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Abstract 

One way that the body actively responds to an impending stressor is by increasing 

systemic glucocorticoids through the activation of the hypothalamic-pituitary-adrenal 

(HPA) axis. While it is essential for short-term adaptation to stress, the sustained 

activation of the HPA axis during chronic stress can be detrimental and is linked to 

stress-related psychiatric conditions such as anxiety and depression. Therefore, it is 

important that the HPA axis adapts, or habituates, during chronic stress to minimize the 

negative consequences. Corticotropin releasing hormone (CRH) neurons in the 

paraventricular nucleus of the hypothalamus (PVN) function to assimilate incoming 

information from the stress circuitry and initiate the HPA axis by releasing CRH to the 

circulation. Here, we report a neurophysiological correlate for the habituation of the HPA 

axis to daily repeated restraint stress in mice. By using immunohistochemistry, we first 

show that 21 days of repeated restraint stress decreases restraint-induced c-fos expression 

in PVN-CRH neurons (i.e. habituation of PVN-CRH neurons to restraint). We then show 

that this neuronal habituation to repeated restraint stress is accompanied by a robust 

decrease in the intrinsic excitability of PVN-CRH neurons. Mechanistically, the stress-

induced decrease in the intrinsic excitability correlates with a decrease in whole-cell 

membrane resistance. Surprisingly, the decrease in the membrane resistance is not due to 

the changes in specific properties of the cell membrane but is best explained by the 

changes in cell surface area (i.e. cell size), suggesting that stress-induced changes in cell 

size promote attenuation of incoming stress signals. Together these findings support 

stress-induced changes during habituation that promote stress resilience. 
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Chapter 1 

1. Introduction  

1.1 The Stress Response  

The activation of the hypothalamic-pituitary-adrenal (HPA) axis is a fundamental 

survival mechanism that coordinates physiological and psychological responses to 

manage impending threats. Although this immediate reaction to stress is essential for our 

survival, protracted activation of the HPA axis during chronic stress can become 

detrimental and contribute to psychophysiological mal-adaptations, particularly in 

vulnerable subjects (B. S. McEwen, 2000; Munck, Guyre, & Holbrook, 1984; Sapolsky, 

Romero, & Munck, 2000). For example, a meta-analysis of 361 human studies implicated 

the hyperactivity of the HPA axis in depression etiology (Stetler & Miller, 2011); HPA 

axis hyperactivity may also be a link between depression and its prevalent comorbidities 

such as diabetes, dementia and coronary heart disease (Brown, Varghese, & McEwen, 

2004). However, it is important to note that the majority of people maintain normal 

psychophysiological functioning and avoid mental illnesses, even under high levels of 

stress. Indeed, it has become increasingly clear that there are a number of active 

adaptation mechanisms promoted by prior exposure to stress (Covington et al., 2010; 

Lehmann & Herkenham, 2011; Russo, Murrough, Han, Charney, & Nestler, 2012). For 

example, it has been shown that mild early-life stressors can promote resilient behaviours 

when encountering a novel stressor later in life, as indicated by increased exploratory 

behaviour and lower cortisol levels under stress (Parker, Buckmaster, Schatzberg, & 

Lyons, 2004). Therefore, our survival and resilience to psychiatric illnesses relies on the 

ability to integrate and learn from our past experiences and accordingly fine-tune the 

stress response in a longer time scale to be able to adapt to a dynamic environment. 

In line with the idea that stress exposure can promote adaptive changes that can 

serve as a mechanism for resilience, human studies show that the HPA axis normally 

responds less and less (i.e. becomes habituated) to repeated encounters of psychological 

stress (Kirschbaum et al., 1995). Also it has been shown that the lack of habituation is 

associated with stress vulnerability (Epel et al., 2000; Gianferante et al., 2014; Kudielka, 
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Bellingrath, & Hellhammer, 2006; B. S. McEwen & Seeman, 1999). In animal models, it 

is well established that the HPA axis gradually habituates to restraint stress, a primarily 

psychological stressor, when repeated over days to weeks (Aguilera, 1994a; Bhatnagar, 

Huber, Nowak, & Trotter, 2002a; X. Chen & Herbert, 1995; Kim & Han, 2006; Uchida et 

al., 2008). Similar to human studies, impairment of HPA axis habituation during chronic 

stress is associated with the development of anxiety-related symptoms (Uchida et al., 

2008). This suggests that habituation of the HPA axis in response to long-term stress 

exposure, is one way by which stress resiliency can be promoted. Stress-induced changes 

in HPA axis function is a form of learning; therefore, established animal models of stress 

habituation provide a useful model to examine the underlying neural plasticity.  

This project investigates the neural plasticity that may underlie habituation of the 

HPA axis to repeated stress by using a mouse model. In order to outline the framework of 

this project, I will first describe the general mechanisms underlying HPA axis activation 

during stress. Next, I will narrow my focus on one brain region, the paraventricular 

nucleus of the hypothalamus (PVN), which serves as a key regulator of the HPA axis. 

Lastly, I will describe neural plasticity at the level of the PVN with relevance to HPA 

axis habituation and ultimately how this may serve as a potential cellular mechanism for 

stress resilience. 

1.2. The HPA axis 

The brain regulates the elevation of circulating glucocorticoids (GCs) through 

activation of the HPA axis. The HPA axis consists of three components: the 

hypothalamus, pituitary and adrenal gland (Figure 1.1). The apex of the HPA axis is a 

population of neuroendocrine neurons localized in the PVN that synthesize corticotropin-

releasing hormone (CRH). Upon activation of these neuroendocrine neurons, CRH is 

released into the hypophyseal portal circulation, and reaches the anterior pituitary to 

stimulate the release of adrenocorticotropic hormone (ACTH). The CRH-induced release 

of ACTH can also be enhanced by a co-secretagogue arginine vasopressin (AVP), which 

is produced by and released from neurons in the PVN (Herman & Cullinan, 1997). 

ACTH released into the general circulation, in turn, stimulates the release of GCs from 

the adrenal cortex (Figure 1.1).  
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Figure 1.1 
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Figure 1.1 The Hypothalamic-Pituitary-Adrenal (HPA) Axis. 

The HPA axis is regulated through the actions of neurons from the paraventricular 

nucleus (PVN) of the hypothalamus. These neurons secrete corticotrophin releasing 

hormone (CRH) in accordance with daily circadian rhythms or in response to stress. CRH 

secretion reaches the anterior pituitary via the hypophyseal portal system and stimulates 

the secretion of adrenocorticotropic hormone (ACTH). ACTH then acts on the adrenal 

cortex to secrete glucocorticoids (GCs). GCs serve as a negative feedback mechanism 

through their actions on the brain and pituitary gland. Adopted from 

https://www.integrativepro.com/Resources/Integrative-Blog/2016/The-HPA-Axis    
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GCs are a type of steroid hormone (corticosteroid) which exert their effects by 

binding GC receptors. GCs are an important mediator of the stress response with 

widespread actions throughout the body including the brain. In the brain, GCs have three 

important actions during stress: they 1) elicit cognitive, emotional and physiological 

changes associated with stress; 2) inhibit the HPA axis, serving as a negative feedback 

signal; and 3) promote long-lasting plasticity of these systems (Bruce S. McEwen, 2012; 

Sapolsky et al., 2000). The plasticity-related actions of GCs provide a way to self-tune 

the HPA axis based on the history of stress (Dallman, Akana, Strack, Hanson, & 

Sebastian, 1995; de Kloet, Joëls, & Holsboer, 2005; Bruce S. McEwen, 2012). Almost all 

cells in the body express GC receptors in the cytoplasm with slightly varying functions 

(i.e., in some cells GC receptor binding activates gene transcription, while in other cells it 

represses gene transcription); this promotes different GC actions in different organs and 

orchestrates different outcomes (Cain & Cidlowski, 2017). In order to prepare the body to 

survive an impending stressor, a classic action of GCs is to mobilize energy stores 

(glycogenolysis and lipolysis) to supply resources to the body during stress (Herman et 

al., 2003; Tanaka, Shimizu, & Yoshikawa, 2017).  In addition, GCs exert powerful anti-

inflammatory and immunosuppressive effects as well as modulate cardiovascular tones 

(Buttgereit, Burmester, & Lipworth, 2009). The adverse consequences of excess GCs 

action are well documented in Cushing Syndrome, a condition with chronic high levels of 

GCs, that leads to various psychophysiological symptoms including ulcers, hypertension, 

immunosuppression, glucose intolerance, insulin insensitivity, osteoporosis, impaired 

wound healing, depression and mood changes (Cain & Cidlowski, 2017). Although 

Cushing Syndrome differs from chronic stress, the symptoms of the hypercortisolemia 

share striking similarities with the maladaptive consequences of chronic stress. This 

points to the importance of the mechanisms that constrain HPA axis hyperactivity in 

promoting stress resilience. 

It is important to mention that under normal non-stress conditions, low-level, 

circadian cycles of glucocorticoids also play many physiological roles including food 

intake, learning, attention and cognition that are not associated with stressful experiences 

(Dallman et al., 1987; De Kloet, Vreugdenhil, Oitzl, & Joëls, 1998). For the purpose of 

this project, we narrow the discussion of HPA axis activity as it relates to stress.  
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1.3 Paraventricular Nucleus of the Hypothalamus: the apex 

of the HPA axis  

1.3.1 Inputs to the PVN 

Virtually any type of stress activates the HPA axis. In other words, a diverse 

range of sensory information, such as visual, auditory and olfactory signals associated 

with predator threats, somatosensory cues associated with pain, and humoral cues 

associated with inflammation, are all processed in various brain regions which ultimately 

recruit the same neuronal mechanism that lead to the activation of CRH neurons in the 

PVN. These various brain regions, which are implicated in the convergence of stress 

related signals, process and relay stress information through both direct and indirect 

projections to the PVN (Figure 1.2). Herman and colleagues (2003) proposed a model 

which organizes the neuro-circuitry underlying the activation of the HPA axis under two 

different circumstances: “real” stress and “perceived” stress. Generally, these different 

types of stressors recruit distinct circuits leading to the activation of the PVN.  
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Figure 1.2 
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Figure 1.2 Brain circuitry involved in the HPA axis response to stress. 

Various direct and indirect inputs to the paraventricular nucleus (PVN) of the 

hypothalamus are involved in regulating the HPA axis response to stress. 

Abbreviations: AHA, anterior hypothalamus; ARC, arcuate nucleus; BLA, basolateral 

amygdala; BNST, bed nucleus of the stria terminalis; CeA, central amygdala; DMH, 

dorsomedial hypothalamus; Hc, hippocampus; LC, locus coeruleus; MeA, medial 

amygdala; MnPO, medial preoptic nucleus; NTS, nucleus tractus solitarius; PBN, 

parabrachial nucleus; PVT, paraventricular thalamus; peri-fx, peri-fornical area; PFC, 

prefrontal cortex; Raphe, Raphe nuclei; VLM, ventrolateral medulla; vSub, ventral 

subiculum; ZI, zona incerta. 

Reprinted from “Stress-related synaptic plasticity in the hypothalamus,” by J. S. Bains, J. 

I. W. Cusulin, & W. Inoue. 2015.  Nature Reviews. 16(7): 377–388. Copyright (2015) 

Nature Reviews. Reprinted with permission. 
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Real stress is defined as physiological challenges such as inflammation, injury 

and pain, as well as deviation of cardiovascular, respiratory and metabolic functions from 

the normal homeostatic range. These real stressors trigger a rapid, reflexive activation of 

the brain areas that mostly send direct projections to the PVN. While determining the 

exact interplay between the different brain regions involved in regulating stress has yet to 

be fully understood, there is a general proposal of how these different stress regions 

interact. For example, it is believed that direct inputs to the PVN that are involved in 

reflexive stress integration come from the arcuate nucleus, dorsal medial hypothalamus, 

and medial preoptic nucleus, which all send both glutamatergic and GABAergic 

projections to the PVN; the anterior hypothalamus and peri-fornical area, which send 

primarily GABAergic projections; ventrolateral medulla and nucleus tractus solitarus, 

which send primarily monoamine projections; the zona incerta, which sends monoamine 

and glutamatergic projections; and the bed nucleus of the stria terminalis (BNST), which 

sends primarily GABAergic projections and serves as an important relay station 

connecting the limbic forebrain structures to the PVN (Cunningham, Bohn, & 

Sawchenko, 1990; Herman et al., 2003). 

 On the other hand, perceived stress is an anticipatory response to a potential 

threat. Perceived stress has greater involvement of the limbic and forebrain structures that 

do not send direct projection to the PVN, but rather through major stress integrating relay 

stations such as the BNST. Examples of limbic forebrain structures involved in perceived 

stress include the ventral subiculum of the hippocampus and the prefrontal cortex, which 

contain primarily glutamatergic projections to major stress integrating deep brain 

structures (e.g. amygdala, thalamus, locus coerulus and BNST); the central and medial 

amygdala which receive inputs from almost all limbic forebrain structures, and sends 

primarily GABAergic projections to stress integrating deep brain structures (e.g. BNST, 

parabrachial nucleus, locus coerulus and nucleus tractus solitarius); and the locus 

coeruleus, which sends monoamine projections to stress integrating nuclei such as the 

amygdala and thalamus (Bains, Cusulin, & Inoue, 2015; Herman et al., 2003a). These 

two “distinct” stress activation routes are not mutually exclusive; rather, some brain areas 

can mediate information from both pathways. For example, the nucleus tractus solitarius 

serves both a reflexive function for real homeostatic stressors by receiving inputs from 
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cardiovascular afferents and medullary neurons controlling autonomic functions, and also 

serves an anticipatory, perceived stress role by receiving afferent inputs from the limbic 

forebrain brain areas (Herman et al., 2003). 

 Although ideas about the involvement of different brain regions in different types 

of stress responses have been proposed (Bains, Cusulin, & Inoue, 2015; Herman et al., 

2003), a lot of work remains in establishing the relationship and roles of these various 

stress regions during stress integration. Despite the complexity of the stress circuitry, one 

commonality among all elicited stressors is that the stress signals ultimately converge on 

the neurons within the PVN. For this reason, neural plasticity that occurs in the PVN 

itself has the capacity to serve a major role in regulating the HPA axis. Therefore, my 

project will be investigating the neuroplasticity occurring specifically at these PVN 

neurons. 

1.3.2 Neuronal subtypes of the PVN 

Besides neuroendocrine neurons that release CRH to initiate the HPA axis, the 

PVN contains other types of neurons that are involved in vital physiological functions 

such as fluid homeostasis (Bourque, 2008), lactation (Walker, Toufexis, & Burlet, 2001), 

metabolism (Billington, Briggs, Harker, Grace, & Levine, 1994) and the regulation of the 

autonomic nervous system (Ulrich-Lai & Herman, 2009). The PVN neurons are highly 

heterogeneous: there are > 10 different populations of neurons that can be defined based 

on their neurochemical and neuroanatomical features (Biag et al., 2012; Simmons & 

Swanson, 2009). However, conventionally these populations are classified into three 

major categories based on their gross phenotype. These include 1) magnocellular 

neuroendocrine neurons, 2) parvocellular neuroendocrine neurons, and 3) parvocellular 

pre-autonomic neurons. The magnocellular neurons are characterized by their large cell 

body size (from which “magno” comes from), the expression of two neuropeptides AVP 

and oxytocin, and their axonal projection to the posterior pituitary. AVP is an important 

regulator for water retention in the body, and also functions synergistically with CRH to 

stimulate ACTH release (Abou-Samra, Harwood, Manganiello, Catt, & Aguilera, 1987; 

Lee, Tse, & Tse, 2015). Oxytocin mediates the milk ejection reflex during breastfeeding 

as well as cervical dilation before the birth and uterine contractions during labor (Gimpl 
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& Fahrenholz, 2001). The second population are the parvocellular neurosecretory 

neurons. Morphologically, they tend to be smaller than magnocellular neurons with a 

more complex dendritic architecture (Tasker & Dudek, 1991). Parvocellular neurons 

project to the median eminence and secrete various releasing hormones into the pituitary 

portal circulation for neuroendocrine regulations. These includes, CRH for the HPA axis 

as well as thyrotropin releasing hormone (TRH), somatostatin, and dopamine (Daftary, 

Boudaba, & Tasker, 2000).  The third subtype are the pre-autonomic descending 

parvocellular neurons that project to the brainstem and spinal cord and regulate the 

sympathetic nerve tone (Sawchenko & Swanson, 1982; Stern, 2001). These pre-

autonomic neurons contain three subtypes which are identified based on their localization 

in different sub-nuclei of the PVN and also based on their morphology (Stern, 2001). The 

plasticity of these neurons has been implicated in elevated sympathetic activity that is 

associated with heart failure (Nunn, Womack, Dart, & Barrett-Jolley, 2011). 

Since the parvocellular neuroendocrine neurons are responsible for the 

stimulation of ACTH release and consequently GC production through the actions of 

CRH, my project will specifically examine changes in CRH secreting PVN neuron: the 

neurons that form the apex of the HPA axis. 

1.3.3 The electrophysiological properties of PVN neuronal subtypes  

Earlier studies that conducted electrophysiological recording from histologically 

identified neurons in the PVN have identified unique electrophysiological properties (i.e. 

electrophysiological “fingerprints”) associated with different classes of PVN neurons (N. 

W. Hoffman, Tasker, & Dudek, 1991; J A Luther et al., 2002; Jason A. Luther & Tasker, 

2000; Stern, 2001; J. G. Tasker & Dudek, 1991).  I will give a brief overview of these 

electrophysiological “fingerprints” that have been the standard of the field (Hewitt & 

Bains, 2006; Hewitt, Wamsteeker, Kurz, & Bains, 2009; Hoyda & Ferguson, 2010; Inoue 

et al., 2013; Latchford, 2008; Levy & Tasker, 2012; Loewen & Ferguson, 2017; Price, 

Hoyda, Samson, & Ferguson, 2008; Senst, Baimoukhametova, Sterley, & Bains, 2016a; 

Taylor et al., 2005; Yuill, Hoyda, Ferri, Zhou, & Ferguson, 2007). 

Magnocellular neurons are characterized by a strong outward rectifying current 

upon sufficient depolarization due to a large transient inactivating potassium current (A-
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type current, IA; Figure 1.3, A; Luther & Tasker, 2000). On the other hand, parvocellular 

pre-autonomic neurons exhibit a large low-threshold Ca2+ current (T-type current, IT). 

Additionally this depolarizing IT current contributes to low-threshold spiking (LTS), 

which is characteristic of parvocellular pre-autonomic neurons (Figure 1.3,C; Stern, 

2001) and has been implicated in generating rhythmicity and oscillatory behaviour in the 

brain (Gutnick & Yarom, 1989). Lastly, parvocellular neurosecretory neurons are 

characterized by minimal IA current upon depolarization and consequently a lack of 

outward rectification. Additionally, they sometimes contain a small IT current upon 

depolarization. However, this current is not large enough to induce LTS as is defined 

above (Figure 1.3, B; Luther et al., 2002).  
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Figure 1.3 
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Figure 1.3 Electrophysiological Fingerprints in the Paraventricular Nucleus (PVN) 

of the Hypothalamus. 

Top, current clamp protocol used to investigate the electrophysiological fingerprints of 

PVN neurons. (A) Magnocellular neurons of the PVN contain a strong outward rectifying 

current (IA) upon depolarization. (B) Parvocellular neurosecretory neurons of the PVN 

lack a strong outward rectifying current and can contain minimal low threshold T-type 

Ca2+ conductance (IT). (C) Parvocellular pre-autonomic neurons show large low 

threshold T-type Ca2+ current (IT).  

Modified from “Voltage-gated currents distinguish parvocellular from magnocellular 

neurones in the rat hypothalamic paraventricular nucleus,” by J. A. Luther & J. G. 

Tasker. 2000.  The Journal of Physiology. 523(1): 193–209. Copyright (2000) The 

Journal of Physiology. Reprinted with permission. 
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These electrophysiological fingerprints have tremendously benefitted 

electrophysiological research in the PVN by providing an easy way (without the need for 

post-hoc histological analysis of filled cells) to identify specific subpopulation of neurons 

in slice during electrophysiology experiments. However, the limitation to this approach is 

that it cannot differentiate between neurochemical phenotypes of PVN neurons. For 

example, among parvocellular neuroendocrine neurons, there are neurons that express 

CRH, TRH, somatostatin, and dopamine that are involved in distinct physiological 

functions. Recently, reporter mouse lines for these neuropeptides have been generated. 

For my thesis research, which focuses on CRH neurons, three independent groups have 

validated a CRH neuron reporter line (Crh-IRES-Cre crossed with floxed tdTomato) 

which drives the expression of bright red fluorescent protein tdTomato in CRH neurons 

(Chen, Molet, Gunn, Ressler, & Baram, 2015; Itoi et al., 2014; Wamsteeker Cusulin, 

Füzesi, Watts, & Bains, 2013). The tdTomato labelled CRH neurons in this reporter 

mouse line follow an established rostral-caudal pattern of activation of CRH neurons 

(Biag et al., 2012). Also, when neurons in this mouse line were immunofluorescently 

labelled for CRH, they showed high co-localization with tdTomato in nearly all CRH-

expressing somata (96.0±0.3%; Wamsteeker Cusulin et al., 2013). To add, tdTomato 

neurons showed a high co-localization with fluorogold, a retrograde marker for 

neuroendocrine neurons (85.9±0.2%; Wamsteeker Cusulin et al., 2013). These findings 

support the specificity for tdTomato labelling within CRH neurons. With the 

development of this mouse line, this now allows me to identify CRH neurons in mice so 

that I can study the intrinsic plasticity changes that occur with stress. Stress can 

potentially change the electrophysiological properties of CRH neurons, therefore this 

study would be impossible without the development of the CRH reporter mouse that 

allows for CRH neuron identification without reliance on the electrophysiological 

fingerprint.  

1.4 Habituation  

As mentioned earlier, excessive activation of the HPA axis during chronic stress 

has been implicated in psychological and physical maladaptation to stress. Therefore, the 

mechanisms that limit the activity of the HPA axis during chronic stress are an important 
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aspect of adaptation, providing stress resiliency. A prominent example is the decrease of 

the HPA axis response to a mild stressor following repeated exposures to that same 

stressor, a phenomenon commonly known as habituation of the HPA axis. The term 

“habituation” refers to a wide range of behavioral adaptations during which an organism 

decreases its innate response to a stimulus after repeated presentations, as defined in a 

landmark review by Thompson & Spencer (1966). Recently, Grissom and Bhatnagar 

(2009) surveyed extensive literature in neuroendocrinology and summarized several 

characteristics of HPA axis habituation. Here, I will discuss these characteristics with 

relevance to the adaptive advantages of HPA axis habituation for stress resiliency.  

1. Habituation is specific for “perceived” but not for “real” stress. 

The HPA axis response habituates to repeated exposures to varieties of stressors 

including restraint, immobilization, social defeat, and loud noise (Grissom & Bhatnagar, 

2009). An important common feature of these stressors is that they are “perceived” or 

psychological stress and do not involve major physiological challenges. By contrast, 

“real” or physiological stressors generally do not cause habituation of the HPA axis. 

These example includes repeated administration of hypertonic saline (Kiss & Aguilera, 

1993) and foot shock (Kant, Bunnell, Mougey, Pennington, & Meyerhoff, 1983). From 

the perspective of the adaptive advantages of habituation, specificity for the category of 

stressors is reasonable: habituation is an active learning process that applies to non-

threatening stimuli to minimize the cost of mounting the HPA axis response; whereas, for 

the challenges that indeed require the actions of GCs, the HPA axis does not habituate. 

The mechanisms for stress selectivity remain unknown. However, one possibility is that it 

relates to the “severity” of stress. An earlier study showed that the speed of habituation is 

inversely correlated with the severity of stressor (Natelson et al., 1988). Another 

possibility is that the specificity of habituation arises from the difference in the 

underlying neural circuits for “real” and “perceived” stressors as described earlier. 

2. Habituation is context-dependent and stressor-specific 

While various types of stressors cause, when repeated, habituation of the HPA 

axis, the development of habituation to repeated stressor is specific to the stressor within 

a given series of repeated stress. Indeed, it has also been reported that animals that had 
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been habituated to restraint stress or cold stress respond to a novel stressor with a 

sensitized HPA axis activation (Bhatnagar & Dallman, 1998; Kiss & Aguilera, 1993; 

Melia, Ryabinin, Schroeder, Bloom, & Wilson, 1994). Moreover, a recent study reported 

that habituation to a repeated stressor also depends on the physical context of the 

previous stressor such that when habituated rats were stressed with the same stressor but 

novel context (i.e. a different odor in the room), they exhibited less habituation (Grissom 

& Bhatnagar, 2009). The stressor- and context-specificity of HPA axis habituation 

provides strong evidence that habituation is not due to a simple run down of the 

endocrine function or sensory inactivation, but rather an active process to attenuate the 

endocrine response to specific stressor.  

3. Habituation is reversible 

The stressor and context specificity also indicates that the habituation of the HPA 

axis is quickly reversible (by a new stressor). Along the same line, it has been predicted 

that HPA axis habituation spontaneously reverses once the repeated stress is terminated. 

However, to date few studies have addressed this issue. One available study, indeed, 

indicated the opposite and found that habituation to repeated restraint stress showed only 

a partial recovery after 3 weeks of no stress recovery period. In my thesis, I characterized 

the spontaneous recovery from habituation in a mouse model of repeated restraint. 

Habituation, as it has been described in the context of repeated restraint stress, 

describes an attenuation of a stress response that is learned to be harmless, while 

maintaining the capacity to respond optimally to other forms of potentially harmful 

stressors. In this respect, habituation of the stress response can serve as a mechanism to 

promote resilience within a dynamically changing environment.  

1.5. Rationale, Hypothesis, Aims 

1.5.1 Rationale: Habituation, as a mechanism for resilience 

A number of mechanisms occurring during stress exposure actively promote 

future resilience to stress. Habituation of the HPA axis is one mechanism by which the 

brain learns about stress and diminishes the future stress response (Aguilera, 1994; 

Grissom & Bhatnagar, 2009). While the stress-circuitry regulating activity of the HPA 



 

18 

axis is complex, one area that integrates all stress-relevant information and initiates the 

HPA axis is the PVN. However, the potential involvement of the plasticity of PVN-CRH 

neurons in the development of HPA axis habituation remains obscure. Habituation, by 

nature, is a diminished responsiveness of neurons to a given stimuli. Thus, one possibility 

is that HPA axis habituation involves a reduced responsiveness of the CRH neurons to 

excitatory inputs (i.e. a decrease in intrinsic excitability).  

1.5.2 Hypothesis 

The development of the HPA axis habituation to repeated stress involves a 

decrease in the intrinsic excitability of PVN-CRH neurons.  

1.5.3 Aims 

1. To establish a timeline looking at habituation to repeated restraint stress by 

examining neuronal excitability. 

2. To investigate the neurophysiological intrinsic excitability changes that occur 

with repeated restraint stress. 

3. To investigate the mechanisms related to these intrinsic excitability changes 

that occur with repeated stress. 
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Chapter 2 

2. Materials and Methods 

2.1 Animals 

All experimental procedures were approved by the University of Western Ontario 

Animal Use Subcommittee and University Council on Animal Care in accordance with 

the Canadian Council on Animal Care guidelines. Homozygous Crh-IRES-Cre (Stock 

No: 012704, the Jackson Laboratory) and Ai14 (Stock No: 007908, the Jackson 

Laboratory) mice were mated, and the resulting heterozygous crh-IRES-Cre;Ai14 

offspring were used as CRH-reporter mice as characterized in detail previously (Chen, 

Molet, Gunn, Ressler, & Baram, 2015; Itoi et al., 2014; Wamsteeker Cusulin et al., 

2013). The bright tdTomato expression allows for visual identification of CRH neurons 

in brain slices prepared for immunohistochemistry as well as ex vivo electrophysiology 

recordings (Figure 2.1). All animals used were male and between 8-12 weeks old at the 

time of sacrifice. They were group housed (2-4 mice per cage) in a standard shoebox 

mouse cage supplied with a mouse housing, paper nesting materials and wood chip 

bedding. The mice were housed on a 12/12 hour light/dark cycle (lights on 07:00) in a 

temperature-controlled (23 ± 1°C) room with free access to food and water. Cages were 

cleaned every 7 days. 
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Figure 2.1 

 

 

 

 

Figure 2.1 Visual Identification of Fluorescent PVN CRH neurons. 

Fluorescent PVN CRH neurons shown at 10x magnification (left). PVN CRH neurons 

shown under both differential interference contrast (DIC) conditions and fluorescent 

(FLU) conditions while patch-clamped (right).  
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2.2 Stress protocols 

For restraint stress, mice were placed in a restrainer constructed from a 50 mL 

conical tube with multiple ventilation holes. In order to restrict the forward/backward 

movement of mice, the inner space length of the restrainer was adjusted by moving a disc 

wall that forms the one end of the restrainer (Figure 2.2). For a single session of restraint 

stress, mice were restrained in an empty, clean breeding cage (cage base dimensions = 

45cm length x 35cm width x 20cm height) with up to 12 mice per cage for one hour 

(between 13:00-14:00 during the light phase). For repeated restraint stress, the one hour 

restraint stress session was repeated for 7 or 21 consecutive days. For stress recovery 

assessments, an additional group of mice were first subjected to 21 days of repeated 

restraint stress and then left undisturbed in their home cage for 7 days. The control mice 

were kept in their home cage in the animal housing facility.  
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Figure 2.2 
 

 

 

 

 

Figure 2.2 Repeated Restraint Stress Tube. 

Stress tube is constructed using a 50mL conical tube with drilled ventilation holes. Mice 

are placed with their tail out from the top of the conical tube and movement is restricted 

by using an adjustable disc wall constructed from a button and wooden stick. Mice were 

tied to a platform to prevent turning of the tube. 
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2.3 Immunohistochemistry 

Immunohistochemistry and subsequent image analysis was conducted by two 

undergraduate students Xue Fan Wang and Aoi Ichiyama in the Inoue Lab as a part of 

their honors thesis projects. Our goal was to determine the time course of PVN-CRH 

neuron habituation to repeated restraint stress. To this end, we examined c-fos expression 

in PVN-CRH neurons following one-hour restraint stress in mice that were naïve to the 

stressor, repeatedly exposed to the stressor for 7 and 21 consecutive days, and received 

no stress for 7 days after 21-day repeated stress. Accordingly, on the following day of the 

last repeated stress session, mice received an additional one-hour restraint stress as a 

probe stress (e.g. on 8th and 22nd day, and 8th day of stress recovery period), and were 

perfused for brain collection immediately after the end of the probe stress. The mice were 

deeply anaesthetized with sodium pentobarbital (50mg/kg, i.p.). A tail-pinch test was 

performed to ensure the depth of the anesthesia. (Blood samples were collected from the 

right ventricle using a 1 mL syringe containing 10μL of ethylenediaminetetraacetic acid 

(EDTA). The mice were transcardially perfused with ice-cold saline solution (0.9% 

NaCl) followed by 4% paraformaldehyde (PFA) dissolved in phosphate-buffered saline 

(PBS, pH 7.4). The brains were removed and fixed in 4% PFA at 4°C overnight. The 

fixed tissue was then transferred to PBS and supplemented with 0.03 % sodium azide and 

kept at 4°C for a short-term storage (up to 4 weeks). The brains were coronally sectioned 

into 50μm thick slices using a vibratome (VT1000s, Leica). Sections were stored in a 

cryoprotectant solution (30% glycerol, 30% ethylene glycol, in 20 mM PB) at -20°C until 

used for immunohistochemistry.  Immunohistochemistry was performed on free-floating 

sections. Sections were rinsed in PBS 3 times for 5 minutes each and then incubated in a 

blocking solution (3% normal donkey serum, 0.3% triton and 0.03% NaN3 in PBS) for 1 

hour to minimize non-specific binding. Slices were then incubated with anti-c-fos rabbit 

monoclonal antibody (Cell Signalling Technology, cat: 2250S, 1:1000 dilution in 

blocking solution) overnight at room temperature. After three washes in PBS on the next 

day, the sections were incubated with Alexa Fluor 647 donkey anti-rabbit IgG 

(ThermoFisher Scientific, cat: A-31573, 1:500 dilution in blocking solution).  Then after 

three washes with PBS, the sections were incubated in 4',6-diamidino-2-phenylindole 

(DAPI; Sigma, cat: 28718-90-3, 1:5000 in PBS) for 10 minutes.  After two final rinses 
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with PBS, the sections were mounted (VWR Micro Slides) and air-dried overnight. The 

slides were cover slipped using Fluoromount-G mounting medium (Electron Microscopy 

Sciences). 

2.4 Slice preparation  

For the electrophysiology experiments, our goal was to investigate lasting 

plasticity due to the stress paradigm. For this purpose, we sacrificed the mice the day 

after the last restraint stress (i.e., on day 22 without stressing the mouse on that day). To 

collect the brain tissue, the mice were deeply anesthetized with isoflurane and 

decapitated. Brains were then quickly removed from the skull and placed in icy slicing 

solution containing (in mM): 87 NaCl, 2.5 KCl, 25 NaHCO3, 0.5 CaCl2*2H2O, 7 

MgCl2*6H2O, 1.25 NaH2PO + H2O, 25 glucose and 75 sucrose (Osmolarity: 315-320 

mOsm), saturated with 95% O2/5% CO2. 250µm thick coronal sections containing the 

paraventricular nucleus of the hypothalamus (PVN) were obtained using a vibratome 

(VT1200 S, Leica). Sections were then placed in artificial cerebral spinal fluid (aCSF) 

containing (in mM): 126 NaCl, 2.5 KCl, 1.25 NaH2PO4+H2O, 26 NaHCO3, 10 glucose, 

2.5 CaCl2*H2O and 1.5 MgCl2*6H2O (OsM: 295-300), saturated in 95% O2/5% CO2, 

maintained at 36°C for 30 minutes, and thereafter kept at room temperature in the same 

aCSF for the rest of the day.  

2.5 Electrophysiology 

PVN slices were transferred to a recording chamber superfused with aCSF (flow 

rate 1-2 mL/min, 28-32°C). Slices were visualized using an upright microscope 

(BX51WI, Olympus) equipped with infrared differential interference contrast (DIC) and 

epifluorescence (FLU) optics as well as a digital camera (Rolera-XR, Q-Imaging). CRH 

neurons were identified by their expression of tdTomato. Patch clamp recording pipettes 

were pulled from borosilicate glass (Cat#: BF150-86-10, Sutter Instrument) using a 

Flaming/Brown Micropipette Puller (P-1000, Sutter Instrument) to a tip resistance of 3-5 

MΩ. Electrodes were filled with an internal solution containing (in mM): 108 K-

gluconate, 2 MgCl2, 8 Na-gluconate, 8 KCl, 1 K2- ethylene glycol-bis(β-aminoethyl 

ether)-N,N,N',N'-tetraacetic acid (EGTA), 4 K2-ATP, 0.3 Na3-GTP, and 10 HEPES 

(Osmolarity: 283-289 mOsm, and pH: 7.2-7.4). In some experiments, 1,2-bis(o-
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aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA, 10 mM, Molecular Probes) 

and EGTA (10 mM, Molecular Probes) were added to the internal solution (by 

substituting an equimolar amount of K-gluconate) in order to chelate free intracellular 

Ca2+. The calculated liquid junction potential was –12 mV, and was not corrected for 

when reporting membrane potentials.  

Whole-cell patch-clamp recordings were obtained using a Multiclamp 700B 

amplifier (Molecular Devices), digitized at 10 kHz (Digidata 1440, Molecular Devices) 

and recorded on a PC using pClamp 10 software (Molecular Devices). Whole-cell 

capacitance (Cm) was measured using Membrane Test protocol implemented in pClamp. 

Specifically, the electrode capacitance was compensated following gigaseal formation 

and before establishing the whole-cell configuration. Under whole-cell voltage clamp 

mode (holding potential at -68 mV to account for a -12 mV junction potential), a 

continuous square pulse voltage command (5mV, 10ms) was applied at 50 Hz. Signals 

were low-pass filtered at 10 kHz and averaged 100 times. Cm was derived from the total 

charge divided by ΔV(“Membrane Test Algorithms,” n.d.). Resting membrane potential 

was measured in I = 0 current clamp about 2 min after breaking the membrane to achieve 

a whole-cell configuration. To study neural excitability, a series of current injection steps 

were applied under current clamp (Figure 2.3, 2.4). Rheobase current was defined as the 

first current step eliciting one action potential. 
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Figure 2.3 

 

 

 

 

Figure 2.3 Current Clamp Protocol. 

Membrane was held at a holding potential of -68 mV. First a -20pA hyperpolarizing 

current was injected (300ms) to de-inactivate any contributing voltage-

activating/inactivating channels. From this hyperpolarized potential (~88mV), a series of 

current steps increasing in 10pA increments were applied for 700ms (10 sweeps). 
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Figure 2.4 

 

 

 

 

Figure 2.4 Current Clamp Protocol with no hyperpolarization. 

During experiments investigating the contribution of voltage-activating channels, 

membranes were held at both a holding potential of -80 mV and -50 mV (500ms). 

Subsequently, a series of current steps increasing in 10pA increments were applied for 

700ms (10 sweeps).  
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To investigate voltage-dependent changes in membrane conductance, a series of 

voltage steps were applied in voltage clamp mode (Figure 2.5). For these experiments, 

kynurenic acid (2mM, Sigma) and picrotoxin (100µM, Sigma) were added to block 

ionotropic glutamate and GABA receptors, respectively. Whole cell current was 

measured from 3 different areas within the 10-second voltage clamp protocol. Early 

current was measured between t = 0.003s - 0.0031s after the onset of voltage steps, mid 

current was measured between t = 0.116s - 0.117s after the onset of voltage steps and end 

current was measured at t = 9.996s - 9.997s seconds after the onset of voltage steps. All 

values were compared relative to baseline current values measured from t=0.0-0.1 

seconds. Both early and mid current were measured by subtracting the end current from 

the values obtained at their specific time point. The early current represents fast 

activating and potentially fast inactivating current. One example would be the group of 

Kv4, fast-activating and fast-inactivating voltage-dependent potassium channels. The mid 

current represents slower activating channels, such as those from the Ca2+-activated 

potassium channel (KCa) family. Finally end current reflects any residual non-

inactivating currents.  
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Figure 2.5 

 

 

 

 

Figure 2.5 Voltage Clamp Protocol. 

To investigate voltage-dependent changes in membrane conductance, a series of voltage 

steps increasing in 10mV increments were applied for 10 seconds. Whole cell current 

from 3 different areas from the 10-second voltage clamp protocol. Early current was 

measured between t = 0.003s - 0.0031s after the onset of voltage steps, mid current was 

measured between t = 0.116s - 0.117s after the onset of voltage steps and end current was 

measured at t = 9.996s - 9.997s after the onset of voltage steps. All values were compared 

relative to baseline current values measured from t = 0.0s – 0.1s. 
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In order to examine neural excitation in response to an excitatory neurotransmitter 

glutamate, L-glutamic acid (5 mM, Sigma) was pressure applied from a glass pipette 

whose tip was placed 20μm-50μm away from the soma of the recorded neurons using a 

Picospritzer II (10 psi, 500ms; Figure 2.6). For individual trials, the location of the pipette 

tip was adjusted so that a single application generated varying amplitudes (50pA and 

100pA) of peak current response. Thereafter, neural excitation was examined under 

current clamp (the membrane potential prior to glutamate application was set near -55 

mV).    

  



 

31 

Figure 2.6 
 

 

 

 

 

Figure 2.6 Glutamate Puff Protocol. 

During glutamate puff experiments, L-glutamic acid (5mM, Sigma) was pressure applied 

from a glass pipette whose tip was placed 20μm-50μm away from the soma of the 

recorded neurons. Membranes were held just below the action potential firing threshold 

at -55mV. Pressure was applied for 500ms at 10psi.  
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The following experiments were performed by an undergraduate in our lab, Eric 

Salter as a part of his honors thesis project. In order to examine postsynaptic spike 

responses to synaptically-driven excitation, the afferent synapses were stimulated at 

various frequencies (5Hz, 10Hz and 20Hz for 2s) using an extracellular electrode placed 

50μm-100μm away from the postsynaptic neurons. For individual trials, we first recorded 

excitatory postsynaptic current (EPSCs) in voltage clamp configuration. We then 

performed current clamp experiments to examine excitatory postsynaptic potential 

(EPSP)-spike coupling by delivering trains of synaptic stimulation (Figure 2.7). Prior to 

the synaptic stimulation, the membrane potential was held near -55mV, just below action 

potential threshold.  
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Figure 2.7 
 

 

 

 

 

Figure 2.7 Train Stimulation Protocol. 

During synaptic stimulation experiments, an extracellular electrode was placed amongst 

the afferent synapses, 50μm -100μm away from the postsynaptic neurons. Membrane 

were held just below the action potential firing threshold at -55mV. Afferent synapses 

were stimulated at various frequencies (5 Hz, 10 Hz and 20 Hz) for 2 seconds.   
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2.6 Data collection, analysis and statistics 

To examine the degree of c-fos expression in tdTomato-positive PVN CRH 

neurons, immunohistochemistry samples were analyzed as follows. Z stack images 

(0.685 µm thick optical slices, 20-25 slices) were obtained with a confocal microscope 

(CIAN Leica SP8, acquisition software LAS X) using a 20x objective (0.75 NA dry). 

Two to four images of the PVN were obtained per animal. All confocal images were 

blinded for treatment prior to image analysis. Each image was reconstructed in 3D and 

quantified using Imaris v7.6.4 (Bitplane). The region of interest (ROI) was positioned 

based on positive signals of tdTomato in order to best capture the CRH neurons within 

the PVN (area of ROI set at x = 283.8 µm, y = 227.1 µm, z = 13.1 µm – 15.0 µm). To 

estimate the volume positive for tdTomato and c-fos expression, automatic thresholding 

was applied and a surface was created for each (Figure 2.8). The threshold values were 

then used to create a co-localization channel dual-positive for tdTomato and c-fos. A 

third surface was then created for the co-localization channel, determining the volume of 

the co-localization (Figure 2.8). The degree of c-fos expression by CRH neurons was 

derived from the co-localization volume divided by tdTomato volume for individual 

images. 
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Figure 2.8 
 

 

 

 

 

Figure 2.8 Image analysis for c-fos quantification. 

Surfaces positive for tdTomato (red), c-Fos (green), and both (colocalization, white) were 

created in Imaris to quantify the volume of each.  
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To estimate cell surface size of recorded cells, Alexa-488 hydrazide (0.2 mM, 

Molecular Probes) and biocytin (0.5 % w/v, Life Technologies Inc.) were included in the 

internal solution. These dye-filled slices were fixated in 4% PFA at 4°C for 24 hours or 

longer. The filled cells were then visualized by incubating slices with streptavidin-A488 

(1:500, Molecular Probes) diluted in PBS containing 2% TritonX-100.  Dye-filled cells 

were imaged on a confocal microscope (Leica TCS SP8) using a 63x (1.3 NA oil-

immersion) objective lens with optical section thickness at 0.3μm. The confocal Z-stack 

images were 3D reconstructed using Imaris software (Imaris v7.6.4, Bitplane) and surface 

area was calculated by applying automatic thresholds. Regions of interest (x = 40.7 µm, y 

= 40.7 µm, z = 9.4 µm – 26.6 µm) were applied to encompass the soma and proximal 

dendrites (Figure 2.9).  
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Figure 2.9 

 

 

 

 

Figure 2.9 Image analysis for biocytin cell surface area quantification. 

From left to right: regions of interest (ROI, x = 40.7 µm, y = 40.7 µm, z = 9.4 µm – 26.6 

µm) were used to quantify surfaces positive for biocytin (Alexa 488); surface area 

quantified within ROI is identified with a blue surface colour. 
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For offline analysis of electrophysiological data, Clampfit (Molecular Devices) 

and MATLAB (The MathWorks Inc.) were used. The delay to first spike and frequency 

of firing was manually measured by counting action potential spikes and measuring the 

delay to spike using the cursors built into the Clampfit software. The spike threshold and 

peak amplitude were calculated using MATLAB. Spike threshold was calculated as the 

first millivolt value where the slope was greater than 5mV/ms for at least four 

consecutive points derived from the 10kHz digitized data. Peak amplitude was calculated 

as the difference between the spike threshold value and the peak millivolt value for that 

particular action potential.  

Electrophysiological recordings were obtained from at least 3 animals in each 

comparison group. The number of cells and mice were denoted by n and N, respectively. 

For all data sets, the mean and the standard error of mean (SEM) was calculated using the 

number of cells (n) as the population. To perform a two-group comparison, an unpaired t-

test was used during which a Gaussian distribution was assumed. To compare multiple 

groups, a one-way ANOVA was performed, with Dunnett’s and Tukey’s multiple 

comparisons post-hoc tests. For multiple group comparisons with an additional factor (ex. 

4AP, holding potential, stimulation frequency, peak evoked current, Ca2+ chelator and 

current injection), a two-way ANOVA was used with Tukey’s multiple comparisons 

post-hoc test. Finally, to examine linear correlations, a linear regression analysis was 

conducted.  For all statistical analyses, GraphPad Prism 7 software (Graphpad Software 

Inc., CA, USA) was used and p < 0.05 was considered statistically significant.  

  



 

39 

Chapter 3 

3. Results  

3.1 PVN-CRH neurons habituate to repeated restraint stress 

in a reversible manner.  

The activation of the HPA axis during stress relies on the activity of PVN-CRH 

neurons that convert neuronal signaling into the release of neuroendocrine hormones. We 

hypothesized that the habituation of the HPA axis to repeated stress exposure involves a 

decrease in the responsiveness of PVN-CRH neurons to that same stressor. To 

characterize the ‘habituation’ of PVN-CRH neurons to repeated restraint stress, we first 

conducted a comprehensive time course study over weeks of repeated restraint stress. To 

measure PVN-CRH neuron activity in vivo, we used immunohistochemistry for an 

immediate early gene c-fos, whose up-regulation represents the recent history of neuronal 

activity. For the identification of CRH neurons, we used a CRH reporter mouse line that 

expresses bright red fluorescent protein tdTomato in CRH neurons: the specificity of this 

mouse line to label PVN-CRH neurons has been validated by multiple laboratories 

(Chen, Molet, Gunn, Ressler, & Baram, 2015; Itoi et al., 2014; Wamsteeker Cusulin, 

Füzesi, Watts, & Bains, 2013). We quantified the co-localization of c-fos and tdTomato 

following 1 h of restraint stress in four groups of mice that previously received (or did not 

receive) the same stressor. These groups are outlined in Figure 3.1 and include: a single 1 

h restraint stress (1 day), daily 1 h restraint stress for seven days (7 days) plus 1 h 

restraint stress on 8th day, 21 days of repeated restraint stress (21 days) plus 1 h restraint 

on 22nd day, and 21 days of repeated restraint stress followed by a one-week no stress 

period plus 1 h restraint stress on the 29th day (recovery). An additional group of mice 

that received no stress was included as a control. We found that in the control group, with 

no prior exposure to a stressor, c-fos protein expression in CRH neurons was almost 

undetectable (values represent % c-fos in tdTomato-positive volume ± S.E.M: 0.93 ± 

0.58%, N = 3; Figure 3.1, A). After exposure to a single stress, c-fos was robustly up-

regulated in CRH neurons (37.86 ± 2.90%, N = 8, p < 0.0001, 1 day vs. Control, Tukey’s 

post-hoc test; Figure 3.1, B). After seven days of repeated stress, c-fos induction in CRH 
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neurons still remains elevated in response to the stressor, showing no signs of habituation 

(35.76 ± 2.90%, N = 6; Figure 3.1, C). By contrast, after 21 days of repeated restraint 

stress, c-fos induction in CRH neurons was significantly attenuated (19.67 ± 3.80%, N = 

7, p = 0.002, 1 day vs. 21 days), demonstrating a neuronal habituation to the repeated 

stressor (Figure 3.1, D). This habituation was reversible, since allowing these mice to 

recover for one week significantly increased c-fos upregulation in CRH neurons to a level 

similar to 1 day group (37.10 ± 3.30%, N = 6, p = 1.0, Recovery vs. 1 day; Figure 3.1, E). 

These results provided a proof of principle that our repeated restraint stress paradigm in 

mice effectively induces habituation at the level of PVN-CRH neurons. Importantly, 

these results also suggested that the PVN-CRH neuron habituation in mice was a slow 

process, not evident after 7 days of repeated stress, but rather required a more protracted 

period of repeated stress (21 days). This provided a timeline during which we could 

compare neurophysiological changes in response to habituation.  
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Figure 3.1 
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Figure 3.1 CRH-PVN neurons show habituation after 21 days of repeated restraint 

stress and begin to recover after 1 week without stress 

CRH neurons in the PVN habituate to repeated stress in a reversible manner. (A-E) 

Sample images of tdTomato (reporter for CRH, red), c-fos immunoreactivity (green) and 

their co-localization (reconstructed in 3D surface, white). (F) Summary of c-fos co-

localization with tdTomato. Note that values represent % c-fos in tdTomato-positive 

volume. 3-4 images were obtained and averaged for individual animals. One-way 

ANOVA between groups, p < 0.0001. (A) Control (no exposure to a stressor, N=3). (B) 1 

day (immediately after a single 1 h stress, N=8). p < 0.0001, Tukey’s post-hoc test vs 

Control. (C) 7 day (7 day prior repeated stress followed by additional 1 h stress on 8th 

day, N=6). p < 0.0001, Tukey’s post-hoc test vs Control.  (D) 21 days (21 day prior 

repeated stress followed by additional 1 h stress on 22nd day, N=7). p = 0.02, Tukey’s 

post-hoc test vs Control. (E) Recovery (7 day no-stress recovery period after 21 day 

repeated stress, followed by an additional 1 h stress on 29th day, N = 6). p < 0.0001, 

Tukey’s post-hoc test vs Control; p = 1.00, Tukey’s post-hoc test vs. 1 day stress; p = 

0.006, Tukey’s post-hoc test vs 21 day stress. N represents the number of mice. 
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3.2 Repeated restraint stress decreases the responsiveness 

of PVN-CRH neurons to excitatory stimuli 

The c-fos time course study indicated that 21 day repeated restraint stress 

decreased the responsiveness of PVN-CRH neurons to that same stressor administered on 

the next (22nd) day. This suggested that the repeated stress caused a lasting form of 

plasticity in the mechanisms that drive the activities of PVN-CRH neurons. To study the 

neurophysiological mechanisms underlying this, we conducted patch clamp 

electrophysiology in acute brain slices prepared on the 22nd day of repeated restraint 

stress without subjecting the animal to the stressor on the day of sacrifice. Slices from 

stress naïve mice were prepared as a control. Glutamate synapses are the major afferent 

excitatory inputs to PVN-CRH neurons (van den Pol, Wuarin, & Dudek, 1990) and 

mediate the HPA axis response to restraint stress (Ziegler & Herman, 2000). Thus, we 

investigated the responsiveness of PVN-CRH neurons to glutamatergic synaptic 

excitation by examining excitatory postsynaptic potential (EPSP)-spike coupling. We 

obtained whole cell patch clamp recordings from tdTomato-expressing PVN-CRH 

neurons, and stimulated their afferent inputs using an extracellular glass electrode placed 

on the neuropil ventromedial to the recorded neurons as described elsewhere (Kuzmiski, 

Marty, Baimoukhametova, & Bains, 2010; Marty, Kuzmiski, Baimoukhametova, & 

Bains, 2011). These recordings were obtained in the presence a GABAA receptor 

antagonist picrotoxin (100μM) in order to pharmacologically isolate fast glutamatergic 

synaptic transmission. Figure 3.2, D shows that in slices from control (stress naïve) mice, 

afferent stimulations at various frequencies (5, 10, 20 Hz) elicited a frequency-dependent 

postsynaptic firing. 21 day repeated restraint stress significantly reduced this EPSP-spike 

coupling across all stimulation frequencies (Two-way ANOVA, Stimulation frequency: p 

< 0.0001, Control vs. Stress: p = 0.006, Interaction: p = 0.003; Figure 3.2, D). In the same 

set of neurons, we also recorded initial evoked excitatory postsynaptic currents (eEPSCs) 

under the voltage-clamp mode and found no difference in their average amplitude 

between control and 21 day stress group (Two-way ANOVA, Stimulation Frequency: p = 

0.16, Control vs. Stress: p = 1.00, Interaction: p = 0.36; Figure 3.2, B). Similarly, the 

dynamics of short-term synaptic plasticity of eEPSCs, as measured using paired-pulse-
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ratio (PPR) during a train of varying frequencies (5, 10, 20 Hz) was not different between 

the two groups (Two-way ANOVA, Stimulation Frequency: p = 0.82, Control vs. Stress: 

p = 0.68, Interaction: p = 0.19; Figure 3.2, C). These results suggested that 21 day 

repeated stress did not significantly change the properties of excitatory synaptic 

transmission at the stimulation paradigms we used, and that the decrease of EPSP-spike 

coupling was primarily due to the changes in postsynaptic excitability.    
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Figure 3.2.1 
 

 

 

 

 

 

 

 

 



 

46 

Figure 3.2.1 Repeated restraint stress decreases EPSP-spike coupling in response to 

synaptic stimulations at different frequencies. 

Neural excitation in response to synaptic stimulation is reduced following 21 day stress 

despite no differences in initial evoked excitatory post-synaptic current (eEPSC). (A) 

Sample eEPSCs (top) and spike response to various frequency of synaptic stimulation. 

(B) Initial eEPSC amplitude does not differ between control and stress at each 

stimulation frequency (Two-way ANOVA, Stimulation Frequency: p = 0.16, Control vs. 

Stress: p = 1.00, Interaction: p = 0.36). (C) Paired pulse ratio also does not differ between 

control and stress at each stimulation frequency (Two-way ANOVA, Stimulation 

Frequency: p = 0.82, Control vs. Stress: p = 0.68, Interaction: p = 0.19). (D) Summary 

graph of spike number at various stimulation frequencies. (Two-way ANOVA, 

Stimulation Frequency: p < 0.0001, Control vs. Stress: p = 0.006, Interaction: p = 0.003). 

n and N represent the number of cells and mice, respectively. 
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In line with this, we also found that the firing response of PVN-CRH neurons to a 

direct activation of the postsynaptic glutamate receptor by L-glutamic acid was 

significantly reduced after 21 days of repeated restraint stress. In this experiment, we first 

adjusted the location of the glass pipette for focal pressure applications of L-glutamic 

acid (10 psi for 500ms) relative to the postsynaptic cells so that a single pressure 

application generated postsynaptic current response with its peak amplitude near -50pA 

and -100pA under voltage clamp (Figure 3.2.2, top-right subset of each trace). To ensure 

equal charge transfer evoked by the excitatory glutamate puff, we calculated the amount 

of charge elicited for the duration of the evoked current and found no differences between 

control and stress (Two-way ANOVA, Peak current: p < 0.0001, Control vs. Stress: p = 

0.93, Interaction: p = 0.60; Figure 3.2.2, B). Thereafter, the postsynaptic firing responses 

were measured in current clamp. We found that the number of action potentials elicited 

during the first second of evoked current was significantly less in 21 day repeated stress 

groups compared to control (Two-way ANOVA, Control vs. Stress: p = 0.0002; Figure 

3.2.2, A and C). These results suggest that 21 days of repeated restraint stress decreases 

the responsiveness of PVN-CRH neurons to an excitatory neurotransmitter, glutamate.  
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Figure 3.2.2 
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Figure 3.2.2 Repeated restraint decreases EPSP-spike coupling in response to a 

glutamate puff.  

Neural excitation in response to focal application of glutamate is reduced following 21 

day stress. (A) Focal glutamate application was adjusted to generate 50pA and 100pA 

inward current in voltage clamp. In the same cell, current clamp response was measured. 

(B) The amount of charge transferred during a focal application of glutamate was the 

same between stress and control at both 50pA and 100pA inward current. (Two-way 

ANOVA, Peak current: p < 0.0001, Control vs. Stress: p = 0.93, Interaction: p = 0.60). 

(C) Summary of cell firing in response to two different strengths of glutamate excitation. 

(Two-way ANOVA, Peak current: p < 0.0001, Control vs. Stress: p = 0.0002, Interaction: 

p = 0.62). n and N represent the number of cells and mice, respectively. 
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3.3 Repeated restraint stress decreases the neurons 

capacity to repetitively fire 

To investigate stress-induced changes in the intrinsic excitability of PVN-CRH 

neurons, we examined their firing response to direct current injections in current clamp. 

The baseline membrane potential of individual cells was adjusted around – 68 mV by 

injecting constant current ranging between −10pA to −30pA. Thereafter the cells were 

artificially depolarized to trigger action potential firing with 10pA incremental steps of 

current injection (700ms) following a −20pA hyperpolarizing pre-pulse (300ms)(Figure 

3.3 A, middle; sample traces from control (left) and stress (right)). Figure 3.3 B shows 

the average frequency of firing across a range of current injection steps (firing frequency-

current relationship). We found that 21 day repeated restraint stress decreased the 

frequency of repetitive firing across the current injection steps compared to control 

(Figure 3.3, B; p < 0.0001, Dunnett’s multiple comparisons test). This indicated that 21 

day repeated stress robustly decreased the intrinsic excitability of PVN-CRH neurons. If 

this decrease in the intrinsic excitability of PVN-CRH contributes to the in vivo changes 

in the PVN-CRH neuron responsiveness to stress (as measured by c-fos induction), we 

predicted that the time course of the changes in the intrinsic excitability should follow 

that of c-fos response to restraint stress. Indeed, we found that neither a single acute 

stress (1 day) nor 7 day repeated stress was sufficient to change the firing frequency-

current relationship (Figure 3.3, B and C; p > 0.05 for both 1 day and 7 day stress, 

Tukey’s multiple comparisons test). Furthermore, the decrease in the firing frequency by 

21 day repeated stress was reversible following 7 days of no stress period (recovery), as 

was the case for c-fos response (Figure 3.3, B and C, p < 0.01 vs 21 day, p > 0.05 vs 

control, Tukey’s multiple comparisons test). These results suggested that the decrease in 

intrinsic excitability manifested by the decrease in firing frequency develops slowly after 

weeks of repetitive stress. 
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Figure 3.3 
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Figure 3.3. Repeated restraint stress decreases firing frequency of PVN-CRH 

neurons.  

(A) Top, sample traces recorded from PVN-CRH neurons in slices from control, 1 day 

stressed, 7 day repeatedly stressed, 21 day repeatedly stressed, and 7 day no stress 

(recovery) after 21 day stress (left to right) mice. Current injection protocol (10pA 

increment from ‒20pA) is shown in the middle. Bottom, firing frequency of individual 

cells recorded in control (n = 66, N = 15), 1 day stressed (n = 28, N = 5), 7 day repeatedly 

stressed (n = 23, N = 3), 21 day repeatedly stressed (n = 66, N = 13), and recovery (n = 

29, N = 4) mice. (B) Average graphs of firing frequency recorded across the time course 

of repeated restraint stress. Control, 1 day stressed, 7 day stressed, 21 day stressed, and 7 

day no stress (recovery) after 21 day stress. (Two-way ANOVA, Current Injection: p < 

0.0001; Control vs. Stress Groups: p < 0.0001; Interaction: p < 0.0001) (C) Top, 

experimental timeline. Bottom, summary bar graph of frequency at 70pA current 

injection derived from data shown in C. n and N represent the number of cells and mice, 

respectively. (One-way ANOVA, p < 0.0001; Tukey’s post-hoc test 21 day stress vs 

control; *** p < 0.001). 
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3.4 Delay to spike increases after stress, but develops 

independently from the frequency of repetitive firing 

Following stress, PVN-CRH neurons increase the delay before the first spike 

(firing latency) via voltage-dependent rapidly activating and rapidly inactivating K+ 

currents (IA; Senst, Baimoukhametova, Sterley, & Bains, 2016b). This raised a possibility 

that stress-induced delay in firing latency contributed to the observed decrease in the 

firing frequency. To address this, we analyzed firing latency in the same set of data we 

analyzed for firing frequency in Figure 3.3. Importantly, the current clamp protocol for 

the firing frequency measurement favors the IA-mediated firing latency as it included a 

hyperpolarizing pre-pulse (−20pA for 300ms) that removes the inactivation of IA (Cai, Li, 

& Sesti, 2007; Yellen, 2002), followed by steps of depolarization to elicit firing (+10pA 

steps for 700ms; Figure 3.4 A, middle; sample traces from control (left) and stress 

(right)). We found that 21 day repeated stress increased firing latency compared to 

control across all current injection steps (Figure 3.4 A,C, and D). However, the stress 

time course study revealed that, in contrast to firing frequency changes, a single acute 

stress (1 day) was sufficient to develop the delay as effectively as repeated stress for 7 

and 21 days (Tukey’s post-hoc test stress vs control: 1 day stress: p = 0.01, 7 day stress: p 

= 0.04, 21 day stress: p = 0.003; Figure 3.4, C and D). Additionally, the increase in spike 

latency was reversible following a 7 day no stress recovery period (Tukey’s post-hoc test 

recovery vs control: p = 1.00). These results are similar to the firing latency increase 

mediated by IA that rapidly develops following acute stressors (Senst et al., 2016b). 

Indeed, consistent with the predicted roles of IA, a sub-threshold depolarization of the cell 

membrane (~ ‒50 mV), which inactivates IA (Cai et al., 2007; Yellen, 2002), prior to the 

depolarizing steps significantly shortened the firing latency as compared to a 

hyperpolarized membrane potential (~ ‒80 mV) in both control and 21 day repeatedly 

stressed cells (Two-way ANOVA, Holding potential: p < 0.0001; Control vs. Stress 

Groups: p = 0.01; Interaction: p = 0.49; Figure 3.3, B, lower left corner). Likewise, firing 

latency was sensitive to 4-aminopyridine (4-AP, 5mM) that blocks IA at 1mM 

concentrations (Alexander et al., 2015), shortening the delay in both control and stressed 

cells to a similar level (Two-way ANOVA, 4-AP: p = 0.02; Control vs. Stress Groups: p 
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= 0.28; Interaction: p = 0.004; Figure 3.3, B, lower right corner). The same 4-AP 

treatment, however, did not normalize the stress-induced difference in firing frequency, 

further negating the roles of IA in the decrease of firing frequency. Rather, 4-AP 

decreased firing frequency in both control and 21 day repeated stress groups (Two-way 

ANOVA, 4AP: p < 0.0001, Control vs. Stress: p = 0.04, Interaction: p = 0.36; Figure 3.4, 

E). These results indicated that different mechanisms underlie the stress-induced increase 

in firing latency and decrease in firing frequency. In line with this idea, we found no 

correlation between the first spike firing latency and firing frequency in any groups 

(Figure 3.4, F, R2 < 0.01 and p > 0.05 for all groups).  

Furthermore, habituation of PVN-CRH neurons to repeated restraint stress 

required weeks to develop, as observed through c-fos induction. With regards to this 

finding, the firing frequency decrease showed temporal correlation to habituation and the 

firing latency did not, suggesting that the firing frequency likely plays a major role in 

habituation. In the following section of the paper, we address the mechanisms underlying 

the stress-induced decrease in firing frequency as a neurophysiological correlate for 

PVN-CRH neurons’ habituation to repeated stress.   
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Figure 3.4  
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Figure 3.4 Stress-induced increase in firing latency does not correlate with spike 

frequency change.  

Data set shown in Figure 3.3 is analyzed for firing latency. (A) Top, sample traces 

depicting firing latency recorded from PVN-CRH neurons in slices from control (left) 

and 21 day repeatedly stressed (right) mice. Current injection protocol (10pA increment 

from -20pA) is shown in the middle. Bottom, graphs for firing latency of individual cells. 

Control (n = 66, N =15) and 21 day repeatedly stressed (n = 66, N = 13) mice. (B) Top, 

sample traces for firing latency before and after bath application of 4AP (5 mM). Bottom 

left, summary plots for firing latency before and after 4AP application. Control (n = 11, 

N = 3) and 21 day stressed (n = 16, N = 7) mice. (Two-way ANOVA, 4AP: p = 0.02, 

Control vs. Stress: p = 0.28, Interaction: p = 0.004) Bottom right, summary plots for 

firing latency from the holding potential with (−80 mV) and without (−50 mV) 

hyperpolarization. Control (n = 23, N = 5) and 21 day stressed (n = 27, N = 6) mice. 

(Two-way ANOVA, Holding potential: p < 0.0001, Stress: p = 0.014, Interaction: p = 

0.49). (C) Average graphs for firing latency. Control, 1 day stressed (n = 28, N = 5), 7 

day stressed (n = 23, N = 3), 21 day stressed and 7 day no stress (recovery) after 21 day 

stress (n = 29, N = 4). (D) Top, experimental timeline. Bottom, summary bar graph of 

latency at 10pA current injection extracted from C. (One-way ANOVA, p < 0.0001; * p < 

0.05, ** p < 0.001 Tukey’s post-hoc test vs Control). (E) Frequency decreases in both 

stress and control cells after application of 4AP (Two-way ANOVA, 4AP: p < 0.0001, 

Control vs. Stress: p = 0.04, Interaction: p = 0.36). (F) Plots of spike delay against 

frequency. Spike delay does not correlate with repetitive firing frequency (control: R2 < 

0.001, p = 0.97; 1 day: R2 < 0.001, p = 0.99; 7 days: R2 = 0.003, p = 0.79; stress R2 = 

0.001, p = 0.78; recovery: R2= 0.007, p = 0.68). n and N represent the number of cells 

and mice, respectively. 
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3.5 The decrease in the frequency of repetitive firing does 

not depend on intracellular calcium. 

 A common mechanism to increase the frequency of repetitive firing is the 

activation of Ca2+ dependent potassium channels (Capel & Terrar, 2015; Peron & 

Gabbiani, 2009; Smith, Nelson, & Lac, 2002). As the first step to tease out the 

mechanism for the decrease in firing frequency, we tested the contribution of intracellular 

Ca2+. To do this we included BAPTA (10 mM), a fast-acting Ca2+ chelator and EGTA (10 

mM), a slow-acting Ca2+ chelator in the internal solution of the patch pipette. Including 

BAPTA and EGTA in the patch pipette did not affect the spike frequency in both control 

and stress conditions (Two-way ANOVA, Ca2+ chelator: p = 0.20, Control vs. Stress: p < 

0.0001, Interaction: p = 0.36; Figure 3.6). These results unequivocally excluded the roles 

of Ca2+ in the stress-induced decrease of firing frequency.        
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Figure 3.5 
 

 

 

 

 

Figure 3.5 The decrease in firing frequency does not depend on intracellular Ca2+.  

(A) Summary graphs for the recordings using intracellular solution containing high 

concentration of BAPTA (10 mM) and EGTA (10 mM) obtained from PVN-CRH 

neurons in slices from control and 21 day stressed mice. The recordings using a regular 

intracellular solution (containing 0.1 mM EGTA) are adopted from Figure 3.3. Top right 

panes show a summary plot at 70pA current injection. (Two-way ANOVA, Ca2+ chelator: 

p = 0.20, Stress: p < 0.0001, Interaction: p = 0.93). n and N represent the number of cells 

and mice, respectively. 
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3.6 Repeated restraint stress decreases sub-threshold 

whole-cell membrane resistance.  

The traces of current clamp data we analyzed for spike frequency and first spike 

latency showed that the membrane voltage changes with current steps below firing 

threshold were smaller in 21 day repeated stress than control, raising the possibility that 

21 day repeated stress decreased sub-threshold membrane resistance (Figure 3.6.1, A). To 

test this, we plotted the voltage-current relationship for the current clamp data analyzed 

for spike frequency and first spike latency (Figure 3.6.1, B) and calculated the sub-

threshold membrane resistance from the slope between 0pA and 10pA current injections 

(Figure 3.6.1, C). We found that 21 day repeated stress significantly decreased the 

subthreshold membrane resistance (Unpaired t-test, p < 0.0001). In line with this 

observation, rheobase (the current injection required to trigger the very first spike) was 

significantly higher in 21 day repeated stress than control (Unpaired t-test, p < 0.0001; 

Figure 3.6.2, C). On the other hand, the action potential amplitude and spike threshold 

were not significantly different between control and 21 day repeated stress (Unpaired t-

test, p = 0.31 and p = 0.22, respectively; Figure 3.6.2, A and B), indicating that the 

increase in rheobase is primarily attributable to the decrease in sub-threshold membrane 

resistance. We also found a significant decrease in input resistance in stressed cells 

(Unpaired t-test, p < 0.0001) corresponding to the decrease in membrane resistance 

(Figure 3.6.2, F). Additionally we found that action potential firing at resting membrane 

potential (I = 0) was significantly less for stressed cells (Unpaired t-test, p < 0.0001), 

despite no major significant difference in resting membrane potential (Unpaired t-test, p 

= 0.09; Figure 3.6.2, E and D, respectively). These findings point to a mechanism that 

can decrease cell excitability without altering many basic action potential ion channel 

parameters (e.g. sodium channels and delayed-rectifier potassium channels). 
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Figure 3.6.1 

 

 

 

 

 

Figure 3.6.1 Repeated restraint stress decreases sub-threshold whole-cell membrane 

resistance.  

Membrane response to subthreshold current injections are analyzed from the data set 

shown in Figure 3.2. (A) Sample traces. (B) A summary of the current-voltage 

relationship. (C) A summary plot of membrane resistance calculated at +10pA current 

injection when depolarized from 0pA. (C) Control cells show a higher membrane 

resistance compared to stress. Control (n = 66, N = 15) and 21 day stressed (n = 66, N = 

13); Unpaired t-test, p < 0.0001. 

  



 

61 

Figure 3.6.2 
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Figure 3.6.2 Repeated restraint stress increases rheobase current without changing 

firing threshold.  

Various different parameters were measured under control and stress conditions. (A) 

Peak amplitude: control (n = 27, N = 6) and 21 day stressed (n = 28, N = 6) mice. 

(Unpaired t-test, p = 0.31). (B) Spike threshold: control (n = 27, N = 6) and 21 day 

stressed (n = 28, N = 4; unpaired t-test, p = 0.22). (C) Rheobase: control (n = 66, N = 15) 

and 21 day stressed (n = 66, N = 13) mice. (Unpaired t-test, p < 0.0001). (D) Vm rest: 

control (n = 66, N = 15) and 21 day stressed (n = 66, N = 13) mice. (Unpaired t-test, p = 

0.09). (E) Firing at I = 0: control (n = 66, N = 15) and 21 day stressed (n = 66, N = 13) 

mice. (Unpaired t-test, p < 0.0001). (F) Input Resistance: control (n = 66, N = 15) and 21 

day stressed (n = 66, N = 13) mice. (Unpaired t-test, p < 0.0001). n and N represent the 

number of cells and mice, respectively. 
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3.7 Voltage-dependent, non-inactivating conductance 

correlates with firing frequency. 

To further examine stress-induced changes in membrane properties underlying 

firing frequency changes, subsets of cells in both stress naïve (control) and 21 day 

repeated stress groups recorded with current clamp were subsequently studied with 

voltage-clamp. In this subset of cells, we confirmed that the firing frequency was 

significantly lower in 21 day repeated stress than control groups (Unpaired t-test, p < 

0.0001).  We then analyzed the voltage clamp recordings and examined macroscopic 

outward currents elicited by depolarizing steps from a holding potential of −80 mV, and 

analyzed three different phases of the currents that we refer to here as 1) rapidly 

activating and rapidly inactivating current (Figure 3.7, B), 2) transient current (Figure 

3.7, E) and 3) sustained, non-inactivating current (Figure 3.7, H). The rapidly activating 

and rapidly inactivating current showed a low activation threshold (~ −50 mV, Figure 

3.7, B and C), likely representing the IA underlying the first spike latency (Cai et al., 

2007; Yellen, 2002) . In line with the stress-induced increase in the first spike latency, 21 

day repeated stress groups showed a significant increase in this current. On the other 

hand, the transient current that was activated at voltages higher than −20 mV was not 

different between control and 21 day repeated stress groups (Figure 3.7, E and F). The 

most prominent stress-induced change was observed in the sustained current (Figure 3.7, 

H). Within a low voltage range (−80 to −40 mV), the sustained current was small but 

active, showing a linear I-V relationship. Consistent with the current-clamp data, 21 day 

repeated stress increased this sub-threshold current. Furthermore, at membrane potentials 

more positive than −30 mV, an additional current was activated, and again 21 day 

repeated stress increased this current. The Conductance-Current (G-I) plot revealed a 

prominent stress-induced increase in membrane conductance mediating the sustained 

current at the membrane voltage higher than −20 mV (Figure 3.7, C, F and I).  

With relevance to the stress-induced spike frequency change, we found a 

significant correlation between the sustained current conductance (calculated from the 

voltage steps between −20 and −10 mV) and spike frequency in both control and 21 day 

repeated stress groups (control: R2 = 0.17, p = 0.04; stress: R2 = 0.25, p=0.005; Figure 
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3.7, J). By contrast, neither the rapidly activating and inactivating, nor transient 

conductance significantly correlated with the spike frequency (control: R2 = 0.02, p = 

0.46 ; stress: R2 = 0.05, p = 0.21 and control: R2 < 0.001, p = 0.98; stress: R2= 0.10, p = 

0.75, respectively; Figure 3.7, D and G, respectively). These results pointed to the roles 

of high voltage activated, non-inactivating conductance in mediating the stress-induced 

decrease in the spike firing frequency. 
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Figure 3.7 
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Figure 3.7 Voltage-dependent, non-inactivating conductance correlates with firing 

frequency. 

 (A) Sample traces for current responses to a voltage step protocol (+10 mV step from 

−80 mV) in cells from control and 21 day stressed mice. (B-D) Rapidly activating and 

inactivating currents, (E-G) inactivating currents, and (H-J) non-inactivating currents are 

measured between t = 0.003 - 0.0031, t = 0.116 - 0.117 seconds and t = 9.996 - 9.997 

seconds after the onset of voltage steps, respectively. Note that conductance (measured 

for the step from −20 mV to −10 mV) significantly correlated with the firing frequency 

only for non-inactivating currents (J) control: R2 = 0.17, p = 0.04; stress: R2 = 0.25, p = 

0.005, but not for rapidly activating and inactivating currents (D) control: R2 = 0.02, p = 

0.46 ; stress: R2 = 0.05, p = 0.21; and inactivating currents (G) control: R2 < 0.001, p = 

0.98; stress: R2= 0.10, p = 0.75. Current conductance was taken at -10mV for all three 

time points. 
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3.8 Repeated stress does not change conductance density 

We next calculated current density by dividing the whole cell current with the cell 

capacitance (Cm), which is proportional to cell surface area, to normalize potential 

contributions of changes in neuronal size to the observed stress-induced changes in the 

whole-cell current (Haedo & Golowasch, 2006; Iwasaki, Chihara, Komuta, Ito, & Sahara, 

2008; Khorkova & Golowasch, 2007; Royeck et al., 2008). Interestingly, we found that 

the normalization with Cm eliminated, for the most part, the stress-induced changes 

(Figure 3.8). The comparison of G-I plots between whole-cell and density best 

demonstrated the difference: the normalization eliminated the stress-induced differences 

in subthreshold range (−80 - −30 mV) as well as the voltage-dependent conductance 

increase (−30 mV). Only the high voltage range change still remained. To add, the 

conductance density did not correlate with the firing frequency (control: R2 = 0.04, p = 

0.33; stress: R2 = 0.01, p = 0.57). These findings suggest that the difference in the whole-

cell currents/conductances and their effects on firing frequency were primarily due to 

stress-induced changes in Cm, and therefore possibly neuronal size.  
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Figure 3.8 
 

 

 

 

 

Figure 3.8 Repeated stress does not change conductance density.  

(A) Schematics for conductance density. Density is represented by the pink square 

showing that calculations represent an amount of current per unit area. (B-D) Stress-

induced changes of non-inactivating current (B) and conductance (C) normalized by cell 

capacitance. (D) Conductance density does not correlate with firing frequency for control 

(n = 27, N = 6): R2 = 0.04, p = 0.33; nor stress (n = 30, N = 6): R2 = 0.01, p = 0.57. 
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3.9 Cell capacitance and cell surface area correlates to 

repetitive firing frequency in stress cells. 

The direct comparison of Cm revealed that 21 days of repeated restraint stress 

significantly increased Cm compared to control (14.3 ± 0.46 vs 19.0 ± 0.59 pF; Unpaired 

t-test: p < 0.0001; Figure 3.9 A). We found that Cm and firing frequency significantly 

correlated in 21 day repeated stress group (R2 = 0.19, p = 0.0002), and there was a similar 

trend in the control group (control: R2 = 0.03, p = 0.19; Figure 3.9, B). Additionally, we 

saw matching trends when averaging the capacitance values for individual animals 

(Figure 3.9, C and D). These results suggested that 21 day repeated restraint stress 

increased the neuronal size, and this structural plasticity might be the contributing factor 

to the changes in their excitability and the firing frequency. To directly investigate the 

relationship between cell size and firing frequency, we next measured the surface area of 

cells from control and 21 day repeated stress groups, by filling cells with biocytin (0.5%) 

during electrophysiological recordings. We obtained capacitance and spike frequency 

measures for the cells that we collected. We obtained confocal images (Leica TCS SP8, 

63x magnification) of our slices and used Imaris software to quantify the cell body size 

(surface area, Figure 3.9 G). When we compared the average surface area for stressed 

cells to control cells, the two groups did not significantly differ (Unpaired t-test: p = 

0.26). Interestingly, however, the surface area from the biocytin filled cells correlated 

with the frequency of repetitive firing for stress (R2 = 0.55, p = 0.004), and had a trend to 

correlate for control (R2 = 0.21, p = 0.08). When we compared the filled surface area to 

the capacitance, we again saw that surface area and capacitance correlated well in stress 

(R2 = 0.63, p = 0.001), however does not correlate in control (R2 = 0.06, p = 0.38). It is 

interesting to note that the surface area does not change between the two groups; however 

when you introduce a stressor, the surface area and capacitance correlates well with 

frequency.  
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Figure 3.9 
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Figure 3.9 Repeated stress increases cell capacitance but not cell soma surface area. 

Both capacitance and cell soma surface area correlate to the frequency of firing. 

Capacitance, which serves as a proxy for cell size (1pF = 100µm2), correlates to the 

frequency of repetitive firing. (A) The capacitance recorded from stressed cells is 

significantly larger (Unpaired t-test: p < 0.001) than control cells. (B) The capacitance of 

the cell has a tendency to correlate to the frequency of repetitive firing in control cells 

and significantly correlates in stress cells (control: p = 0.19; stress: p < 0.001). (C) The 

average capacitance for each animal is significantly larger in stressed animals compared 

to control animals (Unpaired t-test: p < 0.001). (D) The average capacitance for each 

animal correlates to the frequency of repetitive firing in the stressed group (R2 = 0.35, p = 

0.03) but not control (R2 = 0.01, p = 0.71). (E) The average surface area for stressed cells 

does not significantly differ from control cells (Unpaired t-test: p = 0.26).  (F) The 

surface area (µm2) from the biocytin filled cells, correlates to the frequency of repetitive 

firing for stress (R2 = 0.55, p = 0.004), and has a trend to correlate for control (R2 = 0.21, 

p = 0.08). (G) The surface area (µm2) from the biocytin filled cells, correlates to 

capacitance for stress (R2 = 0.63, p = 0.001), however does not correlate in control (R2 = 

0.06, p = 0.38). (H) Examples of biocytin filled cells from the control and stress groups.  
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Chapter 4 

4. Discussion  

This study revealed that PVN-CRH neurons robustly decreased their intrinsic 

excitability along the time course that parallels the development of c-fos response 

habituation to repeated restraint stress. More specifically, the plasticity of intrinsic 

excitability was characterized by two changes: an increase in rheobase (i.e. the amount of 

excitatory current required to trigger an action potential) and a decrease in the frequency 

of repetitive firing throughout a duration of excitatory current injection. Importantly, we 

did not find any change in the threshold for action potential, suggesting that the decrease 

in firing is not due to voltage-gated sodium channels. In line with this finding, the 

decrease of intrinsic excitability was best correlated with the decrease in whole-cell 

membrane resistance. By Ohm’s law, a decrease in membrane resistance indicates that 

the same amount of charge transfer across the membrane (i.e. current injection during 

current clamp experiments or ionic flow by synaptic transmission under natural 

conditions) will generate a smaller membrane depolarization. With regards to information 

processing at PVN-CRH neurons, these changes predict that PVN-CRH neurons respond 

less to low-level excitatory inputs, likely from mild, repeated stressors.  

To investigate the mechanism underlying the decrease in whole-cell membrane 

resistance and firing frequency we first examined the contribution of voltage-dependent 

transient inactivating potassium (IA) conductance. Although repeated stress increased IA 

conductance, this change did not correlate with the decrease in firing frequency. By 

contrast, an increase in sustained non-inactivating current strongly correlated with the 

decrease in firing frequency. To examine whether this difference was due to an 

upregulation of ion channels, we measured the difference in conductance density between 

groups by dividing the conductance by the capacitance, which serves as a proxy for cell 

size. This resulted in no difference in conductance density between stress and control, 

suggesting that cell size difference was the major determinant for the decrease in the 

whole-cell membrane resistance and firing frequency. In line with this idea, we found 

that repeated stress increased cell capacitance, and that the capacitance increase inversely 

correlated with the decrease in whole-cell membrane resistance and firing frequency. 
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Structural analysis of the cells failed to detect the expected increase in cell surface area 

despite the increase in capacitance. However, the cell surface area negatively correlated 

with the firing frequency of the cells, supporting the role of cell size change in controlling 

the intrinsic excitability of neurons during stress. Future directions related to this project 

include establishing the mechanisms by which cell surface area can change after stress, 

and subsequently using in vivo stress studies to examine whether preventing these 

neurophysiological changes contributes to stress susceptibility. The failure to adapt to 

stressors that are not inherently harmful is bio-energetically costly and can be linked to 

stress-related psychiatric conditions such as anxiety, post-traumatic stress and depression. 

By understanding the basic biological phenomenon during stress habituation, we can 

better understand neuronal changes that promote stress resilience. 

4.1 C-fos expression in PVN-CRH neurons as a neuronal 

correlates for the HPA axis habituation  

The activities of PVN-CRH neurons in vivo have been assessed by measuring the 

expression of immediate early genes, most commonly c-fos (Ceccatelli, Villar, Goldstein, 

& Hökfelt, 1989; Figueiredo, Bruestle, Bodie, Dolgas, & Herman, 2003; Girotti et al., 

2006a; G. E. Hoffman, Smith, & Verbalis, 1993; Kovács, 2008). However, it is important 

to note that c-fos mRNA or protein expression does not directly represent the activity 

levels of neurons but its upregulation generally reflects high-levels of neuronal activity 

driven by stimuli. As noted by Kovács in her review (2008), “If c-fos were indeed a 

general marker of normal neuronal activity and if depolarization per se induced its 

expression, c-fos should have been detected in millions of neurons throughout the brain 

under basal conditions.” By contrast, under non-stress, baseline conditions, c-fos 

expression is scarce across the brain and almost undetectable in the PVN; on the other 

hand,  c-fos is robustly induced in various brain areas including the PVN by a stimulus 

such as restraint stress used in my study. While the patterns of neural activities and 

signals required for c-fos induction are not entirely clear, it has been shown using 

neuronal cultures that various depolarizing agents, such as glutamate, NMDA, AMPA 

and high K+ induce c-Fos in Ca2+ dependent manner (Herrera & Robertson, 1996). Using 

in vivo electrophysiology in anesthetized animals, it has also been shown that activity 



 

74 

promoting a high frequency discharge in neurons is followed by induction of c-fos in the 

hippocampus (Douglas, Dragunow, & Robertson, 1988). Thus, it is generally believed 

that c-fos upregulation represents a high-level of neuronal activity; this high-level of 

neuronal activity is advantageous to investigate stress-related activities in relevant 

circuits. 

The transient nature of c-fos upregulation also made it useful to study neuronal 

activity driven by a recent experience/stimulus. The expression of c-fos mRNA first 

appears about 5-10 minutes after the stimulus with the peak expression occurring at 

approximately 30-60 minutes, whereas the expression for c-fos protein begins at 30-45 

minutes after the stimulus is delivered and its peak expression is at approximately 90-120 

minutes (Kovács, 2008; Kovacs & Sawchenko, 1996). Accordingly, c-fos has been 

successfully used as a tool to probe the activation of PVN neurons following various 

types of stressors including cold (Pacák & Palkovits, 2001), foot-shock (Li & 

Sawchenko, 1998), immobilization (Ceccatelli et al., 1989), restraint (Viau & 

Sawchenko, 2002), and novelty (Cullinan, Herman, Battaglia, Akil, & Watson, 1995). 

One interesting study found that after cat exposure (predator stress), rats did not display 

any c-fos induction in the PVN despite showing elevation of other stress-induced markers 

(i.e. CRH mRNA) (Figueiredo, Bodie, Tauchi, Dolgas, & Herman, 2003). On the other 

hand, predator odor (2,5-dihydro-2,4,5-trimethylthiazoline) exposure robustly induces c-

fos in the PVN in rats and mice (Asok, Ayers, Awoyemi, Schulkin, & Rosen, 2013; 

Janitzky, D’Hanis, Kröber, & Schwegler, 2015). These results point to a potential 

mechanism that represses the transcriptional activation of c-fos associated specifically 

with cat exposure. The repression of c-fos transcription/translation is an important issue 

to consider when questioning the mechanisms by which neuronal adaptation occurs 

during repeated stress. While a number of studies have shown the decrease of c-fos 

induction in PVN neurons in association with the HPA axis habituation to repeated stress 

(see below), it is possible that c-fos induction levels could decrease independently from 

changes in the PVN neuronal activity. In other words, HPA axis habituation could 

involve molecular mechanisms that repress transcription/translation of c-fos downstream 

of neuronal excitation. One example is that GCs can act on glucocorticoid receptor to 

decrease the expression of c-fos following stress (Imaki et al., 1995). In this regard, the 
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present study is the first to show a decrease in neuronal excitability, which correlates with 

the time course of c-fos adaptation during repeated stress. One important direction of 

future study is to investigate the relationship between the heterogeneity in the excitability 

of PVN-CRH neurons (as I found in this study) and the heterogeneity in the c-fos 

expression levels as has been reported in several studies (Miklós & Kovács, 2003; 

Roberts et al., 1993). One way we can address this in the future is with the availability of 

a transgenic mouse that expresses GFP under c-fos promoter activity (Barth, Gerkin, & 

Dean, 2004); this will allows us to target c-fos high/low expressing neurons during ex-

vivo, in slice electrophysiology experiments.  

Measuring the level of CRH neuron activity has not been limited to studies 

examining c-fos. Other stress-related transcripts in CRH neurons such as CRH hnRNA, 

AVP hnRNA and CRH mRNA are closely tied to an increase in immediate early gene 

(IEG) activity such as c-fos. One study has shown that the induction of c-fos mRNA after 

stress precedes an increase in CRH mRNA levels (Imaki, Shibasaki, Hotta, & Demura, 

1992), suggesting that neuronal activation is associated with an increase in the demand of 

stress-related proteins. Kovacs and Sawchenko (1996) discussed that in response to 

stress, CRH hnRNA are first quickly generated, followed by IEG mRNA (such as c-fos), 

then IEG protein, and finally by CRH mRNA, without the peaks of these transcript 

expressions overlapping (Figure 4.1). The timing of the peak response in the sequence of 

the transcriptional events make it difficult to examine all stress-related transcription at the 

same time; however, studies suggest that stress-related transcripts can also be reflective 

of neuronal activation. In one example, Ma, Levy, and Lightman (1997) showed that 

CRH transcripts (CRH hnRNA and CRH mRNA) gradually attenuate from baseline 

stress levels in response to subsequent exposures of repeated restraint stress. Thus, during 

habituation, CRH transcript levels mirror the attenuation of c-fos transcript levels, 

suggesting a role for both in representing neuronal activation.  
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Figure 4.1  
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Figure 4.1 Stress-induced sequence of RNA/protein transcription/translation. 

Stress elicits various indices of synaptic/transcriptional activation in CRH-PVN neurons. 

The timing of these indices vary and it is important to acknowledge when the peaks of 

these indices occur for successful ex-vivo stress-marker examinations. Early indices 

include CRH hnRNA (a primary transcript) and transcription factor pCREB, which peak 

15-30 minutes after stress onset. Next, immediate early gene (IEG) mRNA (i.e. c-fos 

mRNA) peaks around 1 hour after stress onset. IEG protein and vasopressin (AVP) 

hnRNA are the next stress indices to peak around 2 hours. Finally, CRH and/or AVP 

mRNA peak around 2-3 hours after stress exposure. 

Modified from “Sequence of stress-induced alterations in indices of synaptic and 

transcriptional activation in parvocellular neurosecretory neurons,” by K. J. Kovacs & P. 

E Sawchenko. 1996.  Journal of Neuroscience. 16(1): 262–273. Copyright (1996) Journal 

of Neuroscience. Reprinted with permission. 
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There is evidence to suggest that susceptibility or resilience to stress may be 

inferred using the levels of stress related transcripts. Swaab, Bao and Lucassen (2005) 

reported in their review that the total amount of CRH mRNA in the PVN of depressed 

patients is significantly higher than control, indicating that the inability to tune CRH 

mRNA transcription appropriately may be indicative of a non-resilient phenotype. Future 

studies in animal models of stress can work to link c-fos and CRH transcriptional 

activity, neuronal excitability levels in the PVN, and behavioural phenotypes to elucidate 

a bio-behavioural model of resilience. 

4.1.1 Differences between mouse and rat models of habituation using 

c-fos 

My c-fos expression study essentially confirms previous studies conducted in rats 

that reported habituation of c-fos response in PVN neurons to repeated restraint or other 

homotypic stressors (Bonaz & Rivest, 1998; Girotti et al., 2006b; Ons, Rotllant, Marín-

Blasco, & Armario, 2010; Uchida et al., 2008; Umemoto, Noguchi, Kawai, & Senba, 

1994), and, to our best knowledge, is the first to report c-fos habituation in mice. 

Importantly, my study revealed two inter-species differences in the time course of the 

habituation of PVN-CRH neurons. First, mice were substantially slower than rats in 

developing the habituation of c-fos response. Published reports in rats consistently show 

that c-fos response in PVN neurons develops after 6-12 days of repeated restraint (Bonaz 

& Rivest, 1998; Girotti et al., 2006b; Ons et al., 2010; Uchida et al., 2008; Umemoto et 

al., 1994). On the other hand, in mice, I found that 7 days of repeated restraint was not 

sufficient to cause the habituation of PVN-CRH neurons that was evident after 21 days. 

This slow habituation is consistent with the difference in time required for the habituation 

of the hormonal (CORT) response to repeated stress: in rats, CORT response is 

significantly attenuated by 3 days and completely abolished by 7 days (Bhatnagar, Huber, 

Nowak, & Trotter, 2002b; Girotti et al., 2006b; Melia et al., 1994; Uchida et al., 2008), 

whereas in mice the CORT response only partially decreases over 14 days of repeated 

restraint (Kim & Han, 2006).  Second, the habituation has been shown to be long-lasting 

after the termination of repeated stress in rats whereas in mice we found that it quickly 

reverses. Bhatnagar and colleagues (2002b) reported that in rats, habituation to repeated 
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restraint, which was formed after 8 days of repeated restraint stress, was still evident on 

21 days after the last stress challenge (i.e. no stress recovery period). On the other hand, 

my findings in mice showed that the habituation, which developed after 21 days of 

repeated restraint stress, was fully recovered 7 days after the termination of repeated 

stress. While much of what we know about the function of the HPA axis and chronic 

stress models have been derived from studies using rats, more and more recent studies, 

including my thesis, use mice due to the availability of various transgenic lines and other 

research tools. My results provided an example for the importance of examining potential 

species-dependent differences when transferring stress-models established in rats to mice. 

Difference in rats and mice may help point to the mechanism that forms and retains stress 

memory for habituation. 

4.2 Homotypic stress habituation occurs in various brain 

areas. 

The activation of the HPA axis results from a cascade of information processing 

(i.e., signal transduction) from the perception of sensory information to the 

neuroendocrine, hormonal signaling cascade. Accordingly, a reduction in the sensitivity 

to stress-relevant signals at any information-processing node, both up-stream and down-

stream of PVN-CRH neurons, likely contributes to the development of habituation to a 

repeated stressor. Indeed, several studies have shown that the neuroendocrine habituation 

to repeated stress is accompanied by a reduction of c-fos induction at multiple brain 

regions, including the sensory cortex (Girotti et al., 2006b), medial amygdala (X. Chen & 

Herbert, 1995) and multiple subcortical brain regions (Bonaz & Rivest, 1998; Stamp & 

Herbert, 1999). Moreover, habituation also develops for other physiological (i.e., heart 

rate, body temperature) (Stamp & Herbert, 1999) and behavioral (struggling during 

restraint) changes (Grissom, Kerr, & Bhatnagar, 2008; Kearns & Spencer, 2013), 

indicating brain-wide changes in the sensitivity to repeated stressor. Thus, it is likely that 

the stress sensitivity of the HPA axis to repeated stress is attenuated at multiple levels 

including the excitability of PVN-CRH neurons as I demonstrated in this study.   
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4.3 Synaptic plasticity at PVN-CRH neurons during chronic 

stress  

Synaptic plasticity is an important mechanism that provides flexibility in neural 

circuits and ultimately behavior. With regard to the plasticity of the HPA axis, emerging 

evidence supports the importance of synaptic plasticity at PVN-CRH neurons (Bains, 

Cusulin, & Inoue, n.d.). Kuzmiski and colleagues (2010), showed that a single acute 

stressor primes glutamate synapses to undergo short-term potentiation (STP) in response 

to a subsequent burst of high-frequency afferent synapse stimulation. Additionally, Flak, 

Ostrander, Tasker and Herman (2009) showed an increase in the particles immune-

positive for vesicular glutamate transporter 2 (vGLUT2, a glutamatergic synaptic protein) 

apposing to CRH neurons in the PVN after chronic variable stress, suggesting a structural 

change to glutamatergic synapses. These findings suggest that glutamate synapses are 

actively involved in stress-related activity-dependent plasticity. However, it is important 

to note that both acute stress and chronic variable stress do not represent paradigms for 

stress habituation, and glutamate synapse plasticity associated with habituation is likely 

distinct from other stress models. To my best knowledge, there is no published work that 

has examined synaptic plasticity at PVN-CRH neurons in a habituation model. In my 

undergraduate honours thesis project, I examined vGLUT2 expression on PVN neurons 

following 21 days repeated restraint and found no change in their expression levels 

compared to control. This finding provided preliminary evidence that unlike chronic 

variable stress, repeated restraint stress does not upregulate vGLUT2. In line with the 

lack of detectable histological changes in glutamate synapses, I did not find changes in 

the function of glutamate synapse under the experimental conditions I employed in my 

thesis work as the amplitude of eEPSCs were similar between control and after 21 day 

repeated stressed.   

4.4 Plasticity of intrinsic excitability of PVN-CRH neurons 

This study revealed that PVN-CRH neurons can robustly decrease their intrinsic 

excitability following 21 days of repeated restraint stress. The neuronal changes that 

followed the timeline of habituation included an increase in rheobase and a decrease in 

firing frequency in response to controlled current injections. The best intrinsic excitability 
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correlate to these changes was the decrease in whole-cell membrane resistance, which 

indicates that more current is necessary to depolarize stressed cells to the same extent as 

control cells. A decreased membrane resistance predicts that in response to low-level 

excitatory input, like that of mild chronic stress, PVN-CRH neurons should respond less. 

If this adaptation mechanism should promote resilience to stress, it is important that these 

neurons also maintain the capacity to respond optimally (i.e., at full capacity) to a 

novel/high-level stressor. When we examined the capacity of these neurons to fire action 

potentials during a sufficiently high incoming signal (which can be generated by more 

intense stressors and/or novel, heterotypic stressors), stressed neurons maintained the 

capacity to fire at levels similar to control (Figure 4.2). Therefore, intrinsic, 

neurophysiological changes that reduce the activation of these neurons upon re-exposure 

to the restraint stress serve as an important, adaptive mechanism for habituation. 

Meanwhile, these intrinsic excitability changes can maintain the neurons adaptive 

function of firing at high excitability levels when exposed to a novel and/or more intense 

stressor. 

  



 

82 

Figure 4.2  
 

 

 

 

 

Figure 4.2 Stressed cells retain the capacity to fire as much as control cells. 

(A) Current injection vs. firing frequency graph showing that at lower current injections 

(10 pA – 80 pA), stressed cells fire less, yet when you inject a high amount of current (> 

80 pA), they maintain their capacity to fire at the same level as control, suggesting a 

mechanism by which they can normally respond to novel stressors (Two-way ANOVA, 

Current injection: p < 0.001, Control vs. Stress: p = 0.02, Interaction: p < 0.001). (B) 

Comparison of firing frequencies at 120pA between stress and control. Unpaired t-test: p 

= 0.31. 
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4.5 Homeostatic plasticity 
 

Cell autonomous changes in intrinsic excitability is a fundamental way by which 

neurons maintain their activity levels within a certain range, a phenomenon generally 

called homeostatic plasticity (Desai, Rutherford, & Turrigiano, 1999; O’Leary, van 

Rossum, & Wyllie, 2010; Poolos, Migliore, & Johnston, 2002; Senst et al., 2016a). For 

example, it has been shown that in primary culture of cortical neurons, pharmacological 

blockade of action potentials with tetrodotoxin (TTX) for a duration of time (24 h) causes 

up-regulation of sodium channel (INa) density in the treated neurons, which increases 

their excitability (Desai et al., 1999). Conversely, when neurons are treated with high K+ 

culture media, which induces sustained depolarization, the treated neurons decrease their 

membrane resistance resulting in an increase in rheobase as well as a decrease in the 

frequency of repetitive firing. Given that the activity of PVN-CRH neurons increases 

during stress exposure, the decrease in their intrinsic excitability following repetitive 

stress exposure can be considered a form of homeostatic plasticity in vivo. Although the 

mechanisms by which intrinsic excitability changes affect behavioural output are largely 

unknown, data from various fields have pointed to intrinsic excitability changes as being 

fundamental to behavioural changes related to learning (Rabinak, Zimmerman, Chang, & 

Orsini, 2008; Sehgal, Ehlers, & Moyer, 2014), central nervous system disorders (Beck & 

Yaari, 2008), pain (Camp, 2012; Snowball & Schorge, 2015) and drug addictions 

(Kourrich, Calu, & Bonci, 2015).   

Our results support the idea that the brain undergoes homeostatic plasticity 

changes in order to promote optimal levels of functioning. After chronic exposure to 

repeated stress, we see that CRH neurons adapt in two fundamental ways. First, they 

show a delay to first spike, which is a rapidly induced effect promoted by Kv4 (IA) 

potassium channels. Second, only after 21 days of repeated restraint stress, we see a 

decrease in the frequency of repetitive firing in response to an artificial current 

depolarization, as shown by a decrease in the input-output curve. We failed to reverse the 

stress-induced changes in the input-output curve by using various channel blockers 

(Table 1), indirectly supporting the importance of cell size in regulating the whole-cell 

membrane resistance associated with 21 day of restraint stress.   
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Table 1 
Different drugs used to investigate the change in firing frequency 

Drug, CONC, Internal solution vs 

External aCSF, Company 

Effect of Drug Frequency 

Reversal? 

4-aminopyridine (4-AP), 5mM, 

external, Sigma 

Non-selective voltage-

dependent K+-channel blocker 

No 

BAPTA, 10mM, internal, Sigma Fast-acting, calcium chelator No 

EGTA, 10mM, internal, Sigma Slow-acting, calcium chelator No 

Apamin, 100nM in external, Sigma Highly selective inhibitor of 

the small-conductance Ca2+-

activated K+-channel (KCa2, 

SK) 

No 

Penitrem A, 1µM in external, Sigma Potent and selective blocker 

of BKCa (KCa1.1) channels  

No 

Niflumic Acid, 100µM, in external, 

Sigma 

Blocker of endogenous 

calcium activated chloride 

channels (CaCCs) 

No 

Barium, 2.5mM, replaced Ca2+ in 

external, Sigma 

Substitute for calcium to make 

a calcium-free aCSF 

No 

Tetraethylammonium (TEA), 1mM, 

in external, Sigma 

Non-selective K+ channel 

blocker 

No 

TRAM34, 1mM, in external, Sigma Potent and highly selective 

IKCa (KCa3.1) channel blocker 

No 

Guanxitoxin, 5nM - 100nM, in 

external, Almone Labs 

Gating modifier of Kv2.1, 

Kv2.2 and Kv4.3 channels 

No 

Cadmium, 10µM, in external aCSF, 

Sigma 

Nonselective calcium channel 

blocker 

No 
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4.6 Size principle 

In the motor system, there is a textbook example that smaller motor units respond 

to lower stimuli whereas larger units have a higher excitation threshold (Houk & 

Henneman, 1967). The inverse relationship between the size of neuron and their 

excitability is termed “size principle” and is related to various aspects of motor regulation 

such as the amount of input required to elicit an action potential, the mean rate firing of 

the of the cell and even the rate at which the cell synthesizes proteins (Enoka & Stuart, 

1984). Additionally, Houk and Henneman (1967), mentioned that an increase in cell size 

decreases input resistance, and so despite motor neurons of different sizes having similar 

voltage thresholds, the size of the cell is the factor that is important in determining 

neuronal recruitment. My finding of the inverse relationship between Cm and whole-cell 

membrane resistance is consistent with the size principle. Similarly, Canto and colleagues 

(2016) recently found that the size of neuronal soma and Cm inversely correlated with the 

membrane resistance in cerebellar motor neurons. CRH neurons of the hypothalamus are 

responsible for processing complex information relating to stress; therefore, the fine-

tuning of the passive, integrative capacities of individual CRH neurons can help diversify 

the capacity of these CRH neurons to process stress related information. A decrease in 

membrane resistance as a result of an increase in cell size is one mechanism by which 

CRH neurons can tune their response outputs. Together, both synaptic and intrinsic 

excitability changes to CRH neurons work to assimilate stress information and shape 

neuronal signal transduction.  

4.7 Basis for capacitance change 

The electrophysiological measurement of Cm is commonly used to estimate the 

total cell surface area (hence our interest in cell size). This is based on the several 

assumptions such as that specific membrane capacitance is similar among different 

neurons (~ 1 µF/cm2) and that cell membrane is isopotential. My data for the robust 

increase in Cm after chronic stress suggested that there is an increase in cell surface area, 

and as a consequence, a decrease in the intrinsic excitability. To directly measure the cell 

size and its relationship with intrinsic excitability, I imaged the PVN-CRH neurons after 
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patch-clamp recordings. While, the cell surface area and firing frequency of the cells 

showed the expected inverse correlation, 21 day of restraint stress did not increase the 

surface area (despite the increase in Cm). One possibility is that the stress-induced cell 

size change may take place primarily in distal dendrites, which was not included in cell 

surface area measurements but could influence the Cm measurement. More specifically, 

we were able to visualize the cell soma and the proximal dendrites, but distal dendrites 

were not visible in many cells. In the future, we will work on refining our cell filling 

methods (i.e., increasing biocytin filling time) in order to better capture the distal dendrite 

of the cell to address the possible changes in distal dendrite morphology.  

In addition to the lack of stress-induced increase, cell surface area showed expected 

correlation with Cm only in stress group but not in control group. The reasons for the lack 

of the changes in cell surface area are currently unclear. Structural changes of the cell 

will affect the efficacy of space clamp, and as a result, will affect the Cm readout. For 

example, complex structures such as compartmentalized structures in the cell body and 

dendrite will distort the relationship between cell surface area and Cm readout. However, 

while quantifying filled cell images, I did not notice any obvious changes in cell shape. 

Alternatively, I speculate that stress may change the properties of cell membrane that 

influence the specific capacitance (capacitance per area membrane). Various 

mechanisms, such as cell membrane thickness (White, 1970), changes in the cell 

membrane composition (Valincius et al., 2008), membrane surface folds, can influence 

specific capacitance. One possibility is that glial cells that adhere to neuronal membrane 

may affect the specific capacitance of the cell and stress affects the glial adherence to 

PVN-CRH neurons. Supporting this idea, structural plasticity of glial has been shown to 

occur in the PVN during lactation to help synchronize oxytocin neuron bursting activity 

(Tasker, Oliet, Bains, Brown, & Stern, 2012), pointing to a potential mechanism to 

control the output of CRH neurons. 

To further speculate on possible changes in neuronal cell size, the literature 

describes a variety of cell surface area changes that can contrarily influence neuronal 

excitability such as: the development of dendritic spines (Matus, 2000; Padival, Quinette, 

& Rosenkranz, 2013), changes in proximal dendrite diameter (Mitra, Adamec, & 
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Sapolsky, 2009), how far away spines are from the cell soma, and the size of the cell 

soma itself (Padival et al., 2013). It is well documented that chronic elevated 

glucocorticoids can lead to dendritic shortening in the medial prefrontal cortex (Cook & 

Wellman, 2004; Radley et al., 2006) and the hippocampus (Vyas, Mitra, 

Shankaranarayana Rao, & Chattarji, 2002), and dendritic growth in the amygdala (Vyas 

et al., 2002) leading to hypo-activity and hyper-activity in these regions, respectively. 

More specifically, it appears that an up-regulation of dendritic spines in the amygdala 

contributes to hyper-excitable changes in the amygdala after stress; also, if these spines 

are located further from the cell soma, they appear to be more excitable (Padival et al., 

2013). Opposed to chronic glucocorticoids, Mitra and colleagues (2009) showed that 

when rats were able to adapt to a chronic predator stress, as confirmed by resilient 

behavioural data, they exhibited a phenotypic change that promoted less activity in the 

amygdala; for example, adapting rats showed more densely packed and shorter dendrites 

in the amygdala compared to non-adapting or control rats. In an intriguing hypothesis 

proposed by Gorman and Docherty (2010), a way that neurons might protect themselves 

from apoptosis is by retracting their dendrites and decreasing their spine numbers to 

decrease the number of exposed glutamate receptors. Therefore, it is possible that one 

mechanism by which neurons protect themselves from the maladaptive consequences of 

repeated stress is to modify their neuronal cell properties to decrease the membrane 

resistance which can decrease the effectiveness of signal propagation. It is important to 

mention that the results we have mentioned in this study might be an underestimation of 

the neurophysiological changes occurring with habituation to chronic stress since we do 

not have any identification method that can eliminate maladapted animals. Since 

hyperactivity of CRH neurons in response to non-threatening, repetitive stress would 

have detrimental physiological and psychological consequences, changes in neuronal 

surface area properties that have the capacity to reduce the effect of incoming stress 

signals, can serve as a mechanism for habituation and therefore resilience to stress. 
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4.8 Stress inoculation, HPA axis habituation and resilience to 

stress 

There is evidence to suggest that exposure to a stressor throughout life can 

promote adaptive responses to future life stressors. Russo and colleagues (2012) called 

this “stress inoculation”. Stress inoculation is suggested to promote stress resilience by 

encouraging more optimal behaviours and performance during normal levels of stress and 

by increasing the capacity to manage higher levels of stress (Russo et al., 2012). Research 

has begun to look at the effects of moderate life stress on promoting future stress 

resilience. For example, Parker and colleagues (2004) were the first to demonstrate that 

moderate stress in squirrel monkeys actually increases their resilience to subsequent 

stressors, which was shown by an increase in healthy behaviours (increased exploration, 

food consumption and decreased maternal clinging) and lower CRH and cortisol levels 

after stress. This promotes the idea that moderate life stressors can in fact serve an 

adaptive function for the future. 

Another study by Sasse and colleagues (2008) shows that the act of habituating to 

a stressor promotes more efficient habituation to future stressors. Exercise, such as wheel 

running in rodents, is a physical stressor that induces catabolic requirements and activates 

the HPA axis (Stranahan, Lee, & Mattson, 2008). Sasse and colleagues (2008) showed 

that rats subjected to chronic, voluntary wheel running showed habituation at the level of 

the HPA axis to the exercise and also showed facilitated habituation to a subsequent 

novel stressor (audiogenic stress). This result promotes the idea that mild stressors such 

as exercise can prepare the body to manage subsequent stressors. In the field of 

psychiatry, exercise has been endorsed as a treatment for symptoms of major depression 

and anxiety (Babyak et al., 2000; Carek, Laibstain, & Carek, 2011; Ekkekakis & Murri, 

2017). 

The stress-induced capacity to better manage and habituate to future stressors 

suggests that there are stress-induced neurophysiological changes at stress neurons that 

promote facilitated habituation. Here, I propose that the neurophysiological changes we 

see in CRH neurons during habituation promote resilience towards a chronic repeated 

stressor and possibly towards future stress encounters as well. An increase in the delay 
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before spiking and a decrease in the frequency of firing in response to neuronal 

depolarization might be able to explain a shift in the capacity to manage more stress. 

Also, at higher levels of excitatory input, these habituated neurons show the capacity to 

maintain control levels of excitability. This suggests that these CRH neurons are tuned to 

be able to manage the chronic stress (i.e., decrease their responsiveness), and perform 

more optimally to a higher level of stress (i.e., perform at baseline stress levels). Alone, 

these results suggest that CRH neurons gain the capacity to respond in an adaptive 

manner to subsequent stressors, promoting stress resiliency. It would be interesting to 

investigate whether these neurophysiological changes prime more efficient habituation to 

stressors following the first habituated stressor, since that too would indicate a more 

efficient and resilient stress-response system. 

4.9 Conclusion  

The purpose of this project was to investigate the neurophysiological 

underpinnings for the habituation of the HPA axis to repeated stress. My thesis revealed 

that PVN-CRH neurons robustly decreased their intrinsic excitability with the time 

course that parallels the development of c-fos response habituation to repeated restraint. 

Importantly, the decrease in the intrinsic excitability was best correlated with the Cm, and 

likely the change in cell size, resulting in the decrease in whole-cell membrane resistance. 

With regards to information processing at PVN-CRH neurons, these changes predict that 

PVN-CRH neurons respond less to low-level excitatory inputs, likely from mild, repeated 

stressors.. At the same time, these CRH neurons maintained the capacity to respond at a 

high level during a high excitatory input. In certain situations, the inability of the HPA 

axis to dynamically adapt can be detrimental and can become the driving factor for 

different psychiatric disorders (Watson & Mackin, 2009).  Optimally tuning the stress 

response can promote future stress resiliency, therefore understanding the mechanism of 

the how the HPA axis habituates after chronic stress can also help us better understand 

the mechanisms underlying both stress resilience and stress susceptibility. 
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