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Abstract 

Horizontal and vertical deformation of the Earth’s crust is due to a variety of different 

geophysical processes that take place on various spatiotemporal scales. The quality of the 

observations from spaced-based geodesy instruments such as Global Positioning System 

(GPS) and differential interferometric synthetic aperture radar (DInSAR) data for monitoring 

these deformations are dependent on numerous error sources. Therefore, accurately 

identifying and eliminating the dominant sources of the error, such as troposphere error in 

GPS signals, is fundamental to obtain high quality, sub-centimeter accuracy levels in 

positioning results.  

In this work, I present the results of double-differenced processing of five years of GPS data, 

between 2008 and 2012, for sparsely distributed GPS stations in southeastern Ontario and 

western Québec. I employ Bernese GPS Software Version 5.0 (BSW5.0) and found two 

optimal sub-networks which can provide high accuracy estimation of the position changes. I 

demonstrate good agreement between the resulted coordinate time series and the estimates of 

the crustal motions obtained from a global solution. In addition, I analyzed the GPS position 

time series by using a complex noise model, a combination of white and power-law noises. 

The estimated spectral index of the noise model demonstrates that the flicker noise is the 

dominant noise in most GPS stations in our study area. The interpretation of the observed 

velocities suggests that they provide an accurate constraint on glacial isostatic adjustment 

(GIA) prediction models.  

Based on a deeper analysis of these same GPS stations, I propose a model that accurately 

estimates the seasonal amplitude of zenith tropospheric delay (ZTD) error in the GPS data on 

local and regional spatial scales. I process the data for the period 2008 through 2012 from 

eight GPS stations in eastern Ontario and western Québec using precise point positioning 

(PPP) online analysis available from Natural Resource Canada (NRCan) 

(https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php). The model is an elevation-

dependent model and is a function of the decay parameter of refractivity with altitude and the 

seasonal amplitude of refractivity computed from atmospheric data (pressure, temperature, 

and water vapor pressure) at a given reference station. I demonstrate that it can accurately 

https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php
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estimate the seasonal amplitude of ZTD signals for the GPS stations at any altitude relative to 

that reference station.  Based on the comparison of the observed seasonal amplitudes of the 

differenced ZTD at each station and the estimates from the proposed model, it can provide an 

accurate estimation for the stations under normal atmospheric conditions. The differenced 

ZTD is defined as the differences of ZTD derived from PPP at each station and ZTD at the 

reference station. Moreover, I successfully compute a five-year precipitable water vapor 

(PWV) at each GPS site, based on the ZTD derived from meteorological data and GPS 

processing. The results provide an accurate platform to monitor long-term climate changes 

and inform future weather predictions. 

In an extension of this research, I analyze DInSAR data between 2014 and 2017 with high 

temporal and spatial resolution, from Kilauea volcano in Hawaii in order to derive the spatial 

and temporal pattern of the seasonal amplitude of ZTD. I propose an elevation-dependent 

model by the data from a radiosonde station and observations at a surface weather station for 

modeling the seasonal amplitudes of ZTD at any arbitrary elevation. The results obtained 

from this model fit the vertical profile of the observed seasonal amplitude of ZTD in 

DInSAR data, increasing systematically from the elevation of the DInSAR reference point. I 

demonstrate that the proposed model could be used to estimate the seasonal amplitude of the 

differenced ZTD at each GPS station within a local network with high accuracy. The results 

of this study concluded that, employing this model in GPS processing applications eliminates 

the need for the meteorological observations at each GPS site.  

Keywords 

GPS data processing, GIA, meteorological data, zenith tropospheric delay, precipitable water 

vapor, elevation-dependent seasonal amplitude  
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Chapter 1  

 General Introduction 

 Introduction 

Ground surface deformation is the result of various geophysical processes. Therefore, 

employing space-based geodesy techniques such as Global Positioning System (GPS) and 

differential interferometric synthetic aperture radar (DInSAR) is fundamental in 

providing high accuracy measurements of the horizontal and vertical components of 

position changes at various spatial and temporal resolutions. Installation and maintenance 

of GPS networks is expensive, so that GPS stations often are distributed quite sparsely. 

As a result, it is important to ensure an accurate configuration of GPS stations and the 

employment of appropriate methods which can accurately compute the regional vertical 

and horizontal components of the GPS station positions.  

Many studies have been carried out to employ GPS data for measuring surface 

deformation (Calais et al. 2006), co-seismic displacement (Hudnut et al. 1996), seasonal 

variations in response to the hydrological and atmosphere loading (VanDam et al. 2001; 

Dong et al. 2002; VanDam et al. 2012), and motion resulting from glacial isostatic 

adjustment (GIA) (Sella et al. 2007; Tiampo et al. 2011). In addition, a variety of 

research has been conducted that uses high spatial resolution DInSAR data for observing 

ground motion (Zebker & Goldstein 1986; Gabriel et al. 1989; Massonnet & Feigl 1998; 

Manconi et al. 2010; Samsonov & d’Oreye 2012).  

When a radio signal propagates through the tropospheric and ionospheric layers of the 

atmosphere, its arrival time to the receiver increases or decreases, respectively (Hoque & 

Jakowski 2012). The induced delays, particularly from the ionosphere and the 

troposphere layers of the atmosphere, are the dominant source of error in GPS 

observations and can produce up to approximately 600 meters geo-location error 

(Celestino et al. 2007). Hence, adequate modeling and elimination of this delay is of great 

significance in obtaining accurate positioning results. The delay due to the ionosphere 

layer is dispersive and depends on the frequency of the radio signal. Eliminating this 
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effect from GPS data can be achieved through the combination of two or three separate 

frequency signals or by employing other data sources (Shrestha 2003; 

Katsougiannopoulos 2008; Sokolovskiy et al. 2008; Elizabeth et al. 2010; Kim & Tinin 

2011; Liu et al. 2016).  

The tropospheric delay is not dependent on the frequency of the propagating signal, and it 

is widely variable in time and space, mainly reliant on water vapor. Several models and 

strategies have been proposed for reducing the effect of this delay from GPS data. These 

methods are either independent from the surface meteorological data (Hopfield 1969; 

Saastamoinen 1973; Goad & Goodman 1974) or they are based on the high-resolution 

meteorological observations and low spatial resolution numerical weather prediction 

models (van Dam et al. 1994; Bevis et al. 1992; Hofmann-Wellenhof et al. 2001; Flouzat 

et al. 2009; Dousa 2010; Mousa et al. 2011; Li et al. 2014; Pikridas et al. 2014; Yuan et 

al. 2014).  

The tropospheric delay is computed in the zenith direction and can be incorporated into 

techniques for calculating the amount of precipitable water vapor (PWV), the most 

important greenhouse gas, in the atmosphere. The monitoring of long term PWV is 

valuable for weather and climate changes prediction (Jin & Luo 2009; Morland et 

al. 2009; Pikridas et al. 2014; Bianchi et al. 2016).  

In this dissertation, I use GPS data from the POLARIS (Portable Observatories for 

Lithospheric Analysis and Research Investigating Seismicity) continuous GPS (cGPS) 

regional network (Eaton et al. 2005) in southeastern Ontario and western Québec and   

combine them with data from other high-quality sites.  This data is processed with 

different network configurations by employing double-differencing method in Bernese 

GPS Software Version 5.0 (BSW5.0). Interpretation of the results and comparison with 

global solutions indicate a more accurate crustal velocity field for the study of regional 

geophysical processes, and can be used to constrain the GIA prediction models.  

I extend the analysis of the GPS data from this region, reprocessed using a precise point 

positioning (PPP) technique in order to analyze the amount of the error in the GPS height 

time series and compute the PWV at each station. Inspired by the work of Samsonov et 
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al. (2014), I propose a method to estimate the elevation-dependent seasonal amplitude of 

zenith tropospheric delay (ZTD) at GPS stations using meteorological data in an area 

which does not have significant topography. The proposed model has a good agreement 

with the seasonal amplitude of ZTD derived from PPP.  

I employ the spatially dense DInSAR data to estimate the tropospheric error in a local 

region and use it to correct a GPS network on the island of Hawaii. Initially, the DInSAR 

time series in line-of-sight (LOS) direction at each pixel is converted into the vertical 

component. Then, I derive the seasonal amplitude of ZTDs in the vertical time series of 

more than one million DInSAR pixels. I propose a simplified one-dimensional 

exponential function based on the data from a surface weather collocated with the 

DInSAR reference location, and a radiosonde station, to accurately fit the DInSAR-

derived seasonal amplitudes. This model provides an accurate estimate of the seasonal 

amplitude of local ZTD in GPS data at any location and elevation on the island.  

In the next sections, I introduce the details of GPS, GPS processing techniques and 

different approaches for tropospheric delay modeling. 

 Global Positioning System (GPS)  

GPS is the fully functional radiometric space-based Global Navigation Satellite System 

(GNSS) developed by the U.S. Department of Defense for military applications in the 

1970’s. In 1983, it became available for civilian usage. Since then, its usage has 

expanded to include estimation of accurate, real-time three-dimensional position and 

velocity in a common reference system. In addition, it is broadly employed for achieving 

high precision timing for communication purposes (Misra & Enge 2006). The GPS 

system is composed of three distinct segments such as control segment, space segment, 

and user segment, described in detail in the following sections. 

1.2.1 The Space Segment   

Currently, GPS has a constellation of 31 medium Earth orbit (MEO) satellites launched 

into six near-circular orbital planes separated by 60° of right ascension and inclination of 

approximately 55° to Earth’s equator (Kaplan 1996). Satellite orbits are located at an 
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altitude of 20,183 km from the center of Earth (Montenbruck & Gill 2000; Misra & Enge 

2006). This satellites organization allows for at least six satellites to be in the LOS 

simultaneously from almost any point on Earth’s surface at any moment. This 

arrangement also allows that at least four satellites to be observed at least 15° above the 

horizon (Gao 2008).  Figure 1.1 shows the configuration of GPS satellites. 

 

Figure 1.1. The orbital configuration (http://www.gps.gov/systems/gps/space/, 2017). 

The GPS satellites transmit radio signals to receivers located on Earth. The GPS signal 

carries C/A (Coarse Acquisition) code and P-code (Precise) by utilizing two frequencies: 

L1 is 1575.42 MHz and L2 at 1227.60 MHz, respectively. The power source of each 

satellite is solar panels, and they use a propulsion system for orbit adjustments. The GPS 

satellites are equipped with accurate rubidium and cesium clocks for highly accurate 

timing. Each satellite broadcasts a message that allows the receiver to recognize the 

satellite’s position and time and to compute the pseudo-range to that satellite. The 

pseudo-range refers to the measured range, which is not exactly equal to the actual range 

between the satellite and receiver, as it contains errors due to the bending of the radio 

signal as it passes through various layers of the atmosphere (Figure 1.2).  
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Figure 1.2. Transmitting the satellite signals to the receiver on Earth 

(https://www.novatel.com/an-introduction-to-gnss/chapter-2-basic-gnss-concepts/step-2-

propagation/, 2017) 

 

1.2.2 The Control Segment   

Currently, the control segment of GPS systems is composed of one master control station, 

sixteen monitoring stations located throughout the world and four ground control stations. 

The master control station is located at Schriever Air Force Base (AFB) in Colorado 

Springs in the US and collects atmospheric data, range and carrier measurements and 

satellites signals from the monitoring stations and computes the satellite orbit 

(ephemerides) and satellite clock parameters (Duquenne et al. 2005). Then the calculated 

information is sent to one of the four ground stations, and the antenna of the ground 

station broadcasts that information to the GPS satellite constellation through an S-band 

signal. 
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1.2.3 The User Segment   

The user segment is composed of receiver technologies for computing local position in 

the Earth-centered fixed WGS84 reference system and for calculating the receiver clock 

offset. The GPS applications in the civilian community have expanded as a result of the 

decreasing cost of accessibility to GPS technology in the recent years.  

Code and carrier phase measurements are the two important GPS measurements.  

1.2.4 Code Pseudo-Range Measurements  

The code pseudo-range measurements are measured at a GPS receiver. The GPS receiver 

computes the travel time of the signal from a GPS satellite, through the comparison of the 

pseudo-random noise (PRN) code, generated in the receiver, and the identical code of the 

arrived signal. Because of the errors in the code pseudo-range measurements, the 

positioning will be at the low level of accuracy, on the order of a few meters. The 

measured pseudo-range for a receiver and a satellite can be written as follow: 

𝑃 = 𝜌 + 𝑑𝜌 + 𝑐(𝑑𝑡 − 𝑑𝑇) + 𝑑𝑖𝑜𝑛 + 𝑑𝑡𝑟𝑜𝑝 + 𝜀𝑝                    (1.1) 

where, P is the measured pseudo-range, 𝜌 is the geometric distance measured from the 

position vector of the satellite and a receiver, 𝑑𝜌 is the orbital error, 𝑐 is the velocity of 

light, 𝑑𝑡 is the error of satellite clock, 𝑑𝑇 is the error of receiver clock, 𝑑𝑖𝑜𝑛 and 𝑑𝑡𝑟𝑜𝑝 are 

the ionospheric and tropospheric delay, respectively, 𝜀𝑝 is the multipath error and the 

receiver code noise which can be modelled to obtain high accuracy geodetic results.  

1.2.5 Phase Measurements  

The phase measurements are computed based on the difference between the carrier phase 

generated in the receiver and that transmitted from the satellite. To convert the carrier 

phase to range between receiver and satellite, there is a need to know the number of full 

cycles and the fractional cycle. The receiver can measure only the fractional part of the 

carrier phase, and therefore the integer wavelengths remain unknown. To solve for the 

integer ambiguity and to provide a millimeter level of accuracy of range measurements, 
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double-differenced of phase method is mostly employed (see Section 1.4.2) (Raquet & 

Lachapelle 2001). 

Φ =  𝜌 + 𝑑𝜌 + 𝑐(𝑑𝑡 − 𝑑𝑇) + 𝜆𝑁 − 𝑑𝑖𝑜𝑛 + 𝑑𝑡𝑟𝑜𝑝 + 𝜀Φ                         (1.2) 

where, Φ is the observed carrier phase range, N is the integer ambiguity, 𝜆 is the 

wavelength of the carrier wave and 𝜀Φ the multipath error and the receiver carrier phase 

noise. The other parameters are as defined for Equation 1.1.  

 GPS Observation Errors 

From Equations (1.1) and (1.2), the GPS measurements consist of various sources of 

biases and errors, including receiver and satellite clock errors, orbital errors, tropospheric 

and ionospheric errors, receiver noise and multipath error, each of which must be 

identified and eliminated for high accuracy positioning.  

1.3.1 Satellite Clock Error 

Accurate atomic clocks are utilized on the satellites. However, instabilities of up to a few 

milliseconds, approximately 10 ns, can produce significant inaccuracies, approximately 3 

m, in the positioning, such that it affects the accuracy of measuring the range to a 

satellite. Although the clock error correction is determined at the master control station 

and the correction coefficients are transmitted to the user together with the GPS signal, 

they are not accurate enough and the accuracy of the positioning estimates are on the 

order of ±2 meter (Hugentobler et al. 2001). For more precise estimates, the accurate 

information of the satellite clock calculated either by PPP or spaced based augmentation 

system (SBAS) can be employed. However, differencing approaches which can eliminate 

the effect of this error from the GPS observables are used in positioning applications (see 

Section 1.4). 

1.3.2 Receiver Clock Error 

The receiver clock error relates to the type of clock used in the receiver. To lower the 

weight of the GPS receivers and lower the cost, less stable quartz crystal oscillators are 

employed and, therefore, an offset occurs during the navigation. In the absolute 
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positioning, this error is estimated as an unknown together with the position of the 

receiver. In the relative positioning, the differencing methods completely eliminate this 

error from the GPS observables (see Section 1.4).   

1.3.3 Ionospheric Error  

The ionosphere error is due to the density of the ionized plasma of electrons and is 

dependent on the total electron contents (TEC) in the ionosphere layer that lies between 

50 and 1000 km above the surface of Earth. In this region, the GPS signals are deflected 

and are exposed to delay in the arrival time. The amount of this delay on the signal 

changes based on the variation of the ionosphere density. The ionosphere is a dispersive 

medium at radio frequencies and therefore the effect of delay on a GPS signal is 

dependent on the frequency of the signal. GPS monitoring stations can calculate the 

ionosphere correction based on the physical characteristics of the ionosphere and transmit 

the correction coefficients to the user, but they are not accurate enough, and this delay 

remains the most significant error in precise positioning.  Employing a dual frequency 

receiver can remove the ionospheric effect by forming linear combination of L1 and L2.  

This error in the differencing of the GPS observations between sites can be minimized 

(see Sections 1.4 and 1.5). 

1.3.4 Tropospheric Error 

The tropospheric error occurs as the signal travels through the lower layer of the 

atmosphere, below 9-16 km above the surface of Earth. As Figure 1.2 illustrates, the 

signal is bent as the result of the variability in the refractive index of the troposphere, and 

therefore the path length of the signal is exceeded and causes a delay in the arrival of the 

signal. This delay depends on the temperature, pressure and the water vapor content of 

the atmosphere and highly influences the positioning accuracy. Signals from satellites 

closer to the horizon are more delayed because the density of the effective parameters is 

increased. Unlike the ionosphere, the troposphere is a non-dispersive medium, and 

therefore the effects of this error on the GPS signals are not dependent on the signal’s 

frequency. As a result, dealing with the tropospheric delay becomes a more problematic 
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issue than that of ionospheric delay, and removing this effect from the signals requires 

more complex models. Modeling of this error is discussed in detail in Section 1.6. 

1.3.5 Satellite Orbit Error 

The accurate information about the shapes of the satellite orbits, which is always 

variable, is significant for the GPS receiver to determine the precise position. The 

variations of the satellite orbit are continually monitored by the ground stations, and 

corrections are transmitted to the satellite. Even with the corrections, some small errors 

remain in the orbit which is due to the errors in the observations at the monitoring 

stations and causes up to 2.5 m error in positioning (Bauersima 1983). In this case, 

employing the accurate post-mission orbits, which are given by the National Geodetic 

Survey (NGS), the International GPS Service (IGS), and the Center for Orbit 

Determination in Europe (CODE), is essential to calculate precise GPS position. 

1.3.6 Receiver Noise 

Receiver noise occurs during the processing of the received signal when generating the 

pseudo-range and phase measurements. These are considered to be white noise because 

they are time-independent. The magnitude of the receiver noise for the code and phase 

measurements are not the same, and they are not correlated with each other. The 

magnitude of the receiver error is approximately 1% of the wavelength of the signal. The 

maximum error for C/A code measurement and P-code is approximately 3 m and 30 cm, 

respectively. The amount of this error on the carrier phase is approximately 3 mm. It is 

worthwhile to mention that that increasing the elevation angle between the satellite and 

the receiver (up to an approximately45°) results in decreasing the amount of the receiver 

noise (Raquet & Lachapelle 2001). 

1.3.7 Multipath Error 

The multipath error is the result of the arrival of a signal to the receiver after reflection 

off various objects (Figure 1.2) and is dependent on the neighborhood of high buildings, 

trees, and the ground. The amount of this error is a few meters, and it is a limiting factor 

for precise positioning (Larson et al. 2007). To minimize this error in the GPS 

http://onlinelibrary.wiley.com/doi/10.1029/2007JB005194/full#jgrb15425-bib-0021
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observations, receivers are designed to receive the signals above 15° from the horizon. 

Ray (2000) and Ray & Cannon (2001) proposed a model in which they filter single-

differenced measurements of code, phase, and signal-to-noise ratio (SNR) together to 

calculate the multipath parameter. Their approach results in an improvement of up to 

24% in the carrier phase measurements and up to 21% in the code measurements.  

In real-time navigation applications, including dynamic GPS attitude determination 

(Chen et al. 2012; Cong et al. 2015), only one GPS receiver is adopted, and the range to a 

satellite is computed based on the code pseudo-range measurements approach. In high 

accuracy positioning applications, the differences of GPS observations which can reduce 

or eliminate some of the associated errors should be employed (Misra & Enge 2006). 

Three important approaches for high accuracy GPS positioning are available and they are 

based on differencing the observations from two or more than two receivers. 

 Differential GPS Observations 

To further reduce the measurement errors and to achieve sub-millimeter positioning 

accuracy, the differences of the GPS observations must be made by using two or more 

GPS receivers. This is because the satellite clock errors, orbital errors and the 

atmospheric related errors exhibit strong spatial and temporal correlation. In other words, 

these errors are more similar between the closer receivers and the smaller time difference 

between the adjacent observations (Misra & Enge 2006).  

1.4.1 Single Differences 

The single difference method is either the differences of the measurements to a common 

satellite observed at two stations or the differences of the measurements to two satellites 

observed at one station. In the former approach, one station has known coordinates and is 

considered as a reference station and the coordinate of the other station is computed 

relative to that reference station. In the latter approach, only one receiver, which has 

unknown position, is involved.  

The between-stations single difference method is typically implemented and is shown 

below:  
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The single difference between the observations of the two receivers, typically is indicated 

by Δ, is used to compute the motion of Receiver 2 at epoch t relative to Receiver 1, the 

reference station (Figure 1.3). As Figure 1.3 indicates, the two stations are observing the 

same satellite.  

 

Figure 1.3. Single Differences between two receivers (Vimal 2013). 

The single differences for the pseudo-range observations, ∆𝑝, and the phase observations, 

∆Φ, can be written as follows (Raquet & Lachapelle 2001): 

∆𝑝 = ∆𝜌 + ∆𝑑𝜌 − 𝑐∆𝑑𝑇 + ∆𝑑𝑖𝑜𝑛 + ∆𝑑𝑡𝑟𝑜𝑝 + ∆𝜀𝑝 

             ∆Φ = ∆𝜌 + ∆𝑑𝜌 − 𝑐∆𝑑𝑇 + 𝜆Δ𝑁 − ∆𝑑𝑖𝑜𝑛 + ∆𝑑𝑡𝑟𝑜𝑝 + ∆𝜀Φ      (1.3) 

where, ∆𝜌 is the single differences for the geometric distance, ∆𝑑𝜌 is the single 

differences for the orbital error, ∆𝑑𝑇 is the single differences for the receiver clock’s 

error, ∆𝑑𝑖𝑜𝑛 and ∆𝑑𝑡𝑟𝑜𝑝 are the single differences for the ionospheric and tropospheric 

delays, ∆𝜀𝑝 is the single differences for the multipath error and the receiver code noise 

for the code observations, ∆𝜀Φ is the single difference for the multipath error and the 

receiver code noise for the phase observations.  

Receiver 1 Receiver 2 

Satellite 
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As shown in Equation 1.3, in the single difference approach the orbit errors and the local 

atmospheric errors are reduced and the satellite clock errors are removed. Note that in 

Equation 1.3, the observations from the Receiver 2 are subtracted from those from the 

reference station, Receiver 1.  

 

1.4.2 Double Differences 

The receiver-satellite double difference is computed by forming the combination of the 

two single differences between satellites, typically is shown by ∇, and between receivers, 

∆, as follows (Raquet & Lachapelle 2001): 

∆∇= {(∙)𝑠𝑎𝑡2 − (∙)𝑠𝑎𝑡1}𝑟𝑒1 − {(∙)𝑠𝑎𝑡2 − (∙)𝑠𝑎𝑡1}𝑟𝑒2 

∆∇p = ∆∇ρ + ∆∇dρ + ∆∇𝑑𝑖𝑜𝑛 + ∆∇𝑑𝑡𝑟𝑜𝑝 + ∆∇𝜀𝑝 

            ∆∇Φ = ∆∇ρ + ∆∇dρ + λ∆∇N − ∆∇𝑑𝑖𝑜𝑛 + ∆∇𝑑𝑡𝑟𝑜𝑝 + ∆∇𝜀Φ        (1.4) 

where, ∆∇p and ∆∇Φ are the double differences for pseudo-range and phase 

observations, respectively. ∆∇ρ is the double differences for the geometric distance, 

∆∇dρ is the double differences for the orbital error, ∆∇𝑑𝑖𝑜𝑛 and ∆∇𝑑𝑡𝑟𝑜𝑝 are the double 

differences for the ionospheric and tropospheric delays, ∆∇𝜀𝑝 is the double differences 

for the multipath error and the receiver code noise for the code observations, ∆𝜀Φ is the 

double difference for the multipath error and the receiver code noise for the phase 

observations.   

Constructing the double differences leads to the removal of the receiver and the satellite 

clock errors and it also reduces the orbital errors and the errors due to propagation in the 

atmosphere. This approach is widely used for accurate static and kinematic positioning.   
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Figure 1.4. Satellite-Receiver Double Differences (Vimal 2013).  

 

1.4.3 Triple Differences 

The triple differences approach is used to deal with the cycle slip, which occurs due to 

the loss of signal between the satellite and receiver (Hugentobler et al. 2001). As Figure 

1.5 illustrates, three single differences are formed between two receivers, two satellites 

and two epochs, 𝑡1 and 𝑡2, is shown by 𝛿. Equation 1.5 presents the phase triple 

difference observations (Raquet & Lachapelle 2001): 

𝛿∆∇= [{(∙)𝑠𝑎𝑡2 − (∙)𝑠𝑎𝑡1}𝑟𝑒1 − {(∙)𝑠𝑎𝑡2 − (∙)𝑠𝑎𝑡1}𝑟𝑒2]𝑡1 − 

[{(∙)𝑠𝑎𝑡2 − (∙)𝑠𝑎𝑡1}𝑟𝑒1 − {(∙)𝑠𝑎𝑡2 − (∙)𝑠𝑎𝑡1}𝑟𝑒2]𝑡2 

            𝛿∆∇Φ = 𝛿∆∇ρ + 𝛿∆∇dρ − 𝛿∆∇𝑑𝑖𝑜𝑛 + 𝛿∆∇𝑑𝑡𝑟𝑜𝑝 + 𝛿∆∇𝜀Φ        (1.5) 

where, 𝛿∆∇Φ is the triple differences for phase observations. 𝛿∆∇ρ is the triple 

differences for the geometric distance, 𝛿∆∇dρ is the triple differences for the orbital 

error, 𝛿∆∇𝑑𝑖𝑜𝑛 and 𝛿∆∇𝑑𝑡𝑟𝑜𝑝 are the triple differences for the ionospheric and 

tropospheric delays, 𝛿∆∇𝜀Φ is the triple differences for the multipath error and the 

receiver code noise for the code observations, 𝛿∆∇𝜀Φ is the triple difference for the 

multipath error and the receiver code noise for the phase observations. 

Receiver 1 

Satellite 1  

Receiver 2 

Satellite 2 
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Figure 1.5. Triple Differences (Davidson 2016). 

Because this approach can remove the initial ambiguity and estimates the approximate 

position of the receivers, it is used in pre-processing and before double differencing for 

the phase measurements (Davidson 2016). Similar to the double differencing method, this 

approach eliminates the satellite’s and receiver’s clock’s errors and reduces the 

ionospheric and tropospheric errors.  

 Ionosphere Delay Modeling  

To achieve a high precision GPS positioning, the ionospheric effect must be corrected 

from the GPS observables. For this purpose, currently, various linear combination of 

code and phase measurements including ionosphere-free (Odijk 2003), geometry-free 

(ionospheric) (Huang et al. 2012), wide-lane (Cocard & Geiger 1992), and Melbourne-

Wübbena (Melbourne 1985; Wübbena 1985) are used in different applications. For 

example, Erenoglu (2015) used a geometry-free approach to compute the vertical TEC 

without reducing the number of code measurements. Liu (2010) used the Melbourne-

Wübbena wide-lane (MWWL) linear combination to measure and fix the cycle slips. 

They employed dual-frequency carrier phase and pseudo-range data from only one single 

GPS receiver. Furthermore, Li et al. (2010) proposed to combine a triple-frequency 

Receiver 2 Receiver 1 

Satellite 1 Satellite 2 

 𝑡2 

𝑡1 

𝑡2 𝑡1 

https://link.springer.com/article/10.1007/s00190-016-0903-z#CR19
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geometry-free and ionosphere-free (GFIF) approaches. In their methods, the narrow-lane 

(NL) ambiguity is solved free of the distance constraints. 

The ionosphere-free linear combination is mostly used in PPP and double-differencing 

processing approaches to eliminate the ionospheric delay from the observables. In fact, 

the ionospheric effect depends on the inverse of squared frequency and therefore 

ionospheric-free combination which combines 𝑓1and 𝑓2 from the dual-frequency 

receivers, can be used to eliminate this effect from the GPS signals (Hofmann-Wellenhof 

et al. 2001). According to Equations 1.6, the dual-frequency signals in the ionospheric-

free linear combination method creates code and phase observations without the 

ionosphere error.  

𝑃𝑖𝑛𝑜−𝑓𝑟𝑒𝑒 =
1

𝑓1
2 − 𝑓2

2
(𝑓1

2𝑃1 − 𝑓2
2𝑃2) = 𝜌 +  𝑐(𝑑𝑡 − 𝑑𝑇) + 𝑑𝑡𝑟𝑜𝑝 + 𝜀p 

Φ𝑖𝑛𝑜−𝑓𝑟𝑒𝑒 = 
1

𝑓1
2−𝑓2

2 (𝑓1
2Φ1 − 𝑓2

2Φ2) = 𝜌 + 
𝑐𝑓1

𝑓1
2−𝑓2

2 N1 −
𝑐𝑓2

𝑓1
2−𝑓2

2 N2 + 𝑐(𝑑𝑡 − 𝑑𝑇) +

                                            𝑑𝑡𝑟𝑜𝑝 + 𝜆𝜀Φ                                               (1.6) 

where, 𝑃𝑖𝑛𝑜−𝑓𝑟𝑒𝑒 and Φ𝑖𝑛𝑜−𝑓𝑟𝑒𝑒 are the ionosphere-free code and carrier phase 

observables,  𝑃1 and 𝑃2are the code observations, Φ1and Φ2are the phase 

observations,𝑓1and 𝑓2 are the frequency of the signals, N1 and N2 are the integer 

ambiguity of the signals.  

 Tropospheric delay Modeling  

As discussed earlier in sections 1.3 to 1.5, unlike the various errors affecting the GPS 

observations, which can be reduced or eliminated by employing differencing approaches, 

the tropospheric error remains one of the significant accuracy limiting factors in precise 

GPS applications. The amplitude of the tropospheric delay is directly proportional to the 

changes of the refractivity in the path of the signal. 

In this section, initially, I will discuss the calculation of the refractivity in the 

troposphere. Then, I will review the most recent models proposed to estimate the 
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tropospheric delay. Moreover, I will present the mapping functions currently employed 

for high precision GPS applications. 

1.6.1 Refractivity 

The amount of the refractivity of a signal, 𝑁, in the atmosphere can be expressed based 

on the refractive index, 𝑛, as follows: 

𝑛 =
𝑐

𝑣
 

                               𝑁 = 106(𝑛 − 1)                      (1.7) 

where, 𝑐 is the speed of light in vacuum,  𝑣 is the velocity of the propagation of the signal 

in the atmosphere.  

The refractive index is greater than unity. Hence from Equation 1.7, the length of the path 

of the GPS signal in the troposphere is overestimated. The exceedance path delay of the 

signals at 5°elevation angle can be approximately 20 cm and for the signals at 

15°elevation angle is approximately 1cm. 

The total refractivity as a function of atmospheric parameters can be written as follows 

(Smith & Weintraub 1953):  

𝑁 = 𝑘1 (
𝑃𝑑

𝑇
)𝑍𝑑

−1 + [𝑘2
𝑒

𝑇
+ 𝑘3

𝑒

𝑇2] 𝑍𝑤
−1                                 (1.8) 

where, 𝑃𝑑 is the partial pressure of dry air (hPa), 𝑇 is the absolute temperature (K), 𝑒 is 

the partial pressure of water vapor (hPa), 𝑘1, 𝑘2 and 𝑘3 are the refarctivities empirically 

constants, 𝑍𝑑 and 𝑍𝑤 are the compressibility factors for dry air and water vapor, 

respectively, and are very close to one (Ghoddousi-Fard 2009). 𝑍𝑑 and 𝑍𝑤 are usually 

determined empirically from pressure and temperature.   

The refractivity coefficients are determined empirically in a laboratory (Boudouris 1963; 

Smith & Weintraub 1953; Thayer 1974; Bevis et al. 1994; Rüeger 2002).  

Nievinski (2009) studied the discrepancies in the estimates of the zenith delays using the 
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three different coefficients determined by Rüeger (2002), Bevis et al. (1994) and Thayer 

(1974), with respect to International Union of Geodesy and Geophysics (IUGG, 1963), a 

simplification of Essen and Froome (1951), and determined the differences to be less than 

one millimeter. Also, negligible discrepancies in ZHD estimates from using different 

determinations of the refractivity coefficients were observed by Mendes (1999). In this 

dissertation, I have adopted the Rüeger’s (2002) refractivity constants 𝑘1, 𝑘2 and 𝑘3 as 

77.69 K 𝑚𝑏𝑎𝑟 −1, 71.29 K  𝑚𝑏𝑎𝑟 −1, and 375463 𝐾2  𝑚𝑏𝑎𝑟 −1, respectively. 

1.6.2 Tropospheric Path Delay 

The tropospheric delay is directly proportional to the refractive index or refractivity and 

can be expressed as a function of atmospheric temperature and pressure. The tropospheric 

delay can be computed through the integration along the signal path as follow: 

𝑑𝑡𝑟𝑜𝑝 = ∫ (𝑛 − 1)𝑑𝑠
𝑝𝑎𝑡ℎ

               

                                        𝑑𝑡𝑟𝑜𝑝 = 10−6 ∫ 𝑁𝑑𝑠
𝑝𝑎𝑡ℎ

                                 (1.9) 

where,  𝑑𝑡𝑟𝑜𝑝 is the tropospheric delay in meter., 𝑁 is refractivity, and 𝑛 is the refractive 

index.  

The tropospheric delay can be separated into two main components, the hydrostatic delay 

and the wet delay (Saastamoinen 1972). The hydrostatic is due to the dry gases and can 

be computed precisely from surface temperature and pressure measurements. However, 

the wet component is due primarily to the water vapor pressure, which is highly variable 

in space and time and cannot be accurately modeled from surface atmosphere 

measurements. This component of the delay can be estimated by subtracting the 

hydrostatic component from the total tropospheric delay.   

For low-accuracy positioning, a simple prediction model to estimate the troposphere 

delay is sufficient. Models which accurately estimate the distribution of water vapor 

pressure is essential for precise positioning. 
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The other challenge in dealing with the tropospheric delay is that the magnitude of the 

effects of this delay depends on the elevation angle and azimuthal directions of the GPS 

signals, so that each received signal has a different amount of delay. Hence, its estimation 

on each received signal along with other unknown parameters, including the coordinates 

of the receiver, is impossible due to the lack of redundancy. Therefore, the delay on the 

received signals from different satellites, the slant tropospheric delay, must be mapped to 

the zenith direction. As a result, instead of solving several unknown delays, only one 

unknown is solved at each epoch. To achieve this, employing a mapping function with 

known coefficients is essential to map all the tropospheric delays from any direction and 

azimuth to the zenith direction. The total tropospheric path delay on the incoming signal 

from the satellite can be expressed as follow: 

𝑑𝑡𝑟𝑜𝑝
𝑠 = 𝑍𝐻𝐷.𝑚ℎ(𝜀) + 𝑍𝑊𝐷.𝑚𝑤(𝜀) + 𝑚𝑔ℎ(𝜀). (𝑔ℎ𝑛𝑠(𝜀) cos(𝑎) + 𝑔ℎ𝑒𝑤(𝜀) sin(𝑎)) +

𝑚𝑔𝑤(𝜀)(𝑔𝑤𝑛𝑠(𝜀) cos(𝑎) + 𝑔𝑤𝑒𝑤(𝜀) sin(𝑎))                  (1.10) 

where, 𝑑𝑡𝑟𝑜𝑝
𝑠  is the slant troposphere path delay in the LOS of satellite-receiver, 𝑍𝐻𝐷 and 

ZWD are the hydrostatic and wet components of the tropospheric delay in the zenith 

direction, respectively, 𝜀 is the elevation angle, 𝑎 is the azimuth, 𝑚ℎ and 𝑚𝑤 are the 

hydrostatic and wet mapping functions, respectively, 𝑚𝑔ℎ and 𝑚𝑔𝑤 are the hydrostatic 

and wet gradient mapping functions, respectively, 𝑔ℎ𝑛𝑠 and 𝑔ℎ𝑒𝑤 are the north-south and 

east-west hydrostatic horizontal gradients, 𝑔𝑤𝑛𝑠 and 𝑔𝑤𝑒𝑤 are the north-south and east-

west wet horizontal gradients.  

Some researchers proposed to estimate the tropospheric gradient parameters along with 

the ZTD when low elevation angle measurements are employed (e.g., Chen & Herring 

1997; Bar-Sever et al. 1998; Hugentobler et al., 2001).  

Several tropospheric delay models have been proposed for computing the a priori values 

for zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD) and mapping functions 

based on the measurements of the surface atmospheric parameters (pressure, temperature, 

and water vapor pressure). However, those models computed based on the standard 

atmosphere conditions indicate a different behavior in abnormal climate regions. Some of 

the developed troposphere models are presented in the next sub-sections.  
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1.6.2.1 Zenith Hydrostatic (Dry) Delay (ZHD) Models 

In the theoretical approaches, computation of the ZHD is straightforward. The developed 

models vary based on the employed refractivity constants and the acceleration of gravity 

modeling. Also, they are dependent on the latitude and altitude of stations (Mendes 

1999).  

Hopfield (1969) proposed a quartic model for the dry refractivity profile based on the 

temperature and the elevation of the site above mean sea level (msl) and employed the 

refractivity constants proposed by Smith & Weintraub (1953). Saastamoinen (1972; 

1973) developed a model based on the measurements of the surface pressure and 

calculated the acceleration of gravity from the latitude and height of the station. In his 

model, the refractivity constants calculated by Essen & Froome (1951) were adopted. 

Davis et al. (1985) used the same approach as Saastamoinen (1972; 1973). However, they 

employed the refractivity constants proposed by Thayer (1974). Baby et al. (1988) 

considered the refractivity constant 𝑘1 of Bean and Dutton (1966) and proposed 

computing the acceleration gravity based on the surface temperature and temperature 

lapse rate.  

As noted by Mendes & Langley (1998), the models developed by Baby et al. (1988) and 

Hopfield (1969) overestimate the ZHD values in all regions, with the exception of the 

equatorial area. In the research studies of Mendes & Langley (1998) and Mendes (1999), 

a comparison between the a priori value of ZHD obtained from ray tracing approach and 

that calculated by employing other modeled was carried out. They showed that the a 

priori value of ZHD can be more accurately (sub-millimeter) estimated from 

Saastamoinen’s (1972; 1973) model, assuming an accurate surface pressure incorporated 

into the model. Although, they concluded that other models results in ZHD with a 

millimeter level of agreement to those obtained from ray tracing approach.   
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1.6.2.2 Zenith Wet Delay (ZWD) Models 

Due to the dependency of the ZWD on the water vapor pressure and because of variations 

in time and space, several theoretical and empirical models for modeling the a priori 

value of ZWD have been developed further than those for modeling ZHD. However, as 

determined by Mendes (1999), the accuracy of the ZWD computed based on the surface 

meteorological measurements is not better than a few centimeters.   

Saastamoinen (1973) formulated a model for estimating ZWD assuming that temperature 

and water vapor pressure linearly decrease with height according to a power law function. 

In their model, the refractivity constants were the same as those they considered for 

computing ZHD. Their model has a good performance in mid-latitude regions. Hopfield 

(1969) proposed a model based on the profile of wet component of refractivity and 

assumed the refractivity constants from Smith & Weintraub (1953). Berman (1976) 

developed a model on the assumption that there is a strong correlation between the ratio 

of ZHD and ZWD and the corresponding refractivities. In their model, the ZWD is 

computed from its linear relationship with the surface meteorological parameters was 

proposed by Ifadis (1986). As shown by Mendes (1999), Saastamoinen’s (1973) 

(Equation 1.11) and Ifadis’ (1986) (Equation 1.12) models provide a better estimation for 

ZWD compared to the other estimates from other models.  

𝑍𝑊𝐷 = 0.002277(
1255

𝑇𝑠
+ 0.05)𝑒𝑠                    (1.11) 

where, 𝑒𝑠 is the water vapor pressure at the surface of Earth in mbar, 𝑇𝑠 is the temperature 

at the surface of Earth in degrees Kelvin.  

𝑍𝑊𝐷 = 0.00554 − 0.880 × 10−4(𝑃𝑠 − 1000.0) + 0.272 ×× 10−4𝑒𝑠 + 2.771(
𝑒𝑠

𝑇𝑠
)       

(1.12)              

where, 𝑒𝑠 is the water vapor pressure at the surface of Earth in mbar, 𝑇𝑠 is the surface 

temperature in degrees Kelvin, 𝑃𝑠 is the surface pressure in mbar.  
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 Mapping Functions for Zenith Hydrostatic and Wet 
Delays (ZHD and ZWD) 

Because of the lower accuracy of the a priori ZWD compared to the a priori ZHD, as 

discussed earlier, the mapping functions usually are defined for hydrostatic and wet parts 

separately. According to Boehm et al. (2006), a total mapping function is less accurate, 

and therefore not many researchers have focused on that.  

Over the last two decades, different mapping functions have been developed by many 

researchers (Hopfield 1969; Chao 1972; Black 1978; Baby et al. 1988; Herring 1992; 

Niell 1966; Niell 2000; Boehm & Schuh 2004; Boehm et al. 2006). The recent proposed 

hydrostatic and wet mapping functions are formed as a continued fraction (Marini 1972). 

In this section, in addition to reviewing the two most recent mapping functions, the 

Vienna Mapping Functions (VMF) and the Global Mapping Function (GMF), I review 

the Niell Mapping Function (NMF) (Niell 1996).  

Although the NMF is older, it is still being used in many GPS processing software 

because it is independent of the atmospheric parameter measurements and its application 

is straightforward. This mapping function was employed for both hydrostatic and wet 

components in the first phase of this dissertation (see Section 2).  

The modern mapping functions are based on the global numerical weather prediction 

(NWP) models or the empirical model of global pressure and temperature (GPT) 

developed by Boehm et al. (2007). This global model provides pressure and temperature 

at any location at or near the Earth’s surface, in addition to providing the seasonal 

variability of global temperature. This model is based upon spherical harmonics up to 

degree and order nine, and was computed from three years of a 15° × 15° global grid of 

monthly mean profiles for pressure and temperature from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) 40-year re-analysis (ERA40) dataset 

(Kouba 2008). 
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1.7.1 Niell Mapping Function (NMF) 

The NMF (Niell 1996) is independent of the atmospheric parameter measurements. This 

mapping function is widely used in GPS processing software including Bernese (Dach 

2005; Dach et al. 2007), and we used it in the processing of the GPS data in the first part 

of this dissertation. The advantage of using this mapping function, in comparison to the 

other mapping functions proposed earlier, is that it provides accurate positions for the 

stations located in the latitude range 43° and 75°N for a minimum elevation angle of three 

degrees.  

The NMF mapping function is: 

𝑚𝑖(𝜀) =

1+
𝑎𝑖

1+
𝑏𝑖

1+𝑐𝑖

𝑠𝑖𝑛𝜀+
𝑎𝑖

𝑠𝑖𝑛𝜀+
𝑏𝑖

𝑠𝑖𝑛𝜀+𝑐𝑖

+ [
1

𝑠𝑖𝑛𝜀
−

1+
𝑎ℎ𝑡

1+
𝑏ℎ𝑡

1+𝑐ℎ𝑡

𝑠𝑖𝑛𝜀+
𝑎ℎ𝑡

𝑠𝑖𝑛𝜀+
𝑏ℎ𝑡

𝑠𝑖𝑛𝜀+𝑐ℎ𝑡

] ×
𝐻

1000
            (1.13) 

where, 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 coefficients are the parameters of the hydrostatic and wet mapping 

functions in which ℎ or 𝑤 is used instead of 𝑖 to specify the hydrostatic and wet parts, 

respectively. 𝑎ℎ𝑡, 𝑏ℎ𝑡 and 𝑐ℎ𝑡 are the constant values equal to 2.53 × 10−5 km, 5.49 ×

10−3 km and 1.14 × 10−3 km, respectively. H is the orthomertic height of the GPS 

station in meter above msl.  

It must be noted that the second term in Equation 1.11 is the height correction term and is 

only applied to the hydrostatic mapping function. The  𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 coefficients for the 

hydrostatic part are modeled based on the station’s latitude and day of the year (DoY) 

(taken from January 0.0 in UT days) and they can be calculated by 

𝑎ℎ (𝜑,𝐷𝑜𝑌)= 𝑎ℎ𝑎𝑣𝑔
(𝜑)+𝑎ℎ𝑎𝑚𝑝

(𝜑) cos (2𝜋
𝐷𝑜𝑌−28

365.25
)                               (1.14) 

where, the values for 𝑎ℎ𝑎𝑣𝑔
 and 𝑎ℎ𝑎𝑚𝑝

 are the average value of 𝑎ℎ and its amplitude, 

respectively, and 𝜑 is the latitude of the station in degree. They are provided by Niell 

(1996) for five latitudes (Table 1.1). Linear interpolation is performed to calculate them 

for non-tabulated latitudes. The same procedure as computing 𝑎ℎis performed for 

computing the 𝑏ℎand 𝑐ℎ coefficients. 
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The 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 coefficients in the wet mapping function are only dependent on latitude 

and are given as  𝑎𝑤, 𝑏𝑤, and 𝑐𝑤 in Table 1.1 

 

Table 1.1. Coefficients of the hydrostatic and wet mapping functions (Niell 1996) 

Coefficients 
Latitude (degrees) 

15 30 45 60 75 

𝑎ℎ𝑎𝑣𝑔
 1.2769934e-3 1.2683230e-3 1.2465397e-3 1.2196049e-3 1.2045996e-3 

𝑏ℎ𝑎𝑣𝑔
 2.9153695e-3 2.9152299e-3 2.9288445e-3 2.9022565e-3 2.9024912e-3 

𝑐ℎ𝑎𝑣𝑔
 62.610505e-3 62.837393e-3 63.721774e-3 63.824265e-3 64.258455e-3 

𝑎ℎ𝑎𝑚𝑝
 0.0 1.27079626e-5 2.6523662e-5 3.4000452e-5 4.1202191e-5 

𝑏ℎ𝑎𝑚𝑝
 0.0 2.1414979e-5 3.0160779e-5 7.2562722e-5 11.723375e-5 

𝑐ℎ𝑎𝑚𝑝
 0.0 9.0128400e-5 4.3497037e-5 84.795348e-5 170.37206e-5 

𝑎𝑤 5.8021897e-4 5.6794847e-4 5.8118019e-4 5.9727542e-4 6.1641693e-4 

𝑏𝑤 1.4275268e-3 1.5138625e-3 1.457252e-3 1.5007428e-3 1.7599082e-3 

𝑐𝑤 4.3472961e-2 4.6729510e-2 4.3908931e-2 4.4526982e-2 5.4736038e-2 

1.7.2 Vienna Mapping Function (VMF)  

Boehm & Schuh (2004) proposed VMF in the same form of continued fraction used in 

the NMF (Niell 1996). In VMF, the coefficients 𝑏ℎ and 𝑐ℎ are equal to the coefficients 

𝑏 = 0.002905 and 𝑐 = 0.0634 + 0.0014 𝑐𝑜𝑠 (𝜑) of the Isobaric Mapping Function 

(IMF) proposed by Niell (2000). In addition, the coefficients 𝑏𝑤 and 𝑐𝑤 are the 

coefficients of the wet component at latitude of 45°given by Niell (1966) (Table 1.1). The 

𝑎ℎ and 𝑎𝑤 coefficients for hydrostatic and wet parts can be calculated as a function of 𝑏ℎ, 

𝑐ℎ, 𝑏𝑤, 𝑐𝑤, and the vacuum elevation angle 𝜀 and the mapping function values obtained 

from raytracing at a 3.3° initial elevation angle.  
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1.7.3 Vienna Mapping Function 1 (VMF1) 

Boehm et al. (2006) developed VMF1, an update of VMF, in which they removed the 

systematic errors in the estimation of coefficients by fitting the 𝑐 coefficients to a 

function of the latitude of station and DoY. They also calculated 𝑏𝑡 = 𝑏ℎ equal to 0.0029 

and proposed Equation 1.13 for calculating coefficient 𝑐 for hydrostatic and total 

mapping function.  

𝑐 = 𝑐0 + [(cos (
𝐷𝑜𝑌−28

365
. 2𝜋 + 𝜓) + 1)

𝑐11

2
+ 𝑐10] (1 − 𝑐𝑜𝑠𝜑)                          (1.15) 

where, 𝜓 represents the hemisphere section in radian, 𝜑 is the latitude of a station in 

degree, 𝑐0, 𝑐10, and 𝑐11 are constants.  

Table 1.2 represents the values of 𝑐0, 𝑐10, 𝑐11, and 𝜓 for hydrostatic and total mapping 

provided by Boehm et al. (2006).  

 

Table 1.2. Constant parameters for hydrostatic and total VMF1 (Boehm et al. 2006) 

 

The 𝑏𝜔 and 𝑐𝜔 coefficients in VMF1 are the coefficients of wet component at latitude of 

45°given by Niell (1966) and from Table 1.1 are equal to 0.00146 and 0.04391, 

respectively.  

Hemisphere 

Hydrostatic VMF1 total VMF1 

𝑐0 𝑐10 𝑐11 𝜓 𝑐0 𝑐10 𝑐11 𝜓 

Northern 0.062 0.001 0.005 0 0.063 0.000 0.004 0 

Southern 0.062 0.002 0.007 𝜋 0.063 0.001 0.006 𝜋 
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1.7.4 Global Mapping Function (GMF) 

The GMF is the latest mapping function developed by Boehm et al. (2006), and it is 

determined on the basis of the 15° × 15° global grid of monthly mean profile of pressure, 

temperature and relative humidity data produced from the ECMWF numerical weather 

model data (Kouba 2008).  

The coefficients 𝑏 and 𝑐 for hydrostatic and wet parts are computed with a similar 

strategy used in VMF1. The coefficient 𝑎 is calculated from the spherical harmonic on a 

global grid: 

𝑎 = 𝑎0+𝐴 cos (
𝐷𝑜𝑌−28

365
. 2𝜋)                           

 𝑎0 = ∑ ∑ 𝑃𝑛𝑚(sin (𝜑)). [𝐴𝑛𝑚 cos(𝑚𝜆) + 𝐵𝑛𝑚
𝑛
𝑚=0

9
𝑛=0 sin (𝑚𝜆)]        (1.16)     

where, 𝑎0 is the mean value and is constant and A is the annual amplitude on the global 

grid of monthly mean between September 1999 and August 2002 in a least-square 

adjustment,  𝑃𝑛𝑚(sin (𝜑)) are the associated Legendre functions with 𝑛 degree and 𝑚 

order, and 𝐴𝑛𝑚 and 𝐵𝑛𝑚 are the spherical harmonic coefficients.  

The advantage of employing GMF compared to VMF1 is that GMF can compute the 

coefficients only based on the position of the station and DoY.  

 Modeling the meteorological parameters  

As discussed earlier, the mapping functions employ meteorological parameters measured 

at the surface of Earth. Because of the lack of the surface meteorological data at any 

location on earth, several studies have been carried out to propose global models, such as 

GPT by Boehm et al. (2007), GPT 2 wet (GPT2w) developed by Boehm et al. (2015), 

and ERA-Interim produced by ECMEF (Dee et al., 2011) for modeling the 

meteorological parameters. As discussed above, the GPS processing can estimate the 

GPS signals’ ZTD, which can be divided into hydrostatic and wet components. ZWD can 

be computed by subtracting ZHD, can be accurately computed from the surface 

meteorological data, from ZTD. The wet component of the delay is used to measure 
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PWV above a station by multiplying a conversion factor, which is a function of the 

weighted mean surface temperature above the station for implementing climate studies.  

As mentioned earlier, the Saastamoinen (1973)’s model is adopted to estimate the ZHD at 

millimeter levels of accuracy, as a function of surface pressure. As discussed in Davis et 

al. (1985), the uncertainties in this model resulted from biases in the physical constants 

and the mean value of gravity which were employed and are approximately 0.5 mm. 

These uncertainties result in less than 0.1 𝑘𝑔𝑚−2 uncertainties in PWV estimations and 

can be neglected (Davis et al. 1985). The weighted mean surface temperature can be 

estimated from the integration of water vapor pressure and temperature above the station 

at vertical levels as proposed by Davis et al. (1985).  

To achieve the atmospheric parameters’ profiles, the ERA-Interim model that provides 

atmospheric parameters for 60 vertical levels from the Earth’s surface can be employed. 

This parameter can be accurately approximated from the surface temperature based on 

the formula proposed by Bavis et al. (1992). Alshawaf et al. (2017) compared the 

weighted mean surface temperature computed from surface temperature and from the 

ERA-Interim for two stations in Germany and found that the value of the later approach 

had a higher error and related this to the inaccuracy of the coarse grid of ERA-Interim 

modeled in the mountainous areas. Studies carried out by Pikridas et al. (2014) and Liu et 

al. (2005) indicate that uncertainties in the surface temperature do not significantly affect 

the PWV determinations. 

For an accurate measurement of ZHD and PWV using GPS, less than 6.6 mm and 

1𝑘𝑔𝑚−2, respectively, accurate estimation of the surface pressure, less than 2.9 hpa, at 

the location of each GPS site is important (Wang et al. 2017). In their study (Wang et al. 

2017) they employed surface pressure observed at 108 global GNSS stations between 

2000 and 2013. They observed that ERA-Interim-derived pressure provides more 

accurate estimation of monthly PWV, with a relative error of approximately 1.6%.  

The ZTD at the location of each site can be computed from the horizontal interpolation of 

the meteorological data observed at the adjacent weather stations (Gendt et al. 2004) and 

the vertical interpolating of those data for the height difference of the weather stations 
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and the station (Musa et al. 2011; Dousa & Elias 2014). Although, the interpolation may 

result in errors in ZTD and PWV, the exponential interpolation of the pressure for the 

height difference matches well with the vertical profile of pressure. The linear 

interpolation of the temperature is erroneous, particularly in cases with the large 

differences between the height of the GPS station and the weather station. However, 

because the effect of temperature errors in ZTD and PWV estimations are insignificant 

compared to the pressure errors, the resulted errors can be ignored (Ghoddousi-Fard 

2009). Similar interpolation approaches can be performed on the surface values on the 

grid points of NWP global and regional models. 

 Noise analysis  

The linear regression of the position time series of a station cannot accurately estimate 

the rate of the surface deformation because it is based on the assumption that the 

observations are not correlated with time. In traditional methods, it is assumed that the 

measurement errors are uncorrelated with time, or white noise, and they can be reduced 

by averaging of the measurements. Employing that method results in underestimation of 

the velocity uncertainties (Zhang et al. 1997; Mao et al., 1999). Many studies indicate 

that the measurements errors are correlated in time, or colored noise, and this should be 

accounted for in order to estimate more realistic uncertainties of the surface deformation 

rate (Agnew 1992; Williams et al. 2004; Hackl et al. 2011).  

The noise in the GPS position time series can be defined as a power-law process which is 

mainly due to the instabilities of the geodetic monuments (Johnson and Agnew 1995). 

This type of noise can be characterized in the time domain as follow:  

𝑃𝑥(𝑓) = 𝑃0(
𝑓

𝑓0
)𝑘                                          (1.17) 

where, 𝑓 is the temporal frequency, 𝑃0 and 𝑓0 are constants, and 𝑘 is the spectral index 

(Mandelbrot and Van Ness, 1968).  

The spectral index represents the type of noise, which can be divided into stationary and 

non-stationary processes. The non-stationary process is observed in many natural 
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processes and they have higher power at low frequencies. Their power spectrum shows 

that they have negative indices range between -3 and -1 (Williams et al. 2004). The three 

most common noise components, including white noise, flicker noise, and random walk 

noise, are analyzed in this dissertation in order to construct fixed noise combinations for 

the GPS position time series analysis. 

White noise is a random signal and has an index of 𝑘=0. It is the special case of the 

stationary process in which the power spectral density is flat. The random walk noise is 

classical Brownian motion with spectral index of -2 and is commonly observed in 

strainmeter and tiltmeter data (Wyatt 1989). Flicker noise is identified in many dynamical 

processes and is in the main feature in GPS position time series (Mao et al. 1999; 

Williams et al. 2004). 

Here, the power-law process refers to a non-stationary process or coloured noise other 

than classical white noise.  

1.9.1 Maximum Likelihood Estimation (MLE) 

The maximum likelihood approach is used to compute the amount of white noise and 

power law noise in the GPS time series. The best fit noise model to the GPS observations 

which maximize the probability function is defined as follow: 

𝑃(𝜐̂, 𝐶) =
1

(2𝜋)
𝑁
2 (𝑑𝑒𝑡𝐶)

1
2

exp (−0.5𝜐𝑇𝐶−1𝜐)                                (1.18) 

where, P is likelihood and 𝑑𝑒𝑡 is the determinant of matrix, 𝐶 is the covariance matrix, 𝑁 

is the number of epochs and 𝜐 is the postfit residuals resulted from the best fit linear 

functions with the same covariance matrix 𝐶.  

To maximize the probability function, the logarithm of the likelihood function is 

maximized: 

ln[𝑃(𝜐̂, 𝐶)] = −0.5[ln(𝑑𝑒𝑡𝐶) + 𝜐𝑇𝐶−1𝜐 + 𝑁𝑙𝑛(2𝜋)]                             (1.19) 
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where, 𝑙𝑛[𝑃(𝜐̂, 𝐶)] is the natural logarithm, the other parameters are similar to those in 

Equation 1.18.  

The covariance matrix 𝐶 represents Gaussian stochastic noise modeled including white, 

power law noise, first order Gauss Markov, and their combinations. In the first phase of 

this dissertation, we assumed that 𝐶 is the combination of a white and a power law noise. 

Therefore, the covariance matrix of the GPS position time series can be obtained as: 

𝐶 = 𝑎𝑤
2 𝐼 + 𝑏𝑤

2 𝐽𝑘                                          (1.20) 

where, 𝑎 and 𝑏 are the amplitudes of the white and power-law noise, respectively. 𝐼 is the 

identity matrix with the dimension of 𝑁 × 𝑁, 𝐽𝑘 is the covariance matrix of the power law 

noise with spectral index 𝑘. 

The power law covariance matrix can be written as follow (Johnson & Wyatt 1994):   

𝐽𝑘 = 𝑇𝐶𝑑𝑇𝑇                             (1.21) 

where, 𝐽𝑘 is the power law covariance matrix, 𝑇 is the transformation matrix (Hosking 

1981), 𝐶𝑑 is the covariance of vector 𝑑 of independent and identically distributed random 

variables with unit variance.  

With 𝐶𝑑 = 𝐼,  

𝐽𝑘 = 𝑇𝑇𝑇                                   (1.22)                    

                                           where, 

𝑇 = ∆𝑇−
𝑘

4
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        (1.23) 

where, ∆𝑇 is the sampling interval, 𝜙𝑁 are the coefficient values and are calculated as 

follow:  
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𝜙𝑁 =
Γ(𝑁−

𝑘

2
)

𝑁!Γ(−
𝑘

2
)
                                             (1.24) 

The power spectrum equation can be written as: 

P=
𝐷𝑥𝑏𝑘

2

𝑓𝑠

𝑘
2
+1

𝑓𝑘                               (1.25) 

where, 𝑓𝑠 is the sampling frequency in Hz and 𝐷𝑥 = 2(2𝜋)𝑘(24.60.60.365.25)
𝑘

2. 

From the above discussion, the white noise has 𝜙0=1 and 𝜙𝑁=0 for all N greater than 

zero by substituting 𝑘=0. The transformation matrix, 𝑇, and power law covariance 

matrix, 𝐽0, are identity matrices and are time-independent. The random walk noise with 

𝑘= -2 results in 𝜙𝑁=1 and the transformation matrix with lower triangular equal 1. The 

amplitude of the flicker noise. For the flicker noise, the constant in the covariance matrix 

proposed by Zhang et al. (1997) is selected such that the power spectrum of flicker noise 

and random walk noise have equal amplitudes. Therefore, the amplitude of the flicker 

noise covariance matrix is scaled by multiplying by 1.744.  

 Purpose of the work 

The first objective of my dissertation is to identify the optimal solution with lower errors 

from a network of sparse GPS stations and with the significant changes in the local 

atmospheric conditions in eastern Ontario and western Québec to provide an accurate 

constraint for the prediction models of regional dynamics of lithosphere due to GIA. This 

goal was achieved by processing different subsets of the GPS stations using double-

differencing approach and evaluating the accuracy of the vertical and horizontal 

deformation based on the results from global solutions and comparison with GIA models. 

A second objective of the work is to propose a simple elevation-dependent model which 

can accurately estimate the seasonal amplitude of ZTD between each GPS station and a 

reference station for a local region. To obtain this model, the meteorological observations 

from the weather stations near the GPS stations are used and corrected for the height 

difference. Then the evaluation of the accuracy of the proposed model is assessed by 
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comparing the estimates of the seasonal amplitudes of ZTD from the proposed model to 

those observed in the ZTD times series derived from GPS processing techniques.  

As noted above, many empirical and theoretical approaches have been proposed for 

computing ZTD affecting the GPS observations, which are based on the empirical low-

resolution global models or NWP models. Using this model with or in lieu of the global 

weather prediction models in the GPS processing software can produce improved, sub-

centimeter level positioning accuracy because tropospheric errors are estimated at smaller 

spatial scales for local or regional networks.  

The third objective of this work incorporates the high density DInSAR data in a small 

region to propose a model which provides a best fit to the seasonal amplitude of ZTD in 

the vertical time series of DInSAR data. This model is obtained from radiosonde data and 

meteorological data from a weather station and is a function of elevation. This model not 

only eliminates the need to the meteorological observations at each GPS station, but it 

also can be used to accurately estimate the seasonal amplitude of local ZTD on GPS data 

at any altitude. 

In this dissertation, I will show that the proposed model can produce more accurate 

positioning estimates. 

I carried out the following studies to pursue these goals:  

• New measurements of GPS data in eastern Ontario and western Québec, to provide a 

better constraint for the crustal motion predicted by the GIA prediction models in this 

region. 

• Simplified one-dimensional methodology to retrieve the ZTD on GPS data to model 

the elevation-dependent seasonal amplitudes of ZTD in GPS stations in eastern 

Ontario and western Québec, despite the fact that the variation in topography in this 

regions is not significant. 

• Modeling the elevation-dependent seasonal amplitude of local ZTD in GPS data 

based on meteorological data from a weather station and radiosonde data in the area 



32 

 

surrounding the Kilauea volcano in Hawaii, with significant changes of topography. 

This model is the best fit to the observed seasonal amplitude in the vertical time 

series of DInSAR data in this region and provides tropospheric corrections to the 

local GPS network on spatial scales much smaller than those of the global model.   

 

 Structure of the thesis  

This thesis is composed of five main sections. Chapter 1 is an introduction and provides 

background information about GPS, its effective errors and the important recent models, 

and outlines the research objectives. Chapter 2 presents the measurements of the 

horizontal and vertical velocities of GPS stations in eastern Ontario and western Québec. 

Chapter 3 presents the detailed of the elevation-dependent model proposed to estimate the 

seasonal amplitude of ZTD in GPS data in eastern Ontario and western Québec and also 

presents a comparative study of local PWV time series estimated from the wet 

component of ZTD derived using PPP technique and meteorological data at each GPS 

station. Chapter 4 presents a detailed examination of the seasonal amplitude of ZTD 

derived from DInSAR data, GPS data and from the elevation-dependent model derived 

based on the radiosonde and meteorology data in the area surrounding Kilauea volcano, 

Hawaii. Chapter 5 presents the summation and conclusion of the results and suggestions 

for future studies. 
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Chapter 2  

 GPS coordinate time series measurements in 
Ontario and Québec, Canada1 

This chapter presents new precise network solutions for continuous GPS (cGPS) stations 

distributed in eastern Ontario and western Québec to provide constraints on the regional 

three-dimensional crustal velocity field. Five years of continuous observations at fourteen 

cGPS sites were analyzed using Bernese GPS processing software. Several different 

subnetworks were chosen from these stations, and the data were processed and compared 

in order to select the optimal configuration which can accurately estimate the three 

components of the velocities of the stations and can minimize the associated errors. Then, 

the coordinate time series are compared to the crustal motions from global solutions and 

the optimized solution is presented here. A noise analysis model with power-law and 

white noise, which best describes the noise characteristics of all three components, was 

employed for the GPS time series analysis. The linear trend, associated uncertainties, 

and the spectral index of the power-law noise were computed using a maximum 

likelihood estimation approach. The residual horizontal velocities, after removal of rigid 

plate motion, have a magnitude consistent with expected glacial isostatic adjustment 

(GIA). The vertical velocities increase from subsidence of almost 1.9 mm/year south of 

the Great Lakes to uplift near Hudson Bay, where the highest rate is approximately 10.9 

mm/year. The residual horizontal velocities range from approximately 0.5mm/year, 

oriented south–southeastward, at the Great Lakes to nearly 1.5 mm/year directed toward 

the interior of Hudson Bay at stations adjacent to its shoreline. However, the pattern of 

horizontal deformation is not well explained in the north, along Hudson Bay, suggesting 

that revisions to the ice thickness history are needed to improve the fit to observations. 

                                                 

1 A version of this chapter has been published in Geodesy journal. Samadi Alinia H., Tiampo, K.F., James, 

T.S. (2017) GPS coordinate time series measurements in Ontario and Québec, Canada, J. Geodesy. 91(6), 

pp. 653-683. DOI 10.1007/s00190-016-0987-5. 
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 Introduction 

Horizontal and vertical deformation of the Earth’s crust is due to a variety of different 

geophysical processes that take place on various spatiotemporal scales. In eastern North 

America, from south of the Great Lakes to east of Hudson Bay, current deformation is 

primarily a result of the ongoing relaxation of the Earth’s mantle from ice sheet retreat 

after the last glacial maximum, a process termed glacial isostatic adjustment (GIA). 

Observations from the Portable Observatories for Lithospheric Analysis and Research 

Investigating Seismicity (POLARIS) continuous Global Positioning System (cGPS) 

regional network (Eaton et al. 2005) in eastern Canada, combined with data from other 

high-quality sites, provide the means to define a more accurate crustal velocity field for 

the study of regional geophysical processes, particularly GIA.  

POLARIS was a multi-institutional geophysical project focussing on seismology that 

began in 2002. More than thirty POLARIS stations were placed throughout southern 

Ontario and portions of western Québec. Most of the POLARIS stations were remote 

seismometer installations that used satellite communication technology, enabling the 

densification of the seismic network coverage in parts of eastern Canada, a region with 

significant but poorly understood seismicity. In addition, cGPS instruments were installed 

at a number of POLARIS stations with the goal of providing crustal deformation 

measurements in regions without pre-existing high-quality data. This will provide 

important insights into the structure of the Earth’s lithosphere and regional crustal 

deformation (Eaton et al. 2005).  

Early modeling investigations into North American crustal deformation indicated that 

intraplate horizontal deformation due to glacial isostatic adjustment (GIA) is expected to 

be a few millimeters per year in magnitude (James & Morgan 1990; James & Lambert 

1993; Mitrovica et al. 1993, 1994), a result of the thinning and retreat of large ice sheets 

during deglaciation at the end of the last glaciation. Early comparisons to Very Long 

Baseline Interferometry (VLBI) observations suggested that the postglacial rebound 

signal was at the limit of detectability (James & Lambert 1993; Mitrovica et al. 1993, 

1994). Crustal motion observations from cGPS stations have much greater spatial density 

and have shown that GIA is a strong, measurable signal. Calais et al. (2006) and Sella et 
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al. (2007) processed approximately 300 distributed GPS stations observations in Canada 

and United States and compared the station velocities to several different GIA models. 

Their results show significant discrepancies between the model predictions and the 

observed horizontal velocities and demonstrate the need for improved models of 

lithospheric deformation in central and eastern North America. 

Tiampo et al. (2004, 2011) developed a technique to analyze cGPS time series using 

Karhunen–Loeve expansion (KLE) analysis to improve the local and regional time series 

results for a better understanding of the underlying physical sources. They decomposed 

available cGPS data from southeastern Canada and the eastern USA in order to 

characterize the significant deformation modes using spatial maps and their associated 

time series (Tiampo et al. 2011).  In addition, they investigated the relationship between 

horizontal displacement and GIA models based on ICE-3G (Tushingham & Peltier 1991). 

They concluded that better estimates of horizontal GIA velocities provide important 

constraints on upper and lower mantle viscosity models, although the sparsity of stations 

north of the Great Lakes precluded differentiation between certain viscosities (Tiampo et 

al. 2011). 

Here we present results for new time series spanning five years for cGPS stations from 

the POLARIS network combined with established continuous stations in eastern Ontario 

and western Québec. Given the large aperture of the network and the significant 

differences in local atmospheric conditions, an intensive study was undertaken in order to 

identify the optimal sub-networks for this analysis. We also studied several different 

subsets of reference stations that included at least one long-running IGS reference station 

(ALGO) operated by the Canadian Geodetic Survey (CGS) of Natural Resources Canada 

(NRCan). Subsequently, these improved time series were corrected with respect to the 

rigid plate motion proposed by Altamimi et al. (2011, 2012). The improved absolute 

velocities for each station are compared to the global solutions. We demonstrate the 

effectiveness of our double-differenced GPS sub-network processing to observe 

horizontal and vertical surface deformation in eastern Canada in a region with sparse 

coverage. In addition, we aggregate these results with those from additional stations 

provided by other agencies and compare them with current GIA models of horizontal and 
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vertical deformation in order to illustrate their potential to provide new insights into the 

broader regional dynamics (e.g., James & Morgan 1990; James & Lambert 1993; 

Mitrovica et al. 1994; Tiampo et al. 2013; Peltier et al. 2015).  

The annual and semi-annual seasonal loading signals affect the GPS time series 

coordinates, particularly the up component (van Dam et al., 2001; Dong et al. 2002).  

Neglecting these affects in the velocity estimations will result in bias. Furthermore, many 

studies (Mao et al. 1999; Zhang et al 1997) demonstrate that mismodeled satellite orbits, 

multipath, antenna phase centre and atmospheric effects will produce rate uncertainties 

which must be estimated by using both white noise and time-correlated colored noise 

models (Williams et al. 2004). Analysis of the GPS time series in all three components 

using the combination of a white and power law noise model and estimating the 

associated spectral index of the power law noise indicates that all components at the GPS 

stations in our study area are subject to an identical type of noise, as they possess a very 

similar mean spectral index, approximately -1.01±0.09 and -0.79 ± 0.07 for the 

velocities obtained from Bernese time series and NGL time series, respectively.  

An overview of the study area is provided in Section 2. Section 3 presents details of the 

cGPS network and data analysis. Results for the most accurate reference frame solution 

and the associated five-year time series, as well as horizontal and vertical surface 

displacement rates and their associated uncertainties, are given in Section 4. We examine 

these results and compare them with GIA deformation models in Section 5. Interpretation 

and conclusions are presented in the final section. 

  Background  

Plate tectonics theory provides an explanation for seismicity and deformation along plate 

boundaries and predicts that intraplate events located in continental interiors will 

generally occur with lower frequency and smaller magnitude (e.g., Adams & Basham 

1989; Talwani 1999). The seismicity and tectonic setting of these intraplate regions, 

including the North American plate, have been extensively investigated (Basham et al. 

1977; Sykes 1978; Quinlan 1984; Adams 1989; Bent 1996; Eaton et al. 2005; Wang et al. 

2008; Woodgold 2010). One major source of stress perturbation in these regions is GIA 
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(James 1991; Wang et al. 2008; Wu et al. 2010; Dineva et al., 2007), potentially affecting 

regional spatiotemporal seismic activity along pre-existing, reactivated low friction faults 

(Wu & Hasegawa 1996; Mazzotti & Townend 2010). Some researchers also argue that 

the base of the lithosphere was warmed and weakened along the Great Meteor Hotspot 

Track in eastern North America and they relate that weakening to current seismicity 

along the hotspot track (Crough 1981; Heaman & Kjarsgaard 2000; Ma & Atkinson 

2006; Ma & Eaton 2007).  

2.2.1 Geological Structure and Recent Glaciations 

The Superior Province, the largest Archean craton on the Earth, forms the oldest core of 

the North American plate and is one of the major geological units in northeastern 

Ontario. In addition, the Huronian supergroup of northeastern Ontario, with a thickness 

of 15 km, consists of ~2 Ga old rocks that form the passive edge along the southern 

margin of the Superior craton (Ludden & Hynes, 2000).  

The Charlevoix region, 150 km northeast of Québec City, is the most active intraplate 

earthquake zone in eastern Canada. This region is affected by a large fault system which 

was formed as a result of four tectonic events that include the Grenvillian continental 

collision ~1100-900 Ma, the rifting and opening of the Iapetus Ocean ~700 Ma, 

reactivation of faults during closing of Iapetus Ocean (during mid- to late-Paleozoic), and 

Mesozoic extension opening of the Atlantic Ocean ~450 Ma (Buchbinder et al. 1988; Ma 

and Atkinson 2006). 

The two most recent glacial periods in North America are the Wisconsinan (79-10 ka BP) 

and Illinoian (302-132 ka BP) (Lougheed & Morrill 2015). From 24-16 ka BP, during the 

Wisconsinan Ice Age, ice advanced such that glaciers extended over southwestern 

Ontario and totally covered the Great Lakes watershed (Terasmae 1981; Grimley 2000). 

The Great Lakes watershed itself is the result of several glaciations, currently covering 

765,990 km2 of Ontario and a large portion of the northcentral United States (Larson & 

Schaetzl 2001; Lougheed & Morrill 2015; Dyke et al., 2002).  
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2.2.2 Regional Seismicity 

 Seismicity between 1985 and 2013 is shown in Figure 2.1 for a region encompassing 

much of Ontario and Québec and adjacent regions of the United States to the south. There 

are four regions of higher seismic activity in the southeast and another region with lower 

rates near Hudson Bay: Southern Ontario Seismic Zone (SOSZ); Western Québec 

Seismic Zone (WQSZ); Charlevoix Seismic Zone (CSZ); Lower St. Lawrence Zone 

(LSZ) and the Boothia Ungava Zone (BUZ) (Figure 2.1) (Adam & Basham 1989; Ma & 

Atkinson 2006; Ma & Eaton 2007). The bulk of eastern Canadian seismicity is 

concentrated in the CSZ and LSZ, downriver from Québec City (Thomas 2006). 

Earthquakes in the southern region of Canada have been attributed to a reactivated 500 

Ma old rift structure and represented by reverse faulting (Fenton 1994; Dyke et al. 1991; 

Mazzotti & Townend 2010). 

As seen in Figure 2.1, the CSZ has experienced five earthquakes with magnitude (M) 

greater than 6 since 1663 and approximately ten events of 5 ≤ M ≤6 since the mid-19th 

century (Adams & Halchuk 2003). Approximately 450 earthquakes of magnitude greater 

than 2 occur in the eastern Ontario region each year (Canadian National Earthquake 

Database (NEDB), Earthquake Canada Online Bulletin, GSC, 

http://www.earthquakescanada.nrcan.gc.ca/). Because of the general tectonic stability of 

the craton and the fact that the higher seismic activity in these regions occurred at the end 

of deglaciation, these earthquakes generally are attributed to GIA (Shilts et al. 1992).  

 Observations and Method 

Here we focus on POLARIS cGPS stations and a selected subset of NRCan stations 

encompassing a region of eastern Ontario and western Québec that includes the SOSZ, 

the WQSZ, and the BUZ seismic zones (Figures 2.1 and 2.2). 

 

 

 

http://www.earthquakescanada.nrcan.gc.ca/
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Figure 2.1. Earthquake distribution with magnitudes between 2 and 6 (1985 to 2013) for 

a portion of eastern North America. Events of magnitude greater than 2, and shallower 

than 30 km depth, were plotted. The seismic regions are: Southern Ontario Seismic Zone 

(SOSZ), Western Québec Seismic Zone (WQSZ), Charlevoix Seismic Zone (CSZ), 

Lower St. Lawrence Zone (LSZ) and Boothia Ungava Zone (BUZ) (GSC 2015). 
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2.3.1 GPS Data and Analysis  

2.3.1.1 Double-Difference Bernese Analysis 

Continuous GPS RINEX (Receiver Independent Exchange Format) data from seven 

stations of the POLARIS network (Eaton et al. 2005) and seven continuous cGPS stations 

from the NRCan network were acquired, respectively, from the POLARIS GPS database 

(ftp://polaris4.es.uwo.ca) and the Canadian Active Control System (CACS; accessible 

from http://www.nrcan.gc.ca/earth-sciences/geomatics/geodetic-reference-systems/data) 

(Table 2.1). Stations ALGO, CAGS, VALD, NRC1 and KUUJ are IGS reference stations 

operated by CGS. Figure 2.2 shows the distribution of GPS stations from the two regional 

networks. Data were downloaded for a maximum five year period starting from 1st 

January 2008 to 31st December 2012 at a 30-second sampling interval (Table 2.1). This 

is the five year time period was chosen because the GPS stations INUQ, IVKQ and 

MATQ from POLARIS network began their positioning in 2008. Decommissioning of 

the POLARIS stations begin in late 2012. Therefore, in order to ensure consistency in the 

selection and analysis of the various sub-networks, we included data from 2008 to 2012 

(for more detailed of the GPS data see Table A-1 in Appendix A) 

The GPS stations use dual-frequency receivers, although their antennas, monuments and 

receiver types differ among stations (Table A-1). Stations ACTO, TYNO and STCO are 

continuously operating reference stations (CORS) consisting of reinforced concrete piers 

approximately three meters deep. All other stations have stainless steel pedestals 

anchored to bedrock. Data and meta-data collected for processing included precise orbits, 

clock corrections, and ocean tidal loading effects for each station, station information 

files, CODE ionosphere models, and a list of fiducial stations to be used as reference 

stations.  

Daily coordinates in ITRF2008 for the GPS sites were computed for various sub-

networks (see section 3.1.2) using Bernese 5.0 (Dach 2005; Dach et al. 2007). In this 

way, we also acquired the information files for additional stations which are not provided 

in the IGS08 and ITRF2008. A priori coordinates text files were produced at centimeter-

ftp://polaris4.es.uwo.ca/
http://www.nrcan.gc.ca/earth-sciences/geomatics/geodetic-reference-systems/data
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level accuracy using precise point positioning (PPP) for new stations not listed in the 

original ITRF solutions (ftp://ftp.unibe.ch/aiub/BSWUSER50/STA).  

Table 2.1.GPS station information for stations from the POLARIS network and those 

operated by Canadian Geodetic Survey (CGS), Natural Resources Canada. All 

coordinates are based on WGS84. 

Site Monument Latitude Longitude 
Start 

Date 
Location 

Receiver 

Type 

ALGO* Stainless steel 

pillars 
N45°57’20.85” W78°04’16.91” 2001 Jun. 

Algonquin Park, 

ON, Canada 

AOA 

BENCHMARK 

ACT 

ACTO Concrete pier N43˚36’31.32” W80˚03’44.64” 
2004 

Nov. 

Acton, ON, 

Canada 
NOVATEL1 

TYNO Concrete pier N43˚05’42” W79˚52’12.72” 
2004 

Nov. 

Tyneside, ON, 

Canada 
NOVATEL2 

STCO Concrete pier N43˚12’34.56” W79˚10’13.8” 2005 Apr. 
Saint Catharines, 

ON, Canada 
NOVATEL3 

KLBO 
Stainless steel 

pillars 
N45˚21’23.76” W80˚12’47.52” 2009 May 

Killbear 

Provincial Park, 

ON, Canada 

NOVATEL4 

MATQ 
Stainless steel 

pillars 
N49˚45’32.25” W77˚38’15.16” 2008 Jul. 

Matagami La 

Palce, QC, 

Canada 

TRIMBLE 

NETRS 

IVKQ 
Stainless steel 

pillars 
N62˚25’52.35” W77˚54’39.37” 2008 Jul. 

Ivujivik, QC, 

Canada 

TRIMBLE 

NETRS 

INUQ 
Stainless steel 

pillars 
N58˚27’3.76” W78˚7’6.11” 2008 Jul. 

Inukjuak, QC, 

Canada 

TRIMBLE 

NETRS 

KUUJ* 

 

Concrete pier 

 
N55˚16’42.10” 

 
W77˚44’43.56” 

2002 Jul. 

 

Kuujjuarapik, 

QC, Canada 

 

TPS NETG3 

VALD* 

 

Concrete pillar 

 

N48˚05’49.41” 

 

W77˚33’51” 

 

2001 

Nov. 

 

Val D’Or. 

QC, Canada 

 
TPS NETG3 

CAGS* 
Pillar 

 

N45˚35’06” W75˚48’26.28” 

 

2000 Feb. 

 

Gatineau, 

QC, Canada 
TRIMBLE 

NETR8 

NRC1* 

Steel I Beam 

 

N45˚27’15.12” 

 

W75˚37’25.68” 

 

1994 Apr. 

 

Ottawa, Canada 

 
AOA SNR-12 

ACT 

PWEL* 

 

Stainless steel 

pillars 
N43˚14’12.23” W79˚13’10.79” 2002 May 

Port Weller, 

ON, Canada 
TRIMBLE 

NETRS 

PARY* 

 

Stainless steel 

pillars 

N45˚20’18.79” 

 

W80˚02’9.2” 

 

2002 May 

 

Parry Sound, 

ON, Canada 
TRIMBLE 

NETRS 

* Stations operated by Canadian Geodetic Survey (CGS), Natural Resources Canada 

ftp://ftp.unibe.ch/aiub/BSWUSER50/STA
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Figure 2.2. Location of continuous GPS stations. Stations used in the Bernese processing and 

sub-network analysis are shown in green (POLARIS) and blue (permanent NRCan). GPS station 

motions were also estimated from information downloaded from NGL, as discussed in the text, 

for these sites and for other stations (black circles). See Tables 2.1 through 2.3 for GPS station 

details. Inset shows enlargement of stations in the Michigan area. 
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The Bernese Processing Engine (BPE) (Beutler et al. 2007) was used to compute daily 

solutions automatically after manual data and supplemental information preparation. In 

addition, double-difference network solutions were generated and aligned to the 

ITRF2008 reference frame (Altamimi et al. 2011, 2012). These network solutions are 

dependent on the baselines of the stations used in the processing. Here we also corrected 

for the effect of ocean tidal loading on the crustal deformation. The ocean tide loading 

amplitudes and phase offsets for each station were calculated by considering the 

GOT00.2 model of Bos & Scherneck (2011) (see Appendix A for more detail). 

The final estimated daily coordinates at each station were transformed into the WGS84 

system and ITRF2008 for further analysis and the mean and root mean square (RMS) 

errors of the output coordinates for every epoch of the network solution were estimated. 

In addition, velocities at each station were estimated and are given in millimeters per 

year.  

2.3.1.2 Bernese Sub-Network Analyses 

Given the large aperture of the POLARIS cGPS network and the significant differences 

in local atmospheric conditions, an intensive study was performed in order to identify the 

optimal sub-networks for a regional analysis. To achieve this goal, twenty-four possible 

cGPS sub-network configurations were initially processed and evaluated for a time 

interval of one year (2012). 

Table 2.2 shows a selected set of the sub-networks (campaigns) processed for 2012. In 

general, the sub-network stations, or campaigns, were separated based on their general 

location – north versus south - over various region sizes that are reflected in the total 

number and location of the included stations. In addition to the sub-network analysis, a 

network which contained all 14 GPS stations also was taken into account. The cGPS 

station at Algonquin Park (ALGO) was employed as the common reference station 

between different solutions. 
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 The resulting discrepancy between the estimated coordinates from the published 

ITRF2008 positions (Altamimi et al. 2011, 2012) and the repeatability RMS errors 

(standard deviation) of the daily solutions with respect to the combined yearly solution 

was used to select the two most reliable northern and southern sub-networks for 

subsequent analysis over the complete time span of five years (See Appendix A). Mean 

coordinate differences (estimated coordinates minus expected primary coordinates) in the 

east, north and up components for the GPS stations in each individual solution are given 

for nine of the twenty-four network solutions (Table 2.2).  

The average of the RMS scatter of the residuals also is presented in Table 2.2. Individual 

solutions with mean RMS repeatabilities of almost 1 mm in the horizontal and 3 mm in 

the vertical component are at the level of present-day precise measurements 

(Steigenberger et al. 2012). Sub-network solutions with higher RMS values and large 

differences from the anticipated coordinates are not considered further (i.e. CAMST4, 

CAMST8, and CAMST9). From Table 2.2, results for the sub-networks in southern 

Ontario show small differences from the expected values (CAMST1, CAMST2, 

CAMST3, CAMST5) and higher differences for sub-networks in northern Ontario and 

Québec (CAMST4, CAMST6, CAMST7). This is a consequence of the lower density of 

GPS stations and longer baselines in northern Ontario and Québec. The mean coordinate 

differences for Campaign 3 (CAMST3 in Table 2.2; southern stations) show good 

agreement with the expected values: -0.00 mm in east, 0.03 mm in north and 0.01 mm in 

the up direction.  

It should be noted that the differences for the estimated coordinates in northern Ontario 

are large for most configurations that include INUQ and IVKQ stations. Here, Campaign 

7 (northern stations) (CAMST7 in Table 2.2) gives the best agreement with previously 

reported values with 0.02 mm, 0.01 mm and 0.10 mm mean differences for east, north 

and up components, respectively. As a result of this detailed investigation, CAMST3 and 

CAMST7 were considered for further analysis.  
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2.3.1.3 Bernese Time Series Analyses 

Figures 2.3 and 2.4 present the time series results in the eastward and northward 

components for the optimized sub-network analysis. The discontinuities or jumps that 

occur in the GPS coordinate time series are due to either antenna changes or the changes 

in the antenna reference point (ARP) value, requiring their detection and removal 

(Williams 2003). Initial outlier filtering is implemented such that coordinates with jumps 

of more than 300 mm were removed manually. Subsequently, daily coordinate outliers 

were removed with an adaptive threshold parameter equal to 0.1, which controls the size 

of the acceptance region for the outlier filter, based on the median absolute deviation 

(Hampel 1974; Leys et al. 2013). This parameter corresponds to a maximum acceptable 

change of 10% in the local scaled median absolute deviation. Finally, we employed a 

sigma averaging (SIGAVG) method (Goudarzi et al. 2012) for GPS interactive time 

series analysis (GITSA) in order to remove offsets or discontinuities that exceed 3 mm 

threshold and result in velocity uncertainty. This approach divides the time series into 

different segments based on the introduced threshold and detects discontinuities at the 

border of adjacent segments without jumps. 

In order to estimate the station velocities more accurately, the effects of surface loading 

signals including hydrological, atmosphere and ocean which are significant in the north 

and up components of GPS time series must be detected and removed (van Dam et al. 

2001). Therefore, the station velocities and annual and semi-annual sinusoidal signal, 

together with their corresponding uncertainties, were computed in the two optimal sub-

networks by employing Hector software (Bos et al., 2013) and a complex time correlated-

noise model. The complex noise model considered here is a combination of white noise 

(not time correlated) and power law noise (time correlated), either flicker or random walk 

noise (Mao et al., 1999). In general, this model is the preferred model (Williams 2008; 

Mao et al., 1999) (see Appendix A for more details). 
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a. b. c. 

Figure 2.3. Daily position time series plots of five selected sites from the CAMST3 sub-

network analysis (Table 2.2).  Shown are component time series for three POLARIS sites 

(ACTO, STCO, and KLBO) and two NRCan sites (ALGO and PARY) (locations in Figure 

2.2) for (a) east (positive eastward); b) north (positive northward); and (c) vertical component 

(positive up). Errors bars for the daily solutions are the standard uncertainties calculated by 

the Bernese software. The velocities and their corresponding uncertainties calculated from 

Hector software and employing a complex noise model. 
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In order to remove the remaining offsets before computing the GPS station velocities, 

those times at which major offsets (larger than 0.5 mm) occurred and were not eliminated 

in the previous steps were introduced into the Hector program. This software calculates 

the offsets and computes the velocities based on their elimination. These discontinuities 

primarily are observed at the end of each year and are likely caused by servicing of the 

GPS equipment. Table 2.3 presents the computed velocities and their corresponding 

uncertainties together with the estimated sinusoidal term for an annual signal. The 

estimated spectral index is one of the power-law noise parameters and is provided for all 

three components and stations in Table 2.3. Based on the similarity in the estimated 

a. b. c. 

Figure 2.4. Daily position time series plots of selected POLARIS sites from a northern sub-

network analysis (CAMST7, Table 2.2) for the (a) east, (b) north, and (c) up components. 

Symbols and labeling are as in Figure 2.3. The velocities and their corresponding 

uncertainties calculated from Hector software and employing a complex noise model. 
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values for the spectral indices of the three components, the GPS stations in the two 

optimal networks are affected by a similar source of noise. From the computed mean 

spectral index value for the Bernese time series, approximately −1.01±0.09, it can be 

concluded that the GPS stations are mainly affected by flicker noise. 

2.3.1.4 GIPSY Analysis, Nevada Geodetic Laboratory 

A wider aperture of stations, located in eastern Ontario and the northern US between 

longitudes 95° to 70°W and latitudes 40° to 67°N, was chosen in order to provide a 

broader spatial aperture than the GPS stations considered in the detailed Bernese analysis 

alone. Fifty-five additional GPS stations are operated by various national and regional 

agencies including Pennsylvania Department of Transportation (PENNDOT), New York 

State Department of Transportation (NYSDOT), Ohio Department of Transportation 

(ODOT), Precision Laser & Instrument (PLI), Connecticut Department of Transportation 

(CONNDOT), Michigan Department of Transportation (MDOT), Natural Resources 

Canada, Geodetic Survey Division (NRCan GSD), NOAA Earth System Research 

Laboratory (NOAA ESRL), and POLARIS. The stations were selected with apparently 

stable monuments and time periods that were similar to the stations in our smaller 

network in order to compare GPS-constrained crustal motion to GIA model predictions.  

Table 2.4 presents a list of the GPS stations in our study area (Figure 2.2, black circles) 

with their associated positions and the velocities estimated from the three components 

time series were processed using GIPSY/OASIS-II software (Webb & Zumberge 1997) 

available and downloaded from the Nevada Geodetic Laboratory (NGL; 

http://geodesy.unr.edu/) (Blewitt 2014).  

 

http://geodesy.unr.edu/
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GIPSY/OASIS-II software processes GPS observations in undifferenced mode, unlike the 

Bernese GPS processing software that uses a double-differencing approach and Quasi 

Ionosphere Free (QIF) to resolve the ambiguities. Also, in contrast to Bernese, GIPSY 

models the satellite and receiver clock biases as white noise, and the clock offsets are 

introduced as known parameters (Kaniuth & Völksen 2003) (See Appendices A and B for 

more detail). 

The Hector program also was used to analyze the time series of these additional stations, 

and the corresponding velocities and uncertainties were computed. According to Table 

2.4, almost all the stations included in this study are affected by similar noise sources, as 

they have similar spectral indices values that are associated with the power-law noise 

model. The estimated mean spectral index of the time series of the stations in the three 

components is approximately -0.79 ± 0.07.  

The estimated station velocities and uncertainties are shown in Figure 2.5 and are 

compared to the values obtained for the station time series processed in Bernese in the 

following section.  

2.3.2 Comparison of Bernese and NGL Time Series 

Comparison of the velocities of the two solutions at each station in Figure 2.5 shows 

general agreement in the horizontal component, with a disagreement of ±0.03  mm/year 

in the east and -0.10 to 0.19 mm/year in the north components. The horizontal velocities 

presented here are the velocity rates in ITRF2008 (IGS08) reference frame.  

 Figure 2.6 indicates that the general pattern of the observed velocities in this study 

(Figure 2.6, red vectors) are consistent with the vertical velocities of the NGL time series 

for the GPS stations located in eastern Ontario and northern US (Figure 2.6-black 

vectors), with uplift and subsidence in the north and south of Great Lakes, respectively. 

The differences between these two solutions at the common stations are in the range of -

0.52 to 0.20 mm/yr. 
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Figure 2.5. Comparison of the horizontal velocities for the Bernese (red arrows) and 

NGL (black arrows) analysis before correction for the plate motions. Error ellipses show 

95% confidence interval corresponding to the uncertainties calculated with Hector. 
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Figure 2.6. Observed vertical velocities (in millimeters per year) for the Bernese (red 

arrows) and NGL (black arrows) analyses derived from observations spanning January 

2008 through December 2012. Error ellipses show 95% confidence interval 

corresponding to the uncertainties calculated with Hector.  
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Figure 2.7 presents the scatter plot comparing the GPS station velocities for the two 

solution and their corresponding uncertainties estimated from combination of white and 

power-law noise in the three components (east, north and up). It is worthwhile to mention 

that the average estimated horizontal velocity uncertainties of stations in our study area 

for 5 years of daily data are approximately 0.3 mm/yr, which are consistent with the 

computed velocity uncertainties by Dmitrievi & Segall (2013). The results show that the 

computed vertical velocities of the NGL time series vary between -1.83 mm/yr and 11.31 

mm/yr, increasing from south to north, with the uncertainties smaller than approximately 

2 mm/yr (Table 4). Among of the eight common GPS stations in the two solutions, the 

vertical velocities show a significant and generally steady rate of uplift near Hudson Bay 

that decreases southward to the Great Lakes, as expected. The estimated vertical velocity 

from the Bernese solution ranges from -1.93 ± 0.46 mm/yr at TYNO to 10.92 ± 1.12 

mm/yr at INUQ. Results from both solutions are comparable with results of earlier 

studies (Calais et al. 2006; Sella et al. 2007; Tiampo et al. 2011).   

A comparison of the time series for TYNO illustrates the differences in the two results 

for the longest running continuously operated station with measurable subsidence in the 

southern Great Lakes region (Figure 2.8). In addition, the average velocity uncertainty 

reduction under our analysis for all stations in our solution is 0.04 mm/year in the east 

component, 0.06 mm/year in the north component and 0.59 mm/year in the up 

component.  

In order to compare the GPS station velocities to the GIA predictions, the observed 

horizontal velocities are corrected for North American plate motions and discussed in the 

next sections.  
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Figure 2.7. Scatter plot of the computed velocities and their uncertainties in 

the three components, north, east, and up for the GPS stations in both 

Bernese and NGL solutions. The velocities and their corresponding 

uncertainties calculated from Hector software and employing a complex 

noise model. The horizontal axis shows latitude of GPS stations. 
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a. 

b. 

c. 

Figure 2.8.  Comparison of the (a) east, (b) north, and (c) up position time 

series for TYNO for the CAMST3 sub-network Bernese analysis to the time 

series obtained from NGL (http://geodesy.unr.edu/). TYNO is a POLARIS 

station. The velocities and their corresponding uncertainties calculated from 

Hector software and employing a complex noise model. See Figure 2.2 for 

location. 
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2.3.3 ITRF2008 Angular Velocity  

The velocities of the North American (NOAM) plate at each site are calculated based on 

the rotational parameters given by Altamimi et al. (2011, 2012).  

Rigid plate motion is given by: 

𝑅⃗ × 𝑋 ⃗⃗  ⃗ = 𝑉⃗                       (2.1) 

where, X ⃗⃗⃗   is the vector of site positions and V⃗⃗   is the site velocity vector. The rotation 

vector R⃗⃗  was determined for NOAM on the basis of 44 selected ITRF core stations and 

without correcting the stations velocities for any GIA models (Altamimi et al. 2011, 

2012). In Cartesian coordinates, 

Ω𝑋 ⃗⃗  ⃗ = 𝑉⃗                                (2.2) 

The quantity Ω is the Euler matrix containing the rotation parameters, obtained by a least 

squares adjustment. 

Ω = [

0 −𝜔𝑧     𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥  0
]                 (2.3) 

Here, the rotation parameters are (ωx, ωy, ωz) = (0.035±0.008, -0.662±0.009, -

0.1±0.008 mas/year) (1 mas = 10-3 seconds of an arc or 1/3,600,000 of a degree) 

(Altamimi et al. 2011, 2012).  The weighted root mean scatter (WRMS) of the pole is 

0.21 (mm/yr) E and 0.34 (mm/yr) N. This estimate corresponds to an Euler pole at 

−88.0 ± 0.7° longitude, −7.9 ± 0.8° latitude and rotation rate of 0.184 ± 0.003°/𝑀𝑎. 

Therefore, the plate motion rates at the GPS locations are calculated by using Equation 

2.2.  

The estimated values for the GPS stations in the optimal sub-networks are presented in 

Table 2.3. As shown by King et al. (2015) and Klemann et al. (2008), the plate rotation 

estimations contain biases due to unmodeled or mismodeled GIA signals in the velocities 

of the GPS sites used in the plate rotation estimate. King et al. (2015) have shown that the 
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maximum biases caused by different GIA models vary from 0.11 and 0.84 mm/yr taking 

into account the two strategies of subtracting or not subtracting a GIA model of unknown 

accuracy from the GPS velocities during estimation of the rotation pole. They have also 

computed the mean maximum biases across all the GIA models for the two strategies, 

which are equal 0.46 and 0.36 mm/yr. 

 The critical point is that while this bias is small relative to the plate rotation signal, it can 

be large when compared to the horizontal GIA velocities. These biases inevitably can be 

introduced into the GPS horizontal velocities in both magnitude and directional 

components, particularly in Antarctica and North America regions where the GIA signals 

are significant (King et al. 2015), and should be taken into account when interpreting the 

estimated motions.  

 GPS Analysis Results  

In order to estimate the horizontal velocities at each station with respect to the North 

American fixed plate, the computed ITRF2008 plate motion (Equation 2.1) is subtracted 

site-by-site from the estimated horizontal velocities from the two solutions. This 

difference vector is designated the residual velocity. 

The horizontal residual velocity of the Bernese solution in the east direction is 

approximately 0.8 mm/yr for station ACTO, is nearly zero mm/yr for stations ALGO, 

TYNO, KLBO and PARY and is about 0.2 mm/yr at station STCO. For the remaining 

stations, it ranges from -0.32 mm/yr to -0.94 mm/yr. The residual velocity in the north 

direction for all stations in our solution is approximately -1 mm/yr, with the exception of 

the two northern stations close to Hudson Bay (IVKQ and INUQ), which are at the level 

of -0.37 mm/yr and 1.17 mm/yr, respectively. In general, estimates of residual horizontal 

motion of GPS stations, excluding those stations close to Hudson Bay, show an average 

rate of approximately 1 mm/year and an azimuth of 167.3 degrees.  

In addition to the stations analyzed here, the residual horizontal velocities also were 

computed for those stations in eastern Ontario and northern US compiled from the NGL 

website (Table 4). The average of these residual velocities is approximately 0.6 ± 0.3 
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mm/yr within the considered five year period. The magnitude of these residual velocity 

values are all within the upper limit of 1.7 mm/yr for non-rigid plate rotation estimated by 

Sella et al. (2002), and which generally has been considered to be a function of the 

horizontal GIA.   

 

Figure 2.9. Comparison of residual horizontal velocities for the Bernese (red arrows) and 

NGL (black arrows) analysis after removal of plate motions assuming the ITRF2008 

North American pole of rotation (Altamimi et al. 2011, 2012). Error ellipses show 95% 

confidence interval corresponding to the uncertainties calculated with Hector. 
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Figure 2.9 shows the observed horizontal motions for the GPS stations after removal of 

plate motions calculated from the ITRF2008 North American pole of rotation (Section 

3.3) for this study (red vectors), which rotate counterclockwise from north to south with 

amplitudes between 0.67 mm/yr and 1.50 mm/yr. This again is consistent with the given 

horizontal velocities by NGL (Figure 2.9, black vectors).  

2.4.1 Reliability Assessment  

Although it is generally assumed that the GPS station velocities estimated from data 

spanning a period of at least three years are reliable (Blewitt & Lavallee 2002; Bos et al. 

2010), modeling of the non-tidal surface loading deformation including variations due to 

atmosphere, oceanic mass and continental water (soil moisture and snow) mass are 

important because they increase the uncertainties associated with the velocities in relation 

to the length of the GPS time series (van Dam et al. 2012). Here, to evaluate the 

reliability of our results, we compare the uncertainty of the velocities in this study to the 

velocity errors obtained from power-law noise parameters derived by Santamaria-Gomez 

& Memin (2015) from the combination of all three loading contributions at the inter-

annual band.  In their study, the vertical velocity errors from the total mass loading series 

for the period 2009-2014 in southern Ontario and portions of western Québec, a uniform 

error of between approximately -0.2 to 0.2 mm/yr was estimated, which is nearly seven 

times greater than that of the horizontal velocity uncertainties (Santamaria-Gomez & 

Memin 2015, Figure 3). From the comparison between our velocity uncertainties and 

their velocity uncertainties results given in their paper, we can conclude that less than 

23% of our estimated errors for the vertical velocities are due to the surface loading and 

this ratio is not larger than 10% for the horizontal velocity errors (Santamaria-Gomez & 

Memin 2015). 

In addition, by considering the vertical velocity errors for the total surface loading from 

0.3 to 0.4 mm/yr deduced from Santamaria-Gomez & Memin (2015, Figure 1), we 

conclude that a maximum of 34 to 45% of our estimated vertical velocity uncertainty is 

due to the total surface mass loading signal. As stated above, the horizontal velocity error 

is seven times smaller than that of the vertical velocity errors and the maximum 

percentage of the error in our calculated horizontal velocity error ranges from 16 to 21%.  
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 GIA Models 

The estimated horizontal and vertical velocities at each station were compared to the 

predictions of the ICE-5G (Peltier 2004; Peltier & Drummond 2008) and ICE-6G-C 

(Peltier et al. 2015) GIA models. The different mantle viscosity profiles and lithospheric 

thicknesses of the ICE-5G and ICE-6G-C loading models considered in this paper are 

presented in Table 2.5. The models give predictions of vertical and horizontal crustal 

motions based on a global ice thickness history and a viscoelastic Earth model. Unless 

otherwise specified, the calculations described here assume a lithospheric thickness of 

120 km. The ICE-5G ice load history has an uncertainty of nearly ±20% for ice mass 

load trend (Geruo et al. 2013; Peltier 2004).  

As shown in Figure 2.10, we adapted five different mantle viscosity profiles in which the 

viscosities vary as a function of radius for the purposes of assessing the sensitivity of the 

fit of the predictions to the GPS rates. The four mantle viscosity profiles of the ICE-5G 

loading model includes 1021 Pa s, 4 × 1020 and 5 × 1020 for the upper mantle viscosity 

(UMV), and 2 × 1021 Pa s, 3.2 × 1021 Pa s and 4.5 × 1021 Pa s for the lower mantle 

viscosity (LMV). The viscosity profile with LMV of 4.5 × 1021 Pa s and UMV of 1021 

Pa s is designated profile A (Figure 2.10a). The viscosity structure associated with a 

UMV of 1021 Pa s and LMV of 2 × 1021 Pa s which is known as VM1 (Peltier 2004; 

Sella et al. 2007) is designated profile B in this paper (Figure 2.10b). The viscosity model 

with UMV of 5×1020 Pa s (radius between 5700 and 6281 km), a lower LMV of 3.2×1021 

Pa s (radius between 3485.5 and 5211 km) and an upper LMV of 1.6×1021 Pa s (radius 

between 5211 and 5700 km), profile C in Figure 2.10a, is known as depth-averaged 

VM2. VM2 has a lithospheric thickness of 90 km with radius between 6281 km and 6371 

km. Profile D in Figure 2.10b refers to the viscosity profile with LMV of 2 × 1021 Pa s 

and UMV of 4 × 1020 Pa s. 
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Figure 2.10. Viscosity profiles for the five Earth models considered in this study. Profile 

B (VM1) has a lower mantle viscosity of 2×1021 Pa s and upper mantle viscosity of 1021 

Pa s and is common to both panels.  (a) Profiles, A, B, and C, as indicated. (b) Profiles B, 

D, and E, as indicated.  Lithospheric thickness is 120 km, except for Profile C (depth-

averaged VM2), which has a thickness of 90 km, and Profile E (VM5a), which has a 40-

km thick high-viscosity layer (1022 Pa s) beneath the 60-km elastic lithosphere. The ICE-

5G (Peltier 2004) loading history was employed to load all of the Earth models except 

profile E (VM5a), for which ICE-6G (Peltier et al. 2015) was employed. 
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Calculations were carried out using the methods described by Simon et al. (2016) and 

references therein.  They assume a laterally homogeneous, compressible Maxwell Earth 

model based on PREM and fully gravitationally self-consistent ocean loading with 

changing coastlines and incorporation of marine-based ice sheets. ICE-5G was developed 

assuming the VM2 rheological model (later modified to VM5a) and the fit to other 

constraints, such as relative sea-level curves, will change for different rheological 

models.  Thus, the comparison carried out here is only indicative.  A full analysis would 

require iterative changes to the ice loading model to optimize the fit to both crustal 

velocity and relative sea-level measurements and is beyond the scope of this paper. 

In addition to the ICE-5G loading models, the most recent update to GIA models, 

denoted by ICE-6G_C (VM5a) (Peltier et al. 2015), profile E in Figure 2.10b, also is 

evaluated here. This model uses GPS vertical crustal motion as a constraint (Argus and 

Heflin1995; Peltier et al. 2015) and it employs a different ice history model and a 

different Earth structure to those considered above. The 1 × 1 grid dataset of this model 

is available at http://www.atmosp.physics.utoronto.ca/~peltier/data.php. In addition, this 

model uses VM5a, a three-layer approximation of the VM2 mantle viscosity profile with 

an elastic lithosphere of 60 km thickness that is underlain by a 40-km thick high viscosity 

layer in order to improve the fit of the model on the horizontal observations in North 

America (Peltier & Drummond 2008) (Figure 2.10b). 

2.5.1 Horizontal Component  

Figure 2.11 shows the horizontal GIA motion computed for the four mantle viscosity 

profiles from ICE-5G loading model at the locations of the cGPS stations shown in 

Figure 2.2.  

Comparison of the cGPS horizontal velocities shown in Figure 2.9 with the predicted 

horizontal velocities computed from ICE-5G in Figure 2.11a-d suggests that the velocity 

of stations distributed in eastern Ontario and western Québec are directed consistently 

outward from the Hudson Bay, as expected from the models.  

 

http://www.atmosp.physics.utoronto.ca/~peltier/data.php
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Note that although the additional stations (see Table 2.4) included here in order to 

provide a spatially denser comparison with the GIA models are somewhat noisy, they 

agree with the same general direction of motion. The amplitudes of the observed 

horizontal motion for the stations are much smaller than those of the GIA models with 

high UMV 4×1020 Pa s and 5×1020 Pa s (Figure 2.11c, d). Comparison of profiles A and 

B of the GIA models with our observed horizontal velocities shows small discrepancy for 

the stations in the southern region. For profile A, the differences range from -1.25 mm/yr. 

to 0.52 mm/yr (Figure 2.11a).  For GIA model VM1 (Figure 2.11b), profile B, the 

differences range from -0.47 mm/yr. to 0.22 mm/yr. Comparison of the horizontal 

velocities in the predicted ICE-5G models with the observed rates at INUQ and IVKQ 

(Figure 2.11) shows a large misfit in direction with all of the ICE-5G viscosity profiles 

(Figure 2.11). 

The goodness of the fit of the GIA models with different mantle viscosity structures and 

lithospheric thicknesses to the estimated horizontal and vertical velocities can be assessed 

by computing the reduced chi-square (χ2) value. In this way, we considered the data from 

three different set of GPS stations; the nine GPS stations processed in our detailed 

analysis using Bernese software (𝜒2_9 stations), the nine processed stations plus 55 

stations obtained from NGL are listed in Table 2.4 (𝜒2_64 stations) and the GPS stations 

in the southern region (all GPS stations except VALD, PICL, IVKQ, MATQ, HRST, 

INUQ and INUQ) (𝜒2_57) (Table 2.5).  

The values show that large discrepancies between the observed and predicted velocity 

directions for stations located in northern region result in reduced chi-square values of 

much greater than one. As a result, we must conclude that none of the models accurately 

predicts the horizontal directions for stations in the northern region, which are 

significantly affected by GIA.   

The calculated reduced 𝜒2 values indicate that the observed residual horizontal velocities 

of GPS stations in the southern region are in good agreement with the predicted models 

ICE-5G with profile A and profile B (Figure 2.11a, b), which has a reduced chi-square 

value close to 1 (Table 2.5).  
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a c

b d

a. 

b. 

c. 

d. 

Figure 2.11.  Horizontal crustal velocities predicted for ICE-5G (Peltier 2004) (black 

arrows) for four different viscosity structures, a) profile A b) profile B (VM1) c) profile 

C (depth-averaged VM2) d) profile D.  The lithospheric thickness is 120 km except for 

c) depth averaged VM2, where the thickness is 90 km. Residual horizontal velocities 

for the Bernese (red arrows) analysis after removal of plate motions assuming the 

ITRF2008 North American pole of rotation (Altamimi et al. 2011, 2012). Error ellipses 

show 95% confidence interval corresponding to the uncertainties calculated with 

Hector. 



85 

 

IC
E

-5
G

 

(F
ig

u
re

s 
1
1
a/

1
3
a)

 

IC
E

-5
G

 

(F
ig

u
re

s 
1
1
b
/1

3
b
) 

IC
E

-5
G

 

(F
ig

u
re

s 
1
1
c/

1
3
c)

 

IC
E

-5
G

 

(F
ig

u
re

s 
1
1
d
/1

3
d
) 

IC
E

-6
G

_
C

 (
V

M
5
a)

 

(F
ig

u
re

s 
1
2
/1

4
) 

H
o

ri
zo

n
ta

l 
V

er
ti

ca
l 

H
o

ri
zo

n
ta

l 
V

er
ti

ca
l 

H
o

ri
zo

n
ta

l 
V

er
ti

ca
l 

H
o

ri
zo

n
ta

l 
V

er
ti

ca
l 

H
o

ri
zo

n
ta

l 
V

er
ti

ca
l 

U
M

V
 

1
0

2
1
  
  
 P

a 
s 

1
0

2
1
  
  
 P

a 
s 

 
5

×
1

0
2
0
  
P

a 
s 

4
×

1
0

2
0
  
 P

a 
s 

5
×

1
0

2
0
 P

a 
s 

 

L
M

V
 

4
.5

×
1

0
2
1
  
  
P

a 
s 

2
×

1
0

2
1
  

 P
a 

s 
3

.2
×

1
0

2
1
 P

a 
s 

2
×

1
0

2
1
 P

a 
s 

3
.2

×
1

0
2
1
  P

a 

L
it

h
o

sp
h
er

ic
 

T
h
ic

k
n
es

s 

   

1
2

0
 k

m
 

1
2

0
 k

m
 

9
0

 k
m

 
1

2
0

 k
m

 

4
0

 k
m

 t
h
ic

k
 h

ig
h
 v

is
co

si
ty

 

b
en

ea
th

 t
h
e 

6
0

 k
m

 

li
th

o
sp

h
er

e 

   

𝜒
2

_
9

 s
ta

ti
o

n
s 

  

 

2
8

.2
9
 

 

5
.7

3
 

 

1
2

.4
8
 

 

2
3

.5
1
 

  

9
6

.0
8

 

 

 

1
3

.8
6
 

 

4
6

.8
1
 

 

2
3

.7
6

 

 

2
1

.5
2
 

 

1
2

.8
3
 

𝜒
2

_
6

4
 s

ta
ti

o
n
s 

 

4
.2

9
 

 

1
.4

3
 

 

2
.1

1
 

 

4
.0

5
 

  

1
6

.4
1

 

 

 

2
.1

1
 

 

9
.6

4
  
  
 

 

3
.5

7
 

 

3
.5

2
 

 

2
.3

7
 

 
 

 
 

 
 

 
 

 
 

 

𝜒
2

_
5

7
 s

ta
ti

o
n
s 

 
1

.2
3
 

1
.0

4
 

0
.6

5
 

3
.2

8
 

1
1

.3
3

 
1

.6
1
 

8
.4

5
 

2
.4

0
 

2
.6

6
 

2
.2

4
 

 

 

T
a
b

le
 2

.5
. 
R

ed
u
ce

d
 c

h
i-

sq
u
ar

e 
v
al

u
es

 f
o
r 

a 
co

m
p
ar

is
o
n
 w

it
h
 t

h
e 

d
if

fe
re

n
t 

G
IA

 m
o
d
el

s 
co

n
si

d
er

ed
 i

n
 t

h
is

 s
tu

d
y
. 
T

h
e 

fi
t 

o
f 

th
e 

h
o
ri

zo
n
ta

l 
an

d
 v

er
ti

ca
l 

v
el

o
ci

ti
es

 t
o
 t

h
e 

G
IA

 m
o
d
el

s 
is

 c
al

cu
la

te
d
 f

o
r 

th
re

e 
d
if

fe
re

n
t 

su
b

se
ts

 o
f 

G
P

S
 s

ta
ti

o
n
s,

 a
s 

n
o
te

d
 i

n
 t

h
e 

te
x
t.

 

   



86 

 

The comparison between observed horizontal velocities rates and the predicted GIA 

model computed for profile E (Figure 2.12) shows that there is generally good agreement 

to the average azimuth of velocity vectors for stations in eastern Ontario and western 

Québec, again excluding INUQ and IVKQ. However the magnitude of the differences for 

GPS stations ranges approximately from -0.2 mm/yr to 1.0 mm/yr. In addition, the “hinge 

line”, the zero velocity line separating rebounding from subsiding regions (Sella et al. 

2007), in ICE-6G_C is much further to the north than that seen in the cGPS observations. 

Again, neither model accurately reproduces the horizontal directions at the Hudson Bay 

stations INUQ and IVKQ. It should be noted that the horizontal velocities are corrected 

for the plate rigid body rotation and this may inadvertently remove some components of 

the GIA motion and result in a bias in the produced horizontal residual velocities, as 

noted above. 

 

2.5.2 Vertical Component  

The cGPS estimates of vertical velocity (Figure 2.6) show a good agreement with the 

vertical motions predicted by ICE-5G (Figure 2.13), particularly with the lowest upper 

mantle viscosity and the highest lower mantle viscosity (Figure 2.13a) for stations located 

north of the Great Lakes. The observed vertical velocities in this paper shows that the 

areas north and south of the hinge lines presented in the maps of vertical crustal motion in 

eastern Ontario by Sella et al. (2007, Figure 1-left) and Koohzare et al. (2008, Figure 4), 

which are consistent with water level gauge records along the Great Lakes, are 

rebounding and subsiding respectively (Mainville & Craymer 2005; Tiampo et al. 2011). 

Comparing our results for stations from the POLARIS network close to the hinge line 

shows that station TYNO, which is located below the hinge line, subsides over the 

studied time period at rates of -1.93 ± 0.46  mm/year, while stations ACTO and STCO 

are above the hinge line and uplift at rates of 2.22 mm/year and 1.32 mm/year, 

respectively.  
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Figure 2.12. Horizontal crustal velocities computed by the ICE_6G_C (VM5a) 

(Viscosity profile E) GIA model (Peltier 2015) (black arrows). VM5a is a three-layer 

approximation of the VM2 mantle viscosity profile and features a 60 km thick elastic 

lithosphere underlain by a 40-km thick high-viscosity layer of 1022 Pa s. Residual 

horizontal velocities for the Bernese (red arrows) analysis after removal of plate motions 

assuming the ITRF2008 North American pole of rotation (Altamimi et al. 2011, 2012). 
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Error ellipses show 95% confidence interval corresponding to the uncertainties calculated 

with Hector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13. Predicted vertical velocities computed using ICE-5G (Peltier 2004) 

(black arrows) for four different viscosity structures. a) profile A b) profile B (VM1) c) 

profile C (VM2) d) profile D. The lithospheric thickness is 120 km except for c) depth 

averaged VM2, where the thickness is 90 km. Observed vertical velocities (in 

millimeters per year) for the Bernese (red arrows) analyses derived from observations 

spanning January 2008 through December 2012. Error ellipses show 95% confidence 

interval corresponding to the uncertainties calculated with Hector. 

a c

b d

a. 

b. 

c. 

d. 
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These results better constrain the subsidence south of the hinge line given by Sella et al. 

(2007; Figure 1, left) and Koohzare et al. (2008; Figure 4), which passes through the 

Great Lakes. The subsidence shows disagreement with the predicted vertical motion from 

ICE-5G and ICE6G_C, with the exception of ICE-5G with a lower mantle viscosity of 

4.5×1021 and an upper mantle viscosity of 1021, profile A, (Figure 2.13a) (Peltier 2004). 

This can be confirmed by the variance in the data of the GPS sites in the southern region, 

such that the reduced chi-square value is approximately 1 (Table 2.5). Here the two 

stations in the north, close to Hudson Bay, show the smallest discrepancy with profile A.  

 Comparison of the observed vertical velocities (Figure 2.6, red vectors) with the 

predicted velocities based on ICE-6G_C (Figure 2.14) (Peltier et al. 2015) shows a 

discrepancy of -0.91 mm/yr to 3.24 mm/yr. The relatively low level of disagreement 

between our observed velocities and predicted velocities from this model can be seen at 

stations TYNO, IVKQ and INUQ which are approximately -0.9 mm/yr, -0.7 mm/yr  and 

0.1 mm/yr, respectively. 

The misfit of the observed vertical velocities with the ICE-5G models may be explained 

by the anomalously large uplift signals in unexpected regions, as pointed out by Purcell et 

al. (2016). They found misfit between their modelled vertical velocities with the 

published uplift rates of Peltier et al. (2015) for the regions where paleo-topography has 

moved from below sea level to above, and vice versa (e.g., Hudson Bay). They conclude 

that the main reason for this discrepancy is that the algorithms employed by Peltier et al. 

(2015) to derive the ice history model do not properly represent the transition from ice 

loading to water loading in the near-field (Purcell et al. 2016). This results in a significant 

error in the predicted uplift rates in areas where an ice/water loads transition has 

occurred, such as in Hudson Bay, Baffin Bay and the Baltic Sea.  
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Figure 2.14. Vertical crustal velocities computed for ICE_6G_C (VM5a) (viscosity 

profile E) (Peltier et al. 2015).  The Earth model VM5a features a three-layer 

approximation of the VM2 mantle viscosity profile and a 60 km thick elastic lithosphere 

underlain by a 40-km thick high-viscosity layer of 1022 Pa s. Observed vertical velocities 

(in millimeters per year) for the Bernese (red arrows) analyses derived from observations 
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spanning January 2008 through December 2012. Error ellipses show 95% confidence 

interval corresponding to the uncertainties calculated with Hector. 

 Conclusions  

The most reliable combination of reference stations from seven permanent cGPS stations 

operated by NRCan plus seven stations from the POLARIS network was identified in this 

work in order to better constrain the lithospheric dynamics in eastern Ontario and western 

Québec. Time series of the two optimal sub-networks over a time period of five years 

were analyzed and a detailed comparison with various GIA models was carried out. The 

time series of fifty-five additional GPS stations spanning a similar period from a global 

solution shows that the residual horizontal velocities range from 0.67 mm/year in the 

south near the Great Lakes, to 1.50 mm/year in northwestern Québec, near Hudson Bay, 

with significant variation in direction between the northern and southern stations 

velocities. The estimated vertical velocities derived from our analysis reveals a 

subsidence of about 1.93 ± 0.46 mm/yr in the south and a large uplift in the north, near 

Hudson Bay, of 10.92 ± 1.12 mm/yr as expected from relative sea-level measurements. 

In addition to the consistency of observed velocities in the study region to the global 

solution, we obtained more accurate solutions with lower errors when compared to the 

regional network solutions. The differences between the velocities of the common 

stations in two solutions in the three components are -0.03 to 0.03 mm/year in the east, -

0.10 to 0.19 mm/year in the north, and -0.52 to 0.20 mm/yr in the vertical component.  

Although the GIA models used here for comparison with our analysis have uncertainties 

in ice load history and Earth rheology, our results can be employed to study GIA motions 

since the last glacial maximum. The strategies employed here using Bernese software and 

noise analysis provide the best fit of the vertical velocities in the southern region to that 

GIA model with the lowest upper mantle viscosity and highest lower mantle viscosity 

profile, profile A (Figure 2.10a). While estimation of reduced 𝜒2 values for the fit 

between the data and several GIA models suggests none of them fit the data over the 

entire region, several of them reproduce features of both the horizontal and vertical 

velocities at smaller spatial scales. In addition, eliminating the stations in the north results 
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in a better estimation of the fit between the GIA model and observed residual horizontal 

velocities for viscosity profiles A and B (Figure 2.10a). These misfit results suggest that 

improved ice loading histories with higher spatial resolution and the incorporation of 

three-dimensional rheologies (see, e.g., Van der Wal et al. 2013) are important for 

realistic modeling of the current pattern of crustal GIA signal and that cGPS is an 

important tool for constraining those more complicated models.   

The time series analysis of GPS stations using a complex noise model is important 

because of the existence of time-correlated noises in the time series and seasonal 

variations from the surface loading signal, particularly in the north and up components. 

The model combining white noise with power-law noise was employed in the analysis 

and the estimated spectral index associated with the power-law noise suggests that most 

GPS stations in our study area are dominantly affected by flicker noise.  

In order to evaluate the sensitivity of our velocity estimates to the non-tidal surface 

loading deformation models, we compared the velocity uncertainties in the horizontal and 

vertical components to the velocity uncertainties calculated by Santamaria-Gomez & 

Memin (2015) using a power-law noise model. The results show that the vertical velocity 

errors associated with the surface mass loading range between approximately -0.2 to 0.2 

mm/yr and that no more than 40% of the estimated vertical velocity error in our GPS time 

series is due to that error source and that the surface loading mass contributes less than 

17% to the horizontal velocities uncertainties.  

In this research, we employed cGPS observations over nearly five years. Longer time 

series will contribute significantly to better estimates of the vertical and horizontal 

deformation in the region. In particular, the horizontal time series provide important 

insights into the spatial pattern and timing of the ice loading. Further analysis is required 

to determine the optimal combinations of ice loading history and Earth rheology that 

provide a simultaneous best fit to both vertical and horizontal velocities of all data in the 

region. Improved cGPS estimates, over longer time periods will contribute to 

advancements in GIA models. 
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Chapter 3  

 Simplified one-dimensional methodology to retrieve the 
seasonal amplitude of zenith tropospheric delay on 
GPS data 2 

In this chapter, I propose an elevation-dependent model to estimate the seasonal 

amplitude of ZTD in GPS data on local spatial scales. To achieve this model, I estimate 

the decay parameter of refractivity with altitude and the seasonal amplitude of 

refractivity computed from atmospheric data (pressure, temperature, and water vapor 

pressure) at a reference station. This model estimates the seasonal amplitudes of ZTD 

between each GPS station and a reference. In order to assess the accuracy of the 

proposed model, I process five years of data for the period 2008 through 2012 from eight 

GPS stations by using a precise point positioning (PPP) online application from Natural 

Resource Canada (NRCan) (https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php) 

which computes the ZTD errors based on the atmospheric parameters from a numerical 

weather prediction model at each stations’ location. Because this model estimates the 

seasonal amplitudes of ZTD between each GPS station and a reference station, taking 

advantage of the topographic dependency of seasonal amplitude of differenced ZTD, I 

formedthe difference between ZTD derived from PPP at each station and ZTD at the 

reference station. I demonstrate that the model can accurately estimate the seasonal 

amplitude of ZTD signals for the GPS stations at any altitude relative to the reference 

station, comparable with the estimates from global numerical weather prediction models 

such as ECMWF. Moreover, I use hourly meteorological data from the weather station 

nearest to each GPS station for the same period and convert them to the height of GPS 

sites, to compute the ZTD at each GPS station, so called MET-ZTD. The daily averaged 

MET-ZTD is compared to the ZTD obtained from PPP processing at every station. I also 

                                                 

2 A version of this chapter has been submitted to Radio Science journal. Samadi Alinia H., Tiampo, K.F., 

and Samsonov, S.V. (2017) Simplified one-dimensional methodology to retrieve the seasonal amplitude of 

zenith tropospheric delay on GPS data, Radio Sci. (under 2nd review)  

 

https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php
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calculate the PWV from the ZWD estimates at each station. These results provide an 

accurate platform to monitor long-term climate changes and inform future weather 

predictions.  

 Introduction  

As radio signals propagate in the atmosphere, they experience an increase or decrease in 

their speed in ionosphere and troposphere layers, respectively. The induced delay, called 

the atmospheric path delay (APD), results from the fact that the refractivity index of the 

constituent gases in the ionospheric and tropospheric layers of the atmosphere is greater 

than unity. This delay is the dominant source of error in GPS measurements and can 

produce up to 600 meters position error (Celestino et al. 2007). Therefore, it must be 

taken into account in precise Global Positioning System (GPS) positioning estimates. 

The delay resulting from signal propagation in the ionospheric layer, a region of 

electrically charged particles, is dispersive in nature. Therefore the magnitude of the 

ionospheric error, which can be as much as tens of meters (Hoque & Jakowski 2012), is 

dependent on the frequency of the radio signal. Eliminating this effect from GPS data can 

be achieved through a combination of two or three separate frequency signals (Shrestha 

2003; Kim & Tinin 2011; Elizabeth et al. 2010), taking advantage of the dispersive 

properties of the ionospheric layer, or utilizing other data sources (Bernhardt et al. 2000; 

Katsougiannopoulos 2008; Sokolovskiy et al. 2008; Liu et al. 2016).  

However, the effect of the troposphere on the GPS signals is not related to the frequency 

of the signals (Klobuchar 1996) and therefore the methods employed to remove 

ionosphere effects are not useful for eliminating this error. The magnitude of tropospheric 

error on the GPS data can be from 2 to 3 m. The tropospheric path delay can be separated 

into the two main components: the hydrostatic (dry) and the wet delay (Saastamoinen 

1973). The hydrostatic component depends on the dry gases in the atmosphere and can be 

determined with sub millimeter of accuracy from surface pressure measurements 

(Saastamoinen 1973; Mendes et al. 1995). The wet delay changes with the variation of 

time and space and is dependent on the amount of water vapor in the atmosphere (Bevis 

et al. 1994; Fotiou & Pikridas 2012). In this paper, we focus on the tropospheric effects.  

http://link.springer.com/article/10.1007/s40328-014-0047-7#CR12
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Knowledge of the zenith troposphere delay (ZTD) is important for providing information 

for accurate positioning and monitoring of the spatial and temporal weather and climate 

variations. ZTD can be estimated by using different GPS processing strategies and 

techniques including GPS network processing (Flouzat et al. 2009; Musa et al. 2011; Li 

et al. 2014), precise point positioning (PPP) technique (Bar-Sever et al. 1998; Dousa 

2010) and atmospheric studies that use parameters such as air pressure, air temperature 

and water vapor pressure (Schuler 2001; Pikridas et al. 2014). Differencing of the dry 

component of this delay, which can be easily computed from the relationship with the 

surface pressure (Saastamoinen 1973), from ZTD results in the zenith wet delay (ZWD), 

which is used directly to compute the precipitable water vapor (PWV), applicable in 

weather prediction (Morland et al. 2009; Bianchi et al. 2016; Jin & Luo 2009; Pikridas et 

al. 2014).  

Tregoning & Herring (2006) investigate the importance of using the actual surface 

pressure, including global pressure data such as those from European Center for Medium 

Range Weather Forecasts (ECMWF) or from global pressure and temperature model 

(GPT), rather than using a constant pressure value at sea level to estimate the a priori 

zenith hydrostatic delay (ZHD). They observed that not using the actual surface pressure 

produces a bias in GPS height estimation up to -0.2 mm/hpa and as much as 2 mm in 

amplitude of annual variations (Tregoning & Herring 2006).  

Employing meteorological data collected at the sensors installed at the GPS station’s 

locations is another approach to achieve the local atmospheric parameters. The problem 

is that in addition to the differences between the heights of weather station and GPS 

station, many weather stations are not collocated with the GPS receivers. Many studies 

have been carried out to correct the in situ pressure and temperature measured at the 

nearest meteorological station for the height of the local GPS station (e.g. Bai & Feng 

2003; Gendt et al. 2004; Musa et al. 2011; Dousa & Elias 2014; Alshawaf et al. 2017).  

Alshawaf et al. (2017) employed the vertically and horizontally interpolated surface 

pressure and temperature from the three meteorological stations nearest to each GPS 

station to compute ZHD and then calculate PWV at each station. In addition, they found a 
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good agreement between the PWV obtained from Global Navigation Satellite System 

(GNSS) observations and from European Center for Medium-Range Weather Forecasts 

Reanalysis (ERA-Interim) data in Germany in the lower altitude areas and a difference of 

approximately 0.6 mm in mountainous areas. They suggest that where there is an absence 

of the surface weather data, ERA-Interim is a good replacement for computing PWV 

from the ZTD derived from GNSS, particularly in flat regions, because of the coarse 

spatial grids for global surface pressure and temperature and the altitude difference with 

the GPS stations in areas with significant topography changes.  

Dousa & Elias (2014) proposed a novel approach for modeling ZWD and its vertical 

approximation by motivating the concept presented in Askne & Nordius (1987). They 

used a combination of the exponential decay parameters obtained from the fitting of the 

exponential function to the vertical profile of ZWD and partial water vapor pressure. 

Their approach reduces the low resolution numerical model to an accurate grid at a 

reference level.  

  Emardson et al. (2003) used the computed neutral delay obtained from GPS data to 

understand the noise level in differential interferometric synthetic aperture radar 

(DInSAR) images by monitoring the differential ZTD at different times between two 

GPS stations. They showed that the spatio-temporally averaged variance resulting from 

water vapor, 𝜎, in mm, is dependent on the differential distance and height between 

continuous GPS (CGPS) observations. They proposed a function of the form 𝜎 = cLα +

kH, where 𝜎 is in mm, and 𝐿 and 𝐻 are in kilometers and estimated the values of c, α,  and 

k for different time periods. For example, using zenith neutral atmospheric delays 

computed from daily GPS data from 126 stations in the Southern California Integrated 

GPS Network (SCIGN) network, they obtained values of 2.8 ±0.1, 0.44 ± 0.004 and 0.5 

± 0.1 for c, α,  and k, respectively. Note that the value of 𝛼 is generally site-independent.  

They also showed that the mean vertical stratification of the troposphere is correlated 

with observations between one and three days. This model is valid for lengths with a 

range of 10 to 800 km and height differences between 0 and 3 km. These ideas led to a 

topography-dependent turbulence model for DInSAR tropospheric corrections using 

values of the wet part of the zenith delay estimated from GPS data (Li et al., 2005).  
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In other work, Li et al. (2005, 2006a) used a water vapor correction model derived from 

the integration of GPS and either NASA Moderate Resolution Imaging 

Spectroradiometer (MODIS) data and ESA’s MEdium Resolution Imaging Spectrometer 

(MERIS) data. They showed that atmospheric water vapor is a significant error source for 

repeat-pass DInSAR measurements and is particularly important when studying small 

amplitude geophysical signals with long wavelengths, including interseismic deformation 

and some anthropogenic processes. In their approach, a linear correction model was 

produced based on the comparison between MODIS- Precipitable Water Vapor (MODIS-

PWV) and GPS-PWV values in cloudy areas and 1 km × 1 km water vapor fields for 

DInSAR atmospheric correction.  

Li et al. (2006b) proposed a MODIS/MERIS combination water vapor correction model 

to take advantage of the properties of both types of data that can be used when one or the 

other data is not available. MERIS has better spatial resolution than MODIS. Also, its 

near-IR water vapor products are closer to GPS than MODIS (Li et al., 2006b). Unlike 

MODIS, MERIS is available for the same times as the Advanced Synthetic Aperture 

Radar (ASAR) image product. In addition, employing MODIS with the MERIS near-IR 

water vapor product enables the detection of cloud pixels, while MERIS data are usable 

only under cloud-free conditions. 

Samsonov et al. (2014) proposed an elevation-dependent exponential model to compute 

the systematic seasonal troposphere signal in DInSAR height time series. They calculated 

the ground deformation time series from ENVISAT and RADARSAT-2 

interferograms over Naples Bay in Italy for a period of ten years. In their approach, they 

employed multiyear refractivity obtained from the surface weather station and radiosonde 

station located near the location of a DInSAR reference point, at mean sea level (msl).  

They computed the exponential decay parameter by fitting an exponential function to the 

vertical profile of refractivity computed from the radiosonde data. Their results indicate 

that removing the troposphere seasonal sinusoidal signal, computed based on the 

estimated seasonal amplitudes of ZTD, from DInSAR height times series could calculate 

the deformation rate of signals with 50% better precision than those estimated before 

correction (Samsonov et al., 2014).   
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In this paper, initially, we process the RINEX data for the time period spanning January 

2008 to December 2012 for eight GPS stations distributed sparsely in southeastern 

Ontario through northwestern Québec by using PPP processing online service available 

from Natural Resource Canada (NRCan) (https://webapp.geod.nrcan.gc.ca/geod/tools-

outils/ppp.php). Employing this application results in absolute estimates of ZTD and 

position, with a time step of 30 seconds, for every GPS station. Next, we calculate the 

ZTD at each GPS station by using hourly meteorological data from weather stations close 

to the GPS stations over the same time period as the original data. For more accurate 

results, the meteorological data, including temperature, pressure and water vapor 

pressure, are corrected for the height difference between GPS stations and weather 

stations based on the approaches proposed by Musa et al. (2011) and Dousa & Elias 

(2014). Then, the ZTD results from the GPS processing, so called GPS-ZTD, and the 

ZTD estimated from the meteorological data, so called MET-ZTD, are averaged on a 

daily basis and for comparison with each other. 

As mentioned above, in addition to the importance of proper estimation of the 

tropospheric path delay in precise positioning, it is widely used in determining the 

amount of water vapor pressure in the atmosphere. A better understanding of this 

relationship can help to estimate the precipitable water, which is the most important 

greenhouse gas, long-term monitoring of which can help to estimate climate change. 

Many studies employed GPS observations to compute PWV (e.g., Bevis et al. 1992; 

Duan et al. 1996; Tregoning et al. 1998; Steigenberger et al. 2007; Tregoning & Watson, 

2009). Bevis et al. (1992) employed the GPS meteorology (GPS-MET) approach to 

measure atmospheric water vapor both in time and space in near real-time from GPS data 

analysis and ZWD. In this work, we use their proposed approach and input the corrected 

atmospheric parameters for the height difference between each GPS station and the 

nearby weather station to retrieve the PWV from the ZWD at each GPS station.  

 Based on the work of Samsonov et al. (2014), we propose an elevation-dependent model 

based on the exponential decay parameter of refractivity computed from the fit to the 

vertical profile of the mean refractivity at the GPS stations. This model computes the 

seasonal amplitude of ZTD in GPS data referenced to a station at higher altitude, ACTO 

https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php
https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php


108 

 

at 367.22 m above msl. We then compare the results to the seasonal amplitudes of the 

differenced GPS-ZTD at each station relative to the GPS-ZTD at station ACTO. The 

differenced ZTD will increase the dependency of the seasonal amplitude of ZTD with 

altitude and the estimated seasonal amplitudes from the model are comparable to the 

observed seasonal amplitude from differenced ZTD.   

Before addressing the tropospheric modeling errors, we discuss the GPS and weather 

station data in Section 2.  In Section 3, we focus on the methods used to model the ZTD 

at GPS stations by using meteorological data and processing of GPS stations. In this 

section, we also present the model for computing the elevation-dependent seasonal 

amplitude of ZTD at each GPS site. In addition, we also elaborate on how we calculated 

PWV using the ZWD at each site. In the following section, the results are discussed in 

detail. Interpretation and conclusions are presented in the final section. 

 Data Preparation  

As this paper follows upon our earlier work on processing GPS data in eastern Ontario 

and western Québec using Bernese GPS Software version 5.0 (Samadi Alinia et al., 

2017), here we use the RINEX data from eight common GPS stations, seven GPS stations 

of the POLARIS network (ftp://polaris4.es.uwo.ca) (Eaton et al., 2005) and one long-

running IGS reference station (ALGO) operated by the Canadian Geodetic Survey (CGS) 

of Natural Resources Canada (NRCan) in the same time period as the previous study, for 

a period of five years from the beginning of 2008 to end of December 2012, at a 30 

second sampling rate. Note that here we employed a PPP analysis from the Canadian 

Spatial Reference System (CSRS) online service provided by NRCan 

(https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php) 

These GPS sites were equipped with dual-frequency receivers, although the antennas, 

monuments and receiver types differed between stations. GPS stations ACTO, TYNO 

and, STCO are continuously operating reference stations (CORS) with monuments 

consisting of reinforced concrete pillars approximately three meters deep. All other 

stations have stainless steel pedestals anchored to bedrock. The manufacturers of the 

receivers and antennas include Trimble, Novatel, Topcon Positioning System (TPS) and 

ftp://polaris4.es.uwo.ca/
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Allen Osborne Associates, Inc. (AOA). Figure 3.1 depicts the geographical location of 

the selected GPS stations (black circles) in our study area.  

 In order to perform a comparative study of ZTD, we also employ the local surface 

atmospheric parameters spanning from 2008 to the end of 2012 measured at weather 

stations near the GPS stations (Figure 3.1, green triangles).  The hourly historical climate 

data provided by Environmental Canada (http://climate.weather.gc.ca/) was retrieved for 

the weather stations within 10 km of TYNO (Hamilton), within 5.9 km of STCO (Port 

Weller, AUT), within 29 km of ACTO (Elora, RCS), within 13 km of KLBO (Parry 

Sound, CCG), within 49 km of ALGO (Algonquin Park East Gate), within 11 km of 

MATQ (Matagami), and within 4 km of INUQ (Inukjuak). Because the closest weather 

station to the northernmost station, IVKQ, with valid weather data is Cape Dorset, across 

Hudson Bay, we consider this in our analysis of this station. Note that this station is 213 

km from IVKQ. In addition, Guelph Turfgrass weather station, the closest weather station 

to ACTO, does not record surface pressure data. As a result, we included data from the 

second closest weather station, Elora RCS. Finally, because of missing hourly climate 

data for the period October 2011 to the end of 2012, due to the loss of connection at the 

Matagami weather station, we employed data from another nearby weather station, 

Matagami A, for that missing time interval. The elevations of Matagami and Matagami A 

stations are very similar, 281 and 280 m respectively.  

Table 3.1 presents the altitude of the GPS stations and the nearby weather stations above 

msl. As the atmospheric parameters are sensitive to the height of a station (Emardson et 

al. 2003; Musa et al. 2011), the height difference between the weather stations and the 

GPS stations must be taken into account for an accurate estimation of ZTD at the GPS 

stations. In our study area, the difference between the heights of GPS stations and the 

nearby weather stations range between -15.2 and 159.8 m above msl. Therefore, in order 

to correct pressure, temperature and water vapor pressure for the height difference, we 

use the relationships proposed by Dousa & Elias (2014) and Musa et al. (2011). 

http://climate.weather.gc.ca/
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Initially, we convert the atmospheric parameters observed at the weather stations’ height 

to a common reference level at msl and then transfer that to the GPS stations’ height (Bai 

& Feng, 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Location of the weather stations in eastern Ontario and western Québec (red 

triangles), GPS stations (black circles) and weather stations considered in this study 

(green triangles). Contour lines illustrating elevations are shown in brown and are 

spaced at 100-meter intervals. 
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Temperature observed at the meteorological station can be corrected for the height 

difference with the GPS station as follows:  

𝑇𝑀𝑆𝐿 = 𝑇𝑀𝐸𝑇 +  β 𝐻𝑀𝐸𝑇 

                                                      𝑇𝐺𝑃𝑆 = 𝑇𝑀𝑆𝐿 −  β 𝐻𝐺𝑃𝑆                                        (3.1) 

where, 𝑇𝐺𝑃𝑆 and 𝑇𝑀𝐸𝑇 are the temperatures at GPS station and at meteorological station in 

Kelvin, 𝑇𝑀𝑆𝐿 is the temperature at mean sea level in degrees Kelvin, 𝐻𝐺𝑃𝑆 and 𝐻𝑀𝐸𝑇 are, 

respectively, the altitudes of the GPS station and meteorological station above mean sea 

level in meters, and β is the temperature lapse rate, estimated at  6.5 K/km (Dousa & 

Elias 2014).  

The air pressure at a GPS station can be obtained by employing Equation 3.2 (Dousa & 

Elias 2014):  

𝑃𝑀𝑆𝐿 = 𝑃𝑀𝑒𝑡 ∗ (
𝑇𝑀𝑆𝐿 − β 𝐻𝑀𝐸𝑇

𝑇𝑀𝑆𝐿
)
−𝑔
𝑅 𝛽 

                                               𝑃𝐺𝑃𝑆 = 𝑃𝑀𝑆𝐿 ∗ (
𝑇𝑀𝑆𝐿−β 𝐻𝐺𝑃𝑆

𝑇𝑀𝑆𝐿
)

𝑔

𝑅 𝛽                               (3.2) 

where, 𝑃𝑀𝑆𝐿, 𝑃𝑀𝑒𝑡 and 𝑃𝐺𝑃𝑆 are the air pressure at mean sea level, meteorological station 

and GPS station, respectively, 𝑔 = 9.80665 is the gravitational acceleration in (𝑚 𝑠2⁄ ), 𝑅 

is the specific gas constant for dry air estimated as 287.058 (J/kg/K).  

Partial water vapor pressure can be computed from the hourly dew point temperature 

observed at the meteorological station for the time period 2008 to 2012. This temperature 

is a value that describes the amount of moisture content in the air at a particular 

temperature (Elliott & Gaffen, 1993). To achieve this temperature, we use equation 

AEGR developed by Alduchov & Eskridge (1996) because the temperature for every 

weather station in our study area is less than 500 Celsius. This formulation is 

exponentially dependent on the temperature.  
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Utilizing the relationships between the partial water vapor pressure and pressure 

presented by Dousa & Elias (2014) and an exponential decay parameter of partial water 

vapor pressure from Smith (1966), the computed partial water vapor pressure at the 

meteorological station can be transferred to the GPS station as follows: 

𝐸𝑀𝑆𝐿 = 𝐸𝑀𝑒𝑡 ∗ (
𝑃𝑀𝑒𝑡

𝑃𝑀𝑆𝐿
)−(𝜆+1) 

                                       𝐸𝐺𝑃𝑆 = 𝐸𝑀𝑆𝐿 ∗ (
𝑃𝐺𝑃𝑆

𝑃𝑀𝑆𝐿
)(𝜆+1)                                   (3.3) 

where, 𝐸𝑀𝑆𝐿, 𝐸𝑀𝑒𝑡 and 𝐸𝐺𝑃𝑆 are the partial water vapor pressure at mean sea level, 

meteorological station and GPS station, respectively. 𝜆 is the exponential decay 

parameter of partial water vapor pressure given by Smith (1966) and is dependent on the 

season of year and the latitude of the site.  

In this paper, we employed the annual average values of 𝜆 corresponding to the latitude 

bands presented by Smith (1966). According to Alshawaf et al. (2017), this parameter is 

not highly variable at sites below 700 m. Table 3.2 represents the values of 𝜆 for each 

station.  

Figure 3.2 indicates the relation between air temperature, dew point and partial pressure 

of water vapor variations as a function of height. As shown in this figure, INUQ and 

IVKQ have very low dew point temperature and water vapor pressure, despite their 

relatively low altitude. This is because they are located east of Hudson Bay, a region that 

is abnormally cold and dry when compared to other areas with the same altitude 

(Danielson 1969; Maxwell 1986). In contrast, the temperature and water vapor pressure 

at station ACTO are as high as those at stations STCO and TYNO but higher than station 

MATQ. This is in spite of its higher altitude relative to MATQ. This may be because it is 

situated further south and is warmer and moister than station MATQ, which is located 

further to the north.  
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Figure 3.2. Vertical profile of the mean partial water vapor pressures (solid red), the 

mean dew point temperature (dashed blue) and the mean air temperature (solid blue) at 

the GPS stations. 

 

 Methods 

3.3.1 GPS Processing  

The first step of the ZTD computation relates to the use of PPP technique from the CSRS 

online service provided by NRCan (https://webapp.geod.nrcan.gc.ca/geod/tools-

outils/ppp.php) (Lahaye et al. 2008). This application estimates a high-accuracy absolute 

position for a single receiver. The accuracy of the positions derived from PPP coordinates 

is mostly dependent on the length of observation session for resolving the carrier phase 

ambiguities (CSRS-PPP guide 2004; Geng et al. 2012). In addition, the quality of the 

equipment and employing dual-frequency receivers are important factors in obtaining 

very accurate positioning results (CSRS-PPP guide 2004; Berg & Holliday 2011).  

This technique takes into account ZTD as an unknown during processing and estimates it 

every 15 seconds along with the position estimates. We employed the international 

terrestrial reference frame (ITRF) as the reference system and static mode for post-

processing of the GPS data. This application uses precise satellite orbits and clock 

https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php
https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php
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corrections at the epoch of the observation data. In addition, it uses the final satellite 

products available by International GNSS Service (IGS) and by the National Geodetic 

Survey (NGS) available at http://www.ngs.noaa.gov/ANTCAL. The CSRS-PPP online 

service includes cycle-slip filtering and antenna phase center calibration values, along 

with applying the ocean loading corrections computed with the Onsala Space 

Observatory (OSO) Chalmers grid model (Bos & Scherneck 2011). The first-order 

ionospheric error is removed using the linear combination of the dual frequency L1 and 

L2 of the code and phase observations. The higher order of delay, which is less than 1% 

of the first order delay, is not taken into account. 

As mentioned earlier, the troposphere error in the radio signals causes a delay in the 

arrival of signal to the receiver and can be divided into the wet and dry components 

(Saastamoinen 1973). In order to reduce this to only one unknown tropospheric delay for 

all satellites in view, this application uses global mapping function (GMF), a high 

accuracy mapping function, to project the zenith troposphere to the satellite-receiver 

direction (El-Mowafy 2011).  

The GMF in the current version of CSRS-PPP application (CSRS-PPP 2017), uses a 

15° × 15° global grid from the monthly mean profile of pressure, temperature and 

relative humidity data produced from the ECMWF numerical weather model data, a 40-

year reanalysis (ERA40) data (Kouba 2008). This mapping function for both hydrostatic 

and wet components is defined as follow (Boehm et al. 2006a):  

𝑚(𝜀) =

1+
𝑎

1+
𝑏

1+𝑐

𝑠𝑖𝑛𝜀+
𝑎

𝑠𝑖𝑛𝜀+
𝑏

𝑠𝑖𝑛𝜀+𝑐

                             (3.4) 

where, a, b and c are constant coefficients.  𝜀 is the elevation cut-off angle, and a value 

of 10° is applied in CSRS-PPP by default. 

This function is the spherical harmonic expansion of the Vienna Mapping Function 1 

(VMF1) parameters (Boehm et al. 2006b) and requires the station coordinates and day of 

the year as input parameters. The coefficient a for both hydrostatic and wet components 

is estimated from the spherical harmonics and computed based on the same process as 

http://www.ngs.noaa.gov/ANTCAL
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used in VMF1 (Boehm et al. 2006b). This parameter, at any latitude at the day of year t 

(referred to January 28), can be calculated as: 

𝑎 = 𝑎0+𝐴 cos (
𝑡−𝑇0

365
. 2𝜋) 

𝑎0 = ∑ ∑ 𝑃𝑛𝑚(sin (𝜑)). [𝐴𝑛𝑚 cos(𝑚𝜆) + 𝐵𝑛𝑚
𝑛
𝑚=0

9
𝑛=0 sin (𝑚𝜆)]       (3.5) 

where, constant 𝑎0 and the annual amplitude A, on a global grid of monthly mean 

between September 1999 and August 2002 in a least-square adjustment. The coefficients 

b and c are estimated based on the empirical equations with the same strategy used in 

VMF1. 

3.3.2 Employing Meteorological Data 

In this approach, we use the meteorological data observed at the weather stations, 

converted to the nearby GPS station as discussed in detail in Section 3.2, in order to 

compute the refractivity and to estimate the absolute ZTD time series at each site. 

3.3.2.1 Refractivity  

The refractive index of a medium, n, is expressed as the ratio of the speed of propagation 

of a radio wave in a vacuum, c, to the speed of propagation in the medium, v: 

𝑛 =
𝑐 

𝑣
                       (3.6) 

As the electromagnetic waves in the atmosphere propagate just slightly slower than in a 

vacuum, the refractive index is more conveniently expressed in terms of the refractivity, 

N: 

𝑁 = 106(𝑛 − 1)                      (3.7) 

The radio refractivity (𝑁) can be computed based on the meteorological parameters of 

atmospheric pressure, water vapor, and temperature. The following expression (Equation 

3.8) from Smith & Weintraub (1953) represents the relationship between the 

meteorological parameters and refractivity: 
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𝑁 = 𝐾1
𝑃𝑑

𝑇
+ 𝐾2

𝑒

𝑇
+ 𝐾3

𝑒

𝑇2                 (3.8) 

Here 𝑃𝑑 is the partial pressure of dry air (hPa), 𝐾𝑖  are the refractivity constants, e is the 

partial pressure of water vapor (hPa), and T is the absolute temperature (degrees Kelvin) 

at the GPS stations’ height. The refractivity constants 𝐾𝑖 are determined empirically in a 

laboratory. We use the values determined by Rueger (2002) of 77.69 K 𝑚𝑏𝑎𝑟 −1, 71.29 

K  𝑚𝑏𝑎𝑟 −1, and 375463 𝐾2  𝑚𝑏𝑎𝑟 −1 for the refractivity constants 𝐾1, 𝐾2, and 𝐾3, 

respectively.  

By substituting meteorological observations for partial pressure, partial water vapor 

pressure and temperature parameters at each GPS station into Equation 3.8, we calculate 

the refractivity time series for every GPS station in our study (Figure 3.3). According to 

Figure 3.3, a minimum occurs during summer and a maximum occurs in the winter in 

every year. Note that there are a number of gaps, ranging from 2% to 5%, in the time 

series at STCO, INUQ, ALGO, and IVKQ that occur due to the lack of some of the 

weather parameters required for the refractivity calculation (water vapor pressure, 

temperature or pressure) and that are not provided by other nearby weather stations. 

Table 3.1 represents the mean of refractivity at each station.   

3.3.2.2 Computing ZTD from Meteorological Data  

The ZTD of the signal can be computed in terms of refractivity N integrated over the path 

with a given altitude as (Jin 2012; Solheim et al. 1999): 

𝑑𝑡𝑟𝑜𝑝 = 10−6 ∫ 𝑁𝑑𝑠
𝑝𝑎𝑡ℎ

               (3.9) 

The ZTD can be calculated by employing an exponential decay model as proposed by 

Martin & Waldron (1961). This model is expressed by the integration of refractivity 

along a vertical path above msl according to the following equation:  

𝑑𝑡𝑟𝑜𝑝(𝑡, 𝑧𝑖) = 10−6𝑁𝑖(𝑡) ∫ 𝑒−𝑐𝑧 𝑑𝑧
∞

0
                  (3.10) 

In this equation, 𝑁𝑖(𝑡) is the refractivity time series at a station, 𝑧𝑖 is the elevation of the 

station above msl and c is the refractivity decay parameter.  
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Figure 3.3. Refractivity time series computed from meteorological data such as 

temperature, air and water vapor pressure (Equation 3.3) observed at the weather stations 

near the GPS stations and corrected for the height differences with the GPS stations, 

distributed from southeastern Ontario to northwestern Québec, using Equations 3.1 to 3.3 

(Dousa & Elias 2014) (Figure 3.1). 

 

 

 



120 

 

Figure 3.4 indicates the vertical profile of the mean refractivity at all GPS stations. The 

dependency of mean refractivity with elevation is strongly proportional to the ratio of 

partial water vapor pressure and surface temperature variations with height at GPS 

stations (see Equation 3.8). This fact is demonstrated by the similarity between the 

vertical profiles of the mean refractivity in Figure 3.4 to the vertical profile of partial 

water vapor pressure and temperature in Figure 3.2. By increasing the humidity, which is 

related to an increase in water vapor and temperature, refractivity also increases, while 

the refractivity decreases with a decrease in these two effective atmospheric parameters 

(Lawrence 2005).  

Although the refractivity theoretically should decrease with higher elevation, the mean 

refractivity calculated at INUQ and IVKQ GPS sites shows some inconsistencies. The 

refractivity values at these sites are smaller than expected due to the very low local 

temperatures and partial water vapor pressure for the time period of five years between 

2008 and 2012, when compared to the other stations in southern region. The mean 

temperature of these sites in the considered time span is approximately, −3.40 ± 0.06° 

and −6.47 ± 0.05° Celsius, respectively. Moreover, as presented in Table 3.1 and Figure 

3.2, they have the lowest dew point temperatures and therefore the lowest water vapor 

pressure (Alduchov & Eskridge 1996). The dew point temperature at INUQ is −6.72 ±

0.06° Celsius and −9.56 ± 0.05° Celsius at IVKQ (Table 3.1). Also as presented in 

Table 3.1, the water vapor pressure computed for these sites is approximately 5.34±0.02 

and 4.13±0.01  mbar, respectively.    

The plot of mean refractivity with elevation at each GPS station ranges from 0 to 400 m 

above msl. In this paper, we calculate the decay parameter by fitting the exponential 

models to the vertical profile of computed mean refractivity at eight stations for four 

different scenarios in order to estimate a value very close to the given global empirical 

values. The exponential models and the associated 95% confidence interval for the four 

scenarios are shown in Figure 3.4. As this figure illustrates, the fitted exponential model 

for all scenarios is almost linear within the ranges of considered elevations. This matches 

well to the linear relationship of refractivity at heights below one km found by Samsonov 

et al. (2014) using radiosonde data.  
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Figure 3.4. Vertical profile of the mean refractivity at GPS stations (blue stars). 

Comparison of the fitted exponential model a) to the values of all eight stations b) to the 

values of all stations except for that at INUQ and IVKQ c) to the values of all weather 

stations except MATQ, INUQ and IVKQ; d) to the values of stations INUQ, IVKQ, 

MATQ and ALGO. The 95% confidence intervals for the calculated exponential fit to the 

data in each scenario is presented with dashed lines. 
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In the first scenario, we fitted an exponential model to the values of refractivity at all 

eight stations (Figure 3.4a). INUQ and the IVKQ stations are excluded in the second 

scenario as they have the lowest temperature and inconsistent refractivity (Figure 3.4b). 

Because MATQ has the lowest temperature after INUQ and IVKQ, in scenario 3 an 

exponential model was fitted to the refractivity values at all stations except to those 

refractivity values computed for MATQ, INUQ, and IVKQ (Figure 3.4c). In scenario 4 

we model an exponential fit to the values of IVKQ, INUQ, MATQ, and ALGO in order 

to calculate the decay parameter for stations with more consistent regional physical 

properties (Figure 3.4d).  

Among the fitted exponential functions in the four scenarios, that function in scenario 2 

provides a better fit to the mean refractivity of the GPS stations. In addition, the 95% 

confidence interval of the fitted exponential function in this scenario incorporates the 

estimates of the mean refractivity at INUQ and IVKQ, although they were not included in 

the fitting process itself. The refractivity decay parameter computed in this scenario is 

equal to 0.121 𝑘𝑚−1 and the mean value of refractivity is equal to 327.5 N-units (the 

radio refractivity).  

In addition to the good matches of the mean value of refractivity to the value observed by 

Samsonov et al. (2014) for the altitudes below one km, 334 N-units, the estimated decay 

parameter also is in good agreement with the empirical value given by Bean & Thayer 

(1959). According to Bean & Thayer (1959), for elevations less than 9 km, the decay 

parameter for refractivity between 200 to 450 N-units ranges from 0.106 to 0.154 𝑘𝑚−1 . 

Their decay parameter value of 0.122 𝑘𝑚−1 corresponds to the mean refractivity 313 N-

units, which is valid for mid-latitude regions.  

Subsequently, in this paper, we only take into account the decay parameter, 0.121 𝑘𝑚−1 , 

obtained from scenario 2. We use this value to calculate ZTD at each station in our study 

area. These results confirm that in the absence of radiosonde data, employing 

meteorological data will produce a reasonable estimate of the decay parameter for 

elevations below one km.  
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By substituting the estimated decay parameter and the refractivity computed at each GPS 

station in Equation 3.10, ZTD at each station can be computed. 

3.3.3 Computing the elevation-dependent seasonal amplitude  

Study of the seasonal fluctuation of ZTDs is important as they are mainly dependent on 

the variations of ZWD and therefore can provide significant information for monitoring 

of climate variations (Jin et al. 2007). Based on the model for computing the seasonal 

amplitude of ZTD in DInSAR data of Samsonov et al. (2014), we propose a model which 

can accurately estimate the local elevation-dependent seasonal amplitude of the 

differenced ZTD at each station relative to a reference station.  

 From Equation 3.10, the ZTD between the reference station and the other station can be 

computed as follow:  

∆𝑍𝑇𝐷𝑀𝐸𝑇(𝑡, 𝑧𝑟 , 𝑧𝑖) = 10−6𝑁𝑟(𝑡) ∫ 𝑒−𝑐𝑧 𝑑𝑧
𝑧𝑖

𝑧𝑟
                     (3.11) 

where, 𝑧𝑟 and 𝑧𝑖 are the elevations of reference station and the other station with respect 

to msl, respectively.  

In order to compute the seasonal amplitude of ZTD, we expand Equation 3.11 and take 

into account the seasonal amplitude of refractivity instead of the time series of 

refractivity, as done by Samsonov et al. (2014), and we obtain 

𝑎𝑚𝑝𝑍𝑇𝐷𝑖(𝑧𝑟, 𝑧𝑖) =  |
10−6(𝑎𝑚𝑝𝑁𝑟)

𝑐𝑒𝑐𝑧𝑟
(1 − 𝑒−𝑐(𝑧𝑖−𝑧𝑟))|                        (3.12) 

where, 𝑎𝑚𝑝𝑁𝑟 (N-units) is the average seasonal amplitude of refractivity at Earth’s 

surface at the reference station, here station ACTO at 367.22 m above msl.  

Because we consider the reference station at a greater altitude than that of the other 

stations in our study, 𝑧𝑟 ≥ 𝑧𝑖, we considered the absolute value of the resulting equation 

to prevent producing negative values for the amplitudes of the troposphere.  

The amplitude of the refractivity at Earth’s surface is computed as 18.93 N-units by 

fitting a simple annual sinusoidal function to the daily refractivity time series estimated at 
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station ACTO (Figure 3.3). In the next section, we compare the seasonal amplitudes of 

ZTD computed from the proposed model to the seasonal amplitudes of the differenced 

ZTD at every site. As noted by Li et al. (2006), the advantage of considering the 

differenced ZTD rather than absolute values is that the differenced ZTD values will 

reduce the impacts of the terrain elevation dependency of the ZTD and ZWD variations 

and provide more useful information. 

3.3.4 Precipitable Water Vapor 

The weather and climate changes that result in variations in atmospheric water vapor can 

be monitored through the measurement of PWV from observed ZTDs. Traditional 

techniques, such as radiosondes and radiometers, are expensive and have limited spatial 

coverage and temporal resolution. PWV is the vertical integration of the amount of water 

vapor from Earth’s surface in the atmosphere and may be expressed either in g/cm2 or in 

terms of the height of an equivalent vertical column of water vapor in centimeter. 

Therefore, employing the wet component of the ZTDs which is a function of temperature 

and water vapor pressure can provide an opportunity for retrieval of PWV (Karabatic et 

al. 2011).   

As mentioned earlier, the ZHD can be computed accurately by employing a pressure 

dependent function. Removing this component from the total troposphere delay will 

result in ZWD. In this paper, we use the model developed by Saastamoinen (1973) to 

compute ZHD at each station as follow: 

𝑍𝐻𝐷 =
0.002277𝑃

1−0.0026𝑐𝑜𝑠2𝜙−0.00028𝐻
                                     (3.13) 

where, 𝑃 is the air pressure at a GPS station (mbar), 𝐻 is the elevation above msl in km, 

𝜙 is the latitude of the station.  

Note that the pressure in Equation 3.13 was measured at the weather station nearby the 

GPS station and computed at the GPS station using Equation 3.2.  

Then PWV at each station can be computed from the obtained ZWD at each station by 

using the conversion factor proposed by Bevis et al. (1994) as follow (Equation 3.14):  
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𝑃𝑊𝑉 = 106[𝑅𝑉(−
𝑅𝑑

𝑅𝑉
𝑘1 + 𝑘2 +

𝑘3

𝑇𝑚
)]−1 × 𝑍𝑊𝐷                                      (3.14) 

where, 𝑅𝑉 is the gas constant for water vapor, 461 𝐾−1𝑘𝑔−1 , and 𝑅𝑑 is the gas constant 

for dry air, 287 𝐽𝐾−1𝑘𝑔−1 , 𝐾𝑖 are the physical refractivity constants given in section 

3.2.1. 𝑇𝑚 is the weighted mean surface temperature and can be calculated by employing 

the accepted formula proposed by Mendes et al. (2000) as 

𝑇𝑚 = 50.4 + 0.789 𝑇𝑠                                                      (3.15) 

where, 𝑇𝑠 is the surface temperature in Kelvin.  

It is worthwhile to mention that evaluation of the sensitivity of the obtained PWV to the 

surface temperature performed by Pikridas et al. (2014) and Liu et al. (2005) shows that 

the uncertainties of the surface temperature do not significantly influence the PWV 

estimates. 

 Results and Discussion  

In this section, we discuss the GPS-ZTD and MET-ZTD obtained for each station. In 

addition, we compare the seasonal amplitude of ZTD computed by using the proposed 

elevation-dependent exponential model to the seasonal amplitude of the differenced ZTD 

at each station relative to station ACTO. The differenced ZTD is defined as the ZTD 

computed for the reference station, here station ACTO at the height of 367.22 m above 

msl, subtracted from the ZTD computed for each of the other stations. Moreover, we 

present the results of the computed PWV for every station in our study.  

3.4.1 The comparison between GPS-ZTD and MET-ZTD 

In order to compare the results of the computed GPS-ZTD and MET-ZTD at each station, 

we calculate the linear correlation coefficients between each pair of daily averaged ZTD 

time series based on Pearson Product Moment Correlation (PPMC) approach.    

Figure 3.5 shows the correlogram, a visual presentation of the correlation matrix, created 

from the correlation of the ZTD time series.  Each correlation coefficient is shown with a 

color. The variables in this matrix, from left to right, are sorted from low to high latitude 
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to satisfy the study of the pattern of dependency among variables. The low correlation 

coefficient between the observed GPS-ZTD and MET-ZTD at station IVKQ, as 

compared to the other stations (0.60, yellow color, Figure 3.5), is probably because the 

Cape Dorset weather station, which was employed to compute the MET-ZTD, is 213 km 

from IVKQ GPS station. Therefore, although the weather parameters corrected for the 

height difference between the weather station and GPS station, the resulting 

meteorological parameters cannot accurately reproduce the ZTD at station IVKQ. 

Horizontal interpolation of the meteorological data from the meteorological stations 

might produce a better match in the absence of nearby weather station (Gendt et al. 2004; 

Alshawaf et al. 2017).  

 

Figure 3.5. Correlogram of the Pearson’s linear correlation coefficients between all pairs 

of ZTD time series calculated from the two strategies, using GPS data and meteorological 

data at all GPS stations. G and M stand for GPS data and meteorological data, 

respectively. The scale bar represents the correlation coefficient values. The variables 

from left to right are sorted for the stations from low to high latitude.    
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As shown in Figure 3.5, the ZTDs at stations in southeastern Ontario (lower latitude) 

have lower correlation with the ZTDs at stations in northwestern Québec (higher 

latitude). For example, as seen in the first row of the correlogram, the correlations 

between the GPS-ZTD at TYNO and the GPS-ZTD at other stations is decreasing from 

left to right, with increasing latitude.    

The comparison between the mean of the daily averaged MET-ZTD and GPS-ZTD at 

each station in Table 3.2 shows that the estimated mean of MET-ZTD is greater than the 

mean of GPS-ZTD at all stations and ranges between 0 and 5 cm. Also, Table 3.2 

represents the rms differences between daily averaged MET-ZTD and GPS-ZTD, that 

range between 3.78 and 11.01 cm.  

3.4.2 The comparison between the elevation-dependent seasonal 
amplitude of ZTDs 

In this paper, we consider station ACTO as the reference station. Therefore, all the ZTD 

time series computed from GPS data are subtracted by the GPS-ZTD computed for 

station ACTO as ∆𝑍𝑇𝐷𝐺𝑃𝑆.  

By fitting a simple annual sinusoidal function to the obtained ∆𝑍𝑇𝐷𝐺𝑃𝑆 at each station, 

we compute the seasonal amplitude at the corresponding station. In addition, we calculate 

the seasonal amplitude of the ZTD for every locations at an altitude between 0 and 1000 

m above msl relative to station ACTO from Equation 3.12. These amplitudes are 

illustrated in Figure 3.6. As seen in this figure, the modeled seasonal amplitudes increase 

with above the elevation of the reference station, 367.22 m above msl. The results are in 

good agreement with those obtained from Samsonov et al. (2014) in which they 

considered a location at msl as a DInSAR reference point and observed an increase in the 

seasonal amplitude of ZTD with increasing height.  

Figure 3.6 indicates the computed seasonal amplitudes of ∆𝑍𝑇𝐷𝐺𝑃𝑆 at each station (red 

star) relative to ACTO overlain with the modeled seasonal amplitudes (blue line). By 

substituting the altitude of each station in Equation 3.12, the seasonal amplitude of ZTD 

for the corresponding station relative to station ACTO is obtained. Comparison of the 

modeled and observed estimates shows that the seasonal amplitude of ∆𝑍𝑇𝐷𝐺𝑃𝑆 at all 
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stations, except those at stations INUQ and IVKQ, are within the 95% confidence 

interval of the modeled seasonal amplitudes. 

 

Figure 3.6. The vertical profile of the seasonal amplitude of the ∆𝒁𝑻𝑫𝑮𝑷𝑺, obtained from 

the sinusoidal signal fitted to the difference between GPS-ZTD at each station and at 

station ACTO (red start) overlain with the seasonal amplitudes modeled by using 

Equation 3.12 for the points at altitudes between 0 and 1000 m msl (blue solid line). 

 

From Table 3.2, the differences at all stations, again with the exception of stations INUQ 

and IVKQ range between -0.47 and 0.28 cm. The large difference, up to 1.3 cm, for 

INUQ and IVKQ probably relates to the low correlation between the ZTD at station 

ACTO and ZTDs at stations INUQ and IVKQ, discussed earlier. To verify the seasonal 

amplitudes of ∆𝑍𝑇𝐷𝐺𝑃𝑆 at GPS stations, we can compare them to the observed seasonal 

amplitudes of ZTD in the height time series of DInSAR points in the study carried out by 

Samsonov et al. (2014; see Figure 3.4) based on the parameters derived from the 

exponential fitting model for their radiosonde data and shown for points higher than 200 

m above msl. We conclude that there is a good agreement for the results at stations 

MATQ and ALGO. 
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Figure 3.7. Comparison between daily GPS-PWV (red) and MET-PWV (blue) time 

series between 2008 and 2012. 

 

3.4.3 The comparison between GPS-PWV and MET-PWV 

Based on the pressure data at each GPS station and the latitude and elevation of the 

station, the ZHD can be computed by using Equation 3.13. Removing of the daily 

averaged of this component from the daily averaged MET-ZTD and GPS-ZTD at each 

station, produces MET-ZWD and GPS-ZWD, respectively. Then by substituting the 

MET-ZWD and GPS-ZWD in Equation 3.14 and using the relationships given in 

Equation 3.15 to compute the weighted mean surface temperature from the surface 

temperature, we can compute the MET-PWV and GPS-PWV at each station.  
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Figure 3.7 illustrates a comparison between the MET-PWV and GPS-PWV between 2008 

and 2012. As this figure indicates, daily variations of these time series are similar to each 

other; the minimum occurs in winter and the maximum in summer. However, a large 

difference between the two time series at each station is noticeable between July and mid-

September, when the winter snow begins to melt and the daily rainfall and perceptible 

water vapor increase. The research carried out by Joshi et al. (2013) also studied the 

PWV from GPS data and MODIS data and found that MODIS overestimates the amount 

of column water vapor in compare to the estimates from GPS data. They observed that 

the magnitude of the differences between PWV from MODIS and GPS data and the root-

mean-square error (RMSE) of their residuals, systematically changes every season 

depending on the amount of water vapor.  

This also can be seen in the mean values of MET-PWV which are greater than the mean 

values of GPS-PWV at all stations presented in Table 3.2. Their differences range 

between 0.05 and 0.89 cm in all five years between 2008 and 2012.  

In order to validate the mean values of the PWVs at all stations, we compared them to the 

exponential function proposed by Reitan (1963) for computing PWV based on dew point 

temperature at each site: 

𝑃𝑊𝑉 = exp (𝑎𝑇 + 𝑏)                                      (3.16) 

where, 𝑃𝑊𝑉 is in cm, 𝑇 is the dew point temperature in degrees Fahrenheit, 𝑎 is constant 

and is equal to 0.0393, 𝑏 depends on the latitude and 𝜆 at each station and is computed as 

(0.1133−ln(λ+1)) (Smith 1966), 𝑎, 𝑏 and λ are unitless.  

By using λ from Table 3.2 and 𝑇 from Table 3.1 for each station, the mean annual PWV 

is estimated for the corresponding station. We obtained exponentially increasing values 

of the mean PWV, from 0.59 through 1.47 cm, by increasing the mean dew point 

temperature, from -9.56±0.05 𝐶° to 4.83±0.05  𝐶°. Comparison of the results of 

Equation 3.16 to the mean of both GPS-PWV and MET-PWV provides the difference in 

ranges: between -0.2 and 0.4 cm and -0.71 and -0.07 cm, respectively.  
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Again, the overestimated mean values of MET-PWVs at all stations also can be observed 

by comparing them to the results of Equation 3.16. The difference between the MET-

PWV and GPS-PWV is very small at stations IVKQ and INUQ, located in a dry, cold 

area near Hudson Bay where the water vapor pressure and temperature are always low.  

 Conclusion 

In this paper, we proposed a one-dimensional simplified model to compute the elevation-

dependent seasonal amplitude of the local ZTD in GPS data in our study area, despite the 

fact that the variation in topography in this regions is not substantial. This model was 

based on the refractivity decay parameter with elevation and the meteorological data at a 

reference station’s location. The modeled seasonal amplitudes at eight stations were 

compared to the seasonal amplitudes of ZTD computed by using PPP techniques at the 

corresponding stations.  

 Here, we produced the ZTD time series between 2008 and 2012 for eight GPS stations in 

eastern Ontario and western Québec using GPS data and local meteorological data, where 

all the GPS data were processed using the CSRS-PPP online service and the 

meteorological data were corrected for the height difference between the GPS station and 

the nearby weather station.  Incorporating the meteorological data from near the GPS 

station provides a more accurate and high-resolution understanding of the weather 

condition at the GPS stations’ locations.  

Here, the refractivity at every GPS station in our study was computed based on the 

corrected meteorological data. Also, we elaborated on the high dependency of the mean 

refractivity on the partial water vapor pressure and temperature. We observed that the 

inconsistency of the refractivity at stations INUQ and IVKQ is a result of the lower water 

vapor pressure and temperature than expected, which is related to their location near 

Hudson Bay, which is cold and dry.  

Moreover, we successfully computed a refractivity decay parameter of 0.121𝑘𝑚−1  by 

fitting an exponential function to the estimates of the mean refractivity at all GPS 

stations, excluding INUQ and IVKQ, as a function of height. In addition to the fact that 
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the results are close to the given global empirical values and to the other studies for 

elevations below one km, the 95% prediction confidence intervals of the fitted 

exponential function also incorporates the estimates of the mean refractivity at INUQ and 

IVKQ, although they were not included in the fitting process.  

Besides observing a positive correlation between the GPS-ZTD and MET-ZTD at every 

GPS station, we also observe that the ZTDs of the stations in southeastern Ontario are 

less correlated with the ZTDs of the stations in northeastern Québec. As determined by 

other researchers (Eamrdson et al. 2003), the correlation between ZTDs is highly 

dependent on the distance between them. This confirms the idea that studying the 

absolute ZTDs in an area with sparsely spaced GPS stations will provide more accurate 

information about the local weather conditions.  

We produced a highly accurate estimate of mean ZTD obtained from CSRS-PPP that was 

compared with the results obtained from meteorological data. Although we found very 

close matches, from 0 to 5 cm, between the mean of the daily time series of the two 

ZTDs, the mean values of MET-ZTD are greater than the GPS-ZTD at all sites.  

In this paper, we considered station ACTO as the reference station, and therefore the 

refractivity time series at the location of this station and the refractivity decay parameter 

estimated already are employed to estimate the elevation-dependent seasonal amplitudes 

of ZTDs at each station relative to station ACTO. As expected, the modeled seasonal 

amplitudes increase with altitude from the reference point’s altitude, 367.22 m above msl. 

Good agreement between the estimates from the model and those observed from 

∆𝑍𝑇𝐷𝐺𝑃𝑆 for all GPS stations except INUQ and IVKQ. The very large amplitudes 

observed for the seasonal fluctuations in ∆𝑍𝑇𝐷𝐺𝑃𝑆 at these two stations probably relate to 

the low correlation between their ZTD and the ZTD at station ACTO.  

In this paper, we also studied the amount of the PWV in the atmosphere between 2008 

and 2012 by using the GPS-ZWD and MET-ZWD obtained by removing the estimates of 

the hydrostatic component of troposphere delay from the total troposphere, GPS-ZTD 

and MET-ZTD, at each GPS station. The computed mean of daily time series of GPS-

PWV and MET-PWV at all stations range between 0.61±0.01 and 1.67±0.02  cm and 
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between 0.66±0.01  and 2.13±0.05 cm, respectively. The PWVs are highly dependent 

on the water vapor pressure and humidity of the region. Between July and September, the 

daily humidity and rainfall increases with temperature and therefore result in abundant 

water vapor pressure during that period. 

As suggested by Joshi et al. (2013), employing meteorological data in conjunction with 

the GPS analysis is a good technique for studying the monsoonal patterns and the weather 

conditions of a given region as well. In addition, these results indicate that the proposed 

model can accurately estimate the seasonal amplitude of ZTD on a local GPS network 

and are comparable with the seasonal amplitude of ZTD resulted from high precise 

positioning techniques. Moreover, by using the radiosonde data for estimating the decay 

parameter of refractivity or employing the estimates of decay parameter from other 

researches, the proposed model eliminates the need for the meteorological data at each 

individual station. Also, employing the proposed model can provide important 

information about the seasonal variations of the ZTD in the local scale. Hence, its 

combination with or its application instead of the low spatial resolution models such as 

those obtained from ECMWF can produce higher positioning accuracy at sub-millimeter 

levels. Finally, given the similarity of the effect of ZTD on both DInSAR and GPS data, 

the ZTD estimation method developed here may be applied to future studies for 

correcting DInSAR height time series.   
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Chapter 4  

 Modeling the elevation-dependent seasonal amplitude 
of tropospheric delays in GPS height time series using 
DInSAR and meteorology data3 

In this work, I employ high-resolution DInSAR data to retrieve the local pattern of 

seasonal variations in ZTD and propose an elevation-dependent exponential model which 

provides the best fit to the amplitudes of all pixels. This model is based on the integration 

of the exponential refractivity function between the elevation of the DInSAR points and 

the DInSAR reference location. To achieve this, radiosonde data and meteorological data 

from a weather station collocated with the DInSAR reference location are utilized. The 

results show that the seasonal amplitudes increase exponentially from the elevation of the 

reference location. The study of the modeled seasonal amplitudes and the high frequency 

variations in differenced ZTD for each GPS station provides information about the 

variations of the water vapor pressure with height. The resulted rmse of the residuals 

decreases with growing elevation as the variability of the wet water vapor decreases with 

elevation. This confirms the high variability of water vapor at the lower altitudes regions. 

Our proposed approach has the potential to accurately estimate the seasonal amplitude 

of ZTDs in GPS data in areas of strong, local topographic relief that is not captured by 

low resolution weather models and without the need to acquire collocated meteorological 

observations to every GPS station.  

 

                                                 

3 A version of this chapter has been submitted to Geophysical Journal International. Samadi Alinia H., 

Tiampo, K.F., Samsonov, S.V., and González, P.J. (2017) Modeling the elevation-dependent seasonal 

amplitude of tropospheric delays in GPS height time series using DInSAR and meteorology data. Geophys. 

J. Int (under review) 
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4.1. Introduction 

The troposphere is defined as the neutral, non-ionized layer of the atmosphere which 

extends from Earth’s surface to an altitude of approximately 9-16 km. The lower part of 

this layer, below 10 km, results in a delay of the arrival of the signals in the radar 

frequency band and an increase in the range to the satellite of between 2 and 3 m (Spilker 

1996; Klobuchar 1996). That delay can be divided into two main components, the 

hydrostatic (dry) and the wet component (Saastamoinen 1972). The hydrostatic 

component, a function of the dry gases in the atmosphere, causes approximately 90% of 

the total delay (Bevis et al. 1994; Fotiou & Pikridas 2012) and is computed from the 

surface air pressure measurements (Mendes & Langley 1994). The wet component 

constitutes the remaining effect of the delay and depends on the temperature and water 

vapor pressure, which are highly variable in space and time. This component has a larger 

contribution to the variations of the total delays in the radio signals (Bevis et al. 1994; 

Hanssen 1998; Fotiou & Pikridas 2012). The resulting biases in GPS vertical positioning 

imposed by ZTD can range over all wavelengths, with amplitudes of several centimeters. 

The wet component of delay is the major source of the seasonal variations in the total 

troposphere delay and it is highly dependent on the topography (Jin et al. 2007).   

Several methodologies have been proposed to correct this error from GPS measurements.  

In general, these methods either use high-resolution meteorological data observed by the 

meteorological instruments at IGS GPS stations and NWP data from global weather 

forecasts such as ECMWF, which provides predicted components of delay at a grid 

spacing of 0.125°×0.125° (Bevis et al. 1992; Van Dam et al. 1994; Hofmann-Wellenhof 

et al. 2001; Foster et al. 2006; Fotiou & Pikridas 2012; Pikridas et al. 2014; Yuan et al. 

2014), or standard models that are not dependent on the surface meteorological data (e.g., 

Hopfield model (Hopfield 1969), Sastamoinen model (Sastamoinen 1973) and modified 

Hopfield model (Goad & Goodman 1974). According to Jin et al. (2007), because of the 

strong dependency of the ZTD on the atmospheric parameters, ZTD obtained from non-

meteorological data are not as accurate as the ZTDs obtained from meteorological data. 

However, the main issue is that only a few GPS stations have meteorological instrument 

to measure the weather parameters at the site (Vedel at al. 2001). Most recently, Lu et al. 

http://link.springer.com/article/10.1007/s40328-014-0047-7#CR12
http://link.springer.com/article/10.1007/s40328-014-0047-7#CR12
http://link.springer.com/article/10.1007/s40328-014-0047-7#CR12
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(2016) conducted a study for providing a high-resolution tropospheric gradients and 

improvement in positioning accuracy by employing multi-GNSS processing.  

Additionally, various studies have been carried out to mitigate the effect of troposphere 

delays in DInSAR data. These include those that consider cloud-free image pairs and 

average SAR interferograms (Zebker et al. 1997; Sandwell & Sichoix 2000), and 

employing the external data such as GPS measurements to take an advantage of the 

similar effects of the delay on both GPS and DInSAR signals (Bock & Williams 1997, 

Ge 2000, Hanssen 2001, Bonforte et al 2001; Ge et al. 2003; Tregoning & Van Dam 

2005, Yu et al. 2017). Williams et al. (1998) suggested that sparse data such as GPS and 

ground-based meteorological data can be used to remove the long wavelength (low-

frequency) components of atmospheric effects. In addition, some researchers use a 

combination of meteorological observations, GPS and digital elevation models (DEM) 

(Delacourt et al. 1998; Li et al. 2004) or apply a water vapor correction model integrated 

with GPS (Li et al. 2005; Onn & Zebker 2006; Samsonov et al. 2007). Li et al. (2005, 

2006) proposed a novel approach to the tropospheric correction that uses a water vapor 

correction model with GPS data, and either the NASA Moderate Resolution Imaging 

Spectroradiometer (MODIS) data and/or ESA’s Medium Resolution Imaging 

Spectrometer (MERIS) data. Elf-Darwich et al. (2012) proposed that employing 

mesoscale numerical meteorological models such as weather research and forecasting 

(WRF) leads to estimate high accuracy water vapor effects on DInSAR data and therefore 

it provides more accurate ground deformation measurements.  

Foster at al. (2006) studied the impact of the topography of Hawaii on the atmosphere 

and removed the atmosphere delay in DInSAR data by using a high-resolution weather 

model called MM5 (NCAR-Penn State Mesoscale Model Version 5) (Grell et al. 1995). 

They employed three interferograms for pairs of dates between 2003 and 2005 to 

demonstrate that they do not record a discrete displacement event over a short time span 

and can be interpreted as the atmosphere path delay. For the relatively short time period 

between 29 Sep 2003 and 03 Nov 2003, the interferogram signals represent atmospheric 

delay and is in good agreement with that predicted by MM5 model, particularly for the 

high areas such as Mauna Loa and Mauna Kea (Foster at al. 2006).   
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Another approach to remove the seasonal component of troposphere error from DInSAR 

ground deformation time series was developed by Samsonov et al. (2014). They used 

meteorological and radiosonde data observed at the stations located in the Naples Bay 

region of Italy and computed the refractivity at Earth’s surface and at altitude, 

respectively. Their study resulted in an elevation dependent exponential model that can 

be used to calculate the seasonal amplitude of ZTD. Their model provides the best fit to 

the amplitudes of seasonal variation of troposphere observed in DInSAR points at 

elevations between 200 to 700 m above msl, although the fit is not as good at higher 

elevations. They suggest that the deviation of their model from the variations in seasonal 

amplitude at higher elevations is due to either the spatial filtering applied to the 

interferograms or the use of simple sine function in calculating the amplitude of 

troposphere, which can underestimate the seasonal cycle of troposphere signals. They 

demonstrated that their proposed correction model could reduce the noises in DInSAR 

height time series by as much as 50% (Samsonov et al. 2014).   

In this paper, we propose to employ high spatial resolution DInSAR data to model the 

local seasonal variations of troposphere signal in GPS data caused by the wet and 

hydrostatic components of the troposphere, which again is a function of water vapor 

pressure and temperature and air pressure 

Modeling of ZTD is problematic in volcanoes or mountainous areas with large 

topographic relief, particularly in moist, heterogeneous tropical atmosphere like Mauna 

Loa, Hawaii (Jolivet et al. 2014). This is because there is a strong interaction between 

winds and high mountains influencing the pattern of local weather parameters, including 

water vapor pressure both horizontally and vertically (e.g., generating clouds on the 

windward side of the mountain and dry and clear skies on the leeward side of the 

mountain).  

In this study, we take into account the area containing the Kilauea volcano and the east 

rift zone of Mauna Loa in the island of Hawaii (Figures 4.1). Data is available for both 

GPS and DInSAR. Initially, the seasonal fluctuations of ZTD in DInSAR data are 

estimated by fitting a sinusoidal signal with 1-year period to the height time series of all 
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pixels. Then motivated from Samsonov et al. (2014) we propose an elevation-dependent 

model, which provides a best fit to estimates of amplitudes of ZTD in DInSAR data. This 

model links to a meteorological and radiosonde data collected at a surface weather 

stations and a radiosonde station, respectively. 

In order to evaluate the potential of the proposed correction model to observe seasonal 

amplitudes of troposphere delay in GPS data, we compare the seasonal variations of 

troposphere signals derived from the model and phase of 180° to the differenced ZTD at 

each station (Ge et al. 2003; Li et al. 2006).  Differenced ZTD is defined as the ZTD 

computed for the reference station, here station PUKA at a height of 2999.8 m above msl, 

subtracted from the ZTD computed for each of the other stations. As demonstrated by Li 

et al. (2006), the upside of considering the differenced ZTD rather than absolute values is 

that the absolute values will reduce the terrain elevation dependency of the ZTD and 

ZWD variations.  

In this study, we consider fourteen GPS stations inside the region imaged by DInSAR 

and eight GPS stations outside of this region for dates corresponding to the DInSAR 

observations. Data from each GPS station is processed using CSRS-PPP, available from 

NRCan (https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php), resulting 

coordinates and ZTD. As a result of the comparison between the modeled ZTD and the 

differenced ZTD at each station, the RMSE of the residuals are computed and 

investigated in detail. We compare the modeled ZTD and the differenced ZTD at each 

station and compute the RMSE of the residuals.  

An overview of the geology and meteorology of our study area is provided in section 2. 

In section 3, we discuss the data and processing. In the following section, we focus on the 

approaches employed for estimating the seasonal amplitude of ZTD, including a detailed 

explanation of the DInSAR height time series fitting and the computation of the 

refractivity from meteorological and radiosonde measurements to derive the elevation-

dependent amplitudes of ZTD. In Section 5, we elaborate on the ZTD variations 

computed by using CSRS-PPP and estimation of the differenced ZTD for each GPS 

station. Interpretation and conclusions are presented in the final section. 

https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php
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4.2. Geologic setting 

Hawaii is located in the Pacific Ocean, approximately 3379 km southwest of California. 

The six major Hawaiian Islands include Kauai, Oahu, Molokai, Lanai, Maui, and Hawaii 

(Big Island), where Kauai is the oldest, at ~5 Myr (millions of years), and Hawaii is the 

youngest at ~ 0.7 Myr,  stretching from northwest to southeast. These islands were 

formed as a result of the activity of a static mantle plume currently centered beneath 

Hawaii Island, which is composed of five main volcanoes: Mauna Loa, Kilauea, Mauna 

Kea, Hualalai and Kohala (Clague & Sherrod 2014).  Mauna Kea, at 4,207 m above msl, 

experienced its last eruption is approximately 4000 years ago, while Mauna Loa, at 4,169 

m above msl, last erupted in 1984 (Peterson & Moore 1987, Trusdell & Swannell 2003, 

Clague & Sherrod 2014, USGS 2017a).  

Kilauea is located on the southeast flank of Mauna Loa and rises 1,247 m above the sea 

level (USGS 2017b). This volcano has been erupting continuously for more than three 

decades at its summit and east rift zone locations. The summit crater hosts an active lava 

lake that has dramatic level fluctuations, dropping during deflation and rising during 

inflation (Wilson et al. 2008; USGS 2017b). This volcano has been affected by the shape 

of its neighbor, Mauna Loa, and has adopted a similar rift zone orientation (Fiske & 

Jackson 1972). However, recent research has revealed that Kilauea volcano has a separate 

magma plumbing system (Poland et al. 2012).  
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Figure 4.1. a) The map in the background is the velocity model (in cm/yr) 

calculated from the linear regression on the DInSAR data from 2014 to 2017. The 

brown contour lines shows elevations spaced at 400 meter interval. The positions 

of sample DInSAR points are shown with red stars. The rift zones of Mauna Loa 

and Kilauea are shown in purple. A positive velocity value shows uplift. The 

DInSAR reference location is shown with red circle in the NW corner b) 

Distribution of the GPS stations inside and outside of the DInSAR data boundary. 

The map in the background is the ASTER DEM with 30 m per pixel resolution 

(http://gdex.cr.usgs.gov/gdex/). 

b. 

a. 

http://gdex.cr.usgs.gov/gdex/
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The climate of different regions is directly affected by the wet/windward or dry/leeward 

sides of volcanic islands and are strongly dependent on the shape and the heights of the 

volcanic peaks (Longman et al. 2015). The windward side of Hawaii is on the eastern 

slope of Mauna Kea and on the southeast flank of Mauna Loa. This region is 

approximately perpendicular to the direction of the north-easterly trade winds which 

carry moisture in the atmosphere. Therefore, the prevailing trade winds make the 

windward side windier and wetter, which results in more rainfall per year (Zhang et al. 

2016). As shown in Figure 4.2 (dashed line), we consider the separation line between dry 

and wet zones based on the breakpoints proposed by Gagné & Cuddihy (1990) for Dry-

Mesic and Mesic-Wet boundaries, where 2500 mm of rainfall is received at 1000 m 

above msl.  

Figure 4.2 also shows a map of averaged climate data, including air temperature, rainfall, 

water vapor pressure, relative humidity, and air pressure. The maps of air temperature, 

rainfall and relative humidity are at the resolution of 250 m; 

(http://climate.geography.hawaii.edu/; Giambelluca et al. 2014; Frazier et al. 2012).   

The temperature map in Figure 4.2a indicates that higher elevations have lower 

temperatures that increase gradually toward sea level, ranging from 3.62 and 23.91 ℃. 

The coldest zone of our study area is found symmetrically around the summit of Mauna 

Loa. Figure 4.2b illustrates the average annual rainfall, overlain with elevation contours. 

Values range between 204.09 mm to over 7629.16 mm. The rainfall is concentrated on 

the lower elevations on the east side of the Island. According to Colleen (2013), this is 

likely a result of the orientation of Mauna Loa volcano, parallel to the direction of the 

prevailing trade winds. This figure also shows that the tall mountain obstructs the trade 

winds on the leeward side of the island, resulting in less rainfall and drier conditions near 

the summit.  

http://climate.geography.hawaii.edu/
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Figure 4.2. Climate data including a) air temperature b) rainfall, c) water vapor computed 

from the air temperature d) relative humidity e) air pressure computed from the 

expression proposed by Triplet & Roche (1983) and the ASTER-derived DEM 

(http://gdex.cr.usgs.gov/gdex/). Maps of air temperature, rainfall and relative humidity 

(http://climate.geography.hawaii.edu/; Giambelluca et al. 2014; Frazier et al. 2016) at 250 

m resolution. The brown contour lines represent elevations spaced at 400 meter intervals. 

The windward/wet and leeward/dry side are separated with a dashed line. 

e. 

a. b. 

c. d. 

http://gdex.cr.usgs.gov/gdex/
http://climate.geography.hawaii.edu/


151 

 

As we will demonstrate later, water vapor pressure increases exponentially with 

temperature (Figure 4.2a, c). In Figure 4.2d, the high relative humidity of greater than 

80% can be seen at lower elevations, between 400 and 1600 m above msl. It is 

worthwhile to mention that relative humidity in the Planetary Boundary Layer (PBL), the 

lowest layer of the troposphere where the wind is influenced by friction, approximately 

1000 m above Earth’s surface, increases with decreasing air temperature (Figure 4.2a, d).  

In this paper, we estimated the air pressure from the DEM derived from ASTER Global 

DEM (GDEM), downloaded from the USGS Global Explorer website 

(http://gdex.cr.usgs.gov/gdex/) at a resolution of 30 m per pixel. We used the expression 

proposed by Triplet & Roche (1983):  

𝑃 = 𝑃0(1 − 0.0000226𝐻)5.225                                    (4.1) 

where, 𝑃0 is the pressure at msl, 1013 mbar (Houlie’ et al. 2005), H is the elevation of 

each pixel in meter.  

As shown in Figure 4.2e, due to the opposite relationship between the air pressure and 

altitude presented in Equation 4.1, the highest pressure value, 1013 mbar, is observed at 

the lowest elevation, at mean sea level. The air pressure values decrease exponentially 

with increasing altitudes, 604.78 mbar observed at the highest elevation in our study area, 

4227 m above msl.  

4.3. Data  

For the DInSAR analysis, we collected 32 ascending Ultra-Fine 13 Wide (U13W2) 

images spanning 20140101-20170202 and 34 descending Ultra-Fine 16 Wide (U16W2) 

images spanning 20131213-20170303 from RADARSAT-2 satellite (Table 4.1). The 

considered time steps of these data are twelve days which provides high temporal 

resolution appropriate for observing the seasonal fluctuations of the tropospheric delay. 

Each SAR dataset was processed independently with the GAMMA software (Wegmuller 

and Werner, 1997). A single master for each set was selected and the remaining images 

were re-sampled into the master geometry. The interferograms were multilooked (10 in 

range and 10 in azimuth) and the topographic phase was removed using a 30 m resolution 

http://gdex.cr.usgs.gov/gdex/
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Shuttle Radar Topography Mission (SRTM) DEM. Differential interferograms were 

filtered using the adaptive filtering with a filtering function based on the local fringe 

spectrum (Goldstein & Werner 1998) and unwrapped using the minimum cost flow 

algorithm (Costantini 1998). Minor interpolation of each interferogram was performed to 

improve the spatial coverage reduced by decorrelation. Then, ascending and descending 

interferograms were geocoded and resampled to a common latitude/longitude grid with a 

uniform spatial sampling of 30 m. 

Table 4.1. SAR datasets used in MSBAS processing: RADARSAT-2 Ultra-Fine 13 and 

16 Wide (U13W2, U13W2); time span (in YYYYMMDD format), azimuth θ◦ and 

incidence φ◦ angles, number of available SAR images N, and number of calculated 

interferograms M for each data set. ASC and DSC in the table stands for ascending and 

descending, respectively. 

DInSAR set Time span θ◦ φ◦ N M 

R2-U13W2 (ASC) 20140101-20170202 349 40 32 300 

R2-U16W2 (DSC) 20131213-20170303 -169 42 34 372 

Total: 20140101-20170202   64 672 

 

The Multidimensional Small Baseline subset (MSBAS) (Samsonov & d’Oreye, 2012) 

technique was applied to ascending and descending datasets simultaneously to produce 

horizontal east-west and height time series and annual linear deformation rates. First 

order regularization with λ equal to 0.25 was employed and the reference region was 

selected in the NW corner, at elevation 3107 m above msl (red circle, Figure 4.1a) 

ensuring that the non-seasonal atmospheric component in the height time series is less 

significant.  

Again, Figure 4.1a shows the average vertical velocity of all 1,257,000 DInSAR pixels 

between 2014 and 2017. The velocity values in our study area range between 4.4 cm/yr 

of subsidence in the eastern rift zone of Kilauea volcano, 8 km away from the volcanic 
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cone of PuʻuʻŌʻō, to 10.5 cm/yr of uplift in the south of Kilauea volcano. As discussed 

above, Kilauea has been erupting continuously for more than three decades and is 

currently active at its summit and upper southeast rift zone.  

We selected nine points, a through i, over our study area to provide examples of the 

DInSAR height time series (Figure 4.1a).  The height time series of these points are 

presented in Figure 4.3 which are labeled accordingly. Figure 4.3a, b and c illustrate the 

height time series of points a, b and c, and show a low rate of subsidence in the east rift 

zone of the Mauna Loa over the time period between 2014 and 2017 as a result of the 

massive lava outpouring from the 1984 eruption of Mauna Loa (Clague & Sherrod 2014). 

Figure 4.3d and 4.3e show subsidence of 1.4 and 0.7 cm/yr, respectively, in the outer 

flank of the Kilauea rift-zone (Clague & Sherrod 2014). Figure 4.3 (f, g and h) show 

uplift of 1.0, 10.2 and 6.4 cm/yr. The vertical deformation time series of points ‘g’ and 

‘h’ show uplift of approximately 30 cm occurred in the time span between 2014 and 2017 

and is related to the ongoing eruption of Kilauea at the summit and at the Puʻuʻōʻō vent 

on the east rift zone. Deflation is observed on the upper side of east rift zone of Kilauea at 

location ’i’ (Figure 4.3i). The vertical deformation here is related to numerous eruptions 

and inflation of the summit of Kilauea during this time period (Baker & Amelung 2015). 

The height time series of the DInSAR data obtained from differential interferograms have 

not been corrected for the tropospheric differential phase so that the DInSAR derived 

seasonal fluctuations of differential ZTD, converted form the LOS direction, can be used 

for correcting ZTD error from the up component of the position time series of GPS 

stations referenced to a station. In order to validate this, here, the RINEX data of fourteen 

GPS stations in the same region as the DInSAR data and seven stations were selected. All 

these stations have observations during the same time period as the DInSAR data to 

ensure the consistency in analyzing the seasonal variations of ZTD signals. These stations 

belong to the Hawaii Volcano Observatory (HVO) network, supported by collaboration 

with University of Hawaii, Stanford University and United States Geological Survey 

(USGS). Time series with 30 second sampling rate are freely available on the UNAVCO 

website (ftp://data-out.unavco.org/pub/rinex).  These stations are located inside and 

outside of the region of DInSAR data. They have been selected based on the availability 

ftp://data-out.unavco.org/pub/rinex/obs/2014/001/
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of the data between 2014 and 2017, variety of elevations and wide area coverage of the 

study region (Figure 4.1b). All the GPS measurements made with dual-frequency 

receivers such as Trimble NetRS and Javad TreG3th Sigma (Table 4.2). Table 4.2 

presents the information for the GPS stations, including position of the sites, receiver 

types and the first and last dates of data availability. Every GPS station has data over the 

2014 to 2017 time period, with the exception of station MLO1, that stopped collection on 

August 23, 2016. 

The radiosonde data required to model the annual amplitude of troposphere are 

downloaded for 2014 from the only radiosonde station in Hawaii’s Big Island, 

PHTO/Hilo (http://weather.uwyo.edu/upperair/sounding.html). This air station measures 

temperature, humidity and pressure parameters twice daily at altitudes from zero to as 

high as 3.5 km. We use these observations to compute the refractivity over different 

atmospheric heights. Moreover, we employ the in situ meteorological data (pressure, 

temperature and relative humidity) observed between 2014 and 2017 at MLO1 weather 

station, the closest weather station to our DInSAR reference point, 7.61 km, in order to 

take an advantage of the high temporal resolution of the local surface station to estimate 

the temporal variations of the refractivity over that time period 

(https://www.esrl.noaa.gov/gmd/dv/data/index.php?category=Meteorology&type=Insitu). 

The location of this weather station (-155.57°, 19.54°, 3395.81 m above msl) is shown in 

Figure 4.1a. 

 

 

 

 

 

 

http://weather.uwyo.edu/upperair/sounding.html
https://www.esrl.noaa.gov/gmd/dv/data/index.php?category=Meteorology&type=Insitu
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Figure 4.3. Example of DInSAR height time series of the specified points a through i, 

shown in Figure 4.1a. They all are referenced to a point at elevation 3107 m above msl. 

In addition to the elevation of each point derived from the ASTER Global DEM (GDEM) 

(http://gdex.cr.usgs.gov/gdex/), seasonal amplitudes estimated by fitting a sinusoidal 

signal to the height time series are given in each plot. Positive values indicate uplift. 

http://gdex.cr.usgs.gov/gdex/
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4.4. Amplitude of seasonal troposphere signal  

4.4.1. DInSAR data 

The seasonal fluctuation is apparent in the example height time series of the DInSAR 

data in the vertical direction presented in Figure 4.3, particularly in those time series at 

lower elevations, where the water vapor and temperature are at their highest levels (see, 

e.g., point d at 125 m above msl, Figure 4.1a). These fluctuations can be modeled 

reasonably well by fitting the first harmonic of the sinusoidal function to the height time 

series of each point as follow:   

∆ℎ(𝑡𝑚) = 𝑎 + 𝑏 × 𝑡𝑚 + 𝐴 𝑠𝑖𝑛 (𝜔𝑡𝑚 + 𝜙)                                  (4.2) 

To enhance the accuracy in determining the seasonal variations in the time series, we first 

removed the trend term and then employed a Fourier analysis. Since the data are sampled 

at m discrete time points, 𝑡𝑚, so the seasonal signal can be written as follows (Smith & 

Gomberg 2009): 

𝐴 𝑆𝑖𝑛(𝜔𝑡𝑚 + 𝜙) = 𝐶 sin(𝜔𝑡𝑚) + 𝐷 cos(𝜔𝑡𝑚)       (4.3) 

where,                         𝐴 = √(𝐶2 + 𝐷2 )   , 𝜙 = 𝑡𝑎𝑛−1 (
𝐶

𝐷
) , 𝜔 =  

2𝜋

𝑇
 

and 𝐶 and 𝐷 are the frequency coefficients for annual perturbation.  

We solved this function for the amplitude, A, and phase, 𝜙, that maximizes the fit to the 

time series data. T is the period of the signal and is extracted from each height time series 

by employing a Fast Fourier Transform (FFT) technique. 

The resulting analysis shows that the seasonal fluctuations of more than 99% of the 

DInSAR points are statistically significant, 𝑟2 ≥ 0.2  and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.05, which 

confirms that these DInSAR height time series contain a seasonal component that can be 

used to accurately estimate the spatial seasonal ZTD signals. The estimated seasonal 
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amplitude of ZTD for all DInSAR points are shown in a raster format, overlain with the 

topographic maps in Figure 4.4a. As this figure clearly illustrates, the seasonal amplitude 

is higher at the coastal areas and lower at higher altitudes (e.g., Mauna Loa). This also 

can be seen in the example time series presented in Figure 4.3. According to Figure 4.3a 

and d, we estimated an amplitude of 4.53 cm for 125 m above msl and 0.16 cm for 3105 

m above msl. As shown in Figure 4.4b, these estimated amplitudes increase exponentially 

with growing and lowering height from 3107 m above msl, elevation of the reference 

point. Comparing the estimated seasonal amplitude of ZTD with the atmospheric 

parameters, we can see that it is dependent on temperature, water vapor and pressure, 

again as expected, which are a function of height.  

As mentioned earlier in this section, in addition to the seasonal amplitudes, the phase of 

the annual signals are estimated by fitting Equation 4.3 to the height time series. We 

found values range between -180° and 180°, clockwise from north. These values 

correspond to the shift of the signal from the beginning of the calendar year.  

These estimated seasonal amplitudes of the DInSAR locations are suitable for use in 

deriving a model to determine the seasonal amplitudes as a function of height.  
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Figure 4.4. a) Map of the measured amplitudes of seasonal variations of troposphere 

signal in DInSAR data by adjusting a sinusoidal signal on the height time series of each 

point. In the raster maps the brown contour lines represent elevations spaced at 400 meter 

interval. The rift zones of Mauna Loa and Kilauea are shown as dark lines. The inflation 

areas at Kīlauea’s summit are shown as red circles. Separation between dry and wet 

regions are shown by the dashed line. b) The vertical profile of the measured amplitudes 

as a function of height (blue) overlain with the modeled amplitudes by employing 

Equation 4.9 (red). 
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4.4.2. Exponential refractivity model  

The speed of radio signal propagation is dependent on the material through which it 

travels and it is slightly lower in the atmosphere than in a vacuum. The ratio of the speed 

of light in a vacuum to the speed of light in the atmosphere is termed the refractive index, 

n, which is more conveniently expressed as the refractivity N (Bean & Dutton 1968):  

 

𝑁 = 106(𝑛 − 1)                                        (4.4) 

𝑁 can be computed by its relationship with atmospheric parameters including pressure, 

temperature, and water vapor pressure proposed by Smith & Weintraub (1953): 

𝑁 = 𝐾1
𝑃𝑑

𝑇
+ 𝐾2

𝑒

𝑇
+ 𝐾3

𝑒

𝑇2                                       (4.5) 

In this equation, 𝑃𝑑 is the partial pressure due to dry gases (hPa), 𝐾𝑖 is the refractivity 

constants, e is the partial pressure of water vapor (hPa), and T is the absolute temperature 

(degrees Kelvin). The refractivity constants 𝐾𝑖 were determined empirically in a 

laboratory. We adopt the refractivity constants computed in Rueger (2002) of 77.69 

K 𝑚𝑏𝑎𝑟 −1, 71.29 K  𝑚𝑏𝑎𝑟 −1, and 375463 𝐾2  𝑚𝑏𝑎𝑟 −1 for the refractivity constants 

𝐾1, 𝐾2, and 𝐾3, respectively. The partial water vapor pressure is estimated from the dew 

point temperature, calculated from its relationship with the relative humidity and 

temperate (Lawrence 2005) measured at the weather station. Proposed by Alduchov and 

Eskridge (1996) for dew point temperatures less than 50℃, the partial vapor pressure can 

be computed as follow: 

E= 6.1037𝑒17.641𝑡/(243.27+𝑡)                      (4.6) 

where, t is the dew point temperature in degrees Celcius. 

We use the surface measurements for pressure, water vapor pressure and temperature 

within the time span of 2014 to 2017 observed in situ at the MLO1 station located at 

Mauna Loa volcano, 3395.81 m, to estimate the refractivity time series at the surface 

from Equation 4.5. The seasonal cycle in refractivity of the atmosphere is apparent in 
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both the hourly and daily time series shown in Figure 4.5a. The amplitude of the seasonal 

variation of daily refractivity estimated from the best-fit sinusoid function is 18.94 (N-

units). This seasonal cycle is due to the seasonal variations in the climate data primarily 

due to water vapor pressure and temperature (Ayantunji et al. 2011) in which the seasonal 

maximum occurs in the summer (June) and the minimum occurs in the winter (January) 

of each year. In addition to the surface weather observations, we used the radiosonde data 

measured at the radiosonde station PHTO/HILO and computed the refractivity of the 

points at elevations between 0 and 3.5 km above the surface of the earth. We present the 

vertical profile of the estimates of the refractivity in Figure 4.5b.  

 

Figure 4.5. a) the hourly time series of the refractivity of atmosphere at the surface of 

Earth computed from the air pressure, water vapor pressure and temperature time series 

observed at the weather station MLO1 (in blue). The daily averaged refractivity time 

series computed from hourly data (in red). b) The vertical profile of the refractivity 

calculated from the atmospheric parameters (air pressure, water vapor pressure and 

temperature) observed at the radiosonde station PHTO/HILO. The fitted red line is the 

best fit exponential function. 

b. 

a. 
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As stated above, when a radio signal passes through the Earth’s troposphere, it 

experiences bending and delay due to the variability of the refractivity index of the 

troposphere (Mendes 1999). That tropospheric delay is directly proportional to the 

refractivity and the effect of water vapor is highly significant, when compared to the 

effect of pressure and temperature.  

The tropospheric delay can be calculated through an integration of refractivity along the 

vertical path in the troposphere as follows (Martin & Waldron 1961; Hopfield 1972): 

𝑑𝑡𝑟𝑜𝑝 = 10−6 ∫ 𝑁𝑑𝑠
𝑝𝑎𝑡ℎ

   ,                                   (4.7) 

Here, this delay is the integration of the refractivity in the range of elevations between the 

reference and measurement points:  

𝑑𝑡𝑟𝑜𝑝(𝑡, 𝑧𝑟 , 𝑧𝑖) = 10−6𝑁𝑟(𝑡) ∫ 𝑒−𝑐𝑧 𝑑𝑧
𝑧𝑖

𝑧𝑟
                     (4.8) 

where, 𝑁𝑟(𝑡) is the refractivity time series computed from the temporal surface 

meteorological data measured at the weather station collocated with the reference point, c 

is the exponential decay parameter, 𝑧𝑟 and 𝑧𝑖 are the elevation of reference station and the 

measurement point, respectively. The elevation above sea level, in meters, is obtained 

from the ASTER-derived DEM (http://gdex.cr.usgs.gov/gdex/). 

In this paper, the decay parameter is computed by fitting an exponential function to the 

vertical profile of refractivity of the points between 0 and 30 km above the ground 

(Figure 4.5b). This figure illustrates the exponentially decrease in the refractivity with 

height with a decay rate of 0.14 𝑘𝑚−1. This value is in good agreement with the 

empirical value given by Bean and Thayer (1959), 0.1424 𝑘𝑚−1, for elevations above 9 

km. The computed parameters for the fitted exponential model are presented on the top 

right of this figure.  

To take advantage of the relationship between the refractivity and tropospheric path 

delay, as done in Samsonov et al. (2014), we expanded Equation 4.8. Because we 

considered the reference station at a high elevation and the seasonal amplitudes increase 

http://gdex.cr.usgs.gov/gdex/
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from the elevation of reference point, we considered the absolute value of the resulting 

equation (Equation 4.9, below) to fit the model amplitudes to the observed amplitudes 

from DInSAR data, as appropriate.  

𝑎𝑚𝑝𝑍𝑇𝐷𝑖(𝑧𝑟, 𝑧𝑖) =  |
10−6(𝑎𝑚𝑝𝑁𝑟)

𝑐𝑒𝑐𝑧𝑟
(1 − 𝑒−𝑐(𝑧𝑖−𝑧𝑟))|                        (4.9) 

where, 𝑎𝑚𝑝𝑁𝑟 is the average seasonal amplitude of refractivity at Earth’s surface, 𝑐 is the 

refractivity decay computed from radiosonde data, 𝑧𝑖  is the elevation of the measurement 

points and 𝑧𝑟 is the elevation of the reference point, 3107 m above msl.  

We compute the amplitude of the refractivity at the surface of Earth by fitting a simple 

Sinusoidal function to the daily averaged refractivity time series estimated at the in situ 

station, MLO1 (Figure 4.4a). The annual sinusoidal curve fitting to the refractivity time 

series provides an estimate of 18.94 N-units for the amplitude of its 1-year seasonal 

oscillation. From Equation 4.9, the seasonal amplitudes of ZTD are computed for the 

points at elevation between zero and 3500 m above msl shown in Figure 4.4b.  As this 

figure indicates, this model is a good fit within the 90% confidence interval to the 

observed seasonal amplitudes of ZTD in the DInSAR data.  

Examining the correlation between the observed seasonal amplitudes and the weather 

variables of Figure 4.2 shows that ZTD is positively correlated with temperature and 

water vapor pressure which is because the ZWD is more variable than ZHD based on 

these two weather variables. Also observed by Jin et al. (2007), the correlation between 

ZTD and ZWD variations is 0.95.  The estimated seasonal amplitudes are proportional to 

the pressure data, which it is dependent on the elevation of the points.  

Using the above analysis, we are able to model the seasonal variations imposed by ZTD 

at any location. In the next section, we use the derived seasonal correction model for 

twenty-one GPS stations distributed over the island of Hawaii. We also include stations 

from outside of the DInSAR data area to verify that our proposed seasonal ZTD 

correction model is not dependent on the location of the reference point.  



164 

 

4.5. ZTD correction to GPS data 

The seasonal ZTD signal at any location can be estimated either by fitting the sinusoidal 

signal to the DInSAR height time series (Equation 4.3) or computing the elevation-

dependent amplitudes by employing Equation 4.9 and the phase shift of 180°.  Because 

the derived ZTDs are the values between the DInSAR points and a reference point, as 

discussed earlier, they can be used to remove the seasonal troposphere signals in the 

differenced GPS position time series relative to a reference station (Ge et al. 2003). Here, 

we compare the modeled seasonal variations to the relative ZTD at each individual site.   

To calculate the differenced ZTD at each site relative to a reference station, we assume a 

GPS station close to the DInSAR reference point and then subtract it from the ZTD 

computed at the other stations at common epochs (Ge et al. 2003). Here, station PUKA at 

elevation 2999.8 m above msl and a distance of 4.79 km from the DInSAR reference 

point is considered as the reference in order to maintain consistency in interpreting the 

results. Table 4.3 presents information on the distances between the reference and the 

other stations, altitudes of each site and the modeled seasonal amplitudes of ZTD 

computed for each station by using Equation 4.9 and substituting the elevation of each 

GPS station for 𝑧𝑖 and the elevations of the reference, 2999.8 m above msl, for 𝑧𝑟.  

 In this paper, the RINEX data for each GPS station are processed based on the PPP 

technique, which calculates the absolute position without attaching to a reference station. 

To do so, we use the online service from CSRS-PPP. The main advantage of the PPP 

approach is that, unlike the differential processing approaches, the ZTD is considered an 

unknown parameter and therefore is estimated along with the position.  
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All the post-processed position solutions are in the International Terrestrial Reference 

Frame (ITRF) and are computed in the static mode using precise satellite orbits and 

clocks available at the time of submitting GPS data. One of the advantages of this service 

is that there is no minimum for a GPS observation session and longer observation period 

makes it possible to resolve the carrier phase ambiguities required to recover more 

accurate positions (CSRS-PPP guide, 2004; Geng at al. 2012). In addition to using the 

antenna phase center calibration value published by the International GNSS Service 

(IGS) and by the National Geodetic Survey (NGS) available at 

http://www.ngs.noaa.gov/ANTCAL, this service includes ocean loading corrections 

computed with OSO Chalmers grid model (Bos & Scherneck 2011). This service also 

uses an ionospheric-free linear combination of L1 and L2 of the code and phase 

observations to eliminate ionosphere delay.  

It should be noted that the CSRS-PPP estimates ZTD by employing Global Mapping 

Function (GMF) which uses the Global Pressure and Temperature (GPT) for 

meteorological data (Boehm et al. 2007).  As a result, its coefficients are computed based 

on the data from the European Centre for Medium-Range Weather Forecasts (ECWMF) 

numerical weather model (Kouba 2008).  

The adapted form of this mapping function for both hydrostatic and wet mapping 

functions (Boehm et al. 2006a):  

𝑚(𝜀) =

1+
𝑎

1+
𝑏

1+𝑐

𝑠𝑖𝑛𝜀+
𝑎

𝑠𝑖𝑛𝜀+
𝑏

𝑠𝑖𝑛𝜀+𝑐

                             (4.10) 

where, a, b and c are constant coefficients.  𝜀 is the elevation cut-off angle and the value 

of 10° is applied in CSRS-PPP by default. This function is based upon the monthly 

average of pressure, temperature and relative humidity data on a 15° × 15° global grid 

profile produced from the ECMWF numerical weather model data, 40 year reanalysis 

data (ERA40). Indeed, this function is the spherical harmonic expansion of VMF1 

(Boehm et al. 2006b) parameters and requires the station coordinates and day of year as 

input parameters. The coefficient a for both hydrostatic and wet components is obtained 

http://www.ngs.noaa.gov/ANTCAL
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from spherical harmonics and are computed based on the same process as used in VMF1 

(Boehm et al. 2006). This parameter, at any latitude at day of year t (referred to January 

28), can be calculated as: 

𝑎 = 𝑎0+𝐴 cos (
𝑡−𝑇0

365
. 2𝜋) 

𝑎0 = ∑ ∑ 𝑃𝑛𝑚(sin (𝜑)). [𝐴𝑛𝑚 cos(𝑚𝜆) + 𝐵𝑛𝑚
𝑛
𝑚=0

9
𝑛=0 sin (𝑚𝜆)]       (4.11) 

where, constant 𝑎0 and the annual amplitude A, on a global grid of monthly mean 

between September 1999 and August 2002 in a least-square adjustment. The coefficients 

b and c are estimated based on the empirical equations with a same strategy used in 

VMF1. 

From the processing of the data of each GPS station by using CSRS-PPP, we estimated 

the precise coordinates and ZTD, so called 𝑍𝑇𝐷𝑃𝑃𝑃, with a time step of 30-s, for the time 

period from 2014 to 2017.  Then we perform the daily averaged method to obtain the 

daily time series and select those dates which match the DInSAR observation dates. The 

calculated 𝑍𝑇𝐷𝑃𝑃𝑃 time series at each GPS station are subtracted from the 𝑍𝑇𝐷𝑃𝑃𝑃 time 

series estimated for station PUKA at the common dates, so called ∆𝑍𝑇𝐷𝑃𝑃𝑃. Figure 4.6 

indicates the resulting differenced ZTD time series of all twenty-one stations relative to 

PUKA. 

 Comparing the modeled seasonal oscillations overlain with the ∆𝑍𝑇𝐷𝑃𝑃𝑃 for each station 

in Figure 4.6 shows that they are properly in phase such that the minimum occur in the 

winter and the maximum tropospheric delay occurs in the summer every year. The results 

show that the model produces seasonal amplitudes of as much as 5 cm for stations APNT, 

PUH2 and HILR referenced to PUKA. These stations are located at the lowest altitudes 

and are close to the ocean.  
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Figure 4.6. (red)  ∆𝒁𝑻𝑫𝑷𝑷𝑷 time series for each GPS station relative to the reference 

station, PUKA (black) the modeled seasonal variation of ZTD in which the amplitudes 

estimated by using Equation 4.9. 
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The lower seasonal amplitudes, less than 1 cm, are observed for stations located on 

Mauna Loa summit area, e.g., TOUO, MLO1 and ALEP referenced to PUKA. In this 

area, the effective weather parameters including temperature, water vapor pressures and 

air pressure, are at their lowest values. According to Table 4.3, the modeled amplitudes 

computed for each GPS increase from the reference station such that, as it was expected 

from the elevation-dependent exponential model, the estimated amplitude for station 

MLO1, at height 3402.7 m above msl, is greater than the one estimated for station ALEP, 

at height 2895.71 m above msl. 

 As shown in Table 4.3, the computed rmse of the residuals between the modeled ZTD 

and estimated ∆𝑍𝑇𝐷𝑃𝑃𝑃 ranges from 0.24 to 5.97 cm for stations TOUO and HILR 

relative to PUKA, respectively. According to Jin et al. (2007), the unmodeled residuals 

reflect the high-frequency variations (short period) in the wet component of troposphere 

error and therefore change with altitude. We can see the highest value, 5.97 cm, for the 

station close to coast and in the windward side of the island, HILR, where the rainfall and 

relative humidity are at their highest values.  

 

 

 

 

 

 

 

 

 

Figure 4.7. Vertical profile of the rmse of the residuals between the seasonal 

variations obtained from the modeled amplitudes of ZTD obtained from Equation 4.9 

and the differenced ZTD, ∆𝒁𝑻𝑫𝑷𝑷𝑷,  obtained by subtracting the ZTD computed for 

the reference station from the ZTD computed for the other stations. 
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As shown in Figure 4.7, the rmse of the residuals decrease with increasing height as a 

result of decreasing the variability of the water vapor pressure and the wet component of 

the ZTD with increasing elevation. We estimated a value of less than 1 cm for the 

stations at heights greater than 2400 m, including TOUO, MLO1 and ALEP in the Mauna 

Loa summit area, where the variability of the wet component of troposphere is very low.  

Furthermore, we calculate the differences between the modeled seasonal ZTD signals and 

the ∆𝑍𝑇𝐷𝑃𝑃𝑃 at each station to evaluate the potential of the modeled ZTD for correcting 

the GPS height time series for this error. Table 4.3 represents the estimated mean, 

maximum and minimum differences computed for each station. The mean difference is 

less than 0.2 cm for most of the stations. The observed mean, maximum and minimum 

differences of all stations are 0.16, 7.94 and 0.04 cm, respectively. The values of 

minimum and mean differences between the two ZTDs indicates that the best fit model to 

the amplitude of DInSAR data can compute the minimum and maximum of seasonal 

oscillations of the ZTD signals in GPS data, accurately. 

4.6. Conclusion 

 

In this paper, we could take advantage of the similarities of the effect of ZTD, a major 

source of positioning error in modern satellite geodesy, on both GPS and DInSAR data in 

order to model the local seasonal variations of ZTD on the GPS data by using high spatial 

resolution of DInSAR data in a high topographic relief area, the area surrounding the 

Kilauea volcano in Hawaii.  

In this research, the DInSAR height time series obtained from the MSBAS processing of 

66 SAR images taken from 2014 through 2017 with the time steps of twelve days, were 

analyzed by fitting a sinusoidal function. The estimates of the seasonal amplitudes range 

between 0.20 and 5.57 cm, which grow exponentially with increasing and decreasing 

elevation from the reference point at 3107 m above msl. The interpretation of the results 

demonstrates that the spatial variations of the observed seasonal amplitudes of ZTD, 

relates to the variations in the climate data particularly to the water vapor pressure and 
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temperature. The highest seasonal amplitudes of ZTD were found at the low altitude 

locations that are close to the coast area and the smallest seasonal amplitudes of ZTD 

were observed at the high elevations, Mauna Loa summit area.  

Motivated by Samsonov et al. (2014), we proposed a model from the meteorological data 

observed at the surface weather station close to the DInSAR reference point and 

radiosonde data, PHTO/HILO. This model provides a best fit to more than 99% of the 

estimates of seasonal amplitudes of ZTDs in DInSAR height time series. We used the 

elevation-dependent correction model and considered phase shift of 180°, which leads the 

maximum of the amplitudes takes place in the summer (June), to compute the annual 

ZTD signals in GPS stations relative to the reference station. As a consequence of 

employing this model, we could successfully calculate the seasonal amplitude, ranging 

between 0.13 and 4.61 cm for twenty-one stations in Hawaii. 

 In order to validate our results, the RINEX data of all twenty-two considered GPS 

stations was processed using CSRS-PPP in static mode spanning a similar period as the 

DInSAR data, and then the variations of the differenced ZTD, ∆𝑍𝑇𝐷𝑃𝑃𝑃 (the difference 

between the ZTDs computed for each station and for the reference station, PUKA, 

obtained using CSRS-PPP application) were compared to the modeled seasonal variations 

obtained from the correction model, mentioned above. This comparison resulting an rmse 

of the residuals which reflects the high-frequency variations in ZTDs. We estimated 0.24 

cm for station TOUO and 5.97 cm for HILR referenced to PUKA while decreasing from 

high to low elevations. This is because the variability of the wet component of 

troposphere is lower for the stations at the higher altitudes and in the volcano’s summit 

area. The results show that the proposed correction model is capable of reducing the 

seasonal amplitude of ZTDs of up to 5.57 cm in the vertical component of GPS stations 

located at low elevations.. 

We also have computed the mean, maximum and minimum differences between the 

modeled ZTD and the ∆𝑍𝑇𝐷𝑃𝑃𝑃 for all stations as 0.16, 7.94 and 0.04 cm, respectively. 

The very low mean difference between the two ZTDs confirms that the seasonal 
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amplitudes computed from the correction model are in good agreement with the seasonal 

component of ∆𝑍𝑇𝐷𝑃𝑃𝑃 in the height time series of GPS stations referenced to PUKA.  

These results suggest that an elevation-dependent model for the seasonal amplitude of 

ZTD derived from high-resolution DInSAR height time series can be used to estimate the 

seasonal variations of ZTD on local GPS data in a region of high variability in 

topography and climate.  This model can be used in combination with, or in lieu of, the 

low spatial resolution corrections from numerical weather models in order to produce 

sub-centimeter level positioning accuracy. Finally, the results of this research also could 

be valuable in future studies of tropospheric variation in both space and time, in 

atmospheric water vapor.  
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Chapter 5  

 General Conclusions  

5.1. Summary and Conclusions 

The goal of this research was to employ state-of-art approaches to produce more precise 

GPS location estimates in order to accurately monitor surface deformations induced by 

the physical processes on a regional and local scale. In the first phase of this work, I 

processed GPS data in different network configurations in order to determine the most 

reliable sub-networks for regional surface deformation measurements. In addition, I 

applied a noise analysis model and characterized the noise characteristics of the position 

time series, and developed a technique that produces a simplified elevation-dependent 

model which can accurately estimate the seasonal variations of local ZTD on GPS height 

time series. 

In the first work, I studied the horizontal and vertical surface deformation of eastern 

Ontario and western Québec, which are primarily due to GIA processes. Different subsets 

of GPS stations from a network of seven permanent cGPS stations operated by NRCan 

plus seven stations from the POLARIS network were processed using double-

differencing techniques in BSW5.0 for one year of GPS data. The two most reliable sub-

networks of GPS stations were selected which result in the most accurate GPS position 

time series between 2008 and 2012. In addition to analyzing the position changes time 

series of the GPS stations from the selected sub-network over five years, the time series 

of fifty-five additional stations over a similar time period from a global solution was 

employed to compare GPS-constrained surface deformation to GIA model predictions. 

The observed horizontal velocity of the GPS stations in the study area shows that the 

GPS stations are rotating counterclockwise from south, near the Great Lakes, to north, 

near Hudson Bay, ranging from 0.67 mm/yr to 1.50 mm/yr. The estimated vertical 

velocities reveal that there is a significant difference between the velocity of the GPS 

stations in the southern region, -1.93± 0.46 mm/yr, and the northern region, 10.92 ± 1.12 

mm/yr.  
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A complex noise model which is the combination of white noise and power law noise 

were employed to analyze the GPS time series using Hector software and the MLE 

method. The amplitude and spectral index of the GPS position time series were estimated 

for all three components assuming annual and semi-annual signal. The estimates of the 

mean spectral index obtained from the best fit spectral of white noise and power law 

noise estimated using MLE for the Bernese and global solution times series were 

approximately -1.01±0.09 and -0.79 ± 0.07, respectively, indicating the presence of 

flicker noise in the time series. The similarity of the spectral indices estimated from the 

power law noise showed that almost all GPS stations in this study are affected by an 

identical noise type, flicker noise, which is mainly due to the instabilities of the geodetic 

monuments. The estimates of the horizontal and vertical velocity uncertainties from this 

analysis were examined and we found that less than 40% of the vertical velocity errors in 

the GPS stations considered in this study relates to the surface mass loading effects and 

this value is less than 17% for the horizontal velocities uncertainties.    

Significant variation in the direction of the horizontal component of the velocities of the 

stations in the southern and northern regions was observed, ranging between 0.67 and 

1.50 mm/yr. The observations of the horizontal velocities vectors indicate that the 

stations near the Great Lakes are directed south-southeast while the stations on the 

shoreline of Hudson Bay are oriented toward the Bay. Study of the vertical component of 

the GPS time series reveals a subsidence of approximately 1.93± 0.46 mm/yr. in the 

south and uplift of approximately 10.92 ± 1.12 mm/yr. in the north.  

The results show that the vertical velocities provide a better fit to the vertical velocities 

predicted by the GIA models and help to constrain the viscosity profile in the lower and 

upper mantle. The horizontal velocities, although an order of magnitude smaller than the 

vertical, are in good agreement with the predicted models of the stations in the southern 

region, although none of the models could reproduce the horizontal directions of the 

stations in the north, INUQ and IVKQ.  

In the second work, I studied the local ZTD and PWV for the same GPS stations as in the 

previous study, in eastern Ontario and western Québec. I employed the observations of 
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atmospheric parameters from the weather stations near each GPS station. Because the 

atmospheric parameters are more sensitive to the topography, I corrected them for the 

height difference using interpolation methods. Subsequently, ZTD and PWV at the 

location of each GPS station were calculated. It is worthwhile to mention that the errors 

in the interpolated temperature and pressure do not significantly changes the accuracy of 

the obtained results.  

As the seasonal amplitude of ZTD has higher effect on the position accuracy and they 

could be modeled properly as a function of height. I proposed a model to compute the 

seasonal amplitude of ZTD between each station and a reference station. This model is 

based on the decay parameter of refractivity, which I computed from the best fitting 

exponential function to the mean refractivity at all GPS stations and the seasonal 

amplitude of refractivity at the reference station. To evaluate the accuracy of the model, 

the ZTD time series between 2008 and 2012 was computed for each GPS station using 

the CSRS-PPP application, which employs global weather prediction models to correct 

for tropospheric error. The rms difference between the ZTD estimated from GPS data 

processing and that computed from meteorological data range between 3.8 and 11.1 cm.   

Comparing the modeled seasonal amplitudes and the observed seasonal amplitudes of 

ZTD between each station and ACTO reveals a good agreement for all stations, with an 

exception of stations INUQ and IVKQ. The large seasonal amplitude observed for these 

two stations is probably due to their low correlations with station ACTO. As we 

observed, the correlation coefficients between the ZTD at stations in the south (lower 

latitude) and the ZTD at other stations decrease by increasing the latitude. The results of 

this study demonstrated that the proposed model can accurately estimate the seasonal 

variations of ZTD as well as the seasonal amplitude of ZTD computed using precise point 

positioning technique, for a local GPS network with small differences in regional 

topographic height.  

In addition, I observe a positive correlation between the absolute ZTD time series 

obtained from the integration of refractivity computed from meteorological data and GPS 

processing at all stations. The comparison between the mean of the daily time series of 
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the two ZTDs, indicates that the mean values of MET-ZTD are greater than the GPS-

ZTD at all sites. Also, I computed the local PWVs at all stations from the two strategies. 

Similar daily variations between the GPS-PWV and MET-PWV were observed, with the 

largest differences identified between July and September, when the humidity and water 

vapor pressure increase in the local atmosphere.  

Computing the seasonal variations of ZTD in volcanic areas, where the local weather 

conditions change significantly with elevation, is a challenging issue. Therefore, in the 

last stage of this work, I employed high spatial resolution DInSAR data in an area 

surrounding Kilauea volcano on the island of Hawaii. All the DInSAR data in LOS 

direction are converted to the vertical direction by dividing by cosine of incidence angle, 

the mapping function commonly used in DInSAR data. By employing MSBAS 

processing approach, the east-west and height components of deformation were 

produced, the horizontal north-south component are ignored because its contribution is 

very small. Then we observed the seasonal variations of ZTD at every pixel. The 

proposed model is based on radiosonde and meteorological data from a weather station 

collocated with the location of a DInSAR reference point, estimating the best fit to the 

vertical profile of the seasonal amplitudes of ZTD in the vertical time series of all 

DInSAR pixels. 

 Results show that the magnitude of the seasonal amplitude of ZTD increases 

exponentially from the altitude of that reference location. The accuracy of the proposed 

model is evaluated by comparing the sinusoidal seasonal variations obtained from the 

modeled seasonal amplitude to the variation of the PPP-derived local ZTD, using CSRS-

PPP online application, on twenty-one GPS stations distributed throughout the island, 

relative to the reference station. Although in the GPS processing the GMF mapping 

functions are employed to produce ZTD and the troposphere gradient in the north and 

east directions are estimated along with ZTD, the estimated minimum and mean 

differences, close to zero, indicate that the proposed model accurately estimates the 

seasonal fluctuations of ZTD on local GPS network. Also, based on that comparison, the 

root mean square error (rmse) of the residual, reflecting the variations of the local water 

vapor pressure, was computed for every GPS station. The estimated rmse values 
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decreased with increasing height. The lowest (0.24 cm) and highest (5.97 cm) rmse 

values were observed for the stations at the lowest and highest altitudes, respectively.  

All the GPS data on Kilauea were processed using the CSRS-PPP application, which 

employs GMF and global weather parameters. The results indicate that the proposed 

model can be used in high accuracy positioning applications. The main advantage of 

using the proposed model is that it eliminates the need for the meteorological data at the 

location of each GPS station and it can be used in local networks in lieu of the low spatial 

resolution of numerical weather prediction models. Finally, this model can accurately 

estimate the seasonal amplitude of ZTD on a local scale at any arbitrary elevation.  

5.2. Future Studies  

Possible avenues for future studies can be outlined as follows:  

The Bernese software used in the first study models the tropospheric effects based on the 

NMF mapping function. Employing an updated version of Bernese that uses mapping 

functions such as VMF1 and GMF, which better take into account the measurements of 

atmospheric parameters, is recommended for future work.  

Also, in the first study I used five years data of GPS stations, which can be used to 

provide a more accurate crustal velocity field at a smaller spatial resolution to constrain 

the predicted motions by GIA models. However, processing of longer time series would 

be beneficial to achieve a better estimate of surface velocity in both horizontal and 

vertical directions, and potentially allow for inversion of the parameters of the different 

GIA models.  

The results of the second study provide important information regarding the seasonal 

changes of the local ZTD which could be valuable for observing the temporal and spatial 

variations of water vapor pressure on local and regional scales in the future. 

Taking advantage of the similarities of the effects of ZTD on both DInSAR data and GPS 

data, the methods proposed in this research for computing the local ZTD on GPS data can 

be used to correct the DInSAR data by employing different interpolation approaches. In 



186 

 

addition, it is recommended to integrate DInSAR derived ZTDs with cGPS derived ZTDs 

in the future work. 

The proposed model to compute the elevation-dependent seasonal variations of ZTD is 

based on the seasonal amplitude of refractivity at the reference station. Employing the 

actual time series of refractivity from that reference station reproduces the ZTD time 

series between the measurement and the reference sites estimated by using CSRS-PPP 

application.  

It is recommended to employ the proposed simplified refractivity model obtained from 

high spatial resolution of DInSAR data instead of using the low resolution global weather 

prediction models and to evaluate the accuracy of the positioning estimates at better 

spatial resolutions in future studies of GPS data in different regions, including 

tectonically active basins such as the Wasatch Range or the Sierra Nevada mountains.  

In this dissertation, Hector software was employed to identify the noise type in the GPS 

position time series. It may be possible to use this software to evaluate the error on 

DInSAR time series, although the time-dependent noise in the DInSAR observations is 

different from those which are dominant in the GPS observations (e.g., the monument 

instabilities which results in flicker noise and walker noise) 

The DInSAR data in LOS direction were converted to the zenith direction by dividing by 

the cosine of the satellite incidence angle, the mapping function. It is recommended to 

evaluate that relationship and other mapping functions and their associated uncertainties 

in future studies. 
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Appendices 

A GPS data processing using Bernese V.5  

 

In this paper, RINEX data for GPS stations spanning 2008 to 2012 (Table A-1) are 

processed using the Bernese Processing Engine (BPE) (Beutler et al. 2007) and a double-

differencing technique. Table A-1 contains all information related to the GPS RINEX 

data in this analysis, including position of the sites, monuments, receiver and antenna 

types, the first date of data availability, length and end date. The offset dates for the 

considered time interval are shown as well. 

The updated precise orbit information and the Earth Orientation Parameter (EOP) 

spanning of our GPS campaign are introduced into the program to create the standard 

orbit files. In the preprocessing phase, the code observation files are used to synchronize 

the receiver clock with the GPS times and then the baselines are created based on the 

zero-difference observation files. In addition, at this stage, the cycle-slips and outliers are 

detected and removed by considering the RMS value of the observations and multiple 

ambiguities are added for the phase observations using the triple-combination approach.  



188 

 

S
it

e
 

M
o
n

u
m

e
n

t 
L

a
t.

 
L

o
n

. 
S

ta
rt

 

D
a
te

 

L
e
n

g
th

 

(y
e
a
r)

 

O
ff

s
e
t 

 

E
n

d
 

d
a
te

 
L

o
c
a
ti

o
n
 

R
e
c
e
iv

e
r 

T
y
p

e
 

A
n

te
n
n

a
 

T
y
p

e
 

A
L

G
O

*
 

S
ta

in
le

s
s
 

s
te

e
l 

p
il

la
rs

 

N
4

5
°
 

5
7

’ 

2
0

.8
5

”
 

W
7

8
°
 

0
4

’ 

1
6

.9
1

”
 

2
0

0
1

 

J
u
n

. 
4

.7
9
 

 

2
0

1
2

 D
e
c
. 

2
0

 

 

2
0

1
2

 

D
e
c
. 

3
1
 

A
lg

o
n

q
u

in
 

P
a
rk

, 
O

N
, 

C
a
n

a
d

a
 

 

A
O

A
 

B
E

N
C

H
M

A
R

K
 A

C
T

 

A
O

A
D

/M

_
T

 

A
C

T
O

 
C

o
n

c
re

te
 p

ie
r 

N
4

3
˚ 

3
6

’ 

3
1

.3
2

”
 

W
8

0
˚ 

0
3

’ 

4
4

.6
4

”
 

2
0

0
4

 

N
o

v
. 

4
.7

5
 

--
--

--
--

--
- 

 

2
0

1
2

 

D
e
c
. 

2
0
 

A
c
to

n
, 
 

O
N

, 

C
a
n

a
d

a
 

 

N
O

V
A

T
E

L
1
 

N
O

V
7

0
2
 

T
Y

N
O

 
C

o
n

c
re

te
 p

ie
r 

N
4

3
˚ 

0
5

’ 
4

2
”
 

W
7

9
˚ 

5
2

’ 

1
2

.7
2

”
 

2
0

0
4

 

N
o

v
. 

4
.7

2
 

--
--

--
--

--
- 

2
0

1
2

 

D
e
c
. 

3
1
 

T
y
n

e
s
id

e
, 
 

O
N

, 

C
a
n

a
d

a
 

 

N
O

V
A

T
E

L
2
 

N
O

V
7

0
2
 

S
T

C
O

 
C

o
n

c
re

te
 p

ie
r 

N
4

3
˚ 

1
2

’ 

3
4

.5
6

”
 

W
7

9
˚1

0

’ 
1

3
.8

”
 

2
0

0
5

 

A
p

r.
 

4
.7

5
 

--
--

--
--

--
- 

 

2
0

1
2

 

D
e
c
. 

2
4
 

S
a
in

t 

C
a
th

a
ri

n
e
s
, 

O
N

, 

C
a
n

a
d

a
 

 

N
O

V
A

T
E

L
3
 

N
O

V
7

0
2
 

K
L

B
O

 
S

ta
in

le
s
s
 

s
te

e
l 

p
il

la
rs

 

N
4

5
˚ 

2
1

’ 

2
3

.7
6

”
 

W
8

0
˚ 

1
2

’ 

4
7

.5
2

”
 

2
0

0
9

 

M
a
y
 

3
.0

2
 

--
--

--
--

--
- 

2
0

1
2

 

J
u
n

e
 2

9
 

K
il

lb
e
a
r 

P
ro

v
in

c
ia

l 

P
a
rk

, 
O

N
, 

C
a
n

a
d

a
 

 

N
O

V
A

T
E

L
4
 

N
O

V
7

0
2
 

M
A

T
Q

 
S

ta
in

le
s
s
 

s
te

e
l 

p
il

la
rs

 

N
4

9
˚ 

4
5

’ 

3
2

.2
5

”
 

W
7

7
˚ 

3
8

’ 

1
5

.1
6

”
 

2
0

0
8

 

J
u
l.

 
4

.4
8
 

--
--

--
--

--
- 

2
0

1
2

 

D
e
c
. 

3
1
 

M
a
ta

g
a
m

i 

L
a
 P

a
lc

e
, 

Q
C

, 

C
a
n

a
d

a
 

 

T
R

IM
B

L
E

 

N
E

T
R

S
 

T
R

M
4

1
2

4

9
.0

0
 

IV
K

Q
 

S
ta

in
le

s
s
 

s
te

e
l 

p
il

la
rs

 

N
6

2
˚ 

2
5

’ 

5
2

.3
5

”
 

W
7

7
˚ 

5
4

’ 

3
9

.3
7

”
 

2
0

0
8

 

J
u
l.

 
4

.2
1
 

--
--

--
--

--
- 

2
0

1
2

 O
c
t.

 

2
4

 

Iv
u

ji
v
ik

, 

 Q
C

, 

C
a
n

a
d

a
 

 

T
R

IM
B

L
E

 

N
E

T
R

S
 

T
R

M
4

1
2

4

9
.0

0
 

IN
U

Q
 

S
ta

in
le

s
s
 

s
te

e
l 

p
il

la
rs

 

N
5

8
˚ 

2
7

’ 

3
.7

6
”
 

W
7

8
˚ 

7
’ 

6
.1

1
”
 

2
0

0
8

 

J
u
l.

 
3

.7
2
 

--
--

--
--

--
- 

2
0

1
0

 

A
p

ri
l 

1
2
 

In
u

k
ju

a
k
, 

 Q
C

, 

C
a
n

a
d

a
 

T
R

IM
B

L
E

 

N
E

T
R

S
 

T
R

M
4

1
2

4

9
.0

0
 

K
U

U
J
*
 

 

C
o

n
c
re

te
 p

ie
r 

 

 

N
5

5
˚1

6
’

4
2

.1
0

”
 

 

W
7
7

˚4

4
’4
3
.
5

6
”
 

2
0

0
2

 

J
u
l.

 
4

.9
7
 

 

2
0

1
0

 J
u
ly

 

3
0

 

2
0

1
2

 S
e
p
t.

 

0
6

 

 

2
0

1
2

 

D
e
c
. 

3
1
 

 

K
u

u
jj

u
a
ra

p
i

k
, 

 Q
C

, 

C
a
n

a
d

a
 

 

T
P

S
 N

E
T

G
3
 

T
P

S
C

R
.G

3
 

V
A

L
D

*
 

 

C
o

n
c
re

te
 

p
il

la
r 

 

 

N
4

8
˚0

5
’

4
9

.4
1

”
 

 

 

W
7
7

˚3

3
’5
1

”
 

 

2
0

0
1

 

N
o

v
. 

4
.7

7
 

 

2
0

0
9

 J
u
ly

 

1
8

 

2
0

1
0

 F
e
b

. 

1
5

 

 

2
0

1
2

 

D
e
c
. 

3
1
 

 

V
a
l 

D
’O

r.
 

Q
C

, 

C
a
n

a
d

a
 

 

T
P

S
 N

E
T

G
3
 

T
P

S
C

R
.G

3
 

C
A

G
S

*
 

 

P
il

la
r 

N
4

5
˚3

5
’

0
6

”
 

W
7

5
˚4

8

’2
6

.2
8
”
 

2
0

0
0

 

F
e
b

. 
4

.8
7
 

2
0

1
1

 J
u
ly

 

1
2

 

2
0

1
2

 

D
e
c
. 

3
1
 

G
a
ti

n
e
a
u

, 

Q
C

, 

T
R

IM
B

L
E

 

N
E

T
R

8
 

A
S

H
7

0
0

9

3
6

D
_

M
 

 

 

 

T
ab

le
 A

.1
. 
G

P
S

 s
ta

ti
o
n
 i

n
fo

rm
at

io
n
 f

o
r 

st
at

io
n
s 

fr
o
m

 t
h
e 

P
O

L
A

R
IS

 n
et

w
o
rk

 a
n
d
 t

h
o
se

 o
p
er

at
ed

 

b
y
 C

an
ad

ia
n
 G

eo
d

et
ic

 S
u
rv

ey
 (

C
G

S
),

 N
at

u
ra

l 
R

es
o
u
rc

es
 C

an
ad

a.
 A

ll
 c

o
o
rd

in
at

es
 a

re
 b

as
ed

 o
n
 

W
G

S
8
4
. 
T

h
e 

su
b
sc

ri
p
t 

st
ar

 i
s 

S
ta

ti
o
n
s 

o
p
er

at
ed

 b
y

 C
an

ad
ia

n
 G

eo
d

et
ic

 S
u
rv

ey
 (

C
G

S
),

 N
at

u
ra

l 

R
es

o
u
rc

es
 C

an
ad

a.
  

 



189 

 

The ionospheric delay signals are eliminated using ionosphere free linear combination 

(L3) of carrier phase measurements. The effect of the higher order ionosphere has not 

been considered as they have less than 1 mm effects (Hernández-Pajares et al. 2007; 

Petrie et al. 2010). The tropospheric effects are modeled by applying the Niell (1996) 

mapping function for both the dry and the wet part which maps the zenith troposphere 

delay to the satellite-station direction. The benefit of using this model is that the 

calculation of the wet and dry mapping functions does not depend on the local surface 

meteorology and it gives an accurate positions for stations located in the latitude range 

43-75◦N for minimum elevation angle of three degrees. 

Here, we considered the minimum elevation angle equal to five degrees that minimizes 

multipath errors. The ocean tidal loading effects that cause crustal deformation and 

therefore site displacement are corrected from the horizontal and vertical components by 

introducing a GOT00.2 model containing eleven coefficients for each particular site to 

the program. This file contains the magnitude of the ocean loading effect for a subset of 

IGS stations so that the amplitude and phase shifts values for other stations in our study 

were obtained from Bos & Scherneck (2011). These values were not corrected for the 

center of mass motion so that our frame origin is in the solid earth centre (CM).  

Next, all baselines are processed separately and the ambiguities are resolved by the 

Quasi-Ionosphere-Free (QIF) Ambiguity Resolution Strategy. New coordinates and 

troposphere parameters files are introduced and the results consist of two parts. The first 

part refers to the solution where the ambiguities are estimated as real-valued 

measurement biases whereas the second part reports the results after resolving the 

ambiguity parameters to integer values. It is important to know that the ambiguities larger 

that the specified RMS could not be resolved. 

Then, the final network solution is implemented in which the correlation between the 

observations is considered and the ambiguities that have been resolved 

already are introduced as known parameters. In this way, the free network or the 

minimum constraint solution, in which no station is fixed to its a priori coordinates, is 

carried out in this paper. This approach is optimal for defining the geodetic datum with a 
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minimum number of constraints where there are inconsistencies in the reference stations 

coordinates. Then, the coordinates obtained from the last solution are compared to the a 

priori coordinates for the IGS core sites so that the stations with the residual more than 

the considered threshold, 15 mm for north and east directions and 30 mm for up 

direction, would be rejected in the datum definition. In this phase, seven transformation 

parameters are calculated by comparing the two sets of coordinates, the output 

coordinates from the last step to the first input file containing stations coordinates in 

IGS08, in the Helmert transformation program. Then the repeatability of the coordinate 

solution is checked to report the difference of each individual coordinate set to the mean 

value. In the final solution at each epoch, the troposphere parameters have to be pre-

eliminated and to avoid singularities, all station coordinates have to be constrained. The 

station coordinates obtained in the last step are introduced here.  

Subsequently, the obtained daily GPS position time series spanning approximately 5 

years are analyzed to estimate the velocities of the GPS sites. The outliers are eliminated 

as follows: first coordinates with jumps of more than 300 mm are removed manually, 

then the Hampel filter (Hampel 1974) is employed. In this method, if a point differs from 

the mean by more than three times the standard deviation it is replaced by the median of 

the window containing the six surrounding points.  

We employed the sigma averaging (SIGAVG) method presented by Goudarzi et al. 

(2012) in the GPS interactive time series analysis (GITSA) software (Goudarzi et al., 

2012) to detect jumps and discontinuities in the position time series. This approach 

divides the time series into different segments based on the introduced threshold, here set 

at 3 mm, and detects discontinuities at the border of adjacent segments without jumps.  

The rate uncertainties and the linear trends are then determined by employing Hector 

software (Bos et al., 2013).  A Maximum Likelihood Estimation (MLE) approach is used 

to calculate the noise in the time series (Williams et al., 2004) by computing the 

parameters of the noise model, including the amplitude and spectral index. This software 

also computes the constant velocity, offsets which may occur due to GPS equipment 

changes, annual and semi-annual variations and velocity uncertainties. Here, the 
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combination of the power-law noise (colored noise) and white noise is taken into account 

as source of noises in the time series. In addition, the AmmarGrag method is employed 

for the likelihood computation because the percentage of missing data is less than 50% of 

the total time series length. The covariance matrix which represents the time-dependent 

positions is computed from (William 2008) (Equation A.1):  

𝐶 = 𝑎𝑤
2 𝐼 + 𝑏𝜈

2𝐽𝜈                                  (A.1) 

where, 𝑎𝑤 and 𝑏𝜈 are the white and power-law amplitudes, respectively. These depend on 

the variance of the noise, innovation noise, 𝜎2. 𝐼 is the unit matrix with 𝑛 × 𝑛 dimension 

and 𝐽𝜈 is the covariance matrix for the power-law noise with spectral index 𝜈. 

 

 

 

 

 

 

 

Figure A.1 illustrates the daily vertical position time series for station TYNO and its 

corresponding fitted sine function. 

To verify the correctness of choice of the noise model, the power spectra analysis is 

carried out by fitting the combination of white plus power-law noise model to the 

computed spectrum for the GPS observations. This analysis represents the difference 

between observations minus the estimated linear trend and additional offsets and periodic 

signals. Figure A.2 shows the Power Spectral Density (PSD) plot for the vertical position 

time series of station TYNO. At high frequencies the fitted model is flat, which is 

representative of the white noise. At lower frequencies the fitted model obeys power-law 

Figure A.1. Detrended position changes time series at station TYNO in eastern 

Ontario. The pink line corresponds to the best fit annual sinusoidal function. 
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noise with a slope of approximately one, which implies the presence of flicker noise in 

the time series. 
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B GPS data processing using GIPSY/OASIS-II software 

The time series of GPS stations on the NGL website (http://geodesy.unr.edu/), were 

processed using GIPSY/OASIS-II software (Webb & Zumberge 1997) and made 

available by Jet Propulsion Laboratory (JPL). The precise point positioning (PPP) 

technique (Zumberge et al. 1997) was applied to the ionosphere-free carrier phase and 

pseudo-range data. The daily GPS coordinate time series are produced using GPS 

satellite orbit, GPS satellite clock and satellite antenna calibration models. The elevation 

cut-off angle was set at seven degrees. Troposphere effects were modeled using the 

Global Mapping Function (GMF) proposed by Boehm et al. (2006) and horizontal 

gradients were estimated using a random walk stochastic process at every five minutes 
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(Bar-Sever et al. 1998). The first order of ionosphere effect was removed with the 

ionosphere-free carrier phase and pseudo-range data combination. As the higher order 

ionosphere effect has very low amplitude, less than 1mm, it was not considered in the 

process (Hernández-Pajares et al. 2007). Non-tidal atmospheric loading model was not 

applied and only the effects of ocean loading were corrected by using the FES2004 tidal 

model (Lyard et al., 2006) which was provided by http://holt.oso.chalmers.se/loading 

(Scherneck 1991). The ocean loading effect was modeled in the CM frame (Blewitt 2003; 

Fu et al. 2012). In addition, the integer ambiguities for every station were solved using 

the wide lane and phase bias (WLPB) approach (Bertiger et al. 2010). The resulted 

coordinates were obtained in the frame of JPL’s fiducial-free orbit so that they were 

transformed into reference frame IGS08 employing a seven-parameter transformation 

computed with JPL’s orbit products (Blewitt 2014).  

A similar time series analysis was performed for the time series obtained from this 

solution to estimate the velocities, velocity uncertainties and spectral index associated 

with the power-law noise.   
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C Glossary 

 

NL Narrow-Lane  

ZTD Zenith Tropospheric Delay 

GPS Global Positioning System 

DInSAR Differential Interferometric Synthetic Aperture Radar 

GIA Glacial Isostatic Adjustment 

PPP Precise Point Positioning 

NRCan Natural Resource Canada 

SBAS Spaced Based Augmentation System 

GFIF Geometry-Free and Ionosphere-Free 

PRN Pseudo-Random Noise 

SNR Signal-to-Noise Ratio 

MWWL Melbourne-Wübbena Wide-Lane  

NGS National Geodetic Survey  

IGS  International GPS Service  

CODE  Center for Orbit Determination in Europe  

TEC Total Electron Contents  

PWV Precipitable Water Vapor  

ZHD Zenith Hydrostatic Delay  

ZWD Zenith Wet Delay  

NMF Niell Mapping Function  

cGPS continuous GPS  
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QIF Quasi Ionosphere Free  

UMV  Upper Mantle Viscosity  

RMSE Root-Mean-Square Error  

PPMC Pearson Product Moment Correlation 

IGS  International GNSS Service  

OSO Onsala Space Observatory  

NGS National Geodetic Survey  

TPS  Topcon Positioning System  

AOA Allen Osborne Associates  

CORS Continuously Operating Reference Stations  

SCIGN Southern California Integrated GPS Network  

ASAR Advanced Synthetic Aperture Radar  

MERIS MEdium Resolution Imaging Spectrometer  

MODIS Moderate Resolution Imaging Spectroradiometer  

ERA-Interim European Center for Medium-Range Weather Forecasts Reanalysis  

APD Atmospheric Path Delay  

GPT Global Pressure and Temperature Model  

LMV Lower Mantle Viscosity  

NGL Nevada Geodetic Laboratory  

ITRF International Terrestrial Reference Frame  

NWP Numerical Weather Prediction  

DoY Day Of Year  

AFB Air Force Base  
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MEO Medium Earth Orbit  

LOS Line-of-Sight  

VMF Vienna Mapping Function 

VMF1 Vienna Mapping Function 1  

GNSS Global Navigation Satellite System  

GMF Global Mapping Function  

CGS Canadian Geodetic Survey  

WRF Weather Research and Forecasting  

NOAM North American  

PBL Planetary Boundary Layer  

PENNDOT Pennsylvania Department of Transportation  

NYSDOT New York State Department of Transportation  

ODOT   Ohio Department of Transportation  

PLI  Precision Laser and Instrument  

CONNDOT  Connecticut Department of Transportation  

MDOT  Michigan Department of Transportation  

NRCan GSD  Natural Resources Canada, Geodetic Survey Division  

msl Mean Sea Level  

SOSZ  Southern Ontario Seismic Zone  

WQSZ  Western Québec Seismic Zone  

CSZ  Charlevoix Seismic Zone  

LSZ Lower St. Lawrence Zone  

BUZ Boothia Ungava Zone  



199 

 

VM Viscosity Model  

GDEM Global Digital Elevation Model  

USGS United States Geological Survey  

HVO Hawaii Volcano Observatory  

MET-ZTD ZTD computed from meteorological data 

GPS-ZTD ZTD computed from GPS processing 

𝑍𝑇𝐷𝑃𝑃𝑃   

 

zenith tropospheric delay estimated from precise point positioning 

technique 

∆𝑍𝑇𝐷𝑃𝑃𝑃   

 

Subtraction of 𝑍𝑇𝐷𝑃𝑃𝑃computed for the reference station from the 

𝑍𝑇𝐷𝑃𝑃𝑃for the other stations  

POLARIS   

 

Portable Observatories for Lithospheric Analysis and Research 

Investigating Seismicity 

CSRS Canadian Spatial Reference System 

ERA40   

 

European Centre for Medium-Range Weather Forecasts 40-year re-

analysis 

P-code Precise code 

NOAA-ESRL National Oceanic Atmospheric-Earth System Research Laboratory 

𝐾1, 𝐾2, and 𝐾3 refractivity constants 

BSW5.0 Bernese GPS Software Version 5.0 

MSBAS Multidimensional Small Baseline Subset 

N refractivity 

SRTM Shuttle Radar Topography Mission 

C/A Coarse Acquisition 
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D Computer Code  

Codes that I have written in chapters 2. 

%Compute the plate velocities  

 
   %% Calculate Plate velocities  
   velocitiesngl= 'coordinates.xls'; 
 [velocities,txt,raw] = xlsread(velocitiesngl,1); 
  lon= velocities(:,1); 
  lat = velocities(:,2); 
  alt=velocities(:,3); 
  r = 6378137;%Radius of the Earth 
 % %ITRF2008 (N-PGR) components  
  wx= 0.035; 
 wy= -0.662; 
 wz= -0.1; 
 w_plate=sqrt(wx^2+wy^2+wz^2);%rad/yr Pole Rotation Rate  
w_degoverma=(0.184+0.003)*(pi/180)*10^-6;%rad/yr 
 

%upper band 
lat_plate=-7.9+0.8; 
lon_plate=-88+0.7; 

  
eulervector=[w_degoverma*cosd(lat_plate) 
    w_degoverma*cosd(lat_plate)*sind(lon_plate)  
    w_degoverma*sind(lat_plate)]; 

             
VNS_up=r*w_degoverma*cosd(lat_plate)*sind(lon-lon_plate) 
for i=1:size(lon) 
VEW_up(i,1)=r*w_degoverma*(((cosd(lat(i)))*sind(lat_plate))-

((sind(lat(i)))*(cosd(lat_plate))*(cosd(lon(i)-lon_plate)))) 
end 
%lower band 
w_degoverma=(0.184-0.003)*(pi/180)*10^-6;%rad/yr 

  
lat_plate=-7.9-0.8; %rad 
lon_plate=-88-0.7;   %rad 

  
eulervector=[w_degoverma*cosd(lat_plate) 
    w_degoverma*cosd(lat_plate)*sind(lon_plate)  
    w_degoverma*sind(lat_plate)]; 

             
VNS_low=r*w_degoverma*cos(lat_plate)*sin(lon-lon_plate) 
for i=1:size(lon) 
VEW_low(i,1)=r*w_degoverma*(((cosd(lat(i)))*sind(lat_plate))-

((sind(lat(i)))*(cosd(lat_plate))*(cosd(lon(i)-lon_plate)))) 
End 

 
%med 
w_degoverma=(0.184)*(pi/180)*10^-6;%rad/yr 

  
lat_plate=-7.9;  %degree 
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lon_plate=-88; %degree 

  
eulervector=[w_degoverma*cosd(lat_plate) 
    w_degoverma*cosd(lat_plate)*sind(lon_plate)  
    w_degoverma*sind(lat_plate)]; 

             
VNS_med=r*w_degoverma*cosd(lat_plate)*sind(lon-lon_plate) 
for i=1:size(lon) 
VEW_med(i,1)=r*w_degoverma*(((cosd(lat(i)))*sind(lat_plate))-

((sind(lat(i)))*(cosd(lat_plate))*(cosd(lon(i)-lon_plate)))) 
end 

  

% converting utm to geodetic coordinates 

stationsble= 'stations.xlsx'; 
a= 6378137.0; 
e2=298.257222101; 
[stations,txt,raw] = xlsread(stationsble); 
[lat,lon]=utm2ell(stations(:,2),stations(:,1),17,a,e2,lcm); 
lat2=lat*180/pi; 
lon2=lon*180/pi; 

 

% analyzing the GPS coordinates  

%% load the position changes time series produced by Bernese 

%% load the position changes time series from NGL  
load Algofiltered.mat 
load Algonevada.mat 
load Actofiltered.mat 
load Actonevada.mat 
load Stcofiltered.mat 
load Stconevada.mat 
load Tynofiltered.mat 
load Tynonevada.mat 
load Klbofiltered.mat 
load Matqfiltered.mat 
load Matqnevada.mat 
load Inuqfiltered.mat 
load Inuqnevada.mat 
load Ivkqfiltered.mat 
load Ivkqnevada.mat 
load Paryfiltered.mat 
load Parynevada.mat 

 

%%% the following steps are employed for all stations and components 

x = Actonevada(:,1); 
y2= Actofiltered(:,5); 
y1= Actonevada (:,2); 
e=  Actofiltered (:,8); 

 
date=Actofiltered(:,1:3); 
y=[y1 y2]; 

% estimate the linear velocities of time series  
p2= polyfit(date(:,1),y1,1); 



202 

 

veleast_nevada=p2(1)*100 
p= polyfit(date(:,1),y2,1); 
veleast_bernese=p(1)*100 

 
%# normalize: (y-min)/(max-min) ==> [0,1] 
yy = bsxfun(@times, bsxfun(@minus,y,min(y)), 1./range(y)); 
subplot(222), plot(x,yy(:,1), x,yy(:,2)) 
title('minmax') 

  
%# standarize: (y - mean) / std ==> N(0,1) 
yy = zscore(y); 
[Z,mu,sigmaacx] = zscore(y); 

 
%%% removing the outliers using hampel function 
 

 

DX  = 3*median(x(2:end)-x(1:end-1)); 
T=3; 
Threshold   = 0; 
 [YY, I, Y0, ~, UB, ADX, NO] = hampel(x,yy(:,2), DX, T, 

'adaptive',Threshold) 

 

% convert dates to mjd to input the times series to Hector software  

 
vel_date= 'hector-input-data.xlsx'; 
 [status,sheets]=xlsfinfo(vel_date); 

for i=1:57 

[table,txt,raw] = xlsread(vel_date,i,'A:C'); 
for j=1:length (table(:,1)) 
yearmjd(j,i)= floor(365.25*(table(j,1) - 1970) + 40587 + 0.1) -0.5; 
yearmjd_round(j,i)= round(yearmjd(j,i)); 
end 
end 

 

**************************************** 

Codes that I have written in chapters 3. 

I have done the following steps for all weather stations to estimate the ZTD from 

meteorological data at the GPS stations’ locations 

%%input the meteorological data from excel to matlab 

Weathermeasurment= 'hourly-weather_measurements_inuq.xlsx'; 
[inuq,txt,raw] = xlsread(Weathermeasurment); 
dyinuq = decyear(inuq(:,1),inuq(:,2),inuq(:,3),inuq(:,4),0,0); 

%% correct the GPS meteorological data for the height difference  

 
 H_GPS= 16.532; % GPS height above msl 
  H_MET=25.750; % weather station height  



203 

 

   
  TMSL=(inuq (:,6)+273.16)+(0.0065*H_MET); 
  TGPS_inuq=(TMSL)-(0.0065*H_GPS); %According to Equation 2 in dousa 

elias 

   
partial_watervapor=6.1037*(exp(17.641*inuq (:,7)./(243.27+inuq(:,7)))); 

  
Pmsl=inuq(:,10)/(1-(0.0000226*H_MET))^5.225; 
PGPS_inuq=Pmsl*(1-(0.0000226*H_GPS))^5.225; %According to Equation 2 in 

dousa elias 

  
emsl=partial_watervapor/(((1-(0.0000226*H_MET))^5.225)^(2.79+1));           

%According to Equation 2 in dousa elias and smith 1966, for the decay 

rate of partial water vapor pressure. 
annaullanda=2.79; 
EGPS_inuq=emsl*(((1-(0.0000226*H_GPS))^5.225)^(annaullanda+1)); 
  

%% calculate refractivity time series  

 
for i=1:size(dyinuq,1) 
 refractinuq(i,1)=77.69*(PGPS_inuq(i,1)- 

EGPS_inuq(i,1))/(TGPS_inuq(i,1))+71.29*(EGPS_inuq(i,1))/(TGPS_inuq(i,1)

)+375463*(EGPS_inuq(i,1))/((TGPS_inuq(i,1))^2); 
end 

  

%% plot the refractivity  

 figure; 
 scatter(dyinuq,refractinuq,6,'MarkerEdgeColor',[0.04,0.52,0.78]) 
  avgrefrinuq=nanmean(refractinuq) 

  
 hold on 
plot(dyinuq,ones(size(dyinuq,1),1)*avgrefrinuq,'--r') 
xlabel('Year') 
ylabel('Refractivity (N-Unit)') 
str1 = 'Inukjuak to INUQ = 4km'; 
text(2008.3,370,str1) 
ylim([250 400]) 
title('INUQ') 

 

%%%%%calculate MET-ZTD 

 
C=0.000121;%1/km 

  
syms z 
f=exp(-C*z) 
inuq_met=(10^-6)*refractacto*double(int(f, H_GPS,Inf)); 
[ztdmet_inuq,dyinuqdai] = dailyavgmet( inuq,inuq_met); 
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%%%%% calculate PWV at each station 

  
[PGPS_dai,dyinuqdai2] = dailyavgmet(inuq,PGPS_inuq); 

  
F=(1-0.00266*cos(2*58.451)-0.00028*(16.532/1000)) 
ZHD=0.002277*PGPS_dai/F %%meter 

  
ZWD_inuq=ztdmet_inuq-ZHD;  % compute wet component of ZTD 

 
 % convert hourly temperature to daily  

 
[Tsmet_inuq,dyinuqdai3] = dailyavgmet(inuq,TGPS_inuq);  

  
 Tm=50.4+0.789*(Tsmet_inuq); 

  
inuq_factor=10^6*(461*((-287/461)*77.60+71.59+375000./Tm)).^-1; 
PW_met_inuq=inuq_factor.*ZWD_inuq/10; 

  
avgpw=nanmean(PW_met_inuq); 
figure; 
plot(dyinuqdai2,PW_met_inuq*100) %cm 
ylim([0 10]) 
hold on 

  
%% plot the computed amplitudes at each station overlain with the 

modeled amplitudes  

 
zr=367.22; %elevation of station ACTO, reference station 
C=0.000121; 
z=[0:1000]; 
amplitudrefract=18.93; 
amplitude2=abs((10^-6)*(amplitudrefract)*(1-exp((-C)*(z-

zr)))/((C)*exp((C)*zr))) %meter 
figure; 
 plot(z,amplitude2*100) 
ylabel('Amplitude (cm)') 
xlabel('Height (m)') 

  
elev= [205.102 94.169 367.217 185.574 237.184 279.705 16.532 12.234]; 

 
GPSamp3=[0.15 0.22 0 0.3 0.19 0.63 1.9 1.95]; %%GPS % the seasonal 

amplitudes of deltaZTD at each station relative to station ACTO. 
 

plot(elev,GPSamp3,'*r') 
  hold on 
legend('Model','GPS') 

  
text(elev(2),GPSamp3(2)','STCO',... 
      'horiz','center','vert','bottom') 
  hold on 

  
text(elev(1),GPSamp3(1)','TYNO',... 
     'horiz','center','vert','bottom') 
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hold 
text(elev(3),GPSamp3(3)','ACTO',... 
     'horiz','left','vert','bottom') 
hold on 

  
text(elev(4),GPSamp3(4)','KLBO',... 
     'horiz','center','vert','bottom') 
     hold on 
text(elev(4),GPSamp3(5)','ALGO',... 
     'horiz','center','vert','TOP') 
    hold on 
text(elev(6),GPSamp3(6)','MATQ',... 
     'horiz','center','vert','bottom') 
       hold on 
 text(elev(7),GPSamp3(7)','INUQ',... 
     'horiz','right','vert','bottom') 
      hold on 

  
text(elev(8),GPSamp3(8)','IVKQ',... 
     'horiz','center','vert','bottom') 
%   ylim([0 15]) 

  

  
%% 
%%%% 
% meanrefract=[nanmean(refractinuq) nanmean(refractivkq)  

nanmean(refractstco) nanmean(refracttyno) nanmean(refractpary) ... 

%    nanmean(refractalgo) nanmean(refractmatq) nanmean(refractacto)]; 

 

%% plot the exponential decay fits 

 
% amplitudefinalresults='amplitudefinalresults2.xlsx'; 
%  [results,txt,raw] = xlsread(amplitudefinalresults,6); 
%  heights= results(:,1); 
%%%%%%%%%%%%%% 
heights=[16.532;12.234;94.169;205.102;185.574;237.184;279.705;367.217]; 
figure; 
plot(heights(1:end),meanrefract(1:end)','*') 
% hold on 
hold on 
exponfit1 = fit(heights(1:end),meanrefract(1:end)','exp1') 
plot(exponfit1,'m')%scenario 1 

  
p21 = predint(exponfit1,heights,0.95,'functional','off'); 
hold on, plot(heights,p21,'m--') 

  
hold on 

  
exponfit2 = fit(heights(3:end),meanrefract(3:end)','exp1') 
plot(exponfit2,'k') %scenario 2 

  
p21 = predint(exponfit2,heights,0.95,'functional','off'); 
hold on, plot(heights,p21,'k--') 
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heights3=[16.532;12.234;94.169;205.102;185.574;237.184;367.217]; 
% meanrefract3=[nanmean(refractinuq) nanmean(refractivkq)  

nanmean(refractstco) nanmean(refracttyno) nanmean(refractpary) ... 

%    nanmean(refractalgo) nanmean(refractacto)]; 

 
exponfit3 = fit(heights3(3:end),meanrefract3(3:end)','exp1') 
hold on 
plot(exponfit3,'g') %scenario 3 

  
p21 = predint(exponfit3,heights,0.95,'functional','off'); 
hold on, plot(heights,p21,'g--') 

  
heights4=[-23.771;-20.355;200.897;239.945]; 
meanrefract4=[319.83 316.80 318.74 312.83]; 

  
hold on 
exponfit4 = fit(heights4,meanrefract4','exp1') 
plot(exponfit4,'b') %scenario 4 
p21 = predint(exponfit4,heights,0.95,'functional','on'); 
hold on, plot(heights,p21,'b--') 

  

  
grid on 
%% 
xlabel('Height (m)') 
ylabel('Refractivity (N-Unit)') 
legend('GPS stations','scenario 1', '', 'scenario 2','', 'scenario 

3','','scenario 4') 

 
text(heights(2),meanrefract(2)','IVKQ',... 
      'horiz','center','vert','bottom') 
  hold on 

  
text(heights(1),meanrefract(1)','INUQ',... 
     'horiz','center','vert','bottom') 
hold 
text(heights(3),meanrefract(3)','STCO',... 
     'horiz','left','vert','bottom') 
hold on 
text(heights(4),meanrefract(5)','KLBO',... 
     'horiz','center','vert','TOP') 
    hold on 

  
text(heights(4),meanrefract(4)','TYNO',... 
     'horiz','center','vert','bottom') 
     hold on 

  
text(heights(8),meanrefract(8)','ACTO',... 
     'horiz','center','vert','bottom') 
      hold on 

  
text(heights(6),meanrefract(6)','ALGO',... 
     'horiz','center','vert','bottom') 
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       hold on 

  
text(heights(7),meanrefract(7)','MATQ',... 
     'horiz','right','vert','bottom') 
 ylim([290 350]) 

% loading the ZTD computed by PPP to MATLAB  

% computing GPS-PWV 

% The following steps have been carried out for all GPS stations 

%ACTO 
load('ACTO') 
dybernhourly=decyear(ACTO(:,2),ACTO(:,3),ACTO(:,4),ACTO(:,5),ACTO(:,6),

ACTO(:,7)); 
  figure; 
 hold on 
plot(dybernhourly(:,1), ACTO(:,8),'.') 
[ztdbern_acto,dyactobern] = dailyavgberb(ACTO); % convert 30s to                                           

%daily 
hold on 
plot(dyactobern, ztdbern_acto,'.') 

  
%%%%%%% calculate PWV 
[PGPS_dai,dyactodai2] = dailyavgmet(acto,PGPS_acto); 

  
F=(1-0.00266*cos(2*43.609)-0.00028*(367.22/1000)) 
ZHD_acto=0.002277*PGPS_dai/F %%meter 

  
 % calculate ZWD at each station 
ZWD_acto=ztdbern_acto-ZHD_acto; 

  
[Tsmet_acto,dyactodai3] = dailyavgmet(acto,TGPS_acto);  

  

  
 Tm=50.4+0.789*(Tsmet_acto); 

  
acto_factor=10^6*(461*((-287/461)*77.60+71.59+375000./Tm)).^-1; 
PW_bern_acto=acto_factor.*ZWD_acto/10; 

  
avgpw=nanmean(PW_bern_acto); 
% figure; 
hold on 
plot(dyactodai3,PW_bern_acto*100)  
ylabel('PW values (cm)') 
xlabel('Year') 
title('ACTO') 

  

%% compute correlation between each pair of ZTDs 
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cor=[ztdbern_tyno ztdmet_tyno ztdbern_stco ztdmet_stco ztdbern_acto 

ztdmet_acto ztdbern_klbo ztdmet_klbo ztdbern_algo ztdmet_algo 

ztdbern_matq ztdmet_matq ztdbern_inuq ztdmet_inuq ztdbern_ivkq 

ztdmet_ivkq] 

  
[R,PValue] =corrplot(cor 

,'varNames',{'TB','TM','SB','SM','AB','AM','KB','KM','AB','AM','MB','MM

','InB','InM','IvB','IvM'}, 'type','Pearson','testR','on', 

'rows','pairwise') 
    hfig = gcf; 
 haxes = findobj(hfig, 'Type', 'Axes'); 
 arrayfun(@(ax) xlim(ax, [2:3]), haxes); %to change all the axes limit 
  arrayfun(@(ax) ylim(ax, [2:3]), haxes); %to change all the axes limit 
n=size(R,1) 
set(gca, 'XTick', 1:n); % center x-axis ticks on bins 
set(gca, 'YTick', 1:n); % center y-axis ticks on bins 

  
%%%%%% 

    %%  Correlogram  

      figure; 

imagesc(triu(R)) 
colormap('jet') 
colorbar; 
labelNames = {'TYNO-G';'TYNO-M';'STCO-G';'STCO-M';'ACTO-G';'ACTO-

G';'KLBO-G';'KLBO-M';'ALGO-G';'ALGO-M';'MATQ-G';'MATQ-M';'INUQ-

G';'INUQ-M';'IVKQ-G';'IVKQ-M'}; 
n=size(R,1) 
set(gca,'color','m') 
set(gca, 'XTick', 1:n,'XAxisLocation', 'top'); % center x-axis ticks on 

bins 
set(gca, 'YTick', 1:n); % center y-axis ticks on bins 
set(gca,'XTickLabel',labelNames);   % gca gets the current axis 
set(gca,'YTickLabel',labelNames);   % gca gets the current axis 
xticklabel_rotate([1:n],45,{'TYNO-G';'TYNO-M';'STCO-G';'STCO-M';'ACTO-

G';'ACTO-M';'KLBO-G';'KLBO-M';'ALGO-G';'ALGO-M';'MATQ-G';'MATQ-

M';'INUQ-G';'INUQ-M';'IVKQ-G';'IVKQ-M'},'interpreter','none') 
%% 

    %%  Plot the weather parameters  
 

 
elev=[-23.77 -20.35 57.32 168.30 177.00 200.90 239.94 367.22]'; 

  

meantTemp=[nanmean(TGPS_inuq) nanmean(TGPS_ivkq) nanmean(TGPS_stco)  

nanmean(TGPS_tyno)  nanmean(TGPS_pary)  nanmean(TGPS_algo)  

nanmean(TGPS_matq)  nanmean(TGPS_acto)]';  
meantEpress=[nanmean(EGPS_inuq) nanmean(EGPS_ivkq) nanmean(EGPS_stco)  

nanmean(EGPS_tyno)  nanmean(EGPS_pary)  nanmean(EGPS_algo)  

nanmean(EGPS_matq)  nanmean(EGPS_acto)]'; 
meanDewtemp=[nanmean(inuq(:,7)) nanmean(ivkq(:,7)) nanmean(stco(:,7)) 

nanmean(tyno(:,7)) nanmean(pary(:,7)) nanmean(algo(:,7)) 

nanmean(matq(:,7)) nanmean(acto(:,7))]'; 

  
figure; 
plot(elev,meantTemp,'-b') %air temperature 
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 hold on 
[AX,H1,H2]=plotyy(elev,meanDewtemp,elev,meantEpress,'plot') 
set(get(AX(1),'Ylabel'),'String','Dew point temperature (°C)')  
set(get(AX(2),'Ylabel'),'String','Partial water vapor pressure (mbar)') 
set(H1,'LineStyle','--') 
set(H2,'LineStyle','-') 
xlabel('Height (m)') 
ylim([-15 10]) 

  
hold on 
text(elev(2),meanDewtemp(2)','IVKQ',... 
      'horiz','center','vert','bottom') 
  hold on 

  
text(elev(1),meanDewtemp(1)','INUQ',... 
     'horiz','center','vert','bottom') 
hold 
text(elev(3),meanDewtemp(3)','STCO',... 
     'horiz','left','vert','bottom') 
hold on 

  
text(elev(4),meanDewtemp(4)','TYNO',... 
     'horiz','center','vert','bottom') 
     hold on 
text(elev(4),meanDewtemp(5)','KLBO',... 
     'horiz','center','vert','TOP') 
    hold on 
text(elev(6),meanDewtemp(6)','ALGO',... 
     'horiz','center','vert','bottom') 
       hold on 
 text(elev(7),meanDewtemp(7)','MATQ',... 
     'horiz','right','vert','bottom') 
      hold on 

  
text(elev(8),meanDewtemp(8)','ACTO',... 
     'horiz','center','vert','bottom') 
%   ylim([0 15]) 
legend('GPS stations','mean dew point temperature', 'mean air 

temperature', 'partial water vapor pressure') 

%% Compute the PWV from the formula given by Smith (1966) 
 
a=-1.33; 
b=0.04; 
Td=[4.34    %dew point temperature 
4.83 
3.73 
2.77 
0.35 
-2.92 
-6.72 
-9.56] 
Td_F = Td * 1.8 + 32; 
PWV_ashlewf =exp(b*Td_F +a)  
%%% 
landa=[2.78 
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2.78 
2.78 
2.78 
2.78 
2.78 
2.79 
2.41]; 
Td_F = Td * 1.8 + 32; 
PWV_smith =exp(0.0393*Td_F +(0.1133-log(landa+1))) 

 

% The function I have written to convert hourly data to daily   
 

% function [ tableavgdaytzdmeteo,tabledeciyeameteo] = dailyavgmet( 
tablemet,APD) 
metk=1;        
 d=1;        
    for y=2008:2012 

         
        [metidx,c]= find(tablemet(:,1)==y); 
         for m=1:12 
               [metidx2,c2]= find(tablemet(metidx,2)==m); 
            metindx= metidx(metidx2); 

             
                for d=1:31 
                  [metidx2,c]= find(tablemet(metindx,3)==d); 
                  metavg(d,m)=  mean(APD(metindx(metidx2),1)); 
                  dymetdaily2(d,m)=decyear(y,m,d);%decimal year 
                  daymet(d,m)=d; 
                  yearmet(d,m)=y; 
                end 
         end 
        metavgday(:,metk)=metavg(:); 
        dymeteo(:,metk)=dymetdaily2(:); 
        daymeteo2(:,metk)=daymet(:); 
        yearmeteo2(:,metk)=yearmet(:); 
         metk=metk+1; 
    end 
      tableavgdaytzdmeteo=metavgday(:);%daily Tropospheric Zenith delay 

computed through meteo data 
      tabledeciyeameteo=dymeteo(:);%decimal year 
      tabledaymeteo=daymeteo2(:);%day 
      tableyearmeteo=yearmeteo2(:);%year 
end 

 

 Codes that I have written in chapters 4. 
load('timeseries1') 
 numberyear=[10:2:136]; 
% for i=1:size(numberyear,2) 
   yearfrac=timeseries1(1,numberyear); 

  
for f=577899 
   f 
  d(f,1:64)=  timeseries1(f+1,numberyear); 

   
  [fit, gof] = createFitacto(yearfrac, d(f,1:64)); 
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  r2(f)=gof.rsquare; 
% sse(f)=gof.sse;% adjrsquare(f)=gof.adjrsquare; 
rmse(f)=gof.rmse; 
Amplitude(f)=sqrt((fit.a1)^2+((fit.b1)^2)); 
Phase(f)=(atan2(fit.b1,fit.a1))*180/pi; 
t(f)= (sqrt(r2(f)).*sqrt(64-2))./(sqrt(1-r2(f))); 
v=64; 
tdist2T = @(t,v) (1-betainc(v/(v+t^2),v/2,0.5));  
% tdist1T = @(t,v) 1-(1-tdist2T(t,v))/2; 
p_value(f)=1-tdist2T(t(f),v); 
end 

  
%% import DInSAR vertical time series to matlab  

 
filename = 'MSBAS_TIME_SERIES_2.txt'; 
delimiterIn = ' '; 
headerlinesIn = 1; 
A = importdata(filename,delimiterIn,headerlinesIn); 
timeseries2=A.data; 
long = -155.3713309 + timeseries2(:,1)*0.000278; 
lat  = 19.526898 -timeseries2(:,2)*0.000278 ; 
%% 
load('timeseries2') 
 numberyear=[8:2:640]; 
% for i=1:size(numberyear,2) 
   yearfrac=str2double(A.textdata(1,numberyear)); 

  
 for f=174456:315292 
   f 
  d(f,1:317)=  timeseries2(f,numberyear); 

   
  [fit, gof] = createFitacto(yearfrac, detrend(d(f,1:317))); %compute                            

%                                               the seasonal amplitudes  
  r2(f)=gof.rsquare; 
% sse(f)=gof.sse; 
% adjrsquare(f)=gof.adjrsquare; 
rmse(f)=gof.rmse; 
Amplitude(f)=sqrt((fit.a1)^2+((fit.b1)^2)); 
Phase(f)=(atan2(fit.b1,fit.a1))*180/pi; 
t(f)= (sqrt(r2(f)).*sqrt(317-2))./(sqrt(1-r2(f))); 
   f 
v=317; 
tdist2T = @(t,v) (1-betainc(v/(v+t^2),v/2,0.5));  
% tdist1T = @(t,v) 1-(1-tdist2T(t,v))/2; 
p_value(f)=1-tdist2T(t(f),v); 
 end 
%% plot amplitude of timeseries2 as function of height 

  
 serdata= 'timeseries2_height.xls'; 
 timeseries2_height= [xlsread(serdata,1)  
     xlsread(serdata,2) 
     xlsread(serdata,3)  
     xlsread(serdata,4) 
      xlsread(serdata,5)  
     xlsread(serdata,6) 
          xlsread(serdata,7)  
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     xlsread(serdata,8) 
          xlsread(serdata,9)]; 

  
figure; 
plot(timeseries2_height(:,13),timeseries2_height(:,8),'.r') 
hold on 
plot(timeseries2_height(1:33169,13),Amplitude(:,1:33169),'.b') 
data= [timeseries2(1:33169, 1:2), long(1:33169), lat(1:33169), 

timeseries2(1:33169, 5:6), Amplitude(1:33169)', Phase(1:33169)', 

r2(1:33169)',rmse(1:33169)',  p_value(1:33169)'];  
filename = 'myfile.xls'; 
xlswrite(filename,data) 

  
%%%%% 

  

%% 
filename = 'MSBAS_TIME_SERIES3.txt'; 
delimiterIn = ' '; 
headerlinesIn = 1; 
A = importdata(filename,delimiterIn,headerlinesIn); 
timeseries3=A.data; 
long=-155.5343939+0.000278*timeseries3(:,1); 
lat=19.5563432-0.000278*timeseries3(:,2); 
%% 
load('timeseries3') 
 numberyear=[8:2:134]; 
% for i=1:size(numberyear,2) 
   yearfrac=str2double(A.textdata(1,numberyear)); 

  
   example=[40552 278197 506153 543460  649037  706133 783133 860224 

1105620]; 
 for i=4 
     f=example(i) 
%     for f= 12222 
   f 
  d(f,1:64)=  timeseries3(f,numberyear); 
%   figure; 
%   subplot(2,1,1) 
  [fit, gof] = createFitacto(yearfrac, detrend(d(f,1:64))); 
  hold on 
plot(yearfrac, d(f,1:64)-mean(d(f,1:64))) 
text(2014.5,0.5,'height:',... 
      'horiz','center','vert','bottom') 
  hold on 
text(2017,0.5,'Amplitude:',... 
      'horiz','right','vert','bottom') 
  hold on 
text(2015.5,0.5,'d',... 
      'horiz','right','vert','bottom') 

  
%   legend({'Actual timeseries'  'seasonal fluctuation'}) 

  
ylabel('vertical displacement (cm)') 
xlabel('year') 
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end 

  
  r2(f)=gof.rsquare; 
% sse(f)=gof.sse; 
% adjrsquare(f)=gof.adjrsquare; 
rmse(f)=gof.rmse; 
Amplitude(f)=sqrt((fit.a1)^2+((fit.b1)^2)); 
Phase(f)=(atan2(fit.b1,fit.a1))*180/pi; 
t(f)= (sqrt(r2(f)).*sqrt(64-2))./(sqrt(1-r2(f))); 
v=64; 
tdist2T = @(t,v) (1-betainc(v/(v+t^2),v/2,0.5));  
% tdist1T = @(t,v) 1-(1-tdist2T(t,v))/2; 
p_value(f)=1-tdist2T(t(f),v); 
 end 

 

%% import the amplitudes and their heights from detrended time series 

from ascii to matlab 
   filename = 'timeseries3_height_allpoints_detrended'; 
%  filename = 'timeseries3_goodpoint_heightpablo'; 

  
delimiterIn = ' '; 
headerlinesIn = 1; 
A2 = importdata(filename,delimiterIn,headerlinesIn); 
timeseries3_height=A2.data; 

  
figure; 
plot(timeseries3_height(:,15),timeseries3_height(:,10),'.b') 

  

  
%calculate refractivity time series and its amplitude 
MLO = 'MLO_weather_station.xlsx'; 
table = xlsread(MLO,1); 

  
dymlodata = decyear(table(:,1),table(:,2),table(:,3),table(:,4),0,0); 

  
figure; 
plot(dymlodata,table(:,18),'.') 
%% 

  
[correctrefract,idx,outliers] = deleteoutliers(table(:,18),0.05,1); 
[correctrepress,idx,outliers] = deleteoutliers(table(:,8),0.05,1); 

  
[indexind,c2] = find(~isnan(correctrefract(:,1))); 
 refractfilt=correctrefract(indexind,1); 

  
 [indexind2,c2] = find(~isnan(correctrepress(:,1))); 
 presssfilt=correctrepress(indexind2,1); 

  

  
figure; 
plot(dymlodata(indexind),refractfilt,'-b') 

  
figure; 
plot(dymlodata(indexind2),presssfilt,'-b') 
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ye=table(indexind,1); 
mon=table(indexind,2); 
da=table(indexind,3); 
%% 

  
metk=1;    
d=1;        
    for y=2014:2018 

         
        [metidx,c]= find(ye==y); 
         for m=1:12 
               [metidx2,c2]= find(mon(metidx,1)==m); 
               metindx= metidx(metidx2); 
               for d=1:31 
                   [metidx2,c]= find(da(metindx,1)==d); 
              refavg(d,m)= mean(refractfilt(metindx(metidx2),1)); 
              dymon(d,m)=decyear(y,m,d); 
              day(d,m)=d; 
                  year(d,m)=y; 
               end 
          end 
        refavgmon(:,metk)=refavg(:); 

      
        dayavg2(:,metk)=dymon(:); 

      
         metk=metk+1; 
    end 
      refracmonth=refavgmon(:);%monthly refractivity 
  dyfinal=dayavg2(:); 
hold on 
  plot(dyfinal,refracmonth,'-r') 
  ylabel('refractivity (N-unit)') 
  xlabel('decimal year') 

   
  ampref=peak2peak(refracmonth)/2; 
  legend({'hourly data'  'daily data'}) 

  
%% 

  
zr=3107; %PUKA 
z=0:1:3500;%PUKA 
 C=0.0001406; 
amplitudrefract=18.94; % Amplitude of sinsoidal fit to the refractivity 

time series 
ampAPD=abs((10^-6)*(amplitudrefract)*(1-exp((-C)*(z-

zr)))/((C)*exp((C)*zr))); %meter 
hold on 
plot(z,ampAPD*100,'r') 

  
ylabel('Amplitude (cm)') 
xlabel('Height (m)') 

  
legend({'Observed amplitudes'  'model'}) 
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%% compare the modeled seasonal ZTD time series to those obtained from 

PPP  

  
 d2=d(f,1:64)+3105; 
figure; 
plot(yearfrac,d(f,1:64)) 

  

  
zr=3107; %PGF1 
z=d2;%PGF1 
 C=0.0001406; 
%  c=200; 
% 348.6 
amplitudrefract=18.94; % Amplitude of sinsoidal fit to the refractivity 

time series 
amplitude=abs((10^-6)*(amplitudrefract)*(1-exp((-C)*(z-

zr)))/((C)*exp((C)*zr))); %meter 

   
phase=180; 
for i=1:size(amplitude,2) 
APD_computed(i)=(amplitude(i)*sin((2*pi*yearfrac(i))+phase)); 

  
end 
 subplot(2,1,2) 
hold on 
plot(yearfrac,APD_computed) %(cm) 

  
year=fix(yearfrac); 
 day=yearfrac-year; 
 ly = leapyear(year); 
 ly2 = double(ly); 
 for i=1:64 
     if ly2(i)==1; 
datestr(datenum(year(1,i),1,1)+day(i)*366) 
     end 
      if ly2(i)==0; 
datestr(datenum(year(1,i),1,1)+day(1,i)*365) 
     end 
 end 

  
 str = sprintf(formatSpec,A1,A2,A3) 
ly = leapyear(year) 

% gpsdata = 'GPS_data.xlsx'; 
  
gpspositions = 'gps_stations_positions.xls'; 

  
for ii=1:21 
    table = xlsread(gpsdata,ii);  
     table2 = xlsread(gpspositions);  

  
%%% convert day of year and year into decimal year 
  

x_table=decyear(table(:,2),table(:,3),table(:,4),table(:,5),table(:,6),

table(:,7)); 
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 metk=1;    
d=1;        
    for y=2014:2017 

         
        [metidx,c]= find(table(:,2)==y); 
         for m=1:12 
               [metidx2,c2]= find(table(metidx,3)==m); 
            metindx= metidx(metidx2); 

             
                for d=1:31 
                  [metidx2,c]= find(table(metindx,4)==d); 
                  tzdavg(d,m)=  nanmean(table(metindx(metidx2),16)); 
                  heightavg(d,m)=  nanmean(table(metindx(metidx2),28)); 
                  dytabledaily2(d,m)=decyear(y,m,d);%decimal year 
                  daytable(d,m)=d; 
                  yeartable(d,m)=y; 
                end 
         end 
        tzdavgday(:,metk)=tzdavg(:); 
       heightavgtable(:,metk)= heightavg(:); 
        dytable(:,metk)=dytabledaily2(:); 
        dayavg2(:,metk)=daytable(:); 
        yearavg2(:,metk)=yeartable(:); 
         metk=metk+1; 
    end 
      tableavgdaytz=tzdavgday(:);%daily Tropospheric Zenith delay 

computed through meteo data 
  tableavgday=heightavgtable(:); 
  Ndecimals = 4;  
  f = 10.^Ndecimals; 
      tabledeci=dytable(:);%decimal year 
      tableday=dayavg2(:);%day 
      tableyear=yearavg2(:);%year 
x2_ii = round(f*tabledeci)/f; 
%% 
[napu,rr]=find(~isnan(tableavgday)); 
tableavgdaytzd=tableavgdaytz(napu); 
tableavgdayheight=tableavgday(napu); 
tabledeciyea=tabledeci(napu); 
x2=x2_ii(napu); 

  
%% find intersect of the corrected ANIP with PUKA  

  
[xinter,idain,idpuk]=intersect(x2,x_puka2) 

  
%% calculate dhir corrected 
dhanhi=tableavgdayheight(idain)-pukaavgdayheight(idpuk); % corrected dh 

ppp (m) 
[aindpukadiff,idx,outliers] = deleteoutliers(dhanhi,0.05,1) 
aindpukadiff2=(aindpukadiff-nanmean(aindpukadiff))*1000; 

  
% figure; 
% plot(xinter,aindpukadiff2,'-r')%mm 

  
[nanbo,cc]=find(~isnan(aindpukadiff2));%%%%% important id (final ids) 
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ylabel('mm') 
title('dh corrected PPP AINP-PUKA') 

  
%% convert zenith delay to slant delay 

  

  
lattable = table2(ii,1)*(pi/180);%latitude of station in radians 
H= table2(ii,3);%meter 
longtable=table2(ii,2)*(pi/180);%longtitude of station in radians 
yearmjd= floor(365.25*(xinter(nanbo) - 1970) + 40587 + 0.1) -0.5; 
dmjd= round(yearmjd); 
e=10*(pi/180)% zenith distance in radians 
for i=1:size(dmjd,1) 
[gmfh(i),gmfw(i)] = gmf_f_hu (dmjd(i),lattable,longtable,H,e); 
table_std(i)=0.12*gmfw(i)*tableavgdaytzd(nanbo(i))+0.88*gmfh(i)*tableav

gdaytzd(nanbo(i)); 
end 

  
 tablematr=[tableavgdayheight(nanbo) table_std']; 

  
table_raw=tablematr(:,1)+table_std'; 
trendstd=mean(table_std'-detrend(table_std')); 

  
figure; 
plot(xinter(nanbo),table_std(nanbo)) 

  

  
%% find difference between slant delays at phu2 and PUKA 
dstd_aipuk=puka_std(nanbo)'-table_std'; 
[dstd_aipuk2,idx,outliers] = deleteoutliers(dstd_aipuk,0.05,1) 

  
dstd_aipuk3=(dstd_aipuk2-nanmean(dstd_aipuk2))*1000; 

  

  
 figure; 
% [ca,ra]=find(~isnan(dstd_aipuk3)) 
 plot(xinter(nanbo),dstd_aipuk3,'-r') %mm 
 

dhuncorre_aipuk=table_raw-puka_raw(nanbo); 
[dhuncorre_aipuk2,idx,outliers] = 

deleteoutliers(dhuncorre_aipuk,0.05,1) 

  

dhuncorre_aipuk3=(dhuncorre_aipuk-nanmean(dhuncorre_aipuk))*1000;%mm 
[dhuncorre_aipuk_estimate_amp,idx,outliers] = 

deleteoutliers(dhuncorre_aipuk,0.05,1) 

  
figure; 
plot(xinter(nanbo),dhuncorre_aipuk3/10,'-b') 

  
%% compute the seasonal signal 

  
 vertunc=table_raw;  %'PPP-uncorrected' 
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    %%%%%% Simple exponential refractivity    
 zr=puka_raw(nanbo); 
C=0.0001406; 
amplitudrefract=18.94; % Amplitude of sinsoidal fit to the refractivity 

time series 

  
phase=180; 
for kk=1:size(vertunc,1) 
    Amplitude(kk)=abs((10^-6)*(amplitudrefract)*(1-exp(-

(C)*(vertunc(kk)-zr(kk))))/(C*exp(C*zr(kk)))); %centimeter  

  
APD_computed(kk)=(Amplitude(kk)*sin((2*pi*xinter(nanbo(kk)))+phase)); 
end 
amp(ii)=nanmean(Amplitude)*100; 

  
%% 

  
correct=detrend(dhuncorre_aipuk3/10)-APD_computed'*100; 
trend=dhuncorre_aipuk3/10-detrend(dhuncorre_aipuk3/10); 
figure; 
plot(xinter(nanbo),correct+trend,'-r') 
hold on 
plot(xinter(nanbo),dhuncorre_aipuk3/10,'-b') 
 hold on 
plot(xinter(nanbo),APD_computed*100,'*k')  
xlabel('year') 
ylabel('ZTD (cm)') 
title('MMAU-PUKA') 
xlim([2014 2017.5]) 

 
rms_uncorrect(ii)=rms(detrend(dhuncorre_aipuk3/10)) 
rms_correct(ii)=rms(correct) 

  
[cc,rr]=find(~isnan(dstd_aipuk3)) 

  
  [r2(ii) rmse(ii)] = rsquare(-

dstd_aipuk3(cc)/10,APD_computed(cc)'*100)%mm 
 n= size(APD_computed(cc)',1); 
 sigma(ii)=nanstd(-dstd_aipuk3/10);% mm 
 dstddstd=-dstd_aipuk3/10; 
 for i=1:n 
     dif(i)=( (dstddstd(cc(i))-

(APD_computed((cc(i)))*100))^2)/(sigma(ii)^2); 
 end 
chi_square(ii)= (1/(n-1))*sum(dif,2) 

  
clear vertunc 
clear APD_computed 
clear correctable2 
clear remeancor_insar_table 
clear removmean_raw 
clear nanbo 
clear table_std 
end 
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%% plot the rmse  
gpspositions = 'gps_stations_positions.xls'; 
     table3 = xlsread(gpspositions,2);  

  
figure; 
plot (table3(1:21,3), table3 (1:21,11),'*') 
ylabel('RMS of ZTD (cm)') 
xlabel('Height (m)') 
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