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Abstract

In family studies, we are interested in estimating the penetrance function of the event of interest

in the presence of competing risks. Failure to account for competing risks may lead to bias

in the estimation of the penetrance function. In this thesis, three statistical challenges are

addressed: clustering, missing data, and competing risks. We proposed the cause-specific

model with shared frailty and ascertainment correction to account for clustering and competing

risks along with ascertainment of families into study. Multiple imputation is used to account

for missing data. The simulation study showed good performance of our proposed model in

estimating the penetrance function under high familial correlation. However the competing

risks model without frailty provided a good alternative under low familial correlation. We

illustrate the proposed model using Colon Cancer Family Registry data.

Keywords: Penetrance Function, Relative Risks, Competing Risks, Frailty Model, Clus-

tered Data, Missing Data, Family Study, Time-to event data.
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Chapter 1

Introduction

Competing risks analysis is a natural extension of survival analysis, where individuals can

fail from one of several competing causes (Koller et al., 2012). Investigators are often interested

in the distribution of time to failure for a main event in the presence of other competing risks.

One of the key challenges of competing risk survival analysis lies in the estimation of

the survival function S(t) or equivalently the cumulative incidence function F(t). The method

of estimating cumulative incidence calculated as 1−S(t) from the Kaplan-Meier (KM) curve

is known to be inappropriate and may lead to the overestimation of cumulative incidence in

the presence of competing events due to the fact that the Kaplan-Meier curve assumed the

individuals who experienced the competing events as censored. In the Framingham Osteo-

porosis study (Berry et al., 2010) a standard survival analysis overestimated the five-year risk

of second hip fracture by 37% and 10-year risk of second hip fracture by 75% by treating

competing risks as censored. Overestimation of cumulative incidence is the result of violat-

ing the non-informative censoring assumption requiring when constructing a KM curve (Kim,

2007). Non-informative censoring occurs when the reason why participants are censored is

1



2 CHAPTER 1. INTRODUCTION

unrelated to the study outcome (Ranganathan and Pramesh, 2012). Non-informative censoring

is required to obtain a consistent estimate of cumulative incidence from the KM survival curve.

However, under competing risk survival analysis, individuals who are censored because they

experienced competing events violate the non-informative censoring assumption.

The example of the competing risks can also be found in the breast cancer family study

with BRCA1 mutation as a covariates (Gorfine and Hsu, 2011). In this study, Gorfine and Hsu

(2011) are interested in estimating the risk of breast cancer in the presence of ovarian cancer,

testis cancer, and other BRCA1 related cancers. This study introduced the cause-specific haz-

ard model with flexible correlation structure to account for clustered competing risks data. The

detail of this method is explained further in Chapter 2.

In this thesis, our interest lies in estimating the risk of colorectal cancer (CRC) in the

presence of other Lynch Syndrome cancers (OLS) which arise from the Lynch Syndrome (LS)

family study. Lynch Syndrome is a hereditary non-polyposis colorectal cancer (CRC) which

carries a very high risk of colorectal cancer and other LS-related cancers (OLS) such as en-

dometrial cancer, gastric cancer, etc (Lynch et al., 2009). Lynch Syndrome is indicated by

germline mutation in the DNA missmatch repair (MMR) genes that causes the build up of

error during DNA replication. Lynch Syndrome is estimated to account for 3% of colorectal

cancer incidence. Choi et al. (2009), Kopciuk et al. (2009) and Jasperson et al. (2010) estimated

the risk of developing colorectal cancer by age 70 associated with a MMR gene mutation with-

out considering competing risks. In this thesis, we propose a statistical method to estimate

the cumulative incidence function, also called penetrance function or the probability of devel-

oping CRC given the genotype, and relative risks of CRC in the presence of competing risks

accounting for family study design. Penetrance estimation is useful to develop intervention
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and prevention strategies for genetically susceptible individuals (Choi, 2012). In other words,

the genetic counselors may use the information about the penetrance estimation to make a

decision for early screening (colonoscopy) or early intervention of colonostomy to prevent col-

orectal cancer (CRC) for high risks individuals. We choose to estimate the penetrance at age

70 because it is approximately the midpoint of the global life expectancy between male and

female according to the World Health Organization (WHO, 2017).

Three statistical challenges arising from this study are selection bias, clustering, and miss-

ing data. The first statistical challenge, which needs to be addressed, is selection bias. Families

are selected based on the proband instead of a simple random sample. Probands are the first

individuals in the families who experienced genetic disease. Thus, the families are unlikely to

represent the general population and an ascertainment correction is required to ensure the valid-

ity of statistical inference. The second statistical challenge arises from clustered data collected

from families. Familial correlation within the families will affect the cumulative incidence, the

parameter estimates in the model, and their variances, so that it has to be taken into account for

accurate and precise estimation. The third challenge is due to missing data. This issue arises

because we do not observe genotype information from all the family members but we still want

to make inference about those missing data using observed genotype and phenotype data from

the families. These challenges are addressed extensively in Chapters 2 and 3.
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1.1 Rationale

This thesis focuses on the cause-specific hazard model to estimate the relative and abso-

lute risks of developing cancer associated with mutated genes in the presence of competing

risks. Particularly, we provide the cumulative incidence function of CRC for LS families.

The aim of this study is to extend the competing risk models with frailty/random effect

to account for familial correlation in a family study design. In particular, we extend the frailty

model introduced by Choi (2012) to account for competing risks.

1.2 Scope of the thesis

In this thesis, we propose the cause-specific hazard model with frailty to account for com-

peting risks and familial correlation. We estimate the relative and absolute risks of developing

CRC in the presence of OLS adjusted for two covariates (gender and mutation status). In addi-

tion, we compare the proposed model with various models to see the effect of ignoring familial

correlation and/or the competing risks.

1.3 Objectives of the study

The objectives of this thesis are:

1. To incorporate familial correlation and ascertainment correction in the cause-specific

hazard model.
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2. To estimate the penetrance function at age 70 based on the parameter estimates from the

proposed model.

3. By simulation study

(a) To assess the performance of the proposed model in terms of bias and precision in

the model parameter and penetrance estimations.

(b) To compare the bias and efficiency of the estimates from proposed model with those

from non-competing risks model and non-frailty model to see the effect of ignoring

competing risks or ignoring familial correlation.

4. To apply our proposed model to estimate the risks of developing CRC from the Lynch

Syndrome families in the Colon Cancer Family Registry http://www.coloncfr.

org/.

1.4 Organization of the thesis

The remainder of the thesis is structured as follows: competing risk models, random ef-

fect methods to account for familial correlation, and multiple imputation to account for missing

genotypes is presented in Chapter 2. The competing risks models which incorporate random

effects are presented in Chapter 3. The design of the simulation study to evaluate the perfor-

mance of our statistical framework is provided in Chapter 4. The results of the simulation study

are then presented in Chapter 5. The application of our proposed model to Lynch Syndrome

families from the Colon Cancer Family Registry (Colon CFR) is presented in Chapter 6. Fi-

nally, some discussion, concluding remarks, and possible future topics are provided in Chapter

7.

http://www.coloncfr.org/
http://www.coloncfr.org/


Chapter 2

Literature Review

This chapter introduces different statistical methods to account for competing risks and

will address three statistical challenges arising from family studies: selection bias, familial

correlation, and missing data. This chapter is divided into five sections. We introduce the

cause-specific hazard model in Section 2.1. The family sampling designs along with the as-

certainment correction for selection bias are described in Sections 2.2 and 2.3. Frailty models

to account for familial correlation are then introduced in Section 2.4. Finally, missing data

mechanisms along with methods to account for them are described in Section 2.5

2.1 Competing risks models

There are many methods available to model competing risks data. We describe the three

most commonly used statistical models for analyzing competing risks in epidemiologic data:

the cause-specific hazard model, the subdistribution hazard model, and the mixture model (Lau

et al., 2009).

6



2.1. COMPETING RISKS MODELS 7

2.1.1 Cause-specific hazard model

The cause-specific hazard model is a competing risk model introduced by Prentice et al.

1978. In competing risks, the observed outcome for individual i consists of Ti, the time to

event, and δi, the event type, or cause, j, which takes a value j = 1, · · · ,J. The cause-specific

hazard for cause j = 1, . . . ,J for individual i, i = 1, . . . ,n j is defined as

λi j(t;Xi) = lim∆t→0
Pr(t ≤ Ti < t +∆t,δi = j|Ti ≥ t;Xi)

∆t
.

The function λi j(t;Xi) represents the instantaneous risk from cause j at time t, given the vector

of covariates Xi in the presence of other failure types. Assuming proportional hazards, the

cause-specific hazard model is written as

λi j(t;Xi) = λ j0(t)exp(βββ>j Xi),

where λ j0(t) represents the baseline hazard function for cause j and βββ j represents the vector

of cause-specific effects for covariates Xi. The cumulative cause-specific hazard function for

cause j = 1, . . . ,J is defined as

Λi j(t;Xi) =
∫ t

0
λi j(u;Xi)du.

The overall survival function is obtained as

S(t;Xi) = exp

{
−

J

∑
j=1

Λi j(t;Xi)

}
.

Thus, the cause-specific cumulative incidence for cause j can be defined as

Fj(t;Xi) =
∫ t

0
λ j(u;Xi)S(u;Xi)du =

∫ t

0
λi j(u;Xi)exp

{
−

J

∑
j=1

Λi j(u;Xi)

}
du. (2.1)

Equation (2.1) shows that all the cause-specific hazard functions must be identified to

obtain the cause-specific cumulative incidence function. If not all competing risks are identi-

fied for the event of interest, it is impossible to obtain all the cause-specific hazards from the

competing events.
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2.1.2 Sub-distribution hazard model

To account for competing risks Fine and Gray (1999) introduced the sub-distribution haz-

ard model. The sub-distribution hazard function for cause j is defined as

hi j(t;Xi) = lim∆t→0
Pr(t ≤ Ti < t +∆t,δi = j|Ti > t ∪ (Ti < t ∩δi 6= j);Xi)

∆t
,

where δi is the event type indicator for cause j, Ti is the random variable for the minimum

observed time. Xi is the vector of covariates for individual i. In the definition of subdistribution

hazard, the individuals who experienced other competing events are still at risk for the event

of interest, while in the cause-specific hazard, such individuals are considered to be censored

from the event of interest.

The proportional sub-distribution hazard model is then:

hi j(t;Xi) = h j0(t)exp(βββ>j Xi),

where h j0(t) is the baseline sub-distribution hazard for cause j and βββ j is the vector of regres-

sion coefficients for cause j.

The cumulative incidence from the sub-distribution hazard assuming proportional hazards

is then obtained as

Fj(t;Xi) = 1− exp{−Hi j(t;Xi)},

where Hi j(t;Xi) =
∫ t

0 hi j(u;Xi)du is the cumulative sub-distribution hazard for cause j.

2.1.3 Mixture model

Larson and Dinse (1985) established a mixture model for competing risks, assuming that

the number of risk-specific failures follows a multinomial distribution, with the risk of failing
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from cause j from the logistic model:

Pr(δi = j;Xi) =
exp(β j0 +βββ

>
j Xi)

∑
J
j=1 exp(β j0 +βββ

>
j Xi)

,

where β j0 is a scalar constant and βββ j is the vector of regression coefficients related to cause j.

Given the event j, the conditional survival function for cause j follows

S j(t;Xi) = Pr(Ti > t;Xi,δi = j) = exp
{
−
∫ t

0
h j0(x)dxexp(βββ>j Xi)

}
,

where h j0(x) is the baseline sub distribution hazard function for event j and the βββ j is the vector

of the regression coefficients related to cause j.

The cause-specific cumulative incidence for cause j is obtained as

Pr(Ti ≤ t,δi = j;Xi) = Pr(Ti ≤ t;δi = j,Xi)Pr(δi = j;Xi)

=

[
1− exp

{
−
∫ t

0
h j0(x)dxexp(βββ>j Xi)

}]
×

exp(β j0 +βββ
>
j Xi)

∑
J
j=1 exp(β j0 +βββ

>
j Xi)

.

This model is called mixture model because the cause-specific cumulative incidence for cause

j is estimated using both continuous and discrete probability distribution. The main limitation

of the mixture model approach is the distribution of the Pr(T ≤ t,δ = j;Xi) has to be correctly

specified for appropriate inference (Andersen and Keiding, 2012).

2.1.4 Comparison between the competing risk models

This section summarize the advantages and the disadvantages of the cause-specific hazard

model, the sub-distribution hazard model, and the mixture model.

The main advantage of the cause-specific hazard model is easier interpretation of the rel-

ative risks obtained through the cause-specific hazard model. The relative risks for cause j is

interpreted as the relative change in the cause-specific hazard of event j for 1-unit increase in
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the covariate (Lau et al., 2009). However, independent competing events assumption needs

to be satisfied for correct inference of the cause-specific hazard and the cumulative incidence

function.

The main advantage of the sub-distribution hazard model is direct modeling of the covari-

ates towards the cumulative incidence function. However, the idea of placing the individuals

who experienced the competing events in the risks set maybe counterintuitive (Lau et al., 2009).

The main advantage of the mixture model is the ability to derive the cause-specific hazard

and the subdistribution hazard and are not constrained to be constant over time (Lau et al.,

2009). However, both the distributions of the event of interest and the competing events have

to be correctly specified for correct inference of obtaining the cause-specific hazard and the

subdistribution hazard model.

In this thesis, we choose the cause-specific hazard model to account for the competing

risks because the cause-specific hazards and cumulative incidence provide better understanding

of the effect of the risks factor towards the population as a whole (Hinchliffe and Lambert,

2013).

2.2 Sampling design

The main objective of this thesis is to assess the performance of the cause-specific haz-

ard model in estimating the penetrance function of colorectal cancer for individuals in Lynch

Syndrome (LS) families. For this purpose, it is important to understand the distinguishing fea-

tures of collecting families into the study. Gong and Whittemore (2003) described two types of

family based design for collecting families into the study: clinic based design and population
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based design. In the clinic based design, a family is eligible for the study if it meets criteria

concerning multiple disease occurences among its members. These families typically are iden-

tified in clinics for counselling and high risk of the disease. The main limitation of clinic based

design is the penetrance estimate from these families may not reflect the risk level in general

population. Therefore, it motivated the designs in which families are sampled by identifying

single affected individual or probands. Probands are sampled from general population in a

given period of time and include their family members and this is called the population-based

design.

Gong and Whittemore (2003) pointed out that the bias in risk estimate in both population-

based design and clinic based-design is relatively small compared to the standard error provided

that the disease requirements to ascertain families are not stringent specifically, three individ-

uals or more diagnosed with the disease before 100 years old (non stringent). In addition, the

parameter estimates from clinic-based families are more precise compared to the population-

based families and reflected the larger identified number of mutation carriers in the family.

Also, the upward bias is relatively large if there is a large variance in the risks among carriers.

Extending the work of Gong and Whittemore (2003), Choi et al. (2008) evaluated four-

family based designs in terms of efficiency and accuracy of estimating relative risks and pen-

etrances under several genetic models based on different ascertainment-corrected likelihood

approaches. In this study, population-based study designs, POP and POP+, and two clinic-

based designs, CLI and CLI+, were considered. POP study design indicates that proband is

affected by the disease, while POP+ indicates both proband is affected by the disease and also

a mutation carrier. CLI study design indicates that the proband and at least one parent and one

sib are affected by the disease, while CLI+ indicates that the affected proband is a mutation car-

rier and at least one parent and one sib are affected by the disease. Choi et al. (2008) concluded



12 CHAPTER 2. LITERATURE REVIEW

that design efficiency depends on the research objectives. For the research mainly focused on

the estimation of genetic relative risks, CLI design yields the most efficient estimate. However,

for the research focused on penetrance estimation, POP+ provides the most efficient estimates.

In addition, the presence of second gene effect can lead into some bias in the risk estimation.

Choi (2012), accounting for study design, incorporated familial correlation by using frailty

model, and proposed frailty-based ascertainment corrected likelihood approach for estimating

absolute (penetrance) and relative risks of disease associated with mutated genes and handled

missing genotypes using a modified segregation-based method. Choi (2012) concluded that

family-specific frailty model performed well in estimating penetrance and relative risks under

high to moderate correlation but under low familial correlation, independent model provided

a reasonably good result and the frailty-based likelihood approach was shown effective imple-

mentation under population-based family registry.

In this thesis, we further extend Choi (2012)’s method to estimate the penetrance of col-

orectal cancer in the presence of the competing risks based on the prospective ascertainment-

corrected likelihood.

2.3 Ascertainment corrected likelihood

In the case of population based sampling designs, the likelihood is modified by the prob-

ability of being ascertained through the proband at the age of examination. The probability for

family f being ascertained into study, is denoted by A f (θθθ),

P(Tf p < a f p;X f p) = 1−S(a f p;X f p) = A f (θθθ), (2.2)
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where p indexes the proband and a f p represents the proband’s age of examination and θθθ is the

vector of parameters needed to construct the model.

Then, the ascertainment corrected likelihood can be obtained from dividing the likelihood

contribution with the probability of being ascertained

Lc(θθθ) =
n

∏
f=1

L f (θθθ)

A f (θθθ)
. (2.3)

It is also important to note that depending on the sampling design, we will have different

expression of A f (θθθ). We may obtain the maximum likelihood estimates of the parameters

involved in the model by maximizing the ascertainment-corrected likelihood. In Chapter 3, we

will discuss the construction of ascertainment-corrected likelihood and the step to obtain the

maximum likelihood estimates of the parameters involved in the model.

2.4 Frailty model

A frailty model is a random effect model, where the random effect (frailty) has multiplica-

tive effect on the hazard (Hougaard, 1995). Frailty model can be used for univariate survival

analysis, but it is also useful for multivariate failure times as the conditional of independent

times given the random effect.

2.4.1 Shared frailty model for clustered data

The shared frailty model is a type of frailty model, where subjects from specific cluster

share the same frailty factor (Duchateau and Janssen, 2008). The shared frailty model is usually

relevant for event times for related individuals such as sibling or repeated measurement for
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the same individual (Wienke, 2011). This model was first introduced by Clayton (1978) and

extended to univariate gamma frailty model by Hougaard (2000). Under proportional hazard

assumption, the conditional hazard for individual i in the cluster f is written as

h f i(t) = h0(t)ω f exp(βββ>X f i), (2.4)

where h0(t) is the baseline hazard function, X f i is the vector of covariates for individual i in

family f , βββ is the vector of corresponding regression coefficients, and ω f is the random effect

for cluster f .

The common choice for the distribution of shared frailty ω f is a one-parameter gamma

distribution with shape parameter k and scale parameter 1
k , Gamma(k,1

k ), whose density func-

tion has the form

fω f (ω f ) =
ω

k−1
f exp(−kω f )

k−kΓ(k)
. (2.5)

The interesting property of this one-parameter gamma distribution is the simplicity of mean

and variance. The mean of this variable ω f is 1, and the variance is 1
k . Thus ω f is the measure

on whether or not a particular cluster f is more frail relative to other clusters, and 1
k is the

variability of the cluster f in the population of clusters (Duchateau and Janssen, 2008).

The shared frailty model assumes that the same random effect is shared by all family

members within families so that the correlations between the event times of any two individuals

within the same family are the same. This is the main limitation of the shared-frailty model

because we assume the correlation of the event times between grandparents and grandchildren

to be the same with the correlation of the event times between parents and children within the

same family.
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2.4.2 Shared frailty competing risks model for clustered data

Competing risks analysis for cluster data is a special type of competing risk analysis,

where there is a correlation between the time-to-event outcomes within cluster (Zhou et al.,

2012). Cluster data often arise in the observational study and clinical trial as the part of study

design. Gorfine and Hsu (2011) introduced the frailty-based competing risks model for clus-

tered data. The estimation of model parameter can be done in either one-stage or two-stage

estimation. Hsu et al. (1999) introduced one stage estimation of model parameter in the semi-

parametric setting by maximizing the partial likelihood with respect to the baseline parameters

and βββ in correlated survival data. Hsu et al. (2004) proposed two-stage estimation method:

first, estimate the dependent parameter k and then, estimate the rest of the parameters in the

model assuming the dependence parameter is known.

Gorfine and Hsu (2011) introduced correlated frailties to account for three types of depen-

dence: dependence of failure times for the same event between individuals in the same cluster,

dependence of failure times for the different event between individuals in the same cluster, and

dependence of failure times for different failure types within the subject in the same cluster.

2.4.3 Intracluster correlation

Another interesting property of the shared frailty model is that there is a relationship

between Kendall’s τ (non parametric measure of correlation) and the variance of the frailty

under Gamma (k,1
k ) (Munda et al., 2012). Under Gamma (k,1

k ) and fixed covariates, Kendall’s

τ can be written as

τ =
1

1+2k
. (2.6)
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The large value of k represents the small familial correlation, and the small value of k represents

the high familial correlation. For example, for k=1, 2, 5, and 10 the corresponding Kendall’s τ

are 0.33, 0.20, 0.09, 0.04.

2.5 Missing data

Missing data is one of the statistical questions that we address in this thesis. To infer

missing data, the missing data mechanism has to be assumed (Ibrahim et al., 2012). Reasons

for missingness is an important factor to be considered to obtain valid statistical inference.

There are three classifications for missing data mechanisms such as missing completely at

random (MCAR), missing at random (MAR), and missing not at random (MNAR).

Data is considered to be MCAR if missingness does not depend on observed and unob-

served data. Under MCAR, using a complete-case analysis will not create bias in the parameter

estimation, however there is a loss in efficiency.

Data is considered to be MAR if the failure to observe data conditioning on the observed

data, the missingness is independent of unobserved data (Little and Rubin, 1987). In most cases

of MAR, complete-case analysis will create both bias and loss in efficiency when estimating

parameters.

Data is considered to be MNAR if the failure to observe the data does depend on both

observed data or unobserved data. Under MNAR, complete case analysis will create both bias

and loss of efficiency in estimating parameters. In addition, valid inference on MNAR requires

determination of the correct model for missing data mechanisms. Ibrahim et al. (2012) also

mentioned that the assumptions of missing data mechanism cannot be determined solely by the
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data at hand but sensitivity analysis can be conducted between MNAR and MAR.

Little (1992) introduced some methods to account for missing data in regression analysis;

but in this thesis, the attention is limited to 3 methods:

1. Complete-case analysis

2. Imputations

3. Maximum-likelihood

For complete-case analysis, MCAR assumption must be satisfied to obtain the unbiased

parameter estimate. Imputations and maximum-likelihood approach shared two assumptions:

The joint distribution of the data is multivariate normal and missing data mechanism is ignor-

able or missing at random (Pigott, 2001)

Complete-case analysis

Complete-case analysis is a method in which any cases with any missing values are sim-

ply discarded. This method is easy for implementation, but considering we have about 70 % of

missing data in the genetic mutation information of Lynch Syndrome patients, complete-case

analysis seems to be inappropriate for our study because we will lose all the information that

the patients with missing genotype mutation may have.

Imputations

Another method to account for missing data is through imputations based on least squares

on imputed data and multiple imputation. The least square method imputes missing data in
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three ways, by (1) unconditional mean, (2) conditional mean based on observed covariates X ,

(3) conditional mean based on observed covariates X and outcome value.

First, the unconditional mean imputation substitutes the missing value in X’s with its

unconditional sample means. This method yields an inconsistent estimate of µ , and under

MCAR the sample variance of Xmis is biased by a factor of (nmis−1)
n−1 . so that this method is not

generally recommended.

Second, the missing values in X’s can be imputed by the conditional mean of missing

values given the observed value of X’s, often estimated by linear regression on the observed X

from the complete case. This method inflates the residual variance and introduces a correlation

between the incomplete observations.

Third, the missing value of X can be imputed by the conditional mean imputation esti-

mated from linear regression on the observed Y ’s and X’s. There is a bias in the regression

estimates results from this methods, however there are some researchers Afifi and Elashoff

(1969) who proposed the bias corrected version of this method in the case of univariate X .

There is an issue when estimating standard error of the regression estimates from this method

as the standard error tends to be too small and the formula of the standard error are hard to

derive. To solve this issue, a bootstrap methodology is used to estimate the standard error of

the regression estimates.

As an extension of the least square method, which impute each missing value by a sin-

gle mean, the multiple imputation repeats multiple times the imputation by drawing missing

values from an appropriate model and the complete data analysis with each imputation substi-

tuted, then the parameter estimates are obtained from aggregating the values of the parameter

estimates across multiple imputations (Rubin, 1987). The main advantage of this method over
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the least square method, it takes into account the errors in the imputation. Thus, the standard

errors of the regression estimates is accounted for using multiple imputation.

Maximum likelihood

Instead of direct imputation of missing values, the maximum likelihood approach can

account for missing data by using the expectation and maximization (EM) algorithm (Little,

1992). There are two steps, the E-step and M-step, required for the EM algorithm. In the

E-step, construct the expected log-likelihood function using the joint probability summed over

all the possible values of the variable with missing data (in discrete case) or using the integrals

in the place of summation in the continous case and in the M-step obtain maximum likelihood

estimates for the parameter, then repeat the two-steps until convergence. Under the same as-

sumption about missing data mechanism, both the multiple imputations and the EM algorithm

approaches produce consistent, asymptotically efficient, and normal estimates (Allison, 2012).

There are two advantages of the multiple imputation approach compared to maximum

likelihood approach discussed by Dong and Peng (2013). First, when dealing with categorical

variables, the multiple imputation outperformed EM in efficiency for both small and large sam-

ple size (Peng and Zhu, 2008). Second, once missing data have been imputed, fitting multiple

model to the single data set does not require application of multiple imputation (Sinharay et al.,

2001). Since the missing data on genotype can be classified as binary variable, therefore we

limit our attention to multiple imputation in accounting for missing data.



Chapter 3

Statistical Models

The purpose of this chapter is to develop the cause-specific hazard model to account for

familial correlation with family design. This chapter is divided into five sections. Section

3.1 describes the competing risks model for clustered data. Likelihood constructions from

the cause-specific model to estimate the model parameters is provided in Section 3.2. The

estimation procedure to estimate model parameters and the penetrance function is provided in

Section 3.3. The description on the imputation method to account for missing data for data

analysis is provided in Section 3.4. Finally, the bootstrap method to obtain the variance of the

penetrance function and the relative risks for family data is described in Section 3.5.

3.1 Shared frailty competing risks model for clustered data

The cause-specific hazard model introduced in Chapter 2 only accounts for the competing

risks for the independent subjects. In this thesis, we introduce a shared frailty model for the

competing risks data from family based study design to account for familial correlation.

20
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Let Tf i be the minimum observed time to event for subject i in the family f where i =

1, . . . ,n f , f = 1, . . . ,n and δ f i be the event indicator for a specific cause of failure, which takes

value j, j = 1, . . . ,J. We let ω f denote the shared frailty for family f and X f i denote the vector

of covariates for individual i in family f .

The cause-specific hazard for cause j in family f given covariates X f i and shared frailty

ω f can be written as

λ f i j(t;X f i,ω f ) = lim∆t→0
Pr(t ≤ Tf i < t +∆t,δ f i = j|Tf i ≥ t;X f i,ω f )

∆t
.

Assuming proportional hazards, the cause-specific hazard model with frailty can be writ-

ten as

λ f i j(t;X f i,ω f ) = λ j0(t)ω f exp(βββ>j X f i),

where λ j0(t) is the baseline cause-specific hazard for cause j, where βββ j is a vector of regression

coefficients which correspond to log of the cause-specific hazard ratio.

The conditional cumulative cause-specific hazard of cause j for subject i in family f given

shared frailty ω f can be calculated as

Λ f i j(t;X f i,ω f ) =
∫ t

0
λ f i j(u;X f i,ω f )du.

The conditional overall survival function is obtained as

S f i(t;X f i,ω f ) = exp

{
−

J

∑
j=1

Λ f i j(t;X f i,ω f )

}
.

Thus, the conditional cause-specific cumulative incidence for cause j for subject i in fam-

ily f given shared frailty ω f can be obtained as

Ff i j(t;X f i,ω f ) =
∫ t

0
λ f i j(u;X f i,ω f )S f i(u;X f i,ω f )du

=
∫ t

0
λ f i j(u;X f i,ω f )exp

{
−

J

∑
j=1

Λ f i j(u;X f i,ω f )

}
du.
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The marginal cause-specific cumulative incidence function can be expressed as:

Ff i j(u,X f i) =
∫

∞

0
Ff i j(t;X f i,ω f )g(ω f )dω f

=
∫

∞

0

∫ t

0
λ f i j(u;X f i,ω f )exp

{
−

J

∑
j=1

Λ f i j(u;X f i,ω f )

}
dug(ω f )dω f .

We could reverse the order of integration by changing the region of integration as follows:

Ff i j(u,X f i) =
∫ t

0

∫
∞

0
λ f i j(u;X f i,ω f )exp

{
−

J

∑
j=1

Λ f i j(u;X f i,ω f )

}
g(ω f )dω f du

=
∫ t

0

∫
∞

0
λ j0(u)exp(βββ>j X f i)ω f exp{−

J

∑
j=1

Λ f i j(u;X f i;ω f )}g(ω f )dω f du

=
∫ t

0
λ j0(u)exp(βββ>j X f i)∫

∞

0
ω f exp{−

J

∑
j=1

Λ j0(u)ω f exp(βββ>j X f i)}g(ω f )dω f du

=
∫ t

0
λ j0(u)exp(βββ>j X f i j)(−1)d

φ
(d)

(
J

∑
j=1

Λ j0(u)exp(βββ>j X f i)

)
du.

There is no close form for the marginal cause-specific cumulative incidence, and therefore

numerical integration is used to estimate the cause-specific penetrance function.

3.2 Likelihood construction with ascertainment correction

According to the cause-specific hazard model given the frailty and observed covariates,

we obtain the likelihood function for family f by integrating over the frailty distribution (Choi,
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2012) as follows:

LC f (θθθ) =
∫ n f

∏
i=1

{
J

∏
j=1

λ f i j(t f i;X f i,ω f )
I{δ f i= j}

}
S f i(t f i;X f i,ω f )g(ω f )dω f

=
∫ n f

∏
i=1

[
J

∏
j=1
{λ j0(t f i)exp(βββ>j X f i)ω f }I{δ f i= j}

]
exp{−

J

∑
j=1

Λ f i j(t f i j;X f i;ω f )}g(ω f )dω f

=
n f

∏
i=1

J

∏
j=1
{λ j0(t f i)exp(βββ>j X f i)}I{δ f i= j}

∫ n f

∏
i=1

[
J

∏
j=1

(ω f )
I{δ f i= j}

]
exp{−

J

∑
j=1

Λ j0(t f i)ω f exp(βββ>j X f i)}g(ω f )dω f

=
n f

∏
i=1

J

∏
j=1
{λ j0(t f i)exp(βββ>j X f i)}I{δ f i= j}

∫
(ω f )

∑
n f
i=1 ∑

J
j=1 I{δ f i= j} exp{−ω f

n f

∑
i=1

J

∑
j=1

Λ j0(t f i)exp(βββ>j X f i)}g(ω f )dω f

=
n f

∏
i=1

J

∏
j=1
{λ j0(t f i)exp(βββ>j X f i)}I{δ f i= j}(−1)d f φ

(d f )

(
n f

∑
i=1

J

∑
j=1

Λ j0(t f i)exp(βββ>j X f i)

)
,

where φ(z) is the Laplace transform of the frailty distribution g(ω f ), φ (d)(z) is the dth deriva-

tive of φ(z) with respect to z, and d f =∑
n f
i=1 ∑

J
j=1 I{δ f i = j} and θθθ = {λ j0(t f i),βββ j, j = 1, · · · ,J, log(k)}.

The Laplace transform of the frailty distribution and dth derivative have the following forms

φ(z) =
∫

∞

0
exp(−ω f z)g(ω f )dω f

φ
(d)(z) = (−1)d

∫
ω

d
f exp(−ω f z)g(ω f )dω f .

For the data sampled through the affected probands, a correction for sampling bias is re-

quired to obtain the unbiased parameter estimates (Choi, 2012). In the case of prospective

ascertainment-corrected likelihood in the population based design (POP, POP+), the ascertain-

ment correction is done by the cumulative distribution function for the proband (i = p) who is

affected by any of the event j at her or his age at examination a f p. The ascertainment proba-
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bility for family f can be expressed as

P(Tf p < a f p;Xfp) =
∫
{1−S(a f p;Xfp,ω f )}g(ω f )dω f

= 1−
∫

exp{−
J

∑
j=1

Λ f p j(a f p;Xfp,ω f )}g(ω f )dω f

= 1−φ

(
J

∑
j=1

Λ j0(a f p)exp(βββ>j X f p)

)
= AC f (θθθ).

The ascertainment-corrected likelihood from n families can be obtained by dividing each

family’s likelihood contribution by its probability of being ascertained, which we express as:

Lc
C(θθθ) =

n

∏
f=1

LC f (θθθ)

AC f (θθθ)
. (3.1)

Refering to equation (3.1), we can calculate the ascertainment-corrected likelihood for all

the families as

Lc
C(θθθ) =

n

∏
f=1

∏
n f
i=1 ∏

J
j=1{λ j0(t f i)exp(βββ>j X f i)}I{δ f i= j}(−1)d f φ (d f )

(
∑

n f
i=1 ∑

J
j=1 Λ j0(t f i)exp(βββ>j X f i)

)
1−

∫
exp{−∑

J
j=1 Λ f i j(a f p;X f p,ω f )}g(ω f )dω f

=
n

∏
f=1

∏
n f
i=1 ∏

J
j=1{λ j0(t f i)exp(βββ>j X f i)}I{δ f i= j}(−1)d f φ (d f )

(
∑

n f
i=1 ∑

J
j=1 Λ j0(t f i)exp(βββ>j X f i)

)
1−φ{∑J

j=1 Λ j0(a f p)exp(βββ>j X f p)}
.

Then, the corresponding ascertainment-corrected log-likelihood for cause-specific hazard model

can be obtained as

lc
C(θθθ) =

n

∑
f=1
{logLC f (θθθ)− logAC f (θθθ)}

=
n

∑
f=1

n f

∑
i=1

J

∑
j=1

I{δ f i = j}{log(λ j0(t f i))+(βββ>j X f i)}

+
n

∑
f=1

log

{
(−1)d f φ

(d f )

(
n f

∑
i=1

J

∑
j=1

Λ j0(t f i)exp(βββ>j X f i)

)}

−
n

∑
f=1

log

{
1−φ

(
J

∑
j=1

Λ j0(a f p)exp(βββ>j X f p)

)}
.

For the special case of J=2, assuming λ j0(t f i) follows Weibull(λ j,ρ j), j=1,2, and the shared
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frailty ω f follows Gamma(k,1
k ) with φ(z)= (1+ z

k)
−k and φ (d)(z)= (−1)d (k+d−1)!

k!kd−1 (1+ z
k)
−k−d .

The ascertainment-corrected log-likelihood for all the families can be written as

lc
C(θθθ) =

n

∑
f=1

n f

∑
i=1

I{δ f i = 1}
(

log(λ1ρ1)+(ρ1−1) log(λ1t f i)+βββ
>
1 X f i

)
+

n

∑
f=1

n f

∑
i=1

I{δ f i = 2}
(

log(λ2ρ2)+(ρ2−1) log(λ2t f i)+βββ
>
2 X f i

)
+

n

∑
f=1

log{(k+d f −1)!}− log(k!)− (d f −1) log(k)

+
n

∑
f=1

(−k−d f ) log

(
1+

∑
n f
i=1(λ1t f i)

ρ1 exp(βββ>1 X f i)+∑
n f
i=1(λ2t f i)

ρ2 exp(βββ>2 X f i)

k

)

−
n

∑
f=1

log

1−

{
1+

(λ1a f p)
ρ1 exp(βββ>1 X f p)+(λ2a f p)

ρ2 exp(βββ>2 X f p)

k

}−k
 .

As shown in Section 3.1, there is no close form in estimating the penetrance function, therefore

numerical integration is used to estimate the cause-specific penetrance function.

3.3 Estimation procedures

In this thesis, we estimate the model parameters in two ways: one-stage and two-stage

estimations. In one-stage estimation, we estimate all the model parameters simultaneously by

maximizing the log likelihood constructed in Section 3.2. For the two stage estimation, we es-

timate the baseline parameters and regression coefficients at the first stage from the competing

risk model without frailty and then at the second stage, fixing those parameters estimate in the

first stage, we estimate the frailty parameter k. Then, we combine the estimated frailty param-

eter k to the rest of parameters to estimate the penetrance function in second stage. The main

advantage of two-stage estimation compared to the one-stage estimation is simple formulation

of the model and fast computation (Hsu et al., 2004).



26 CHAPTER 3. STATISTICAL MODELS

3.4 Missing data

The method to account for missing data is based on the multiple imputation method. In

this study, we implemented the carrierprob function from FamEvent package (Choi et al.,

2016) to compute mutation carrier probabilities for the individuals with missing genotypes

based on observed data specific to disease status, gender, and relationship to probands.

After we obtain the mutation carrier probabilities for individuals with missing genotype,

we sample carrier status with the carrier probability to impute the missing values. For the

purpose of obtaining reliable parameter estimates, we replicate the imputation 1000 times and

obtain average parameter estimates and penetrance estimates over 1000 imputed datasets. The

results of the parameter estimation from imputed data are presented in Chapter 6.

3.5 Variance estimation

One of the challenging aspect of clustering is the variance estimation of parameters. Usu-

ally the parameter estimate of θ̂θθ obtained from maximizing the ascertainment corrected log-

likelihood is a consistent estimator of θθθ for correlated cluster failure time, however the hessian

matrix does not provide the correct estimate of the variance of the parameter θ̂θθ because of the

violation of independence assumption (Peng et al., 2007). Therefore we introduce bootstrap-

based variance estimator to correctly estimate the variance of the parameters
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3.5.1 Bootstrap-based variances estimation

We employ cluster bootstrap to estimate the variance of the penetrance function and the

relative risks. The cluster boostrap refers to the technique of the sampling which resamples the

cluster with replacement and include all the members in the cluster for analysis.

For B number of bootstraps resamples, the cause-specific hazard model for event j with

P covariates yields a B×P matrix of regression coefficients. For each coefficient β jp, j =

1, · · ·J, p = 1, · · ·P, the bootstrap-based SE (SEB) is estimated as standard deviation of the log

hazard ratio obtained through bootstraps ˆβ jp
∗1
, ..., ˆβ jp

∗B

SEB =

{
∑

B
b=1(

ˆβ jp
∗b− ˆβ jp

∗∗
)2

B−1

}1/2

, (3.2)

where β̂ ∗∗jp is the mean of the log hazard ratio obtained through bootstraps. Assuming Wald

Confidence Interval justified through normality assumption under Central Limit Theorem, the

95 % CI is constructed as ˆβ jp± 1.96SEB where ˆβ jp is the point estimate of the relative risks

from the original data (Xiao and Abrahamowicz, 2010).

Similarly for the penetrance estimate for event j, the bootstrap-based SE (SEB) is es-

timated as the standard deviation of the penetrance estimates obtained through bootstraps

P̂j(70;X)∗1, · · · , P̂j(70;X)∗B with fixed covariates X

SEB =

[
∑

B
b=1{P̂j(70;X)∗b− P̂j(70;X)∗∗}2

B−1

]1/2

, (3.3)

where P̂j(70;X)∗∗ is the mean of the penetrance estimates obtained through bootstrap. As-

suming Wald Confidence Interval justified through normality assumption under Central Limit

Theorem, the 95 % CI is constructed as P̂j(70;X)±1.96SEB where P̂j(70;X) is the point esti-

mate of the penetrance estimated from the original data.

The main advantages of bootstraps methods in estimating variance are avoiding distri-
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butional assumptions of the model and assuming only exchangeability of clustered being re-

sampled and it can approximate variance in a complex analysis of clustered data (Xiao and

Abrahamowicz, 2010).



Chapter 4

Design of the Simulation Study

The purpose of this chapter is to describe the design of the simulation study for estimation

of the penetrance function and relative risks accounting for the clustered competing risks. The

simulation study is designed with the guidelines provided by Burton et al. (2006). There are

four sections in this chapter. The objectives for this simulation study are provided in Section

4.1. The study design and data generation methods used in the simulation study are provided in

Sections 4.2 and 4.3. Finally the evaluation criteria for the methods proposed in the simulation

study are summarized in Section 4.4.

4.1 Objectives

The two objectives of the simulation study are:

1. To assess the performance of the cause-specific hazard model with frailty in estimating

the penetrance by age 70 and relative risks associated with mutated genes and gender

29
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when strong to low correlation is present within families.

2. To evaluate the performance of the following modelling approaches in the estimation of

penetrance and relative risks for family data in the presence of competing risks.

Four models are considered:

Model1: Competing risks model with frailty using one stage estimation approach,

Model2: Competing risks model with frailty using two-stage estimation approach,

Model3: Competing risks model without frailty,

Model4: Shared frailty model without competing events taken into account.

In Model 1, all the parameters in the model are estimated simultaneously, and the pene-

trances at given ages are estimated by plugging the model parameter estimates into the pene-

trance function. In Model 2, the two-stage estimation approach is employed for the competing

risks model with frailty: in the first stage, estimate the the baseline parameters and regression

coefficients from Model 3, then in second stage, estimate the frailty parameter by fixing the

parameters estimated from the first stage. In Models 3 and 4, all the parameters in the model

are estimated simultaneously. For Model 4 the competing cause of failure (OLS) outome is

considered as the censored outcomes.
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Table 4.1: The choices of k parameter with its corresponding Kendall’s τ

k Kendall’s τ

1 0.33

2 0.20

5 0.09

10 0.04

4.2 Selection of parameter values

We generate event times for two competing events based on the cause-specific hazard

models with frailty and two binary covariates, xsex and xgen,

λ1(t|X,ω f ) = λ10ω f exp(β1sexxsex +β1genxgen)

λ2(t|X,ω f ) = λ20ω f exp(β2sexxsex +β2genxgen),

where λ10 = λ1ρ1(λ1t)ρ1−1 and λ20 = λ2ρ2(λ2t)ρ2−1 are the baseline hazard functions for

event 1 and event 2, respectively and ω f is the family-specific frailty that follows the gamma

distribution with mean 1 and variance 1/k. The nine parameters involved in the model are

θθθ = {λ1,ρ1,λ2,ρ2,β1sex,β1gen,β2sex,β2gen,k}.

The parameter values used in the simulation study are based on the parameter estimates

from LS family data set introduced in Chapter 1. We vary the choice of k parameter into 1, 2,

5, and 10, which represents high to low familial residual correlations; the corresponding value

of Kendall’s τ is summarized in Table 4.1. The sizes of the families are considered 500, 779,

and 1000 to investigate how all the statistical models performed under different family sizes.

Thus, there are 12 scenarios considered for four distinct k values and three different family

sizes. For each scenario, we generated 500 datasets and analyzed with the four models due to

model complexity.
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Table 4.2: The parameters values used to generate Time to Event data in the Cause-Specific

Hazard Model

Parameters Values

λ1 0.0042

ρ1 2.40

λ2 0.0092

ρ2 2.92

β1sex 0.41

β1gen 2.86

β2sex -0.72

β2gen 1.27

4.3 Data generation

4.3.1 Cause-specific times to event data

The generation of competing risks data based on the cause-specific hazard model follows the

algorithm proposed by Beyersmann et al. (2009):

1. Specify the cause-specific hazard functions λ f i1(t;X f i,ω f ) and λ f i2(t;X f i,ω f ) as a func-

tion of frailty and covariate values.

2. Simulate survival time T with all-cause specific hazard λ f i1(t;X f i,ω f )+λ f i2(t;X f i,ω f )

given the frailty and covariates values.

3. For a given simulated survival time T run a binomial or multinomial (if we have more
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than 1 competing event) experiment which is decided by probability of

λ f i1(t;X f i,ω f )

λ f i1(t;X f i,ω f )+λ f i2(t;X f i,ω f )
. (4.1)

4. Generate censoring time C.

In terms of generating event times with hazard rate λ (t|X f i)= λ f i1(t;X f i,ω f )+λ f i2(t;X f i,ω f )),

we use the inversion method (Bender et al., 2005).

4.3.2 Family data

In simulating family data, we generated the family structure consists of three generations

of family members with two parents and two to five offsprings, with one of the offsprings to

be proband. For each offspring has a spouse and they have two to five children. The gender of

each members were generated with equal probability of being a male and female. The age of

examination of the members from the first generation was generated using normal distribution

with the mean of 65 and variance of 2.5. The age of examination of the members from the

second generation was generated using the normal distribution with the mean of 45 and vari-

ance of 2.5. For each family the shared frailty was generated from Gamma distribution with a

given value of the frailty parameter k. For the genotype variable, we generated the genotype of

the probands first based on gender, age at examination, disease status, and shared frailty then

based on proband’s genotype, we generated the genotype for the rest of the family members.

We generated time-to-onset for probands based on the competing risks model but adjusting the

proband is affected before the age at examination. Then, we generated the age of onset for the

rest of the family members unconditionally with the minimum age onset of 14 years and max-

imum age for follow up of 90 years. Finally, we determined the disease status by comparing

the age at onset with the age of examination and if the age at onset is smaller than the age of
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examination then equation (4.1) was used to determine disease status of 1 or 2. In this thesis,

we modified the “simfam” commands from the FamEvent package (Choi et al., 2016) in R to

generate the familial time-to-event data described above.
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4.4 Evaluation criteria

We evaluate and compare the accuracy and precision for the penetrance and relative risks

estimators from the four statistical models: the competing risks model with one-stage estima-

tion (Model 1), the competing risks with two stage estimation (Model 2), the competing risks

model without shared-frailty (Model 3), and the shared-frailty model without competing risks

(Model 4).

4.4.1 Mean bias

The bias of an estimate is computed as the difference between the estimate and the true

value. Then, we summarize the mean bias over simulations.

4.4.2 Empirical standard error

The empirical standard errors are obtained by the sample standard deviation of the esti-

mates from 500 simulations.



Chapter 5

Results of the simulation study

In this chapter we focus our attention on the simulation results based on 779 families, as

our Colon CFR data includes 779 families; they are summarized in Tables 5.1-5.3 and graphi-

cally in Figures 5.1–5.5. The simulation results based on 500 and 1000 families are presented in

Tables A.1-A.7 in the Appendix. Section 5.1 describes the performance of different statistical

models in estimating the relative risks and log(k) parameter. Section 5.2 describes the perfor-

mance of different statistical models in estimating the colorectal cancer (CRC) penetrance at

age 70.

5.1 Relative risks

The results of the simulation studies are summarized in Table 5.1 to evaluate the perfor-

mance of various models under different familial correlations for estimating the log relative

risks β1gen,β1sex,β2gen,β2sex and the log-transformed frailty parameter log(k). The accuracy

and precision of the parameter estimators from different models are also graphically displayed

36
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in Figures 5.1 – 5.3. The four statistical models are the competing risks model with frailty

using one stage estimation (Model 1), the competing risks model with frailty using two-stage

estimation between k and the rest of the parameters (Model 2), the competing risks model

without frailty (Model 3), and the shared frailty model without competing risks (Model 4).

Under strong familial correlation (k = 1 or k = 2), Model 2 performed the best in estimat-

ing the log of relative risks of major gene towards CRC (β1gen) with bias of −0.09 or −0.01

with the standard error of 0.16. Model 2 also performed the best in estimating the log of relative

risks of gender towards CRC (β1sex) with bias of 0.05 and standard error of 0.09, compared to

Model 1 (bias of 0.07 and standard error of 0.14). If we ignored the shared-frailty (Model 3), it

provided similar estimation compared to Model 2. However, if we ignored the competing risks,

it provided less precise estimate compared to Model 2. When estimating the frailty parameter

k, Model 1 outperformed all the other statistical models with bias of −0.21 and standard error

of 1.27. When estimating the baseline parameter shown in Table 5.3, Model 1 failed to capture

the accurate estimate of both λ1 and λ2 parameter, with the bias of−0.002 and−0.0035 which

is almost three times of Model 2. This might be due to Model 1 had to estimate 9 parameters

simultaneously while Model 2 had to estimate those 9 parameters in 2 stages. Therefore Model

1 may have some issue in estimating the penetrance function because of relatively high bias in

baseline parameter under strong familial correlation.

Under weak familial correlation (k = 5), Model 2 outperformed all the other statistical

models in estimating both the log of the relative risks of covariates towards CRC (β1gen, β1sex)

with bias of 0.03 and −0.02 and the standard error of 0.09 and 0.16. Model 2 also performed

well in estimating the log of the relative risks of covariates towards OLS (β2gen, β2sex) with the

bias of 0.05 and 0.03. However Model 1 still outperformed all the other statistical models in

estimating k parameter with bias of 1.41 and the standard error of 26. Interestingly, Model 1
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can capture the accurate and precise estimate of both λ parameter with bias of −0.0005 and

−0.0009. If we ignored shared-frailty (Model 3), it performed relatively similar to compet-

ing risks with two-stage estimation in estimating β1gen, β1sex, β2sex, β2gen with similar bias

and slightly higher standard error. If we ignored the competing risks (Model 4), it failed to

accurately and precisely estimate β1gen, β1sex, β2sex, β2gen.

In general, as k increases, the standard error of all the parameters tend to decrease.

These results hold true in 3 different family sizes: 500, 779, and 1000, but generally the

empirical standard error is lower as the family sizes increases.

5.2 Penetrance estimation

The penetrance functions for the colorectal cancer were estimated using four different

statistical models: The competing risks model with frailty using one stage estimation (Model

1), the competing risks model with frailty using two-stage estimation between k and the rest of

the parameters (Model 2), the competing risks model without frailty (Model 3), and the shared

frailty model without competing risks (Model 4).

The simulation results in terms of accuracy and precision for estimating the penetrance

function are summarized in Table 5.2 and graphically displayed in Figure 5.4–5.5. Under

strong familial correlation (k = 1 or k = 2), the competing risks model with frailty using one

stage estimation (Model 1) failed to capture the accurate estimate of the colorectal cancer

penetrance by age 70 for both male and female carriers; biases for male and female carriers

under k = 1 are −0.228 (SE = 0.099) and −0.164 (SE = 0.062) and under k = 2 are −0.145

(SE = 0.06) and −0.110 (SE = 0.037). The competing risks model with frailty using two-
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stage estimation between k and the rest of the parameters (Model 2) performed the best in

estimating the colorectal cancer by age 70 with bias for male and female carriers CRC:−0.016

(SE = 0.018) and −0.027 (SE = 0.014), respectively. If we ignored the frailty (Model 3), the

statistical model can capture the accurate penetrance estimate for male and female carriers

with a slightly larger empirical standard error. If we ignored the competing risks, the empirical

standard error for all the penetrance estimate increases.

Under weak familial correlation (k = 5 or k = 10), the competing risks model with frailty

using two-stage estimation between k and the rest of the parameters (Model 2) still performed

the best in estimating the colorectal cancer for the male and female carriers; biases for male and

female carriers under k = 5 are−0.020 (SE = 0.020) and−0.031 (SE = 0.016) and under k = 10

are −0.020 (SE = 0.021) and −0.031 (SE = 0.018), respectively. However, the competing

risks model with frailty using one stage estimation (Model 1) performed reasonably well in

estimating the CRC for male and female carriers; biases for male and female carriers under

k = 5 are −0.069 (SE = 0.031) and −0.063 (SE = 0.022) and under k = 10 are −0.050 (SE =

0.021) and −0.051 (SE = 0.020), respectively.

In general, as k increases, all the penetrance estimates show some decrease in bias and

standard error. These results hold true in 3 different family sizes: 500, 779, and 1000, but

generally the empirical standard error is lower as the family sizes increases.
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Figure 5.1: The accuracy and precision in the estimation of the log-relative risks towards CRC

based on n = 779 families using 4 different statistical models; the point and the interval esti-

mates of the bias were based on the simulation study.
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Figure 5.2: The accuracy and precision in the estimation of the log-relative risks towards OLS

based on n = 779 families using 3 different statistical models; the point and the interval esti-

mates of the bias were based on the simulation study.
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Figure 5.3: The accuracy and precision in the estimation of the log-transformed frailty pa-

rameter, log(k) based on n = 779 families using Model 1 (left), Model 2 (mid), and Model 4

(right). The blue diamond inside the boxplot represents the mean bias of log(k) and the black

line inside the box represents the median bias of log(k).
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Figure 5.4: The accuracy and precision in the CRC penetrance estimation at age 70 based on

n = 779 families using 4 different statistical models; the point and the interval estimates of the

bias were based on the simulation study.
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Figure 5.5: The accuracy and precision in the OLS penetrance estimation at age 70 based on

n = 779 families using 3 different statistical models; 0oint and the interval estimates of the bias

were based on the simulation study.
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Table 5.1: Mean bias and empirical standard error (SE) for log relative risk β ′s and frailty pa-

rameter log(k) estimates from various assumed models (Model1–Model4) for family data sim-

ulated in the presence of competing risks under different familial correlations (k = 1,2,5,10);

for each assumed k, n = 779 families were simulated.

True Model 1 Model 2 Model 3 Model 4

Value Bias SE Bias SE Bias SE Bias SE

k = 1 β1sex 0.41 0.07 0.14 0.05 0.09 0.05 0.09 0.03 0.12

β1gen 2.86 0.14 0.35 −0.09 0.16 −0.09 0.16 −0.01 0.18

β2sex −0.72 0.07 0.13 0.05 0.10 0.04 0.10 − −

β2gen 1.28 0.05 0.16 −0.12 0.11 −0.12 0.12 − −

log(k) 0 −1.11 2.22 1.25 0.12 − − 1.31 0.67

k = 2 β1sex 0.41 0.06 0.10 0.05 0.09 0.05 0.09 0.03 0.11

β1gen 2.86 0.10 0.22 −0.01 0.16 −0.01 0.16 0.04 0.18

β2sex −0.71 0.06 0.11 0.05 0.10 0.05 0.10 − −

β2gen 1.28 0.07 0.12 −0.03 0.11 −0.03 0.10 − −

log(k) 0.69 −0.35 0.57 1.07 0.18 − − 1.80 2.47

k = 5 β1sex 0.41 0.06 0.09 0.06 0.09 0.06 0.09 0.02 0.11

β1gen 2.86 0.08 0.16 0.05 0.16 0.05 0.16 0.11 0.18

β2sex −0.72 0.05 0.10 0.05 0.10 0.05 0.10 − −

β2gen 1.28 0.08 0.11 0.03 0.11 0.03 0.11 − −

log(k) 1.61 -0.07 0.53 1.05 1.11 − − 3.48 3.88

k = 10 β1sex 0.41 0.06 0.09 0.06 0.09 0.06 0.09 0.03 0.11

β1gen 2.86 0.09 0.16 0.08 0.16 0.08 0.17 0.13 0.18

β2sex −0.72 0.05 0.10 0.05 0.10 0.05 0.10 − −

β2gen 1.28 0.08 0.11 0.05 0.11 0.05 0.11 − −

log(k) 2.30 < 0.01 1.62 1.87 3.37 − − 4.66 4.19
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Table 5.2: Mean Bias and empirical standard error (SE) for penetrance estimates by age 70

for mutation carriers specific to gender and competing event from various assumed models

(Model1–Model4) for family data simulated in the presence of competing risks under different

familial correlations (k = 1,2,5,10); for each assumed k, n = 779 families were simulated;

P1(X) represents the gender-specific penetrance estimate by age 70 for the first colorectal can-

cer with X taking male (M) and female (F) and P2(X) is the corresponding penetrance estimate

for the other LS related cancer.

True Model 1 Model 2 Model 3 Model 4

Value Bias SE Bias SE Bias SE Bias SE

k = 1 P1(M) 0.402 −0.228 0.099 −0.016 0.018 0.012 0.027 0.010 0.032

P1(F) 0.273 −0.164 0.062 −0.027 0.014 −0.009 0.020 0.023 0.031

P2(M) 0.115 −0.053 0.037 0.018 0.010 0.028 0.011 − −

P2(F) 0.242 −0.122 0.069 0.023 0.016 0.043 0.022 − −

k = 2 P1(M) 0.446 −0.145 0.06 −0.021 0.019 −0.001 0.021 0.031 0.033

P1(F) 0.302 −0.110 0.037 −0.030 0.015 −0.017 0.016 0.043 0.020

P2(M) 0.129 −0.023 0.021 0.018 0.011 0.026 0.012 − −

P2(F) 0.271 −0.063 0.039 0.022 0.017 0.036 0.018 − −

k = 5 P1(M) 0.480 −0.069 0.031 −0.020 0.020 −0.010 0.020 0.039 0.029

P1(F) 0.325 −0.063 0.022 −0.031 0.016 −0.024 0.017 0.058 0.029

P2(M) 0.140 0.004 0.013 0.020 0.012 0.024 0.012 − −

P2(F) 0.293 −0.009 0.23 0.024 0.017 0.032 0.018 − −

k = 10 P1(M) 0.493 −0.050 0.021 −0.020 0.021 −0.014 0.021 0.043 0.028

P1(F) 0.333 −0.051 0.020 −0.031 0.018 −0.028 0.018 0.059 0.029

P2(M) 0.144 0.011 0.014 0.021 0.013 0.023 0.013 − −

P2(F) 0.302 0.006 0.022 0.026 0.019 0.030 0.019 − −
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Table 5.3: Mean bias and empirical standard error (SE) for baseline parameter estimates from

various assumed models (Model1–Model4) for family data simulated in the presence of com-

peting risks under different familial correlations (k = 1,2,5,10); for each assumed k, n = 779

families were simulated.

True Model 1 Model 2 Model 3 Model 4

Value Bias SE Bias SE Bias SE Bias SE

k = 1 λ1 0.0042 −0.002 0.0009 −0.0007 0.0003 −0.0007 0.0004 −0.0008 0.0003

ρ1 2.40 0.05 0.10 −0.09 0.06 − 0.09 0.08 −0.09 0.07

λ2 0.0092−0.0035 0.0017 −0.001 0.0005 0.001 0.0005 − −

ρ2 2.92 −0.15 0.13 −0.31 0.08 −0.31 0.10 − −

k = 2 λ1 0.0043−0.0009 0.00048 −0.00047 0.00032 −0.00047 0.00032 −0.0005 0.0003

ρ1 2.40 0.06 0.08 −0.04 0.06 −0.04 0.06 −0.05 0.07

λ2 0.0092−0.0019 0.0005 −0.0008 0.0004 0.0008 0.0004 − −

ρ2 2.92 −0.15 0.11 −0.25 0.09 −0.24 0.09 − −

k = 5 λ1 0.0042−0.0005 0.0003 −0.0003 0.0003 −0.0003 0.0003 −0.0004 0.0004

ρ1 2.40 0.05 0.07 0.01 0.06 0.01 0.06 −0.01 0.07

λ2 0.0092−0.0009 0.0005 −0.0005 0.0005 −0.0006 0.0005 − −

ρ2 2.92 −0.15 0.09 −0.20 0.09 −0.20 0.09 − −

k = 10 λ1 0.0042−0.0004 0.0003 −0.0003 0.0003 −0.0003 0.0003 −0.0003 0.0004

ρ1 2.40 0.05 0.06 0.03 0.06 0.03 0.06 0.04 0.07

λ2 0.0092−0.0007 0.0004 −0.0004 0.0004 −0.0004 0.0004 − −

ρ2 2.92 −0.14 0.09 −0.17 0.09 −0.17 0.09 − −



Chapter 6

Application to Lynch Syndrome Families

This chapter describes the analysis of LS family data identified from Colon Cancer Family

Registry (Colon CFR). Section 6.1 provides some background information about the Colon

Cancer Family. Section 6.2 provides the descriptive analysis from the data obtained from Colon

Cancer Family. Section 6.3 provides model assumption for the baseline of the cumulative

hazard. Section 6.4 provides the parameter estimation using four different statistical models.

Section 6.5 provides the estimation of relative risks towards the development of CRC or OLS

based on four statistical models. Section 6.6 provides the estimation of the penetrance by age

70 for Lynch Syndrome family members. Section 6.7 provides the summary of the results.

6.1 Motivations based on LS family data

Family studies have established the genetic research on colorectal cancer. These fam-

ily studies especially the multiple-case families discovered the colorectal cancer susceptibility

syndromes formally known as Lynch Syndrome (LS). The association of genetic towards the

48
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Lynch Syndrome is evident with the high-penetrance identified in kindreds as mutation in DNA

missmatch repair (MMR). Despite the mutations in MMR gene is the established cause of col-

orectal cancer, there are many questions remain to be answered in particular the effect of age

and sex towards colorectal cancer. The Colon CFR build and maintain high-risks colorectal

cancer patients and families record including epidemiologic risk factors, biological specimens

and follow up the participants for colorectal cancer outcome (Newcomb et al., 2007).

Lynch Syndrome data from Colon CFR data contains information about the presence of

colorectal cancer, and OLS related cancers. Thus it is a perfect scenario for competing risks

analysis. In this thesis, we are interested in estimating the penetrance of colorectal cancer

(CRC) at age 70 in the presence of other related Lynch Syndrome cancer (OLS). We considered

two important covariates: gender and mutation carrier status. The aim of the analysis is to apply

our proposed model to estimate the penetrance function of CRC in the presence of OLS as the

competing risks along with the relative risks of developing CRC and OLS based on gender and

mutation carrier status.

6.2 Data description

This section provides some information about data description of the Lynch Syndrome

family data and some basic descriptive analysis for the data.

The Lynch Syndrome family data from Colon CFR consists of 7657 Individuals from 779

LS families. This data contains missing values, especially the indicator variable for the genetic

mutation. Table 6.2 summarizes 7657 Lynch Syndrome family members based on the events

of interests, 1305 developed CRC (738 males and 567 females), and 962 developed OLS (268
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Table 6.1: The contingency table summarizing the incidence of colorectal cancer (CRC) and

other Lynch Syndrome Cancer (OLS) and no event.

CRC OLS No event

Male Female Male Female Male Female

Mut=1 430 351 53 216 223 316

Mut=0 9 13 15 33 330 418

Mut=N/A 299 203 200 345 2257 1928

Total 738 567 268 594 2810 2662

males and 594 females). As shown in Table 6.1, we have 502 CRC cases where the genetic

mutation information is missing, and 545 OLS cases where the genetic mutation information

is missing. The mean age for CRC is about 45.18 years with standard deviation of 13 years,

and the mean age for the OLS is about 51.52 years with standard deviation of 14 years. The

missing data of genetic mutation does not depend on gender because the missing rate between

male and female is similar. The missing data of genetic mutation may be depend on the event

because the missing rate of CRC is roughly 38% and the missing rate of OLS is roughly 63%

and the missing rate of no event is roughly 76%. However, we are not sure if the missing data

in genetic mutation depends on the status of genetic mutation itself. Thus, we assume missing

at random (MAR) as the missing data mechanism in this thesis.

6.3 Baseline model assumptions

In this thesis, we employ the cause-specific hazard model as a method to account for

competing risks. In order to obtain a reliable result from the cause-specific hazard model, we

have to check the distributional assumption with plots based on the observed data.
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Figure 6.1: The log-cumulative hazard(Y-axis) and the time in log-scale(X-axis) for Colorectal

Cancer and Other Lynch Syndrome cancers.
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Figure 6.1 shows an approximate linear relationship between the log of cumulative hazard

with respect to log(T ), indicating that it is reasonable to assume that the baseline hazards

follow Weibull distribution. Also, there is an approximate parallel pattern between the male

carriers and female carriers beyond log(T ) = 3 making it reasonable to satisfy the proportional

hazard assumption.

6.4 Model specifics

We fitted the data and estimated the penetrance function by age 70 and the relative risks

using 4 different statistical models: The competing risks with shared-frailty estimated in one

stage (Model 1), the two-stage estimation between k and the rest of the parameters (Model 2),

the shared-frailty without competing risks (Model 3), and the competing risks model without

frailty (Model 4). To account for the missing genotype, the multiple imputation methods based

on the observed data is used. The empirical standard errors from all the parameters were ob-

tained through 1000 bootstraps runs. Results of the relative risks and the penetrance estimation

are presented in Table 6.2 and in Figure 6.2.

In this thesis, we are interested in estimating β1sex, β1gen, β2sex, and β2gen, where β1sex

corresponds to log of relative risks between male and female in developing CRC, β1gen cor-

responds to log of relative risks between the mutation carriers and noncarriers in developing

CRC, and β2sex and β2gen are the corresponding log relative risks for developing OLS cancer.

We are also interested in estimating the penetrance function P1(X) which correspond to

gender specific penetrance estimate by age 70 for first CRC with X taking male (M) and female

(F) and P2(X) which correspond to gender specific penetrance estimate by age 70 for other LS
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(OLS) related cancer with X taking male(M) and female(F). We obtain the penetrance estimates

by plugging the parameter estimates into the penetrance function derived in Section 3.2.
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Table 6.2: Parameter estimation from the fitted data and the bootstrap-based standard error

(SEB) obtained through 1000 bootstrap runs. P1(X) and P2(X) represent the penetrance esti-

mates of CRC and OLS, respectively, by age 70 for a given gender X . −loglik represents the

negative log-likelihood value at maximum.

Parameter Model 1 Model 2 Model 3 Model 4

Est SEB Est SEB Est SEB Est SEB

λ1 0.0042 0.00023 0.0040 0.00027 0.0040 0.00020 0.0033 0.00021

ρ1 2.40 0.047 2.28 0.041 2.28 0.040 2.25 0.047

λ2 0.0092 0.00025 0.0091 0.00025 0.0091 0.00025 − −

ρ2 2.92 0.081 2.78 0.073 2.78 0.073 − −

β1sex 0.41 0.066 0.42 0.063 0.41 0.061 0.65 0.081

β1gen 2.86 0.012 2.72 0.011 2.72 0.011 2.59 0.013

β2sex -0.72 0.087 -0.71 0.082 -0.71 0.081 − −

β2gen 1.27 0.095 1.15 0.088 1.15 0.085 − −

log(k) 1.67 0.21 1.83 0.32 − − 0.85 0.20

−loglik 11409 − 11415 − 11444 − 6195 −

Penetrance Estimates

P1(M) 0.4799 0.018 0.4677 0.031 0.4978 0.018 0.4051 0.021

P1(F) 0.3248 0.012 0.3167 0.022 0.3343 0.012 0.2475 0.015

P2(M) 0.1414 0.010 0.1369 0.013 0.1445 0.010 − −

P2(F) 0.2959 0.014 0.2838 0.021 0.2934 0.014 − −
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6.5 Relative risks

The relative risks of gene and sex for CRC and OLS were estimated using 4 different

statistical models; the results are summarized in Table 6.2. Hazard ratio (HR) is the relative

risk obtained through exponential transformation of the regression coefficient in the model.

The competing risks with shared-frailty estimated in one-stage (Model 1) estimated the log-

transformation of relative risks of sex and gene towards CRC as β1sex = 0.41 (SE = 0.066)

and β1gen = 2.86 (SE = 0.012) and OLS as β2sex = −0.72 (SE = 0.087) and β2gen = 1.27 (SE

= 0.095), respectively. The result indicates that being a mutation carrier increases the cause-

specific hazard of developing colorectal cancer by approximately 17.5 times compared to the

non-mutation carriers adjusting for gender and accounting for familial correlation (HR=17.46,

95% CI between 17.05 and 17.87). Also, being a male, compared to a female, increases the

cause-specific hazard of developing colorectal cancer by 1.5 times adjusting for mutation sta-

tus and incorporating familial correlation (HR=1.51, 95% CI between 1.32 and 1.71). The

result shows that being a male, compared to a female, has a protective effect towards the OLS

cancer by reducing the risks of developing OLS adjusting for mutation status and incorpo-

rating familial correlation by 51% (HR=0.49, 95% CI between 0.41 and 0.58). Also being a

mutation carrier, compared to the non-mutation carrier, increases the risks of developing OLS

cancer by 3.5 times adjusting for gender and incorporating familial correlation (HR = 3.56,

95% CI between 2.96 and 4.29). The estimate of frailty parameter k is around 5, which cor-

respond to Kendall’s tau around 0.09 indicating low familial correlation. The competing risks

model without shared-frailty (Model 3) slightly underestimated relative risks of gene towards

CRC and OLS compared to Model 1 with β1gen = 2.72 (SE = 0.011) and β2gen = 1.15 (SE

= 0.085), respectively. However, the relative risks of sex towards CRC and OLS remains the

same, however model 3 slightly overestimated the frailty parameter k to be around 6, which
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Figure 6.2: The penetrance functions estimated for CRC (left) and OLS (right) based on the

competing risks model with frailty using two-stage estimation; 95% CIs at age 70 for male and

female carriers are displayed.
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in turns underestimated the kendall’s tau to be around 0.08. If we ignored the competing risks

(Model 4), the relative risk of gene towards CRC was underestimated with β1gen = 2.59 (SE

= 0.013). Also, the frailty parameter k was underestimated to be around 2, which overesti-

mated the Kendall’s tau to be around 0.20. However, the relative risk of sex towards CRC was

overestimated with β1sex = 0.65 (SE = 0.081).
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6.6 Penetrance estimation

As shown in Table 6.2, the penetrance estimates at age 70 are similar for Model 1 and

Model 2. Refering to Figure 6.2, and Table 6.2 the CRC penetrance estimate for male carriers

from two-stage estimation was estimated at 0.468 with the standard error of 0.031 (95 % CI of

0.407 to 0.529). The CRC penetrance estimate for female carriers from two-stage estimation

was estimated at 0.317 with the standard error of 0.022 (95% CI of 0.274 to 0.360). The OLS

penetrance estimate for male carriers from two-stage estimation was estimated at 0.137 with

the standard error of 0.013 (95% CI of 0.111 to 0.162). The OLS penetrance estimate for

female carriers from two-stage estimation was estimated at 0.284 with the standard error of

0.021 (95% CI of 0.243 to 0.325). If we ignored the familial correlation or frailty (Model 3),

the penetrance estimates were similar to Model 1 with similar precision. This is because the

estimate of the frailty parameter k is around 5 which corresponds to low familial correlation

with Kendall’s τ of 0.09. If we ignored the competing risks model (Model 4), the penetrance

estimates were underestimated with worse precision compared to Model 1.

6.7 Summary

In summary, both gender and genetic mutation are important covariates in estimating the

cause-specific hazard and cumulative incidence of colorectal cancer and other OLS cancer. If

we ignored shared-frailty (Model 3) the model parameter estimates and the penetrance esti-

mates were similar to the competing risks model because of low familial correlation. If we

ignored the competing risks (Model 4), the model parameter estimates and the penetrance esti-

mates were generally underestimated and had higher standard error.
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Discussion

7.1 Summary

This thesis presented the cause-specific hazard model to account for competing risks,

introduced frailty concept to account for familial correlation, used multiple imputation as a

method to account for missing data, and use ascertainment correction to account for study

design. Then, we compared four different statistical models in estimating the penetrance func-

tions by age 70 and the log of relative risks towards CRC in the presence of competing risks

in the simulation studies. The simulation results show that under strong familial correlation

(k = 1 or k = 2), the competing risks model with two-stage estimation (Model 2) outperformed

all the other models in estimating the log of relative risks towards CRC (β1sex, β1gen). The

advantage of this method is reflected further in the estimation of the penetrance function by

age 70 by providing almost the unbiased estimates. Under moderate to weak familial cor-

relation (k = 5 or k = 10) however, the competing risks model with frailty using one-stage

estimation (Model 1) performed relatively well in estimating the penetrance function by age
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70. Therefore we recommend Model 2 if the research objective is to accurately and precisely

estimating the penetrance function of the event interest along with the competing events un-

der strong familial correlation. However, under weak familial correlation, the competing risks

model with frailty using one-stage estimation (Model 1) and the competing risks model with-

out shared frailty (Model 3) can be used as an alternative method to two-stage estimation when

estimating the penetrance functions of the event of interest and the competing events. If we ig-

nore shared-frailty (Model 3), the empirical standard errors for all the penetrance estimates are

higher compared to the two-stage estimation under strong familial correlation (k = 1 or k = 2).

As a result, Model 3 failed to precisely estimate the penetrance functions under strong familial

correlation. If we ignore the competing risks (Model 4), the bias and empirical standard errors

for all the penetrance estimates are higher compared to the two-stage estimation for all k. As

a result, Model 4 failed to accurately and precisely estimate the penetrance function under all

assumptions of familial correlation.

The analysis from Colon CFR data presented the case under weak familial correlation,

where competing risks without the shared frailty can be used as an alternative to the competing

risks model with shared frailty (Model 1 and Model 2). By ignoring the frailty in Model

3, there is a minor/slight increase in all the penetrance estimates with relatively consistent

bootstrap standard error compared to Model 1. There is a slight decrease in some of the log

of the relative risks estimates from Model 1 and Model 3. However, the results from Model

1 and Model 3 arerelatively consistent within the 95% Confidence Interval. By ignoring the

competing risks in Model 4, there is a significant decrease in the penetrance estimates with

significant increase in β1sex.

There is a limitation in our study as 12% non convergence rates were identified when

k = 1 for Model 3 and 5% non convergence issues were identified for Model 1. However as
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k increases, the non-convergence issue diminish to less than 2%. In other words, we have to

generate around 560 datasets to obtain 500 convergence dataset for k = 1, but we only need

around 510 datasets to obtain 500 convergence dataset for k = 2,5, and 10. Further research is

required to investigate why Model 3 have a higher rates of non-convergence when k is small.

The main advantage of our approach compared Gorfine and Hsu (2011) is the application

of ascertainment correction towards the likelihood to account for ascertainment bias. However,

the main advantage of the model proposed by Gorfine and Hsu (2011) is the assumption of

correlated frailty to account for three types of dependence: dependence of failure times for

the same event between individuals in the same cluster, dependence of failure times for the

different events between individuals in the same cluster, and dependence of failure times for

different events within the subject in the same cluster.

In general, this study reached similar conclusion with Choi (2012) that the shared-frailty

model (Model 1 and Model 2) performed well in estimating the penetrance function and rel-

ative risks under strong to moderate familial correlation, but independent model (Model 3)

performed well in estimating the penetrance function and relative risks under weak familial

correlation.

7.2 Further work

We have only considered the case where the method to account for competing risks is

limited to cause-specific hazard model. However, there are other methods such as subdistri-

bution hazard model, the mixture model, and the pseudovalue regression model that may be

used instead of the cause-specific hazard model. Also, for the missing data, we have only con-
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sidered the multiple imputation as a method to account for missing data. Future work should

also consider the EM-algorithm to account for missing genotype. In addition to that, Garibotti

et al.(2006) also have extended the shared-frailty model into the correlated frailty model with

the kinship coefficient matrix. Further work on the correlated frailty as a method to account

for familial correlation could be considered. In addition, copula model to account for familial

correlation instead of frailty may be considered as an alternative to account for familial corre-

lation. In addition, further research in estimating the 95% confidence interval of the penetrance

function, coverage with % missing on the left, and % missing on the right may be studied.
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Table A.1: Mean bias and median bias of the frailty parameter, log(k) from various assume

model (Model1, Model 2, and model 4) for family data simulated in the presence of competing

risks under different familial correlations (k=1,2,5,10)

True Model 1 Model 2 Model 4

Value Mean Median Mean Median Mean Median

bias bias bias bias bias bias

n=500

log(k) log(1) −0.97 −0.72 1.26 1.25 1.35 1.18

log(2) −0.34 −0.37 1.08 1.05 1.94 1.21

log(5) −0.05 −0.13 1.12 0.89 3.53 1.34

log(10) −0.06 −0.17 2.57 0.92 4.97 3.45

n=779

log(k) 0 −1.11 −0.86 1.24 1.24 1.31 1.21

0.69 −0.35 −0.42 1.07 1.05 1.80 1.18

1.61 −0.07 −0.12 1.05 0.89 3.49 1.53

2.30 −1.96 ·10−4 −0.23 1.87 0.87 4.66 3.67

n=1000

log(k) 0 −1.00 −0.81 1.25 1.25 1.23 1.19

0.69 −0.28 −0.37 1.07 1.06 1.47 1.24

1.61 −0.03 −0.07 1.06 0.95 3.57 1.62

2.30 −0.03 −0.22 1.59 0.89 4.81 3.81
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Table A.2: Mean Bias and empirical standard error (SE) for log relative risk β ′s and frailty pa-

rameter log(k) estimates from various assumed models (Model1–Model4) for family data sim-

ulated in the presence of competing risks under different familial correlations (k = 1,2,5,10);

for each assumed k, n = 500 families were simulated.

True Model 1 Model 2 Model 3 Model 4

Value Bias SE Bias SE Bias SE Bias SE

k = 1 β1sex 0.41 0.07 0.15 0.05 0.11 0.05 0.11 0.03 0.14

β1gen 2.86 0.12 0.40 −0.09 0.21 −0.09 0.22 −0.01 0.22

β2sex −0.72 0.07 0.15 0.05 0.13 0.05 0.13 − −

β2gen 1.28 0.04 0.17 −0.12 0.13 −0.12 0.13 − −

log(k) 0 −0.97 1.55 1.26 0.16 − − 1.35 0.97

k = 2 β1sex 0.41 0.07 0.13 0.06 0.12 0.06 0.12 0.04 0.14

β1gen 2.86 0.12 0.27 0.03 0.22 0.03 0.22 0.09 0.22

β2sex −0.72 0.06 0.13 0.05 0.12 0.05 0.12 − −

β2gen 1.28 0.08 0.15 −0.03 0.14 −0.03 0.14 − −

log(k) 0.69 −0.34 0.68 1.08 0.24 − − 1.94 2.50

k = 5 β1sex 0.41 0.05 0.11 0.05 0.11 0.05 0.11 0.03 0.13

β1gen 2.86 0.09 0.21 0.06 0.21 0.05 0.21 0.11 0.21

β2sex −0.72 0.05 0.13 0.05 0.13 0.05 0.13 − −

β2gen 1.28 0.08 0.11 0.03 0.11 0.03 0.11 − −

log(k) 1.61 −0.05 0.66 1.12 1.23 − − 3.53 4.20

k = 10 β1sex 0.41 0.05 0.10 0.05 0.11 0.06 0.11 0.03 0.13

β1gen 2.86 0.09 0.20 0.08 0.20 0.08 0.20 0.13 0.20

β2sex −0.72 0.05 0.12 0.05 0.12 0.05 0.12 − −

β2gen 1.28 0.04 0.17 0.12 0.13 0.12 0.13 − −

log(k) 2.30 0.06 1.25 2.57 4.41 − − 4.97 4.57
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Table A.3: Mean Bias and empirical standard error (SE) for penetrance estimates by age 70

for mutation carriers specific to gender and competing event from various assumed models

(Model1–Model4) for family data simulated in the presence of competing risks under different

familial correlations (k = 1,2,5,10); for each assumed k, n = 500 families were simulated;

P1(X) represents the gender-specific penetrance estimate by age 70 for the first colorectal can-

cer with X taking male (M) and female(F) and P2(X) is the corresponding penetrance estimate

for the other LS related cancer.

True Model 1 Model 2 Model 3 Model 4

Value Bias SE Bias SE Bias SE Bias SE

k = 1 P1(M) 0.402 −0.225 0.096 −0.017 0.024 −0.011 0.027 −0.001 0.037

P1(F) 0.273 −0.162 0.060 −0.025 0.018 −0.008 0.020 0.014 0.031

P2(M) 0.115 −0.053 0.035 0.018 0.014 −0.029 0.015 − −

P2(F) 0.242 −0.121 0.068 0.022 0.020 −0.041 0.022 − −

k = 2 P1(M) 0.446 −0.141 0.064 −0.021 0.024 −0.0003 0.026 0.021 0.036

P1(F) 0.302 −0.112 0.041 −0.031 0.020 −0.019 0.021 0.032 0.034

P2(M) 0.129 −0.022 0.024 0.019 0.013 0.027 0.014 − −

P2(F) 0.271 −0.060 0.046 0.024 0.021 0.037 0.022 − −

k = 5 P1(M) 0.480 −0.072 0.038 −0.021 0.026 −0.011 0.026 0.033 0.038

P1(F) 0.325 −0.063 0.026 −0.031 0.021 −0.024 0.021 0.049 0.034

P2(M) 0.140 0.003 0.017 0.020 0.015 0.024 0.016 − −

P2(F) 0.293 −0.010 0.030 0.024 0.022 0.032 0.022 − −

k = 10 P1(M) 0.493 −0.050 0.033 − 0.020 0.025 −0.015 0.025 0.041 0.032

P1(F) 0.333 −0.049 0.026 −0.030 0.0216 −0.027 0.022 0.057 0.034

P2(M) 0.144 0.011 0.016 0.021 0.0155 0.023 0.016 − −

P2(F) 0.302 0.006 0.025 0.026 0.0228 0.030 0.023 − −
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Table A.4: Mean bias and empirical standard error (SE) for baseline parameter estimates from

various assumed models (Model1–Model4) for family data simulated in the presence of com-

peting risks under different familial correlations (k = 1,2,5,10); for each assumed k, n = 500

families were simulated.

True Model 1 Model 2 Model 3 Model 4

Value Bias SE Bias SE Bias SE Bias SE

k = 1 λ1 0.0042 −0.0017 0.0009 −0.0006 0.0004 −0.0006 0.0004 −0.0008 0.0004

ρ1 2.40 0.06 0.11 −0.09 0.08 −0.09 0.08 −0.07 0.08

λ2 0.0092 −0.0035 0.0016 0.0011 0.0005 −0.0011 0.0005 − −

ρ2 2.92 −0.16 0.14 −0.32 0.10 −0.32 0.10 − −

k = 2 λ1 0.0042 −0.0010 0.0006 −0.0006 0.0004 −0.0005 0.0004 −0.0007 0.0004

ρ1 2.40 0.06 0.10 −0.04 0.08 −0.04 0.08 −0.03 0.08

λ2 0.0092 −0.0020 0.0008 −0.0008 0.0006 −0.0008 0.0006 − −

ρ2 2.92 −0.15 0.12 −0.25 0.11 −0.25 0.10 − −

k = 5 λ1 0.0042 −0.0004 0.0004 −0.0003 0.0004 −0.0003 0.0004 −0.0004 0.0004

ρ1 2.40 0.06 0.08 0.02 0.08 0.02 0.08 0.01 0.08

λ2 0.0092 −0.0010 0.0006 −0.0006 0.0006 −0.0006 0.0006 − −

ρ2 2.92 −0.15 0.08 −0.17 0.08 −0.17 0.08 − −

k = 10 λ1 0.0042 −0.0003 0.0004 −0.0003 0.0004 −0.0003 0.0004 −0.0003 0.0004

ρ1 2.40 0.06 0.08 0.03 0.08 0.03 0.08 0.03 0.13

λ2 0.0092 −0.0006 0.0006 −0.0004 0.0005 −0.0004 0.0005 − −

ρ2 2.92 −0.14 0.11 −0.17 0.12 −0.17 0.12 − −
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Table A.5: Mean bias and empirical standard error (SE) for log relative risk β ′s and frailty pa-

rameter log(k) estimates from various assumed models (Model1–Model4) for family data sim-

ulated in the presence of competing risks under different familial correlations (k = 1,2,5,10);

for each assumed k, n = 1000 families were simulated.

True Model 1 Model 2 Model 3 Model 4

Value Bias SE Bias SE Bias SE Bias SE

k = 1 β1sex 0.41 0.07 0.13 0.05 0.08 0.05 0.08 0.04 0.10

β1gen 2.86 0.10 0.35 0.08 0.15 0.09 0.15 −0.01 0.16

β2sex −0.72 0.08 0.13 0.05 0.08 0.04 0.08 − −

β2gen 1.28 0.05 0.14 −0.11 0.09 −0.11 0.09 − −

log(k) 0 −1.00 1.75 1.25 0.11 − − 1.23 0.38

k = 2 β1sex 0.41 0.07 0.09 0.06 0.08 0.06 0.08 0.04 0.09

β1gen 2.86 0.11 0.21 0.003 0.15 0.04 0.15 0.07 0.15

β2sex −0.72 0.07 0.09 0.05 0.09 0.05 0.09 − −

β2gen 1.28 0.08 0.11 −0.03 0.10 −0.03 0.10 − −

log(k) 0.69 −0.28 0.56 1.08 0.16 − − 2.47 1.30

k = 5 β1sex 0.41 0.06 0.08 0.06 0.08 0.06 0.08 0.04 0.09

β1gen 2.86 0.08 0.15 0.06 0.15 0.06 0.15 0.11 0.15

β2sex −0.72 0.06 0.09 0.06 0.09 0.06 0.09 − −

β2gen 1.28 0.08 0.10 0.03 0.10 0.03 0.10 − −

log(k) 1.61 −0.03 0.57 1.06 0.93 − − 3.57 3.75

k = 10 β1sex 0.41 0.06 0.08 0.06 0.08 0.06 0.08 0.03 0.09

β1gen 2.86 0.08 0.14 0.06 0.14 0.06 0.14 0.11 0.14

β2sex −0.72 0.05 0.09 0.05 0.09 0.05 0.09 − −

β2gen 1.28 0.08 0.10 0.05 0.10 0.05 0.10 − −

log(k) 2.30 −0.03 0.95 1.59 2.81 − − 4.81 4.18
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Table A.6: Mean bias and empirical standard error (SE) for penetrance estimates by age 70

for mutation carriers specific to gender and competing event from various assumed models

(Model1–Model4) for family data simulated in the presence of competing risks under different

familial correlations (k = 1,2,5,10); for each assumed k, n = 1000 families were simulated;

P1(X) represents the gender-specific penetrance estimate by age 70 for the first colorectal can-

cer with X taking male (M) and female(F) and P2(X) is the corresponding penetrance estimate

for the other LS related cancer.

True Model 1 Model 2 Model 3 Model 4

Value Bias SE Bias SE Bias SE Bias SE

k = 1 P1(M) 0.402 −0.228 0.095 −0.016 0.017 0.012 0.019 0.0001 0.026

P1(F) 0.273 −0.162 0.062 −0.026 0.014 −0.009 0.015 −0.012 0.024

P2(M) 0.115 −0.053 0.036 0.017 0.009 0.028 0.010 − −

P2(F) 0.242 −0.122 0.066 0.021 0.014 0.041 0.015 − −

k = 2 P1(M) 0.446 −0.139 0.053 −0.019 0.017 0.001 0.018 0.022 0.028

P1(F) 0.302 −0.108 0.033 −0.030 0.014 −0.017 0.014 0.034 0.025

P2(M) 0.129 −0.021 0.019 0.019 0.009 0.027 0.011 − −

P2(F) 0.271 −0.059 0.036 0.023 0.015 0.037 0.016 − −

k = 5 P1(M) 0.480 −0.067 0.027 −0.021 0.019 −0.010 0.019 0.038 0.026

P1(F) 0.325 −0.062 0.020 −0.031 0.015 −0.025 0.015 0.051 0.024

P2(M) 0.140 0.005 0.012 0.021 0.011 0.024 0.011 − −

P2(F) 0.293 −0.007 0.020 0.025 0.016 0.032 0.016 − −

k = 10 P1(M) 0.493 −0.050 0.023 −0.021 0.017 −0.015 0.017 0.040 0.023

P1(F) 0.333 −0.050 0.017 −0.032 0.015 −0.028 0.015 0.055 0.024

P2(M) 0.144 0.011 0.012 0.020 0.011 0.023 0.011 − −

P2(F) 0.302 0.005 0.019 0.025 0.016 0.029 0.017 − −
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Table A.7: Mean bias and empirical standard error (SE) for baseline parameter estimates from

various assumed models (Model1–Model4) for family data simulated in the presence of com-

peting risks under different familial correlations (k = 1,2,5,10); for each assumed k, n = 1000

families were simulated.

True Model 1 Model 2 Model 3 Model 4

Value Bias SE Bias SE Bias SE Bias SE

k = 1 λ1 0.0042 −0.0017 0.0009 −0.0006 0.0003 −0.0006 0.0003 −0.0008 0.0003

ρ1 2.40 0.06 0.10 −0.09 0.05 −0.09 0.05 −0.07 0.06

λ2 0.0092 −0.0035 0.0016 −0.0011 0.0004 −0.0011 0.0004 − −

ρ2 2.92 −0.16 0.13 −0.32 0.08 −0.32 0.08 − −

k = 2 λ1 0.0042 −0.0009 0.0004 −0.0005 0.0003 −0.0005 0.0003 −0.0006 0.0003

ρ1 2.40 0.06 0.07 −0.04 0.06 −0.04 0.06 −0.04 0.06

λ2 0.0092 −0.0019 0.0006 −0.0008 0.0004 −0.0008 0.0004 − −

ρ2 2.92 −0.15 0.10 −0.25 0.07 −0.25 0.07 − −

k = 5 λ1 0.0042 −0.0005 0.0003 −0.0003 0.0003 −0.0003 0.0003 −0.0004 0.0003

ρ1 2.40 0.05 0.06 0.005 0.06 0.005 0.06 −0.006 0.06

λ2 0.0092 −0.0009 0.0004 −0.0005 0.0004 −0.0005 0.0004 − −

ρ2 2.92 −0.15 0.08 −0.20 0.08 −0.20 0.08 − −

k = 10 λ1 0.0042 −0.0003 0.0003 −0.0003 0.0003 −0.0003 0.0003 −0.0003 0.0003

ρ1 2.40 0.05 0.06 0.03 0.06 0.03 0.06 0.01 0.06

λ2 0.0092 −0.0006 0.0004 −0.0005 0.0004 −0.0005 0.0004 − −

ρ2 2.92 −0.15 0.08 −0.18 0.08 −0.18 0.08 − −
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