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Abstract 

Musculoskeletal injuries of the finger far outnumber those of other joints. While in-vitro 

motion simulators are useful for studying joint biomechanics and evaluating surgical repairs, 

considerably less simulator development has been reported for the finger compared to other 

joints. Replication of active musculoskeletal movement during in-vitro testing has been 

shown to be more representative of in-vivo motion patterns; closed-loop motion controllers 

are the current state-of-the-art for in-vitro kinematics studies. However, an in-vitro motion 

simulator with closed-loop tendon load control and simultaneous tendon excursion control 

has not yet been reported for the finger. This thesis outlines the design and development of 

an active motion simulator for the study of finger joint kinematics, as well as forces and 

excursions of the flexor/extensor tendons. Performance of the system was verified in terms of 

tendon load control accuracy and motion repeatability, before conducting two cadaveric 

studies. An in-vitro study on the effects of wrist position and distal extensor tendon rupture 

verified that the new simulator produced expected finger kinematics and tendon loads. With 

the new simulator validated, its high sensitivity in measuring tendon loads was leveraged to 

observe the effects of A2 and A4 pulley excision and subsequent surgical repair. The thesis 

culminates with a summary of sample size analysis and statistical effect sizes that will aid 

future in-vitro finger studies with this simulator.  
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Chapter 1    
 

1   Introduction and Literature Review 

  

OVERVIEW: This chapter begins with a review of the basic anatomy and 

biomechanics of the finger and then continues with an overview of flexor tendon 

injuries, and the complications following flexor tendon repair. Literature review 

regarding past and ongoing passive and active-motor assist studies is discussed. This 

chapter then concludes with an explanation behind the purpose of this study and the 

objective towards this research of developing an active motion flexor tendon simulator 

that allows for the study of the kinematics of finger joints and the forces within the 

tendons.  
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1.1   Significance of the hand 

As one of the most crucial and fascinating components of the body, the hand is an essential 

tool in one’s everyday life. Its reliability and integrity is strongly reliant on the flexibility of 

its finger joints and the tendon mechanism driving the finger. The hand, amongst all other 

body parts, is very susceptible to many disorders and injuries to the fingers, most commonly 

within the tendons and the pulleys. Therefore, fine understanding of the anatomy of the hand 

is vital when trying to provide the highest quality of care to a patient suffering from a trauma. 

The following section will discuss the three main structures that formulate the essence of the 

finger; the joints, pulleys, and tendon mechanism. 

1.2     Anatomical Background of the Finger 

Each finger is comprised of three bones or ‘phalanges’; the proximal phalanx phalange, 

middle phalanx phalange, and distal phalanx phalange. Together, they all make up the bone 

structure of the finger and are similar in their organization and function. They do however 

differ in their shapes and their joint’s ranges of motion (ROM) [1]. The proximal phalanx is 

the third and largest phalange within the finger. The middle phalanx is the second, or middle, 

phalange, and the distal phalanx is the first phalange [2]. A joint is a connection made 

between bones in the body by a specialized set of tissues called cartilage. These tissues are 

commonly self-lubricating and can maintain smooth and flexible motion under large 

compressive and tensile loading conditions of the joints. They also allow for the movement 

within one degree of freedom; ensuring proper stability when undergoing full flexion and 

extension of the finger. There are three joints that are formed between the finger phalanges, 

the distal interphalangeal joint (DIP), proximal interphalangeal (PIP) joint, and the 

metacarpophalangeal (MCP) joint (Figure 1.1) [3].  

1.2.1   Distal Interphalangeal Joint (DIP) 

The DIP joint is located at the tip of the finger, between the distal and the middle phalanx. 

The range of motion of the joint varies between 0° and 65° [4]. 

1.2.2   Proximal Interphalangeal Joint (PIP Joint) 

The PIP joint is located around the middle of the finger, between the middle and the proximal 

phalanx. The range of motion of the joint varies between 0° and 110° [4]. 
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1.2.3   Metacarpophalangeal Joint (MCP joint) 

The MCP joint is where the bones within the palm of the hand, called the metacarpals, meet 

the first finger phalange, the proximal phalanx. The metacarpals are long bones that provide 

the structure of the palm of the hand but provide little, to no movement, during the flexion of 

the joints. MCP joints are crucial for both power grip and sturdy activities. The MCP joints 

allow for the tip of the fingers to reach the palm of the hand through full flexion of the joint. 

The range of motion of the joint varies between 0° and 85° [4].  

 

Figure 1.1: Finger Segments and Joints 

Illustration of the finger bones along with the joints on a hand model 
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1.3   Tendons 

1.3.1   Anatomy 

Tendons are fibrous connective tissues that connect muscles to bone, functioning simply to 

transmit forces [5]. Within the hand, these tissues are categorized into flexor and extensor 

tendons, each with a distinct function, insertion point, and pathway along the finger. Every 

finger, excluding the fifth digit, consists of two long flexor tendons that run along the palmar 

side of the hand and one long extensor tendon that runs along the dorsal side of the hand; 

working collectively to achieve full flexion and extension of the finger [3]. In other words, 

consider a pulley-box mechanism where a rope is fed through a pulley and is tied to a 

hanging mass at one end and a linear motor at the other end. In this scenario, the weight 

resembles a single phalange, the rope represents the tendon, and the motor resembles the 

muscle in the forearm that applies tension within the tendon. As the rope is pulled from one 

end by the motor, the mass travels towards the point in which force is applied, and vice versa. 

Similar to the human finger, once the flexor tendons are pulled, the finger joints begin to 

rotate towards the direction in which force is applied, and vice versa when the extensor 

tendons are pulled instead. Although they differ in their insertion points, there are two types 

of long flexor tendons that work collectively to achieve full flexion of the finger; flexor 

digitorum profundus (FDP) and flexor digitorum superficialis (FDS). Both flexor tendons run 

along one another through pulleys and fibrous tissues called sheaths on the palmar side of the 

finger in a very fascinating, yet complicating organization. These tendon sheaths function as 

tunnels, lubricating the gliding movement of the two tendons against one another. They also 

allow the tendons to elastically deform when pulled, assisting in the smooth movement of the 

finger along its path of flexion or extension [6]. Both tendons are held tight enough within 

these sheaths to the extent that any possible increase in the size of the tendon can limit the 

motion of the tendons through the sheaths; jeopardizing mobility. Aside from the sheaths, 

pulleys at the joints also provide for smooth motion of the finger and function to maintain the 

flexor tendons close to bone [6] [7].  

1.3.2   Flexor Digitorum Profundus 

The profundus tendon is one of two long flexor tendons within the finger. It originates within 

a muscle in the forearm and inserts at the tip of the distal phalanx [4]. Its chief function is to 

achieve full flexion of the finger, including all of the finger joints.  
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1.3.3   Flexor Digitorum Superficialis  

The second flexor tendon, superficialis, also functions to achieve full flexion of the finger 

joints. However, unlike FDP, FDS insert at the midline of the middle phalanx and therefore, 

is responsible for the flexion of only the MCP and the PIP joint, but not the DIP joint. In 

order to obtain a full flexion of the finger, a functional FDP tendon is crucial for the flexion 

of the most distal joint.  

1.3.4   Extensor Tendon  

Located along the dorsal side of the hand, extensor tendons work antagonistically to the 

flexor tendons, extending the finger and its joints back to their straightened position. Similar 

to the flexor tendons, the long extensor tendons originate from muscles at the forearm and 

insert at the most distal finger segment, the distal phalanx [8].   

1.3.5   Pulleys 

There are five different pulleys located along the finger; each with a significant role of 

maintaining and stabilizing the flexor tendons at the palmar sides of the phalanges close to 

bone [9]. The arrangement and function of the pulleys allow for any tensile force or 

excursion experienced by the flexor tendons to be translated into rotation and torque at the 

finger joints [10]. Pulleys A1, A3, and A5 overlie the MCP, PIP, and DIP joints, whereas the 

A2 and A4 pulleys are located along the phalanges, in-between the joints. The A1 pulley is 

approximately 8 mm in width and is the first annular pulley which arises from the proximal 

portion of the proximal phalanx [11]. The second annular pulley, A2, is approximately 20 

mm in width and is clinically known to be the most important pulley, biomechanically, 

followed by the A4 pulley (7mm in width) as they both play a vital role in maintaining 

independent interphalangeal joint function and preventing tendon bowstringing [12][13]. 

Tendon bowstringing is a rare condition where the tendon translated away from the center of 

rotation of the MCP joint; altering the flexion moment arm of the joint [14]. A3 and A5 

pulleys are 3mm and 4mm in width respectively [7].  
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1.3.6   Tendon Mechanism  

All the fine and gross movements of the finger are achieved by a very complex tendon 

mechanism. The complexity and uniqueness of the tendon structure and arrangement of the 

long flexor tendons can be observed (Figure 1.2). The organization of the tendons is unique 

enough that the tendons not only glide against one another, but also through one another. The 

profundus tendon, FDP, physically runs though the superficialis tendon, FDS, to reach its 

insertion point at the distal phalanx. Such mechanism is the main reason behind the smooth 

motion of the finger during flexion.  

 

Figure 1.2: Flexor and Extensor Tendons  

The anatomy of the flexor tendons (flexor digitorum profundus and flexor digitorum superficialis) 

along the finger without the tendon sheaths securing them. 
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1.4   Flexor Tendon Injuries 

1.4.1   Challenges 

Tendon injuries are fairly common and can become quite challenging and problematic. Such 

trauma can arise from severe physical activity such as sports or the accidental slicing of the 

tendon by a sharp object [5]. Depending on the degree of laceration, the cut or injury could 

affect one or both tendons. Once a flexor tendon is torn, it becomes impaired and can no 

longer function to mobilize the finger. Flexor tendon injuries are a puzzling problem for 

surgeons due to three main reasons. Firstly, flexor tendons cannot heal without surgical 

treatment as the two ends need to be surgically brought together for the healing to occur. 

Secondly, postoperative management needs to be carefully planned as mobilization has 

shown to be essential in improve gliding but can risk rupture. Lastly, due to the unique 

anatomy of the tendons running through flexor tendon sheaths to function, surgeons need to 

prevent any risk of increasing the bulkiness of the tendon through its sheath, which is not 

always possible from scarring as this affects the functional outcome of the tendon. Based on 

literature review, injuries to the hand and wrist account for approximately 20% of patient 

visits to emergency departments in the United States and they seem to impose a large 

economic burden as they annually account for $740 million U.S dollars and rank first in the 

order of most expensive injury types [15]. During a 10-year study, there was an incidence 

rate of 33.2 finger tendon injuries per 100,000 person-years [16]. Work-related injuries 

accounted for 24.9% of acute traumatic tendon injuries, food preparation and serving related 

occupations (14.4%), and transportation and material moving occupations (12.5%) [16]. 

1.4.2   Surgical Tendon Repair  

There are various techniques that are used to repair tendons. These techniques normally 

involve approximating and suturing both cut ends of the tendon together. Many different 

considerations need to be taken into account once deciding to repair a flexor tendon. Early 

surgical repair, subsequently following injury offer a much better outcome in terms of 

functionality of the hands as opposed to a late surgical repair [5]. Generally, as time permits, 

the possibility of repairing a tendon decreases due to end swelling and increased risk of 

infections. Strickland et al. stated that the ideal tendon repair should have minimal gapping at 

the repair site, minimal interference with tendon vascularity, secure suture knots, smooth 

junction of tendon end and have sufficient strength for healing [17]. Handling of the tendons 

should be done with as little trauma as possible to prevent scaring and adhesion [18]. 
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Depending on where the site of injury is along the hand, different surgical procedures are 

used (Figure 1.3). For example, Zone I injuries commonly involve the rupture of only the 

FDP whereas, Zone II, also known as the ‘no man’s land’ is far more complex as there is a 

much closer interaction between both long flexor tendons, FDS and FDP, risking the chance 

of future complications [18]. Not only should tendons be handled carefully, the tendon 

sheaths and pulley systems should remain protected and salvaged. Most commonly in repair 

cases, the surgeon avoids repairing a lacerated tendon sheath as a repair decrease the overall 

width of the passage site, limiting the tendons from gliding smoothly to achieve its function 

[5]. Zone III and V injuries of the hand do not impose as big of a threat as zone II due to its 

large surface area and better vascularity and therefore, are not difficult to repair.  

 

Figure 1.3: Zones of the Hand 

An illustration of the different zones of the hand. Zone I is the most commonly injured zone. Zone 

II (the shaded area), is commonly referred to as “no man’s land” as injures in this area are very 

complex and have a high risk of future complications. Injuries to Zones III and IV are easy to 

repair and do not pose any added risks like Zone II.  [19], [20] 
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1.4.3   Post-Op Healing 

Unfortunately, not every post tendon repair recovery session is smooth. Approximately 59% 

to 90% of patients undergoing flexor tendon repair do experience improvement in their joint 

ROM. However, 5% to 33% of patients find no improvement in finger mobility and 8% 

experience worsening of symptoms, such as pain and discomfort [21][22]. Despite the 

improvement in technology and the advancement in surgical techniques and methods, flexor 

tendon complications following tendon repair manages to continue being a formidable 

challenge worldwide. Such complications can include infection, tendon rupture, pulley 

rupture, or adhesion formation [23]. The possibility of a tendon rupture or pulley is 

considered one the most critical complications as it requires immediate revision surgery 

where the surgeon is required to relocate the injury site and repair it once again. Urgent 

secondary surgical intervention usually occurs in 3-9% of patient cases [21]. Causes of 

tendon rupture can include overloading the tendons, misuse of the hand, or bulky tendons 

after repair. Another critical complication that can occur within patients is the adhesion 

simulation within the finger [24].  

1.4.4   Adhesions 

During recovery, the body undergoes a type of healing known as extrinsic healing [25]. The 

process involves the accumulation or layering of scar tissue around the site of injury for cells 

and tissue to reform and grow underneath, similar to a scab that forms over the skin once the 

skin breaks due to a cut. The main issue arises when excess scar tissue is laid down along 

one, or both tendons; increasing the thickness of the tendons and/or adhering the tendon to 

the surrounding tissues, the other tendon, or bone [26]. Thus, limiting the smooth gliding of 

the tendons through the anatomical tunnels and immobilizing the finger.  
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1.5   Pulley Injuries 

Similar to tendons, pulleys within the finger are also at risk of injuries, most commonly 

within rock climbers. With the increasing number of people participating in indoor and 

outdoor rock climbing activities, injuries sustained by pulleys are on the rise [27]. Around 

40% of all climbing injuries clinically documented are to the fingers, where 20-26% are 

solely to the pulleys [28][29]. Such injuries include partial or complete rupture of one or 

more annular pulleys, resulting in visible bowstringing. The A2 pulley is the most commonly 

injured of the five annular pulleys due to the configuration of the hand when attempting to 

grasp small holds, also known as the ‘crimp’ grip (Figure 1.4). The crimp grip was first 

described by Bollen in 1988 [27] as having the DIP joint undergo great hyperextension, 

whereas the PIP joint maintains a 90 degree flexion angle, producing tremendous force load 

on the A2 pulley. The forces at the A2 pulley are approximately 3 – 4 times greater than at 

the fingertip which has been clinically estimated to be forces of around 380N [30]. Such 

large loading on the pulley can evidently lead to rupture.  

 

Figure 1.4: The ‘crimp’ grip position 

An illustration of the crimp grip position where the DIP joint experiences severe hyperextension 

with the PIP joint in a 90 degree flexed position. 

  



 

11 

 

1.6   Wrist Biomechanics 

1.6.1   Neutral Position 

When describing the motions of the wrist joint, it is important to understand the anatomical 

neutral position in which all range of motion such as flexion-extension, radioulnar deviation, 

and a combination of these positions are defined. Neutral wrist position is defined as the 

palm of the hand parallel to the forearm (Figure 1.5).  

 

Figure 1.5: Wrist neutral position 

1.6.2   Flexed-Extended Position 

The flexion-extension position of the wrist has a center of rotation around the centroid of the 

wrist. A healthy wrist can have a flexion-extension range of 60 – 80 degrees and 60 – 75 

degrees respectively (Figure 1.6) [31]. In terms of our research, a 30-degree flexion-

extension angle of the wrist was analyzed. 

 

    

Figure 1.6: Wrist Flexed and Extended 

The wrists in 80° flexion and 20° extension 
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1.6.3   Ulnar-Radial Deviation 
 

Similar to flexion-extension, ulnar-radial deviation of the wrist occurs around the centroid of 

the wrist with a range of 30 – 39 degrees and 20 – 25 degrees respectively (Figure 1.7) [31]. 

For our research, a 30-degree ulnar deviation was only analyzed. 

                    

Figure 1.7: Wrist Ulnar and Radial Deviated 

Wrists in 30° ulnar deviation (left) and 20° radial deviation (right) 
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1.7   Kinematics Measurement Systems 

With current advancement in technology, there are numerous methods that are used in vivo, 

and in vitro, to measure the kinematics and range of motion of the finger joints. Such 

techniques range from the use of a simple goniometer, to an electro-magnetic tracking 

system.   

1.7.1   Goniometer 

Goniometer are one of the most common tools used for the measurement of angles up to 360 

degrees [32]. In terms of finger kinematics, joint ranges can be measured by simply centering 

the fulcrum of the goniometer over the dorsal aspect of the joint of choice. Subsequently, 

aligning the proximal arm over the dorsal midline of the joint and the distal arm over the 

dorsal midline of the corresponding phalange (Figure 1.8) [31]. The angle in which the 

goniometer then forms is the angle of rotation of the joint. Although simple, calculating 

angles using such approach involves a large amount of human error by the operator.  

 

Figure 1.8: Goniometer 

 Image depicts the PIP joint being measured. by aligning the proximal goniometer arm over the 

dorsal midline of the proximal phalange with one hand whilst maintaining the PIP joint in 

flexion and aligns the distal arm with the dorsal goniometer arm with the other hand [33] 
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1.7.2   Optical Tracking Systems 

Optical tracking involves the use of infrared rays to locate an object in space. Objects that 

need to be tracked are equipped with retro-reflective markers, which then reflect the 

incoming rays back to the camera, notifying the system where the object is within space. 

Optical tracking is efficient when tracking finger joints and their angles [34] since it is 

capable of gathering its position in 2D, or 3D depending on the number of camera used, and 

relaying such information in the form of image coordinates with extreme precision. Similar 

to position, the rotation of the object in space can also be derived by placing multiple 

markers on the same object. With such configuration, the system is able to correctly develop 

the object’s position and orientation and display it to the user. Active markers contain light 

emitting diodes (LEDs) that emit their own infrared light requiring a power source from 

either a battery or the terminal. The infrared rays emitted within the system are invisible to 

the naked eye, but its intensity is safe within the working environment. Advantages of optical 

tracking include tracking more than one object simultaneously and its low susceptibly to 

noise from its surroundings.  

1.7.3   Electromagnetic Tracking Systems 

Commonly used in-vitro, electromagnetic trackers function by emitting a magnetic field to its 

surrounding. Such field is picked up by a transmitter, which can correctly display the 

tracker’s position and orientation with respect to the transmitter’s location [35]. Unlike 

optical tracking, electromagnetic tracking does not require a direct interface between the 

receiver and the transmitter to correctly locate the receiver in space. Such feature permits its 

use in-vitro or in-vivo. Having its own reference frame, the transmitter can record the 

position and orientation of its subsequent 6 degrees of freedom (DOF) following a Z, Y, X 

coordinate system (Figure 1.9). The biggest disadvantage of electromagnetic tracking is its 

high susceptibility to error with the presence of ferromagnetic elements in the surrounding. 

Such disturbance can affect the performance of the system, degrading its precision quality.  
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Figure 1.9: Electromagnetic Tracking System 

A magnetic field is induced by the EMG sensors (top) (M180, trakSTAR, ON) in three directions 

(x,y,z) and is translated by a transmitter (bottom right)  in order to properly locate and estimate 

the position of the trackers in 3D space (bottom left) [36] 
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1.8   State of the Art Designs 

For advancement in surgical methods and techniques to ensue, proper understanding of the 

biomechanics and kinematics is considered crucial for the overall quality of the procedure. In 

terms of current clinical grounds, very little is known about how the severity of a tendon 

injury or a pulley rupture negatively affects the kinematics of the finger. Numerous studies in 

this area of research have been conducted; both in-vitro and in-vivo, analyzing the effects and 

changes on the finger joint ROM and tendon loads. There are two types of motion 

simulations in which these studies were carried under; passive motion and active-motor assist 

motion. Passive motion involves an external or a system to physically move the joints of the 

finger through its range of motion with no effort from the patient. Active-motor assistance 

motion involves the use of a motorized system to achieve flexion of the finger but requires 

some external help from a surgeon or a system. 

1.8.1   Passive Motion Simulators 

Passive motion of the finger involves the movement of the finger joints along its flexion and 

extension paths of motion without directly applying forces to the tendons or the use of 

surrounding muscles to achieve the motion. For instance, having a therapist physically 

bending and flexing the finger of a patient while the patient’s hand is fully at rest is 

considered passive motion. While passive motion studies are very common in rehabilitation 

exercises, there are certain limitations to applying external forces to the joints such as 

accuracy of results and repeatability of motion. As the motion does not involve the 

engagement of the tendons or the muscles in the forearm, it does not correctly resemble or 

mimic the anatomical behavior of the hand; varying the end results of the study. Human 

engagement in the motion of a specimen can also result in unrepeatable movements thus, 

diminishing the quality of the results. Many rehabilitation exercises that follow post-tendon 

repair surgeries involve a therapist physically moving the joints of the finger, ensuring the 

smooth gliding of the tendons along its pathway. Whether performed in-vivo or in-vitro, most 

passive motion research studies of the hand are useful in the development of alternative and 

better configuration to normal synergistic motion in tendon rehabilitation. 

Tanaka et al. [37] conducted studies on cadaveric arm specimens with the use of a 

transducer, optical tracking, and an external fixator (Figure 1.10). Different wrist positions 

were achieved and optical trackers were attached along the right side of the finger to measure 

the joint angles. The proximal phalanx was cut at the distal edge of the A2 pulley and 
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replaced by small cantilever beam transducer, which was secured to the remaining proximal 

phalanx. Through the use of a suture, the FDP was connected to the transducer and force data 

was collected. All motions of the finger were passively generated to achieve full flexion and 

extension of the joints. 

 

Figure 1.10: Specimen Preparation 

Cadaveric specimen setup for testing and measuring loads experienced by the FDP tendon using 

a transducer and joint angles experienced by the MCP joint using optical trackers [37] 

Human interaction is not the only approach to achieving passive motion of the finger. For 

example, an actuator attached at the tip of the distal phalanx intended to simulate finger 

flexion would still be considered passive motion. However, unlike human interface, electrical 

actuators are considered more accurate as their motions are repeatable and concise with 

previous motion runs; providing more reliable results. Nonetheless, they are still subjected to 

errors if the line of action of the force applied is not aligned with the anatomy.  

  

  

  



 

18 

 

1.8.2   Active-Motor Assist Motion Simulators 

Active-motor assist is a similar methodological approach to passive motion. However, it 

incorporates the use of an electrical motor or actuator to help assist the finger on its pathway 

to full flexion, as opposed to applying an external force to simulate the motion. For example, 

having a patient exert a small amount of effort through their muscles and tendons to flex their 

finger joints while a motor manually assists the patient into achieving full flexion is 

considered an active-motor assist motion. Such simulators are deemed more accurate than 

passive motion as they incorporate the use of the tissues and the surrounding muscles in the 

movement of the joints therefore, partially mimicking the anatomy of hand.  

Greenwald et al. [38] conducted a study on cadaveric hands amputated at the wrist joint and 

simulated under an active-motor assist system. All specimens were mounted onto a flat base 

using Kirschner wires, which are smooth stainless-steel pins that are commonly used in 

orthopedics and other types of medical and veterinary surgery, and the flexor tendon to be 

tested was sutured to a fixed force transducer for force data collection. A counterweight of 

500g was applied onto the extensor tendon of the finger test and the lines of action of both 

flexor and extensor tendons were parallel to the finger when fully extended. A linear variable 

differential transformer (LVDT) was used to measure the excursion of the tendon as the 

finger moved along its flexion path. The platform in which the hand was fixed on was driven 

along a slide by a screw mechanism powered by a high-torque, variable speed motor (Figure 

1.11). Having the motor externally pulling on the hand and the flexor tendon internally 

pulling on the finger, flexion of the joints was achieved through the assistance of the motor 

system.  
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Figure 1.11: Active Motor-Assist Setup 

The active motor assist simulator setup from Greenwald et al’s study where loads experienced by 

the flexor tendons were measured using a force transducer while the LVDT measured excursion 

of the tendon throughout linear motion achieved by a high torque motor [38] 

 

There are two types of actuators that are commonly used in biomechanics experiments, linear 

and servo. Both motors serve the same purpose and function however, servo motors are 

commonly selected as the more favorable choice due to its ability to output position whereas  

linear actuators tend to lack such feature. Although servo motors are more expensive and 

require excessive coding and tuning to sync the motor with the simulator, they are useful for 

measuring tendon excursions and are not subjected to position error.  
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1.9   Thesis Rationale 

Research into the development of an accurate and reliable in-vitro finger motion simulator to 

properly mimic true in-vivo conditions will provide the means to enhance current clinical 

methods and procedures towards tendon repairs, pulley reconstructions, and rehabilitation 

protocols. While advancement in finger simulators have occurred in recent years, as outlined 

previously, the lack of simulating proper in-vitro active motion of the finger joints using a 

reliable tendon load control feedback loop to mimic true motions remains undone. 

The purpose of this thesis is to design and develop a highly reliable and accurate simulator for 

testing active finger flexion and extension motion while analyzing tendon forces and joint 

rotations using a load and position controlled feedback loop under the influence of several 

clinical injury conditions.  

 

1.10  Objectives  
The primary objective was to develop an in-vitro finger motion simulator with closed-loop 

control of tendon load, and to evaluate its performance. A secondary objective was to use the 

simulator in cadaveric trials with clinically relevant injury conditions, in order to validate that the 

simulated biomechanics produce expected results compared to the clinical literature. The third 

objective was to establish the simulator with known statistical effect sizes and samples sizes, in 

order to have predictable statistical power for it to be useful in future studies.  

 

1.11  Hypotheses 

1.   Tendon load repeatability will be better than ±5 N.  

2.   Tendon load control error will not exceed ±2 N. 

3.   Tendon load statistical effect size will be smaller than 0.5 N. 

4.   Finger joint ROM statistical effect size will be smaller than 0.5º. 



 

 

1.12   Thesis Overview 

The structure of the following chapters is as follows: 

Chapter 2: Development of active motion simulator, process of PID tuning, and system 

validation.  

Chapter 3: Wrist study: Cadaveric study where flexor tendon loads and finger joint ROM are 

evaluated under different wrist positions and tendon loading conditions. Injury was induced to 

the extensor tendon to simulate a mallet finger scenario. Load and ROM was compared pre- and 

post-injury. 

Chapter 4: Pulley Study: Cadaveric study where the A2 and A4 pulleys are excised to observe 

the effects of sequential cuts on tendon load and joint ROM. Reconstruction of pulleys to regain 

intact state of the finger at different wrist positions.  

Chapter 5: Summary, conclusions, and future work. 
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Chapter 2    
 

2   Development of a Finger Active Motion Simulator 
 

OVERVIEW: This chapter covers the design processes and steps taken to develop an 

active motion finger simulator that can achieve full flexion/extension of the finger joints. 

Load cell calibration and proper PID tuning was achieved to produce a more accurate 

and repeatable system. Using different performance tests, a comparative force analysis 

within the tendons at different velocities was conducted. In addition, repeatability trials 

between runs were tested to further validate the performance and reliability of the system. 
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2.1   Introduction 

In-vitro motion simulators can provide basic science biomechanics data and clinically relevant 

evaluations of surgical procedures, which can be translated into patient care. Although in-vitro 

passive motion studies are more common, due to their simplicity, they lack the intrinsic 

musculoskeletal forces that are characterized by in-vivo motion. One of the most critical 

drawbacks of passive motion simulators is their low repeatability, due to the limb being moved 

manually by an operator. When passively handling a limb or joint, the pathway in which the 

motion is simulated is poorly replicated.  

Within the hand, all forces applied internally along the tendons should remain true to its accurate 

line of action and each tendon should be simulated individually based on its function and 

insertion point. Yang et al. [39] developed an in-vitro passive system that involves the manual 

manipulation of flexor tendons within cadaveric hand specimens amputated slightly proximal to 

the wrist. An external fixator was attached to the radius on one end and the metacarpals on the 

other end. This fixed the cadaveric specimens in the neutral position. The proximal ends of the 

FDS and FDP tendons were looped and linked through a mechanical pulley. This pulley system 

allowed for the tendons to balance through different excursion changes as forces were applied 

manually through human manipulation. A 25-lb load cell was connected to the mechanical pulley 

to record the acquired force and a 200g weight was applied to the extensor tendons to maintain 

full extension of the finger at rest. The system was capable of achieving full flexion of the 

fingers but there was no guarantee that successive trials would follow the same motion trajectory 

or loads within the tendons due to manual simulation of motion.  

To correctly model a system that is capable of simulating full ranges of finger joint motion under 

in-vitro conditions, a synchronized and reliable simulator that runs solely by active motion to 

limit the errors associated with passive motion must be devised. Therefore, the objective of this 

study is to develop a more advanced simulator that is capable of achieving proper and accurate 

motion of the finger with the use of a well synchronized and tuned force and position feedback 

actuator system and model. With the use of actuators or motors within a system, desired flexion 

and extension motions can be achieved and mimicked in a highly precise and repeatable manner; 

resulting in more reliable and desirable outcomes.  
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2.2   Pilot Study 

A pilot study using cadaveric specimens was conducted to determine ranges of tendon loads and 

excursion. This data would later be used to design the active motion simulator.  

2.2.1   Specimen Preparation and Methods 

Cadaveric specimens (age: 70±10.4 years; sex: 2 females, 3 males) were amputated through the 

midline of wrist joint and were firmly secured onto the base. To ensure further stability within 

the hand, 2.5 mm K-wires were inserted through all four metacarpals and a 600g mass hanging 

over a mechanical pulley was secured to the end of the extensor tendon as a counterforce. With 

the use of single degree of freedom (1DOF) in-line load cells (MDN 34, Honeywell, OH) and 

optical tracking, tendon forces, excursion, and joint ranges of motion data was collected for 

analysis. 0-braided Vicryl (ETHICON®) suture were used to suture each flexor tendon to an 

individual load cell that was firmly mounted onto handles (Figure 2.1) 

 

Figure 2.1: Pilot Study Setup 

The load cells are used to record forces within the tendons and trackers are used to record tendon 

excursion  
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Range of motion (ROM) and tendon excursion data was collected through an optical tracking 

system. As explained in chapter one (section 1.5.2), a camera was used to detect seven trackers 

within space. Four of the seven trackers gathered ROM data while the other three collected 

tendon excursion data. To properly evaluate the ROM of the DIP, PIP, and MCP joints, each 

tracker was firmly mounted onto the finger bone segments, distal to the joint of interest (Figure 

2.2a). The fourth tracker however was mounted to one of the static metacarpal bones and used as 

a fixed frame of reference for the remaining trackers to rotate about.  Due to the size of the 

trackers, aluminum plates of various dimensions were used to isolate each tracker and ensure that 

no contact between the trackers is established during flexion (Figure 2.2b).  

 

Figure 2.2: Optical Trackers 

Arrangement of the optical trackers on the finger segments where a) represents the finger in the 

neutral position and b) when fully flexed showing the arrangement of trackers and their different 

orientations along the finger.  

The remaining three trackers were used to measure overall excursion of the tendon. Two trackers 

were mounted onto the handles (Figure 2.1) and the third was on the 600g mass hanging over the 

a) b) 
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pulley. With such distribution, the overall maximum distance travelled by the flexor and extensor 

tendons were recorded and analyzed.  

2.2.2   Results 

The average peak force experienced within the tendon was 15N with forces as high as 20N. 

Excursions within the tendons ranged between 43mm and 50mm, with an overall average of 

45mm. The average range of motion of the DIP, PIP, and MCP joints were 65º, 135º, and 60º 

respectively. 

2.2.3   Discussion  

The increase in peak load experienced by the tendon was mainly due to human error. Since the 

flexor tendons were manually simulated using muscle force, it is very likely that varying forces 

were applied within the suture line between trials, thus, increasing chances of irregularities 

within the data. Nonetheless, such results gave a better understanding on the limitations of the 

tendon in terms of the maximum forces required to achieve full flexion of the finger (20N). In 

regard to excursion and ROM of joints, data obtained were consistent between trial runs and 

more significantly, within literature [40]–[42]. Although optical tracking is known for its 

accuracy and reliability, the weight of the individual trackers triggered as a significant limitation. 

It was hypothesized that the weight applied onto the finger segments could have contributed to 

the rotation of the finger joints by passively flexing the joint past 90 degrees; jeopardizing the 

integrity of the study. 

2.2.4   Conclusion 

The results obtained from this study were of great significance as they provided data and insight 

on the true motion of the joints and the loads associated with the movement of the finger. All 

data collected was strongly taken into consideration when selecting material properties for the 

new active motion simulator.  
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2.3     Design of the Active Motion Simulator  

2.3.1   Simulator Components 

A computer tomography (CT) compatible simulator was constructed through CAD software 

(SolidWorks®, MA) to successfully achieve active flexion and extension of a finger at various 

wrist position (Figure 2.3). The simulator is comprised of two main components: a front base 

and a back base. The front base is the site where the cadaveric specimen is fixed and maintained, 

whereas the back base held most of the mechanical and electrical components of the system. 

 

Figure 2.3: Simulator Assembly 

Full assembly of the active motion simulator viewing the different structural components that make 

up the system 

2.3.1.1   Front Base  

Designed from a combination of Delrin® (DuPont) and acrylic, four different components were 

used to develop the front base; a main platform, rigid vertical uprights, and an enclosing dome. 

Each component served a different purpose within the system. An acrylic platform was designed 

and constructed to serve the purpose of enclosing all of its sub components within its parameters. 

Dimensions selected for the base were chosen based on the average size of the hand, for both 
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sexes to ensure that all soft tissue was constrained within the chosen size of the base. Two 

vertical uprights, mounted to a counter-base were used to rigidly fix the cadaver onto the 

platform. Brass screws were inserted horizontally along the midline of the arm through the ulna 

and radius; ensuring proper fixation of the specimen during testing. This sub-component sat 

perfectly flushed within the main platform. 

To guarantee that the cadaveric specimen is contained within the system, an acrylic dome was 

used to enclose the perimeters of the front base. The dome allowed for the manipulation of full 

finger movement at different wrist positions without the risk of obstruction.  

2.3.1.2   Back Base 

As the site of motion control, the back base contained most of the mechanical and electrical 

components of the simulator. Other than the technical aspect of the system, the back base was 

made up of three different components; the base itself, three 3D print motor mounts, and a suture 

guide rail. To secure and stabilize each motion actuator in position, 3D custom-made motor 

mounts were developed and built from Acrylonitrile-Butadiene-Styrene (ABS) sheets (Figure 

2.4). The motor mounts were designed specifically to allow each motor to sit comfortably and 

rigidly without the possibility of free motion within the enclosure. Since extensor tendons are 

only accessible at a lower elevation when a specimen is rigidly fixed in a neutral-palmar 

orientation, one of the three motor mounts designed varied in elevation in order to maintain the 

appropriate anatomical lines of actions of the tendons. The mount designed for the extensor 

motor was shorter in height in comparison to the two-flexor motor mounts.  
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Figure 2.4: Motor Mounts 

Flexor mount holding one of two flexor motors  

To allow for motion to occur within the finger, forces within the three long tendons; flexor 

digitorum profundus (FDP), flexor digitorum superficialis (FDS), and the extensor tendon (ET) 

are required as mentioned in Chapter 1 (Sections 1.3.2, 1.3.3, and 1.3.4). For such forces to be 

applied, three 12V linear motion servo actuators (E050, Thomson Linear, TX) were used each 

with a stroke length of 4 inches; long enough to fulfill full flexion requirements based on the data 

collected from the pilot study. They also are equipped with a 10kW potentiometer to allow for 

accurate position feedback control. Such feature within the actuator permitted ease of monitoring 

excursions, as the position of the stroke along its pathway is constantly being read and recorded 

throughout each finger flexion run. All three motors were fitted into their corresponding 3D 

printed motor mounts and then rested onto the back base of the simulator using brass screws to 

correctly position and fix each motor mount in place. 0-Braided Vicryl (ETHICON®) sutures 

were used to connect the tendons from the forearm to their analogous motor and all controls were 

synced and driven through a LabVIEW interface software. Proper PID tuning of the controllers 

was necessary for outputting positive and reliable results between motions. Three 1DOF 25lbs 

in-line load cells (MDN 34, Honeywell, OH) were rigidly fixed onto the tip of each actuator’s 
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shaft, or stroke, using custom designed fitted caps. All load cells were properly calibrated using 

the NI SCXI software for accurate force feedback data collection and were connected to a 

LabVIEW program where they were read and collected. Lastly, a rod guide was used to direct 

the suture line travelling from the ends of the tendons to the actuators, along its true line of 

action. As a result, the simulator more closely resembles the anatomical behaviour and properties 

of the tendons in the forearm as all lines of actions were maintained within the system. The use 

of a fishing rod guide proved beneficial by minimizing any frictional forces experienced by the 

suture line as it passes through the channel. Such properties allow for a smoother pathway of 

motion at the end effector, increasing the quality of the results obtained. The rod guide consists 

of an L-shaped bracket with a rod guide channel mounted at the top for the flexor tendons, and a 

lower circular cut out within the bracket for the extensor tendons. 

2.3.2   Electromagnetic Tracker Installation 

As discovered during the pilot study, optical trackers were found to be too bulky and heavy 

compared to the weight of the fingers. Consequently, to overcome this limitation, 2mm 

electromagnetic trackers were used instead to collect joint ROM. To install the trackers, incisions 

were made along the side of the finger to expose the different bone segments of interest. Pilot 

holes (2.1mm) were then drilled at approximately the center of each phalange and trackers were 

inserted laterally into each hole using a friction fit (Figure 2.5). The thickness of the holes 

ensured that each tracker sat flushed within the bone, restricting it from moving in place. 

 

Figure 2.5: Electromagnetic Tracker Installation 

Finger diagram illustrating the location of the trackers’ insertion points within bone 
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2.3.3   Software Development 

2.3.3.1   Closed Loop Tendon Load Controller  
 

A Proportional-Integral-Derivative (PID) control scheme (Figure 2.6) was utilized for its easy 

implementation and straight forward tuning methods. Such feedback loop is capable of achieving 

both load and position control. Load control is attained by using a set target load and the position 

of the piston along the shaft as input to the controller; allowing the system to then output a 

relative step value that is fed to the motor to compensate for any errors experienced in load.  

 

Figure 2.6: Closed Loop PID Schematic 

PID controller system to achieve and maintain target loads using a negative feedback loop 

However, there are two common approaches in which a controller can output position 

commands: absolute-time or relative-time conditions. The significant difference between both 

conditions is the lack of proper communication between the controller and actuator. The biggest 

drawback of absolute-time condition is that the output of the PID is based solely on the force 

signal outputted by the load cell, resulting in absolute position commands that are constantly sent 

to the actuator without proper knowledge of where the actuator currently is within its pathway. 

Relative-time however, has the ability to send position commands to its actuator, relative to the 

current position that is constantly being inputted through the position feedback feature of the 

actuator, along with the force signal obtained from the load cells. This is achieved by having the 

LabVIEW software constantly requesting for the actuator’s current position, and feeding it to the 
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controller as an input signal (Figure 2.7). Once the position of the actuator is supplied, the 

resultant PID output would calculate a command based on the force data from the load cell and 

then adding the command output to the actuator’s current position as the new target position. For 

instance, assuming that the PID output range was manually selected to fall between -50 to 50, the 

target load was set to 5N, and the current position of the motor is at 250 (0 representing full 

retraction and 1000 representing full extension as previously mentioned). 

 In the case where the target load has not been reached yet, based on the tuning of the PID, the 

controller would calculate the appropriate position that allows for the forces to settle around the 

target load goal, and then add the computed value to the current position value of the motor (250 

+ (-50) = 200). Once the motor reaches its new position, the PID controller would then 

constantly check the system to see if the target load has been achieved. In cases where it fails, the 

controller would then re-compute a new command value and the process would continue until 

the target load is reached and the system is stable. This approach is deemed far more accurate 

than the absolute condition as errors such as overshoot and settling time are better maintained 

and corrected.  
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Figure 2.7: Experimental Setup and System Flowchart 

 Design setup of the system demonstrating a) the application/wiring of the EMG (M180, trakSTAR, 

ON) tracking system and b) the layout of the flexor (red) and extensor (blue) motors with a detailed 

flow chart illustrating the function of the system 

a) 

b) 
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2.4   Tuning and Validating the Simulator’s Performance 

A quarter amplitude damping (QAD) tuning process was used to efficiently eliminate any errors 

between the target load and the load measured by the load. The controller was designed to 

respond quickly to changes with little-to-no overshooting and a smaller settling time [43]. The 

steps taken to validate the performance of the system and ensure that the PID is well tuned for its 

objective involved multiple strain tests on the load cell using a spring, a pulley system, and a 

cadaveric finger. All three simulations involved the use of the force and position feedback 

feature of the system to output repeatable and reliable data that can be used to validation the 

quality and performance of the simulator. An operating range was set within the LabVIEW 

program to allow for an acceptable ±2N range in which the PID can safely stabilize within. 

Application of such dead band within the system increases the precision and reliability of the 

data being outputted by the controller throughout performance trials.  

2.4.1   Spring Mechanism  

The first setup involved the use of an extension spring (k=2.83N/mm) attached to a rigid body on 

one end and directly connected to an actuator on the other end through a suture. A target load 

was manually set and the PID controller would output a desired position command to the motor 

to attempt to reach the target load within minimal error. This was attained by feeding the PID 

set-point a static or dynamic load value, whether through a step response graph or a sinusoidal 

curve, and observing the behaviour of the motor in regard to achieving the set load within 

minimal error.  

The step response diagram ranged from 0N to 15N with 5N increments while the sinusoidal 

curve ranged from 5N to 15N with 5N amplitude. Each trial was run three times for repeatability 

measures and all force data was collected and plotted accordingly. Although a spring does not 

fully mimic the elastic properties of a tendon, it allows the motors to be tuned in a way that at 

least closely resembles the tuning required when a tendon is applied. 
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2.4.2   Pulley Mechanism  

The purpose of this setup was to evaluate the performance of the PID controller after 

incorporating a control algorithm that regulates the extensor motor’s operating parameters when 

trying to maintain a set load against a dynamic antagonistic force. With such algorithm, the 

system is ensured to never result in a state of tug of war between both motors when flexion or 

extension is conducted. The set up involved the use of a mechanical pulley and two motors, an 

extensor motor and a flexor motor with their corresponding load cells. Both motors were 

connected to one another through a 0-braided Vicryl (ETHICON®) suture line over a frictionless 

pulley system. Run under position control, the flexor motor was ordered to retract to a specific 

position set by the user; increasing the tension within the cable and evidently forcing the PID 

controller to extend the extensor motor forward to compensate for the increase in load. An 

increase in error between the target load and the load measured is directly proportional to an 

increase in the motor’s speed and sensitivity; ensuring that the target load is constantly 

maintained throughout the motion of the antagonistic force. This system was evaluated under set 

target loads of 5N, 10N, and 15N on the extensor motor.  

2.4.3   In-vitro Test 

This performance experiment was conducted on the fifth finger digit, or the pinky finger, of a 

freshly frozen cadaver specimen amputated at mid-forearm (64 years, male) and attached to the 

simulator via the vertical uprights. A foam block was used to support and maintain the wrist in 

the neutral position. The flexor and extensor tendons of the pinky finger were individually 

isolated and 0-braided Vicryl (ETHICON®) sutures were used to suture the ends of the tendons 

(Figure 2.8). To avoid the possibility of tissue desiccation, all soft tissue within the forearm was 

left intact. All sutures were passed under the skin and each tendon was connected to its 

corresponding motor though the rod guide; maintaining their true and proper lines of action. 

Similar to the pulley test protocol, the in-vivo test involved the use of both types of motors, the 

flexor and the extensor motors. The distance traveled by the flexor motors during motion 

allowed for full flexion of the finger to occur and extensor motors slowly followed the path of 

the flexors while attempting to maintain loads of 5N, 10N and 15N. All motion trials were 
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performed through the full range of flexion-extension of the finger at velocities of 0.5in/s, 0.6in/s 

and 0.8in/s.  

 

Figure 2.8: In-Vitro Test Setup 

The setup of the performance test illustrating the flexor motors in red and the extensor motors in blue  
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2.5   Results  

2.5.1   Step Response Test  

The root means square error (RMSE) in load before tuning of the PID was as high as 3.71 N 

while the error after proper tuning of the PID was as low as 0.38N (Figure 2.9). Within the 

velocity tests conducted, the average RMSE when the motors were travelling at 0.8in/s (Figure 

2.10), 0.6in/s (Figure2.11) and 0.5in/s (Figure 2.12) were 1.3 N, 1.0 N, and 1.1 N respectively. 

Repeatability of the simulator travelling at 0.8in/s, 0.6in/s and 0.5in/s were 0.5 N, 0.6 N, and 0.6 

N respectively. 

 

 

Figure 2.9: Pre vs. Post Tuning of PID  

The plot above demonstrates the behaviour of the PID controller when attempting to follow a step 

response graph (blue) before proper tuning (grey) [k=0.1, I=0.01, d=0.1] and after tuning (orange) 

[k=1.2, I=0.001, d=0.005] 
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Figure 2.10: Step Response Test (0.8in/s) 

 

Figure 2.11: Step Response Test (0.6in/s) 
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Figure 2.12: Step Response Test (0.5in/s) 
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2.5.2   Sinusoidal Curve Test 

Within the velocity tests conducted, the average RMSE when the motors were travelling at 

0.8in/s (Figure 2.13), 0.6in/s (Figure 2.14) and 0.5in/s (Figure 2.15) were 1.9 N, 1.6 N, and 1.6 

N respectively. Repeatability of the simulator travelling at 0.8in/s, 0.6in/s and 0.5in/s were 1.4 N, 

0.9 N, and 1.0 N respectively. All PID metrics were kept constant with the calibrated values 

derived during the step response test. 

 

Figure 2.13: Sinusoidal Curve Test (0.8in/s) 

All plots illustrated above were run at 0.8in/s. The three plots demonstrate the behaviour of the PID 

controller (orange) when attempting to follow a sine curve (blue)  
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Figure 2.14: Sinusoidal Curve Test (0.6in/s) 

 

Figure 2.15: Sinusoidal Curve Test (0.5in/s) 
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2.5.3   Antagonist Model Performance 

Using the antagonist pulley model, the RMS errors were 1.6, 1.3 and 1.2 N with simulated 

extensor loads of 5, 10 and 15 N, respectively (Figure 2.16).  

 

Figure 2.16: Antagonist Performance Test 

These graphs demonstrate the performance of the PID controller when attempting to maintain a 

constant load of 5N (blue), 10N (orange), and 15N (grey) within a 50mm excursion against an 

antagonistic force  
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2.5.4   In-vitro Test 

Performance results from the cadaveric test are illustrated below. Three different extensor loads 

were maintained throughout the test. The RMSE when the extensor target load is at 5N, 10N and 

15N are 2.2N, 1.5N, and 2.1N respectively (Figure 2.17). 

 

Figure 2.17: In-vitro Performance Test 

These graphs demonstrate the performance of the PID controller when attempting to maintain a 

constant load of 5N (blue), 10N (orange), and 15N (grey) within the tendons of a cadaveric specimen  
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2.6   Discussion 

Based on the step and sine performance tests conducted, there appears to be an increase in 

overshoot of the system as speed is amplified; negatively affecting the performance of the 

controller. However, the repeatability of the simulator managed to lie within the ±5N error 

hypothesized in Chapter 1 (Section 1.9). The increase in the repeatability of the motion trials 

provides a clear indication of the benefits to using active manipulation methods to achieve 

motion. In addition, the PID managed to correctly stabilize a target load within a ±2N error 

during the step response, sinusoidal response and the antagonist performance test; further 

validating the performance of the simulator. Some of the results obtained within the in-vitro test 

however surpassed the threshold error set by 0.1N - 0.2N. Although the errors obtained were 

slightly higher than what was initially aimed for, this excess in error was considered not large 

enough to signify a compromise in the simulator’s performance.  

2.7   Conclusions 

Performance evaluations showed that the accuracy and repeatability of the PID controller was 

within acceptable ranges of error. Thus, the finger motion system was suitable for further in-vitro 

motion biomechanics studies.  
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Chapter 3    
 

3   Effect of Wrist Position and Distal Extensor Rupture on 
Finger Kinematics and Tendon Loads: An In-Vitro Study  

 

OVERVIEW: This chapter presents an in-vitro study conducted using two cadaveric upper 

limb specimens (4 fingers) under varying extensor loads, different wrist positions, and a 

simulated injury to the extensor tendon, which can lead to a ‘mallet finger’ deformity. 

Repeatability tests were also conducted to further validate the performance of the active 

motion simulator (developed in chapter 2).  
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Force applied 

3.1   Introduction 

3.1.1   Literature Review 

According to current literature on wrist biomechanics, varying wrist positions can have a 

clinically significant effect on the finger kinematics and tendon loads required to achieved full 

flexion. Several in-vivo wrist studies have evaluated the maximum power grip strength at 

different wrist positions, as opposed to individual finger loads. Li et al. [44] and Lee et al. [45] 

both conducted active motion tests on healthy subjects in-vivo to assess the effect of wrist 

position on the maximum grip force achievable. Li et al. reported the effects of both wrist 

flexion/extension and radial/ulnar deviation on grip force using force sensors to record finger 

force production, and one biaxial ergometer to measure wrist position. They showed a significant 

trend on total force production with peak forces produced at 20° wrist extension and 5° ulnar 

deviation. However, Lee et al. focused solely on the effects of wrist flexed and extended 

positions. Grip strength and grip endurance were quantified using a hydraulic hand dynamometer 

(Figure 3.1) and results showed significant maximum grip strength at 15° and 30° extension for 

the dominant hand and 15°, 30°, and 45° extension for the non-dominant hand.  

 

 

Figure 3.1: Dynamometer 

Tool used to measure grip strength 

Force Reading 
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Another in-vivo study conducted by Pryce et al. [46] concentrated on the effect of wrist 

combination positions (neutral, ulnar deviation, flexion, extension) on the maximum power grip 

strength. Results revealed that the differences in power grip strength were not significant for 0° 

ulnar deviation and 15° wrist extended, 15° ulnar deviation and 15° wrist extended, 15° ulnar 

deviation and 0° wrist flexed, and 0° ulnar deviation and 0° flexed/extended wrist positions.  

The common conclusion derived by most wrist studies is that the largest possible grip force is 

achieved with the wrist in extension, followed by ulnar deviation. However, there are certain 

limitations within these studies. The majority of the literature focuses on the total external force 

produced by the fingers, instead of analyzing the load of each tendon alone internally. While 

external loads are usually important in understanding the total amount of work achieved by a 

person, internal loading is also vital in determining the amount of work required to directly 

translate and attain that load achieved at the finger in both intact and post-surgical repair 

conditions [47]. Due to the anatomical arrangement and complexity of the tendon-wrist 

mechanism, it is evident that internal forces exerted along the tendons are often minimized due to 

mechanical advantage and therefore, never equivalent to the load measured using a force grip 

measuring device [48]. The active motion simulator developed and used in this study has the 

ability to measure and record real-time loads experienced within tendons, FDP and FDS, and the 

extensor tendon within the forearm during full flexion of each finger individually at different 

wrist positions. Both external and internal loads have value for further understanding the 

biomechanics of the hand. This information is clinically relevant to surgical repairs and post-

operative rehabilitation therapy protocols.  
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3.1.2   Mallet Finger Injury 

Mallet finger is one of the most common injuries of the hand and is caused by a tear in the 

extensor tendon insertion point at the distal interphalangeal (DIP) joint (Figure 3.2) [49]. They 

are often induced in the workplace or by intense physical activity such as sports, most commonly 

in basketball. Due to the impairment of the extensor tendon mechanism, active extension of the 

distal phalanx is constrained and can be unachievable based on the degree of the laceration. The 

resulting imbalance between the flexor and extensor tendon mechanism can eventually lead to an 

early or late swan-neck deformity, a deformed condition where the DIP joint becomes 

permanently flexed with the PIP joint in hyperextension, which can result in further loss of finger 

function [50]. Therefore, once induced, it is crucial for the integrity of the extensor tendon 

mechanism at the DIP joint to be restored.  

 

Figure 3.2: Mallet Finger Injury 

Tear of the extensor tendon at the DIP joint representing a mallet finger 

    

Depending on the severity of the laceration, a patient can suffer from acute loss of extension (0-

10°), to severe loss of extension (>25°) [51]. There are several surgical repair techniques 

clinically used to correct chronic mallet finger deformity. Splint therapy is also a common 

approach to help restore finger function and regain any loss of range of motion experienced at 

the joint [52]. Nakamura et al. [53] conducted a study comparing the long-term effects of 
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surgical intervention on the quality of care of patients (n=15), in comparison to splint therapy 

(n=62). The surgical procedure involved making a lazy-S incision over the dorsal distal 

interphalangeal joint for exploration of the ruptured terminal extensor tendon and then fixing the 

joint in the extended position with a K-wire (figure 3.3).  

 

Figure 3.3: Surgical Reconstruction of Extensor Tendon 

Surgical mallet finger repair procedure as conducted by Nakamura et al. [53]. A stainless-steel wire 

is passed through the proximal tendon in a figure-of-eight configuration (left) and pulled distally 

towards the distal tendon and tied firmly as the K-wire held the distal phalanx in an extended 

position (right) 

They reported that 86.7% of patients that underwent surgery experienced more than 10° of 

improvement in extension, with an average improvement up to 34° at the DIP joint, as opposed 

to only 62.9% of patients with splints experiencing the same outcome. In addition, patients 

treated by surgical intervention expressed greater satisfaction with the outcome than did a 

conservatively treated group; concluding that surgery is a better option than conservative therapy 
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in treating fresh mallet finger [53]. Although the effects of mallet finger on joint ROM is well 

understood, it is still unclear whether evulsion or rupture of the distal tendon attachment has an 

effect on the extensor tendon load.  

The purpose of this in-vitro study was to measure the effects of wrist position on individual 

finger flexor tendon loads, FDP and FDS, as well as the joint ranges of motion (DIP, PIP, and 

MCP). In addition, this study aims to analyze and compare the changes in loading experienced 

by the extensor tendon after simulating a mallet finger injury to the DIP joint. 

 

3.2   Methods 

3.2.1   Protocol 
Tendons, FDP, FDS, and the extensor, were tested and analyzed per finger. Each flexor tendon 

of the same finger was simulated together under three extensor-loading conditions: 5N, 10N, and 

15N (Figure 3.5). Six combined sets of wrist positions were tested in the coronal (0° and 30° of 

ulnar deviation) and sagittal plane (0° and 30° of wrist flexion and extension) (Figure 3.4). 
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Figure 3.4: Wrist Combinations 

Diagram illustrating the different positions (neutral, flexed, extended, and ulnar deviated) and angles 

(0° and 30°) in which the wrist was fixed at along the coronal plane (top) and the sagittal plane 

(bottom) 
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Figure 3.5: Testing Protocol Flowchart 

Diagram outlining the steps taken to run the simulator through the experimental protocol 
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Before initiating data collection, a trial run denoting the amount of tendon excursion required to 

allow the finger to actively achieve full flexion and extension once the wrist was fixed was 

executed. Once obtained, the extensor and flexor linear actuators were automated to eliminate 

any slack in the corresponding tendons before simulating motion. During flexion, the flexor 

motors were designed to retract under position control to achieve the target excursion point while 

the extensor motors were programmed to always extend allowing the finger to constantly move 

through its full active range of motion and ensuring that the target load is maintained throughout. 

Once flexion is complete, the system reverts allowing the extensor motors to retract to a target 

position while the flexors extend to fully extend the finger to its initial joint orientation. This step 

was replicated with the hand in every wrist position. The performance of the simulator was 

evaluated by examining each condition three times through the full flexion/extension range of 

the finger to ensure that accuracy and repeatability of the outcome measures are maintained.  

 

3.2.2   Specimen Preparation  

Four digits, comprised of the index, long and middle fingers, were tested from two fresh-frozen 

cadaveric specimens amputated at mid-forearm (age: 71±9.8 years; sex: male). Flexors, FDP and 

FDS, and the extensor tendon of interest were isolated and sutured using 0-braided Vicryl 

(ETHICON®). K-wires were inserted through the metacarpals of the second to fifth digit to 

ensure proper fixation of the hand once tendons are pulled. The specimen was then placed onto 

the front base of the simulator using multiple screws inserted horizontally through the ulna and 

radius, as explained in section 2.2.1.1 of Chapter 2. All isolated tendons within the forearm were 

accessible by rolling over the layer of skin proximal to the wrist (Figure 3.6). Each tendon was 

coupled to its appropriate servo motor through the suture line. All tissues within the specimen 

was left intact and monitored for dryness. Saline solution was used to maintain proper hydration 

of the tissues 
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Figure 3.6: Flexor and Extensor Tendon Isolation 

Separation of flexors (left) and extensors (right) within the forearm 

 

All tendon lines were passed underneath the forearm and retained proper anatomical lines of 

action. 2mm electromagnetic trackers (M180, trakSTAR, ON) were then inserted into each 

finger joint (DIP, PIP, MCP) to analyze proper joint kinematics and range of motion (ROM) 

throughout the study. A tracker was also inserted within the metacarpal of the second digit to 

ensure fixity. All load cells were properly zeroed and calibrated within a custom LabVIEW 

program for accurate tendon load measurement and data collection. Rigid foam wedges were 

used to adjust the wrist at varying positions (Figure 3.7). The hand was stabilized against each 

foam wedge using a Velcro strap. 
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Figure 3.7: Wrist Position Angles using Foam Blocks 

Using blocks to achieve wrist extended (a), neutral (b), flexed (c) positions 

(a)  

(b)  

(c)  
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30

30º 

30º 
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3.2.3   Statistical Analysis 

Both 2-way and 3-way Repeated Measures ANOVA (RM-ANOVA) were performed with 

significance set at p<0.05. The 3-way RM-ANOVA compared the range of motion and tendon 

load of the healthy intact subjects under 3 factors: wrist position, extensor load, and repeated trial 

number. The 2-way RM-ANOVA compared the healthy intact subjects to the injured subjects in 

the wrist neutral position under 2 factors: extensor tendon condition (intact/injured) and repeated 

trial number. All RM-ANOVAs were examined for significant trends within-subject effects and 

pairwise comparisons between factor levels. The repeatability of motion for the simulator was 

reported using the average standard deviation (ASD) throughout the range of motion. 
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3.3   Results 

3.3.1   Repeatability of Tendon Forces  

The average standard deviations were computed between consecutive trials for all motions in 

each position. The repeatability of the simulator between load trials was quite high with average 

standard deviations of 0.48 N for neutral (Figure 3.8), 0.74 N for flexion, 0.98N for extension 

(Figure 3.9), 0.27 N for neutral-ulnar deviation, 0.36 N for flexion-ulnar deviation, and 0.69 N 

for extension-ulnar deviation (Figure 3.10). 

 

Figure 3.8: Load Repeatability in Wrist Neutral 

Repeatability of flexor tendon FDP under 10 N extensor load in the wrist neutral position, showing 

the overall behaviour of all three motion trials of load with respect to time 
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Figure 3.9: Load Repeatability in Wrist Flexed/Extended 

Repeatability of flexor tendon FDP under 10 N extensor load in the wrist flexed position (top) and 

wrist extended position (bottom), showing the overall behaviour of all three motion trials of load 

with respect to time 
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Figure 3.10: Load Repeatability in Wrist Ulnar Deviated-Neutral/Flexed/Extended 

Repeatability of flexor tendon FDP under 10 N extensor load in the wrist ulnar deviated– neutral 

position (top), wrist ulnar deviated – flexed position (middle), and wrist ulnar deviated– extended, 

showing the overall behaviour of all three-motion trial 

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

Lo
ad
	  (N

)

Trial	  1
Trial	  2
Trial	  3

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

Lo
ad
	  (N

)

Trial	  1
Trial	  2
Trial	  3

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

Lo
ad
	  (N

)

Time	  (s)

Trial	  1
Trial	  2
Trial	  3



 

 

60 

The peak force magnitudes and standard deviations achieved by both flexor tendons, FDP and 

FDS, to actively flex the finger under different wrist positions were collected and averaged 

between all 4 digits (Figure 3.11). The forces behaved as expected where pure extension of the 

wrist displayed the largest peak magnitude in FDP, followed by ulnar deviation with extension. 

Nevertheless, FDS did not abide by the same trend as ulnar deviation-extension managed to have 

a greater effect on load than pure extension in the neutral plane. Moreover, both positions, pure 

extension and extension with ulnar deviation, revealed to have the largest effects on flexor loads, 

as established in the literature. Furthermore, an increase in the extensor load resulted in a 

significant within-subjects’ effects increase in both flexor tendon loads FDP (p=0.025) and FDS 

(p=0.008), as they are rather directly proportional.  
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Figure 3.11: Peak Loads of FDP and FDS 

Average peak magnitudes and standard deviations of FDP (top) and FDS (bottom) loads required to 

achieve full active flexion of the finger in different wrist position for four digits. The arrow and 

asterisk represent statistical significance within-subject effects in flexor load as extensor load 

increases (FDP (p=0.025) and FDS (p=0.008)).  
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3.3.2   Repeatability of Joint Kinematics 

The repeatability measures of range of motion trials was also quite high with average standard 

deviations of 2.14° for neutral Figure 3.12), 2.45° for flexion, 3.97° for extension (Figure 3.13), 

2.55° for neutral-ulnar deviation, 2.42° for flexion-ulnar deviation, and 2.58° for extension-ulnar 

deviation (Figure 3.14). 

 

Figure 3.12: ROM Repeatability in Wrist Neutral 

Repeatability of the MCP joint under 10N extensor load in the wrist neutral position showing the 

overall behaviour of all three motion trials of load with respect to time 
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Figure 3.13: ROM Repeatability in Wrist Flexed/Extended 

Repeatability of the MCP joint under 10N extensor load in the wrist flexed position (top) and wrist 

extended position (bottom) showing the overall behaviour of all three motion trials of load with 

respect to time 
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Figure 3.14: ROM Repeatability in Wrist Ulnar Deviated-Neutral/Flexed/Extended 

Repeatability of the MCP joint under 10N extensor load in the wrist ulnar deviated– neutral position 

(top), wrist ulnar deviated – flexed position (middle), and wrist ulnar deviated– extended showing the 

overall behaviour of all three motion trials of load with respect to time 

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50

R
O
M
  (D
eg
re
es
)

Trial	  1
Trial	  2
Trial	  3

0
20
40
60
80

100
120

0 5 10 15 20 25 30 35 40 45 50

R
O
M
  (D
eg
re
es
)

Trial	  1
Trial	  2
Trial	  3

0
20
40
60
80
100
120

0 5 10 15 20 25 30 35 40 45 50

R
O
M
  (D
eg
re
es
)

Time  (s)

Trial	  1
Trial	  2
Trial	  3



 

 

65 

3.3.3   Wrist Position Analysis 

A three-way RM-ANOVA was computed comparing the effects of all 6 wrist positions and the 

repeated trial runs on joint range of motion and flexor tendon loads for all 4 specimens tested. 

There were no statistical significant differences found (p=0.034) in all three joint’s ROM (DIP, 

PIP, and MCP) under different wrist positions, extensor loadings, and repeated trial runs. Unlike 

ROM, both flexor loads, FDP and FDS, achieved significance in trends (p=0.025 and p=0.008 

respectively) when comparing within-subject effects of varying extensor loads. In addition, PW 

comparisons between the three-extensor loading conditions displayed significance in FDS 

between 5N and 15N loadings (p=0.040) whereas FDP was close to significance between the 

same loading conditions, but never reached true significance (p=0.056). Finally, there was no 

significance due to changes in wrist positions for trial runs. 

 

3.3.4   Injury Condition 

Forces of the extensor tendons were used to analyze the effect of a simulated mallet finger injury 

on the kinematics of the finger during active extension of the finger. The peak force magnitudes 

and standard deviations were collected and averaged between all 4 specimens (Figure 3.15).  
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Figure 3.15: Extensor Load Pre and Post Injury 

Average peak magnitudes of extensor loads required in achieving full active extension of the finger 

pre-and-post mallet finger injury simulation for all 4 specimens. The asterisk illustrates statistical 

significance between both conditions (p<0.05) 

A two-way RM-ANOVA was computed comparing the effects of pre-and-post injury simulation 

on the extensor load, as well as finger joint ranges of motion during active extension of the finger 

in the neutral wrist position (n=12). Similar to the healthy state conditions, each motion trial was 

repeated three times and compared as a separate factor within the statistical analysis. Both MCP 

and PIP experienced no significant trends or changes in their range of motion between both 

conditions (intact vs. injured). However, the DIP managed to achieve significance in trend 

within-subject effects (p<0.01) and a significant PW comparison of 32° between the intact and 

the injured states. In terms of the extensor tendon load, a significant within-subject effects trend 
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was achieved (p=0.040) with a significant gain in the load by 4.9N post injury. No significance 

was computed for the difference in trial runs between conditions. 

3.4   Discussion 

The results obtained from the simulator achieved high accuracy and repeatability in its data 

output, confirming the system’s precision and reliability. Not only were the computed average 

errors low, but also were all within the hypothesized PID error range of ±2N in Chapter 1 

(section 1.9). Additionally, there were no significant differences between any repeated trials.  

Since the integrity and mechanics of the fingers tested were left unaltered throughout the wrist 

study, it was expected that variations in the wrist position and extensor loading would have little 

to no effect on the joint ROM. Once a tendon is loaded to the finger’s maximum allowable 

flexion angle, any further increase applied to the extensor load should not, and as established in 

this study, does not have an effect on the joint range of motion, providing that the magnitude of 

the load does not overcome the load applied on the flexor tendons. Such outcome was ultimately 

displayed within this study, further validating the accuracy and reliability of the system. 

However, unlike ROM, increase in extensor load should cause an increase in the flexor loads, as 

they are proportional. This trend was in fact also observed with a significant within-subjects’ 

effects trend in both flexor tendons FDP (p=0.025) and FDS (p=0.008).  

Although the statistical analysis failed to reveal any significances or effects of wrist position on 

tendon load, the peak load data distributed in Figure 3.11 in the results section clearly 

demonstrates that the largest loads were reached with wrist in extension, which agrees with the 

literature [44], [45]. Interestingly however, FDS did not follow the same trends as FDP, 

experienced greater loads with an ulnar deviated and extended wrist. 

Loss of extension ROM at the DIP joint has been established within the literature [51]  and the 

degree of range lost can vary between 10-25° based on the severity of the tendon injury [51]. 

ROM results obtained from this study revealed a significant loss of 32° (p<0.01) in the range of 

the DIP joint with no significant losses in either PIP or MCP during active extension. In addition, 

there was an increase in the extensor load after injury simulation compared to the intact state. In 



 

 

68 

other words, more force is required by the extensor tendon to actively extend the finger with a 

mallet finger injury, as opposed to an intact finger.  

Although losses in DIP’s range of motion after mallet finger simulation is expected and therefore 

not clinically relevant, the current gap in literature regarding forces of the extensor tendon and 

the correlation between the degree of the injury and the load experienced by the tendon is highly 

ambiguous and has not been clinically investigated prior to this study. 

Limitations to this study arise from the use of elderly cadaver specimens for kinematic analysis, 

and the limited small sample size used. King et al. [54] reported significant degradation of cyclic 

peak loads in dense connective tissues of 8.6±4.6% over an 18 hour period (p<0.0001) at room 

temperature (23±2°C) for in-vitro testing. This finding might also have an influence on the 

elasticity of the tendons and the overall laxity of the joints over time. 

3.5   Conclusion 

The overall accuracy and repeatability of the simulator was validated as all force and ROM data 

collected complimented the literature. In addition, the effect of tissue degradation and stiffness 

on the simulator’s ability to produce repeatable motion was negligible as no major differences in 

the average standard deviations of repeated trials were detected. Overall, the repeatability of the 

simulator was met with the objective outlined in Chapter 1 (Section 1.9). 
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Chapter 4    
 

4   Sequential A2 and A4 Pulley Sectioning and 
Reconstruction: Cadaveric Kinematics Study 

 

OVERVIEW: This chapter presents a pulley study conducted using five cadaveric upper limb 

specimens (14 fingers) looking at the effect of sequential pulley cuts of the A2 and A4 

pulley on the ROM of joints and flexor tendon loads. In addition, lacerated pulleys were 

then surgically repaired to restore full ROM of joints and tested with the wrist in three 

positions; neutral, flexed, and extended. A detailed discussion of the results obtained is also 

included to validate the relevance and significance of the results within clinical grounds.  
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4.1   Background 

The A2 and A4 pulleys have been clinically acknowledged from previous studies to be very 

important in maintaining proper finger biomechanics [55]–[57]. Anatomically, these pulleys 

shield a proportionally large area of the flexor tendons. As discussed in Chapter 1 (Section 

1.2.4), they function by transmitting tensile load within flexor tendons to rotational torque at the 

joints. Therefore, any minor disruption to the A2 and A4 pulleys can jeopardize range of joint 

motion and negatively affect the kinematics of the finger.  

Chow et al. [12] conducted a cadaveric study examining the effects of partial distal/proximal 

incisions of the A2 and A4 pulleys on the ring and index finger’s flexion kinematics and 

biomechanics (n=32). The experimented protocol involved separating the specimens (8 

fingers/group) into four groups; A2 proximal 50% partial incision, A2 distal 50% partial 

incision, A4 proximal 50% partial incision, and A4 distal 50% partial incision. All measurements 

were compared to the intact state as the control group. The FDP tendon was loaded by a 

computer driven servo-motor and the angular rotations of the finger joints were measured by 

micro-potentiometers (Honeywell Clarostat Model 586) (figure 4.1). 

 

Figure 4.1: Experimental Setup  

Flowchart illustrates the step by step process taken during the study [12] 

Results from this study revealed an overall significant loss in finger motion after proximal 50% 

incisions of either the A2 or the A4 pulleys were made, 6.6% and 8.6% respectively. This effect 
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was greatest seen in the MCP joint with a decrease in joint rotation. No significant changes in 

joint inertial torques were shown.  

Tomaino et al. [58] conducted another cadaveric study investigating the effect of sequential 

excisions (25%-75%) of the A2 and A4 pulleys on digital angular rotation and the energy 

required to flex the finger. Results from this study revealed a 3% and 5% significant loss in 

angular rotation due to 50% and 75% excision of the A2 pulley, respectively. However, unlike 

Chow et al’s results, partial excision of the A4 pulley failed to reveal any significant losses in 

joint rotation. 50-75% excision of both pulleys however resulted in 5-8% loss, respectively. In 

terms of forces within the flexor tendons, significant difference was only noticed after 75% of 

the A2 pulley had been cut. Mitsionis et al. [59] however, demonstrated different outcome 

results following similar experimental procedures. Their results concluded that a minimal length 

of 50% of either A2 or A4 pulleys must be maintained for ideal finger kinematics. 

Finally, Lu et al. [60] conducted a study where excursion and moment arms of flexor tendons 

FDP and FDS with respect to the MCP joint were evaluated under the effects of different pulley 

conditions of cadaveric specimens (n=8). The experimental protocol involved measuring each 

specimen under four pulley states; intact, A2 intact with A1 fully cut, 50% proximal cut of A2 

with A1 fully cut, both A1 and A2 fully cut. Linear position sensors (LP-100F; Midori America 

Corporation, Fullerton, CA) were attached to the FDS, FDP, and EDC to measure the tendon 

excursions simultaneously. A 3D motion capture system with eight cameras (Eagle; Motion 

Analysis Corporation, Santa Rosa, CA) was also used to measure joint rotation. Excursion of the 

tendon was measured by applying a 7N weight onto the tendon of interest to achieve full finger 

flexion, whereas the other tendons were supplied with a 1N weight to simulate passive tendon 

tension. Results obtained from this study failed to reveal significant differences in excursion of 

FDP and the moment arms of FDP and FDS with A1 fully cut and A2 50% cut. These results 

further strengthen the conclusion made by other studies as it implies that both A2 and A4 pulleys 

can undergo 50% cuts without significantly affecting the kinematics of the finger.    

The development of active motion simulators to reanimate cadaver specimens has opened many 

doors to attaining reliable data for the investigation of joint kinematics. The biggest and most 

common limitation seen within these pulley studies mentioned above is the lack of a proper 
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integrated system that is capable of controlling a finger while measuring tendon load and 

excursion in all tendons simultaneously during simulated active motion. As research is limited in 

its ability to properly model and mimic true in-vivo behaviours of specimens, the simulator 

developed in Chapter 2 has the capability of overcoming those limitations faced within the 

studies due to its ability of proper loading and excursion control of all tendons. In addition, its 

high resolution allows it to detect any small changes in load and joint kinematics after sequential 

pulley excision, as well as following reconstruction. Surgical pulley reconstruction procedures 

are very common and aid in restoring normal finger function after laceration [61]. Yet, there is a 

current literature gap regarding the effects of different wrist position on the internal tendon loads 

and joint ROM of the finger following each sequential pulley cut and reconstruction made. 

Therefore, the purpose of this study was to investigate the effects of sequential A2 and A4 pulley 

sections and reconstruction on the DIP, PIP, and MCP joint ranges of motion, as well as, the 

loads required to achieve full active flexion of the finger prior and post laceration. In addition, 

outcome measures following surgical reconstruction of the pulleys was explored under three 

different positions; neutral, flexed, and extended.  

4.2   Methods 

4.2.1   Protocol 

Tendons, FDP, FDS, and the extensor, were tested and analyzed per finger. Each flexor tendon 

was pulled with a 10N applied onto the extensors in three different wrist positions; wrist neutral, 

30º wrist flexion, and 30º wrist extension. An initial trial run was first executed to denote the 

amount of tendon excursion required for the finger to actively achieve full flexion/extension. 

Once obtained, the linear actuators were automated to automatically achieve the target position 

through position control once instructed to. Baseline tendon forces and ROM of each joint in the 

intact pulley state was measured and recorded. This step was replicated with every wrist position.  

Before initiating any pulley cuts, an incision was first made on the palmar surface of each tested 

finger to identify and measure the A2 and A4 pulleys clearly. The incisions were 1–2cm in 

length and were made 1cm distal to the MCP joint and 1cm proximal to the DIP joint. The 

lengths of the pulleys were recorded using a Vernier caliper to the nearest mm (A2: 17.7± 
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2.1mm, A4: 6.4± 1.0mm) and increments of 25% and 50% were marked on the A2 and A4 

pulley respectively with a thin sharpie pen (Figure 4.2). 

 

Figure 4.2: 25% Sectioning of the A2 Pulley 

The black dots on the pulley represents every 25% mark as illustrated by the red dashed lines 

The surgical excision protocol proceeded as follows: 

1.   A2 25% sequential cuts until 100%; A4 intact 

2.   A2 reconstruction; A4 intact 

3.   Release of A2 reconstruction; A4 50% sequential cuts until 100% (fully cut) 

4.   A2 reconstruction; A4 100% cut 

5.   A2 reconstruction; A4 reconstruction (full reconstruction) 

6.   A2 release; A4 reconstruction; 

Excursions of flexor tendons were always referenced back to the intact excursion and all tendon 

load and joint ROM measurements were recorded and analyzed between each cut/reconstruction. 
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All sequential pulley excisions following the intact state were conducted only in the wrist neutral 

position where as full excision and reconstruction were analyzed in all three wrist positions. 

Tendon grafts isolated from forearm were used for the reconstruction of the pulleys in a double 

loop technique where the tendon was looped twice around the flexor tendon and adjacent bone 

(Figure 4.3). The skin was never removed and was sutured together after each sequential cut or 

reconstruction.  

 

Figure 4.3: Pulley Reconstruction 

Reconstruction of the A2 pulley using tendon grafts 

4.2.2   Specimen Preparation  

Fourteen digits, comprised of the index, long and ring fingers, were tested from five freshly 

frozen cadaveric specimens amputated 10cm proximal to the wrist (age: 71.8±9.9 years; sex: 2 

males, 3 females). All CT scans of specimens were screened prior to testing for signs of 

osteoarthritis disease (OA) at the joints. The flexor digitorum profundus (FDP), flexor digitorum 



 

 

75 

superficialis (FDS), and the extensor tendon (ET) of the three fingers were isolated for testing. 

The involved tendons were sutured using 0-braided Vicryl (ETHICON®) in order to be loaded 

onto the linear actuators. All tendon lines retained proper anatomical lines of action and 

electromagnetic trackers were inserted into each finger joint (DIP, PIP, MCP) to analyze proper joint 

kinematics and range of motion (ROM) throughout the study. The metacarpals were fixed by K-

wires to avoid unnecessary motion and an electromagnetic tracker was inserted within the 

metacarpal of the second digit to ensure fixation. Similar to the wrist study, the specimen was then 

securely fixed to the front base of the simulator for testing and self-designed foam blocks were 

also used to adjust the wrist at varying positions. The wrist was also restricted using 2mm 

Dacron fishing wire to prevent movement of the wrist in the sagittal and coronal plane between 

runs. All remaining tissues within the specimen were left intact and saline solution was used to 

maintain proper hydration of the tissues to preserve the natural function of the hand.  

4.2.3   Statistical Analysis 

Multiple 1way, 2-way, and 3-way Repeated Measure ANOVAs were executed to establish 

significant trends within subject effects (p<0.05). The 1-way RM-ANOVAs compared the 

difference flexor loads, FDP and FDS, under different pulley conditions in the wrist neutral 

position. The 2-way tests focused more on the effect of different pulley conditions and finger 

flexion/extension runs on the individual joint angular rotations. Lastly, the 3-way RM-ANOVA 

compared the effect of all 3 factors, pulley condition, wrist position, and finger flexion/extension 

on tendon loads and joint ROM to piece together an understanding of the true influence that 

these factors have on the outcome measures of interest.  All RM-ANOVA simulations were 

examined for trend significances within-subject effects and pairwise comparison (PW) 
significances between individual variables. In addition, a G*Power software (Appendix F) was 

used during this study to quantify the minimum sample size (n=12) required for achieving 

significant trends within 80% statistical power based on metrics such as the effect size that is 

obtained from results of completed specimen tests.  
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4.3   Results 

4.3.1   Tendon Forces 

With the wrist in neutral, sequential sectioning of the A2 and A4 pulleys revealed significant 

trends in both FDP (p=0.001) and FDS (p=0.003) tendon loads with a significant reduction of 

2.3±1.9N (p=0.029) load in the FDP load after complete A2 and A4 excision (Figure 4.4).  

 

 

 

 

 

 

 

 

 

 

Figure 4.4: FDP and FDS Load following Pulley Sectioning/Repair 

FDP (top) and FDS (bottom) tendon loads are illustrated where the asterisk highlights PW 

comparison significances. Error bars represent the standard deviations between specimens (n=14)  

As seen in Figure 4.5, with the wrist flexed, cutting both A2 and A4 pulleys also revealed 

significant trends in both FDP (p=0.006) and FDS (p=0.002) loads. FDP was reduced by 3.6±3.5 

N (p=0.034) when both pulleys were excised, and restored to within 0.5 N of the intact state by 

their subsequent reconstruction (p=0.034).  Lastly, with the wrist extended, cutting both pulleys 
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revealed significances in both FDP and FDS tendon loads (p=0.001, p=0.046 respectively). FDP 

was significantly reduced by 3.5±1.7 N (p<0.001).  

 

Figure 4.5: Influence of Wrist Position on FDP Load Post Sectioning/Repair  

FDP load with wrist flexed (top left), wrist extended (top right), and FDS with wrist flexed (bottom 

left), wrist extended (bottom right). The asterisk highlights PW comparison significances between 

conditions. Error bars represent the standard deviations between specimens (n=11). 

As demonstrated in Figure 4.6, with both pulleys reconstructed, the wrist position had a 

significant effect on tendon load (p=0.030). The flexed wrist position resulted in a reduction of 

FDP load compared to the neutral wrist position (p=0.010). Wrist extension also produced an 

apparent reduction, though not statistically significant.  
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Figure 4.6: Maximum FDP Loads intact, sectioned and reconstructed pulleys as a function of 

wrist position. 
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4.3.2   Joint ROM 

With the wrist in neutral, sequential sectioning of the A2 pulley alone from 50%–100% with A4 

still intact significantly reduced the MCP ROM by 2.2±1.9° (p=0.015), 2.7±2.5° (p=0.019), and 

4.8±4.2° (p=0.014). Full sectioning of both pulleys resulted in a significant MCP ROM loss of 

9.1±7.1° (p=0.016), and restored to within 0.7° of the intact state by reconstruction (p=0.040) 

(Figure 4.7). The DIP and PIP joints did not experience similar significance.  

 

Figure 4.7: Influence of Pulley Sectioning/Repair on MCP’s ROM 

The asterisk highlights PW significances between conditions. Error bars represent the standard 

deviations between specimens (n=14) 

With the wrist flexed, cutting both A2 and A4 reduced MCP ROM (p=0.002) by 7.4±6.3° 

(p=0.009). With the wrist extended, cutting both A2 and A4 reduced MCP ROM (p=0.006) by 

7.2±7.3° (p=0.024) and reconstruction restored ROM to within 2° of the intact state (p=0.014). 

DIP and PIP ROM were not significantly altered. When both pulleys were fully reconstructed, 

there was a loss of 12±16.1° (p=0.049) in MCP ROM in wrist neutral compared to wrist flexed, 

as well as a 17.5±16°(p=0.004) loss in wrist neutral compared to wrist extended. In addition, 

there was a loss of 9.7±10.8° (p=0.015) in PIP ROM in wrist neutral compared to wrist flexed 

and a 10.8±14°(p=0.039) loss in wrist neutral compared to wrist extended. 
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Figure 4.8: Maximum MCP ROM following reconstructed pulleys as a function of wrist 

position 
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4.4   Discussion 

4.4.1   Effect of sequential cuts/reconstruction on Kinematics 

Partial excision of the A2 pulley had the largest effect on MCP’s angular rotation. With the wrist 

in neutral, the MCP experienced a 3%, 3%, and 6% significant reduction in its range of motion 

with every sequential 50%, 75%, and 100% A2 cut made compared to the intact state. In 

addition, each sequential cut resulted in an average significant reduction of 2% between each 

state. However, partial excision of the A4 pulley failed to reveal similar trends within our sample 

size. 

Full sectioning of both pulleys also revealed significant losses not only on the joint ROM, but 

also in tendon load. With the wrist in neutral, MCP suffered an 11% loss in its ROM while the 

FDP suffered a 27% loss compared to the intact state. Furthermore, MCP and FDP metrics were 

reduced by 8% and 43% respectively with the wrist in flexion, and 8% and 40% respectively 

with the wrist in extension. Such significant losses in both ROM and load due to partial and full 

excisions of the pulleys signify the true importance of having a functional A2 and A4 pulley on 

the kinematics of the finger. 

Surgical reconstruction of the pulleys is clinically common and valuable in reinstating proper 

kinematics of the finger. Following sequential A2 and A4 pulley reconstruction, MCP ROM and 

FDP loads were restored to within 0.7° (10% increase) and 0.7N (19% increase) of the intact 

state respectively with the wrist in neutral, 2° (5% increase) and 3N (7% increase) with the wrist 

in flexion, and 2° (5% increase) and 1.8 N (19% increase) with the wrist in extension. As 

justified by the results of this study, sequential reconstruction of the pulleys restored normal 

kinematics to within no significant difference of the intact state; thus, supporting the decision to 

reconstruct. 

4.4.2   Effect of Wrist Position on Kinematics following Reconstruction 

With both pulleys reconstructed, the wrist position had a significant effect on tendon load and 

ROM. The flexed wrist position resulted in a 31% reduction of FDP load compared to the neutral 

wrist position. Wrist extension also produced an apparent reduction, though not statistically 

significant. However, ROM did not seem to follow the same trends when comparing wrist 
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positions. Full reconstruction of the pulleys resulted in a 14% and 20% increase in MCP ROM 

with the wrist in flexion and extension respectively compared to the wrist neutral position. 

Although both ROM and load did not follow the same tendencies, the most important clinical 

approach when considering rehab is the management of strain that is applied onto the pulley 

reconstructions. Since minimizing strain is prioritized, these results may suggest that 

rehabilitation of surgically reconstructed flexor tendon pulleys should be carried out with the 

wrist flexed, as opposed to wrist in neutral as conducted in current day clinics.  

This study had two limitations. Firstly, the cadaveric specimens were previously frozen and of 

advanced age and secondly, amputating each digit after testing it to make room for the trackers 

could have altered the biomechanics of the subsequent digit. However, despite the limitations, an 

important strength of this study is its sample size. As previously mentioned in the Methods 

section, a G*Power software was used to identify the number of specimens required to achieve 

significant trends in results and therefore, with proper computation, the sample size chosen for 

this study was sufficient enough to detect important trends and changes between conditions; 

highlighting the importance of the software when examining a study. In addition, with the 

sample size used, the effect sizes of the individual tendon and ROM metrics were averaged to be 

0.3N and 0.2º respectively, complementing the initial hypothesis made in Chapter 1 (section 1.9). 

4.5   Conclusion 

The in-vitro finger motion simulator managed to detect significant changes in both load and 

ROM caused by the sectioning of A2 and A4 pulleys. As established within current clinical 

grounds, a patient can undergo a 50% cuts to both the A2 and A4 pulleys without significantly 

affecting the kinematics of the finger. These results were further strengthened within our 

research as the simulator was capable of detecting minor changes that occurred between each 

sequential cut made, with an exception for the PIP and DIP joint ROMs as they were not 

significantly affected by these conditions. However, the current gap in literature regarding the 

effect of pulley sectioning/reconstruction on tendon load has been resolved, providing additional 

tendon load information that compliments the state of knowledge on joint ROM. Placing the 

wrist in 30° of flexion has shown to result in decreased tension in the reconstructed FDP tendon 

compared to a neutral wrist. These results may suggest that rehabilitation protocol should be 

carried out with the wrist flexed in order to reduce strain on pulley reconstructions. In addition, 
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pulley reconstructions restored both metrics, load and ROM, with no significant difference 

compared to the intact state, increasing their function by not only reducing bowstringing, but by 

restoring natural joint. 
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Chapter 5    
 

5   Discussion and Future Work 

 

OVERVIEW: This chapter reviews the work done in previous chapters and highlights the 

strengths and weaknesses developed throughout this research. In addition, an outline for future 

work to further improve clinical research using the simulator is proposed.
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5.1   Summary 

In order to provide the highest quality of care to a patient suffering from any trauma to the 

hand, fine understanding of the kinematics using appropriate instruments is vital when 

enhancing the treatment and rehabilitation protocols of severe injury cases. In Chapter 2, the 

process behind the design and development of an active finger motion simulator, as well as 

the method of actuation, PID tuning, and tracking was outlined. Two flexor tendons, flexor 

digitorum profundus and flexor digitorum superficialis, and one extensor tendon were each 

directly sutured onto load cells that were calibrated (Appendix A) for precise force 

measurements and mounted onto the shafts of the linear actuators, proper position and force 

feedback control. Objective 1 and Hypothesis 1 & 2 outlining the performance requirements 

of the simulator in Chapter 1 were satisfied in Chapter 2 as the simulator was successful in 

producing repeatable motions managed to yield accurate and reliable under the influence of a 

well-tuned PID control system during several performance tests, including an in-vitro test.  

Chapter 3 summarized a wrist study conducted on four fingers with the sole purpose of 

satisfying the second objective; the system’s ability to produce expected results compared to 

current literature. Within this study, six different wrist positions were achieved to examine the 

effect they have on the kinematics of the finger and loads within the flexor tendons during 

active flexion and extension of the finger. In addition, the effect of a simulated tear in the 

extensor tendon at the DIP joint was also investigated. Complimentary to literature, the largest 

effects in load were found with the wrist in extension and ulnar deviation, and the lacerated 

extensor tendon resulted in a 32° loss at the DIP joint during extension. Overall, the simulator 

was able to actively produce repeatable flexion/extension motion of four finger to within 

0.6±0.2N between trials; surpassing the ±2N error margin constraint set. 

Once the performance of the system was properly validated, Chapter 4 focused on a clinical 

investigation into the effects of sequential sectioning and reconstruction of the A2 and A4 

pulley on the loads within the tendons, and range of motion of the finger joints. A simulated 

loss of the both pulleys resulted in reductions of tendon load. A reduction in joint range of 

motion was also observed, which is consistent with the known tendon bowstringing effect. In 

addition, subsequent reconstruction resulted in a near complete restoration of intact function. 

Wrist position in 30° of flexion caused a decrease in FDP tendon loads compared to the wrist 
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in neutral. This is a clinically relevant result, as it supports the clinical decision to reconstruct 

the pulleys. These results also suggest that post-operative rehabilitation should be carried out 

with the wrist flexed in order to reduce strain on the repaired pulleys. In addition, this chapter 

satisfied the remaining hypothesis (3 & 4) by investigating the influence of effect size on 

achieving significant trends within an 80% statistical power.    

5.2   Strengths and Limitations 

The active motion finger simulator developed within this work is one of the more advanced 

systems that is used for in-vitro testing. Its performance in terms of its repeatability and 

accuracy increases its credibility as an optimum testing tool within clinical and research 

grounds.  

A noteworthy strength observed during the pulley study conducted in Chapter 4 is the amount 

of time taken for full completion of the testing protocol (t=8hrs) as opposed to Chapter 3’s 

protocol (t = 20hrs). In light of King et al. [54] finding, chances of significant degradation of 

peak loads in tendons and the joints over time are lowered immensely during such short 

testing periods (<10hrs); increasing the integrity of the study.  

A limitation is the use of previously frozen cadaveric specimens of advanced age. This 

limitation was mitigated by having an orthopedic fellow prescreen specimen CT scans for 

pathology.  

5.3   Future Work 

The simulator managed to satisfy every objective and hypothesis defined in Chapter 1, 

however further increasing of the tracking method of the joints can be achieved. Since the 

simulator is mostly comprised of Delrin, its compatibility to computerized tomography (CT) 

allows for more precise and advanced joint rotation measurements and therefore, higher 

accuracy when analyzing potential losses in the ranges of motion. In addition, the simulation 

of the lumbrical muscles of the hand along with the flexor tendon would be a valuable step to 

take in the advancement of the simulator. The lumbricals are intrinsic muscles of the hand that 

flex the MCP joints and extend the DIP and PIP joints. Their integration might be of clinical 

significance when carrying out future cadaveric studies. 
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However, the current design of simulator never failed to produce desirable outcomes, 

strengthening the motive to allow it to tackle further clinical studies that can be explored to 

achieve relevant clinical outcomes within research grounds. A specific study of clinical 

interest would involve examining different joint implant properties and how they each comply 

to the needs of a patient in terms of finger mobility and wearing of the joint. Implant 

development for joint arthroplasty is currently in its infancy, but is also a very interesting and 

draws many exciting clinical questions. Other studies might involve further dissecting and 

understanding the true effects and contributions of each individual carpal bone in the wrist to 

the tendon loads, if any. A study such as this would involve examining a pre-and post-injury 

and repair condition to understand the influence of trauma on the integrity of the hand.
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               Appendices 

Appendix A: Load cell and PID calibration 

A.1 Validation of the Load Cell 

To calibrate and validate the performance of the 1DOF in-line load cells (MDN 34, Honeywell, 

OH) used for providing reliable force data, a series of known masses were hung in 2g increments 

with the load cell in a vertical orientation. Initial zeroing of the load cell was necessary before 

applying the first load. This test revealed a strong agreement between the load cell and the 

applied mass with coefficient of determination of R2 = 0.99997 and an average error of 0.2 ± 

0.13g (figure A.1). 

 

Figure A.1: Load Cell Calibration 

The load cell was validated by hanging masses of known quantities in 2g increments and had an R2 

value of 0.99997 
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A.2 PID Calibration 

To validate the performance of the closed loop force feedback system, a PID was built and the 

individual gains (proportional, integral, and derivative) were tuned to minimize any errors within 

the system. Target forces ranging from 0-25N in 5N increments were set for the controller to 

achieve and gain values for each unit were individually varied between trial runs to denote their 

effect on the performance of the simulator as demonstrated in the graphs below.  

A.2.1 Effect of Proportional Gain (K) 

As demonstrated in the figures below, an increase in the proportional gain causes an increase in 

noise in the system as the actuator becomes more over-responsive. 

  

 

Figure A.2.1.1: Response Graph for Proportional Gain K = 0.5 
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Figure A.2.1.2: Response Graph for Proportional Gain K = 1.5 and K=5  

K=1.5(top), K=5 (bottom). As gain increases, the motor becomes more aggressive to changes in load 
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A.2.2 Effect of Integral Gain (I) 

As demonstrated in the figures below, an increase in the integral gain causes the simulator to be 

overall less responsive to changes in load; increasing error. 

 

 

Figure A.2.2.1: Response Graph for Integral Gain I = 0.01 and I= 0.05 

I = 0.01 (top) and I= 0.05 (bottom) 

0

5

10

15

20

25

30

0 200 400 600 800 1000

Fo
rc
e  
(N
)

Data	  Points

Target	  Load
Load	  Cell	  Reading

0

5

10

15

20

25

30

0 200 400 600 800 1000

Fo
rc
e  
(N
)

Data	  Points

Target	  Load
Load	  Cell	  Reading



 

 

98 

 

 

Figure A.2.2.2: Response Graph for Integral Gain I=0.1 

As the gain increases, the motor becomes less sensitive to load. 
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A.2.3 Effect of derivative Gain (D) 

An increase in the derivate gain did not seem to demonstrate as big of an effect on the 

simulator’s performance as do other metrics. However, similar to other gains, an increase in the 

derivative metric resulted in more noise in the system. 

 

Figure A.2.3.1: Response Graph for Derivative Gain D = 0.005 
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Figure A.2.3.2: Response Graph for Derivative Gain D = 0.007 and D= 0.05 

D= 0.007 (top) and D= 0.05 (bottom) 
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Appendix B: Technical Drawings/Pictures of Simulator Components 

-All measurements illustrated in inches. 
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Figure B.1: Top View Assembly of Simulator  

with a phantom hand representing a cadaver 
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Figure B.2: Different Views of Simulator  

Side view (top), Isometric view (bottom) 
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Figure B.3: Cap, Rod Guide, and Motor Mount 

Cap design for mounting the load cell onto the motor (top), Rod guide assembly (bottom left), 

and 3D printed motor mount (bottom right) 
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Appendix C: Arduino Code  

C.1 Main code file 
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C.2 Motor Driver File 
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C.3 Header/Library File 
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Appendix D: Electrical Diagram & Circuit Schematic 

 

Figure D.1: Electrical Circuit Diagram  

connection for one of three motors 
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Figure D.2: Electrical Schematic Connection 

For one of three motors 
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Table D.1: Circuit Connections and Components 

A 5V Arduino Nano to positive (+) terminal on Potentiometer 

B Analog pin (A1) on Arduino to potentiometer input terminal 

C Ground (GND) to negative (-) terminal on Potentiometer 

D OUTA1 & OUTA2 pins on Motor Shield Driver to positive (+) terminal on Motor 

E OUTB1 & OUTB2 pins on Motor Shield Driver to negative (-) terminal on Motor 

F ENA and ENB pins on Motor Shield Driver to Digital pin (D3) on Arduino Nano 

G IN1 and IN3 pins on Motor Shield Driver to Digital pin (D4) on Arduino Nano 

H IN2 and IN4 pins on Motor Shield Driver to Digital pin (D5) on Arduino Nano 

I Ground (GND) to Motor Shied Driver 

Components Name/ Part number 

Arduino (x1) ATmega328 Arduino Nano 

Motor Shield Drivers (x3) Keyes L298 Motor Driver 

Linear Motors (x3) E050 Thomson Linear Motors w/10kΩ Potentiometers 

Breadboard (x3) Solderless Breadboard Terminal Strip 
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Figure D.3: Final Circuit Diagram 

Including all 3 motors 
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Appendix E: Sample Size Calculation 

G*Power is a software tool with many statistical benefits including determining the 

correct number of samples required to achieve significance within data. Illustrated below 

is a step by step outline on how to attain such value in a G*Power software using metrics 

retrieved from statistical analysis files. 

  

    Step  1  –  Identifying  type  of  statistical  test  &  output  metric  of  interest  

  

  

  

 

 

The   desired   outcome   is   sample  

size;;   given   effect   size   and   power  

within   a   repeated   measures  
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    Step  2  –  Determining  the  Effect  size  &  Alpha  

 

Step  3  –  Selecting  a  statistical  power  &  number  of  groups/measurements   
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Step  4  –  Correlation  measures  &  nonsphericity  correction  
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Step  5  –  Compute  the  required  sample  size  

  

  
The  equated  sample  size  reveals  

that  a  minimum  of  12  samples   is  

required   to   achieve   significance  

within  80%  statistical  power  
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Appendix F: Specimen demographics  

Table G.0.2: Chapter 2 Demographics 

Specimen   Number   Age   Sex  

1   13-07017   87   Female  

2   13-08049   64   Female  

3   13-11068   72   Male  

4   13-12003   60   Male  

5   13-12023   68   Male  

  

Table G.0.3: Chapter 3 Demographics 

Specimen   Number   Age   Sex  

1   15-10049     78   Male  

2   16-05020     64   Male  
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Table G.0.4: Chapter 4 Demographics 

Specimen   Number   Age   Sex  

1   16-05014     60   Female  

2   15-05021     80   Male  

3   15-07052     69   Female  

4   16-01032   66   Female  

5   15-02069   84   Male  
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