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Abstract 

The cabbage looper moth (CLM), Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) is an 

agricultural pest that has developed resistance to many frequently used insecticides, so 

alternative methods are required to reduce greenhouse CLM populations. Host plant 

volatile organic chemicals (VOCs) are used by female CLMs as cues for host location and 

oviposition. I hypothesized that changes in host plant VOC production, through genetic 

modification, could alter host location behaviour by CLMs. These changes in VOCs have 

potential to give rise to highly attractive transgenic trap crops. Chemical analyses on 

genetically transformed tomato, Solanum lycopersicum L. plants provided evidence of 

different VOCs relative to wild-type (WT) tomatoes, but CLMs exhibited no preference 

for transgenic VOCs over WT when virgin or mated females were tested in olfactomete r 

experiments. In conclusion, CLMs do not prefer transgenic tomato VOCs over WT, so the 

transgenic plants could not be used as effective greenhouse trap crops. 
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1.1 Introduction 

Globally, approximately 50 000 pathogen, 8000 weed and 9000 arthropod pest 

species reduce agricultural production by approximately 40% annually (Oerke et al. 

1994; Pimentel 1991; Pimentel & Burgess 2014).  Even with the use of synthetic 

pesticides (insecticides, herbicides and fungicides) and other control strategies, economic 

losses are estimated at $400 x 109 a year (Oerke et al. 1994; Pimentel & Burgess 2014) 

but would be at least $500 x 109 in the absence of pest control (Pimentel & Burgess 

2014). Currently, synthetic pesticides are the principle means of pest control and globally 

approximately 3.0 X 106 metric tons are applied annually (Pimentel 1991; Pimentel & 

Burgess 2014; Oerke et al. 1994) at a cost of $30 x 109 (Pimentel 2009; Richter 2002).  

 The use of insecticides began around 2500-1500 BC by Chinese and Sumerian 

farmers and until the late 19th century involved natural compounds such as sulphur, 

copper and organic mercury (Oerke 2006), or extracts from plants such as hellebore, 

tobacco or chrysanthemum (Seiferle & Frear 1948). Subsequently, especially following 

the second world war, there was a significant shift to the synthetic insecticides, the most 

common being organochlorines, organophosphates and carbamates (Zhang et al. 2011). 

While, as noted above, the broad application of insecticides has limited crop 

losses, their extensive use has resulted in several significant problems. First, many 

species have developed resistance to insecticides, thus require higher doses to have any 

impact on populations, which in turn further selects for resistance (National Research 

Council 1986; Gould 1984; Knight 1989; Plapp 1976; Roush & McKenzie 1987; 

Tabashnik 1994). Today > 500 insect species are reported to have evolved resistance to 
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frequently used insecticides (Georghiou 1990; Kotchen 1999; Liang et al. 2013). 

Secondly, there have been negative effects on beneficial insects, such as pollinators, 

parasitoids and predators that occur naturally within the agroecosystems treated (Knight 

1989). Third, as the result of drift or run-off, the insecticides contaminate other terrestrial 

and aquatic ecosystems, negatively affecting many different species, including humans 

(Eddleston 2016; Liang et al. 2013; Pimentel & Burgess 2014; Richter 2002; WHO 1990; 

Zhang et al. 2011). 

As these negative effects became better known, especially when brought to the 

attention of the public by Rachel Carson (1962), there was a concerted effort to develop 

integrated pest management (IPM) programmes with synthetic insecticides only being 

used as a last resort. The multidisciplinary nature of IPM promoted pest management 

where the approaches used were based on ecological principles along with socio-

economic considerations (Kogan 1998; Pedigo et al. 1986; Stern 1966, 1973; Stern et al. 

1959) for selection of suitable methods to prevent pest populations from reaching 

economic injury levels – theoretical pest population levels at which unacceptable losses 

are expected (Ehler 2006; Food & Agriculture Organization 1975; Kogan 1998; Prokopy 

2003). Integration of IPM works at a minimum of three levels: (1) single organism 

complex (vertical integration), (2) multiple organism complex (weeds, pathogens, 

insects) (horizontal integration), and (3) multiple organism complex with ecological 

system context (Kogan 1988, 1998). It has also been proposed that a fourth level exists – 

integration at the social, political, legal, and psychological IPM constraint level (Kogan 

1998; Prokopy & Croft 1994).  
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Modern IPM is applied using eight principles: (1) prevention and suppression of 

pest populations below critical levels, (2) frequent monitoring of pests to alert growers 

about population growth in order to ensure that strategies used are the most effective, (3) 

making decisions to determine population threshold levels and when to apply strategies, 

(4) non-chemical methods specific to the pest to maintain low pest population levels, (5) 

pesticide selection accounting for pest specificity and problematic environmental impact, 

(6)  reduced pesticide use, (7) anti-resistance strategies, such as use of refuges or the use 

of multiple pesticides with different modes of action, and (8) evaluation of the 

effectiveness of the previously applied methods to ensure programme optimization 

(Barzman et al. 2015). Field monitoring, including record keeping, of pest population 

economic thresholds are essential in the implementation of IPM principles (Tang & 

Cheke 2008). 

When developing IPM programmes the control methods vary depending on the 

biology and ecology of the pest species under consideration. The more common methods 

include (i) biological control -  the use of natural enemies, such as parasitoids, predators 

or pathogens (bacteria, fungi and viruses) to directly reduce pest populations, (ii) plants 

that have been selected for resistance, including genetically modified plants such as those 

engineered to express Bacillus thuringiensis Berliner (Bt) toxins, (iii) attractant 

infochemical (particularly pheromone) trap systems, and (iv) habitat management 

practices (Pimental & Burgess 2014), such as strip cutting Medico sativa L. to control 

Lygus hesperes (Knight) in Gossypium hirsutum L. fields (Stern et al. 1964). 

One strategy within the larger umbrella of habitat management for the control of 

certain insects is intercropping – the planting of different plant-types in an agricultural 
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area to disrupt the cues an insect uses to locate and choose host plants (Pitan & Olatunde 

2006; Tahvanainen & Root 1972).  The resource concentration hypothesis argues that 

herbivorous insects will find a pure stand of host plants easier than when several different 

plant species are growing within the system (Root 1973). Furthermore, this increased 

habitat diversity may also maintain beneficial parasitoids and predators by attracting 

alternative hosts/prey, as well as provide nectar sources for pollinators (Fitt 2000; 

Wratten & van Emden 1995). One variation of intercropping is the use of trap crops, 

where plants more suitable for feeding or oviposition are planted near the cash crop to 

attract and concentrate the pest, thereby reducing losses to the main crop (Hokkanen 

1989, 1991). One variation of trap cropping is the use of dead-end trap crops – using 

plants preferred by adults for oviposition but on which larvae are unable to survive 

(Shelton & Nault 2004). Most successful dead-end trapping systems have involved 

lepidopteran species (Badenes-Perez et al. 2004, 2005a, 2005b; Idris & Grafius 1996), 

such as using Barbarea vulgaris R. Br. var. arcuata as a dead-end trap plant for Plutella 

xylostella (Linnaeus) (Lu et al. 2004; Shelton & Nault 2004). A second approach is the 

“push-pull” (Pyke et al. 1987; Khan et al. 2001), also known as stimulo-deterrent 

diversion (Miller & Cowles 1990) system. In this case a combination of plant species is 

used in association with the principle cash crop: repellent plants to deter the pest (push) 

and attractive trap plants (pull). This approach has provided a cheap and efficient way of 

controlling stemborer populations in African maize fields, using Desmodium uncinatum 

Jacq. and Melinis minutiflora Beauv. as repellent plants, and Pennisetum purpureum 

Schumach. and Sorghum vulgare Stapf. var. sudanense as trap plants (Khan et al. 2001).  
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The selection or avoidance of plants by insects involves the integration of visual, 

olfactory, and gustatory cues (Landolt & Molina 1996; Miller & Strickler 1984).  Host 

plant volatile organic chemicals (VOCs) are usually involved in the first, longer distance, 

step of selecting or avoiding a plant as they may be detectable up to 100 m from the 

source (Evans & Allen-Williams 1993; Finch & Collier 2012; Judd & Borden 1989): 

their detection resulting in positive or negative chemotaxis (Couty et al. 2006; 

Palaniswamy et al. 1986; Pivnick et al. 1990, 1994; Reddy et al. 2003; Reddy & Guerrero 

2000). In contrast, visual cues, such as colour and shape, are generally detected over 

shorter distances (Finch & Collier 2000; Foster et al. 1997; Rojas & Tristram 1999; 

Städler 1974). However, the decision to oviposit or feed may require repeated contact 

with the plant, known as the appropriate/inappropriate landing behaviour or enhanced 

searching (Finch & Collier 2000; Finch & Collier 2007; Thorsteinson 1960), at which 

time the physical (e.g presence or absence of trichomes) and chemical properties of the 

substrate are assessed. 

 As a general rule, although final percentage depends upon the insect of interest 

and crop type, approximately 10% of the agroecosystem is used for the trap plants 

(Hokkanen 1991), so trap plants must be significantly more attractive than the main crop 

for this approach to be economically effective. One way of making the trap crops more 

attractive is through selective breeding, insertion of transgenes, or through genetic 

modification of existing genes that alter the characteristics known to be used in host 

selection (Åhman 2013; Åhman et al. 2010; Hokkanen 1991; Pickett et al. 1997).  

Recent research at Agriculture and Agri-food Canada (AAFC) modified the 

genomes of Arabidoposis thaliana Heynh. and Solanum lycopersicum L. cv. Micro-Tom 
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(tomato) to upregulate the production of carotenoid cleavage dioxygenases (CCDs), 

enzymes that function in breaking down carotenoid substrates to produce VOC 

components with the intention of changing the VOC profiles to influence insect host 

selection behaviour. The transgenic CCD1a plants of both species had different VOC 

profiles relative to the wild-type (WT) (Caceres 2015; Challa, 2015), and in two-choice 

ovipositional cage bioassays the cabbage looper moth (CLM) females deposited a greater 

number of eggs on CCD1a plants than the control.  

The cabbage looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), is a 

widespread, polyphagous species, whose larvae (Fig. 1A) are a serious pest of Brassica 

crops and to greenhouse crops such as tomato, cucumber, and bell pepper (Sarfraz et al. 

2011). It is a multivoltine species with overlapping generations during the growing 

season in the field (Ehler & van den Bosch 1974), and throughout the year under 

greenhouse conditions. In the past, control in greenhouses was achieved with repeated 

treatments of synthetic insecticides like carbaryl, parathion, and methomyl (Hill 2008), or 

with biopesticides like Bt, or nuclear polyhedrosis viruses (NPV) (Li & Liu 2015; Liu et 

al. 2003). However, these frequent treatments have led to the development of resistance 

to synthetic insecticides (Akhtar et al. 2012; Li & Liu 2015), as well as to Bt and 

transgenic plants expressing the Bt toxin. Thus, there is a need for the development of 

new, non-chemical methods for the control of CLM populations (Li & Liu 2015). The 

fact that moths prefer to oviposit more eggs on CCD1a plants over WT (Challa 2015),  
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raises the possibility that transgenic plants might be used as trap crops for insect 

population control. However, the protocol used by Challa (2015) did not allow one to 

determine if this was due to changes in the VOCs affecting upwind flight of the moths or 

if it was related to changes in traits that were detected once physical contact was made 

with the plant. Consequently, VOC-based attraction must be established first as CLM 

adult females (Fig. 1B) use a combination of VOCs, leaf shape and plant colour to locate 

suitable hosts (Jallow et al. 2004; Li & Liu 2015).  

I hypothesized that the preference of CLMs to oviposit on CCD1a tomatoes 

(Challa 2015) was due to a change in the VOCs of the transformed plants, therefore, the 

first objective of this study was to determine if the VOCs emitted by CCD1a Micro-Tom 

tomatoes were more attractive to CLMs than those of WT tomatoes. If females do not 

preferentially locate the genetically modified plants, then they would only find them 

among the commercial crops by chance, eliminating the possibility of CCD1a plants 

being effective trap crops. 

  A second objective was to determine if CCD1a transformed plants that had 

previously been used as an oviposition site were more or less attractive to CLM females 

than clean CCD1a transformed plants, as the presence of eggs can result in changes of the 

profile of VOCs emitted and alter host plant suitability (Coleman et al. 1997; Heath et al. 

2013). 

A third objective was to analyse the headspace volatiles using dynamic headspace 

collection and gas chromatography-mass spectrometry (DHS GC-MS) to confirm that the 
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transgenic tomato plants used had different VOC profiles relative to WT plants, as 

previously reported by Challa (2015). 
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1.2 Materials and Methods 

Insect Rearing 

The insects used in the assays came from a CLM colony maintained at the 

London Research and Development Centre (LoRDC), Agriculture and Agri-Food Canada 

(AAFC), at 25±2°C and 50±5% relative humidity (RH) under a 16:8 L:D photoperiod. 

Fifty pairs of adults were held in 2 litre (L) plastic containers with a layer of moist 

vermiculite on the floor. In nature moths feed on nectar, so the CLM adults were 

provided with 10% sucrose solution as a food source. Sheets of paper towel were placed 

securely over the opening of the container as oviposition sites and changed every three 

days. To surface sterilize the eggs, the sheets were soaked for 20 minutes (min.) in an 8% 

formic acid solution followed by a 20 min. water rinse, air dried and then held in large 

plastic storage bags under the same rearing conditions. A moist paper towel was placed in 

each bag to ensure that the eggs did not desiccate. Two freshly emerged larvae were 

transferred with a wet brush from the egg sheets into 1 fluid ounce (fl. oz) plastic cups 

(Fig. 1A) containing a pinto bean diet (Shorey & Hale 1965) - the cups were arranged 50 

to a tray, and reared at the previously mentioned conditions. After approximately 7 days 

male larvae have an evident, yellow dorsal spot (the germinal testes) and this 

characteristic was used to sex individuals. Upon pupation (Fig. 1C) females were placed 

into individual 500 millilitre (mL) containers, ensuring they were of known age and 

mating status when used in assays. The sex was verified a second time before Y-tube 

olfactometer experiments using male genital claspers as the defining characteristic. 
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Plant Transformation and Growth Conditions 

Two independent lines (L1 and L2) of CCD1a overexpressing tomato plants (S. 

lycopersicum cv. Micro-Tom) were created via Agrobacterium-mediated transformation 

by Dr. Ali Hannoufa’s lab at AAFC using previously established protocols (Cruz-

Mendívil et al. 2011; Sun et al. 2006). Challa (2015) genotyped transgenic tomato plants 

with the CCD1a transgene using PCR with a forward primer, 35S-For, and the gene-

specific primer, CCD1-11Rev, and expression was determined by RT-qPCR. 

Seeds were germinated on medium made with granulated agar and deionized 

water (8 grams/litre (g/L)). After approximately one week seedlings were potted in 

general purpose mycorrhizal growing medium, grown at 25±2°C and 50±5% RH under a 

16:8 L:D photoperiod, and watered every two days. Once plants were two weeks old, 

they were fertilized every other week with standard fertilizer (20:20:20 – Nitrogen: 

Phosphorous: Potassium) until approximately six weeks old and flowering. Plants used in 

the assays had similar leaf and stem sizes, flower number, and no notable morphological 

differences.  

Y-tube Olfactometer Experiments 

All females were between 3-7 days post-emergence when tested to ensure sexual 

maturity. When mated females were required, a mature male was placed within a cage 

with a 3 day old female and left for two days before being used in assays. Females that 

had laid a large number of eggs (>100) on the walls of the enclosures were considered 

mated, as virgins deposit very few eggs (<10). As the CLM is nocturnal, the assays were 

carried out during the scotophase under dim red light (Fig. 5B) at 25±2°C and 50±5% 
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RH.  Moths were acclimatised to experimental conditions for 10 min. prior to being 

assayed.  

The flowering plants (L1, L2, WT) were placed into chambers, and the Y-tube 

apparatus (Fig. 2A) turned on 30 min. before experiments so that pressure and air-flow 

equilibrium was reached. Smoke from a burning cotton wick was fed into the apparatus 

before experiments to ensure the equipment was working properly. When experimenting 

with plants previously used as oviposition sites (L1OV), plants were placed in 35 x 32 x 

32 centimetre (cm) mesh enclosures with 2 mated female CLM individuals for 48 hours, 

and used on the following day.  

The Y-tube olfactometer, similar to those used in previous volatile studies (Ngi-

Song et al. 1996; Steinberg et al. 1992), was manufactured out of inert, 4cm inner 

diameter quartz glass, with two 18 cm long arms and a 34 cm stem (Fig. 2C). An air 

supply was connected via regulator to the Y-tube system using Tygon tubing. The air first 

moved through a humidifier (Fig. 2G) before being split into two separate lines at the 

flowmeter (Volatile Assay Systems, Rensselaer, NY) (Fig. 2F) which then fed air into 

flasks containing activated carbon (Fig. 2E) at a rate of 500 mL/min. Purified air then 

passed into the treatment chambers (Fig. 2D) connected to each respective Y-tube arm, 

while a vacuum line, also controlled by the olfactometer air kit, pulled air through the end 

of the Y-tube at 1000 mL/min to prevent back pressure and turbulent flow.  

A randomized complete block design included plant treatments assigned to glass 

headspace Y-tube chambers with testing conducted in four replicate blocks including 10 

moth pseudoreplicates in each block. Treatments were blocked by time, as time-related 
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pressure changes may potentially lead to variation in insect behaviour (Pellegrino et al. 

2013; Wellington 1946). Treatments were arranged in single-plant choice experiments 

(Plant vs. Air), or 2-plant choice comparisons (CCD1a vs. WT). Experimental females, 

mated or virgin, were placed into the stem of the Y-tube, and observed for 10 min. They 

were considered to have made a choice if the moth travelled 10 cm into either arm, or 

considered as making no choice if they remained in the stem. The olfactometer was 

rinsed with deionized water and dried between each insect pseudoreplicate, and arm 

positions were switched to eliminate positional bias after five moths were tested. 

Once experiments were complete, activated carbon was removed, all components 

rinsed with deionized water, and fresh activated carbon was placed within all glassware 

for 24 hours to remove any residual volatiles. 
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In vivo DHS Collection and GC-MS Analyses 

CCD1a and WT plant VOC samples were collected, prepared and analysed with 

DHS collection/GC-MS analysis protocols and settings developed by Caceres (2015) 

with one modification -  a 5 min. solvent delay was added to the GC-MS method. Plants 

used for oviposition-related VOC change underwent the preparatory treatment previously 

mentioned for olfactometer experiments. Individual plants were placed within cylindrical 

46×26 cm inert quartz glass DHS collection chambers with base (Fig. 3). Regulator 

controlled air was fed to a flowmeter that maintained a flow rate of 10 mL/min through 

Tygon tubing into each chamber before exiting through a Poropak Q 75/150 

polydivinylbenzene sorbent column (Cat. #226-115; SKC Inc., USA), and each collection 

ran for 24 hours. 

Collection columns were rinsed with high performance liquid chromatography 

(HPLC)-grade dichloromethane (DCM), evaporated to 250 microlitres (μL) under 

nitrogen gas (N2 ), and 5 μL of 2-octonone (C8H16O) was added as an internal standard. 

GC-MS analysis was used to separate and distinguish differences in volatile profiles of 

tomato plants. The GC-MS (Agilent Technologies – Santa Clara, CA, USA) included an 

inert XL EI/CI MSD with triple axis detector, an autosampler, and gas chromatograph. A 

30+10 m Dura-guard x 0.25 mm i.d. 0.25 μm DB-5MS+DG capillary column in pulsed 

split-less mode (25 psi. until 0.5 min; Split vent purge flow adjustment was 40 mL/min 

for 1 min), with Helium as a carrier gas (12.445 psi), was used to separate 2 μL injections 

of each plant extract of collected VOC emissions into components. Oven temperature was 

held at 30°C for 1 min, increased to 200°C at 5°C/min, followed by a 20°C/min ramp up 
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to 280°C which was held for 3 min, for a total run time per sample of 45 min. In addition, 

a 5 min. solvent delay was used in every sample run. The full scan spectra were produced 

at a rate of 1.95 scans/sec and between 30 and 350 m/z. 

Statistical Analysis 

 As the data collected from the Y-Tube olfactometer experiments deviated from 

normality, a generalized linear mixed model (GLMM) with log-odds (logit) data 

transformation was used to determine if there was significant preference by the CLMs for 

CCD1a VOCs over clean air or WT VOCs. This model accounted for time-dependent 

random effects, and plant treatment-dependent fixed effects that may have contributed to 

variation. A Mann-Whitney U test was used to assess significant differences between 

mated and virgin female choice datasets for each Y-tube treatment. All data were 

analyzed with R statistical software version 3.3.2. (R Core Team, 2016). 

 GC-MS analysis of collected VOCs included only chemical features detected in 

2/3 of technical replicates, followed by chemical features found in 2/3 of biological 

replicates from 24 L1, 22 L2, 23 WT, and 12 L1OV individual samples – this was done 

to remove any features present due to experimental error. Peaks were adjusted to the 

internal standard of 2-octonone, and principle component score plot analyses (PCA) were 

conducted on log-transformed peaks for the comparison of transgenic and WT genotypes. 

Plots were scrutinized visually for within-cluster and between-cluster data point 

distances. MS Excel (Microsoft Corporation, 2016) was used for processing of chemical 

peaks, and R statistical software version 3.3.1. (R Core Team, 2016) was used for peak 

alignment and construction of PCA plots. 
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 The raw data from the Challa (2015) study were not available for direct 

comparison, so from my samples I identified those compounds previously reported to 

have shown significant changes. These were identified using either the mass spectral 

search program chemical databases via the National Institute of Standards and 

Technology (NIST version 2.0, 2012) (β-phellandrene, α-copaene, δ-elemene, sabinene) 

or directly with available standards (1-R-α-pinene, β-pinene, 3-carene, β-caryophyllene) 

using the Automated Mass Spectral Deconvolution and Identification System (AMDIS 

version 2.71, 2012). A library of deconvoluted WT, CCD1a L1, CCD1a L1OV, and 

CCD1a L2 chromatograms was built in AMDIS, and were compared to a library of 

known compounds in NIST. The metab R script was used in R Statistical Software 

version 3.3.1. (R Core Team, 2016) to calculate mean peak area, and overall change for 

the different compounds between plant types, as well as to run two-tailed t-tests to 

determine significance of the change. 
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1.3 Results 

Y-tube Olfactometer Experiments 

Assays testing mated female CLM responses in an empty Y-tube showed that the 

experimental space did not affect moth behaviour. A mean proportion of 0.44 (C.I. = 

0.29, 0.60) chose right over left: there was no significant directional preference (Z = -

0.665, P = 0.51), or significant random block effects contributing to the variation (Z = 

0.633, P = 0.26).   

In single-plant choice experiments, both virgin (L1 Z=2.012, P=0.04; L2 

Z=2.795, P=0.005) and mated (WT Z=2.628, P=0.009; L1 Z=2.198, P=0.03) CLM 

females generally showed a significant preference for plant volatiles over clean air, 

regardless of plant type (Fig. 4). Only mated females with L2 (Z=1.359, P=0.17) and 

virgin females with WT plants (Z=1.885, P=0.06) showed no significant preference. 

Blocks contributed no significant variation in plant versus air experiments with virgin 

(WT Z=0.417, P=0.34; L1 Z=0.770, P=0.22; L2 Z=1.280, P=0.10) or mated females 

(WT Z=0.840, P=0.20; L1 Z=2.198, P=0.22; L2 Z=0.547, P=0.29), and there was no 

significant influence of mating status (WT W=12.00, P=0.30; L1 W=7, P=0.88; L2 W=2, 

P=0.11). 

In the two-plant choice experiments neither mated (L1 Z=1.357, P=0.18; L2 

Z=0.0140, P=0.99) nor virgin (L1 Z=1.357, P=0.18; L2 Z=0.790, P=0.22) females 

showed significant preference when given a choice between volatiles from WT and either 

L1 or L2 transgenic plants (Fig. 5). Blocks contributed no significant variation in  
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transgenic plant versus WT plant experiments with virgin females (L1 Z=0.836, P=0.20; 

L2 Z=0.790, P=0.25) or mated females (L1 Z=0.806, P=0.21; L2 Z=0.797, P=0.21), and 

there was no significant influence of mating status (L1 W=10, P=0.66; L2 W=5, P=0.49). 

Females CLMs did not discriminate between a clean plant (no eggs), regardless of 

whether it was a WT (Z=0.00200, P=0.99) or transgenic L1 (Z=1.359, P=0.17), over a 

transgenic plant that had previously been used as an oviposition site (L1OV) (Fig. 6). 

There were no significant block effects for experiments with clean WT (Z=0.371, 

P=0.36) or L1 (Z= -0.024, P=0.98) plants. All raw data for the Y-tube olfactometer 

experiments are in Appendix A. 

Chemical Analysis 

 The PCA scatterplot (Fig. 7) depicts relationships between chemical profiles of 

individual plants from the three plant lines: the closer the data points, the closer the 

resemblance. L2 is clearly quite different from WT and L1, while there is still some 

degree of overlap between WT and L1. 

It is evident that the VOC profile of L1 with eggs (L1OV) differs significantly 

from the other three lines without eggs (Fig. 8). 

δ-elemene was the only compound previously reported by Challa (2015) that was 

not detected in any of my samples, while 3-carene and α-copaene were only seen in the 

profiles of certain lines (Table 1 - 4). 

While there were some changes observed between the VOCs of transgenic lines 

(with or without eggs) and the WT control, such as declines in β-phellandrene, and 
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increases in caryophyllene and 1-R-α-pinene (Tables 1-4) there were no significant 

differences (two-tailed t-test, P>0.05). 
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1.4 Discussion 

The two lines of Micro-Tom transgenic CCD1a over-expressing tomato plants 

used in these experiments were more attractive to CLM females than air (Fig. 4) but 

overall were no more attractive than WT plants in a two-plant choice test (Fig. 5). 

Furthermore, the mating status of females did not affect preference (Fig. 4 and 5), nor did 

the presence of deposited eggs (Fig. 6) when L1OV was compared with WT. The fact 

that CLM females showed no preferences, despite differences in the VOCs from both the 

transformed lines compared to the WT, as well as those with or without eggs, (Figs. 7 and 

8) suggests that the specific compounds used to locate host plants are always present at 

sufficiently similar concentrations/ratios to elicit positive chemotaxis. The lack of 

preference, despite differences in VOC profiles, is similar to that observed in two-plant 

Y-tube olfactometer experiments looking at female preferences to the volatiles from a 

primary (cabbage) and secondary (cotton) host plant (Jallow et al. 2004; Li & Liu 2015). 

 Both the PCA scatterplots (Figs. 7 & 8), and changes in mean peak areas of 

several specific compounds (Tables 1-4) observed (generally in keeping with the trends 

reported previously by Challa (2015)), indicated that there are changes in VOC emissions 

of CCD1a lines compared to WT. However, in the case of the specific compounds 

investigated, no significant differences were detected due to the high sample to sample 

variability. VOC profiles can be affected by temperature and water stress (Gouinguené & 

Turlings 2002), as well as individual plant genetics (Vickers et al. 2014), and slight 

differences in these might have contributed to the between sample variability observed. 
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I also observed that certain compounds, such as α-copaene and 3-carene, were 

present in the VOC profiles of some lines and not others. However, it is evident from the 

results that overall changes in the VOC profiles and/or the presence/absence of certain 

compounds did not influence the upwind chemotactic flight responses of the CLM. 

Therefore, one would conclude that none of the chemical cues used by CLMs to locate 

suitable host plants were altered enough in transformed plants to significantly modify 

female foraging behaviour. 

The decision to lay eggs or not occurs once the female locates the plant and is 

determined by leaf morphology and contact chemical cues (Landolt 1993; Ramiswamy et 

al. 1987). Thus, the ovipositional preference for CCD1a plants reported by Challa (2015) 

could be due to differences in these short-range cues between transformed and WT 

plants. The importance of these short-range cues could be tested by examining the leaf 

morphology in greater detail (scanning electron microscopy, colour spectral analysis) to 

determine if there are subtle differences not evident to the naked eye, as well as testing 

the response of chemoreceptors on the tarsi/ovipositor (Städler et al. 1995; Wallace et al. 

2004) to the leaf surface chemistry of the WT and transgenic lines.  

The general rule for the successful use of trap crops as an economically viable 

control method is that they should not represent more than 10% of all plants present 

(Hokkanen 1991; Pickett et al. 1997). Consequently, if as proposed, the oviposition 

preferences observed by Challa (2015) only occurred once the female moths contacted 

the plant, then the absence of preference by upwind chemotaxis I observed suggests that 

the transgenic lines tested would not be suitable as trap crops within a greenhouse setting, 

as CLM females would only find the trap plants by chance. Even then, if CLM females 
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showed a preference for the VOCs of transgenic plants, it would have to be very close to 

absolute preference for the transgenic plants to be effective trap crops. The lack of 

preference observed in my experiments indicate that the CCD1a Micro-Tom tomato 

plants currently available would not help reduce the CLM pest pressure in greenhouse 

crops. 
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1.5 Conclusion 

The purpose of this thesis was to determine if CLM females exhibited preferential 

chemotactic upwind flight to the VOCs from two transgenic Micro-Tom tomato lines 

with the upregulated CCD1a gene over those from the untransformed WT. While the 

DHS GC-MS data found detectable differences in the VOC profiles between genotypes, 

the results of Y-tube olfactometer choice assays found that neither virgin or mated 

females showed any significant preference between lines, and their preference was not 

affected by the presence of eggs. This would indicate that the chemical change in the 

VOCs did not sufficiently alter the chemical cues that are responsible for olfactory 

chemotaxis in the CLM. Thus, the CCD1a tomato plants tested would not be effective as 

dead-end or push-pull trap crops in an IPM program for controlling the CLM populations 

in greenhouses. 

Future Directions 

 In order to modify plants as effective trap crops, the first step would be to 

determine the specific components of the VOC blend that are used by CLM females 

when foraging for suitable oviposition sites. This could be accomplished by first 

identifying the VOC compounds that are detected by the CLM female antennae using 

GC-EAD (Gas chromatograph linked with electroantennographic detection) (Scheidler et 

al. 2015). Secondly, one would have to conduct assays to determine which compounds 

actually influence foraging behaviour. Once the ideal profile has been determined then 

the appropriate transformations could be undertaken to develop suitable trap crops. To 

date, one has looked at the CCD1a enzyme, but this is only one of many that are 
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implicated in the pathways involved in the production of VOCs and secondary plant 

metabolites (Aharoni et al. 2004; Lee & Chappell 2008). Thus the genetic manipulation 

of enzymes affecting other pathways, such as other CCDs or 9-cis-epoxycarotenoid 

enzymes (NCEDs), should be considered. Furthermore, in my study I only tested CCD1a 

in the flowering stage and in future studies one should test different phenological stages 

as VOC constituents can change with plant phenology (DellaPenna & Pogson 2006; 

Hirschberg 2001; Ilg et al. 2014; Walter & Strack 2011). 

 Furthermore, since visual, gustatory, and morphological cues are known to 

influence insect host finding and oviposition behaviour, these parameters should also be 

examined at the same time as the VOCs when developing trap crops as an effective 

alternative to synthetic insecticides for insect pest management in greenhouses. 

 

 

 

 

 

 

 

 



31 
 

 
 

1.6 Citations 

Aharoni A., Giri P., Verstappen F.W.A., Bertea C.M., Sevenier R., Sun Z., Maarten J.A., 

Schwab W. & Bouwmeester H.J. (2004) Gain and loss of fruit flavor compounds 

produced by wild and cultivated strawberry species. Plant Cell 16, 3110–3131. 

Åhman I. (2013) Breeding for inducible resistance. IOBC WPRS Bulletin 89, 311-317. 

Åhman I., Glinwood R., & Ninkovic V. (2013) The potential for modifying plant volatile 

composition to enhance resistance to arthropod pests. CAB Reviews: Perspectives in 

Agriculture, Veterinary Science, Nutrition and Natural Resources, 5, 10-34. 

Akhtar Y., Isman M.B., Niehaus, L.A., Lee C.H. & Lee H.S. (2012) Antifeedant and toxic 

effects of naturally occurring and synthetic quinones to the cabbage looper, Trichoplusia 

ni. Crop Prot. 31, 8-14. 

Badenes-Perez F.R., Shelton A.M. & Nault B.A. (2004) Evaluating trap crops for 

diamondback moth (L.), Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 

97, 1365–1372. 

Badenes-Perez F.R., Nault B.A. & Shelton A.M. (2005a) Manipulating the attractiveness 

and suitability of hosts for diamondback moth (Lepidoptera: Plutellidae). J. Econ. 

Entomol. 98, 836–844. 

Badenes-Perez F.R., Shelton A.M. & Nault B.A. (2005b) Using yellow rocket as a trap crop 

for the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). J. Econ. 

Entomol. 98, 884–890. 



32 
 

 
 

Barzman M., Bàrberi P., Birch A.N.E., Boonekamp P., Dachbrodt-Saaydeh S., Graf B., 

Hommel B., Jensen J.E., Kiss J., Kudsk P., Lamichhane J.R., Messéan A., Moonen 

A-C., Ratnadass A., Ricci P., Sarah J-L. & Sattin M. (2015) Eight principles of 

integrated pest management.  Agron. Sustain. Dev. 35, 1199-1215. 

Cáceres L.A. (2015) A study of volatile organic compounds from transgenic Arabidopsis 

thaliana and Solanum lycopersicum plants and analytical characterization of pyrolysis 

bio-oils. PhD Dissertation, Department of Chemistry, University of Western Ontario, 

London, Ontario, Canada. 

Carson R. (1962) Silent Spring, Riverside Press, Massachusetts, USA.  

Challa S. (2015) Effect of carotenoid-derived volatiles on oviposition and feeding choice of 

Trichoplusia ni and Trialeurodes vaporariorum. Master’s Thesis, Department of Biology, 

University of Western Ontario, London, Ontario, Canada. 

Coleman R.A., Barker A.M., Fenner M. & King F.C. (1997) Relative effect of different host 

feeding site on long-range host location and electroantennogram response in the 

parasitoid Cotesia glomerata (Hym., Braconidae). J Appl Entomol 121, 487–494. 

Couty A., Van Emden H., Perry J.N., Hardie J., Pickett J.A. & Wadhams L.J. (2006) The 

roles of olfaction and vision in host-plant finding by the diamondback moth (Plutella 

xylostella). Physiol. Entomol. 31, 134-145. 

Cruz-Mendívil A., Rivera-López J., Germán-Báez L.J., López-Meyer M., Hernández-

Verdugo S., López-Valenzuela J.A., Reyes-Moreno C. & Valdez-Ortizl A. (2011) A 

simple and efficient protocol for plant regeneration and genetic transformation of tomato 

cv. Micro-Tom from leaf explants. Hort. Science 46, 1655-1660. 



33 
 

 
 

DellaPenna, D. & Pogson, B.J. (2006) Vitamin synthesis in plants: tocopherols and carotenoids. 

Annu. Rev. Plant Biol. 57, 711–738. 

Eddleston M. (2016) Pesticides. Medicine 44, 193-196. 

Ehler L.E. (2006) Perspective – Integrated pest management (IPM): definition, historical 

development and implementation, and the other IPM. Pest Manag. Sci. 62, 787-789. 

Ehler L.E. & van den Bosch R. (1974) An analysis of the natural biological control of 

Trichoplusia ni (Lepidoptera: Noctuidae) on cotton in California. Can. Entomol. 

Oct.,1067-1073. 

Evans K.A. & Allen-Williams L.J. (1993) Distant olfactory responses of the cabbage seed 

weevil, Ceuthorhynchus assimilis, to oilseed rape odour in the field.  Physiol. Entomol. 

18, 251-256. 

Finch S. & Collier R.H. (2000) Host-plant selection by insects – a theory based on 

‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomol. Exp. 

Appl. 96, 91-102. 

Finch S. & Collier R.H. (2007) Host-plant finding by insects – the role of volatile plant 

chemicals. IOBC/wprs Bulletin 30, 9-16. 

Finch S. & Collier R.H. (2012) The influence of host and non-host companion plants on the 

behaviour of pest insects in field crops. Entomol. Exp. Appl. 142, 87-96. 

Fitt G.P. (2000) An Australian approach to IPM in cotton: integrating new technologies to 

minimise insecticide dependence. Crop Prot. 19, 793-800. 



34 
 

 
 

Food & Agriculture Organization (1975) Rep. FAO Panel of Experts on Integrated Pest 

Control, 5th, Oct. 15-25, 1974. Rome, Italy: FAO-UN, Meeting Rep. 1975/M/2. 41. 

Foster S.P., Howard A.J. & Harris M.O. (1997) The influence of tactile and other non-

chemical factors on the ovipositional responses of the generalist herbivore Epiphyas 

postvittana. Entomol. Exp. Appl. 83, 147–159. 

Georghiou G.P. (1990) Overview of Insecticide Resistance. pp.18 in Green M.B., LeBaron 

H.M., Moberg W.K. (eds)., Managing Resistance to Agrochemicals: From Fundamental 

Research to Practical Strategies, American Chemical Society, Washington DC, USA. 

Gouinguené S.P & Turlings T.C. (2002) The effects of abiotic factors on induced volatile 

emissions in corn plants. Plant Physiol. 129, 1296-1307. 

Gould F. (1984) Role of behavior in the evolution of insect adaptation to insecticides and 

resistant host plants. Bull. Entomol. Soc. Am. 30, 4-41. 

Heath J.J., Cipollini D.F. & Stireman III J.O. (2013) The role of carotenoids and their 

derivatives in mediating interactions between insects and their environment. Arthropod 

Plant Interact. 7, 1-20. 

Hill D. (2008) Pests of Crops in Warmer Climates and Their Control. Springer Science and 

Business Media, Berlin/Heidelberg, Germany. 

Hirschberg, J. (2001) Carotenoid biosynthesis in flowering plants. Curr. Opin. Plant Biol. 4, 

210–218. 

Hokkanen H.M.T. (1989) Biological and agrotechnical control of the rape blossom beetle, 

Meligethes aeneus (Coleoptera, Nitidulidae). Acta Entomol. Fenn. 53, 25-29. 



35 
 

 
 

Hokkanen H.M.T. (1991) Trap cropping in pest management. Annu. Rev. Entomol. 36, 119–38.  

Ilg A., Bruno M., Beyer P. & Al-Babili S. (2014) Tomato carotenoid cleavage dioxygenases 

1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-

apocarotenoids and isoprenoid volatiles. FEBS Open Bio. 4, 584-593. 

Idris A.B. & Grafius E. (1996) Effects of wild and cultivated host plants on oviposition, 

survival, and development of diamondback moth (Lepidoptera: Plutellidae) and its 

parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Environ. Entomol. 25, 

825–33. 

Jallow M.F.A., Cunningham J.P. & Zalucki M.P. (2004) Intraspecific variation for host plant 

use in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): implications for 

management, Crop. Prot. 23, 955–964. 

Judd G.J.R. & Borden J.H. (1989) Distant olfactory response of the onion fly, Delia antiqua, 

to host-pant odour in the field. Physiol. Entomol. 14, 429-441. 

Kogan K. (1998) Integrated pest management: historical perspectives & contemporary 

developments. Annu. Rev. Entomol. 43, 243-270. 

Kogan M. (1988) Integrated pest management theory and practice. Entomol. Exp. Appl. 49, 59-

70. 

Khan Z.R., Pickett J.A. & Wadhams L.J. (2001) Habitat management for the control of cereal 

stemborers in maize in Kenya. Insect Sci. App. 21, 375-380. 

Knight A.L. (1989) Economics of agricultural pesticide resistance in arthropods. Annu. Rev. 

Entomol. 34, 293-313. 



36 
 

 
 

Kotchen M.J. (1999) Incorporating Resistance in Pesticide Management: A Dynamic Regional 

Approach, Springer Verlag, New York, USA. 

Landolt P.J. (1993) Effects of host plant leaf damage on cabbage looper moth attraction and 

oviposition. Entomol. Exp. Appl. 67, 79-85. 

Landolt P.J. & Molina O. (1996) Host-finding by cabbage looper moths (Lepidoptera: 

Noctuidae) learning of host odour upon contact with host foliage. J. Insect Behav. 9, 899-

908. 

Lee S. & Chappell J. (2008) Biochemical and genomic characterization of terpene synthases in 

Magnolia grandiflora. Plant Physiol. 147, 1017–1033. 

Li Y-X. & Liu T-X. (2015) Oviposition preference, larval performance and adaptation of 

Trichoplusia ni on cabbage and cotton. Insect Sci. 22, 273-282.  

Liang J., Tang S., Nieto J.J. & Cheke R.A. (2013) Analytical methods for detecting pesticide 

switches with evolution of pesticide resistance. Math. Biosci. 245, 249-257. 

Liu T-X., Hutchinson W.D., Chen W. & Burkness E.C. (2003) Comparative susceptibilities of 

diamondback moth (Lepidoptera: Plutellidae) and cabbage looper (Lepidoptera: 

Noctuidae) from Minnesota and South Texas to lambdacyhalothrin and indoxacarb. J. 

Econ. Entomol. 96, 1230–1236. 

Lu J., Liu Y.B. & Shelton A.M. (2004) Laboratory evaluations of a wild crucifer Barbarea 

vulgaris as a management tool for diamondback moth. Bull. Entomol. Res. 94, 509–516. 

Miller J.R. & Strickler K.L. (1984) Finding and accepting host plants. pp. 127-157 in Bell, W. 

J., and Card6, R. T. (eds). Chemical Ecology of Insects, Chapman and Hall, London, UK. 



37 
 

 
 

Miller J.R. & Cowles R.S. (1990) Stimulodeterrent diversion: a concept and its possible 

application to onion maggot control. J. Chem. Ecol. 16, 3197–3212. 

National Research Council (1986) Pesticide Resistance: Strategies and Tactics for 

Management, National Academy, Washington DC, USA. 

Ngi-Song A.J., Overholt W.A., Njagi P.G.N., Dicke M., Ayertey J.N. & Lwande W. (1996) 

Volatile infochemicals used in host and host habitat location by Cotesia flavipes Cameron 

and Cotesia sesamiae (Cameron) (Hymenopotera: Braconidae), larval parasitoids of 

stemborers on Graminae. J. Chem. Ecol. 22, 307-321.  

Oerke E-C. (2006) Crop losses to pests. J. Agric. Sci. 144, 31-43. 

Oerke, E-C., Dehne H-W., Schönbeck F. & Weber A. (1994) Crop Production and Crop 

Protection – Estimated Losses in Major Food and Cash Crops, Elsevier Science, 

Amsterdam, The Netherlands. 

Palaniswamy P., Gillott C. & Slater G.P. (1986) Attraction of diamondback moths, Plutella 

xylostella (L.) (Lepidoptera, Plutellidae), by volatile compounds of canola, white 

mustard, and faba bean. Can. Entomol. 118, 1279–1285. 

Pedigo L.P., Hutchins S.H. & Higley L.G. (1986) Economic injury levels in theory and 

practice. Annu. Rev. Entomol. 31, 341-368. 

Pellegrino A.C., Peñaflor M.F.G.V., Nardi C., Bezner-Kerr W., Guglielmo C.G., Bento 

J.M.S. & McNeil J.N. (2013) Weather forecasting by insects: modified sexual behaviour 

in response to atmospheric pressure changes. PLoS ONE 8, e75004. 

https://doi.org/10.1371/journal.pone.0075004 



38 
 

 
 

Pickett J.A., Wadhams L.J. & Woodcock C.M. (1997). Developing sustainable pest control 

from chemical ecology. Agric. Ecosyst. Environ. 64, 149-156. 

Pimentel D. (1991) Diversification of biological control strategies in agriculture. Crop Prot. 10, 

243-253. 

Pimentel D. (2009) Pesticides and pest control. pp. 83-87 in Rajinder P. & Dhawan A. (eds)., 

Integrated Pest Management: Innovation-Development Process (Vol. 1), Springer, B.V., 

The Netherlands. 

Pimentel D. & Burgess M. (2014) Pesticides applied worldwide to combat pests. pp. 1-14 in 

Peshin R, & Pimentel D. (eds)., Integrated Pest Management, Springer, Dordrecht, The 

Netherlands. 

Pitan R.O. & Olatunde G.O. (2006) Effects of intercropping tomato (Lycopersicon esculentum) 

at different times with cowpea (Vigna unguiculata or okra (Abelmoschus esculentus) on 

crop damage by major insect pests. J. Agric. Sci. 144, 361-368. 

Pivnick K.A., Jarvis B.J. & Gillott, C. (1990) Daily patterns of reproductive activity and the 

influence of adult density and exposure to host plants on reproduction in the 

diamondback moth (Lepidoptera: Plutellidae). Environ. Entomol. 19, 587–590. 

Pivnick K.A, Jarvis B.J. & Slater G.P. (1994) Identification of olfactory cues used in host-

plant finding by Diamond-back moth, Plutella xylostella (Lepidoptera: Plutellidae). J. 

Chem. Ecol. 20, 1407–1427. 

Plapp F.W. (1976) Biochemical genetics of insecticide resistance. Annu. Rev. Entomol. 21, 179-

198. 



39 
 

 
 

Prokopy R.J. (2003) Two decades of bottom-up, ecologically based pest management in a small 

commercial apple orchard in Massachusetts. Agric. Ecosyst. Environ. 94, 299-309. 

Prokopy R.J. & Croft B.A. (1994) Apple insect management. pp. 543-589 in Metcalf R.L., 

Luckman W.H. (eds)., Introduction to Insect Pest Management, Wiley, New York USA. 

Pyke B., Rice M., Sabine B. & Zalucki M.P. (1987) The push-pull strategy -- behavioural 

control of Heliothis. Australian Cotton Grower, May-July, 7-9. 

Ramiswamy S.B., Ma W.K. & Baker G.T. (1987) Sensory cues and receptors for oviposition 

by Heliothis virescens. Entomol. Exp. Appl. 43, 159-168. 

Reddy G.V.P. & Guerrero A. (2000). Behavioral responses of the diamondback moth, Plutella 

xylostella, to green leaf volatiles of Brassica oleracea subsp capitata. J. Agricult. and 

Food Chem. 48, 6025–6029. 

Reddy G.V.P., Tabone E. & Smith M.T. (2003). Mediation of host selection and oviposition 

behavior in the diamondback moth Plutella xylostella and its predator Chrysoperla 

carnea by chemical cues from cole crops. Biol. Control 29, 270–277. 

Richter E.D. (2002) Acute human poisonings. pp. 3-6 in Pimentel D. (ed)., Encyclopedia of Pest 

Management, Dekker, New York, USA. 

Rojas J.C. & Tristram D.W. (1999) Role of visual cues and interaction with host odour during 

the host-finding behaviour of the cabbage moth. Entomol. Exp. Appl. 91, 59-65. 

Root R.B. (1973) Organization of a plant-arthropod association in simple and diverse habitats: 

the fauna of collards (Brassica oleracea). Ecol. Mono. 43, 187-194. 



40 
 

 
 

Roush R.T. & McKenzie J.A. (1987) Ecological genetics of insecticide and acaricide 

resistance. Annu. Rev. Entomol. 32, 361-380. 

Sarfraz R.M., Cervantes V. & Myers J.H. (2011) The effect of host plant species on 

performance and movement behaviour of the cabbage looper Trichoplusia ni and their 

potential influences of infection by Autographa californica multiple nucleopolyhedral 

virus. Agri. For. Entomol. 13, 157-164. 

Scheidler N.H., Liu C., Hamby K.A., Zalom F. & Syed Z. (2015) Volatile codes: correlation 

of olfactory signals and reception in Drosophila-yeast chemical communication. Sci. Rep. 

5, https://doi:10.1038/srep14059 

Seiferle E.J. & Frear D.E.H. (1948) Insecticides derived from plants. Ind. Eng. Chem. 40, 683-

691. 

Shelton A.M. & Nault B.A. (2004) Dead-end trap cropping: a technique to improve 

management of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). 

Crop Prot. 23, 497–503. 

Shorey H.H. & Hale R.L. (1965) Rearing of the larvae of nine noctuid species on a simple 

artificial medum. J. Econ. Entomol. 58, 522-524. 

Städler E. (1974) Host plant stimuli affecting oviposition behaviour of the Eastern spruce 

budworm. Entomol. Exp. Appl. 17, 176-188. 

Städler E. Renwick J.A.A., Radke C.D. & Sachdev-Gupta K. (1995) Tarsal contact 

chemoreceptor response to glucosinolates and cardenolides mediating oviposition in 

Pieris rapae. Physiol. Entomol. 20, 175-187. 



41 
 

 
 

Steinberg S., Dicke M., Vet L.E.M. & Wanningen R. (1992) Response of braconid Cotesia (= 

Apanteles) glomeruta to volatiles infochemicals: Effect of bioassay set-up, parasitoid age 

experience and barometric flux. Entomol. Exp. Appl. 3, 163-175. 

Stern V.M. (1966) Significance of the economic threshold in integrated pest control. pp. 41-56 

in Food and Agriculture Organization, Proc. FAO Symp. Integrated Pest Control. Rome, 

Oct. 11-15, 1965, FAO-UN, Rome, Italy. 

Stern V.M. (1973) Economic thresholds. Annu. Rev. Entomol. 18, 259-280. 

Stern V.M., van den Bosch R. & Leigh T.F. (1964) Strip cutting alfalfa for lygus bug control. 

Calif. Agric. 18, 4-6. 

Stern V.M., Smith R.F., van den Bosch R. & Hagen K.S. (1959) The integrated control 

concept. Hilgardia 29, 81-101. 

Sun H.J., Uchii S., Watanabe S. & Ezura H. (2006). A highly efficient transformation protocol 

for Micro-Tom, a model cultivar for tomato functional genomics, Plant and Cell Physiol. 

47, 426-431. 

Tabashnik B.E. (1994) Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 

39, 47-79. 

Tahvanainen J.O. & Root R.B. (1972) The influence of vegetational diversity on the 

population ecology of a specialised herbivore, Phyllotreta crucifera (Coleoptera: 

Chrysomelidae). Oecologia 10, 321–346. 

Tang S. & Cheke R.A. (2008) Models for integrated pest control and their biological 

implications. Math. Biosci. 215, 115-125. 



42 
 

 
 

Thorsteinson A.J. (1960) Host selection in phytophagous insects. Annu. Rev. Entomol. 5, 193-

218. 

Vickers C.E., Bongers M., Qing L., Delatte T. & Bouwmeester H. (2014) Metabolic 

engineering of volatile isoprenoids in plants and microbes. Plant, Cell, and Environ. 37, 

1753-1775. 

Wallace E.K., Albert P.J. & McNeil J.N. (2004) Oviposition behaviour of the eastern spruce 

budworm, Choristoneura fumiferana (Clemens) (Lepidoptera: Torticidae). J. Insect 

Behav. 17, 245-254. 

Walter M.H. & Strack D. (2011) Carotenoids and their cleavage products: biosynthesis and 

functions. Nat. Prod. Rep. 28, 663–692. 

Wellington W.G. (1946) The effects of variation in atmospheric pressure upon insects. Can. J. 

Res. 24, 51-70. 

World Health Organization (1990) Public health impact of pesticides used in agriculture, 

Silent Spring, Houghton Miffin Company Press, Boston, USA. 

Wratten S.D. & van Emden H.F. (1995) Habitat management for enhanced activity of natural 

enemies of insect pests. pp. 117-145 in Glen D.M., Greaves M.P., Anderson H.M. (eds)., 

Ecology and Integrated Farming Systems. John Wiley, Chicester, UK.  

Zhang W., Jiang F. & Ou J. (2011) Global pesticide consumption and pollution: with China as 

a focus. Proc. Int. Acad. Ecol. Environ. Sci. 1, 125-144. 

 



43 
 

 
 

Appendix A– Raw Data Tables 

 

 

      

 



44 
 

 
 

 

 

 



45 
 

 
 

  

 

 



46 
 

 
 

 

 



47 
 

 
 

Appendix B – Gas Chromatography-Mass Spectrometry 

Chromatographs for Tomato VOC Analyses 

 

 

 



48 
 

 
 

 

 

 

 



49 
 

 
 

Curriculum Vitae 

Name 

William Laur 

 

Education 

University of Western Ontario                                                                            

  2009-2013 

 B.Sc. in Medical Cell Biology/Biology 

 

Related Work Experience 

 

Research Assistant  

-Agriculture and Agri-Food Canada, London Research and Development Center          

2015-2017 

 

Teaching Assistant                                                                                                            

2015-2017 

-Introductory Biology                                                                                                       

2015-2017 

-Ecology                                                                                                                            

2015-2017 

-Biology of Fungi                                                                                                             

2015-2017 

 

Publications 

 

Laur W., Hughes S. Caceres L., Challa S., Hannoufa A. & Scott I. M. (2017)     

Modifying the expression of plant volatiles to affect the behaviour of greenhouse 

insect pests. pp. 31-36 in Gobin B., & Buitenhuis R (eds). Working Group “Int. 

Control in Prot. Crops, Temp. Clim.” Proc. of the Working Group Meetings at 

Niagara Falls (Can), 4-8 June, 2017. 

 


	Relative Attraction of the Cabbage Looper Moth (Trichoplusia ni (Hübner)) to Wild-type and Transgenic Tomato (Solanum lycopersicum L.)
	Recommended Citation

	tmp.1513702046.pdf.hGzjx

