtained by matching the values of fαβ at the (three) cell

vertices.

4.5.2 Output Force Estimation

In this subsection, we present results of some experiments which were performed in order to

evaluate performance of the classical Preisach model in describing input-output behavior

of the da Vinci instrument. In these experiments, for a number of test input signals, the

output force Fx was estimated using the developed Preisach model and compared with the

actual measured force. The test input signals were chosen in the form of superposition of

sinusoidal signals of different frequencies; the range of these frequencies corresponds to

slow movements typically used by surgeons when performing actual minimally invasive

surgical procedures. Specifically, the responses were evaluated for the following test input
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Figure 4.8: The mesh of experimentally obtained values fαβ , −5V ≤ u(t) ≤ 5V , with
resolution ∆α = ∆β = 1V .

signals:

u1(t) = 2 sin

(
2π

10
t

)
+ 2 sin

(
2π

30
t+ π

)
Volts,

u2(t) = 2 sin

(
2π

10
t

)
+ 2 sin

(
2π

11
t

)
Volts,

u3(t) =
4∑

k=1

sin

(
2π

10 · k t
)

Volts.

Figures 4.10, 4.11, and 4.12 demonstrate the responses of the developed Preisach model in

comparison with the experimentally obtained responses of the actual da Vinci instrument

for input signals u1(t), u2(t), and u3(t), respectively. In each of these figures, the top plot

represents the responses in time domain, while the bottom plot demonstrates the input-

output behavior of the instrument and the model. For each of the three test signals, the

magnitude of the experimentally obtained force response, the maximum force estimation

error, as well as RMS (root-mean-square) force estimation error were evaluated; these are

summarized in Table 4.1.
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Test signal
Force response
magnitude (N)

Maximum
error (N)

RMS error (N)

u1(t) 6.40 0.55 0.15
u2(t) 6.16 0.60 0.22
u3(t) 5.48 0.59 0.22

Table 4.1: Magnitude of the force response, maximum force estimation error, and RMS
force estimation error for input signals u1(t), u2(t), and u3(t).

Figure 4.9: Input signal u1(t).

4.5.3 Discussion

It can be seen from the experimental results presented above that the developed Preisach

model provides a close approximation of the forces at the tip of the da Vinci instrument.

The errors presented in Table 4.1 are within the range for sensorized minimally-invasive

surgical instruments (see for example [13]). It is also worth to mention that the specific

combination of sinusoidal waves that comprise u1(t) results in a pattern that can roughly

be described as cycles of oscillations with large and small magnitudes (see Figure 4.9).

As expected, the resulting output response exhibits one large hysteresis loop as well as

two minor loops, as can be clearly seen in Figure 4.10 (bottom). The two minor loops

are symmetrical and of the same size, which illustrates the fact that the assumption of

congruency, which is fundamental for Preisach modeling, holds in the case of the da Vinci

instrument.
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Figure 4.10: Response to input signal u1(t), measured vs. estimated (top); the correspond-
ing input-output behavior (bottom).

4.6 Conclusion

In this chapter, the classical Preisach model of hysteresis was implemented and used for

estimation of the forces at the tip of a da Vinci instrument. The model that describes the

input-output behavior of EndoWrist™ forceps was identified and experimentally evaluated

in the case of a rigidly fixed tip. The experimental results demonstrate that the developed

approach allows for sufficiently precise prediction of the forces at the tip of the instrument.

Implementation of the proposed approach for real-life surgical tasks, however, requires

further studies. The major topics to be addressed include modeling the effect of motion at

the tip when interacting with a soft environment, as well as the effect of coupling between

different DOFs. Mathematical description of these effects can be combined with the model

developed in this work to achieve real-time estimation of the forces at the tip of a da Vinci

instrument for a variety of real life surgical scenarios. These are topics for future research.



4.6. CONCLUSION 87

Figure 4.11: Response to input signal u2(t), measured vs. estimated (top); the correspond-
ing input-output behavior (bottom).
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Figure 4.12: Response to input signal u3(t) measured vs. estimated (top); the correspond-
ing input-output behavior (bottom).
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Chapter 5

A Motion Transmission Model for a
Class of Tendon-Based Mechanisms with
Application to Position Tracking of the
da Vinci® Instrument

T endon-based motion/force transmission is a conventional approach in the design

of surgical robots. However, due to compliance in the tendons and signifi-

cant frictions between the tendons, the pulleys, and the sheath, tendon-based

systems exhibit highly nonlinear behavior that, in particular, includes hysteresis. In this

chapter, based on the concepts of creep theory in belt drive mechanics, a novel motion

transmission model is developed for tendon-pulley mechanisms. The developed model is

of pseudo-kinematic type; specifically, it relates the output displacement to both the input

displacement and the input force. The model parameters are identified for a da Vincir in-

strument, and the model performance is experimentally evaluated. The experimental results

demonstrate greater than 50% improvement in terms of root-mean-square position error as

compared to a more conventional friction/compliance-free kinematic model. The model is

subsequently used for position control of the tip of the instrument, resulting in elimination

of the static hysteresis and in accurate trajectory tracking.

The material presented in this chapter is accepted for publication in IEEE/ASME Transactions on Mecha-
tronics subject to minor revisions.



5.1. INTRODUCTION 92

5.1 Introduction

Tendon-based transmission is one of the primary approaches in the design of surgical tools

for minimally invasive surgery (MIS). Tendon-based transmission allows the designer to

remove the actuators from the patient’s body, and helps to make the instruments suffi-

ciently thin to pass through the trocar. Examples of well-known tendon-based surgical

robots include the da Vinci® Surgical System [1] and the RAVEN II® open platform surgi-

cal robot [2].

Due to design simplicity and high power-to-weight ratio, tendon-based actuation has been

employed in a variety of applications such as continuum robots [3], robotic hands [4], and

laparoscopic instruments [5]. With all the advantages of the tendon-based transmission

systems, they may exhibit substantially nonlinear behavior due to tendons’ compliance

and frictions between the tendons and the pulleys, as well as between the tendons and the

sheath. In many robotic applications, the output of a tendon drive can be equipped with

force/motion sensors, and therefore the inherent transmission nonlinearity can be compen-

sated through feedback control (i.e., [6, 7]). In the case of surgical robotics, however,

sensors typically cannot be implemented at the distal end of the transmission, which re-

sults in uncertainty in the position of the joints and the applied torque. Examples are

position [8–10] and force [11, 12] uncertainties that are reported for tendon-pulley based

RAVEN II® surgical robot. While a good force estimation enhances the haptic feedback

provided to the surgeon, an accurate motion estimation is also highly desirable in the

emerging autonomous surgical robots [13–15]. Accurate positioning of a surgical tool can

in principle be achieved by employing image processing techniques [10, 15]. However, a

precise and computationally effective model of the system can significantly improve per-

formance and robustness of the control algorithm.

Talasaz and co-authors [16] modeled the tendon-pulley based da Vinci® instrument as a

rigid mechanism and identified its parameters accordingly; this model was subsequently

used in a haptics-enabled MIS teleoperation system. In [8], an Unscented Kalman Filter

(UKF) algorithm was designed for position control of three DOFs of the RAVEN II robot.

The algorithm was augmented in [9] to enhance the position estimation using real-time

stereo visual feedback. In both the aforementioned studies, the idler pulleys were ignored,

the point-contact friction was assumed to be located at the joints of the input and the output



5.1. INTRODUCTION 93

pulleys, and exponential springs were used to model the effect of the tendons’ compliance.

While improvement in positioning was shown in [8, 9], however, a relatively large number

of the identified parameters and the estimated states together with a limited number of

the states measured directly makes the already complicated method sensitive to parameter

variations [12].

The authors previously investigated force transmission in the da Vinci instrument for the

case where the output pulley was locked to a force sensor [17, 18]. Due to similarities

observed between the force transmission behavior of the da Vinci® instrument and that of

a typical tendon-sheath mechanism, two force transmission models were developed based

on the tendon slip analysis [17]. In [18], it was demonstrated that the force transmission can

also be accurately described by a Preisach hysteresis model. In [19], the apparent stiffness

of a tendon-pulley transmission was described and evaluated in the palpation experiments.

The main contribution of this chapter is a novel motion estimation model which, in partic-

ular, allows for compensation of hysteresis in the motion transmission behavior of tendon-

pulley drives. The model is derived based on the physical theory, known as the creep theory

in the belt-drive mechanics, which describes a tendon’s slippage on a pulley’s surface. In

tendon-pulley mechanisms, similarly to the belt drives, the predominant factor affecting the

torque/force transmission between the tendon and the pulleys is the surface friction, which

causes elongation of the tendon and its slippage on the pulley’s surface. It is demonstrated

in this chapter that, using tendon-creep analysis, contribution of each idler pulley to the

overall nonlinear model of the system can be characterized; specifically, the effect of each

idler pulley is similar to tendon’s slip on a curved surface with a fixed length. Based on

these considerations, in the proposed model, the total tendon slip on all pulleys of the sys-

tem is represented by tendon’s interaction with two imaginary curved surfaces; one in the

forward and one in the return path. The interaction between the tendon and the correspond-

ing surface involves the tendon slip and the tension decay along the corresponding path. In

particular, our model encompasses distributed frictions as opposed to the point contact fric-

tion models addressed in [8, 9]. The proposed model can be considered as an extension of

the conventional kinematics-based models, in that it additionally takes into account the re-

lationship between the tendon elongation and the input (e.g., the motor) torque. As a result,

the proposed motion transmission model describes a nonlinear relationship between the

input displacement, the output displacement, and the motor torque. An important property
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of the developed model is its invertibility, which allows for its use in the real-time con-

trol applications. The model is implemented and experimentally verified for a da Vincir

instrument, specifically the EndoWrist™ microforceps [20], which utilizes tendon-pulley

force/motion transmission mechanisms. Furthermore, a set of control experiments with

a range of desired trajectory commands, including sinusoidal, exponential and multi-sine

trajectories, was conducted in order to validate the effectiveness of the proposed modeling

approach. The positioning performance is also thoroughly analyzed in terms of root mean

squared errors, error distribution, and hysteresis compensation. The result indicates that the

hysteresis in the motion transmission behavior of the instrument can be compensated using

the closed-loop control based on the proposed modeling approach to achieve one-to-one

(linear) relation between the input and output pulleys’ rotations.

The chapter is organized as follows. In Section 5.2, the necessary background material

on the belt drive mechanics and the tendon slip analysis is discussed. In Section 5.3, the

proposed motion transmission model is derived. The experimental setup is described in

Section 5.4. In Section 5.5, experimental results are presented; in particular, the parameters

of the proposed model are identified for a da Vincir instrument, and performance of the

model in position control applications is evaluated. Section 5.6 concludes the chapter.

5.2 Preliminaries

5.2.1 Belt Drive Mechanics

In order to provide a basis for analysis of tendon-pulley systems, we first recall some no-

tions from the belt drive mechanics. Belt drive is a form of tendon-pulley mechanisms

which has been used widely in various mechanical systems such as refrigerators, washing

machines, and vehicle engines for the purpose of power transmission. Belt drive mechanics

is a subject of numerous studies, see for example [21–23]. The main challenge associated

with the belt drive mechanics is how to properly describe the belt-pulley frictional interac-

tion which is the principal factor in the power transmission. The classical creep theory is

the most common approach to analysis of the belt drive mechanics [25]. The creep theory

assumes that the interaction between the pulley and the belt is described by Coulomb fric-
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(a)

(b)

Figure 5.1: (a) Slip and stick zones on the input and output pulleys of a belt drive (adopted
from [24]). (b) Free-body diagram of a driven pulley and the control volume (dashed line)
in a belt drive mechanism.
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tion model. Coulomb friction results in two distinct zones on the contact arc of the pulley,

the stick zone and the slip zone, as shown in Figure 5.1(a). In the stick zone, there is no rel-

ative motion between the belt and the pulley, while a constant tension is maintained along

the stick arc. In the slip zone, however, frictional forces cause the belt to stretch and/or

contract, and consequently slip on the pulley, which results in the moment transmission

[21].

In the steady-state mode (i.e., where the pulleys rotate with a constant and sufficiently

low velocity), the change of tension along the slip zone can be described by the following

formula [26],
T2

T1

= e−µsΦ, (5.1)

where, as shown in Figure 5.1(b), T1 and T2 are belt span tensions after and before the

slip zone, respectively, µs is the coefficient of Coulomb surface friction, Φ ∈ [0,Γ] is the

angular length of the slip zone, and Γ ∈ [0, π] is the wrap angle. Note that, according to

the creep theory, tension T2 remains constant along the stick zone, and Φ increases as the

transmitted moment increases.

In addition, from the conservation of linear momentum for the space-fixed control volume

shown in Figure 5.1(b) (dashed line), one can derive the following equations which relate

the joint normal force FR = (FRx, FRy) to tensions T1 and T2 and the wrap angle Γ,ṁV1 sin(Γ) = FRx − T1 sin(Γ),

ṁ(V1 cos(Γ)− V2) = FRy + T1 cos(Γ)− T2,
(5.2)

where ṁ is the constant mass flow rate in the control volume, V1 is speed of tendon entering

and V2 is the speed of tendon leaving the control volume, respectively. In the case of

low-speed operation, the mass flow rate is negligible, and therefore equation (5.2) can be

rewritten as follows: T1 sin(Γ) = FRx,

−T1 cos(Γ) + T2 = FRy.
(5.3)

Similarly, from the conservation of angular momentum within the control volume and the
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above assumption of a negligible mass flow, the following formula can be obtained:

T2 − T1 = −1

r
(τload + τf ), (5.4)

where τf = µJFRr
′ is the joint frictional torque, µJ is the friction coefficient, r′ is the

inner radius of the pulley, r is the outer radius of the pulley and τload is the external loading

torque. Combining (5.4) and (5.3), one can obtain the following formula that describes the

change of tension along the driven pulley,

T2 − T1 = −1

r

(
τload + µJr

′
√

(T 2
1 + T 2

2 − 2T1T2 cos(Γ))

)
. (5.5)

Furthermore, the compatibility condition ensures that tendon extension due to change in

tension must be compensated by an equal contraction, such that the total length of the

tendon remains constant [25] and satisfy

n∑
i=1

liTi = LtTs, (5.6)

where Lt is the total tendon length, li is the length of the tendon span i ∈ {1, . . . , n}, and

Ts is the initial preset tension within the tendon.

In surgical robotic applications, the input torque and the rotation of the driving pulley can

typically be measured, while the output torque and the rotational displacement of the output

pulley are to be estimated. To solve for the output torque/displacement of a tendon-pulley

system such as the one shown in Figure 5.2(a), equations (5.1) and (5.5) must be written for

every single pulley in addition to equation (5.6) for the whole system. Solving such a set

of equations requires extensive numerical computations, which is not desirable in real-time

control application.

In this work, we propose a new method for modeling of tendon-pulley systems indepen-

dently of their specific mechanical configuration. Specifically, as an idler pulley in a

tendon-pulley drive does not bear any external loading (i.e., τload = 0), equation (5.5)

for an idler pulley can be rewritten in terms of T2/T1, as follows:(
T2

T1

)2

− 2
1− κ cos(Γ)

1− κ

(
T2

T1

)
+ 1 = 0, (5.7)
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(a)

(b)

(c)

Figure 5.2: (a) A typical tendon-pulley drive in a surgical robot consists of the input and
output pulleys as well as several idler pulleys for routing. The forward and backward rout-
ing are not necessarily similar. (b) The proposed equivalent dual tendon-surface system.
Tendons’ interaction with the curved surfaces accounts for tension decay and creeping ef-
fect in the original structure. (c) Tendon slipping on a curved surface under an axial load
Tin.
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where κ := (µJr
′/r)2. Taking into account equations (5.1) and (5.7), one can conclude that

the slip zone on idler pulleys always corresponds to a fixed bending angle, i.e., Φ = const.

Since the effect of each idler pulley is similar to tendon slip on a fixed bent surface, the

total effect of several pulleys can be represented by a single curved surface with a fixed

length. In this study, we consider two curved surfaces on the forward and the return paths

between the input and the output pulleys (Figure 5.2(b)) to replicate the tendon creep in the

corresponding multiple-pulley system shown in Figure 5.2(a).

5.2.2 Tendon Slip Analysis

This subsection provides a brief review of some basic formulas for tendon slips on a curved

surface which were previously developed by the authors in [17]. We first address the case

of a single tendon-surface interaction, and subsequently extend our analysis to the case of

dual tendon-surface interaction shown in Figure 5.2(b).

Figure 5.2(c) shows a tendon of length L on a curved surface with a constant radius of

curvature R > 0. In this case, application of a unidirectional force Tin in a quasi-static

condition results in distinct stick and slip zones formed along the tendon. Within the stick

zone, tension remains equal to pre-tension T 0(x), whereas the change of tension in the slip

zone satisfies the following differential equation

dT (x) = −µT (x)

R
sgn(v)dx, (5.8)

where dx is an infinitesimal length, T (x) is the tension in the segment, sgn(v) represents

the direction of the impending motion of the tendon which follows the direction of the

applied force, and µ is the coefficient of Coulomb friction. Integrating (5.8) results in the

following formula for tension distribution in the slip zone:

T (x) = Tin e
−µx
R

sgn(v). (5.9)

The stick and the slip zones are separated by a point x = xw which is given by the formula

xw := min{x ∈ [0, L] : T (x) = e−
µx
R

sgn(v) = T 0(x)}. (5.10)
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The value of xw ∈ [0, L] is referred to as the slip length. Increase in the input force results

in a larger slip zone. If the input force is large enough, the slip zone is extended to the distal

end of the tendon (e.g. xw = L), which causes force/motion transmission. Specifically, the

tension at the load is given by the formula

T (L) = Tine
−η sgn(v), (5.11)

where η := µL/R is the friction-bending constant. According to Hooke’s law, the change

of tension from T 0(x) to T (x) also results in tendon elongation, described by the following

formula,

∆ =
1

Kn

∫ L

0

(T (x)− T 0(x))dx, (5.12)

where ∆ is the total change of the tendon’s length, and Kn > 0 is the stiffness of the

tendon. Equations (5.9) to (5.12) describe the force and motion transmission in a single

tendon in the presence of surface interaction.

The above analysis can be extended to the case of a dual tendon system shown in Fig-

ure 5.2(b), where tendons’ interaction with two curved surfaces accounts for tension decay

and creeping effect, while the angular positions of the input pulley q1 and the output pulley

q2 impose geometric constraints only. Similarly to the case of single tendon-surface inter-

action, the following formulas can be derived that describe the tension distributions and

tendons’ elongations, respectively, in the dual tendon-pulley system:

Tt(ϕt) =

Ttl e−ηtϕt sgn(q̇1) ϕi < ϕwt,

T 0
t (ϕt) ϕt ≥ ϕwt,

(5.13)

Tb(ϕb) =

Tbl eηbϕb sgn(q̇1) ϕb < ϕwb,

T 0
b (ϕb) ϕb ≥ ϕwb,

(5.14)

∆i =
1

Kni

∫ 1

0

(Ti(ϕi)− T 0
i (ϕi))dϕi, (5.15)

where Til is the tension in the left-end side of the i-th tendon, ϕi := xi/L is normalized

position along the i-th tendon, ϕwi := xwi/L is the normalized slip length, and i ∈ {t, b},
where t and b denote the top and the bottom tendon in Figure 5.2(b), respectively. Further-
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more, similarly to (5.4), the following two equations can be written for the input and output

pulleys:

τin = (Ttl − Tbl)r1, (5.16)

τout = (Ttr − Tbr)r2, (5.17)

where τout is the output torque, Ttr, Tbr are the tensions at the right end of the top and

the bottom tendon, respectively, while r1 and r2 are the radii of the input and the output

pulleys, respectively. Equations (5.13)-(5.17) describe the force transmission in a dual

tendon system in a quasi-static condition. In order to derive the motion transmission model,

however, the geometric constraints imposed on the tendon-pulley system must also be taken

into account. These developments are presented in the next section.

5.3 The Motion Transmission Model

This section presents the main contribution of this paper. The geometric constraints im-

posed by the mechanism shown in Figure 5.2(b) require the elongation of the top tendon

∆t to be related to the rotation of the input pulley ∆q1 and the output pulley ∆q2, as follows:

∆t = ∆q1r1 −∆q2r2. (5.18)

Note that, in the above equation, ∆q2 6= 0 only if the wave of tension (or equivalently

the slip zone) has reached the output pulley, otherwise ∆q1 does not affect ∆q2. Applying

the same line of reasoning to the bottom tendon, equation (7.1) can be extended to a more

general formula

∆q2 =


r1
r2

∆q1 − 1
r2

∆t if ϕwt = 1,

r1
r2

∆q1 + 1
r2

∆b if ϕwb = 1,

0 otherwise,

(5.19)

where ϕwt and ϕwb describe the transition state of each tendon. We will refer to equation

(7.2) as the pseudo-kinematics-based model of the dual tendon mechanism. In contrast

with kinematics-based models of rigid transmission systems, the pseudo-kinematics-based

model does not only depend on the displacements, but is also a function of the tension dis-
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tribution along the tendons as described in (5.15). Moreover, (7.2) replicates the hysteresis

in the system; specifically, the first and second cases of (7.2) represent the ascending and

descending branches of the hysteresis loops, respectively, while the third case describes

transition between the two.

The value of ∆q2 can in principle be found from (7.2), provided that the elongation vari-

ables ∆t and ∆b and the transition variables ϕwt and ϕwb are known. Also, to calculate

elongations from (5.15), one must know the current and the previous distributions of the

tensions in both tendons. Solving (5.10)-(5.17) for all the values of interest is a challenging

task due to the complexity of the possible solution(s). Therefore, in order to derive a closed

form model suitable for real-time control applications, two additional assumptions are

made. Given a scalar function x(t) of time t ∈ R, denote t+x (t) := sup {τ ≤ t : x(τ) > 0},
and t−x (t) := sup {τ ≤ t : x(τ) < 0}. A switching function with memory J [x(t)] is de-

fined as follows,

J (x(t)) :=

1 if t+x (t) > t−x (t),

0 if t+x (t) < t−x (t).
(5.20)

It is easy to see that J (x(t)) = 1 if x(t) > 0, while J (x(t)) = 0 if x(t) < 0. On the

other hand, if x(t) = 0, then J (x(t)) is equal to either 1 or 0 depending on whether x(t)

approached zero from the positive or the negative side1. The following two assumptions

are made.

Assumption 1. The power between the input and the output pulley is transmitted only

through the tendon which is being pulled by the input pulley. Tension in the pushed tendon

is zero, i.e., Tb(ϕb) ≡ 0 whenever J (q̇1(t)) = 1, and Tt(ϕt) ≡ 0 whenever J (q̇1(t)) = 0.

Assumption 2. Tension propagates immediately along the active tendon, i.e., ϕwt = J (q̇1(t)),

and ϕwb = 1− J (q̇1(t)).

Under Assumptions 1 and 2, equations (5.13), (5.14), and (5.15) become

Tt(ϕt) = J (q̇1(t))Ttl e
−ηtϕt , (5.21)

1Strictly speaking, there exist some curious functions x(t) for which J (x(t)) is not well-defined for some
t. In this work, however, we avoid these mathematical difficulties by assuming that all functions of interest
x(t) are such that J (x(t)) is well-defined for all t.
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Tb(ϕb) = (1− J (q̇1(t)))Tbl e
ηbϕb , (5.22)

∆i =
1

Kni

∫ 1

0

Ti(ϕi)dϕi, (5.23)

where i ∈ {t, b}. Combining equation (5.23) with (5.21) and (5.22), respectively, one gets

the following formulas that describe elongations of the top and bottom tendons, respec-

tively,

∆t =
J (q̇1)

Knt

∫ 1

0

Ttl e
−ηtϕtdϕt, (5.24)

∆b =
(1− J (q̇1))

Knb

∫ 1

0

Tbl e
−ηbϕbdϕb. (5.25)

Taking into account Assumption 1, it follows from equation (5.16) that Ttl = τin/r1 when-

ever J (q̇1) = 1, and Tbl = −τin/r1 whenever J (q̇1) = 0. Substituting these expressions

into equations (5.24), (5.25), and performing integration, one obtains

∆t = J (q̇1)
1− eηt
r1ηtKnt

τin, (5.26)

∆b = (1− J(q̇1))
eηb − 1

r1ηbKnb

τin. (5.27)

Taking into account Assumption 2 as well as equations (7.2), (5.26) and (5.27), the total

rotation of the output pulley is

∆q2 = J (q̇1)α1τin + (1− J (q̇1))α2τin + β∆q1, (5.28)

where the constant parameters α1, α2 and β are defined as

α1 := 1−eηt
r1r2ηtKnt

,

α2 := eηb−1
r1r2ηbKnb

,

β := r1
r2
.

(5.29)

Equation (7.3) will be used to estimate q2 for given q1 and τin. The first and second terms

in (7.3) describe the effect of tendon elongation on the motion transmission, while the

third term represents the geometrical relationship between q1 and q2 similar to kinematic
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constraints in rigid transmissions. In the absence of friction (e.g., ηt = ηb → 0), and/or in

the case of zero compliance (Knt = Knb →∞), equation (7.3) indicates that the output is

a scaled version of the input, which is similar to the case of rigid transmissions.

Remark 5.1. Creep theory assumes that friction is zero at zero relative velocity between

the belt and pulley, resulting in constant tension in the stick zone. This limiting assumption,

however, is not valid in general. In particular, it is in fact a common practice to assume

that the stick zone has a memory of its previous loading for the case of tendon slip on a

fixed surface. Nonetheless, in our study as a result of Assumptions 1 and 2, the history of

the input force has no effect of the motion transmission.

Remark 5.2. It can be shown that the transmission characteristics of the tendon motion on

the imaginary surface is independent from the radius of curvature R, but depends on the

total bending as studied in [27].

Remark 5.3. Assumption 1 presumes negligible pretension in the tendons. If the pretension

is sufficiently large, it can be shown that the pseudo-kinematic formula of (7.3) can be

updated to the following form:

∆q2 ≈J(q̇1)(α1τin + γ1Λ)

+ (1− J(q̇1))(α2τin + γ2Λ) + β∆q1,
(5.30)

where constant Λ ≥ 0 is a weighted sum of the area under the tension distribution of the top

and the bottom tendons [17], and γ1, γ2 ≥ 0 are constant parameters. The full derivation

of formula (7.5) is given in the Appendix.

5.4 Experimental Setup

For experimental evaluation of the modeling approach developed above, an EndoWrist®

micro-forceps instrument was used as a testbed. The instrument was mounted on an actu-

ation system as shown in Figure 5.3. The setup consists of four sets of motor-timing belt

mechanism that drive the instrument’s pulleys, and a camera for motion detection. The

actuation system utilizes four Faulhaber 2642W024CR DC motor-encoders. The motors

were driven using Maxon 4-Q-DC servo amplifiers set to current mode.
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Figure 5.3: The experimental setup: the overall view (top); the instrument tip from the
point of view of the camera (bottom).

The micro-forceps instrument used in this study consists of four sets of cable driven mech-

anisms that provide the tip with four rotational degrees of freedom: two DOFs for gripping

motion, one for rolling the shaft, and one for the pitch motion of the tip. While there is

no notable coupling between the roll and the gripping degrees of freedom, the pitch has a

coupling effect on the gripping. In this study, the motion of only one of the jaws is studied,

while the coupling effect is left for future investigations.

On the distal side of the instrument, a Point Grey® camera Dragonfly2 DR2-COL, mounted

on a 3D-printed fixture, was used to capture the movements of the tip in real-time. The

camera was secured on the instrument shaft to maintain a fixed vantage point during the

experiments. The blob detection method [28] was implemented in C++ using OpenCV for

tracking the tip position. A cylindrical cover was added to the jaw to provide a flat area for

the marker as shown in Figure 5.3. The accuracy of detection was found to be ± 0.47 deg.

In order to avoid the undesirable image noise, a steady lighting condition was maintained

during the experiments. To increase the speed of the blob detection algorithm, the search

zone was limited to a portion of the original captured image as shown in Figure 5.3 (bottom-

right). Proportional-Integral-Derivative (PID) controller was implemented to control the



5.5. EXPERIMENTAL RESULTS AND MODEL VALIDATION 106

motor rotation q1. The PID gains were adjusted to kp = 0.05 ( A
deg ), kd = 0.0004 ( A·s

deg ) and

kI = 0.01 ( A
deg·s ). The sampling rate of the control loop was set to 100 Hz, and the tip

position was updated at 20 Hz rate due to the limitations of the image capturing process.

5.5 Experimental Results and Model Validation

5.5.1 Motion Transmission Analysis

In this subsection, the motion transmission behavior of the da Vinci® instrument is investi-

gated. Figure 5.4(a) illustrates a sample response to a 0.1 Hz sinusoidal command with the

amplitude of 20 degrees. The figure suggests that a hysteresis-like relationship exists be-

tween the motor angular position and the tip rotation angle. Hysteresis, by definition, is the

presence of a non-degenerate input-output closed curve as the excitation signal approaches

a zero-frequency signal [29]. To validate the presence of hysteresis, a series of sinusoidal

commands with frequencies ranging from 0.01 Hz to 0.7 Hz and 15 degrees amplitude was

applied. Figure 5.4(b) shows the resulting input-output behavior. As can be seen from this

figure, the behavior of the system converges to a fixed loop as frequency of the command

signal tends to zero, which validates the existence of hysteresis. Furthermore, Figure 5.4(c)

indicates the presence of minor loops in the input-output behavior of the system, which

demonstrates a backlash-like hysteretic behavior. On the other hand, no dynamic effect

is detectable for the frequencies lower than 0.1 Hz, which suggests a static model for the

system in low frequencies.

5.5.2 Model Identification

In order to identify the parameters of the proposed model (7.3), 15 experiments were

conducted using 0.1 Hz sinusoidal commands with varying amplitude of 20, 15, 10, 5

and 2.5 degrees. Each experiment was repeated three times to account for possible non-

repeatabilities. The initial positions of the tip were chosen arbitrarily. Parameters α1, α2

and β were adjusted to minimize the root mean square error (RMSE), and the resulting val-

ues are shown in Table 7.1. The identified value of β closely matches with the actual ratio
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Figure 5.4: (a) An example of system’s response to a 0.1 Hz sinusoidal input displacement
(left); the hysteresis behavior (right). (b) System response to sinusoidal inputs with a fixed
amplitude q1 max = π/12 rad and various frequencies. (c) Minor hysteresis loops in the
system’s response to the following desired input signals: 5sin(2π/30 t) + 5sin(2π/10 t)
(left); 5sin(2π/30 t+π)+5sin(2π/10 t) (middle); 10sin(2π/30 t+π/2)+7.5sin(2π/10 t)
(right).

Table 5.1: The identified values of the model’s parameters

α1 α2 β

-1.626 -1.213 1.142
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of the pulleys in the da Vinci® instrument. As measured, r1 = 2.6 mm and r2 = 2.4 mm,

resulting in (r1/r2) = 1.08 in the da Vinci® instrument versus the identified β value of

1.142.

Figure 5.5(a) shows the estimates of the instrument tip angle q2 along with the actual mea-

surements using the camera. The motor rotation angle q1 was controlled to track sinusoidal

commands with various frequencies ranging from 0.05 Hz to 0.2 Hz. The tip position

was estimated based on the proposed model (7.3). To further validate the model, its per-

formance was evaluated by applying a multi-sinusoidal command signal using Schroeder-

phased method,

q1(t) =
N∑
k=1

Am cos(ωkt+ φk) (5.31)

where φk is chosen to minimize the crest factor [30],

φk = φ1 −
−kπ(k − 1)

N
. (5.32)

In our experiment, φ1 = π/2, and 10 different frequencies between 0.01 and 0.1 Hz were

selected for generating the desired command signal. The results are shown in Figure 5.5(b).

Figure 7.11(a) shows the Box-Whisker plot of error, in which the range of error is shown

along with the median and 25th and 75th percentiles. The outliers are marked based on the

99.3% coverage of the error values for each experiment2. As observed, implementation of

the proposed model has significantly reduced the range of errors in comparison with that of

the purely kinematics-based estimation. The probability distribution of the errors are also

shown in Figure 7.11(b)3. Figure 7.11(b) indicates that, for the proposed model, major-

ity of the error values lie within ±1.5◦ and concentrated in the vicinity of zero, while the

2Let σ be the standard deviation of the error distribution. The outliers set, O, was defined as follows:

O :=
{
o| (o > Q3 + w · IQR) or (o < Q1 − w · IQR)

}
,

in which IQR = Q3−Q1 is the interquartile range,Q1 andQ3 are the 25th and 75th percentiles, respectively,
and w is the Whisker length. In this set of experiments, w was set to 1.5, associated to approximately ±2.7 σ
or 99.3% coverage of the error values for each experiment.

3The height of each bar is the probability of the absolute error within the corresponding bin, i.e. hi =
ni/N , where hi is the height of the i-th bar, ni is the number of error samples within the i-th bin, and N is
the total number of samples.
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Figure 5.5: The proposed model estimation results for: (a) sinusoidal commands with
frequencies of 0.05, 0.1, and 0.2 Hz, and (b) a multi-sinusoidal command signal. The dash-
dot red line is the motor (input) position, the solid black line is the tip (output) position
measured by the camera, and the dash blue line is an estimate of the output position by the
proposed model.
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kinematics-based estimation resulted in higher probability of larger error values. Further-

more, Table 5.2 summarizes the results in terms of the RMSEs between the estimates and

measurements, Goodness-of-Fit (GoF), and adjusted R-squared. GoF is calculated based

on the normalized RMSE4, and GoF of 1 (100%) corresponds to a perfect fit. R-squared

values are the square of the correlation between the measured values and the model es-

timations, indicating how well the model can predict the response variation. R-squared

values are adjusted according to the number of parameters for a fair comparison5. It can be

seen that the proposed model significantly improves the estimation accuracy of the actual

tip position in comparison with that of the kinematics-based estimation; in fact, RMSE

values show at least 50% decrease as compared to those of the kinematics-based model.

Adjusted R-Squared values also indicate that the nonlinear terms corresponding to param-

eters α1 and α2 in the proposed model considerably improve the accuracy as compared to

the kinematics-based estimation.

Table 5.2: The model estimation results in comparison to those of kinematics-based model

Signal type Sine Sine Sine Multi-Sine
Frequency [Hz] 0.05 0.1 0.2 0.01-0.1

RMSE
PM 1.2522 1.6282 2.1241 0.8607
KM 3.1258 3.7478 4.2512 2.2743
Improv. 59.9% 56.5% 50.0% 62.2%

Goodness-of-Fit
PM 88.9% 86.4% 82.8% 83.1%
KM 72.3% 68.7% 65.6% 55.4%

Adjusted R-Squared
PM 0.9877 0.9815 0.9704 0.9715
KM 0.9232 0.9020 0.8815 0.8009

*PM and KM refer to as the proposed model and kinematics-based model.

4GoF is defined by,

GoF = 1− ‖q2 − q̂2‖
‖q̂2 − Σk=Nk=1 q̂2(k)/N‖ ,

where, q2 is the measured tip angle by camera, q̂2 is the tip angle estimated by the proposed model, and N is
the total number of samples.

5Adjusted R-squared are calculated based on the following equation:

Adjusted R-squared = 1− (N − 1)SSE
(N −m)SST

,

where SSE and SST stand for sum of squared errors of estimation and total sum square of estimation varia-
tions, andm is the number of parameters (m = 3 for the proposed model, andm = 1 for the kinematics-based
estimation).
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Figure 5.6: (a) Error distributions of the proposed model in comparison with those of
kinematics-based estimation along with (b) the absolute error probability. Inputs are si-
nusoidal commands with frequencies of 0.05, 0.1, and 0.2 Hz, and a multi-sine command
with frequency range of 0.01-0.1 Hz. PM and KM refer to as the proposed model and
kinematics-based estimation, respectively.
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Table 5.3: Position control RMSEs

Signal Frequency KM PM Control
RMSE RMSE RMSE

type (Hz) (deg) (deg) (deg)
Sine 0.01 3.1330 1.2761 1.4920
Sine 0.05 3.2818 1.2499 2.3546
Sine 0.1 4.0079 2.1849 4.0821
Sine 0.2 6.1706 4.4009 7.2908

Exponential decay 0.01 1.7045 0.8213 0.5289
Multi-Sine 0.015-0.075 2.8541 1.33854 1.6321

*PM and KM refer to as the proposed model and kinematics-based model.

5.5.3 Control results

A primary goal of modeling a tendon-based system is to use the developed model in a con-

trol algorithm to compensate for the hysteresis. To this end, this section provides a set of

experimental results that evaluate the effectiveness of the proposed model in control ap-

plications. A set of experiments were conducted using a PID controller to control the tip

position in the da Vinci® instrument, where the position estimated by the proposed model

was used in the control loop to compute the tracking error. No visual feedback was used in

the control process, and the camera measurements are only provided for the sake of compar-

ison. Figures 5.7 and 5.8 show control results for sinusoidal commands with frequencies of

0.01 Hz, 0.05 Hz, 0.1 Hz and 0.2 Hz. As observed, the instrument tip closely tracks the de-

sired trajectory, and the PID controller is able to largely eliminate the hysteresis for the two

lowest frequencies as displayed in the lower-right sub-figures. Furthermore, Figure 5.9(a)

shows a control result for an exponential decay command with a base frequency of 0.01 Hz,

and Figure 5.9(b) displays the result for a multi-sine command with 5 frequencies ranging

from 0.015-0.075 Hz. Table 5.3 summarizes the control results in terms of RMSEs. As

expected, the control error increases as the frequency of the command signal grows, which

can be attributed to unmodeled dynamic effects. This includes the model estimation error

in part plus the control error between the estimation and the desired trajectories.
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(a) 0.01 Hz

(b) 0.05 Hz

Figure 5.7: Control results for sinusoidal commands with frequency of (a) 0.01 Hz and (b)
0.05 Hz. The transmission hysteresis with and without the proposed model is shown in the
bottom-right and top-right subfigures, respectively.
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Figure 5.8: Control results for sinusoidal commands with frequency of (a) 0.1 Hz and
(b) 0.2 Hz. The transmission hysteresis with and without the proposed model is shown in
the bottom-right and top-right subfigures, respectively.
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(a)

(b)

Figure 5.9: Control result for (a) an exponentially decaying sinusoidal command with a
frequency of 0.01 Hz, time constant of 0.025 sec and (b) a multi-sine input command with
five frequencies ranging from 0.015 Hz to 0.075 Hz.

5.5.4 Discussions

• Figure 5.10 shows the proposed model performance in mimicking the hysteresis of

the system for a sample sinusoidal signal with 0.05 Hz frequency. As observed, the

proposed model closely captures the hysteresis effect, providing a better estimation

compared to the kinematics-based estimation.

• The observed jumps in error signals in Figure 5.7 can be associated with the tra-

jectory extrema, where the direction of the motion changes. This is because of the

Assumption 2, under which the wave of tension was assumed to propagate immedi-

ately after direction change. This effect is also visible in Figure 5.10, where there
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Figure 5.10: Hysteretic behavior of the proposed modelling approach versus the
kinematics-based estimation.

is a small discrepancy at the returning points between the estimation and the actual

hysteresis.

• Assumption 1 implies that the pre-tension is zero. Despite the strict assumption made

in the derivation of the model, the experimental results validate that the model can

predict the hysteretic behavior of tendon-pulley system. In other words, the motion

transmission in a class of tendon-pulley systems can adequately be characterized by

that of tendon-surface systems under zero pre-tension.

5.6 Conclusion

In this chapter, a new motion estimation model for tendon-pulley transmission mecha-

nisms was proposed which is based on physical principles governing such mechanisms.

The model was derived using the creep theory and tendon slip analysis, where distributed

tension and elastic creep were taken into account. The proposed model was validated exper-

imentally using a da Vincir instrument as a test case. The results clearly demonstrated the

effectiveness of the proposed model in reducing the estimation error by more than 50% in

terms of RMSE as compared to the purely kinematics-based estimation. Furthermore, the

model was investigated as a part of a position control scheme, where the estimated position

of the tip was used for computation of the position error. The result indicated high accuracy

positioning with RMSEs ranging from 0.5 to 2.3 degrees for various low frequency desired

trajectories. It also demonstrated that the proposed approach can effectively eliminate the

quasi-static hysteresis of a tendon-pulley transmission.
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Future work will focus on the extension of the developed model for higher number of

DOFs to account for the coupling effect in surgical robots and instruments. Additionally,

further work related to the use of the proposed modeling approach in a hybrid force-position

control scheme is a part of our ongoing research. The final goal of our ongoing research is

to develop a comprehensive theory which allows for simultaneous description of the force

and motion transmission in tendon-pulley drives, and its subsequent integration into the

robot dynamic modeling.

5.7 Appendix: Pseudo-Kinematic Model for a System With

Large Constant Pretension

In this section, the pseudo-kinematic model of (7.2) is solved for a dual tendon-surface

mechanism with equally pretensioned top and bottom tendons, i.e. T 0
t (ϕt) = T 0

b (ϕb) = Ts.

To this end, from the first two cases of equation (7.2), one can derive the following formula:

∆t + ∆b = 0. (5.33)

which implies that the amount of elongation on one side is equal to the amount of shrinkage

on the other side. Equation (A.9) can be solved to obtain the following formula [17],∫ 1

0

Tt(ϕt)

Knt

dϕt +

∫ 1

0

Tb(ϕb)

Knb

dϕb =∫ 1

0

T 0
t (ϕt)

Knt

dϕt +

∫ 1

0

T 0
b (ϕb)

Knb

dϕb = Λ.

(5.34)

Equation (5.34) can be interpreted as a weighted sum of the areas under the tension distri-

bution curves of the top and the bottom tendons remains constant regardless of the input.

Since the tension propagation is immediate, i.e., ϕwt = ϕwb = 1, we have

aTtl + bTbl = Λ, (5.35)
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where

a =
sgn(q̇1)

−Kntηt
(e−ηt sgn(q̇1) − 1),

b =
sgn(q̇1)

Knbηb
(eηb sgn(q̇1) − 1).

On the other hand, the sum of first two cases of formula (7.2) results in the following

pseudo-kinematic equation:

∆q2 =
r1

r2

∆q1 −
1

2r2

∇ (5.36)

where∇ := ∆t −∆b, or

∇ = aTtl − bTbl −
(∫ 1

0

T 0
t (ϕt)

Knt

dϕt −
∫ 1

0

T 0
b (ϕb)

Knb

dϕb

)
. (5.37)

Assuming Knt ≈ Knb, since T 0
t (ϕt) = T 0

b (ϕb), the term in brackets on the right-hand side

of (5.37) is zero. Therefore, taking into account (5.16) and (5.35), equation (5.37) can be

solved to obtain the following formula:

∇ =
2ab

Knr1(a+ b)
τin +

a− b
Kn(a+ b)

Λ. (5.38)

Equation (5.36) is the pseudo-kinematic model for the case of high pretension within the

tendons. The second term on the right of (5.38), in fact, adjusts the gap between the as-

cending and the descending branch of the backlash (i.e. the backlash width).
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Chapter 6

A Motion Transmission Model for
Multi-DOF Tendon-Driven Mechanisms
with Hysteresis and Coupling:
Application to a da Vinci® Instrument

I n Chapter 5, a novel motion transmission model was developed for the case of one

degree-of-freedom (DOF) tendon-driven mechanism in a quasi-static condition. In

this chapter, an extension of this model is proposed that allows for estimation of

angular displacements in multi-DOF tendon-driven devices while special attention is given

to the coupling effect between DOFs. The proposed model consists of the conventional

coupling matrix and a novel elongation matrix which compensates for the coupled hys-

teretic effect. The model is applied to the problem of position estimation in three DOFs

(one pitch and two grasping DOFs) of a da Vinci® surgical instrument. As a further exten-

sion, a preliminary dynamic model is also suggested to deal with high-frequency inputs.

Both models are validated through extensive experiments. According to the experimental

results obtained, the proposed quasi-static model can describe the transmission behavior

with goodness-of-fit of 76-92 per cent, and the estimates are improved by 35-72 per cent in

terms of the RMSE for the proposed dynamic model as compared to the conventional rigid

Part of the material presented in this chapter is accepted to IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS 2017), Vancouver, Canada.



6.1. INTRODUCTION 123

model.

6.1 Introduction

Tendon-based transmissions, in the form of tendon-pulley or tendon-sheath mechanisms,

have been widely used in Minimally Invasive Surgery (MIS) as well as in Robot Assisted

Minimally Invasive Surgery (RAMIS). In particular, tendon-pulley based mechanisms ex-

hibit significant hysteretic behavior, induced mainly by tendons’ frictions and compliance

characteristics. An example of such mechanisms is a da Vinci EndoWrist® instrument. The

instrument consists of a set of tendon-pulley systems tightly packed into a casing with a

narrow shaft, which bears a 3-DOF wrist mechanism at its remote end. The instrument’s

internal frictions and tendons’ compliance give rise to hysteretic motion behavior even

when the tip is not in contact with the environment. Additional hysteresis is generated

by coupling between different DOFs of the instrument. Such a complex behavior results

in significant errors in motion control for da Vinci and other tendon-pulley based serial

surgical manipulators such as RAVEN II [1].

In many previous research works, e.g. [2–5], tendons were considered as either elastic, vis-

coelastic, or rigid elements, the positions of all joints were assumed known (measurable),

and the nonlinearities of the transmission were compensated by the controller. In surgical

applications, however, the positions of the remote joints of MIS and RAMIS systems typi-

cally can not be directly measured due to difficulties in sensors implementation; as a result,

the hysteresis presents a substantial problem. On the other hand, the hysteretic motion be-

havior of the cable-driven mechanisms in the absence of external load cannot be described

using pure elastic or rigid elements. In [6], a tendon-multipulley transmission system was

lumped into an input and output pulleys, the tendons were replaced with parallel intercon-

nections of two exponential springs and two linear dampers, and the frictions are considered

point contact resistive forces at the pulleys’ axes. The approach was adopted for position

control of the RAVEN II surgical robot [1], where the Unscented Kalman Filter (UKF) was

used to estimate the parameters and the states of the model. In [7], a stereo vision data was

fed into the UKF to improve the accuracy of motion control algorithm. In [8], the above

model was used to estimate the gripping force of the tendon-pulley RAVEN II instrument.
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(a)

(b) (c)

(d)

Figure 6.1: The case study: a) the da Vinci EndoWrist® instrument - overall view; b) wrist
mechanism with markers; c) input pulleys at the actuator side, grasping pulleys are visible,
with roll and pitch pulleys behind them; and d) the coordinate frames assigned to the wrist
mechanism of the instrument.
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The models given in [1, 6–8] are more focused on compensating the dynamic nonlinearities

while the quasi-static hysteretic behavior is neither considered nor discussed.

There is another set of studies which attribute the nonlinear behavior of tendon-pulley

mechanisms to tendon and pulley frictional interaction which results in distributed fric-

tion and tension along the tendon. Historically, this has been used in belt-drive mechanics

to explain different aspects of power transmission in the industrial belt-pulley systems, es-

pecially those that operate at constant speed [9, 10]. The classic creep theory [11] used

in belt mechanics assumes the existence of a stick and a slip zone on every pulley in the

system. In the slip zone, the friction grows exponentially along the tendon, while in the

stick zone, zero interaction is assumed [12]. In robotic applications, there are some studies

that utilized the same distributed friction approach to explain tendon-pulley transmission.

In [13], in order to estimate the transmission stiffness, two slip zones and one stick zone is

assumed on the surface of the driven pulley in a capstan drive. This approach is followed

by a number of similar studies such as [14] which is focused on the motion transmission

error due to tendon slip in a capstan drive.

In [15], authors considered a fixed curved surface for each forward and return tendon in a

1 DOF tendon-multipulley transmission to replicate the overall elastic creep in the system

(see Figure 6.2). The model was initially suggested for the force transmission based on the

similarity between the force transmission behavior of the da Vinci Instrument and that of

a typical tendon-sheath system. Also, a sensorless method for estimation of environmental

stiffness using a da Vinci instrument was developed based on the same assumptions [16].

The main contribution of this chapter is as follows.

a) A new formula for modelling of the hysteretic coupling effect in multi-DOF tendon-

pulley systems is suggested based on the previously developed tendon-surface technique.

The proposed formula consists of two components: i) a conventional rigid transmission

term; and ii) an elongation compensation term. The conventional rigid term models ge-

ometrical properties of the transmission, and the elongation compensation term describes

the hysteretic behavior in the transmission.

b) A preliminary dynamical model is proposed to describe the high frequency effects in the

transmission.
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c) The models are applied to three DOFs of the EndoWrist® instrument as a case study,

and validated extensively through experiments. The results demonstrate close agreement

between the displacement estimates given by the proposed model and the camera-based

measurements.

The chapter is organized as follows. Section 6.2 presents the proposed model for the motion

transmission in multi-DOF tendon-pulley systems. Section 6.3 describes the EndoWrist®

instrument used as a case study. Section 6.4 provides the identification results, and the

experimental validations. A preliminary dynamical model is discussed in Section 6.5 to

describe the high-frequency effects in the transmission. Finally, Section 6.6 concludes this

chapter.

6.2 Model Development

In our modeling approach, two imaginary curved surfaces are introduced between the input

and the output pulleys in order to replicate tendon elastic creep on the surface of all pulleys

within the system (See Figure 6.2). For a single tendon with length L > 0 on a surface

with radius of curvature R > 0 and Coulomb friction constant µ > 0, application of

a unidirectional input force F results in two distinct slip and stick zones on the surface.

Along the slip zone, the following differential equation describes the change in tension

dT (x),

dT (x) = −µT (x)

R
sgn(v)dx, (6.1)

where sgn(v) represents the direction of the impending motion. In the stick zone, tension

remains unchanged T 0(x). The formula for elementary elongation, on the other hand, can

be written in the form

d∆(x) =
T (x)− T 0(x)

EA
dx, (6.2)

where d∆(x) is the change of length of the infinitesimal segment of tendon dx, E is the

tendon modulus of elasticity, and A is the cross section area of the tendon.

Assuming I) tension propagation is immediate along the tendons as the direction of rotation

changes (e.g. no stick zone), and II) the pretension is zero, formula (6.1) implies that

tension distribution T (x) along the tendon is given by T (x) = Fe−
µx
R

sgn(v). Also, the total
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(a)

(b)

Figure 6.2: (a) A schematic overview of a single DOF tendon-multipulley transmission and
(b) the tendon-surface based model to represent a one-DOF tendon-multipulley system.
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tendon elongation ∆ due to the external loading F can be described by

∆ =
1

EA

∫ L

0

T (x)dx =
F sgn(v)

Knη
(1− e−η sgn(v)), (6.3)

where η = µL/R is the dimensionless friction-bending parameter.

In the case of a dual tendon-surface system of Figure 6.2(b), the elongation of the top and

the bottom tendon can be represented by the following formula:

∆i = Til
sgn(q̇1)

Knη
Mi (6.4)

where i ∈ {t, b} denotes the top and the bottom tendon in Figure 6.2(b), respectively, Til is

the tension in the left-end side of the i-th tendon,Mt = 1−e−η sgn(q̇1) andMb = eη sgn(q̇1)−1.

Considering the geometry of the dual tendon-surface system of Figure 6.2(b), we obtain

the following formulas that relate the rotation of the output pulley ∆θ to the rotation of the

input pulley ∆q and the elongation of the top and the bottom tendons, respectively:

∆θ =
r1

r2

∆q − 1

r2

∆t, ∆θ =
r1

r2

∆q +
1

r2

∆b, (6.5)

where r1 and r2 are the radii of the input and the output pulleys, respectively. Assuming

power is only transmitted through the tendon which is tightened by the input pulley1, ∆θ is

calculated by switching in between of the two equations given in (6.5),

∆θ = S(q̇)αtτin + (1− S(q̇))αbτin + β∆q, (6.6)

where the switching function S(x) is defined as

S(x) :=

1 x > 0,

0 x < 0,
(6.7)

and αt := 1−e−ηt
r1r2ηtKnt

, αb := 1−e−ηb
r1r2ηbKnb

, β := r1
r2

are constant parameters. In deriving (6.6),

Ttl and Tbl are substituted with τin/r1 and −τin/r1, respectively, as the low-speed steady-

state operating condition requires for the input and output pulleys. Also, to account for

1This is equivalent to the assumption of zero pretension, i.e. T 0
i (x) = 0.
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possible dissimilarities of the forward and the return tendons’ paths in actual tendon-pulley

mechanisms, the friction-bending parameter η and the stiffness Kn may be different for the

top and the bottom tendons in Figure 6.2(b). Formula (6.6) is the pseudo-kinematic relation

between the input displacement ∆q, the output displacement ∆θ, and the input torque τin.

If the transmission is rigid (i.e. Kn →∞), equation (6.6) reduces to ∆θ = β∆q, which is

the conventional kinematic formulation for mechanisms of this type. If friction approaches

zero, i.e. η → 0, the tendon acts as a nonlinear spring which switches off when contracted,

while maintaining constant tension along its length when stretched.

For a general n-DOF mechanism, equation (6.6) can be generalized as follows:

Θ = BQ+ASτin, (6.8)

where Θ := [∆θ1,∆θ2, . . . ,∆θn]T is the vector of the output angular displacements,

Q := [∆q1,∆q2, . . . ,∆qn]T the vector of input motor/pulley displacements, and τin :=

[τin−1, τin−2, . . . , τin−n]T the vector of the input torques commanded to the actuators, re-

spectively; ∆θ := θ(t) − θ0 is the relative change of angular displacement from its initial

value at θ0 = θ (t0), and ∆q := q(t)− q0. The matrix of rigid transmission, B ∈ Rn×n, is

defined as

B =


β1 βc12 . . . βc1n

βc21 β2 . . . βc2n
...

βcn1 βcn2 . . . βn

 , (6.9)

where the off-diagonal elements βcij are the rigid coupling parameters representing the

effect of motion in i-th DOF on j-th DOF of the system. Also,A ∈ Rn×2n is the elongation

matrix, or the matrix of hysteretic transmission,

A =


αt1 αb1 αtc12 αbc12 . . . αtc1n αbc1n

αtc21 αbc21 αt2 αb2 . . . αtc2n αbc2n
...

αtcn1 αbcn1 αtcn2 αbcn2 . . . αtn αbn

 , (6.10)

where the pairs (αti, αbi) are the elongation parameters for the ith DOF as introduced in

(6.6), and the pairs (αtcij, αbcij) represent the nonrigid coupling parameters that account

for the hysteretic effect of the i-th DOF on the j-th DOF of the system. Matrices B and
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A are not necessarily symmetrical. The coupling elements in these matrices depend on

the specific structure of the system. In addition, S2n×n is the switching matrix defined as

follows,

S :=



S(q̇1) 0 0

1− S(q̇1) 0 0

0 S(q̇2) 0

0 1− S(q̇2) . . . 0
...

...

0 0 S(q̇n)

0 0 1− S(q̇n)


.

If the tendons are considered inelastic, then only the first term on the right-hand side of (6.8)

represents the transmission, i.e., Θ = BQ, which is the conventional form of coupling

matrix used in the literature [1, 17].

6.3 Case Study: The da Vinci® Surgical Instrument

In this study, we choose an EndoWrist® instrument, a Cadiere Forceps [18], as a test bed

for validation of the proposed multi-DOF motion transmission model (6.8). The choice

of a da Vinci instrument for the model validation is made due to the fact that it is a com-

mercially available tendon-pulley mechanism which, due to the fine production, is likely

to demonstrate similar behavior from instrument to instrument. As shown in Figure 6.1,

four input pulleys are located at the proximal/actuator side of the instrument. Three of these

pulleys are connected via tendons to the three DOF wrist mechanism at the distal end of the

instrument, while the fourth pulley is used for rolling the instrument’s shaft. The roll DOF

is not addressed in this study as its coupling effect is negligible. The wrist mechanism,

shown in Figure 6.1(b), has one pitch DOF and two independent grasping DOFs. There

is a strong mechanical coupling between the pitch and grasping motions, specifically, the

rotation of the former DOF induces a motion of the latter. In order to track the motion

of the instrument’s tip, a MicronTracker™ camera is used (Figure 6.3). The camera is

designed to detect and track specific markers by utilizing stereoscopic vision in real time.

The update rate of the camera is approximately 30 Hz. The Root-Mean-Square (RMS)

of the calibration error is 0.25mm for a single target point, while lighting conditions (e.g.
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Micron
Tracker™

Markers

Figure 6.3: Experimental setup, An EndoWrist® instrument with markers and a Micron
Tracker Camera (top), left and right camera view (bottom)
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light coolness) may contribute 0.1% to 0.25% of measurement error in Z direction. Error

due to measurement jitter is 0.22 mm (RMS) for a moving target [19]. The camera assigns

a coordinate frame to each marker on the instrument and returns the origin and the rota-

tion matrix of that frame relative to the camera’s fixed frame. The instrument’s jaws are

equipped with specially designed 3D-printed holders for placement of the markers. Each

holder has a finger-like knob to allow the instrument to be used in pick-and-place tasks.

6.3.1 Forward and Inverse Kinematics

In order to study the motion transmission characteristics of the da Vinci instrument, the

coordinate frames and parameters are assigned to the wrist mechanism as shown in Fig-

ure 6.1(d). Parameters and frames related to the right jaw are omitted in the figure, due to

their similarity with the left jaw. Frame {0} is the global frame representing the fixed shaft.

Frame {1} is attached to the pitch link of the wrist with z1 aligned with the pitch rotation

axis. Frames {2l} and {l} are attached to the left jaw and are parallel, where the former is

placed on the left jaw rotation axis and the latter on the origin of the left marker.

The rotational angles θp, θgr, θgl represent the wrist’s pitch, the right grasp, and the left

grasp angles, respectively. In a similar fashion, qp, qgr and qgl represent the displacements

of the corresponding motors at the actuator side. The orientation of {l} relative to the base

frame can be described by a matrix 0Rl(Θ) as follows,

0Rl(Θ) =
cos θp cos θgl − cos θp sin θgl − sin θp

sin θp cos θgl − sin θp sin θgl cos θp

− sin θgl − cos θgl 0

 , (6.11)

and the position of the marker’s origin relative to the base frame is given by 0Pl(Θ),

0Pl(Θ) =


l1 cos θp − dl sin θp + l2l cos θp cos θgl

l1 sin θp + dl cos θp + l2l sin θp cos θgl

−l2l sin θgl

 , (6.12)

where l1 is the length of the common normal between z1 and z2, l2l is the distance of frame
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{l} from the rotation axis of the left and right jaws and dl is the line offset along z2l from

plane xy of frame {l}.

The inverse kinematics equation of the wrist mechanism is solved for θp and θgl as fol-

lows. MicronTracker™ firmware returns the rotation matrices CamRMl and CamRMs as

for orientation of the markers on the left jaw and shaft of the instrument. The numerical

equivalent of 0Rl in equation (6.11) then can be found using the following formula,

0Rl =0 RMs
MsRCam

CamRMl
MlRl, (6.13)

where 0RMs and lRMl are the orientations of the markers’ frame relative to the base and

the left jaw’s frames, respectively. The parameters are calculated for given known an-

gles. From 0Rl, the values of θgl and θp can be uniquely calculated by utilizing some basic

trigonometric formulas, i.e., θ = arctan2 (sin(θ), cos(θ)). The resulting θp is noisier than

θgr and θgl as can be seen in Figure 6.4. This happens for two reasons. First, no dedicated

marker is placed on the pitch link due to the size limitations; instead, its position is indi-

rectly calculated based on the other two markers. Second, the motion of the pitch link is

toward and away from the camera. As a result, the measurements of the pitch depend on

the camera depth measurement accuracy. The camera used in this study has lower accuracy

in depth measurements in comparison with that of the planar measurements.

6.3.2 Motion Transmission Model for the da Vinci® instrument

In the da Vinci instrument, due to its unique design, a one-way coupling is observed be-

tween its pitch and grasp DOFs. Upon rotation of the pitch link around its axis z1, the

grasp’s tendon wraps around the intermediate pulleys as shown in Figures 6.1(b) and (d),

resulting in a secondary rotation in the jaws. The reverse coupling is however negligible,

i.e., moving the jaws does not induce a pitch motion in the wrist. As an illustration of

this phenomenon, Figure 6.4 shows the case when a 0.01 Hz sinusoidal pitch rotation is

commanded while the grasp DOFs are set free.

Let Θ = [∆θp,∆θgr,∆θgl]
T be the vector of output angular displacements. The following
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Figure 6.4: A sinusoidal command to the pitch DOF (qp) of the instrument while grasping
DOFs (qgr and qgl) are set free. A coupling effect with hysteretic behavior can be observed
in the right and left grasps (θgl and θgr). Here the frequency of command is 0.01 Hz and
the amplitude is 30 degrees.
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Figure 6.5: Response of θgr (left) and θgl (right) to a sinusoidal signal θp(t) = 20 cos (0.01t)
deg. The hysteresis effect is negligible.

matrix describes the rigid transmission,

B =


βp 0 0

βcgr βgr 0

βcgl 0 βgl

 =


rmp
rp

0 0

Kr
rmp
rp

rmgr
rgr

0

Kl
rmp
rp

0
rmgl
rgl

 , (6.14)

where Kr = rint/rgr, Kl = rint/rgl, and rmi are the radii of the input (motor) pulleys,

i ∈ {p, gr, gl}. Also, rp is the radius of pulley-like groove on the pitch link, rint is the

radius of the intermediate pulley, which shares the same joint axis with the pitch link, and

rgr and rgl are the radii of the pulley-like grooves on the right and left jaws, respectively.

The specific parameters of the matrix B, given on the right-hand side of (6.14), can be

found from the geometry of the pulleys assuming inelastic tendons, as reported in [17].

The induced grasping motion also exhibit hysteresis due to the coupling (see for example

Figure 6.4(c)). The elongation compensation matrix A describes the hysteresis effect in

the coupling, as given below,

A =


αtp αbp 0 0 0 0

αtcyr αbcyr αtyr αbyl 0 0

αtcyl αbcyl 0 0 αtyl αbyl

 . (6.15)

According to (6.14), the induced grasp motion is proportional to the wrist pitch with co-

efficients Kr and Kl for the left and right grasps, respectively. Therefore, one possibility

is to observe the same relation between the corresponding elements in the elongation ma-

trix. That is, no significant hysteresis effect is expected between the output angles. This
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is confirmed through experiments, as shown in Figure 6.5. Specifically, the relationship

between θp and θgl is shown in Figure 6.5 (left), and the relationship between θp and θgr
in Figure 6.5 (right), where θp is a sinusoidal command with frequency of 0.1 Hz and an

amplitude of 20 degrees. In both cases, the hysteresis effects are negligible. Therefore, the

following relationships is considered between the elements of (6.15),

(αtcyr, αbcyr) = Kr · (αtp, αbp),
(αtcyl, αbcyl) = Kl · (αtp, αbp).

(6.16)

6.4 Experimental Results and Model Validation

To perform experimental validations, the EndoWrist® instrument was actuated using three

Faulhaber 2642W024CR DC motor-encoders to drive the instrument’s input pulleys. The

motors were driven using Maxon 4-Q-DC servo amplifiers set to current mode. The closed-

loop control for the motors and the camera’s coordinate recording were implemented in

C++, and the post-processing analysis was performed in MATLAB. To identify the model

parameters, 12 experiments were conducted for each DOF using a set of sinusoidal com-

mands with amplitudes of 20, 15, 10, and 7 degrees and frequency of 0.1 Hz. Each ex-

periment was repeated three times for each amplitude value to account for possible non-

repeatabilities. For the purpose of parameter optimization, the following cost function was

defined,

Maximize:
N∑
i=1

GoFi,

where N is the number of experiments, and GoFi is the goodness-of-fit associated with the

i-th experiment, defined as follows,

GoFi := 1− ‖θi − θ̂i‖
‖θ̂i − Σk=Mi

k=1 θ̂i(k)/Mi‖
,

where θi is the joint angle measured by the camera during the i-th experiment, θ̂i is the

angle estimate obtained using the proposed model, and Mi is the total number of samples

for the i-th experiment. GoF of 1 (100%) corresponds to a perfect fit. To optimize the cost

function, a hybrid pattern identification method consisting of the Latin hypercube sam-
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Figure 6.6: Model identification results for the right and left grasp. Four experiments
with the desired input amplitudes of 20, 15, 10, and 7 degrees. The percentages show the
Goodness-of-Fit associated with the modeling result of each separate experiment.
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Table 6.1: Parameter identification results

Joint Parameters GoF

α1gr = −1.907, α2gr = −1.054, Mean = 91.3%
Yaw (Right)

βgr = 1.109 Std = 3.78%

α1gl = −1.047, α2gl = −0.541, Mean = 92.8%
Yaw (Left)

βgl = 1.138 Std = 3.68%

α1p = −0.424, α2p = −2.828, Mean = 82.0%
Pitch

βp = 0.996 Std = 9.64%

Mean = 76.8%
P-RG Kr = 0.674

Std = 9.37%

Mean = 76.9%
P-LG Kl = 0.664

Std = 11.99%

pling (LHS) algorithm [20] followed by the nonlinear least squares (NLS) method were

used. The LHS was used to generate a set of initial points for NLS, where Levenberg-

Marquardt algorithm [21] was used for fine tuning of the parameters. The identified values

of the parameters are given in Table 6.1 along with the average GoFs for each joint, where

the accuracy of the proposed model is compared with that of the rigid transmission. The

angle estimates obtained using the proposed model are also shown in Figure 6.6 for the

right and left grasp, and the corresponding hysteresis loops are shown in Figure 6.7. As

observed, the angle estimates closely match the rotations measured by the camera. The

result also confirms the capability of the proposed model in estimating the hysteresis be-

havior between the input pulley and the output pulley of the instrument joints. Moreover,

Figure 6.8 shows the estimated angle for the pitch and its coupling effect on the right and

left grasp. As can be seen from the figure, the coupling is accurately characterized by the

proposed model. The minor error observed in this part is mainly due to the camera inac-

curacy in depth measurements, as discussed earlier in the previous section. The observed

jump at the trajectory extrema is due to the assumption of immediate tension propagation

after a direction change. The optimal values of βi, i = {gr, gl, p} closely match the actual

ratios of the pulleys in the da Vincir instrument. For instance, as measured for the right

jaw, rmgr = 2.6 mm and rgr = 2.4 mm, resulting in (rmgr/rgr) = 1.08 in the da Vincir

instrument versus optimal βgr value of 1.109.
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Figure 6.7: Model identified hysteresis in comparison with the system actual hysteresis for
four sinusoidal commands with desired input amplitudes of 20, 15, 10, and 7 degrees. The
percentages show the Goodness-of-Fit.
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Figure 6.8: Pitch identification results along with the right and left grasp couplings for four
sinusoidal commands with desired input amplitude of 20, 15, 10, and 7 degrees. The per-
centages show the Goodness-Of-Fit associated with the modeling results for each separate
experiment.
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6.5 Dynamic Effects in Motion Transmission - Prelimi-

nary Analysis

Figure 6.9 represents an instrument’s response to a swept-sine signal to pitch DOF of the

instrument with constant amplitude of 10 deg and varying frequencies 0.01, 0.05, 0.1, 0.3,

0.5, 1, 2 and 3 Hz commanded to pitch rotation while the grasp DOFs were set free. As

can be seen, the general behavior converges to a fixed loop, as the signal goes from high

to low frequencies. The lag in the response however increases for higher frequencies. To

discuss the dynamic effects in the transmission, in this section we focus only on the grasp

motion. Given the low inertia property of the jaws, the dynamic effect of transmission is

dominant in comparison with the inertia contribution. As such, the inertia contribution to

the dynamic effects is neglected in this study.

The discrepancy introduced by the increase in frequency can be explained by adding a

viscous friction term to (6.8). To discuss the dynamic effect, we first consider the single

tendon discussed in Section 6.2. Assuming that the tendons and pulleys are mass-less, the

new tension change formula, in the slip zone, can be written as follows

dT = −µT
R

sgn(v(x))dx− bv(x)dx (6.17)

where the term bv(x) equals to the segment’s viscous friction per unit length and b is the

coefficient of viscous friction. Assuming the velocity of the tendon v(x) = v is similar for

all material points of the tendon in the slip zone at any instance of time, one can integrate

(6.17) and find the following tension distribution formula,

ln
µ sgn(v)

R
T (x) + bv

µ sgn(v)
R

F + bv
= −µ sgn(v)

R
x, (6.18)

which can be solved to obtain

T (x) = e−
µx
R

sgn(v) F +
b

µ sgn(v)
R

(e−
µx
R

sgn(v) − 1)v. (6.19)

The first and the second term to the right hand side of (6.19) represent the effect of dry

friction and the viscous friction on the tension distribution, respectively. The elongation
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of the tendon can then be derived according to (6.3), with a similar assumption of zero

pretension and immediate propagation,

∆ =
sgn(v)

ηKn

(1− e−η sgn(v))F +
bL sgn(v)

ηKn

(
1− e−η sgn(v)

η sgn(v)
− 1)v. (6.20)

For the case of dual tendon-surface model shown in Figure 6.2(b), the new elongation

term is added to Eq. (6.6) and results in the following dynamic formula for a one DOF

mechanism,

∆θ = S(q̇)(αtτin + γtv) + (1− S(q̇))(αbτin + γbv) + β∆q, (6.21)

Formula (6.21) is achieved by assuming the same velocity for the entire length of tendon.

Since we have r1q̇ and r2θ̇ as the velocity of input and output sides of our the model, we

consider an average of this two as the velocity of the tendon, i.e., v = 1
2
(r1q̇ + r2θ̇).

As a preliminary validation, the model was experimentally evaluated by applying a multi-

sinusoidal command signal using the Schroeder-phased method2. Five different multi-sine

signals were used to identify and validate the model, as detailed in Table 6.2. The frequency

range in each experiment were chosen so as to cover medium-to-high (I,II), low-to-medium

(III,IV), and low (V) frequency range. The same identification methodology was used to

identify the model parameters given in (6.21), where the signal I was used to identify the

parameters and signals II to V were used as validation inputs. The results are listed in

Table 6.2 for the right and left jaws, and the simulated results are depicted in Figure 6.10

for the right jaw in comparison with the rigid kinematic model. Figure 6.11 also shows the

Box-Whisker plot of error, in which the range of error is shown along with the median and

25th and 75th percentiles. The outliers are marked based on the 99.3% coverage of the error

values for each experiment. As observed, the estimation results were improved between

35.3 to 73.3 per cent in terms of the RMSE by using the proposed model in comparison

with the kinematic model. The improvement becomes more significant for the validation

signals containing higher frequency components, where the dynamic effect is dominant.

2q(t) =
N∑
k=1

Am cos(ωkt+φk), where φk is chosen to minimize the crest factor [22], φk = φ1−−kπ(k−1)
N .

In our experiment, φ1 = π/2.
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Figure 6.9: System hysteretic response to a swept-sine signal with constant amplitude of
10 deg and varying frequencies from 0.05 Hz to 3 Hz.

Table 6.2: Identification results of the dynamic model

PM KM PM KM
Freq. Set Joint RMSEs RMSEs GoF GoFExp.
[Hz] [deg] [deg] [%] [%]

I 0.2, 0.5, 0.8, 1.1,
1.4, 1.7, 2, 2.3

Right 1.1175 4.0539 88.8 59.4
Left 1.7892 3.6706 79.6 58.1

II 0.4, 0.7, 1.0, 1.3,
1.6, 1.9, 2.2

Right 1.083 4.060 88.4 56.5
Left 1.3599 3.9115 86.8 62.0

III 0.05, 0.1, 1.0
Right 1.2733 3.1377 88.7 72.1
Left 1.3295 2.5800 87.6 76.0

IV 0.05, 0.25, 0.45,
0.65

Right 1.5760 2.7831 77.6 60.5
Left 1.3704 2.1206 79.4 68.2

V 0.05, 0.07, 0.09
Right 0.8222 2.012 92.2 80.9
Left 0.6593 1.6037 93.9 85.2

*PM and KM refer to as the proposed model and kinematic model, respectively.

6.6 Conclusion

In this study, a new motion transmission model was introduced for multi-DOF tendon-

driven mechanisms. The model included both the conventional rigid coupling effect and the

hysteresis within the coupling. The model was adopted for a three-DOF surgical instrument

to estimate the output rotational displacements of the joints using only the motor encoder

and motor torque measurements. A preliminary model was also derived to describe the dy-

namics of the transmission. Both the quasi-static model and dynamic model were validated

through extensive experiments. It was demonstrated that the proposed model improves the
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Figure 6.10: Dynamic identification results for the right jaw for multi-sine signals including
(I) the training signal and (II)-(V) validation signals. The multi-sine parameters are given
in Table 6.2.
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Figure 6.11: Dynamic identification results for multi-sine signals including (I) the training
signal and (II)-(V) validation signals. The multi-sine parameters are given in Table 6.2. PM
and KM refer to as the proposed model and the kinematics-based estimation, respectively.

accuracy of the position estimates by 35.3 to 73.3 per cent. Future work includes further

experimental validation using multi-DOF surgical robotic systems as well as incorporating

inertia and other dynamical terms in the dynamic model. Additionally, further results re-

lated to the use of the proposed modeling approach for hybrid force-position control will

be obtained as part of our ongoing research.



146

References

[1] M. Haghighipanah, Y. Li, M. Miyasaka, and B. Hannaford, “Improving position
precision of a servo-controlled elastic cable driven surgical robot using unscented
Kalman filter,” in International Conference on Intelligent Robots and Systems (IROS),
pp. 2030–2036, IEEE, 2015.

[2] V. Hayward and J. M. Cruz-Hernández, “Parameter sensitivity analysis for design and
control of tendon transmissions,” in Experimental Robotics IV, pp. 239–252, Springer,
1997.

[3] G. Prisco and M. Bergamasco, “Dynamic modelling of a class of tendon driven ma-
nipulators,” in International Conference on Advanced Robotics (ICAR), pp. 893–899,
IEEE, 1997.

[4] H. Kobayashi, K. Hyodo, and D. Ogane, “On tendon-driven robotic mechanisms with
redundant tendons,” The International Journal of Robotics Research, vol. 17, no. 5,
pp. 561–571, 1998.

[5] R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduction to robotic manip-
ulation. CRC press, 1994.

[6] E. Naerum, H. H. King, and B. Hannaford, “Robustness of the Unscented Kalman
filter for state and parameter estimation in an elastic transmission,” in Proceedings of
Robotics: Science and Systems, (Seattle, USA), June 2009.

[7] M. Haghighipanah, M. Miyasaka, Y. Li, and B. Hannaford, “Unscented Kalman filter
and 3D vision to improve cable driven surgical robot joint angle estimation,” in IEEE
International Conference on Robotics and Automation (ICRA), pp. 4135–4142, IEEE,
2016.

[8] Y. Li, M. Miyasaka, M. Haghighipanah, and L. C. B. Hannaford, “Dynamic modeling
of cable driven elongated surgical instruments for sensorless grip force estimation,” in
2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4128–
4134, IEEE, 2016.



REFERENCES 147

[9] L. Kong and R. G. Parker, “Microslip friction in flat belt drives,” Proceedings of
the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science, vol. 219, no. 10, pp. 1097–1106, 2005.

[10] D. Kim, “Dynamic modeling of belt drives using the elastic/perfectly-plastic friction
law,” Master’s thesis, Georgia Institute of Technology, 2009.

[11] D. G. Alciatore and A. E. Traver, “Multipulley belt drive mechanics: creep theory vs
shear theory,” Journal of Mechanical Design, vol. 117, no. 4, pp. 506–511, 1995.

[12] S. E. Bechtel, S. Vohra, K. I. Jacob, and C. D. Carlson, “The stretching and slipping
of belts and fibers on pulleys,” Journal of Applied Mechanics, vol. 67, no. 1, pp. 197–
206, 2000.

[13] J. Werkmeister and A. Slocum, “Theoretical and experimental determination of cap-
stan drive stiffness,” Precision Engineering, vol. 31, no. 1, pp. 55–67, 2007.

[14] O. Baser and E. I. Konukseven, “Theoretical and experimental determination of cap-
stan drive slip error,” Mechanism and Machine Theory, vol. 45, no. 6, pp. 815–827,
2010.

[15] F. Anooshahpour, I. G. Polushin, and R. V. Patel, “Quasi-static modeling of the
da Vinci instrument,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1308–1313, IEEE, 2014.

[16] F. Anooshahpour, I. G. Polushin, and R. V. Patel, “Tissue compliance determination
using da Vinci instrument,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 5344–5349, IEEE, 2015.

[17] A. Talasaz, A. L. Trejos, S. P. H. Bassan, and R. V. Patel, “A dual-arm 7-degrees-
of-freedom haptics-enabled teleoperation test bed for minimally invasive surgery,”
ASME Journal of Medical Devices, vol. 8, no. 4, p. 041004, 2014.

[18] Intuitive Surgical, Inc., EndoWrist: Instrument and Accessory Catalog, July 2011.

[19] Claron Technology Inc, MicronTracker Developerś Manual,.
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Chapter 7

The Application of Motion Transmission
Model of Tendon-Pulley Transmission to
Surgical Robots: A Preliminary
Experimental Validation

T he tendon-pulley transmission modeling scheme was, previously, developed in

Chapters 5 based on the concepts from the creep theory and extended in Chap-

ter 6 to describe the coupled-hysteresis effect. This chapter focuses on the

experimental validation of the model in tendon-driven robots. Motion transmission of the

first three joints of the RAVEN II® surgical robot is analyzed, and backlash-like hystere-

sis within the transmission systems is modeled using the proposed scheme. The modeling

accuracy is experimentally evaluated, showing more than 42% improvement in terms of

RMSE, in comparison with the conventional friction/compliance-free models.

7.1 Introduction

In Robot Assisted Minimally Invasive Surgery (RAMIS), due to inherent size restrictions

imposed on the surgical instruments, tendon-based mechanisms have become a common

The material presented in this chapter is published in the proceeding of ”IEEE International Conference
on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 2017”
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Figure 7.1: The right arm of the RAVEN II® surgical robotic system installed at CSTAR,
London, ON, Canada
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solution for power transmission. The da Vinci® Surgical System [1] and the RAVEN II®

surgical robot [2] are the two most well-known tendon-based surgical platforms (Fig-

ure 7.1). Despite the human-in-the-loop nature of the current robotic surgical systems,

there is a growing interest for supervised automation in execution of surgical tasks [3].

To this end, an accurate model of the force/motion transmission is required in order to

compensate for nonlinearities within the transmission mechanism and/or to design high

performance control algorithms1.

In the literature, tendon-pulley drives were often treated as systems with rigid linkage lead-

ing to conventional linear kinematics [4] without considering the compliance of the tendons

as well as tendon-pulley friction. In [5], a classical Preisach model was introduced to cap-

ture force transmission hysteresis in a tendon-pulley based RAMIS instrument. In [6], a

formulation was suggested for robots with tendon-pulley and tendon-sheath power trans-

mission based on tendon elongation; tendon-pulley friction, however, was not addressed.

In [7], an unscented Kalman filter (UKF) algorithm was designed to estimate the motion

transmission parameters of a one degree-of-freedom (DOF) tendon-pulley mechanism. The

same algorithm was used in [8] for position control of three DOFs of the RAVEN II surgical

system along with compensation for joint coupling effects. In both these studies, exponen-

tial springs along with point-contact friction were considered to model the nonlinearity of

the system

Tendon-pulley mechanisms, particularly in the form of belt drives, have a long history of

applications in the industrial systems for the purpose of power transmission. More than

a century ago, Reynolds for the first time noticed that the friction on the pulleys surface

results in tendon elongation and, consequently, slip on the pulley surfaces [9]. This phe-

nomenon is known as elastic creep. The tendon creep theory, in particular, explains the

formation of the slip and stick zones on the pulleys in a tendon-pulley power train, as

shown in Figure 7.2(a). For a review on the theory, refer to [10] and [11]. A motion trans-

mission model for tendon-pulley mechanisms was recently suggested by the authors based

on tendon creep theory [13]. Unlike the above-mentioned studies, distributed friction was

considered instead of point-contact friction to entail the true behavior of tendon-pulley in-

teraction. This motion transmission model is dual to the force transmission models studied

1In non-RAMIS applications, the driven pulleys (i.e. robot’s joints) can be sensorized, thus the nonlinear-
ity due to transmission is compensated by the controller.
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(a)

(b)

Figure 7.2: (a) Slip and stick zones on the input and output pulleys of a belt drive (adopted
from [12]); (b) the tendon-surface interaction model of a one DOF tendon-pulley system.
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in our earlier works [14, 15]. The model developed in [13] is of pseudo-kinematic type,

where the output displacement is a function of both the input displacements and the input

torque. The developed model is invertible, which allows for its use in real-time control

applications.

An application of the proposed model to tendon-driven surgical robots is presented, where

RAVEN II surgical robot is used as a test bed for experimental validation. The behavior of

the first three joints of the robot is thoroughly analyzed along with the effect of pretension

on the response of the system.

The chapter is organized as follows. In Section 7.2, a brief review of the proposed pseudo-

kinematic motion transmission model is presented. In Section 7.3, the model is applied to

describe the motion transmission characteristics of the first three DOFs of the RAVEN II

surgical robot. Specifically, phenomenological analysis of the motion transmission behav-

ior of the RAVEN II surgical robot is performed, the parameters of the motion transmission

model are identified, and performance of the model is experimentally evaluated. Section 7.4

concludes the chapter.

7.2 Motion Transmission Model

The modeling approach used in this study accounts for tendon elastic creep in the system’s

pulleys. Specifically, the tendon elastic creep arises in the slip zone of the pulleys; the arc

of the slip zone increases as the force applied to the tendon increases. In our modeling

approach, in order to replicate the effect of multiple slip and stick zones in the tendon-

pulley transmission (i.e. the idler pulley effect), two fixed curved surfaces are introduced

along the tendon’s forward and return paths, as illustrated in Figure 7.2(b). The slip and

stick zones appear on the top and the bottom surfaces as a result of application of the input

torque τin. The geometric constraints imposed by the mechanism shown in Figure 7.2(b)

require the elongation of the top tendon ∆t to be related to the rotation of the input pulley

∆q1 and the output pulley ∆q2, as follows:

∆t = ∆q1r1 −∆q2r2, (7.1)
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where r1 and r2 are the radii of the input and the output pulleys, respectively. In the above

equation, ∆q2 6= 0 only if the wave of tension (or equivalently the slip zone) has reached

the output pulley, otherwise ∆q1 does not affect ∆q2. Applying the same line of reasoning

to the bottom tendon, equation (7.1) can be extended to a more general formula

∆q2 =


r1
r2

∆q1 − 1
r2

∆t if ϕwt = 1,

r1
r2

∆q1 + 1
r2

∆b if ϕwb = 1,

0 otherwise,

(7.2)

where ∆b is the elongation of the bottom tendon, and ϕwt ∈ [0, 1] and ϕwb ∈ [0, 1] are

dimensionless parameters describing the length of the slip zones and subsequently the tran-

sition state of each tendon. Equation (7.2) will be referred as the pseudo-kinematic model

hereafter in this chapter. Equation (7.2) also explains the hysteresis in the system. Specif-

ically, the first and the second cases of (7.2) represent the ascending and the descending

branches of the hysteresis loop, while the third case is the transition between the two.

The value of ∆q2 can in principle be found from (7.2), provided that the elongation vari-

ables ∆t and ∆b and the transition variables ϕwt and ϕwb are known. The pseudo-kinematic

model can be simplified to become the following equation2:

∆q2 = S(q̇1)αtτin + (1− S(q̇1))αbτin + β∆q1, (7.3)

where αt, αb and β are constant parameters and S(q̇1) is a switching function as defined

below,

S(q̇1) :=

1 q̇1 > 0,

0 q̇1 < 0.
(7.4)

In the derivation of (7.3), the following assumptions were considered:

• The transient response of the system is neglected, that is the tension propagates im-

mediately, i.e. ϕwt = ϕwb = 1.

• The tension is zero in the loosened tendon, i.e., the tension in the bottom tendon is

zero if q̇ > 0, and the tension in the top tendon is zero if q̇ < 0.
2As shown in Chapter 5.
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Equation (7.3) can be used to estimate q2 for given q1 and τin. The first and the second terms

in (7.3) describe the effect of tendon elongation on the motion transmission, while the third

term represents the geometrical relationship between q1 and q2 similar to the kinematics of

a rigid transmission.

Remark 7.1. Equation (7.3) is only valid if the pretension is negligible. In a more general

case where the pretension is constant and sufficiently large for both the top and the bottom

tendons, it can be shown that (7.3) should be replaced with the following formula3:

∆q2 ≈S(q̇1)(αtτin + γtΛ)

+ (1− S(q̇1))(αbτin + γbΛ) + β∆q1,
(7.5)

where constant Λ ≥ 0 is the sum of the area under the tension distribution of the top

and the bottom tendons [14], and γt, γb ≥ 0 are constant parameters. A more general

pseudo-kinematic model for any arbitrary pretension in the tendons is given in Appendix

A.

7.3 Case Study: Experimental Results Using The RAVEN II

Surgical Robot

This section first provides a phenomenological analysis of the motion transmission behav-

ior in the first three links of the RAVEN II surgical robot (Figure 7.1). Next, the parameters

of the proposed model described by (7.3) are identified. Finally, experimental validation

of the model is presented. The RAVEN II surgical robot is a tendon-pulley driven surgi-

cal robotic system similar to its commercial counterpart, the da Vinci® robotic system. It

was designed as an open platform to boost research on surgical robots, and to provide a

testbed for preoperative and intra-operative data integration. The robot has seven DOFs:

three DOFs for positioning of the remote center of motion and insertion, and four remain-

ing DOFs to drive the instrument. All the DOFs are actuated by DC motors placed at the

base. The servo layer of the RAVEN II control system is updated at 1 kHz frequency. The

middle layer software environment is Robotics Operating System (ROS) which runs on

3According to the derivation given in Chapter 5, Appendix.
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Figure 7.3: Shoulder DOF responses to sinusoidal inputs with fixed amplitude of q1 = 10
degrees and frequencies of 0.1, 0.2 and 0.4 Hz (left); hysteretic behavior of the shoulder
DOF (right)

Linux. Further details can be found in [2].

In this study, the motion characteristics of the first three DOFs of the robot i.e., the shoul-

der, the elbow, and the insertion, are investigated. In RAVEN II, only the angles of rotation

of the motors are measured; in this study, however, additional 12-bit US digital MAE3-

P12 absolute encoders were placed at the shoulder and the elbow joints for validation pur-

poses. An Arduino Uno microprocessor was assigned to read the encoders and send the

data to the main computer through ROS communication. For the insertion link, a 3D vision

MicronTracker™ camera was used to measure the distance traveled by the sliding joint.

The update rate of the camera was set to 30 Hz. The Root-Mean-Square (RMS) of the

calibration error is 0.25mm for a single target point [16].
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Figure 7.4: Elbow DOF responses to sinusoidal inputs with fixed amplitude of q1 = 10
degrees and frequencies of 0.1, 0.2 and 0.4 Hz (left); hysteretic behavior of the elbow DOF
(right).

7.3.1 Motion Transmission Analysis

In this subsection, the motion transmission behavior of RAVEN II is experimentally in-

vestigated and analyzed. Figures 7.3 and 7.4 illustrate sample responses to 0.1, 0.2 and

0.4 Hz sinusoidal commands with the amplitude of 10 degrees sent to the shoulder and the

elbow DOFs of the robot, respectively. Similarly, Figure 7.5 shows responses to sinusoidal

commands with the same frequencies and amplitude of 25 mm for the insertion DOF. As

can be seen in Figure 7.4, significant backlash-like hysteresis is present in the response

of the elbow DOF. The hysteretic behavior in the shoulder and the insertion DOFs, how-

ever, is negligible as compared to that of the elbow DOF, as shown in Figures 7.3 and 7.5.

Both the shoulder and the insertion DOFs have large preset pretensions which resulted in

a narrow backlash. The shoulder also is a capstan drive with a short tendon run forming a

very stiff transmission as reported in [8]. In order to study the effect of pretension in the

motion transmission, a sinusoidal input signal with frequency of 0.1 Hz and peak-to-peak

amplitude of 20 degrees was commanded to the elbow DOF under different pretensions.
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Figure 7.5: Insertion DOF responses to sinusoidal inputs with fixed amplitude of q1 =
25 mm and frequencies of 0.1, 0.2 and 0.4 Hz (left); hysteretic behavior of the insertion
DOF(right).

Pretension in tendons can be altered through a set of tensioning screws in Raven. In this

set of experiment, the tension was gradually adjusted from small to large pretension lev-

els by tightening the screws. As shown in Figure 7.6, the width of the hysteresis loop

becomes smaller as pretension increases. This is a direct consequence of the large preten-

sion as discussed in Remark 7.1. This study is focused on the tendon-pulley transmission

with low (close to zero) pretension which results in a significant backlash-like hysteresis as

demonstrated above for the elbow DOF. Hysteresis, by definition, is the presence of a non-

degenerate input-output closed curve as the frequency of the excitation signal approaches

zero [17]. A common approach to validate the presence of hysteresis is to apply a series of

sinusoidal signals with decreasing frequency. As the frequency approaches zero, the static

behavior of the system dominates the dynamic response. In the presence of hysteresis, the

input-output behavior converges to a fixed loop. This approach was applied to study the

elbow response. To this end, a series of reference sinusoidal trajectories with frequencies

starting from 1 Hz and decreasing to 0.1 Hz with 10 degrees of amplitude was commanded

to the elbow joint. Figure 7.8 shows the resulting input-output behavior. As observed, the

behavior of the system converges to a fixed loop as the frequency of the command signal
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Figure 7.8: System response to sinusoidal inputs with fixed amplitude and various frequen-
cies.

tends to zero, which validates the existence of hysteresis. Furthermore, an exponential de-

cay command q1ed = 10e(−0.1t) sin(0.8t) was applied to elbow DOF with the purpose to

study the minor loops. The result, which is illustrated in Figure 7.7, indicates the existence

of a backlash-like hysteresis which is close to a pure backlash.

7.3.2 Model Identification

To identify the parameters of the proposed model (7.3) for elbow joint, a multi-sine Schroeder-

phased command signal with frequencies of 0.05, 0.07, and 0.09 Hz was used4. Parameters

αt, αb and β were adjusted to minimize the root mean square error (RMSE). The resulting

parameters for the elbow DOF are given in Table 7.1. Due to the low frequency nature of

the experiments, the dynamic effects were ignored and the gravity effect was compensated

4

q1(t) =

N∑
k=1

Am cos(ωkt+ φk)

where N is the number of frequencies, ωk is the k-th angular frequency, and φk is chosen to minimize the
crest factor [18], i.e., φk = φ1 − −kπ(k−1)

N .
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Table 7.1: The identified values of model parameters

αt αb β

-5.302 -1.002 0.839

Table 7.2: Identification results

PM KM PM KM
Traj. Freq. Set RMSE RMSE GOF GOFExp.
type [Hz] [deg] [deg] [%] [%]

I Sine 0.1 0.5073 1.2546 89.1 73.1

II Sine 0.2 0.7749 1.5927 84.3 67.6

III Multi-Sine 0.05, 0.07, 0.09 0.7830 1.4977 92.0 84.7

IV Multi-Sine 0.05, 0.075,
0.1, 0.125, 0.15,
0.16

0.9106 1.5680 77.5 61.2

V Multi-Sine 0.08, 0.1, 0.12,
0.14

0.6239 1.2557 88.0 75.9

*PM and KM refer to as the proposed model and kinematic model, respectively.

for in the torque signals. The optimal value of β also closely matches the actual ratio of the

pulleys and the motor gear ratio in the RAVEN II as reported in [8]; the transmission ratio

was calculated to be 0.8098 based on the gear ratio of the motor, and the motor shaft and

the capstan radii5.

To validate the model, four other commands including two sinusoidal and two multi-sine

commands were applied. Figures 7.9 and 7.10 show the identification and validation re-

sults. Table 7.2 also lists the resulting error in terms of RMSE and goodness-of-fit (GOF).

for the proposed model in comparison with those of the purely kinematics-based estima-

tion (i.e. ∆q2 = β∆q1); in fact, RMSE values of the proposed model show 42% to 60%

decrease as compared to those of the kinematics-based model. It can be seen that the pro-

posed model significantly improves estimation accuracy in comparison with that of the

kinematics-based estimation.

Figure 7.11(a) shows the Box-Whisker plot of error, in which the range of error is shown

along with the median and the 25th and 75th percentiles. The outliers are marked based on

5The gear ratio is 12.25, and motor shaft and joint capstan radii are 56.298 mm and 5.675 mm, respec-
tively.
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the 99.3% coverage of the error values for each experiment. As observed, implementation

of the proposed model has significantly reduced the range of errors in comparison with

that of the purely kinematics-based estimation. The probability distribution of the errors is

shown in Figure 7.11(b). This figure indicates that, for the proposed model, the majority

of the error values lie within ±2.0◦, and are concentrated in the vicinity of zero, while the

kinematics-based estimation resulted in higher probability of larger error values.

Finally, Figure 7.12 shows the resulting hysteresis model in comparison with the actual

hysteresis between the motor rotation and the joint angle. As can be seen from the figure,

the model closely follows the actual hysteretic behavior of the transmission system.

7.4 Conclusion

In this chapter, a recently proposed motion estimation model for tendon-pulley transmis-

sion mechanisms was evaluated for the RAVEN II surgical robot. The model was derived

using tendon elastic creep analysis, where the distributed friction along the tendons and the

compliance/elongation of the tendons were taken into account. The results clearly demon-

strated the effectiveness of the proposed model in reducing the estimation error in terms

of RMSE by more than 42% as compared to the purely kinematics-based estimation. Fu-

ture work will focus on reducing the robot positioning error by implementing the proposed

model for all joints of the robot and by compensating for the dynamics of the robot. A

more general pseudo-kinematic model will be developed by relaxing the two assumptions

of zero tension in the loosened tendon and immediate tension propagation. Additionally,

further results on the use of the proposed modeling approach in a hybrid force-position

control scheme will be obtained as part of our ongoing research.
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Figure 7.9: (a) The system’s response to the multi-sine commands shown in Table 7.2 vs.
the responses of the proposed model and the kinematics-based estimation; (b) scaled up
version of the plots in part a).
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, a novel approach for modeling transmission nonlinearities in tendon-pulley

systems is developed. The approach is largely based on the idea of incorporating the dis-

tributed frictions between the tendon and the pulleys into the analysis.

First, it is shown that a close similarity can be observed between the hysteretic force trans-

mission in tendon-pulley based da Vinci® instrument and that of tendon-sheath mecha-

nisms. Consequently, a dual tendon-surface structure was suggested to represent the non-

linearities of the system. Tendon slip analysis was then used to develop a novel force

estimation algorithm for tendon-pulley based laparoscopic instruments.

Second, as an application of the above modelling approach, a method for determination of

the environmental stiffness by using only the instrument’s actuation data is introduced. The

feasibility of this method for determination of the compliance distribution in sample tissues

when palpated by a sensorless tendon-driven instrument was experimentally demonstrated.

Third, in order to describe the hysteresis in force transmission behavior of tendon-pulley

mechanisms, a phenomenological study was conducted on a da Vinci® instrument for the

case where the tip was rigidly fixed in a force sensor. Having the two main properties of

the congruency and wipe-out, it was shown that a classic Preisach hysteresis model could

accurately replicate the force transmission behavior.
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Forth, a comprehensive motion transmission analysis and a set of models is developed

in this thesis for tendon-multipulley mechanisms. It was shown that the suggested dual

tendon-surface structure could also be used to deriving a pseudo-kinematic model that can

fully capture the backlash-like hysteresis of tendon-pulley mechanisms. The validity of the

dual tendon-surface model was analytically proved by adopting the creep theory from belt

mechanics to account for the idler pulleys. An application of the novel pseudo-kinematic

model was successfully implemented and tested in a one-DOF motion tracking experi-

ment. A general form of the pseudo-kinematic model of motion transmission was devel-

oped in this thesis to tackle the coupling effect in multi-DOF mechanisms. Consequently,

the coupled-hysteresis effect which cannot be explained using conventional methods is de-

scribed using the proposed approach.

Some preliminary studies were also conducted which form a foundation for future develop-

ments. These include analysis of the effect of pretension on the motion and force transmis-

sion; dynamic modelling of the motion transmission that describe the system’s response to

high-frequency inputs; and incorporating the transmission models into the robot dynamic

equations.

8.2 Future Work

8.2.1 Hybrid Force/Motion Transmission

In this thesis, force transmission was modelled for the case of a fixed tip, and motion

transmission was modelled assuming no interaction forces are present (i.e., the case of a

freely moving tip). The fixed tip and the freely moving tip represent two limiting cases

which are somewhat similar to the open-circuit and short-circuit tests in electrical circuits.

In particular, these two cases allowed us to determine the nominal behavior of the tendon-

pulley transmission, which is not affected by the dynamics of the environment. When the

tip is allowed to move while at the same time interacting with a soft environment, the

dynamics of the environment would result in deviations from the nominal behavior of the

mechanism. By analyzing such a deviation in real time, it will be possible to make the

necessary adjustments to the force and motion estimates. The apparent stiffness of the
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da Vinci® instrument studied in this thesis can be considered as the first step in studying

such a deviation. Further studies of interactive motions will provide solid understanding of

the hybrid force/motion transmission as is in a real surgery.

8.2.2 Advanced Theories for Tendon-Pulley Interaction

The classical creep theory, which results in one stick and one slip zones on each pulley,

is not the only method for describing the interaction between the pulley and the tendon.

Indeed, the creep theory is based on a simplified friction model, which assumes zero fric-

tion in the absence of relative motion; in particular, it completely ignores the pre-sliding

friction. Consequently, the tension is considered unvarying in the stick zone (of a pulley

or a surface), regardless of the loading conditions. A more accurate definition of friction

forces would be helpful in deriving a better description of the tendon-pulley interaction.

One solution could be an adaptation of the shear theory in contact mechanics to tendon-

pulley problem, similarly to the approach taken in [1] where the shear theory is adopted for

a dual-pulley belt-drive.

The other limitation of the creep theory and other similar theories from belt mechanics

is that they assume steady-state working condition, i.e., each pulley is assumed rotating

with a constant speed. Although this assumption seems quite reasonable for belt drives

in industrial applications, it is not always acceptable for tendon-pulley drives in robotics.

In fact, the transmission in a surgical robot often demonstrates stop-and-go motion which

also frequently switches between forward and backward rotations. In this thesis, such a

transition is neglected for the sake of simplicity, however tendon-pulley transitional effect

will be an important subject in future studies.

8.2.3 Mechanical Studies

This thesis, in general, took a phenomenological approach to modelling the tendon-pulley

transmission in surgical robots. The observations were later explained using first physical

principles. Although this approach is helpful and needed for robotic applications, a true

understanding of the tendon-pulley transmission requires studying the mechanics of the
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components. A comprehensive set of experiments for one- and two-pulleys configurations

would greatly help in development of a more accurate understanding of multi-pulley trans-

missions in surgical robots. A simulation study which is easy to implement for such simple

settings would also be very helpful for establishing the validity of new proposed models.
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Appendix A

Relaxing The Zero-Pretension
Assumption for the Pseudo-Kinematic
Formula of Dual Tendon-Surface
Systems

According to the development presented in Chapter 5, if an input torque τin is applied to a

dual tendon-surface system shown in Figure A.1, the following formulas can be written for

tension distributions and tendon elongations, respectively:

Tt(ϕt) =

Ttl e−ηtϕt sgn(q̇1) ϕi < ϕwt,

T 0
t (ϕt) ϕt ≥ ϕwt,

(A.1)

Tb(ϕb) =

Tbl eηbϕb sgn(q̇1) ϕb < ϕwb,

T 0
b (ϕb) ϕb ≥ ϕwb,

(A.2)

∆i =
1

Kni

∫ 1

0

(Ti(ϕi)− T 0
i (ϕi))dϕi, (A.3)

where the subscript i ∈ {t, b} denotes the top and bottom tendons in Figure A.1, and Ttl,

Tbl, are the tensions in the left-end side of the top and bottom tendons, respectively. η =

µL/R, ϕ = x/L, and ϕw are a dimensionless friction parameter, the normalized position

of a material particle along the length of the tendon, and the transition point, respectively.

T 0(ϕ) is the tension distribution from previous loadings prior to the application of τin.



Appendix 173

Figure A.1: The tendon-surface based model to represent a one-DOF tendon-multipulley
system.

Furthermore, the following two equations are held for the input and the output pulleys,

respectively:
τin = (Ttl − Tbl)r1,

τout = (Ttr − Tbr)r2,
(A.4)

Assuming

• (a) tension propagates immediately, i.e. ϕt = ϕb = 1 at all times, and

• (b) pretension is large enough such that tendons never go slack,

The tension and pretension can be uniquely defined. That is, if the change of direction

of rotation of the input pulley has happened at time t = t0, the current distributions (for

t > t0) are Tt = Ttl e
− sgn(q̇1)ηtϕt ,

Tb = Tbl e
sgn(q̇1)ηbϕb ,

(A.5)

Similarly, One can find the following tension distributions for T 0
t (ϕt) and T 0

b (ϕb), at t = t−0

which is the last instance before the change in direction happens,T 0
t (ϕt) = T 0

tl e
sgn(q̇1)ηtϕt ,

T 0
b (ϕb) = T 0

bl e
− sgn(q̇1)ηbϕb .

(A.6)
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where from (A.4), T 0
t and T 0

b are related to τ 0
in,

τ 0
in = (T 0

tl − T 0
bl)r1. (A.7)

Also, from the geometric constraint introduced in Chapter 5, the general from of the

Pseudo-kinematic formula is defined as

∆q2 =


r1
r2

∆q1 − 1
r2

∆t if ϕwt = 1,

r1
r2

∆q1 + 1
r2

∆b if ϕwb = 1,

0 otherwise,

(A.8)

From the first and second case of (A.8) we have the following constraint on the elongation

in the top and bottom tendon (the compatibility condition),

∆t + ∆b = 0, (A.9)

which implies the amount of elongation in one side is equal to the amount of the shrinkage

of the other. From (A.3), equation (A.9) can be solved to the following formula,

1

Knt

∫ 1

0

(Ttdϕt − T 0
t dϕt) +

1

Knb

∫ 1

0

(Tbdϕb − T 0
b dϕb) = 0, (A.10)

or, ∫ 1

0

Tt(ϕt)

Knt

dϕt +

∫ 1

0

Tb(ϕb)

Knb

dϕb =

∫ 1

0

T 0
t (ϕt)

Knt

dϕt +

∫ 1

0

T 0
b (ϕb)

Knb

dϕb = Λ. (A.11)

where Λ is a constant. Equation (A.11) implies that a weighted sum of the areas under the

tension distribution of the top and the bottom tendons always remains unchanged regardless

of loading conditions. That can be interpreted as the contribution of the initial pretension

set by the manufacturer.

Taking into account (A.5) and (A.6), one can solve equation (A.11) to obtain the following

formula,

aTtl + bTbl = cT 0
tl + dT 0

bl = Λ, (A.12)
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where

a =
sgn(q̇1)

−ηtKnt

(e−ηt sgn(q̇1) − 1),

b =
sgn(q̇1)

ηbKnb

(eηb sgn(q̇1) − 1),

c =
sgn(q̇1)

ηtKnt

(eηt sgn(q̇1) − 1),

d =
sgn(q̇1)

−ηbKnb

(e−ηb sgn(q̇1) − 1).

Considering (A.12) and (A.4) we have:

Ttl = r1Λ+bτin
r1(a+b)

, Tbl = r1Λ−aτin
r1(a+b)

, (A.13)

and considering (A.12) and (A.7) we have

T 0
tl =

r1Λ+dτ0in
r1(c+d)

, T 0
bl =

r1Λ−cτ0in
r1(c+d)

. (A.14)

Therefore, ∆t can be found as follows,

∆t = (
a

a+ b
− c

c+ d
)Λ +

ab

r1(a+ b)
τin −

cd

r1(c+ d)
τ 0
in. (A.15)

Equation (A.15) can be substituted in (A.8) to find the pseudo-kinematic formula for motion

transmission:

∆q2 = β∆q1 + α(sgn(q̇1))τin + α′(sgn(q̇1))τ 0
in + γ(sgn(q̇1))Λ. (A.16)

where β is a constant and α, α′ and Λ each equals to two different constants based the

direction of oration of the input pulley. The corresponding value of these parameters can in

principal be calculated from (A.15) and (A.8).

In formula (A.15), if pretension is zero (i.e. from (A.12) we have Λ = 0 and from (A.4) we

have τin = 0), the elongation of the top tendon would be ∆t ≈ ατin, which corresponds to

the pseudo-kinematic equation given in Chapter 5 and 6.
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