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Abstract 

There are difficulties in making a common interpretation of results of similar experiments done 

in different experimental tornado simulation facilities. This is primarily because of the 

differences in vortex generation mechanisms utilized as well as geometric differences in these 

facilities. Therefore, in an attempt to facilitate a universal interpretation of results, a generic 

numerical tornado model, representing the three major existing experimental tornado 

simulators, is developed in this study. The three experimental simulators in consideration are 

VorTECH at Texas Tech University, Tornado Simulator at Iowa State University and 

WindEEE Dome at Western University as representatives of “Ward” type, “top-down” type 

and “3-D wind chamber” type facilities, respectively.  

First, the three experimental facilities and their corresponding flow-fields are replicated using 

CFD simulations and then the differences and similarities in their flow-fields are identified. It 

is demonstrated that it is possible to link different experimental facilites through a generic 

numerical model by characterizing a tornado-like vortex using parameters strictly obtained 

from the flow-field, as opposed to the common practice of using geometric dimensions of the 

experimental facilities to extract these parameters.  This part of the study requires an extensive 

parametrization to characterize these vortices, hence computationally effective and reasonably 

accurate Reynolds Stress Model (RSM) is used. Further, the potential application of this 

generic numerical model to bluff-body aerodynamics and wind load evaluation is demonstrated  

by using a more accurate Large Eddy Simulation technique. While the results show some minor 

but explainable discrepancy with experimentally obtained data, the proposed generic numerical 

model displays a promise towards its application for preliminary tornadic aerodynamic data 

generation.  

Keywords 

Tornado-like vortices, numerical tornado simulation, flow-field charaterization, experimental 

tornado simulators, generic numerical model, bluff-body aerodynamics, wind load evaluation.  
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Chapter 1  

1 Introduction 

Analyzing the effects of extreme weather phenomena, like tornadoes, on structures (bluff 

bodies) has received an increased attention in the past few decades. This is largely because 

greater socio-economic losses would occur in the event of such a catastrophic weather 

phenomenon now, more than ever before, due to recently increased urbanization and 

economic development. Wind Hazard Reduction Coalition statistics reveal that, on an 

average, about 800-1000 tornadoes annually strike US alone, causing 80 deaths, 1500 

injuries and $850 million in damage. In 2011, according to National Oceanic and 

Atmospheric Administration (NOAA), tornadoes killed 553 people and amassed $10 

billion dollars in damage in the United States. NOAA also reported at least 5 tornadoes in 

US in 2015 to have caused over a billion dollars in damage each, with a preliminary tornado 

count for the year to be around 1200. While US is ranked first in terms of annual tornado 

occurrences, Canada is ranked second. However, unlike US, tornadoes in Canada were not 

well documented before 1980s, the reason for a relatively weak database of past tornadic 

events. Newark (1984), using newspaper clips, photographs and damage survey reports, 

developed a database for tornadoes in Canada from 1950 to 1979. It was reported that there 

had been over 700 confirmed tornadoes near Ontario region since the 1950s, making it a 

tornado prone region in Canada. A qualitative assessment of the database for tornado 

hazard carried out by Newark (1984) revealed that, on an average, there is an F3 tornado 

every five years in southern Ontario. Etkin (1999) reported that occurrence of tornadoes in 

southern Ontario is higher than any other part of the province and there could be major 

economic losses due to high intensity tornadoes because of concentration of population 

and industries in this area. Banik et al. (2008) assessed the tornado hazard for spatially 

distributed systems in southern Ontario and reported that while tornado hazard for a point 

structure might be low, it is significantly higher for a group of structures.  A quantitative 

assessment of outbreak (occurrence of multiple tornadoes in a brief period in a region) 

hazard for an idealized southern Ontario city showed that for a region of interest greater 

than 100 km sq. the hazard assessment was less by an order of magnitude when an outbreak 

event is ignored (Banik et al. (2012)).  Hall and Ashley (2008) reported that if the 
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Plainfield, Chicago (1990) tornado had struck in the year 2000 instead, 8629 more people 

and 3058 more houses would have been affected (compared to the 1990 scenario), implying 

a 50% hike in the property damage value, due to increased concentration of population. It 

is inferred from the above discussion that while tornadoes might be considered rare, but 

due to extreme consequences, especially for well populated and industrialized regions, the 

associated risk (or vulnerability) is considerably high. This calls for an urgent need to study 

tornadoes and understand their interaction with the built environment to develop a more 

tornado resilient society.  

The current study is aimed at investigating tornado-like flow field and its interaction with 

bluff bodies using numerical and experimental methods. First, a generic numerical tornado 

model is developed that represents the three-major existing experimental tornado 

simulators. The generic numerical tornado model is then used to study the interaction of 

tornado-like vortices with building model and the numerical results are compared (and 

validated) with experimentally obtained data from WindEEE and then with previously 

conducted study (Yang et al. (2011)) .  

1.1 Background 

Tornado awareness and preparedness began in the early 1950s, prompting researchers 

around the world to learn more about this relatively rare, yet extreme weather phenomenon.  

Based on the available resources and technology, the trend in studying tornadoes has been 

evolving and can be broadly classified into 4 eras, as following: 

1950s-1960s  

At the advent of this period, very little was known about tornado wind field and its 

interaction with terrestrial structures, therefore, several attempts were made to study real 

tornadoes by gathering field data. However, due to poor storm predictions, limited 

technological resources and violent nature of tornadoes, it was rather very difficult to 

record any such field measurements. As a result, researchers often resorted to inferior 

quality motion pictures and photogrammetric techniques to estimate tornado wind speeds 

and qualitatively assess the damage patterns to gain insight into tornado wind field. A 

breakthrough in tornado research was achieved in 1957, when a full tornado life cycle was 
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captured, allowing researchers, for the first time, to examine the evolution of a tornado 

vortex. The 1957 tornadoes of Dallas, Texas and Fargo, North Dakota were extensively 

studied by Hoecker (1960) and Fujita (1960), respectively, using mostly photogrammetric 

tools. Hoecker (1960) compared the estimated wind field of the Dallas tornado with 

existing wind field models for tornado-like vortices (Dinwiddie (1952) and Hoecker 

(1957)) and confirmed the existence of a radial convergent layer in the lower part and the 

exhibition of Rankine type behaviour by analyzing the radial and vertical profiles of radial 

and tangential velocities. However, the study was limited to only one tornado and was 

therefore not entirely conclusive. It was suspected that other tornadoes can have some 

degree of differences in their behavior. Benjamin (1962) proposed a theory for vortex 

breakdown phenomenon (commonly observed in tornadoes) while studying vortices 

formed at the leading edge of a delta wing and demonstrated that the phenomenon is not a 

manifestation of instability and instead, is a transition between two dynamically conjugate 

states of an axisymmetric flow, analogous to hydraulic jump. Bossel (1969) illustrated that 

the phenomenon of vortex breakdown is neither due to hydrodynamic instability nor is it 

analogous to hydraulic jump, but instead it is a common feature of the solution of equations 

of motion under those conditions. An adverse pressure gradient develops along the central 

axis of the core as the pressure deficit near the ground increases (while the pressure deficit 

in upper part of the vortex core is not as high), leading to secondary flow within the core 

(known as vortex breakdown). Yin and Chang (1969) made one of the earliest attempts of 

understanding tornadoes by studying mechanically driven vortices, produced in laboratory 

with the help of a rotating screen to impart swirl and an exhaust fan to drive the flow. They 

reported a “reversed S” shaped vertical profile of radial velocity (convergent layer) and 

identified the outer flow region as potential vortex. However, due to limitations in 

instrumentation technology during that era, they could not make flow measurements near 

the core region (because of interference error). Lilly (1969), using a hydrostatic core model, 

proposed a thermodynamic speed limit of 65m/s in tornadoes by cyclostrophically relating 

the wind speeds to pressure deficit in the core. A fallacy in this theory would later be 

explained by a group of researchers from MIT and NCAR in 1986 (Fiedler and Rutono 

(1986)).  
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1970s-1980s  

This era began with the introduction of Fujita scale (F-scale) by Fujita (1971), which is a 

forensic scale to categorize tornadoes based on their intensities. Damage indicators 

investigated during post storm surveys are linked to a wind speed and the tornado is 

classified into one of the six levels of the F scale (F0-F5, F0 being the weakest and F5 

being the strongest tornado). The first remarkable attempt of experimentally studying 

tornadoes was made by Neil B. Ward in 1972 at the National Severe Storm Laboratory, 

Oklahoma, where he built, what we now call as the “Ward Type” tornado simulator. Ward 

(1972) studied tornado-like vortices under the assumption that real tornadoes are low 

aspect ratio (less than unity) phenomena and proposed that the radial momentum flux, 

possessed by the outer convergent layer, was one of the key parameters in sustaining these 

vortices. Davies-Jones (1973) reinterpreted Ward’s results and suggested that increasing 

radial momentum flux is counter balanced by increasing outward pressure thrust (due to 

counter acting centrifugal forces) and, therefore, the volume flow rate (and not radial 

momentum flux) is a crucial factor in the formation of tornado-like vortices. Jischke and 

Parang (1973) proposed that viscous torque exerted on the vortex by the boundary layer 

region causes transition from a single to double vortex configuration. Harlow and Stein 

(1974) conducted a numerical investigation of the flow structure of tornado-like vortices 

and reported several previously experimentally obtained results like the dependence of 

flow structure on swirl ratio (inflow angles) and formation of multiple vortices at higher 

swirl ratios. Church et al. (1977) built a tornado simulator at Purdue University by 

improvising the original design by Ward. The wandering of vortex reported in the previous 

versions of such tornado simulators was mitigated in this design, primarily by the 

introduction of anti-turbulence screen at the inlet that removed unwanted inflow 

turbulence. They conducted some preliminary studies, mostly qualitatively in nature, to 

verify the previously reported observations like the occurrence of vortex break down, 

followed by the formation of multiple vortices, along with reporting the radial and axial 

profiles of the velocity components. Rotunno (1978) conducted a numerical study to 

explore the evolution of tornado like-vortices with change in swirl ratio and, complying 

with previous studies, reported the observation of vortex breakdown at moderate swirl 

ratios, followed by a drowned vortex jump leading to multiple vortices at higher swirl 
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ratios. Baker and Church (1979) conducted experiments to predict core radii and peak 

velocities for modelled vortices of various swirl ratios. Church et al. (1979) concluded that 

at sufficiently high Reynold’s number, vortex flow structure is nearly independent of 

Reynold’s number and is only a function of swirl ratio. They also highlighted that the flow 

structure is weakly dependent of aspect ratio and therefore swirl ratio is the governing 

parameter. Fiedler and Rutono (1986) put forward a theory for maximum wind speeds 

associated with tornadoes and suggested that the fallacy in theory of maximum wind speed 

proposed by Lilly (1969) was the assumption of a hydrostatic core. A tornado core can 

sustain a greater pressure deficit because of the central downdraft (that begins after vortex 

breakdown) and thus leads to wind speed higher than what a hydrostatic core model would 

predict. Lugt (1989) studied the vortex breakdown phenomenon and the associated 

instabilities, the various critical conditions for single and multicell structures and 

differences in the conditions for helically intertwined vortices and multiple vortices.  

During this period, a significant contribution was made by researchers towards 

understanding the flow structure of tornado-like vortices, mostly using experimental and 

analytical methods. However, the interaction of tornadoes with bluff bodies, the effect of 

ground roughness and translation on tornado flow field were still to be explored. Wen 

(1975) was one of the rare (if not the only) studies during this period where the effect of 

dynamic tornadic winds on a structure (tall building) were investigated analytically. The 

limitation of experimental tornado simulators at that time was that they did not facilitate 

translation and were relatively small so a building model of a reasonable size could not be 

used to study the interaction with bluff bodies.  

1990s-2005  

This was a period of growing computational resources and therefore, given the limitations 

of experimental facilities at that time, researchers turned their focus towards using 

numerical techniques to study tornado-like vortices and their interaction with ground 

surface. During this period, almost all major studies were either numerical or analytical or 

both. Lewellen and Lewellen (1995) used LES to simulate tornado’s interaction with 

ground and the effect of translation. They showed that the maximum mean tangential 

velocity occurs within 50 metres from the ground and that translation increases turbulence 
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(effectively increasing peak velocities) and induces a tilt that makes the flow asymmetric. 

Nolan and Farrell (1999) used numerical simulations to study tornado dynamics and 

suggested that vortex Re (𝑅𝑒𝑣 =
𝛺𝐿2

𝜈
; ratio of far field circulation to eddy viscosity) could 

be more effective than swirl ratio to characterize tornado structure. However, researchers 

(particularly experimentalists) continue to use swirl ratio, which is easily measurable in an 

experimental set up as opposed to vortex Re (since eddy viscosity is not an easily 

measurable quantity and is a byproduct of turbulence modelling). Lewellen and Lewellen 

(1998) used LES to study “corner flow” dynamics by using appropriate boundary 

conditions and suggested the concept of coherent turbulence structures that could 

potentially cause greater damage. Selvam and Millet (2003) used Large Eddy Simulation 

(LES) (utilizing finite difference scheme to solve the governing equations as opposed to 

present day practice of using finite volume formulation) to model tornadic loads on a cubic 

building model and concluded that wind loads on a building due to a translating tornado 

were higher than those caused by quasi-steady wind. They also observed that the localized 

suction pressure spots on the building were higher and occurred in multiple locations. Lee 

and Samaras (2004) analyzed the results of HITPU deployed in the path of Manchester, 

South Dakota tornado (2003). Nolan (2004) proposed a scaling technique for axisymmetric 

flows with the introduction of additional parameters and emphasized the role of vortex 

Reynolds number in controlling the flow structure. They concluded that a cyclostrophic 

momentum balance yielded reasonable estimates of maximum tangential velocity and core 

radius. Lewellen and Lewellen (2006) extended their previous work on tornado ground 

interaction and proposed “near ground intensification” using LES.  

2006-present  

This period saw the rise of experimental simulation of tornado-like vortices and their 

interaction with scaled building models with the construction of the first large scale 

translating tornado simulator at Iowa State University. With advancements in 

instrumentation technology, an increased use of Particle Image Velocimetry (PIV) method 

was commonly observed in experimental studies conducted during this period. Haan et al. 

(2006) discusses the design, construction and performance of this tornado simulator at Iowa 

State University. Kuai et al. (2008) used steady CFD simulations to inspect the effect of 
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various geometric parameters and surface roughness on tornadic wind field. Hangan and 

Kim (2008) first attempted to link swirl ratio to EF scale but the investigation was limited 

to only one case study. They also reported 𝑟𝑐 𝑚𝑎𝑥 to increase and 𝑧𝑚𝑎𝑥 to decrease with 

increasing swirl ratio. Sengupta et al. (2008) used LES to study transient loading on 

buildings due to tornadoes and downbursts and found that the peak loads exceed the ASCE 

7-05 provisions for ABL wind load by 1.5 times for F2 scale tornadoes. Mishra et al. (2008) 

analyzed the flow field and pressure profiles produced in TTU-VSII and obtained a length 

scale of 1: 3500 (for TTU-VSII produced vortices) by using cyclostrophic momentum 

balance. They proposed the construction of a larger simulator called VorTECH at TTU 

since the length of TTU-VSII was found to be an order of magnitude smaller than typical 

wind engineering length scales.  Mishra et al. (2008) analyzed the forces and pressure 

coefficients on a cubic building model placed in TTU-VSII in various locations with 

respect to the vortex centre and demonstrated the inadequateness of scaling up straight line 

wind Cp for evaluating tornadic loads. They also emphasized on the need to construct a 

larger testing facility (VorTECH) to host building models of reasonable sized.  Xu and 

Hangan (2009) analytically modelled inviscid tornado-like vortex using a free narrow jet 

solution combined with a modified Rankine vortex and the analytically obtained velocity 

components showed good agreement with experimental and numerical results. They also 

highlighted that experimental inputs could improve the robustness of their analytical 

model. Tamura (2009) discusses the influence of inflow conditions and swirl ratio on 

tornado-like vortices but was unable to confirm the appearance of multiple vortices at 

higher swirl ratio (expanded core only) in the experimental tornado simulator in Japan. 

Sabareesh et al. (2009) compared the surface pressure distribution on a cubic building 

under ABL and tornadic wind loading and found significant differences in statistical values 

of Cp. Haan et al. (2010) tested low-rise buildings under tornadic loading and reported 

peak loads up to 50% higher than ABL wind load provisions in ASCE-7-05. Hashemi et 

al. (2010) conducted PIV measurements to analyze the flow field of laboratory produced 

tornado-like vortices at a wide range of swirl ratios. They demonstrated the occurrence of 

maximum tangential and radial velocities close to the ground surface and reported an 

increase in shear stresses with an increase in swirl ratio due to the turbulent nature of the 

vortex at higher swirl ratios. Thampi et al. (2011) studied the impact of tornadoes on a 
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typical low-rise gable roof structure and progressively modeled the damage using finite 

element analysis. They reported a significant reduction in wind loads due to tornadoes once 

the roof was blown off for such structures. Yang et al. (2011) conducted PIV and force 

measurements on a high-rise building model and discussed the structure of highly turbulent 

wake around the building, along with variations in forces and moments with respect to 

building position. Zhang and Sarkar (2012) conducted experiments in a 1:3 scaled model 

version of the tornado simulator at ISU and quantified the extent of underestimation of 

tangential velocity and core radius due to wandering effects. Natarajan and Hangan (2012) 

used LES to study translational and roughness effects, reported reduction in max mean 

tangential velocity at lower swirl ratio and increase at higher swirl ratio. While Sabareesh 

et al. (2013) investigated the effect of openings in a building on peak roof loads under 

tornado-like wind, Sabareesh et al. (2013) studied the effect of ground roughness on 

internal pressure characteristics of a building subjected to tornado-like wind field. Case et 

al. (2014) experimentally studied the effect of low rise building geometry on tornado 

induced loads and found the peak loads to vary with eave height, pitch, aspect ratio etc. 

They highlighted the importance of adequate design of roof to wall connections for tornado 

resistant (up to EF3) design of low rise building. Refan et al. (2014) used a model of 

WindEEE as a proof of concept for WindEEE dome and developed a unique scaling 

technique to link laboratory produced vortices to real tornadoes. Refan (2014) conducted 

extensive PIV measurements to analyze tornado flow field in model WindEEE (1:11 scale 

replica of WindEEE Dome). Hangan (2014) discusses the design of the Wind Engineering 

Engery and Environment (WindEEE) Dome that was built at Western University and is a 

hexagonal shaped 3-D wind chamber capable of producing both synoptic and non-synoptic 

wind fields. Refan and Hangan (2016) showed the independence of flow structure and 

radial Reynolds number (above a threshold value) and its dependence of swirl ratio, for 

vortices produced in model WindEEE. Hanagn et al. (2016) discussed the application of 

the Wind Engineering Energy and Environment (WindEEE) Dome towards simulation of 

a large variety of wind systems (synoptic and non-synoptic). 

More recently, Refan et al. (2017) demonstrated the independence of pressure distribution 

on a building model and radial Reynold’s number. Karami et al. (2017) proposed Proper 

Orthogonal Decomposition (POD) method to extract the coherent structures in fluctuating 
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pressure field, enabling the reconstruction of large scale fluctuating pressure field. Nasir 

and Bitsuamlak (2016) used CFD (numerical methods) to study the effects of topographical 

changes on tornadic wind field and developed FSUR (fractional speed up ratio) for 

tornadoes analogous to straight-line ABL wind. Nasir and Bitsuamlak (2016) also 

computationally evaluated the effects of tornadic loads on a tall building.  Nasir (2017) 

investigated the effect of tornado-like wind on typical flat roof mid-rise building and high-

rise building and discussed the resulting surface pressure distribution and forces with 

respect to building location and orientation. Nasir (2017) also showed that for a building 

with opening(s), the external surface pressure distribution is sensitive to opening 

configuration, internal pressure, building location (for stationary vortex), building 

orientation and tornado translation. Kopp and Wu (2017) proposed the use of quasi-steady 

models to develop a framework to assess wind loads due to tornadoes while examining the 

differences in tornado and atmospheric boundary layer flow structures.  They discussed the 

similarities and differences in wind loads predicted using quasi-steady theory and 

demonstrated the promise QS displayed for such purpose. Vickery et al. (2017) highlighted 

the problem in directly comparing external surface pressure coefficients due to tornadoes 

and ABL wind due to differences in normalizing velocity and due to local atmospheric 

pressure change experienced during tornadoes. They also compared their tornado load 

model, which accounts for debris and varying internal pressure, with damage observed 

during the Joplin tornado.  

1.2 Motivation and objective 

It is a common practice in experimental studies to use the geometric dimensions and 

configuration of physical elements (like guide vane angle, ceiling height, etc.) of the 

experimental simulators to characterize the generated vortices. However, the inherent 

differences in geometric dimensions and vortex generation mechanism of the existing 

experimental tornado simulators makes vortex characterization very specific to an 

individual facility and hinders direct comparison and validation of results.  

In this research, it is envisioned to develop a simple, generic numerical model that would 

fit the flow structure of a tornado-like vortex and account for the geometric and mechanical 

differences in different experimental facilities while replicating the original flow field as 
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accurately as possible. To achieve this, the parameters used to characterize a tornado-like 

vortex (inflow depth, radius of updraft, etc.) are strictly extracted from the numerically 

produced flow-field inside the tornado simulators (as opposed to using physical dimensions 

of the simulators) during the development of the generic numerical tornado model. The 

developed generic numerical tornado model can then be used to  directly compare results 

from different experimental simulators and facilitate  a universal/common interpretation. 

The utility of this numerical model for bluff-body aerodynamics applications and wind-

load evaluation is further demonstrated. 

1.3 Thesis layout 

This thesis is written in the integrated article format. Chapter 1 presents a brief introduction 

to tornado research. Chapter 2 is focused on developing a generic numerical tornado model. 

Chapter 3 discusses the application of this generic numerical tornado model to bluff-body 

aerodynamics and wind load evaluation. Chapter 4 presents the conclusions made from this 

study and lays out the scope of future research.  
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Chapter 2  

2 Generic numerical tornado model for common 
interpretation of existing experimental simulators 

The current state of the art in studying tornado-like vortices at engineering scale (which is 

to be differentiated from meteorological scale, for example Orf et al. (2014), Orf et al. 

(2016)) dictates the use of mechanically driven vortices in experimental simulators. 

However, the differences in mechanisms utilized to produce these vortices coupled with 

the physical limitations of measuring various characterizing parameters of a tornado-like 

vortex (aspect ratio, swirl ratio etc.) in an experimental set up and geometric differences in 

various facilities, often lead to misinterpretation of results and makes these results very 

specific to the experimental set-up in consideration. The present study develops a generic 

numerical simulator that unifies the existing experimental simulators and facilitates a 

universal interpretation. For this purpose, VorTECH at Texas Tech University (TTU), 

Tornado Simulator at Iowa State University (ISU) and WindEEE Dome at Western 

University (WU), are chosen as representatives of “Ward” type, “top-down” type and “3D 

wind chamber” type simulators, respectively. In  the first stage, each experimental 

simulator is numerically modelled without any simplification (or modification) and placed 

in a bigger computational domain to simulate its placement in a lab environment with 

closed-circuit flow. Then, the relevant boundary conditions and flow parameters are 

extracted for different configurations of each physical simulator to allow simplification of 

the original models during the second stage of the study. The simplification of the original 

models is primarily based on the geometric and kinematic parameters used to characterize 

these vortices, obtained from the numerical results of the first stage and the type of flow in 

the original models (bounded or unbounded). The parameters (geometric and kinematic) 

used to characterize a vortex (inflow depth, radius of updraft, swirl, etc) are strictly 

obtained from the flow-field as opposed to the commonly observed practice of directly 

using the geometric dimensions and configuration of physical elements (like guide vane 

angle, ceiling height, etc) of the experimental simulators. Although the flow structure of 

tornado-like vortices is seen to be independent of the radial 𝑅𝑒𝑟 (above  𝑅𝑒𝑟~104), which 

is consistent with previous studies (Church et al. (1979)), a calibration of the velocity 



19 

 

magnitude (𝑅𝑒𝑟 or volume flow rate) is conducted, as and when required, to maintain 

similar magnitudes of velocities and pressures in the flow field apart from preserving the 

original flow structure. The analysis of the velocity and pressure profiles obtained from the 

original models leads to a generic simplified numerical tornado model, which can still be 

linked to the experimental simulators using a unique calibration scheme developed during 

this study. Thus, a numerical tornado model is obtained that could (i) aid in linking the 

interpretation of results between the various experimental simulators, and (ii) produce 

preliminary tornado design parameters numerically.  

2.1 Tornado-like vortices  

Experimentally and numerically produced vortices are most commonly characterized by 

three non-dimensional parameters, aspect ratio (geometric), swirl ratio (kinematic) and 

radial Reynolds number (dynamic), which are defined below.  

Aspect ratio (𝑎): 𝑎 =
ℎ0

𝑟0
 , here ℎ0 is the inflow depth and 𝑟0 is the radius of updraft ( 𝑣𝑧 ≈

0 approximation should hold good at 𝑟 = 𝑟0). It is widely believed that tornadoes are low 

aspect ratio (less than or around unity) phenomena in nature (Ward (1972), Davies-Jones 

(1973), etc).  

 

Figure 2-1 Tornado flow structure as shown depicted in Davies-Jones (1981) 
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Swirl ratio (𝑆): 𝑆 = (
𝑣𝑡

𝑣𝑟.2𝑎
)𝑟=𝑟0

= (
𝑟0𝛤∞

2𝑄𝑧
)𝑟=𝑟𝑐

 

Here, 𝑣𝑡 is tangential velocity, 𝑣𝑟 is radial velocity, 𝑎 is aspect ratio, 𝑟0 is the radius of 

updraft, 𝑟𝑐 is the core radius, 𝑄 is the volume flow rate per unit axial length and 𝑧 is the 

axial location, 𝛤∞ is the maximum circulation, which is further defined as following 

(integral below is evaluated along the circumference of the core).  

𝛤∞ = ∮ 𝑣𝑡 𝑑𝑟  

Swirl ratio is a function of position, i.e. 𝑆(𝑟, 𝑧). Thus, swirl ratio definition would yield 

different values at various locations in the wind field. Although, no clear guidelines were 

found in previous studies regarding the location of calculating swirl ratio, Refan (2014) 

demonstrated that the angle based definition applied at the radius of updraft yields values 

close to those obtained by applying the circulation based definition at the core radius. 

Therefore, care must be taken while calculating swirl ratio, to avoid any discrepancy in 

results.  Due to uncertainties associated with core radius measurements (because of vortex 

wandering) needed for circulation based definition, the inflow angle based definition 

(applied at the radius of updraft) is used throughout the analysis in the present study. 

Radial Reynolds Number (𝑅𝑒𝑟): 𝑅𝑒𝑟 =
𝑄

2𝜈
, 𝑄 is the volume flow rate per unit axial length 

and 𝜈 is the kinematic viscosity. Church (1979) showed the independence of flow structure 

from radial Reynolds number (provided 𝑅𝑒𝑟 is above ~104).  

It should be noted that the above parameters are not identifiable for real tornadoes and 

therefore linking simulated (experimentally and numerically) vortices to real tornadoes 

remains one of the biggest challenges. In this regard, Refan et al. (2014) proposed a unique 

scaling technique to link simulated vortices to real tornadoes using a common length scale 

(axial and radial), developed during a matching process. Therefore, a simulated vortex at a 

specific swirl ratio could replicate the aerodynamic effects of a real tornado (or a target 

tornado) at a certain length scale, provided the flow structure of the simulated vortex bears 

enough resemblance with the target tornado.  
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2.1.1 Tornado-like wind field description 

Mathematically, a two-dimensional sink vortex (in r- θ plane) can be characterized as  

(𝑣𝑡 + 𝑣𝑟)𝑟 = 𝐶 Equation 2-1 

Where 𝑣𝑡 and 𝑣𝑟 are the tangential and radial components of the velocity and 𝐶 is a 

constant. The equation above can be further decomposed as following, 

𝑣𝑡𝑟 = 𝑐1 Equation 2-2 

 

𝑣𝑟𝑟 = 𝑐2 Equation 2-3 

Here, 𝑐1 and 𝑐2 are constants. Equation 2-2 arises from conservation of angular momentum 

while Equation 2-3 arises from conservation of mass in the r- θ plane for 2-dimensional 

flow.  

However, tornado-like wind field is 3-dimensional in nature with significant axial velocity 

(𝑣𝑧). Due to the three dimensionality of a tornado-like wind field, the constraint imposed 

by Equation 2-3 is removed.  

𝑣𝑟𝑟 ≠ 𝑐2 Equation 2-4 

The flow is now free to expand along the r-z plane as it approaches the core region and the 

loss of radial momentum is seen in the form of increasing axial flux. The flow field 

(depicted by streamlines), outside core region is spiral with significant radial velocity. 

However, there is a constant trade-off between axial and radial velocities as the flow 

approaches the core, resulting in loss of radial momentum. Tangential velocity, on the other 

hand, constantly increases towards core region, due to conservation of angular momentum 

(Equation 2-2).  The core, also seen as the limit of radial convergence, is that region in 

tornado-like wind field where the converging force (possessed by radial momentum) is 

counter balanced by the centrifugal force (possessed by angular momentum). As a result 

of this balance, the flow wraps itself into a tight spin, rotating a column of air like a solid 
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body under its shear, thereby forming the core. The flow in the core region has negligible 

radial velocity and is dictated only by tangential velocity, so the streamlines inside the core 

are ideally expected to be concentric circles. This solid body rotation of core results in a 

linearly decreasing tangential velocity towards the centre, as shown below. 

𝑣𝑡 = 𝜔𝑟 Equation 2-5 

Similar behaviour of tangential velocity along the radial direction is also seen in the 

modified Rankine vortex model (shown in Equation 2-6) , which is one of the most 

commonly adopted model for describing the radial profile of tangential velocity in tornado-

like wind field.  

𝑣𝑡(r)=
𝑟𝛤∞

𝜋(𝑟2+𝑟𝑐
2)

 Equation 2-6 

It should be noted that the above description of tornado wind field is idealized and the wind 

field of real (and experimental) tornadoes can have deviations from this description due to 

interaction with ground and translational effects. The description of flow field within the 

core fits better for a hydrostatic core model and thus tends to deviate at higher swirl ratio 

due to vortex breakdown. Further, even for low swirl ratios, the idealized description of 

the vortex may not fit exactly due to instabilities associated with low swirl vortex cores. A 

detailed explanation of these deviations is, however, beyond the scope of the present work. 

This description of tornado wind field, none the less, forms the basis of numerical 

modelling of tornadoes. It is expected that the ease of simplification process and the 

accuracy of the generic model proposed in this study would also depend (to some extent) 

on how closely the experimentally produced wind field matches the idealized mathematical 

description explained in this section.  
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2.1.2 Simplification strategy for numerical simulation of tornado-
like vortices  

The simplification of experimental tornado simulators into one numerical model is based 

on identifying the characterizing parameters for various configurations of each 

experimental facility and then utilizing them for a generic model.  These parameters like 

radius of updraft, inflow depth, etc, are strictly obtained from the flow-field inside the 

experimental simulators (generated numerically), as opposed to directly using the physical 

dimensions of the experimental facilities to obtain the same. First the geometric parameters 

of the flow structure are identified, i.e. inflow depth (ℎ0) and radius of updraft (𝑟0). An 

important characteristic of the flow at the radius of updraft is that 𝑣𝑧 ≈ 0 approximation 

should hold good (negligible updraft). Then, the geometric parameters of the physical 

simulator are identified, i.e. height of location of updraft hole (or bell mouth of the exhaust 

region) (ℎ𝑢), and the radius of the updraft of hole (or bell mouth) (𝑟𝑢). It will be seen in 

the sections to follow that the effective radius of updraft hole may or may not be equal to 

the actual radius of the physical updraft hole in an experimental set-up. Thus, for each 

configuration, the flow geometric parameters (ℎ0 and 𝑟0) and simulator geometric 

parameters (ℎ𝑢 and 𝑟𝑢) dictate the dimensions of the simplified computational domain, 

while the kinematic parameter (swirl ratio or ratio of 𝑣𝑡 and 𝑣𝑟 at inlet) governs the inflow 

boundary condition. This has been illustrated in Figure 2-2. The height of the convection 

region is kept 15 times ℎ𝑢 (“far enough”) to allow the top of the cylindrical domain to be 

treated as “pressure outlet” boundary. In the initial phase of this study, different heights of 

the convection region were simulated (25 times ℎ𝑢 , 20 times ℎ𝑢, etc). It was found that 

while in an experimental set-up, the height of convection region could affect the flow 

structre (due to the location of honeycomb section to decouple the fan vorticity), but in a 

simplified numerical model, this height of convection region was found to be independent 

of flow structure, at least upto 15 times ℎ𝑢. Further reduction in the height of the convection 

region might be possible, but that would require an independent parametric study. For the 

present research, we will use 15 ℎ𝑢, as the height of convection region). A crucial 

difference between bounded systems like VorTECH and unbounded systems like ISU 

Tornado Simulator and WindEEE is that the for bounded system ℎ0 = ℎ𝑢 (inflow in 

bounded) while for unbounded systems ℎ0 < ℎ𝑢. This has been illustrated in Figure 2-3. 
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At last, the inflow velocities 𝑣𝑡 and 𝑣𝑟 are identified (no 𝑣𝑧 since 𝑣𝑧 ≈ 0 at 𝑟0). The idea is 

to use “double concentric” cyclinders as shown in Figure 2-2 that would require only 

uniform tangential and radial velocities (the inflow velocity profiles at the radius of updraft 

were observed to be uniform, and will be shown in the following sections)  as the inflow 

boundary condition, but could still replicate the laboratory produced flow field as 

accurately as possisble.  

 

Figure 2-2 Simplification strategy.  

During this study, the ground static pressure profile, radial profile of tangential velocity at 

various heights and qualitative appearance of the vortex flow structure are used to compare 

the flow-fields obtained from full CFD models (of each experimental facility) with those 

obtained from generic numemrical model. Further, for comparing ground static pressure 

profiles, all pressures are referenced to the ground static pressure at the radius of updraft 

(i.e. with conditions upstream of the flow), previously done by Nasir (2017) for numerical 

tornado simulation.  
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(a) VorTECH at Texas Tech University 

(bounded flow) 

(b) Tornado Simulator at Iowa 

State University 

(unbouned flow) 

 

(c) WindEEE Dome at Western University (unbounded flow) 

Figure 2-3 Illustration of difference between bounded and unbounded flow.  

The idea behind this study is that while various experimental facilities might have their 

differences (geometric dimensions and vortex generation mechanism), they can still be 

unified with a generic numerical model, if the characterizing parameters are extracted from 

the flow field inside the experimental simulators, as opposed to using geometric 

dimensions of the facilities to obtain them. This has been illustrated in Figure 2-4. 
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(a) VorTECH at TTU (b) Tornado Simulator at ISU 

 

(c) WindEEE Dome at WU 

 

(d) Tornado-like vortex flow structure 

Figure 2-4 Unification of experimental facilities. 

The configurations for each facility considered in the present study have been summarized 

in Table 2-1. The details of configurations for TTU VorTECH and ISU Tornado Simulator 

were obtained from Mayer (2010) and Haan et al. (2008) respectively. 
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VorTECH (TTU) Tornado Simulator (ISU) WindEEE Dome (Western) 

10- degree (vane angle) 

20- degree (vane angle) 

30- degree (vane angle) 

40- degree (vane angle) 

50- degree (vane angle) 

60- degree (vane angle) 

70- degree (vane angle) 

 

Vane 1 Vane 2 Vane 3 

Vane 4 Vane 5 

Fan 1 Fan2 Fan3 

Floor 1 Floor 2 Floor3 

 

 

 

 

15-degree (vane angle) 

Table 2-1 Summary of configurations considered. 

It should be noted that due to unavailability of documentation of other configurations of 

WindEEE and time constrain posed during this study, only one WindEEE configuration 

was considered. It would be desirable to simulate more WindEEE configurations for future 

studies.  

2.2 Experimental tornado simulators  

A brief description of the three experimental tornado simulation facilities in consideration 

has been presented in this section.  

2.2.1 VorTECH at Texas Tech University  

VorTECH at Texas Tech University, inspired by the original design built by Ward (1972), 

is an octagonal shaped experimental tornado simulator that is driven by 8 exhaust fans, 

installed in a 4-m wide upper chamber. The lower chamber (10.2-m wide) consists of 64 

guide vanes at the inlet that can be set to various angles to impart desired swirl to the flow.  

The schematic of this simulator, adapted from Zhou et al. (2016), is shown in Figure 2-5  

This simulator can generate tornado like vortices with aspect ratios ranging from 0.5 to1, 

swirl ratios ranging from 0 to 2.2 and Re 𝑟 of the order of 105 (Zhou et al. (2016)). The 

aspect ratio is changed by altering the ceiling height of the lower chamber with the help of 

a sliding neck that connects the lower and upper chamber. To facilitate a varying aspect 
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ratio, guide vanes were built with a dual height design and can be dismantled into half 

height to lower the bottom chamber ceiling as explained in Mayer (2010). The present 

design allows two pre-set aspect ratios (0.5 and 1) and to provide any other aspect ratio, a 

new set of guide vanes with suitable height would have to be fabricated. The swirl ratio is 

controlled by guide vane angles and Re 𝑟 is controlled by the rpm of exhaust fans. A 

honeycomb section is located between the experimental volume and exhaust fan region to 

remove any unwanted vorticity and turbulence imparted by the rotation of fans. The flow 

is bounded (inflow is protected by a physical wall on top) so the simulator can only produce 

stationary vortices since the upper chamber is fixed to the lower chamber.  

 

 

Figure 2-5 VorTECH at Texas Tech University schematic adapted from Zhou et al. 

(2016). 

2.2.2 Tornado Simulator at Iowa State University  

Tornado simulator at Iowa State University has a unique “top-down” design, which was 

adapted to facilitate translation. The simulator, consisting of a 0.3 m wide cylindrical 

annular duct suspended upside down from a crane, drives the flow with a 1.83 m wide 

exhaust fan and utilizes a forced rotating downdraft mechanism as explained in Haan et. al 

(2008). While, 37 guide vanes are located at the top of the duct to impart swirl to the flow, 

an adjustable height ground plane is used to change aspect ratio. Like other experimental 

facilities, a honeycomb section is located between the experimental volume and exhaust 
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fan region to remove any unwanted vorticity and turbulence imparted by the rotation of 

fans. A schematic of the design, adapted from Haan et. al (2008), is presented in Figure 

2-6.  

 

 

Figure 2-6 Tornado Simuator at Iowa State University schematic adapted from 

Haan et. al (2008). 

2.2.3 WindEEE Dome at Western University  

The Wind Engineering, Energy and Environment (WindEEE) dome (Hangan (2014)), 

located at Western University, is a closed circuit hexagonal 3D wind chamber that has 6 

exhaust fans and 48 peripheral fans. Guide vanes are installed in front of the peripheral 

fans to impart an angle to the inflow to create a swirl, while sucking air out of the 

experimental volume with the help of 6 exhaust fans located in the upper plenum, thereby 

producing a tornado-like vortex. WindEEE can generate tornado-like vortices by two 

methods, guide vane method and horizontal shear method. In the first method, guide vanes 

are used to impart swirl by controlling the inflow angle. In the second method, the 

peripheral fans are operated at different speeds along each row and the swirl is controlled 

by varying the gradient of inflow speed along the peripheral fans. In this facility, the inflow 

is not bounded by physical walls which allows the upper plenum section to move, thereby 

facilitating translation.  
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Figure 2-7 WindEEE Dome at Western University schematic. 

2.3 Numerical simulation of tornado-like vortices 

It is to be recalled that studying tornado-like vortices poses various challenges which arise 

not only from the complexity of the flow field, but also due to extensive parametrization 

needed to characterize these vortices. Due to the parametric nature of this study, a large 

number of cases (or configurations) had to be analyzed. As a result, computationally 

effective but reasonabily acucurat Rynolnds Stress Model (RSM) has been opted for the 

parametric flow structure studies. However, for tornadic wind load evaluation (Chapter 3), 

a more robust, Large Eddy Simulation technique has been utilized. In  both cases a 

commercial software package STAR-CCM+ (version 10.06.010) was used to carry out the 

CFD simulations for this study. All simulations were run on SHARCNET (Shared 

Hierarchical Academic Research Computing), high performance parallel computing 

consortium at Western University. All CAD modelling was done in AutoCAD and the 

geometries prepared in AutoCAD were imported to STAR-CCM+ for CFD modelling. 

2.3.1 RANS (steady) simulations 

2.3.1.1 Turbulence model 

The Reynolds Stress Model (RSM) is the most complete physical representation of the 

flow, at least in the RANS framework. It can capture complex strains and is more accurate 

model for swirling flows, as compared to the eddy viscosity models like 𝑘 − 𝜀 and 𝑘 − 𝜔. 

RSM has also been extensively used by researchers in the past for numerical simulation of 
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tornadoes, for example Hangan and Kim (2008), Natarajan (2012) and Nasir (2017), etc.  

As a result, RSM is used for steady simulations in this study. While Large Eddy 

Simulations are more accurate than steady RANS, we chose steady RANS (RSM) due to 

time constrained posed by this parametric study with several configurations/cases. A brief 

description of RANS/RSM has been presented in this section. 

Fluid flow is governed by a set of second order, non-linear, coupled, partial differential 

equations knowns as Navier-Stokes (NS) equations as shown below.  

𝜌 (
𝜕𝒖𝒊

𝜕𝑡
+ 𝒖𝒊

𝜕𝒖𝒊

𝜕𝑥𝑖
+ 𝒖𝒋

𝜕𝒖𝒊

𝜕𝑥𝑗
) = −

𝜕𝒑

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(2µ𝒔𝒊𝒋) 

Incompressibility assumption is invoked as following. 

 
𝜕𝒖𝒊

𝜕𝑥𝑖
= 0 

This reduces the above equation to  

𝜌 (
𝜕𝒖𝒊

𝜕𝑡
+ 𝒖𝒋

𝜕𝒖𝒊

𝜕𝑥𝑗
) = −

𝜕𝒑

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(2µ𝒔𝒊𝒋) 

The instantaneous quantities are subjected to Reynolds decomposition as shown below. 

 𝒖 = 𝑈 + 𝑢 

Navier-Stokes (NS) equations are then averaged and written as Reynolds Averaged Navier 

Stokes (RANS) equations as shown below. 

𝜌 (
𝜕𝑈𝑖

𝜕𝑡
+ 𝑈𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
) = −

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(2µ𝑆𝒊𝒋 − 𝑢𝑖𝑢𝑗𝜌) 

The RANS equations are analogous to NS equations if instantaneous quantities are 

replaced by mean quantities expect RANS equations have additional unknown terms, 𝑢𝑖𝑢𝑗, 

called Reynolds stresses. Various turbulence models under the RANS framework are 

deployed to tackle this additional unknown term (or the Reynolds stresses).  While the eddy 
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viscosity models like 𝑘 − 𝜀 and 𝑘 − 𝜔 use Boussinesq assumption to relate Reynolds 

stresses to mean velocity gradients, RSM solves six additional transport equations (one for 

each Reynolds stress) and therefore captures more physics. The transport equation for 

Reynolds stress can be obtained by multiplying the NS with fluctuations and then averaging 

as shown. 

𝑢𝑖𝑁𝑆(𝑈𝑗 + 𝑢𝑗) + 𝑢𝑗𝑁𝑆(𝑈𝑖 + 𝑢𝑖) = 0 

𝐷(𝑢𝑖𝑢𝑗)

𝐷𝑡
= −

𝜕

𝜕𝑥𝑙
[−𝑢𝑖𝑢𝑗𝑢𝑙 −

𝑝

𝜌
(𝛿𝑗𝑙𝑢𝑖 + 𝛿𝑖𝑙𝑢𝑗)] + 𝜈

𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑙
 – (𝑢𝑖𝑢𝑙

𝜕𝑈𝑗

𝜕𝑥𝑙
+𝑢𝑗𝑢𝑙

𝜕𝑈𝑖

𝜕𝑥𝑙
) +

(2𝜈
𝜕𝑢𝑖

𝜕𝑥𝑙

𝜕𝑢𝑗

𝜕𝑥𝑙
) +

𝑝

𝜌
(

𝜕𝑢𝑖

𝜕𝑥𝑙
+

𝜕𝑢𝑗

𝜕𝑥𝑙
) 

On the right-hand side of this equation, the first, second, third, fourth and fifth terms are 

turbulent diffusion, molecular diffusion, production, dissipation and pressure-strain 

interaction terms, respectively. It should be noted that this equation gives rise to additional 

third order moment term (𝑢𝑖𝑢𝑗𝑢𝑙). The transport equation for third moment term gives rise 

to fourth moment term and so on and so forth. This essentially leads to turbulence closure 

problem. While solving the transport equations for subsequently higher order moments 

would capture more physics, it would also make the computation very expensive. 

Therefore, RSM works out a trade off by modelling the five terms in the transport equations 

of the first order moments with the help of semi empirical relations.  

To demonstrate the difference in flow-fields predicted by various closure models for steady 

RANS, a basic comparison of results obtained from RSM, 𝑘 − 𝜀 and 𝑘 − 𝜔 was conducted 

in a preliminary study. For this purpose, floor 3 configuration from Haan et al. (2008) was 

used for ISU tornado simulator model. The choice of tornado simulator and configuration 

were purely arbitrary and were used, in the beginning, only for a comparison of turbulence 

models. All three turbulence models were compared at the same grid resolution and the 

number of mesh cells used were about 1.75 M.  
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(a) (b) 

 

 

(c) (d) 

Figure 2-8 Flow fields from (a)RSM, (b) 𝒌 − 𝜺 , (c) 𝒌 − 𝝎 turbulence models.  

Differences in flow structures and characteristic ground static pressure profiles can be 

instantly noticed from Figure 2-8.  
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2.3.1.2 Discretization 

Although the Reynolds Stress Model (RSM) is more accurate for swirling flows, it is 

computationally expensive and less forgiving to poor grid resolution. As a result, mesh 

quality plays a key role in speedy and accurate convergence of the solution.  

2.3.1.2.1 Grid strategy  

To maintain a balance between good mesh quality and a fast converging solution, the entire 

computational domain was subdivided into various regions of fine and coarse mesh. In 

regions of interest (like near the core), regions of high gradients and areas with small 

dimensions (like guide vanes which are usually thin), the mesh was kept finer. Polyhedral 

meshes with two layered prism layers near the walls were used. Mesh for a typical 

configuration of each simulator has been shown in Figure 2-9.  

 

(a) VorTECH mesh 
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(b) ISU Tornado Simulator mesh 

 

(c) WindEEE mesh 

Figure 2-9 Meshing strategy.  

2.3.1.2.2 Grid independence 

A grid independence test was carried out for floor 3 configuration from Haan et al. (2008) 

by using three grid resolutions (G1, G2 and G3), the details of which can be found in Table 

2-2. It can be seen from Figure 2-10 that the solution is independent of the grid resolution. 
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As a result, for this study, G2 grid resolution with about 1.75 million cells was used for 

ISU tornado simulator.  

Grid resolution G1 G2 G3 

Cell count 1M 1.75M 2.6M 

Table 2-2 Grid resolution.  

  

(a) G1 (b) G2 

 

 

(c) G3 (d) Ground static pressure profile 

Figure 2-10 Grid independence test.  
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Similarly, grid independence tests were carried out for VorTECH and WindEEE as well.  

2.3.1.3 Boundary conditions and details of CFD modelling in 
STAR-CCM+ 

Mass flow rate was used to drive the flow, due to the unavailability of the fan performance 

curve, for modelling the full system of VortTECH, ISU Tornado Simulator and WindEEE. 

The fan was treated like an interface with a specified mass flow rate (obtained from Mayer 

(2009) and Haan et al. (2008)). The guide vanes were physically modelled to direct the 

flow. Typical geometric models for the three facilities with details of boundary conditions 

used are shown below. For the ISU model (as shown in Figure 2-11), the boundary 

condition marked “pressure outlet” was based on a preliminary study where whole 

simulator was placed in a bigger computational domain (to simulate external lab 

environment). It was found that the static pressure at the boundary marked “pressure outlet” 

below was zero.  

Figure 2-11 Tornado Simulator at Iowa State University CFD model. 
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Figure 2-12 VorTECH at Texas Tech University CFD model.  

 

 

Figure 2-13 WindEEE Dome at Western University CFD model. 
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2.3.2 Vortex wandering   

A series of steady RANS simulations showed some discrepancy in vortex core features 

(core radius, maximum tangential velocity, etc.) when compared to experimentally 

reported values. Core radii obtained from steady RANS simulations were consistently 

smaller than the experimentally reported values (by about 10%-20%) in most cases.  

 

Figure 2-14 Numerically obtained radial profile of tangential velocity (ISU, floor3). 

For example, Figure 2-14 shows the radial variation of tangential velocity obtained using 

ISU Tornado Simulator CFD model for floor 3 configuration. It can be be seen that the 

core radius obtained (numerically) is around 0.34m with a tangential velocity (at core 

radius) of just under 8m/s. However, Haan et al. (2008) reported a core radius of 0.43 m 

and tangential velocity (at the core radius) of around 9.8 m/s. This shows around 20% 

underestimation of both core radius and maximum tangential velocity. Vortex wandering 

was suspected to be the source of this discrepancy. 

Vortex wandering is the random motion of vortex core with respect to a fixed observer. 

Jacquin (2001) suggested perturbation of the vortex core by wind tunnel unsteadiness, 

perturbation of the core by turbulence, co-operative instabilities as some of the causes of 

vortex wandering. While real tornadoes (tornadoes in nature) also wander, measurements 

of mean profiles made with fixed probes can be misleading because of wandering observed 
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in simulated tornado-like vortices. Further, vortex wandering can make it harder to make 

reliable conclusions from temporally averaged measurements, which reduces their value 

for CFD validation unless its effects are dealt with (Hayes et al. (2004)). Yang et al. (2011), 

based on their PIV measurements reported random movement of vortex core in ISU 

tornado simulator around its time averaged centre. They attributed this movement to the 

turbulent nature of such flows. Refan (2014) also reported vortex wandering during 

experiments conducted in mini WindEEE (1:11 scale prototype of WindEEE).  Zhang and 

Sarkar (2012) conducted experiments in a 1:3 scaled model version of the tornado 

simulator at ISU and quantified the extent of underestimation of tangential velocity and 

core radius due to wandering effects. Baker (1974) developed an equation relating the “true 

mean” and “apparent mean” using the probability density function of the vortex centre 

location. Following Baker (1974), Devenport et al. (1997) proposed that fluctuations in the 

mean profile are due to turbulence and wandering effects. A spectral decomposition 

technique was developed to filter out the wandering effects to create a “corrected mean 

profile”. Reductions in core radius and tangential velocity measurements were observed 

after correction. Errors of up to 15% and 20%, due to vortex wandering, were reported in 

core radius and tangential velocity measurements. (Devenport et al. (1997) and Heyes et 

al. (2004)). 

It should be noted that wandering seems to cause an apparent enlargement of the core and 

the error in core radius observed in the present study falls well within the error range 

reported in Devenport et al. (1997) and Heyes et al (2004). Large Eddy Simulations were 

carried out to demonstrate the existence of wandering and its extent for so called 

“stationary vortices” simulated during the present study, without attempting to rigorously 

quantify or correct its effects. The details of Large Eddy Simulation set-up and the findings 

from these simulations have been presented in the following section.  
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2.3.3 Large eddy simulations (LES) 

The solutions obtained from RSM (steady RANS) were used to initialize Large Eddy 

Simulations. Care was taken to satisfy Courant–Friedrichs–Lewy (CFL) condition. For 

this, the time step was chosen to maintain Courant number value below 1, at least in the 

region of interest.  

𝐶 =
𝑈∆𝑡

∆𝑥
< 1 

Here, 𝐶 is the courant number, 𝑈 is the local velocity, ∆𝑥 is the mesh size and ∆𝑡 is the 

time step. A series of simulations, each equivalent to 9 seconds of physical time were then 

conducted. The boundary conditions and other details of the CFD models were the same 

as previously described, ie, the fans were treated like interfaces, guide vanes were 

physically modeled, etc.  

To demonstrate the existence of wandering, ground static pressure was monitored at 

various strategically chosen locations (on the ground) as shown in Figure 2-15. The 

maximum ground suction occurs at the centre of the vortex, so the idea was to monitor the 

ground static pressure to observe how far the centre of the vortex wanders from the 

geometric centre of the simulator. It can be seen from the pressure time series located 10 

cm north of centre that at several instants the suction is higher at that location as compared 

to the geometric centre, indicating that the vortex must have wandered up to that distance. 

It is interesting to note that the point located 10 cm east of the geometric centre consistently 

records suction higher than the geometric centre indicating that the vortex was not only 

wandering but was also off centered towards east. From this discussion, it is evident that 

wandering of vortex is the most probable cause of mismatch of core radius and maximum 

tangential velocity obtained from steady simulations as compared to experimentally 

reported values (measured by fixed point intrusive techniques).  
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Figure 2-15 Demonstration of vortex wandering by monitoring the ground static 

pressure obtained using Large Eddy Simulations. 
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2.4 Results and discussion  

After establishing that the mismatch of near core flow features was due to vortex 

wandering, the simplification process was carried out as initially proposed since the 

conditions away from the core (near the radius of updraft) were found to be steady. The 

following sections present the procedure adopted for the development of the generic 

numerical tornado model.  

2.4.1 VorTECH (TTU) 

Wind fields obtained from the numerical simulations of various configurations of 

VorTECH were examined and the parameters for a simplified numerical model were 

identified, while keeping the original flow in consideration. To show a typical tornado-like 

vortex produced in laborary, Figure 2-16 is provided for visual aid.  

 
 

Figure 2-16 Velocity magnitude color map shown on Q criterion isosurface for a 

typical TTU VorTECH configuration. 

The simplification process for 20-degree configuration is presented below to illustrate the 

typical procedure adopted during this study. First, the radial profiles of axial velocity at 

various heights are inspected to identify the radius of updraft (𝑟0). As mentioned 

previously, at the radius of updraft  𝑣𝑧 ≈ 0 must hold good (to allow only 𝑣𝑡 and 𝑣𝑟 as inlet 

velocity). It is evident from Figure 2-17 that even though the radius of updraft hole in the 

physical simulator is 2m, the actual radius of updraft is around 3m for this configuration 
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and a significant updraft develops by 2m distance from the centre, which shows the 

inadequateness of using physical dimenions of the simulator to determine the 

characterizing parameters.  

 

Figure 2-17 Radial variation of axial velocity for TTU 20-degree configuration. 

Next, around the radius of updraft (3 m in this case), vertical profiles of radial and 

tangential velocity are plotted at various radial distances, as shown in Figure 2-18. The 

vertical profiles around the radius of updraft region were observed to be uniform for both, 

radial and tangential velocity. 
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Figure 2-18 Vertical profiles of radial and tangential velocities at the inlet for TTU 

20-degree configuration. 

The mean values of radial and tangential velocities at r=𝑟0, were used to represent the 

uniform inlet velocity for the simplified model. In this case, 𝑣𝑟 = 2.12 𝑚/𝑠 and 𝑣𝑡 =
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1.23 𝑚/𝑠. The three requirements at the radius of updraft, for this simplification are, 

(i)𝑣𝑧 = 0 approximation should hold good, (ii) the vertical profile for 𝑣𝑟 should be uniform 

and (iii) the vertical profile for 𝑣𝑡 should be uniform.  

Since the flow is bounded by a wall, ℎ0 = 2 𝑚 is fixed (the inflow is protected by physical 

walls, so inflow depth is easily identifiable) . Therefore, for this configuration, 𝑆 =
𝑣𝑡

𝑣𝑟.2𝑎
=

1.2

(2.1 )(2)(2
3⁄ )

= 0.43.  On qualitatively examining the flow structure obtained from this 

configuration (Figure 2-19), a swirl ratio value of 0.43 looks reasonable.  

 

Figure 2-19 TTU VorTECH 20-degree configuration CFD model.  

Next, a simplified model with dimensions based on the geometric parameter (aspect ratio) 

and the inflow boundary condition based on the kinematic parameter (swirl ratio, 𝑣𝑡 and 

𝑣𝑟) was prepared. For comparison of near ground flow features, the ground static pressure 

profiles obtained from the original and simplified models were compared.  
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(a) Simplified model (b) Ground static pressure profile 

Figure 2-20 20-degree simplified numerical model.  

A qualitative (appearance-wise) similarity in flow structures obtained from the simplified 

model and TTU CFD model can be instantly noticed from Figure 2-20. However, from the 

ground static pressure profile, it is can be seen that even though they have the same shape, 

the simplified model produces a higher suction. It is suspected the size of guide vanes as 

compared to the experimental facility plays a key role in this mistmach, due to large 

blockage, causing the flow to accelerate. It was found that this mismatch (suspected due to 

flow acceleration)  was most pronounced in TTU VorTECH and absent in WindEEE (as 

will be seen later). From Figure 2-21, it can be seen that velocity near the guide vanes sees 

a sudden increase. Further this this increment was seen to be more drastic as the guide vane 

angle was increased, as shown in Figure 2-21. It is speculated that this amplification of 

velocity near the guide vanes could be potentially due to reduction in effective inflow area. 

The inflow velocity (obtained at the radius of updraft in TTU VorTECH CFD model) for 

the simplified model is therefore amplified and creates higher static pressure drop.  
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(a) Vane angle 20° Vane angle 60° 

Figure 2-21 VorTECH plan view. 

To account for this, a calibration of velocity magnitude to achieve the target pressure drop 

was done by calculating a correction factor (α) using cyclostrophic momentum balance as 

shown below. Cyclostrophic momentum balance has been previously used in tornado 

research for predicting tangential velocity based on pressure deficit in the core, for example 

Lilly (1969) [analytical study], Lee et al. (2004) [study of field data], Mishra et al. (2008) 

[experimental study], etc.  

𝜕𝑝

𝜕𝑟
=

𝜌𝑣𝑡
2

𝑟
 

∫ 𝜕𝑝
𝑃𝑟=𝑟𝑖

𝑃𝑟=0

= ∫
𝜌𝑣𝑡

2

𝑟

𝑟𝑖

0

𝜕𝑟 

𝑃𝑟=𝑟𝑖
− 𝑃𝑟=0 = ∆𝑃 = ∫ 𝑣𝑡

2𝜌
𝜕𝑟

𝑟

𝑟𝑖

0

 

∆𝑃 ∝ 𝑣𝑡
2 
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∆𝑃𝑡𝑎𝑟𝑔𝑒𝑡

∆𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
=

𝑣𝑡,𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑣𝑡,𝑜𝑠𝑏𝑒𝑟𝑣𝑒𝑑
2  

𝑣𝑡,𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑣𝑡,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑√
∆𝑃𝑡𝑎𝑟𝑔𝑒𝑡

∆𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 

𝑣𝑡,𝑡𝑎𝑟𝑔𝑒𝑡 = α. 𝑣𝑡,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

α = √
∆𝑃𝑡𝑎𝑟𝑔𝑒𝑡

∆𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 

To achieve the target static pressure-drop while preserving the original flow structure, both 

tangential and radial velocities at the inlet of the simplified domain were corrected by α (to 

maintain the same swirl).  

 

𝑣𝑡 =  α. 𝑣𝑡,𝑜𝑙𝑑 = 1.11 𝑚/𝑠 

𝑣𝑟 =  α. 𝑣𝑟,𝑜𝑙𝑑 = 1.91 𝑚/𝑠 

With the corrected velocity magnitude, the flow structure and magnitude of static pressure 

drop were seen to match well with the original model as shown in Figure 2-22. The average 

difference between the static pressure drops obtained from TTU VorTECH CFD model 

and the generic numerical model was found to be around 0.9 Pa. It should also be noted 

that changing the inflow tangential and radial velocities in the same proportion for the 

simplified domain (before and after correction) doesn’t seem to change the flow structure 

(qualitatively or appearance wise), reflecting the independence of flow structure and Re, 

which is also consistent with Church (1979).  
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(a) Simplified model (b) Ground static pressure profile 

Figure 2-22 Calibrated simplified numerical model. 

Figure 2-24 is presented for a visual aid in recognizing the similarity in flow structures 

obtained from TTU CFD model and simplified CFD model for the same configuration (20-

degree guide vane). The appearance looks quite similar, the turbulent nature of vortex 

breakdown is manifested as a disturbance inside the core which can be seen from the vector 

field presented.  

A concern while calibrating the simplified model for VorTECH using cyclostrophic 

momentum balance was that it might affect the radial profiles and cause them to mismatch. 

However, as shown in Figure 2-23, the radial profiles (of tangential velocity) were 

observed to have a good match, along with the ground static pressure profiles (as previously 

shown).  
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(a) 

 
(b) 

Figure 2-23 Radial profile of tangential velocity (20-degree guide vane 

configuration) for TTU VorTECH CFD model and simplified CFD model at (a) 0.2 

m height, (b) 0.5 m height.  
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(a) TTU CFD model 

 

(b) Simplified CFD model 

Figure 2-24 A visual comparison of flow fields from full TTU CFD model and 

simplified TTU model for 20-degree guide vane configuration. 
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A similar procedure was adopted for other configurations as well. Give below (Figure 2-25) 

is the simplification obtained from 10-degree guide vane configuration. Although the flow 

structure matches well, the vortex centre coincides with the geometric centre for the 

simplified domain but for the full system it does not. They were observed to be off-set by 

around 10 cm, in this case. It was observed that, in general, the simplified generic numerical 

model yielded centered vortices, due to axis-symmetry imposed by a cylindrical domain.  

 

(a) TTU VorTECH CFD model 

 

 

(b) Simplified model (c) Ground static pressure profile 

Figure 2-25 TTU 10-degree guide vane configuration velocity scene for full TTU and 

simplified CFD models.  
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Following this procedure, the various geometric and inflow parameters for TTU numerical 

were identified for the remaining configurations and the summary of results obtained has 

been tabulated below. 

Vane 

angle 
𝑟0 

(m) 

ℎ0 

(m) 

𝑎

=
ℎ𝑜

𝑟0
 

𝑟𝑢 

(m) 

𝑣𝑡 

(m/s) 

𝑣𝑟 

(m/s) 

𝑣𝑡
𝑣𝑟

⁄  

(at 

ℎ𝑖 , 𝑟𝑖) 

𝑆 =

𝑣𝑡
𝑣𝑟

⁄  

2𝑎
 

10° 2.7 2.0 0.75 2.0 0.39 1.34 0.29 0.19 

20° 3.0 2.0 0.67 2.0 1.11 1.91 0.58 0.44 

30° 3.1 2.0 0.65 2.0 1.80 2.30 0.78 0.60 

40° 3.1 2.0 0.65 2.0 3.19 2.78 1.15 0.88 

50° 3.4 2.0 0.59 2.0 ~3.26 ~1.98 ~1.65 ~1.40 

60° ~3.5 2.0 ~0.57 2.0 - - ≥2 ≥2 

Table 2-3 Parameters for simplified numerical model (TTU VorTECH).  

It should be noted from Table 2-3 that while up to 40-degree configuration, the values of 

various parameters are reported with confidence, for 50-degree or higher, the conditions 

gradually became slightly unsteady even at the radius of updraft and therefore the values 

are an approximation. Further for higher swirl ratios (50 and 60-degree guide vane 

configuration), the conditions are highly unsteady and aerodynamically unstable, so 

comparison of mean ground static pressure profiles may not be the best choice. Moreover, 

while 70-degree guide vane configuration was simulated, the results obtained where 

discarded because the various characteristic features like ground static pressure profile 

shape, Rankine vortex tangential velocity profile, etc. were found absent for this 

configuration.  
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2.4.2 Tornado Simulator (ISU) 

Although the overall strategy for simplification of tornado simulator at ISU was the same 

as previously discussed for VorTECH, there were some differences that primarily arose 

because the system is unbounded, which means identifying the inflow depth is not as 

straightforward as in the case of VorTECH. To show a typical tornado-like vortex produced 

in ISU Tornado Simulator, Figure 2-26 is provided for visual aid.  

Result after the simplification process for vane 2 configuration of ISU tornado simulator is 

presented in Figure 2-27. The average difference between the static pressure drops obtained 

from ISU Tornado Simulator CFD model and the generic numerical model was found to 

be around 0.5 Pa, indicating a good agreement between the two. 

 

 

Figure 2-26 Velocity magnitude color map shown on Q criterion isosurface for a 

typical ISU Tornado Simulator configuration. 
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(a) ISU CFD model 

 

 

(b) Simplified model (c) Ground static pressure profile 

Figure 2-27 Vane 2 configuration (a) ISU Tornado Simulator (b) simplified 

numerical model (c) comparison of ground static pressure  

To identify the inflow depth for such a system (unbounded), visual methods like inspecting 

the vector and streamline fields (shown in Figure 2-28 and Figure 2-29) were also used 

along with the velocity profiles. This because a recirculation zone was found right above 

the inflow region in case of unbounded systems like ISU tornado simulator (and WindEEE) 
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as shown in Figure 2-28. This makes the vertical profiles misleading and the flow field 

needs to be visually examined as well. The recirculation zone was found to have non- zero 

radial and tangential velocity, but a close inspection revealed that part of the flow does not 

contribute to the flow in the vortex (and can be treated as secondary flow inside the system). 

This has been visually shown in Figure 2-28. Secondary flows are also observed in real 

tornadoes. 

 

 

Figure 2-28 A typical configuration from ISU tornado simulator showing 

recirculation zone above the inflow (secondary).  

Another interesting feature in certain configurations like floor 3, as shown in Figure 2-29  

is that the flow from the recirculation zone finds its way into the exhaust system without 
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being a part of the main vortex flow, essentially reducing the effective radius of the updraft 

hole.   

 

Figure 2-29 Demonstration of reduction in effective bell mouth size. 

The results obtained after accounting for this reduction and following the procedure 

described earlier have been presented in Figure 2-30 and Figure 2-31 The flow structure 

(qualitatively) and the ground static pressure profile show a decent match (Figure 2-31). 

The average difference between the static pressure drop obtained from TTU VorTECH 

CFD model and the generic numerical model was found to be around 1.1 Pa, showing a 

good agreement between the two.  
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Figure 2-30 Floor 3 configuration ISU Tornado Simulator CFD model.  

 

 

(a) Simplified model (b) Ground static pressure profile 

Figure 2-31 ISU Tornado Simulator floor 3 configuration (a) simplified numerical 

model (b) comparison of ground static pressure.  

Following this procedure, various geometric and inflow parameters for ISU numerical were 

identified for the remaining configurations and the summary of results obtained has been 

tabulated below. 
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Configuration 𝑟0 

(m) 

ℎ0 

(m) 

ℎ𝑢 

(m) 

𝑟𝑢 (m) 𝑣𝑡 

(m/s) 

𝑣𝑟 

(m/s) 

𝑣𝑡
𝑣𝑟

⁄  

(at 

ℎ𝑜 , 𝑟𝑜) 

Vane 1 2.05 0.27 1.45 0.915 0.83 3.74 0.22 

Vane 2 2.05 0.27 1.45 0.915 1.16 3.81 0.31 

Vane 3 2.05 0.27 1.45 0.82 1.25 2.76 0.45 

Vane 4 2.1 0.27 1.45 0.915 - - ~0.6 

Vane 5 2.1 0.27 1.45 0.915 - - ~1 

Fan 1 2.05 0.27 1.45 0.82 1.25 2.76 0.45 

Fan 2 2.05 0.27 1.45 0.82 1.88 4.14 0.45 

Fan 3 2.05 0.27 1.45 0.82 2.5 5.54 0.45 

Floor 1 2.2 0.16 1.22 0.93 1.38 4.37 0.32 

Floor 2 2.05 0.27 1.45 0.82 1.25 2.76 0.45 

Floor 3 2 0.35 1.68 0.79 1.25 2.21 0.57 

Table 2-4 Parameters for simplified numerical model (ISU Tornado Simulator).  

2.4.3 WindEEE 

The simplification strategy for WindEEE was the same as ISU tornado simulator since both 

systems are unbounded. To show a typical tornado-like vortex produced in WindEE, Figure 

2-32 is provided for visual aid. As previously discussed, visual aid was used while 

examining the profiles to identify the recirculation zone above the convergent layer.  

 

Figure 2-32 Velocity magnitude color map shown on Q criterion isosurface for a 

typical WindEEE configuration. 
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(a) 

 

(b) 

Figure 2-33 WindEEE CFD model (a) shown with dome (b) shown without dome. 
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Figure 2-34 WindEEE plan view. 

In an experiment conducted at WindEEE during this study, it was found that the core radius 

of 0.5 m and maximum mean tangential velocity of around 15 m/s were recorded at 0.17 

m (17 cm) height from the ground for 15-deg guide vane configuration. Figure 2-35 

presents the tangential velocity profile at 17 cm obtained from numerical simulations and 

shows reasonable agreement not only between WindEEE CFD model and simplified 

numerical model but also with experimentally reported values, given the presence of vortex 

wandering. Numerical simulations predicted a core radius of around 0.46 m and maximum 

mean tangential velocity of around 14.5 m/s.  
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Figure 2-35 Radial profile of tangential velocity at 0.17 m height for WindEEE CFD 

model and simplified numerical model.  

 

 

 

(a) Simplified model (b) Ground static pressure profile 

Figure 2-36  (a) WindEEE simplified numerical model, (b) ground static pressure 

comparison. 
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From Figure 2-36, a good match of overall flow structure and ground static pressure profile 

between WindEEE CFD and simplified numerical model is evident.  

 

Vane angle 𝑟0 

(m) 

ℎ0 

(m) 

ℎ𝑢 

(m) 

𝑟𝑢 (m) 𝑣𝑡 

(m/s) 

𝑣𝑟 

(m/s) 

𝑣𝑡
𝑣𝑟

⁄  (at ℎ𝑜 , 𝑟𝑜) 

15° 6 0.8 4 1.8 1.52 2.85 0.53 

Table 2-5 Parameters for simplified WindEEE numerical model. 

2.5 Comparison of flow structures  

To demonstrate unification, flow structures of from each simulator are qualitatively 

compared to show that vortices with similar swirl ratios have similar flow structures.   

Figure 2-37 shows the flow structures of 20-degree guide vane configuration from TTU 

VorTECH (S=0.43), floor 3 configuration from ISU Tornado Simulator (S=0.5) and 15-

degree guide vane configuration at WindEEE (S=0.5).  All three vortices are observed to 

have very similar appearance (“alternating bubbles” in the core). This is due to the turbulent 

nature of vortex break down that becomes prominent around a swirl ratio of 0.4 and 

manifests itself as “alternating bubbles” in the mean velocity field (in the r-z plane).  

From calculations presented in section 2.4.1, it was shown that 20-degree guide vane 

configuration from VortTECH corresponds to S=0.44. Also, Haan et al. (2008) reported a 

swirl ratio value of 0.5 for floor 3 configuration and the swirl ratio for 15-degree guide 

vane configuration for WindEEE was reported to be around 0.5 as well. While the swirl 

ratios for the three configurations are very comparable, it can also be seen from Figure 2-37 

that the flow structures for these three configurations also look very similar. This indicates 

that they could each possibly represent the same tornado but at different length (and 

velocity) scales due to geometric differences in the facilities as described in the following 

discussion.   

Refan et al. (2014) proposed a scaling technique based on the axial (𝑧𝑚𝑎𝑥) and radial (𝑟𝑚𝑎𝑥) 

location of maximum tangential velocity. It was shown that to replicate a real tornado in 
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lab, the axial (
𝑧𝑚𝑎𝑥,𝑓𝑢𝑙𝑙 𝑠𝑐𝑎𝑙𝑒

𝑧𝑚𝑎𝑥,𝑙𝑎𝑏 𝑠𝑐𝑎𝑙𝑒
) and radial (

𝑟𝑚𝑎𝑥,𝑓𝑢𝑙𝑙 𝑠𝑐𝑎𝑙𝑒

𝑟𝑚𝑎𝑥,𝑙𝑎𝑏 𝑠𝑐𝑎𝑙𝑒
) length scales must converge to 

around the same value at some swirl ratio.  This means if two vortices have similar swirl 

ratio values (same flow structure), then regardless of which experimental facility they are 

produced in, they should be able to replicate the same real tornado, but just at different 

length scales. This difference in length scales is expected to arise from the difference in 

physical size of simulators. This is further demonstrated as following.  

It was observed from the numerical simulations conducted in this study that for 15-degree 

guide vane angle configuration for WindEEE (corresponding to S=0.5), 𝑧𝑚𝑎𝑥,𝑊𝑖𝑛𝑑𝐸𝐸 =

0.1 𝑚 and 𝑟𝑚𝑎𝑥,𝑊𝑖𝑛𝑑𝐸𝐸 = 0.4 𝑚. Further, for floor 3 configuration of ISU Tornado 

Simulator (also corresponding to S=0.5), it was observed that 𝑧𝑚𝑎𝑥,𝐼𝑆𝑈 = 0.05𝑚 and 

𝑟𝑚𝑎𝑥,𝐼𝑆𝑈 = 0.21𝑚. Therefore,  

𝑧𝑚𝑎𝑥,𝐼𝑆𝑈

𝑧𝑚𝑎𝑥,𝑊𝑖𝑛𝑑𝐸𝐸
≈

𝑟𝑚𝑎𝑥,𝐼𝑆𝑈

𝑟𝑚𝑎𝑥,𝑊𝑖𝑛𝑑𝐸𝐸
≈ 0.5 

 This implies that floor 3 configuration in ISU tornado simulator produces the same vortex 

as 15-degree guide vane configuration at WindEEE at half the geometric scale (ISU vortex 

is half as a small as WindEEE with same flow structure). This means that if 0.5 swirl ratio 

vortex produced at WindEEE, for example, represents a real tornado at a length scale of 

1:500, the same real tornado can be represented by 0.5 swirl ratio vortex produced in ISU 

Tornado Simulator at a length scale of 1:1000.   

Similarly, it was found that for 20-degree guide vane configuration in TTU VorTECH 

(corresponding to S=0.43). 𝑧𝑚𝑎𝑥,𝑇𝑇𝑈 = 1.25𝑚 and 𝑟𝑚𝑎𝑥,𝑇𝑇𝑈 = 0.3𝑚.  

𝑧𝑚𝑎𝑥,𝑇𝑇𝑈

𝑧𝑚𝑎𝑥,𝑊𝑖𝑛𝑑𝐸𝐸
>

𝑟𝑚𝑎𝑥,𝑇𝑇𝑈

𝑟𝑚𝑎𝑥,𝑊𝑖𝑛𝑑𝐸𝐸
 

1.25 > 0.75 

This is expected because 20-degree guide vane configuration in VorTECH corresponds to 

S=0.43 and15-degree guide vane configuration in WindEEE corresponds to S=0.5. While 

the swirl ratio magnitudes are very close and therefore the flow structures look comparable, 
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they do not represent the same scenario. Hangan and Kim (2008) reported that increasing 

swirl ratio increases 𝑟𝑚𝑎𝑥 and lowers 𝑧𝑚𝑎𝑥. This implies that if swirl ratio for VorTECH is 

increased from 0.43, 
𝑧𝑚𝑎𝑥,𝑇𝑇𝑈

𝑧𝑚𝑎𝑥,𝑊𝑖𝑛𝑑𝐸𝐸
 would reduce and 

𝑟𝑚𝑎𝑥,𝑇𝑇𝑈

𝑟𝑚𝑎𝑥,𝑊𝑖𝑛𝑑𝐸𝐸
 would increase and at certain 

swirl ratio value close to 0.5 ,  we could expect 
𝑧𝑚𝑎𝑥,𝑇𝑇𝑈

𝑧𝑚𝑎𝑥,𝑊𝑖𝑛𝑑𝐸𝐸
 = 

𝑟𝑚𝑎𝑥,𝑇𝑇𝑈

𝑟𝑚𝑎𝑥,𝑊𝑖𝑛𝑑𝐸𝐸
.  Since for TTU 

VorTECH, 20-degree configuration corresponds to S=0.43 and 30-degree configuration 

corresponds to S= 0.6 (refer to Table 2-3), it anticipated that the guide vane should be set 

to an angle between 20° and 30° to achieve geometric similarity, as described above. 
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(a) (b) 

 

(c) 

Figure 2-37 (a) TTU VorTECH S=0.43, (b) ISU Tornado Simulator S=0.5, (c) 

WindEEE S=0.5. 
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2.6 Conclusions 

The following conclusions can be made from this study. 

• It was demonstrated that by identifying the parameters used to characterize a vortex 

strictly from the flow-field, as opposed to directly using the geometric dimenions 

and confugrations of physical elements of an experimental simulator, it is possible 

to simplify the experimental tornado simulators into one generic numerical model, 

where the flow structures of the vortices with comparable swirl ratios were found 

to be very similar.  

• A major difference between bounded systems like VorTECH at Texas Tech 

University (based on Ward type design) and unbounded systems like Iowa State 

University Tornado Simulator and WindEEE Dome at Western University is the 

presence of a recirculating zone above the inflow/convergent layer observed in 

unbounded systems. This recirculating zone can not only affect the vortex flow 

structure but also make inflow velocity profiles somewhat misleading unless visual 

aid is utilized  

• The size of the updraft hole (or bell mouth/exhaust opening) was observed to have 

a significant impact on the flow structure of laboratory produced vortices. In certain 

cases, it was also observed that this updraft hole size was effectively reduced and 

this reduction had to be accounted for, in the simplified generic numerical model.  

• It was also shown that vortices with similar swirl ratio produced in different 

experimental facilities can represent the same real tornado, but at different length 

scales. 

• Vortex wandering was found to be a common feature of simulated tornadoes 

(experimentally and numerically produced vortices). While wandering is 

commonly observed in real tornadoes (tornadoes in nature) as well,  care must be 

taken when measurements are made using fixed probes for simulated tornadoes, 

particularly when validating numerical results with experimental data. 
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Chapter 3 

3 Application of the generic numerical tornado model to 
bluff-body aerodynamics and wind load evaluation 

Tornadoes are violently rotating columns of air with high speed winds that often leave 

behind a destruction trail. Based on damage total and number of fatalities due to natural 

hazards, tornadoes are ranked third, after floods and hurricanes, in the Unite States (Cutter 

2002). With an estimation of around 1200 tornadoes per year, the United States ranks first 

in terms of annual tornado occurrences. Further, from a statistical perspective, the year 

2011 stands out in terms of maximum annual tornado damage in the United States since 

the 1950s. According US National Oceanic and Atmospheric Administration (NOAA), 

tornadoes caused 550 deaths and 28 billion dollars in damage that year alone. While most 

tornadoes in United States occur in the south-central region (termed as ‘tornado alley), 

significant tornadoes have also been witnessed in other areas outside of that region. In fact, 

it has been commonly observed that tornadoes outside of tornado alley cause more damage 

than anticipated merely because they are relatively less expected to occur outside of the 

tornado alley.  

Alerted by the damage potential of tornadoes and to enhance the resiliency of our 

community towards this extreme weather phenomenon, numerous studies have been 

conducted to understand wind loads on structures arising from tornadoes. While 

experimental studies like Mishra et al. (2008), Haan et al. (2010), Thampi et al. (2011), 

Sabareesh et al. (2013) and Case et al. (2014) studied the effect of tornadic wind loads on 

low-rise buildings, studies like Wen (1973) and Yang et. al (2011) studied the effects of 

tornadic wind on tall buildings. Similarly, Selvam and Millet (2003), Selvam and Millet 

(2004), Savory et al. (2001), Gorecki and Selvam (2015), Sengupta et al. (2008), Nasir and 

Bitsuamlak (2016), Hamada et al. (2010) and Natarajan and Hanagn (2012) are some 

examples of studies which used numerical techniques to understand the interaction tornado 

with ground and civil structures. 

The present study is carried out to demonstrate the application of previously developed 

generic numerical tornado model towards bluff-body aerodynamics and wind load 
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evaluation by numerically replicating prior conducted experiments on tornado-building 

interaction and then comparing the results. First, the interaction of a typical mid-rise 

building model is carried out numerically (using the previously developed model) and the 

results are compared with experimentally obtained data from WindEEE Dome at Western 

University. Next, wind load evaluation of a typical high-rise building model is conducted 

numerically and compared with the experimentally obtained results reported in Yang et al. 

(2011), where a similar test was previously carried out using Iowa State University 

Tornado Simulator. 

3.1 Mid-rise building (validation of WindEEE model) 

To validate the previously developed numerical tornado model for WindEEE, an 

experiment was conducted at WindEEE Dome at Western University, the details of which 

have been presented in the following section.  

3.1.1 Experimental set-up (I) 

A typical mid-rise building model was subject to tornado-like flow field generated at 

WindEEE dome and a High Frequency Pressure Integration (HFPI) test was conducted. To 

achieve this, WindEEE was operated in the second mode (non-functional peripheral fans) 

and the 15-degree guide vane configuration was used. The generated vortex was reported 

to have a swirl ratio of around 0.5 with a core radius and maximum mean tangential 

velocity at 0.17 m (building height) to be around 0.5 m and 15m/s, respectively.  

 

Height (H) 0.17 m 

Length 0.21 m 

Width 0.15 m 

Table 3-1 Building model dimensions. 
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The building was placed at two locations with respect to vortex centre i.e. core centre and 

core radius, as shown in Figure 3-1.  

  

(a) Core centre location (b) Core radius location 

Figure 3-1 Building model locations.  

Surface pressure and force coefficients acting on the building model were then computed 

as shown below.  

𝐶𝑝 =
𝑃 − 𝑃0

1
2 𝜌 𝑈𝑟𝑒𝑓

2
 

Here, 𝑃0 is the reference static pressure (atmospheric pressure in this case, measured 

outside the test chamber) and 𝑈𝑟𝑒𝑓 is the reference velocity (mean maximum tangential 

velocity measured at building height, in the absence of building).   

Further, the experimentally obtained surface pressures were integrated to obtain forces 

acting on the model. The pressure data obtained from the wind tunnel test (at WindEEE) 

was integrated to evaluate wind loads using MATLAB. An outline of the process along 

with a brief description of the sign convention for forces and torsion have been presented 

in this section.  

𝐹 = ∬(
1

2
𝜌𝑣2 𝐶𝑝)𝑑𝐴 
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𝑀 = 𝑟 × ∬(
1

2
𝜌𝑣2 𝐶𝑝)𝑑𝐴 

Here, 𝐹 is the force, 𝑀 is the moment (torsion), 𝐶𝑝 is the pressure coefficient and its values 

for the above equation were calculated as shown in the previously, 𝑣 is the reference 

velocity (at building height in this case),  𝑑𝐴 represents the tributary area of each tap and 

𝑟 is the length of lever arm. These forces and moments were then converted to respective 

coefficients as shown below. 

𝐶𝐹𝑥 =
𝐹𝑥

1
2 𝜌𝑈𝑟𝑒𝑓

2 𝐴
 

𝐶𝐹𝑦 =
𝐹𝑦

1
2 𝜌𝑈𝑟𝑒𝑓

2 𝐴
 

𝐶𝑀𝑧 =
𝑀𝑧

1
2 𝜌𝑈𝑟𝑒𝑓

2 𝐴𝐻
 

𝐹𝑥 is the component of force in the x direction, 𝐹𝑦 is the component of force in y direction 

and 𝑀𝑧 is the component of moment of force (torsion) in z direction (shown in Figure 3-2), 

𝐴 is the projected area, 𝐻 is the building height, 𝜌 is air density and 𝑈𝑟𝑒𝑓 is the reference 

velocity.   

 

 

Figure 3-2 Sign convention for forces and moments. 
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(a)  

 

(b) 

Figure 3-3 Building model placed at core centre location with a pitot tube to 

measure the mean maximum tangential velocity at building height (a) far view (b) 

close-up view 
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3.1.2 Numerical simulation set-up (I) 

To replicate the flow field generated in WindEEE during the experiment described above, 

the generic numerical model developed in Chapter 2 was utilized. The details of 

numerical set-up to achieve the required flow field have been tabulated below.  The 

paramters shown in Table 3-2 will be utilized in the generic numerical model as 

illustrated in Figure 3-4. 

 

Vane angle 𝑟0 (m) ℎ0 

(m) 

ℎ𝑢 

(m) 

𝑟𝑢 (m) 𝑣𝑡 

(m/s) 

𝑣𝑟 

(m/s) 

𝑣𝑡
𝑣𝑟

⁄  (at ℎ𝑜 , 𝑟𝑜) 

15° 6 0.8 5.2 1.75 1.52 2.85 0.53 

Table 3-2 Parameter for simplified WindEEE numerical model. 

 

Figure 3-4 Generic numerical model schematic. 
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The core size and maximum mean tangential velocity at 0.17 m height for this 

configuration were validated with the numerical results in the previous chapter.  

Large Eddy Simulations carried out during this study were initialized with the solution 

obtained through RANS (RSM) simulations. It was ensured that Courant–Friedrichs–Lewy 

(CFL) condition was satisfied. For this, the time step was chosen to maintain Courant 

number value below 1, at least in the region of interest.  As a result, the time step for the 

transient simulations (Large Eddy Simulations) was of the order of 0.0001 seconds.  

𝐶 =
𝑈∆𝑡

∆𝑥
< 1 

To capture flow details around the building, further refinement was made around the 

model region, as shown in the Figure 3-5.  

The resulting pressure, force and moment coefficients were computed as described before 

and then compared with experimentally obtained results.  

 

Figure 3-5 Mesh strategy.  

3.1.3 Results and discussion (I) 

From Figure 3-6 and Figure 3-7, a reasonable match (qualitatively) in the surface pressure 

distribution can be observed between numerical and experimental results. However, an 
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interesting difference is the symmetry displayed for core centre case by numerical 

simulation, which is absent in experimental results. Although it is not entirely clear at this 

point as to what could have caused it, one possible explanation is based on the phenomenon 

of vortex wandering. It was previously observed that while wandering is an inherent 

property of these vortices, it can be augmented due to unsteadiness arsing from the 

mechanical system of the wind tunnel. It was seen that the extent of wandering is reduced 

for the simplified generic model as compared to the full CFD models of the entire system. 

Further for simplified models, the extent of wandering was higher for lower swirl ratios 

while it was somewhat mitigated for swirl ratios around 0.5. It is speculated that this is the 

reason for symmetry in pressure distribution for the simplified numerical results since the 

vortex simulated for this test had a swirl ratio of around 0.5 and therefore the simplified 

model showed mitigation in wandering. This has been illustrated in Figure 3-8.  
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(a) (b) 

Figure 3-6 Surface pressure coefficient distribution for core centre location obtained 

from (a) generic numerical model (b) WindEEE experiment. 

  

(a) (b) 

Figure 3-7 Surface pressure coefficient distribution for core radius location obtained 

from (a) generic numerical model (b) WindEEE experiment. 
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Figure 3-8 Mitigation of wandering in simplified numerical simulations. 

 The number of up-crossings between ground static pressure time series at the centre and 

other locations away from the centre has been used to estimate the extent of wandering 

throughout the study. From Figure 3-8, it can be observed that wandering for simplified 

numerical simulations is mitigated (no upcrossing ) around 0.5 swirl ratio, however for full 

WindEEE CFD model, wandering was found to persist. Further, it is anticipated that the 

extent of wandering in actual WindEEE experimental set up would be even higher than 

what is predicted by WindEEE CFD model. This is because of the coasting of peripheral 

fans in WindEEE experimental set-up (that could introduce unwanted turbulence and 

asymmetry in the flow) that were not modelled in WindEEE CFD simulations (peripheral 

fans were not modelled in this study that mimics first mode of WindEEE operation).  From 

Figure 3-7, a reasonable agreement of building surface pressure coefficients between 

numerical and experimental results for core radius location. Minor differences are 

attributed to vortex wandering in experimental set-up as previously described.  
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Further, the base load (force and moment) coefficients were also computed as described 

previously, for both numerical and experimental simulations, and compared. 

 CFx CFy Mz 

Experimental     CC 

                          CR 

0 1.3 0 

-0.4 1.6 0.2 

Numerical          CC 

                           CR 

0 0 0 

-0.8 2.1 0.1 

Table 3-3 Comparison of base loads obtained from numerical and experimental 

simulation. 

From Table 3-3, experimental and numerical simulations indicate very small values of 

torsional moment coefficient for both locations, which also consistent with what was 

reported in Yang et al. (2011) as will be seen in the upcoming sections. The force 

coefficients obtained experimentally and numerically showed some minor discrepancies. 

This can also be explained based on vortex wandering. As presented before, simplified 

numerical simulations yield a symmetric pressure distribution on the building surface 

(since wandering is mitigated), this cancels out the forces on the structure. However, due 

to wandering, the net forces did not seem to have cancelled out even for the core centre 

location which is believed to be the reason for discrepancy seen from Table 3-3. Similar 

argument holds for core radius location as well.  

The discussion on wandering presented in this study is not fully conclusive and would 

require detailed experimentation (simulation) to fully quantify its effect during future 

studies. 

3.2 High-rise building (validation of ISU Tornado 
Simulator model) 

3.2.1 Experimental set up (II) 

Yang et al. (2011) tested the effect of tornado-like winds on a typical high-rise building 

model of plan area 34.4 mm x 34.4 mm and height 140 mm. The building was subject to 

tornado-like wind field achieved by vane 1 setting of the ISU Tornado Simulator. The 

building position was altered with respect to the centre of a stationary vortex and the 
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resulting force and moments coefficients were computed. The force and moment 

coefficients were computed as following.  

𝐶𝐹𝑥 =
𝐹𝑥

1
2 𝜌𝑉𝑟𝑒𝑓

2 𝐴
 

𝐶𝐹𝑦 =
𝐹𝑦

1
2 𝜌𝑉𝑟𝑒𝑓

2 𝐴
 

𝐶𝑀𝑧 =
𝑀𝑧

1
2 𝜌𝑉𝑟𝑒𝑓

2 𝐴𝐻
 

Here 𝐹𝑥 is the component of force in the x direction, 𝐹𝑦 is the component of force in y 

direction and 𝑀𝑧 is the component of moment of force in z direction (torsion) (shown in 

Figure 3-9), 𝐴 is the projected area, 𝐻 is the building height, 𝜌 is air density and 𝑉𝑟𝑒𝑓 =7m/s 

(maximum mean tangential velocity at 70 mm height).  

 

 

Figure 3-9 Illustration of sign convention for forces and moments.  
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Based on Yang et al. (2011), the building was positioned at 6 locations as summarized in 

Table 3-4.  

Position Distance 

r1 0 

r2 0.5𝑟𝑐 

r3 2.3𝑟𝑐 

r4 3𝑟𝑐 

r5 4.5𝑟𝑐 

r6 6𝑟𝑐 

Table 3-4 Building locations with respect to the vortex-centre (𝒓𝒄 is the core radius). 

Wind load evaluation of a building model of same dimensions under similar tornadic flow 

was conducted numerically to asses the performance of the numerical model developed in 

the previous chapter.  

3.2.2 Numerical simulation set-up (II) 

The numerical model used to replicate the flow field was based on the geometric and inflow 

parameters identified during the development of generic numerical tornado model for vane 

1 setting of ISU tornado simulator (presented in Chapter 2). The details of the parameters 

have been tabulated below. Large Eddy Simulations were then conducted to numerically 

obtain wind load coefficients and flow field around the building model. 

𝑟0 (m) ℎ0 (m) ℎ𝑢 (m) 𝑟𝑢 (m) 𝑣𝑡 

(m/s) 

𝑣𝑟 

(m/s) 

𝑣𝑡
𝑣𝑟

⁄  

2.05 0.27 1.45 0.915 0.83 3.74 0.22 

Table 3-5 Simplified ISU tornado simulator numerical model parameters.  

Yang et al. (2011) reported a core radius of 0.165 m at 70 mm height (from the ground) 

and a mean tangential velocity of 7 m/s (at the core radius) and   described the vortex as 

thin and laminar with low swirl for vane 1 configuration. The numerical model using Large 

Eddy Simulations predicted very comparable values of core radius and mean tangential 

velocity at that location as shown in Figure 3-10. The appearance of numerically produced 

vortex for this study was also found to be thin and laminar. This indicates at least some 

basic agreement between experimentally and numerically generated flow fields, to begin 

with. 
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Figure 3-10 Radial profile of tangential velocity at 70 mm height obtained through 

numerical model using LES (time averaged values presented here). 

The core radius obtained numerically at 70 mm height was about 0.165m and tangential 

velocity at that location was around 7 m/s (Figure 3-10).   

3.2.3 Results and discussion (II) 

In this section, the results obtained from numerical analysis are discussed and compared 

with experimentally reported results in Yang et al. (2011). Figure 3-11 shows the velocity 

field plotted at 70 mm height (half height) for the core radius location of the building at 

five time instances as well as the time averaged streamlines. It can be seen from Figure 

3-11(a) through (e) that the system is very dynamic due to wandering of the vortex and 

vortex moves significantly, completely altering the wake around the building model as it 

does so. This observation is also consistent with Yang et al. (2011), who reported 

movement in the vortex centre, based on PIV measurements. At time instant t1, the vortex 

is close to the geometric centre of the simulator. The flow hits the building and separates; 

however, it can be seen from Figure 3-11 (a) that on the side of the building away from the 

vortex centre, the separation is not very prominent. In fact, even the wake behind building 

is asymmetric and is skewed towards the vortex centre. This indicates that while 

aerodynamic phenomenon associated with bluff-bodies, like flow separation and formation 
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of wake, do occur locally, the overall structure of wake is influenced (and dominated by 

suction inside the vortex).  Time instant t2 is right before the vortex centre overlaps with 

the building and time instant t3 is right after it crosses the building. It can be observed that 

the wake around the building significantly changes between these two instances. At time 

instant t4, the vortex is at a location such that the flow strikes the building model near the 

corner edge and this results in a large wake behind the model. The wandering was observed 

to have a periodic cycle, i.e. the vortex would return to original position after about every 

4-5 seconds. This can also be seen from Figure 3-11 (e), at time t5, the vortex is almost 

back to where it was at t1. The discussion above also arises questions about associating 

mean values with a fixed location of building model with respect to vortex centre of a 

“stationary” tornado. For example, in this case the location of the building model was 

intended to be at the core radius of the vortex but from Figure 3-11 and discussion presented 

here, it can be concluded that there were several instances when the vortex was over the 

building (like core centre location) and when the building was at a distance less than the 

core radius from the vortex centre etc., making mean values relatively less informative and 

possibly even misleading. Overall, it can be seen from Figure 3-11 that the wake structure 

around the building model, even for a stationary vortex case, is highly unsteady which is 

consistent with what was reported in Yang et al. (2011).  
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(a) t1 (b) t2 

  
(c) t3 (d) t4 

  
(e) t5 (f) Time-averaged LES  

Figure 3-11 (a) Velocity field at time instant t1, (b) Velocity field at time instant t2, 

(c) Velocity field at time instant t3, (d) Velocity field at time instant t4, (e) Velocity 

field at time instant t5, (f) Time-averaged LES.   
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Figure 3-12 shows a comparison of time averaged velocity field obtained from the 

numerical model and Yang et al. (2011). A reasonably good agreement between the two 

can be instantly observed. Slight difference between the average velocity field obtained 

from steady RANS and time-averaged LES, and the similarity between time-averaged PIV 

and time-averaged LES can be seen from Figure 3-12.  

  

(a)Yang et al. (2011) (b) Time-averaged LES 

 

Steady RANS 

Figure 3-12 (a) Time averaged velocity field from PIV (Yang et al. 2011)) (b) Time 

averaged velocity field from LES, (c) velocity field from steady RANS. 

Figure 3-13 through Figure 3-15 present a comparison of numerically and experimentally 

obtained force and moment coefficients. The force coefficients (x and y) obtained from 

numerical simulations (Figure 3-13 and Figure 3-14) show the same trend as 

experimentally obtained values. However, the numerically obtained force coefficients are 
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seen to be slightly lower in magnitude. The experimentally obtained measurements were 

recorded using a JR3, model 30E12A-I40 (force balance), which has a precision of ± 

0.25% of the full range (40N), i.e. 0.1 N, as reported in Yang et al. (2011). The building 

model used for this experiment had dimensions of 34.4 mm x 34.4 mm x 140 mm and 

experienced very small forces. With this argument, while the numerically obtained forces 

were slightly lower but the difference was close to the ± 0.1 uncertainty of the 

experimentally obtained values. Further, this mismatch might also be an indication of 

inappropriate choice of reference pressure to evaluate pressure and load coefficients. 

During the development of the generic numerical model (in Chapter 2), all pressures were 

referenced to the ground static pressure at the updraft radius (commonly observed practice 

in numerical studies). However, to be consistent with experimentally obtained data, during 

pressure and load coefficient evaluation in Chapter 3, atmospheric pressure was used as 

reference. It is  possible that atmospheric pressure might not be the best choice for reference 

pressures when comparing results between different facilities and between experimental 

and numerical studies. This would, however, require more detailed research in the future.  

 

Figure 3-13 Comparison of force (Fx) coefficient obtained from numerical and 

experimental simulations. 
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Figure 3-14 Comparison of force (Fy) coefficient obtained from numerical and 

experimental simulations. 

From Figure 3-15, it can be observed that both numerical and experimental simulations 

show negligible torsional moment at every location and are therefore in good agreement.  

 

Figure 3-15 Comparison of moment (torsion) coefficient obtained from numerical 

and experimental simulations. 
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3.3 Conclusions  

The following conclusion can be made from this study. 

• The generic numerical tornado model developed in Chapter 2 displayed good 

promise for its application to bluff-body aerodynamics and wind load evaluation.  

• On comparing experimental and numerical results, similar surface pressure 

distribution, flow structures around bluff bodies and trend in force coeffects were 

observed. The discrepancies between numerical and experimental results are 

suspected to arise due to vortex wandering. 

• It was also seen that while wandering is an inherent property of  tornado-like 

vortices at low swirl ratios, it is somewhat mitigated around mid-range swirl ratios 

(S~0.5) in the simplified generic numerical model (cylindrical in shape).  

• Further, turbulent flow structures (wake) around a bluff body were found to be 

highly unsteady, even for a so called “stationary vortex”.  
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Chapter 4 

4 Conclusions and future research direction 

This chapter presents some concluding remarks based on current work and lays out future 

research in this direction.  

4.1 Conclusion  

The following conclusions can be drawn from this study.  

• It was demonstrated that by identifying the parameters used to characterize a vortex 

strictly from the flow-field, as opposed to directly using the geometric dimenions 

and confugrations of physical elements of an experimental simulator, it is possible 

to simplify the experimental tornado simulators into one generic numerical model, 

that can generate similar flow structures for vortices with comparable swirl ratios. 

• A major difference between bounded systems like VorTECH at Texas Tech 

University (based on Ward type design) and unbounded systems like Iowa State 

University Tornado Simulator and WindEEE Dome at Western University is the 

presence of a recirculating zone above the inflow/convergent layer observed in 

unbounded systems. This recirculating zone can not only affect the vortex flow 

structure but also make direct use of inflow velocity profiles as a boundary 

condition in the generic numerical model somewhat difficult, unless visual aid is 

utilized 

• The size of the updraft hole (or bell mouth/exhaust opening) was observed to have 

a significant impact on the flow structure of laboratory produced vortices. In certain 

cases, it was also observed that the effective updraft hole size was reduced and this 

reduction had to be accounted for, in the simplified generic numerical model. 

• It was also shown that vortices with similar swirl ratio produced in different 

experimental facilities can represent the same real tornado, but at different length 

scales. 
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• Vortex wandering was found to be a common feature of simulated tornadoes 

(experimentally and numerically produced vortices). While wandering is 

commonly observed in real tornadoes (tornadoes in nature) as well,  care must be 

taken when measurements are made using fixed probes for simulated tornadoes, 

particularly when validating numerical results with experimental data. 

• Further, the potential application of this generic numerical tornado simulator to 

bluff-body aerodynamics and wind load evaluation was demonstrated and, while 

the results obtained from numerical simulations showed some minor but 

explainable discrepancies with experimental observations, the proposed numerical 

simulator displayed promising results for its utility in the future.  

4.2 Future research direction 

The following recommendations for future research can be made to compliment and extend 

the current study. 

• To fully demonstrate the robustness of the generic numerical model developed in 

this study, a more rigorous validation with xperimentally obtained data is desirable. 

Further, along with mean quantities that have already been compared in this study, 

peak values should also be computed and compared.  

• Real tornadoes are also reported to wander, so quantifying the effects of vortex 

wandering would aid in making future studies more conclusive, at least from a 

Wind Engineering perspective. 

• It would also be interesting to conduct a parametric study to identify the role of 

geometric and physical parameters of an experimental tornado simulator, 

particularly the size of updraft hole and location of honeycomb section (which are 

less discussed in past studies). 

• Exploring the effect of translation and ground roughness on tornadic flow and 

resulting wind loads and the appropriate choice of reference velocity and pressure 

for tornadic flow would help in simulating more realistic scenarios.  
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• Further, it would be the ultimate goal to be able to link metereological tornado 

models with engineering models to simulate more realistic scenarios at a city level. 

Computational Fluid Dynamics could play an instrumental role in achieving this 

and moving towards mechanics based loss modelling approach for tornado hazard. 
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