
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

10-27-2017 10:30 AM 

Assessing Landscape Effects on Genetics and Dispersal of the Assessing Landscape Effects on Genetics and Dispersal of the 

Rocky Mountain Apollo Butterfly Parnassius smintheus using a Rocky Mountain Apollo Butterfly Parnassius smintheus using a 

Resistance Mapping Approach Resistance Mapping Approach 

Ning Chen, The University of Western Ontario 

Supervisor: Dr. Nusha Keyghobadi, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Biology 

© Ning Chen 2017 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Chen, Ning, "Assessing Landscape Effects on Genetics and Dispersal of the Rocky Mountain Apollo 
Butterfly Parnassius smintheus using a Resistance Mapping Approach" (2017). Electronic Thesis and 
Dissertation Repository. 5058. 
https://ir.lib.uwo.ca/etd/5058 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=ir.lib.uwo.ca%2Fetd%2F5058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5058?utm_source=ir.lib.uwo.ca%2Fetd%2F5058&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


i 

 

Abstract 

Landscape variables that best explain genetic differentiation may not also best explain 

dispersal patterns, but many studies use genetic differentiation as a proxy for dispersal. I 

tested the effects of landscape on both genetic differentiation and dispersal in parallel, to 

explore whether landscape effects on genetic differentiation between populations and 

landscape effects on dispersal would be comparable in such contexts. I used circuit theory 

(Circuitscape) and least cost transect analysis to evaluate the effects of landscape on both 

movement and genetic differentiation of the butterfly, Parnassius smintheus, in the 

Jumpingpound Ridge study system. Circuit theory and least cost transect analyses did not 

identify the same best predictors to explain genetic differentiation and dispersal data. Circuit 

theory produced more accurate results with higher precision. Genetic differentiation should 

not be used as a sole proxy for dispersal in studies of landscape effects, but should be 

supplemented by more direct measures of dispersal. 
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1 Introduction 

1.1 Habitat loss and fragmentation 

Loss of habitat, as well as fragmentation of remaining habitat, have become more 

prevalent in recent times due to human activity (Fahrig, 2003). This has significant 

detrimental impacts on species diversity and the persistence of natural populations 

(Zuberogoitia et al., 2013). Shrinking habitats reduce the amount of resources available to 

the species that depend on it. This can result in more competition for the limited 

resources, and therefore decrease species survival (Keyghobadi, 2007). Roads, residential 

sprawl, farmland, and logging practices often develop in ways that break up large, 

contiguous habitats into smaller, disconnected patches. This affects community 

composition as it increases the amount of edge habitat, which tends to have less species 

diversity and richness, and decreases interior habitat area (Theobald et al., 2011). If 

patches are close enough with no definitive barrier in between, mobile species might still 

be able to move between them, though incurring higher mortality risks due to increased 

vulnerability to predation or vehicle strikes (Jr et al., 2016). However, barriers and 

distances among habitat patches can be so great that populations in different patches are 

effectively separated from each other, with no further movement and therefore no gene 

flow between them (Fahrig, 2003). This results in significant genetic effects on the 

populations (Caplins et al., 2014). 

1.2 Genetic effects of habitat loss and fragmentation 

The genetic effects of habitat loss and fragmentation are due to both the reduced 

population sizes and restriction of movement between population patches. Fragmented 

landscapes have smaller total area and more limited resources, and so can support a 

smaller number of individuals compared to a non-fragmented landscape. Smaller 

populations are more prone to the effects of genetic drift (Ouborg et al., 2006). Isolated 

patches will not have gene flow from neighbouring patches, and so diversity within 

patches is reduced, and populations occupying patches will gradually become more 

genetically distant from each other (Jangjoo et al., 2016). Loss of genetic diversity in turn 
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can hinder the ability of the population to adapt to future changes in its environment and 

potentially cause a decrease in fitness through inbreeding (Kutschera et al., 2016). 

Studies of the genetic effects of habitat loss and fragmentation are paramount in 

conservation efforts. It is important to take into account not just the patches of 

populations, as landscape elements such as elevation and land cover type, as well as the 

spatial configuration of the populations, will affect the ability of species to disperse 

between patches (Keyghobadi, 2007). Landscape genetics provides an important way of 

studying this problem.  

1.3 Landscape genetics 

Combining landscape ecology and population genetics, the field of landscape genetics 

presents an interdisciplinary way of analyzing how species of interest interact with their 

landscape (Manel and Holderegger, 2013). This field of study seeks to consider the 

quality, configuration, and connectedness of the landscape as possible explanatory 

variables for gene flow, population structure, and genetic differences between 

populations (Epps and Keyghobadi, 2015). Sampling of individuals or populations 

provides genetic data, while surveying at various spatial scales (i.e. from satellite imaging 

to ground-truthing) provides information about the landscape. Landscape genetics 

approaches incorporate a measure of the landscape in a way that ideally allows the effects 

of the landscape on dispersal to be quantified and compared to genetic data (Keller et al., 

2013).  

1.3.1 Methods in landscape genetics  

One of the simplest methods used in landscape genetics is the transect approach, which 

uses landscape components along a straight line between two sites as explanatory 

variables to explain genetic differentiation between sampled populations occupying those 

sites. This method assumes that dispersal is limited only to straight-line movements 

(Emaresi et al., 2011). Another method is the least cost path (LCP) approach, which is 

calculated using a raster map (a map composed of cells each able to be characterized by 

distinct properties). The cumulative cost of the path takes into account the cost of each 
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raster cell crossed by the path and the least cost path is that which is the least costly or 

resistant between the two sites. The landscape components of the least costly path are 

used as the explanatory variable in the study (Koen et al., 2012). The different landscape 

components on the raster map are assigned resistance values based on how they hinder 

movement, and so a disadvantage of the least cost path method is that it is only as 

accurate as the researchers’ prior knowledge of the ability of a species to move through 

differing landscape elements such as land cover type and elevation (Adriaensen et al., 

2003). These two methods can be combined into the least cost transect analysis (LCTA), 

in which one first calculates the least cost path before a buffer is added around this path. 

Adding a buffer gives the path a defined area, which is then treated as a transect. The 

proportion of each landcover type in the transect area is considered an explanatory 

variable that explains genetic distances between sites. Least cost transect analysis is also 

used to rank landcover types as to whether or not they are conducive to movement (Van 

Strien et al., 2012). Yet another method estimates ecological connectivity between pairs 

of sites based upon circuit theory. This method involves mapping the intervening area 

between sites as well as the surrounding landscape to create a raster map of the land 

cover surface, just as for least cost path analyses. Different land cover types can be 

assigned different resistance values depending on how difficult they are for the species of 

interest to move through, creating a resistance surface. Unlike least cost path analysis, 

however, the circuit theory method of modelling (commonly called Circuitscape due to 

the software most commonly used to conduct the analysis) considers all possible 

pathways between each pair of sites across the landscape as, akin to the flow of electricity 

across a circuit board, it considers potential movement of the organism of interest across 

the surface as a whole (McRae et al., 2008). Using Circuitscape involves assigning a 

starting and ending point on the resistance surface, and one final resistance value, called a 

‘resistance distance’, is calculated for that pair of points. This resistance distance changes 

as the resistance value of individual land cover types change, but this final calculated 

value does not give any information on the distinct effects of individual land cover types. 

A model created in Circuitscape is very flexible in its ability to incorporate data of many 

different scales, landscape features, varying resistances, and dispersal distances (McRae 

and Beier, 2007). With constantly improving tools available for modelling the landscape 
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and its components, including barriers, edges, and corridors conducive to movement, 

landscape genetics will continue to become more versatile and functional.  

1.3.2 Genetic markers in landscape genetics 

The use of molecular markers in landscape genetics has also been increasing as new 

methods of tracking gene flow and genetic distances are developed. Depending on the 

timeframe of interest, markers that track evolution at different rates can be selected (Epps 

and Keyghobadi, 2015). Genetic markers with higher rates of mutations, such as 

microsatellites and single nucleotide polymorphisms (SNPs), are used to track more 

recent changes (past tens of generations), while genetic markers with lower rates of 

mutations, such as subunit ribosomal RNA genes (Woese and Fox, 1977) (past thousands 

of generations), are used to track changes from further in the past (Wang, 2011). Note 

that various other factors besides timeframe should be considered when choosing 

appropriate molecular markers, as they have other distinctive characteristics. For 

example, microsatellites and panels of genome-wide SNPs represent multiple nuclear 

loci, while specific genes each represent a single marker (Epps and Keyghobadi, 2015). 

The use of the correct markers in landscape genetics is paramount as the data are 

commonly used as a representation of the response variable.  

1.3.3 Genetic data as a proxy for movement in landscape genetics 

Landscape genetics often focuses indirectly on the effect that landscape has on the 

movement and dispersal of species, as there are many instances where it would not be 

practical or feasible to collect enough direct movement data for a study (Levin et al., 

2009). Collecting genetic data is often easier than direct methods of collecting movement 

data, such as in mark-recapture studies. For example, genetic data can be obtained from 

all the populations in one sampling period, whereas mark-recapture studies require 

returning to the site multiple times to track the marked specimens, and is therefore not 

always feasible (Chan and Karczmarski, 2017).  

Some landscape genetics studies explicitly use genetic distance data between population 

sites as an indirect means of measuring dispersal and movement (Spear et al., 2010). For 
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example, Emaresi et al. (2011) surveyed the genetic variation between 19 populations of 

alpine newt (Mesotriton alpestris) at 7 microsatellite loci to determine the effect of 

habitat fragmentation on movement between populations. This landscape study found 

that even though M. alpestris are readily able to disperse and occur in large population 

sizes, all of which contribute to increased gene flow, this alpine newt is susceptible to the 

detrimental effects of landscape fragmentation due to habitat destruction. In another 

example, Epps et al. (2007) surveyed 26 populations of desert bighorn sheep (Ovis 

canadensis nelsoni) using 14 microsatellite loci to represent dispersal as a part of their 

least-cost modelling approach. Because insufficient direct data on dispersal of the 

animals was available, genetic data, and related spatial information, were used to model 

their movement on the landscape. Their study found that bighorn sheep movements 

determined in this manner were consistent with known dispersal routes and barriers. 

More often, using genetic data as a proxy for movement data is implicit. This substitution 

of genetic differentiation for actual dispersal is based on the assumption that landscape 

elements will exert an effect on the dispersal of the species, which will then affect the 

gene flow between populations of that species, which will ultimately lead to genetic 

differentiation between the populations. This may not always be the case. For example, 

dispersal only leads to gene flow if the dispersal is followed by successful reproduction at 

the new location (Levin et al., 2009). As well, gene flow might not lead to perceivable 

genetic differentiation if the new alleles are lost through genetic drift (Keyghobadi, 

2007). 

1.4 Study objective 

Landscape variables that best explain genetic differentiation may not also best explain 

dispersal patterns, and yet it is not uncommon for studies to use genetic differentiation as 

a proxy for dispersal. For my project, I want to test the robustness of this claim and 

determine the validity and reliability of substituting genetic differentiation for dispersal 

data in instances where the latter might be difficult to collect. 
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1.4.1 Study species 

My study species is the Rocky Mountain Apollo butterfly, Parnassius smintheus, which 

inhabits high altitude mountainous regions above approximately 2000m. Parnassius 

smintheus is abundant in alpine meadows all throughout the eastern portion of the Rocky 

Mountains of Canada and the United States (Keyghobadi et al., 1999), where the host 

plants of the larval stage, the stonecrop (Sedum lanceolatum and Sedum rosaceae), grow 

(Roslin et al., 2008). Adult butterflies feed on nectar of a variety of plants. Males of this 

species are whiter while females have a darker, peppered wing. These butterflies are 

univoltine; adults fly and mate from mid-July to the end of August and beginning of 

September (Keyghobadi et al., 1999). Butterflies of this species usually fly close to the 

ground, and will land if it becomes too windy. Roland et al. (2000) found that the average 

dispersal distance, as determined by mark-recapture, is approximately 150m. The females 

lay eggs on the ground near the host plants, and the eggs overwinter under the snow 

before hatching the following summer. Population sizes of P. smintheus can fluctuate 

from year to year, as the survival rate of the eggs depend heavily on the winter 

temperatures and the amount of snow cover (Roland and Matter, 2016). P. smintheus has 

been consistently studied over the past two decades as a model species for population 

ecology and population genetics (DeChaine et al., 2004; Fownes and Roland, 2002; Ross 

et al., 2005). 

1.4.2 Study location 

Parnassius smintheus is an ideal study species due to its abundance, and therefore large 

available sample size, and the patch quality of its habitat meadows. For these reasons, it 

has been extensively studied over the last twenty years. The study area is Jumpingpound 

Ridge in Kananaskis, Alberta, located in the foothills of the Canadian Rocky Mountains 

just west of Calgary. This landscape consists predominantly of forest and is interspersed 

by open meadow areas at higher altitudes along the ridgetops. Fifteen grassy meadows 

(hereafter referred to as ‘sites’) have been identified along the ridgetop on Jumpingpound 

Ridge and the adjacent Cox Hill (Figure 2.1), where P. smintheus and its host plants are 

found in abundance. The rest of the landscape consists of mainly forests of various 
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coniferous trees with areas of rocky outcroppings and barren, gravelly ground 

(Keyghobadi et al., 1999). Most meadows are surrounded on all sides by forest, but a few 

meadow pairs have no forest between them. This resulted from dividing a larger, 

contiguous meadow into smaller meadows, through the creation of imaginary boundary 

lines for the purpose of grouping butterfly captures. Butterflies typically fly through 

meadows along the ridgetop when dispersing, and are rarely recorded flying straight over 

forested valleys (Roland et al., 2000). As the Kananaskis region represents a multi-use 

area, some clearings in the forest at lower elevations are the result of logging or other 

human land use. The total area of interest is approximately 5km by 5km, with the tallest 

peak (meadow M) at approximately 2.2km above sea level. 
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Figure 1.1 Jumpingpound Ridge in Kananaskis, Alberta. The 15 study sites where 

mark-recapture of Parnassius smintheus are conducted each year are identified by a 

unique letter. Site Z is located on the adjacent Cox Hill. The extent of this study area 

is approximately 5km by 5km. Aerial image from Google Earth Pro (Image © 

Google Earth 2016 DigitalGlobe). 

  



9 

 

1.4.3 Past studies on Parnassius smintheus landscape ecology and 

movement 

Roland et al. (2000) looked at the effects of landscape and population size at 17 meadows 

of Jumpingpound Ridge and 3 meadows of the neighbouring Lusk Ridge. Mark-recapture 

of P. smintheus was conducted to estimate population size, as well as the amount of 

movement between meadows. Aerial photographs were used to determine meadow and 

landscape characteristics such as land cover type and elevation. That study found that 

while open meadows are easy for butterflies to move through, forested areas are twice as 

resistant to their movements. Butterflies also tend to stay at and seek out sites with large 

numbers of butterflies. 

Matter et al. (2004) looked at the dispersal and survival rate of P. smintheus at 21 sites on 

Jumpingpound Ridge and Lusk Ridge. They found that migration between patches was 

infrequent, and so a model was used to provide estimates of dispersal. Butterflies in 

isolated populations had a slightly higher rate of mortality when dispersing, as 

determined by mark-recapture. Further, the authors found that intervening forest reduced 

the dispersal distance more than intervening meadows, which means that dispersal from a 

population depends on population size, land cover type, and distance between 

populations.  

Ross et al. (2005) examined the behaviour of P. smintheus with respect to meadow/forest 

edges on Jumpingpound Ridge. By tracking the movements of male butterflies that had 

been released in either forest or meadow, they were able to characterize the species’ 

behaviour within each land cover type, as well as at the edges where forest and meadows 

meet. On Jumpingpound Ridge such edges are quite abrupt and distinct. Male butterflies 

released in a meadow tended to turn away from forest edges. As well, butterflies flew less 

frequently and for shorter distances in forests compared to meadow. Ross et al. (2005) 

also observed that P. smintheus flew more readily at higher light intensities, and that light 

intensity was significantly higher in meadows as compared to forest. Light intensity 

tended to decrease in forest with increasing distance from the edge. Ross et al. (2005) 

therefore hypothesized that P. smintheus avoids flying in forests largely because of the 
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lower light intensity there.  As ectotherms, butterflies require heat from the sun to warm 

their flight muscles in order to initiate flight, and typically are not able to begin flying 

during overcast and cooler periods. In addition to land cover, population density may also 

affect movement of P. smintheus. Roland et al. (2000) studied the effect of population 

size in habitat patches on dispersal of P. smintheus. Using mark-recapture methods, they 

determined that butterflies in large populations were likely to stay in those populations, 

while butterflies in small populations were more likely to move away from their own 

populations and towards larger populations. This behaviour is possibly due to increased 

chances of successful mating in locations with more conspecific butterflies.  

1.4.4 Past studies on Parnassius smintheus landscape genetics 

Keyghobadi et al. (1999) looked at the relationship between the landscape and the genetic 

structure of butterfly populations. Mark-recapture of the butterflies from all 17 sites 

provided dispersal information and wing clippings were taken from some marked 

butterflies for microsatellite analysis at four loci for genetic differentiation. The number 

of butterfly recaptures between each pair of sites was predicted using a generalized linear 

model, to obtain non-zero pairwise movement estimates for all site pairs (including those 

more distant sites between which no actual recaptures were recorded). Topographic maps 

and aerial photographs were used to determine geographic distances between site pairs. 

Distances were not measured as straight lines, but rather along the ridge top, following 

observed patterns of butterfly movement. Furthermore, the total distance between each 

pair of sites was divided into two components: the distance that was over forest and the 

distance that was over open meadow. Using Mantel and partial Mantel tests, the study 

found that genetic distance between sites was negatively correlated with predicted 

movement, and that the distance through forest between sites was a stronger predictor of 

genetic distance than distance through meadow. This suggests that simple geographic 

distance does not explain genetic structure by itself, but the land cover type the butterflies 

move through is also very important.  

 Keyghobadi et al. (2005b) examined the effect of habitat connectivity on P. smintheus at 

a larger spatial scale, using a very different approach, to understand the effects of the 
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landscape on genetic differentiation. The study area of approximately 40km x 135km 

included 27 sites across an extent of the Canadian Rocky Mountains. These sites were all 

high-altitude, non-forested areas, and were divided into three regions: East Kananaskis, 

West Kananaskis, and Banff. The East Kananaskis sites were at the foothills of the 

mountains, which are a hilly landscape of predominantly forest. West Kananaskis and 

Banff were at higher elevations and less forested. Patches of habitat for P. smintheus 

were bigger and more interconnected in the high-altitude, non-forested regions. 

Topographic maps were used to determine distances between sites, and landscape metrics 

were used to describe the patch quality and connectivity of the landscape within each 

region as they affect P. smintheus movement. At each region, a rectangular quadrat was 

placed around all the sites with a buffer of 2.5km on all four sides to encompass all 

dispersal. Patch density of high-altitude, non-forested areas within the quadrat was 

quantified. Tissue samples were collected from butterflies at all sites and typed at seven 

microsatellite loci in order to compare patterns of genetic differentiation among the three 

regions. The landscape metrics showed that in East Kananaskis, habitat for the butterfly 

is more fragmented compared to Banff and West Kananaskis. The proportion of area 

covered by high-altitude, non-forested areas was also much lower in East Kananaskis. 

This reduced landscape connectivity between sites in East Kananaskis was, in turn, 

associated with greater genetic differentiation, lower rates of gene flow, and lower 

genetic diversity.  

Past studies on the landscape genetics of P. smintheus used relatively simple approaches 

to quantifying landscape structure, for example measuring the distance over forest and 

over open meadow between patches along ridge tops. My project builds upon these 

earlier studies by using more sophisticated approaches that integrate more information 

about the landscape.  

1.5 Study overview 

For my project, I used two relatively recent and complex landscape genetic approaches, 

specifically the Circuitscape approach and the least cost transect approach, to evaluate the 
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effects of landscape on both movement and genetic differentiation of P. smintheus in the 

Jumpingpound Ridge study system.  

I hypothesized that landscape effects on genetic differentiation between populations and 

landscape effects on dispersal would be comparable and parallel. I predicted that as I 

compared resistance surfaces of differing cell resistance values as my explanatory 

variables, while using genetic distance and dispersal as my response variables, the surface 

that best explained the data would be the same for both response variables (genetic 

distance and predicted dispersal). Furthermore, I predicted that the ranking of resistance 

surfaces, from best to worst, should also be similar for both response variables. If this 

turns out to be the case, it will be strong evidence that 1) genetic differentiation is a 

reliable substitute in cases where dispersal data cannot be obtained, and 2) the resistance 

values of the one best resistance surface (i.e., landscape model), as selected by looking at 

both dispersal data and genetic differentiation, is likely to reflect the real-life resistance 

values of the land cover types.  

This analysis is important because finding that genetic differentiation between 

populations behaves similarly to dispersal information in landscape genetic analyses 

gives justification and support to past landscape genetics studies that use this substitution. 

However, if this analysis finds that genetic differentiation data between populations 

behaves differently from dispersal data, and that genetic differentiation is explained by 

different factors than dispersal, then I can recommend that future landscape genetics 

studies be more cautious of using genetic differentiation as a proxy for limited movement 

data, and consider using other means of measuring dispersal as well.  

 

2 Methods 

2.1 Genetic data and distances 

I used genotypes at seven microsatellite loci (Ps50, Ps81, Ps85, Ps76, Ps163, Ps165, 

Ps262, see Appendix A, (Keyghobadi et al., 1999, 2002)) to determine the genetic 
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distance between populations of P. smintheus occupying the different sites (Keyghobadi 

et al. 1999, 2005a). Microsatellite markers are highly variable and are considered a 

rapidly evolving, contemporary marker that reflects comparatively recent population 

genetic changes, on the scale of years to decades for a species that has one generation per 

year (Wang, 2011). 

Small tissue samples from the lower edge of one hindwing were taken from some of the 

captured butterflies in 1995 and 1996 (Keyghobadi et al., 1999). This method of wing 

tissue sampling has no effect on a butterfly’s survival or dispersal between patches 

(Koscinski et al., 2011; Roland et al., 2000). Whole butterflies were also collected the last 

day each site was visited in each year. Keyghobadi et al. (1999, 2005a) extracted DNA, 

amplified the microsatellite loci using PCR, sized fragments, and determined genotypes 

on an automated sequencer using Genemapper and Genotyper software (Applied 

Biosystems). A summary of genetic diversity metrics for each site is provided in 

Appendix B. 

I analyzed the microsatellite genotypes using FreeNA (Chapuis, 2007) to account for the 

fact that many P. smintheus individuals have null alleles that do not amplify by PCR 

because of mutations in the primer binding regions that flank the microsatellite sequence 

(Carlsson, 2008). The presence of null alleles at these loci was inferred because of a 

higher than expected number of homozygotes in the data set, based on Hardy-Weinberg 

proportions, that cannot be explained by any other processes (Keyghobadi et al., 1999). 

Because null alleles are alleles at microsatellite loci that do not amplify by PCR due to 

mutations at the primer binding regions, heterozygotes can appear as homozygotes. For 

each locus, FreeNA uses the Estimation-Maximization algorithm to estimate 

simultaneously the frequency of the non-amplifying null allele and all other alleles, and 

to calculate unbiased estimates of genetic differentiation and distance (Chapuis, 2007). 

As a genetic distance measure, I used pairwise FST, which in these populations displays a 

stronger correlation with geographic distance than alternative genetic distances such as 

Nei’s standard distance or the Cavalli-Sforza chord distance (Caplins et al., 2014). FST is 

a fixation index that reflects the loss of heterozygosity resulting from lack of random 
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mating between populations, and provides a measure of genetic differentiation between 

the site pairs.  

2.2 Dispersal data 

I used estimates of dispersal between the Jumpingpound Ridge sites that were originally 

derived by Caplins et al. (2014). These estimates were based on data collected in 1995 

and 1996 by Roland et al. (2000) through mark-recapture of P. smintheus. Parnassius 

smintheus adults were caught with butterfly nets during their flight season in July and 

August. Individuals were each marked with a unique three-letter code on their ventral 

hind wing using a black, permanent ink pen, and the location of the capture was noted 

before release. Recaptures of marked butterflies provides information on dispersal and 

distance travelled. However, between most pairs of sites we do not see any butterflies 

moving in a given year. As a result, direct observations of the number of movements 

between sites would yield values of zero for most pairs of sites. In order to have a non-

zero estimate of the number of butterflies moving between each pair of populations, I 

used estimates of movement derived by Caplins et al. (2014) from an analysis of the 

mark-recapture data using the Virtual Migration Model (VMM; Hanski et al., 2000). 

VMM uses the mark-recapture data and a set of biological and statistical assumptions 

(Hanski et al., 2000) to obtain maximum likelihood estimates of the number of butterflies 

moving between all pairs of sites (Hanski et al., 2000). All such estimates are greater than 

zero, as movement between two distant sites can have a low probability, but is not 

impossible.  

Movement estimates from the VMM are asymmetrical in that the estimated number of 

individuals moving from site A to B is not necessarily the same as the number moving 

from B to A. The estimate accounts for different rates of movement in each direction 

between two sites. However, my analyses required symmetric estimates of dispersal 

between each pair of sites. Therefore, for each pair of sites, I used the sum of the 

estimated number of individuals moving in the two directions; this essentially yields an 

estimate of the total ‘flow’ of individuals between each pair of sites. I then summed these 

total ‘flow’ values for the two years of data (1995 and 1996), and finally took the natural 
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logarithm of the resulting number. I used the natural logarithm to normalize the dispersal 

values, as there were a few pairs of sites with very large estimates of movement between 

them while most pairs had very small estimates of movement. 

2.3 Geographic distance 

Geographic distance between each pair of sites was measured as the straight line, 

Euclidean distances between the site centroids using Google Earth Pro. With 15 sites, 

there were 105 site pairs.  

2.4 Landscape analysis 

In landscape genetics resistance surfaces are often employed as a way to represent the 

landscape and to study the movement of species across that landscape (Spear et al., 

2010). A resistance surface uses a raster (i.e., pixelated) representation of the landscape 

and assigns different resistance values to the cells associated with different land cover 

types. The resistance values represent hypotheses of how difficult each land cover type is 

for the organism of interest to move through (higher resistance value = more difficult to 

move through). For my project, I created a landcover map and subsequent resistance 

surface of Jumpingpound Ridge, to analyze the landscape connectivity between the 

butterfly populations and the resistance of the landscape. 

I exported a high quality aerial image of Jumpingpound Ridge from Google Earth Pro 

(Image © Google Earth 2016 DigitalGlobe) at its maximum resolution of 4800 by 2360 

pixels. While the aerial image was taken years after the genetic and dispersal data was 

collected, distinct features such as tree lines and high elevation areas along the ridgetop 

remained unchanged. I stitched multiple exported images together using Adobe 

Photoshop to encompass the whole study area, plus a buffer of just over one kilometer 

around all sides so as to not cut off possible movement pathways (Koen et al., 2012). One 

kilometer is approximately the same distance as the longest recorded butterfly dispersal 

distance at Jumpingpound Ridge (Roland et al., 2000). The final stitched image was 4762 

pixels in width and 5987 pixels in height with 72 dots per inch (dpi) (Figure 2.1). I 
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rasterized this image in ArcGIS 10.3 at a resolution of 2m x 2m per cell, and 

georeferenced it following the NAD 1983 UTM Zone 11N projected coordinate system.  
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Figure 2.1 Aerial image of Jumpingpound Ridge, Cox Hill, and surrounding areas 

in Kananaskis, Alberta. This image is taken from Google Earth Pro (Image © 

Google Earth 2016 DigitalGlobe) and was used for land cover classification. 
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I then created a land cover map based on the rasterized and georeferenced aerial images, 

using ArcGIS’s “Supervised Image Classification” tool. I created training samples where 

I designated areas on the image as either forest, open meadow, or barren rock (including 

gravel and scree), based on my own familiarity with the study area. ArcGIS uses these 

samples to create a signature file and is then able to classify every raster cell as one of 

these three land cover types based on colour bands. The result was a landscape map 

comprised mostly of forest, with meadow mainly across the ridgetops, and scatterings of 

barren rock. At this stage of the map, isolated pixels are more prone to classification 

inaccuracies (Erdey-Heydorn, 2008). I cleaned up the map post-classification using the 

tools “Majority Filter,” “Boundary Clean,” “Region Group,” “Set Null,” and “Nibble” to 

prevent the occurrence of single isolated pixels. This resulted in a land cover 

classification map that is more accurate and improved upon the “Supervised Image 

Classification” tool’s ability (Figure 2.2).   
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Figure 2.2 The aerial image (Figure 2.1) is rasterized and all cells are classified into 

one of three land cover types: forest (green), meadow (beige), and barren rock 

(grey) with the “Supervised Image Classification” tool from ArcGIS. The cleaned-

up image is shown here. 
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The image classification process of ArcGIS was not able to differentiate high elevation 

butterfly meadows from low elevation clearings, as they look similar in colour on the 

aerial image.  To address this issue, I included a Digital Elevation Model (DMTI Spatial 

Inc., 2003) (Figure 2.3) and used the elevation data to differentiate areas initially 

classified as meadow into the two aforementioned categories. The cut-off point of 1920m 

in elevation was chosen to differentiate meadows that could potentially be inhabited by 

butterflies (elevations of 1920m or higher) from low elevation non-habitat clearings 

(elevations of below 1920m). I had two requirements when deciding the elevation cut-off. 

First, the cut-off had to allow all sampled meadows where we know, through mark-

recapture, that butterflies are found, to be classified as high elevation meadow. Site Y had 

the lowest elevation of the study meadows at approximately 1950m. The second 

requirement was that the elevation cut-off point had to allow the scattering of small 

meadow patches along the ridge top between the main meadows to be classified as 

habitat meadows, as butterflies have been captured there and are known to use these areas 

to disperse between meadows. At a cut-off of 1920m these two conditions are 

comfortably met. Incorporating the elevation data resulted in a final complete land cover 

map with four categories: forest, barren, high elevation meadow, and low elevation 

clearing. Note that while this elevation cut-off was the main method of differentiation 

between high and low elevation non-forested vegetation, it was manually adjusted and 

fine-tuned in certain areas of the map further to reflect knowledge of actual butterfly 

locations acquired through years of mark-recapture fieldwork (Figure 2.4). 
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Figure 2.3 Digital elevation model of Jumpingpound Ridge, Cox Hill, and 

surrounding areas in Kananaskis, Alberta (DMTI Spatial Inc., 2003). Each cell has 

an elevation value, displayed here as a gradient from low (black) to high elevation 

(white). 
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Figure 2.4 Combined result of the classified land cover (Figure 2.2) and the digital 

elevation model (Figure 2.3). Previous ‘meadow’ land cover is now classified into 

either high elevation meadow (beige) or low elevation clearing (brown) at the 

elevation cut off of 1920m. Only high elevation meadows are butterfly habitat. This 

image has been cleaned up so that isolated single pixels do not occur. The cut off 

elevation was adjusted in certain areas of the map to more accurately reflect 

knowledge of butterfly locations. This is the final map used in the creation of 

resistance surfaces.  
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2.4.1 Resistance values 

Resistance values were assigned to different land cover types. These values represent 

hypotheses of how resistant the different land covers are to P. smintheus movement 

across the landscape. The resistance values are relative to each other and so have no 

units. As high elevation meadows containing host plants are ideal habitat for P. 

smintheus, I assigned an unchanging resistance value of 1 to them. Low elevation 

meadows are theoretically never visited by P. smintheus, and so I designated them as “no 

data” cells that have no nodes and cannot be travelled through. In order to narrow down 

the remainder of the possible combinations of resistance value sets, I first conducted a 

sensitivity test to determine the impact of varying resistance values for barren rock, 

relative to meadow. With meadow assigned resistance 1 and forest assigned (somewhat 

arbitrarily) resistance 3, the resistance value of barren rock was varied from 1 to 16 

(values of 1, 2, 4, 8, and 16 were tested). For each resistance value of barren rock, a new 

resistance surface was created (meadow and forest resistances were unchanging across all 

these resistance surfaces). For each of these resistances surfaces I generated a resistance 

distance between all pairs of sites using Circuitscape (see below for description). I then 

made scatterplots of the resistance distances from the resistance surfaces (two resistance 

distances at a time). If varying the resistance value of barren rock does not have a large 

impact, then I expect these scatterplots to show straight lines. The results were all linear 

graphs, which tells me that varying the resistance value of barren rock does not have 

much of an impact on any final resistance surfaces I create. This is reasonable because 

there are very few barren rock cells on the resistance surface. Ecologically we know that 

barren rock does not hinder butterfly movement nearly as much as forest, and that many 

habitat meadows where butterflies are still present include small rocky areas within them. 

As a result, I subsequently tested resistance value sets where the resistance for both high 

elevation meadow and barren rock were fixed at a value of 1. For forest cell resistance, 

values of 1, 2, 3, 4, 10, 50, and 99 were used in the Circuitscape analysis, while values of 

2, 3, 5, 10, 50, and 99 were used in the least cost transect analysis (see below for 

description). Roland et al. (2000) have estimated that forest is most likely between 2-3 

times more resistant than meadow to butterfly movement. The exceptionally large 



24 

 

resistance values of 50 and 99 were included to test if they give significantly different 

results from the more reasonable values, and to see if the effect of forest resistance 

plateaus at a certain point. 

The resistance surfaces derived from each of the seven sets of resistance values were then 

compared to both the genetic distance and the estimated movement of P. smintheus, 

separately, using two commonly used LG approaches: Circuitscape and least cost transect 

analysis. 

2.5 Circuitscape 

Circuitscape (McRae and Nürnberger, 2006) is an approach, and an open source program, 

that is able to estimate connectivity and resistance across my land cover map, using the 

principles of electric circuit theory. This method treats the map as though it were a circuit 

board. The raster cells are considered nodes for conductivity, and adjacent cells are 

connected by resistors that differ in their strength depending on the resistance value 

assigned to the corresponding land cover type (Figure 2.5). Circuitscape calculations 

require that each of the 15 sites be assigned one focal node. For a given pair of sites, total 

conductance across the entire surface is then calculated between their focal nodes 

(McRae and Beier, 2007). The inverse of this conductance can then be used as measure 

of the resistance of the entire landscape to flow (either direct flow of individuals, or gene 

flow) between the two sites. This inverse of conductance is referred to as a ‘resistance 

distance’. I used the center point of all butterfly captures for each site in 1995 and 1996 

as the location of the site’s focal node (where movement from each site begins and ends) 

in Circuitscape (Appendix C). For meadows I and K, these center points initially 

occurred on forest and barren rock, respectively, and so were moved slightly to the 

nearest neighbouring meadow cell. For each resistance surface (i.e., each set of resistance 

values) separately, I calculated the resistance for all 105 pairs of sites using the 

Circuitscape ArcGIS toolbox, which allowed me to call Circuitscape directly while 

working in ArcMap (McRae and Beier, 2007). 
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Figure 2.5 An example of a Circuitscape (McRae and Beier, 2007) resistance surface 

(created based on circuit theory) where forest land cover is twice as resistant as 

meadow and barren rock land cover. Darker areas represent corridors of high 

movement. Because forest is more resistant, the majority of movement occurs within 

meadow and barren rock land cover. 
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2.6 Least cost transect analysis 

I also conducted least cost transect analysis (LCTA), a novel method of landscape genetic 

modelling (Van Strien et al. 2012). Instead of looking at the flow or resistance between a 

pair of sites across the entire resistance surface, LCTA first identifies and uses the least 

cost path between the two sites. The least cost path is the single pathway between two 

sites that has the least total resistance to movement; that is, it is the path with the lowest 

cumulative resistance of all the cells the pathway passes through. The least cost path is 

not necessarily the shortest path between two sites because in certain instances it would 

be “cheaper”, resistance-wise, to take a longer detour path if the straight-line path passes 

through many cells of high resistance. Depending on the assigned resistance values for 

the different land cover types, the least cost path can vary from a straight line if the 

resistance values of all land cover types are 1, to bigger and bigger detours that seek out 

low resistance cells as the resistance of immediate cells between the two sites increases. 

For the purpose of creating accurate least cost paths, I changed low elevation meadows 

from cells with ‘no data’ to having a resistance value the same as forest, so as not to bias 

artificially the route of the least cost path. However, as these low elevation meadows 

were mostly near the edge of the map and away from most least cost pathways, this 

change did not have any effect on the final analyses. 

Once the least cost path is established, buffers of varying widths are added around the 

least cost path to create ‘least cost transects’ (Van Strien et al., 2012). I used buffer 

widths of 4m, 20m, 100m, 200m, 400m, 800m, and 1200m. The proportion of each land 

cover type (in this case, forest, meadow, barren rock) in this transect is then calculated by 

dividing the number of cells of that land cover type in the transect by the total number of 

cells in the transect. These proportions are estimated for all pairs of sites and are then 

used as predictors in statistical models where the response is either genetic distance (the 

usual landscape genetics approach) or movement between each pair of sites. Full models 

included proportions of all three land cover types as additive predictors, and all possible 

reduced models with one or two of the land cover types as predictors were also tested.  
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2.7 Statistical analysis 

Because the pairwise distances among a set of objects (whether based on genetic, 

dispersal, or landscape data) are not independent of each other, traditional methods of 

regression and correlation analysis are not appropriate. Historically, landscape genetics 

studies have used the Mantel Test (Mantel, 1963) and the Partial Mantel Test (Smouse et 

al., 1986) to test the significance of correlations among pairwise measures of geographic 

distance, genetic distance, and some measure of the landscape resistance. These methods, 

particularly the Partial Mantel Test, have been criticized as they cannot accommodate the 

intrinsic autocorrelation in pairwise comparisons (Yang and Williams, 2004), and have 

both low power and high rates of type I error (Guillot and Rousset, 2013). Spatial 

autocorrelation is often implicit in landscape ecology and landscape genetic studies and 

so it has been suggested the Mantel Test and the Partial Mantel should be avoided for this 

purpose (Guillot and Rousset, 2013).  

The maximum-likelihood population effects model (MLPE) has been proposed as an 

alternative method to deal with pairwise data. Since each observation is based on 

information from two sites, this is a mixed model that includes a random effect that 

accounts for the pairwise correlation structure of the data (Clarke et al., 2002). That is to 

say, in the context of my project and other landscape genetic studies, the random effect is 

the effect of having distance measures from pairs of sites. I used MLPE to select the best 

set of explanatory variables that explain genetic distances or movement, separately, 

among P. smintheus populations.  

2.7.1 Circuitscape statistical analysis 

I created my models in the “nlme” (Clarke et al., 2002) package in R (R Core Team, 

2017). Using Generalized Least Square (GLS), I modeled genetic distance (FST) as a 

function of Circuitscape distance, with forest cell resistance set to values of 1, 2, 3, 4, 10, 

50, and 99. I fit the models using maximum likelihood (ML). ML can be used to compare 

models with different fixed factors and the same random factor. I use the R package 
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“corMLPE” (Pope, 2014) to allow me to account for the correlation structure of site pairs, 

as a random factor for the GLS model.  

I created one statistical null model and two biological null models. The statistical null 

model is a GLS model with the genetic distance data as the response variable and with 

the random effect only. My first biological null model had straight-line Euclidean 

distances between site pairs as the fixed predictor. The predictor in my second biological 

null model was resistance distance derived from a surface in which the resistance of all 

land cover types is set to 1 (that is to say, all land cover types have the same effect on 

movement and gene flow). These latter two models do not take into account land cover 

resistance, but represent different ways of accounting for only geographic distance 

between sites, and so they are considered biological null models. Note that these two 

models should theoretically give the same result because straight-line distance should be 

identical to a resistance distance if all land cover types are set to a cell resistance of 1; 

however, due to the way Circuitscape analyzes paths through the square cells of the 

resistance surface, the resulting values are slightly different. Indeed, I found that straight-

line geographic distance was strongly correlated with Circuitscape resistance derived 

from the uniform resistance surface (r = 0.973, P < 0.001) 

 I compared all nine models (two null models plus seven models each derived from a 

surface with a different resistance value for forest) using the corrected Akaike 

information criterion (AICc) to determine which model best explains the genetic distance 

between sites (Akaike, 1974). I then recalculated the best model using restricted 

maximum likelihood (REML) instead of ML to obtain unbiased estimates of coefficients. 

I repeated the whole analysis, from nlme model creation to model selection and 

coefficient estimation, with movement data between site pairs instead of genetic distance 

data as the response variable. 

2.7.2 Least cost transect statistical analysis 

The statistical analysis of LCT was also conducted using Generalized Least Square 

(GLS) models fit using (ML), and using corMLPE to account for the pairwise structure of 
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the data via a random effect in the model. I conducted separate analyses with each of 

genetic distance and movement as the response variables. 

I analyzed 49 groups of models using the LCT analysis, by having all possible 

combinations of the seven transect widths (4m, 20m, 100m, 200m, 400m, 800m, 1200m) 

as well as seven different forest cell resistance values (1, 2, 3, 5, 10, 50, 99) that were 

used to establish the initial least cost paths. In each of these 49 groups, there was a full 

model with the proportion of all three land cover types in the least cost transects as the 

additive predictors, as well as all possible reduced models (six total) with proportions of 

one or two of the landcover types as predictors. This resulted in seven models in each of 

the 49 groups. The predictor variables of proportion forest, meadow, and barren rock 

were centered, separately, for each model. I again used AICc to compare the resulting 

343 (7 x 7 x 7) models.  

Following Van Strien et al. (2012), I first determined which combination of transect 

width and resistance cell value for forest (used to determine the initial least cost paths) 

yielded the best model, based on comparison of AICc values of the full models. Among 

the seven models derived from that particular combination of transect width and forest 

resistance value, I then determined the set of predictors (i.e. full or reduced model) that 

best explained the response variable. I then re-fit this best model using REML to obtain 

unbiased estimates of regression coefficient.  
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3 Results 

3.1 Resistance surface analysis with Circuitscape 

For both the genetic distance and dispersal response variables, the statistical null model 

performed the worst by far, having the highest AICc value (and therefore the largest 

∆AICc) (Table 3.1, Table 3.2).  The model with forest resistance of 99 also performed 

poorly. 

When considering genetic distance response variable (pairwise FST), the model with the 

lowest AICc was the one in which resistance distance was calculated with forest 

resistance set to 10 (i.e., in which forest is hypothesized to be ten times more resistant to 

gene flow than meadow and barren rock land cover; Table 3.1, Figure 3.1). However, the 

models with forest resistance of 1, 2, 3, 4, and 50, as well as the biological null model, 

were within 2 AIC of this model. Therefore, all of these models were equally well 

supported.  
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Table 3.1 Circuitscape analysis: comparison of maximum likelihood population 

effects (MLPE) models explaining genetic differentiation (FST) between populations 

of the butterfly, Parnassius smintheus. All models included a random effect that 

accounts for the pairwise correlation structure of the data. The statistical null model 

included only the random effect. The predictor variable in the biological null was 

straight-line geographic distance. The predictor in all other models was resistance 

distance calculated from a resistance surface using Circuitscape. The resistance 

value assigned to forest land cover varied among the resistance surfaces, while 

meadow and barren rock land cover were consistently assigned a resistance value of 

1. The corrected Akaike information criterion (AICc) and the difference in AICc 

from the top model (∆AICc) are presented for each model. Models are listed in rank 

order of AICc. 

Model ∆AICc AICc 

Forest cell resistance 10 0 -780.8097 

Forest cell resistance 4 0.2798 -780.5299 

Forest cell resistance 3 0.4146 -780.3951 

Forest cell resistance 2 0.6543 -780.1554 

Forest cell resistance 50 0.8842 -779.9255 

Forest cell resistance 1 1.4221 -779.3876 

Biological Null 1.432 -779.3777 

Forest cell resistance 99 2.0531 -778.7566 

Statistical Null  20.6904 -760.1193 
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Figure 3.1 Effects of geographic distance and landscape resistance on genetic 

differentiation in the butterfly, Parnassius smintheus. a) Correlation between 

straight-line distance between sites and genetic differentiation between sites. b) 

Correlation between the resistance distance between sites, derived from 

Circuitscape analysis of the resistance surface of the model with lowest AICc (in 

which forest has a resistance of 10), and genetic differentiation between sites. 
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When considering the dispersal response variable, the model with lowest AICc was the 

one in which resistance distance was calculated with forest resistance set to four (i.e., in 

which forest is hypothesized to be four times more resistant to gene flow than meadow 

and barren rock land cover; Table 3.2, Figure 3.2). The second, third, and fourth best 

models involved forest resistance set to 10, 3, and 2, respectively. However, these latter 

models all had ∆AICc values less than 2, and were therefore not appreciably better than 

the top model. All other models had ∆AICc greater than two. It is interesting to note that 

the biological null model of isolation-by-distance and the model involving a forest 

resistance of one differed substantially in their explanatory power (AICc values were 

more than 2 apart) (Table 3.2).  
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Table 3.2 Circuitscape analysis: comparison of maximum likelihood population 

effects (MLPE) models explaining estimated dispersal between populations of the 

butterfly, Parnassius smintheus. All models included a random effect that accounts 

for the pairwise correlation structure of the data. The statistical null model included 

only the random effect. The predictor variable in the biological null model was 

straight-line geographic distance. The predictor in all other models was resistance 

distance calculated from a resistance surface using Circuitscape. The resistance 

value assigned to forest land cover varied among the resistance surfaces, while 

meadow and barren rock land cover were consistently assigned a resistance value of 

1. The corrected Akaike information criterion (AICc) and the difference in AICc 

from the top model (∆AICc) are presented for each model. Models are listed in rank 

order of AICc. 

Model ∆ AICc AICc 

Forest cell resistance 4 0 -143.5361 

Forest cell resistance 10 0.2975 -143.2386 

Forest cell resistance 3 0.3463 -143.1898 

Forest cell resistance 2 1.0193 -142.5168 

Forest cell resistance 1 2.6232 -140.9129 

Biological Null 6.2972 -137.2389 

Forest cell resistance 50 9.2656 -134.2705 

Forest cell resistance 99 15.7186 -127.8175 

Statistical Null  76.31821 -67.21789 
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Figure 3.2 Effects of geographic distance and landscape resistance on estimated 

dispersal in the butterfly, Parnassius smintheus. a) Correlation between straight-line 

distance between sites and estimated dispersal between sites. b) Correlation between 

the resistance distance between sites, derived from Circuitscape analysis of the 

resistance surface of the model with lowest AICc (in which forest has a resistance of 

4), and estimated dispersal between sites. 
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Using restricted maximum likelihood (REML) to evaluate the model with lowest AICc 

for the genetic distance response variable (the model with resistance distances calculated 

from a resistance surface in which forest resistance is set to 10), the estimate of the 

coefficient for the effect of resistance distance was 0.0029 (SE = 0.0006). Using REML 

to evaluate the model with lowest AICc for the dispersal response variable (the model 

with resistance distance calculated from a resistance surface in which forest resistance is 

set to 4) the estimate of the coefficient for the effect of resistance distance was -5.3642 

(SE = 0.34). 

3.2 Resistance surface analysis with least cost transect 

In the least cost transect analysis I also tested seven different resistance values for forest 

(1, 2, 3, 5, 10, 50, 99), as well as seven different buffer widths. For each of these 49 

combinations, there were seven models that included different land cover combinations 

as predictor variables, for a total of 343 models. These models were compared separately 

to the genetic distance and dispersal response variables (Table 3.3, Table 3.4).  

For the genetic distance response variable, the model with lowest AICc included only the 

proportion of barren rock in the least-cost transect as the predictor. The least-cost 

transects were obtained by using a resistance surface with forest resistance of 99 and a 

buffer width of 400m (AICc = -773.753; Table 3.3, Figure 3.3, Figure 3.4, Figure 3.5). 

Using REML to evaluate this model, the estimate of the coefficient for the effect of 

barren rock was 0.0082 (SE = 0.02). Additional models that were equally well supported 

(∆AICc<2) also all had barren rock as the predictor and were obtained using a resistance 

surface with forest resistance of 99, and had buffer widths ranging from 4-200m.  
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Table 3.3 Least cost transect analysis: comparison of maximum likelihood 

population effects (MLPE) models explaining genetic differentiation (FST) between 

populations of the butterfly, Parnassius smintheus. The models are sorted by ∆AICc 

values. ‘Resistance of forest’ is the resistance value assigned to forest in the surface 

that was used to generate the least cost paths. ‘Transect width’ is the buffer applied 

to the least cost path to create the least cost transect. ‘Model predictors’ refer to the 

combination of predictors (proportion of meadow, barren rock, or forest land cover 

in the least cost transect) that were included in the model; ‘Full’ means that all three 

predictors were included. The corrected Akaike information criterion (AICc) and 

the difference in AICc from the top model (∆AICc) are presented for each model.  

Transect 

width (m) 

Resistance of 

forest 
Model predictors AICc ∆AICc 

400 99 Barren rock -773.7531704 0.00 

4 99 Barren rock -773.3124666 0.44 

20 99 Barren rock -773.2502485 0.50 

200 99 Barren rock -772.0599796 1.69 

100 99 Barren rock -771.9382379 1.81 

4 99 Full -771.2008074 2.55 

800 99 Barren rock -770.6326855 3.12 

400 99 Full -770.6009269 3.15 

20 99 Full -769.8550316 3.90 

1200 1 Full -769.6837173 4.07 

100 99 Full -769.0200657 4.73 

200 99 Full -768.9171334 4.84 

800 1 Full -768.796252 4.96 

1200 99 Barren rock -764.8249207 8.93 
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Figure 3.3 Relationship between the proportion of barren rock (best predictor) in a 

400m wide least-cost transect and the genetic differentiation between sites. The least 

cost transects followed least cost paths derived from a resistance surface in which 

meadow and barren rock land covers had a resistance value of 1, and forest land 

cover had a resistance value of 99. This was the model with the lowest AICc in the 

genetic differentiation least cost transect analysis. 
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Figure 3.4 Example least cost transect from a resistance surface with forest 

resistance of 99 and a transect buffer of 400m. The transect between sites g2 and S is 

shown. The proportion of barren rock in such transects was the best predictor of 

genetic differentiation (FST) between sites. The least cost path (black line) is the path 

of least total resistance that Parnassius smintheus would travel if forest land cover is 

99 times more resistant than meadow and barren rock. Blue lines encompass the 

transect around this least cost path. This map displays UTM coordinates (eastings 

and northings) and is in UTM zone 11. 
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Figure 3.5 Example least cost transect from a resistance surface with forest 

resistance of 99 and a transect buffer of 400m. The transect between sites J and Q is 

shown. The proportion of barren rock in such transects was the best predictor of 

genetic differentiation (FST) between sites. The least cost path (black line) is the path 

of least total resistance that Parnassius smintheus would travel if forest land cover is 

99 times more resistant than meadow and barren rock. Blue lines encompass the 

transect around this least cost path. This map displays UTM coordinates (eastings 

and northings) and is in UTM zone 11. 
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For the estimated dispersal response variable, the model with lowest AIC was the full 

model (including the proportion of meadow, barren rock, and forest in the least-cost 

transect as predictors), and was based on transects obtained by using a resistance surface 

with forest resistance set to 1 and a buffer width of 100m (AICc = 435.616; Table 3.4, 

Figure 3.6, Figure 3.7). Using REML to evaluate this model, the estimated coefficients 

for the effects of the predictors were: 106.98 for forest (SE = 27.54), 114.04 for barren 

rock (SE = 27.56), and 118.24 for meadow (SE = 26.99). Additionally, there was a 

second model that was equally well supported (∆AICc<2) and also had the full model as 

the predictor and was also obtained using a resistance surface with forest resistance of 1, 

and had a buffer width of 200m. 
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Table 3.4 Least cost transect analysis: comparison of maximum likelihood 

population effects (MLPE) models explaining estimated dispersal between 

populations of the butterfly, Parnassius smintheus.  The best full model and the best 

reduced model for each transect width are shown. ‘Resistance of forest’ is the 

resistance value assigned to forest in the surface that was used to generate the least 

cost paths. ‘Transect width’ is the buffer applied to the least cost path to create the 

least cost transect. ‘Model predictors’ refer to the combination of predictors 

(proportion of meadow, barren rock, or forest land cover in the least cost transect) 

that were included in the model; ‘Full’ means that all three predictors were 

included. The corrected Akaike information criterion (AICc) and the difference in 

AICc from the top model (∆AICc) are presented for each model. 

Transect 

width (m) 

Resistance of 

forest 
Model predictors AICc ∆ AICc 

200 1 Full 435.610122 0.00 

400 1 Full 436.3274735 0.72 

100 1 Full 440.7016591 5.09 

1200 1 
Meadow & Barren 

Rock 
440.9148251 5.30 

1200 1 Full 441.6391906 6.03 

400 1 
Meadow & Barren 

Rock 
443.6985641 8.09 

800 1 
Meadow & Barren 

Rock 
447.2351396 11.63 

200 1 
Meadow & Barren 

Rock 
447.7571256 12.15 

800 1 Full 449.286683 13.68 

20 1 Full 450.0983835 14.49 

100 1 Meadow 452.6934986 17.08 

4 1 Full 453.7383441 18.13 

20 1 
Meadow & Barren 

Rock 
461.0940229 25.48 

4 1 Meadow & Forest 462.6728983 27.06 
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Figure 3.6 Example least cost transect from a resistance surface with forest 

resistance of 1 and a transect buffer width of 200m. the transect between sites g2 

and S is shown. The proportion of forest, meadow, and barren rock in such 

transects were the best predictors of estimated dispersal between sites. The least cost 

path (black line) is the path of least total resistance that Parnassius smintheus would 

travel if forest land cover has the same resistance as meadow and barren rock. Blue 

lines encompass the transect around this least cost path. This map displays UTM 

coordinates (eastings and northings) and is in UTM zone 11. 
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Figure 3.7 Example least cost transect from a resistance surface with forest 

resistance of 1 and a transect buffer width of 200m. The transect between sites J and 

Q is shown. The proportion of forest, meadow, and barren rock in such transects 

were the best predictor of estimated dispersal between sites. The least cost path 

(black line) is the path of least total resistance that Parnassius smintheus would 

travel if forest land cover has the same resistance as meadow and barren rock. Blue 

lines encompass the transect around this least cost path. This map displays UTM 

coordinates (eastings and northings) and is in UTM zone 11. 
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4 Discussion 

4.1 Project objective 

This project is unique in using different landscape genetics approaches to examine, in 

parallel, the effects of landscape structure on both dispersal and genetic data. With this, I 

test the hypothesis that landscape effects on genetic differentiation between populations, 

and landscape effects on dispersal, are comparable and parallel. Furthermore, I hope to 

provide more empirical insight into how two commonly used methods of characterizing 

landscape effects on gene flow (Circuitscape and least cost transect) differ from each 

other. The results of my study are relevant to understanding both the ecology and 

evolution of Parnassius smintheus, and more broadly to the field of landscape genetics 

studies in general.  

4.2 Landscape effects on genetic differentiation versus 
dispersal 

A key finding of my study was that genetic differentiation and dispersal were best 

explained by different sets of models (in this case the best model set refers to all models 

within two AICc of the model with the lowest AICc), regardless of the method of 

analysis used. Using Circuitscape, when genetic differentiation was the response variable, 

the model with lowest AIC had resistance distance derived from a surface with forest 

resistance set to ten times that of meadow and barren rock. Also, most other forest 

resistance values, with the exception of 99, explained genetic differentiation equally well. 

When dispersal was the response variable, the model with lowest AIC had resistance 

distance derived from a surface with forest resistance set to four times that of meadow 

and barren rock. Also, only three other models, with forests resistance ranging from two 

to ten, explained the dispersal data equally well. Therefore, using Circuitscape, genetic 

and dispersal data were explained by different, albeit overlapping, model sets. In least 

cost transect analysis (LCTA), genetic differentiation and dispersal were also best 

explained by different, non-overlapping, sets of models with different predictors. A 

difference in the results for genetic versus dispersal data is not entirely surprising. While 

dispersal is an important determinant of gene flow, and hence genetic differentiation, the 
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two are not identical (Eriksen et al., 2014). Genetic differentiation and dispersal data may 

differ for several reasons. First, not all dispersal necessarily results in gene flow and an 

effect on genetic differentiation. Only dispersal that is accompanied by reproduction will 

affect genetic differentiation (Levin et al., 2009). Second, our dispersal data were based 

on movement of the butterflies tracked through mark-recapture for the specific years that 

the fieldwork was conducted. In contrast, the genetic differentiation data are the result of 

dispersal and reproduction over many past generations of P. smintheus that have led up to 

observed patterns at the time of sample collection (Keyghobadi et al., 2005b). Because of 

this, genetic differentiation paints more of a picture across time and cumulative 

generations, whereas dispersal data are more akin to a snapshot at the time of collection 

(Orsini et al., 2013). Finally, unlike dispersal data, genetic differentiation data will also 

be influenced by genetic drift, which is in turn a function of effective population size 

(Hoeck et al., 2010). 

Overall, my results did not strongly support the hypothesis that inferred effects of the 

landscape on genetic differentiation and on dispersal would be highly similar. This 

occurred despite the fact that genetic differentiation between sites and estimated dispersal 

between sites are positively correlated in this system (Caplins et al., 2014; Keyghobadi et 

al., 1999). However, my ability to select among competing models was limited, 

particularly for the genetic response variable. Therefore, I cannot confidently identify a 

single best model for each of the response variables. 

An important result was that genetic data seemed to provide less precise estimates of 

landscape effects than did the dispersal data. While Circuitscape analyses indicated that 

genetic differentiation was best explained by a resistance surface in which forest 

resistance was ten-fold greater than meadow resistance, it is important to note that all 

models, other than the statistical null model and the model with forest resistance of 99, 

were within 2 AICc of the best model. That is to say, all of these models were 

comparable in their ability to explain genetic distances. This suggests that while the 

Circuitscape method appears to detect an effect of intervening forest cover on genetic 

distance, it is unable in this case to differentiate among a broad range of forest resistance 

values. In this case, one can only conclude that the genetic differentiation data suggest a 
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forest resistance between 1 and 50 times that of meadow and barren rock. This is a large 

range and would not be useful in most situations for making any kinds of management or 

conservation decisions. In contrast, the best model explaining dispersal was derived from 

a surface in which forest has a resistance of 4 although surfaces with forest resistance of 

2, 3, and 10 were within 2 AIC of this best model. This suggests that forest is 

approximately 2 to 10 times more resistant to butterfly dispersal than meadow and barren 

rock, providing a much narrower range of likely forest resistance values than for the 

genetic data. The inability to discriminate among a broad range of forest resistance values 

when inferring effects of forest on genetic differentiation might be due to the fact that the 

relationship between genetic data and the landscape is inherently highly variable. The 

genetic data are based on a relatively small number of genetic markers, represent effects 

of movement and reproduction over many generations, and are also affected by genetic 

drift and effective population size. My study suggests that extrapolation of results based 

on genetic data to inferences about dispersal and movement should be made with caution, 

and that ideally both types of data should be used in conjunction.  

4.3 Comparison to previous work on Parnassius smintheus 

Previous studies on P. smintheus have consistently identified forested land cover as a 

barrier to both dispersal and gene flow (Keyghobadi, 2007). Compared to meadow land 

cover, past studies based on analysis of mark-recapture data have estimated that forest is 

from two (Roland et al., 2000) to 2.9 times (Matter et al., 2004) as resistant to movement 

compared to open meadow. I also found evidence in my analyses that forested land cover 

was more resistant to both dispersal and gene flow than open meadow. The estimated 

effects of forest on genetic differentiation and dispersal that I detected using Circuitscape 

were more consistent with previous studies than the effects inferred using LCTA (Matter 

et al., 2004; Roland et al., 2000).  

Circuitscape analyses indicated that genetic differentiation was best explained by a 

resistance surface in which forest resistance ranged from 1 to 50. Using restricted 

maximum likelihood (REML) to evaluate the model with the lowest AICc (in which 

forest resistance was ten-fold greater than meadow resistance), the estimate of the 

coefficient for the effect of resistance distance was 0.0029 (SE = 0.0006), which suggests 
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that as the amount of forest land cover increases, the genetic differentiation between sites 

also increases, consistent with previous genetic studies in this system (Caplins et al., 

2014; Keyghobadi et al., 1999). 

When dispersal was the response variable, Circuitscape analysis identified both a 

narrower range of optimal forest resistance values (2 to 10 times more resistant than 

meadow and barren rock), and an effect of forest that was quite concordant with previous 

estimates in this system (previous estimates suggest forest is 2 to 2.9 times more resistant 

to dispersal than meadow; Matter et al., 2004; Roland et al., 2000). In this case, the model 

with lowest AICc explaining dispersal was derived from a surface in which forest has a 

resistance of 4. Using REML to evaluate this model, the estimate of the coefficient for 

the effect of resistance distance was -5.3642 (SE = 0.34). As this coefficient is negative, 

it suggests that as forest land cover increases, the amount of dispersal decreases, which is 

consistent with forest hindering butterfly movement.  

Using LCTA however, barren rock was inferred to be the best predictor of genetic 

differentiation. This result is surprising because there is comparatively little barren rock 

land cover on this landscape. However, patches of barren rock are located in corridors 

between sites that are expected to have high amounts of butterfly movement. For 

example, the large patch of barren rock between sites G1 and K would need to be 

traversed by any butterflies travelling from the northern patches of Z, Y, F, g2, and G1 to 

the southern patches of I, K, J, L, and M. This may explain why barren rock, the land 

cover type with the least coverage, is identified by LCTA as an important land cover in 

this system. Using REML to evaluate this best model, the estimate of the coefficient for 

the effect of barren rock was 0.0082 (SE = 0.02). There is a positive relationship between 

the amount of barren rock between sites and genetic differentiation, giving support to this 

possible explanation. 

LCTA identified the full model, which includes all the predictor variables of meadow, 

forest, and barren rock, as the best model explaining the dispersal data. Using REML to 

evaluate this best model, the estimated coefficients for the effects of the predictors were: 

106.98 for forest (SE = 27.54), 114.04 for barren rock (SE = 27.56), and 118.24 for 
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meadow (SE = 26.99). These positive coefficients suggest that dispersal increases as the 

proportion of each of the three land covers increases. It makes sense for the full model to 

be the best predictor, as it takes into account all land cover types, which will all exert 

effects on the dispersal of P. smintheus as either conductors (meadow and barren rock) or 

resistors (forest). It also makes sense for a higher proportion of meadow, and perhaps the 

barren rock land covers, to promote dispersal between sites. However, a positive effect of 

forest on dispersal is not concordant with previous work in this system.  

In the LCTA, I also found that the inferred optimal buffer widths ranged from 4m - 400m 

and 200m - 400m for genetic differentiation and dispersal, respectively. A broader range 

of inferred optimal buffer widths for genetic data reflects the greater imprecision of 

inferences derived from genetic data versus dispersal data, as discussed in section 4.2. 

Interestingly, the optimal buffer width for the dispersal data in the LCTA is very close to 

the mean distances individuals moved, as reported by Roland et al. (2000) for the same 

dataset (131.9 m and 131.6 m for males and females respectively in 1995; 162.4 m and 

118.0 m for males and females respectively in 1996). These LCTA results support prior 

information about the spatial scale at which the butterfly is responding to the landscape 

using a new approach. Knowing what spatial scale is relevant to the species one is 

interested in provides information about what spatial lens should be used to study the 

species, and, particularly in terms of conservation, gives a clearer idea of the size of 

corridors that would be needed to support movement through the landscape.  

4.4 Circuitscape versus least cost transect analyses 

Various methods have been used in landscape genetics to estimate the effects of 

intervening landscape on genetic differentiation between sites. A common method is the 

linear transect (sometimes referred to as a vector) approach, where metrics such as land 

cover type, precipitation, or elevation are evaluated along linear transects connecting 

pairs of sites, and the effects of these pairwise environmental and landscape variables on 

genetic distances are evaluated (Murphy et al., 2010). Another method that was very 

commonly used in the earlier days of the field, but has now largely been replaced by the 

Circuitscape approach, is the least cost path approach. Using a resistance surface of the 

landscape that represents hypotheses about the conductance (permeability) of different 
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landscape elements, the least cost paths between pairs of sites were determined. Either 

the total length of these paths (Spear et al., 2005), or the total accumulated cost of 

moving along the paths (Cushman et al., 2006) were then used as predictors of genetic 

distance. 

The least cost transect method (Van Strien et al., 2012) builds upon the two more 

conventional methods of linear transects and least cost path. Instead of imposing a 

straight corridor between pairs of sites, LCTA allows the corridor to further take into 

account hypothesized effects of the landscape by following the least cost path. This 

additional complexity is meant to allow LCTA to improve upon these more conventional 

methods of studying land cover, movement, and gene flow across the landscape, and in 

certain situations has indeed been shown to perform better (Van Strien et al., 2012). A 

further advantage of LCTA, which is shared with linear transect analysis, is that by 

testing different buffer widths, it is able to suggest the spatial scale at which the 

landscape affects the species of interest (Murphy et al., 2010).  

In my study however, I found that the LCTA method performed quite poorly at 

explaining both genetic differentiation and estimated dispersal. My LCTA results were 

not concordant with the Circuitscape results or with previous estimates of landscape 

effects derived using other approaches in this system (Matter et al., 2004; Roland et al., 

2000). For example, LCTA suggested that barren rock and not forest was the best 

predictor of genetic differentiation. Also, LCTA suggested that forest had a positive 

effect on dispersal, which is contradictory to all previous work in this system, as well as 

to my Circuitscape results. LCTA also initially identified a resistance surface in which 

forest had a resistance of one (i.e., not different from meadow and barren rock) as the 

optimal resistance surface to describe estimated dispersal between sites. This resulted in 

least cost transects (Figure 3.6, Figure 3.7) that did not follow the ridge tops along which 

P. smintheus is expected to move (Roland et al., 2000). Overall, many of my LCTA 

results were unexpected and did not make sense.  

There are a number of reasons why LCTA may have performed poorly in my study. First, 

the landscape in which I was working was relatively simple in containing very few 
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different land cover types. I distinguished only three land cover types (forest, meadow, 

barren rock) at the elevations that would be relevant to P. smintheus.  Furthermore, one of 

the land covers, barren rock, was not very abundant. As a result, the proportion the 

different land covers in the least cost transects were highly correlated (r > 0.9). In 

particular, the proportions of meadow and forest were highly negatively correlated, such 

that as one increased the other decreased. This collinearity among these proportion 

variables is problematic, and would make it difficult to tease apart the effects of the land 

covers using a transect-based approach. Indeed, LCTA has been used successfully in 

more complex landscapes, where there are more distinct land cover types whose 

proportions within the least cost transects are not correlated (Van Strien et al., 2012). 

Second, my study sites were arranged essentially along a single dimension by virtue of 

being located on the spine of a ridge (i.e., sites are in a line following the ridge-top). This 

means that the least cost transects for many site pairs were similar and partially overlap. 

The unidimensional distribution of the sites could also affect my ability to tease apart the 

effects of the different land cover types as predictor variables. Overall, LCTA may have 

been more sensitive to idiosyncrasies in the configuration of the landscape specific to my 

study. It is likely that LCTA will perform better in studies that have a larger number of 

distinct and uncorrelated land cover variables, as well as a more even arrangement of 

sites across two dimensions on the landscape. 

Circuitscape, based on circuit theory, represents an extension of least cost path analysis 

and was introduced as a way of quantifying landscape effects, particularly for 

conservation purposes, in a way that can account for “multiple pathways linking 

populations,” which previous methods were unable to do (McRae and Beier, 2007). 

Circuit theory, as a tool for modelling connectivity, has been shown to predict gene flow 

patterns accurately across different scales and distances (McRae et al., 2008). Uniquely, 

Circuitscape is able to take into account the whole landscape as all cells of the resistance 

surface have an impact on the final resistance distance calculations. If the landscape 

outside the range of the least cost transect also contributes to gene flow or dispersal 

between sites, then Circuitscape analysis may provide more meaningful results than 

LCTA. In particular, LCTA is based on initially determining a single least cost path 
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between each pair of sites. Therefore, LCTA may still suffer to some degree from 

ignoring much of the landscape.  

Furthermore, Circuitscape does not suffer from a certain degree of circularity that is 

present in LCTA. In LCTA, the least cost path is created given a particular resistance 

surface, which already represents a specific hypothesis about the effects of each land 

cover type. The predictor variables in the analysis are then the proportion of different 

land cover types in transects following these paths. By assigning different resistance 

values to the land covers initially, and then using the proportions of those same land 

covers in the resulting transect as predictors, circularity is arguably introduced into the 

LCTA. In my analyses for example, in most resistance surfaces that I tested forest was 

assigned a higher resistance value compared to meadow and barren rock. The resulting 

least cost paths in these surfaces would avoid forest cells and travel through meadow and 

barren rock cells when possible. All least cost transects would then be likely to contain a 

maximal amount of meadow and barren rock. This may have contributed to barren rock 

being the best predictor of genetic differentiation in my LCTA. These potential 

limitations of LCTA support the conclusion that, for my particular study at least, 

Circuitscape is a more appropriate approach for estimating landscape effects on both 

genetic differentiation and dispersal.   

4.5 Implications for conservation 

In alpine habitats, the effects of climate change, as well as fire suppression practices, tend 

to cause tree lines to move to increasingly higher elevations (Ee et al., 2015). This will 

potentially cause forests to encroach into alpine meadows, causing meadow size 

reduction as well as isolation (Roland et al., 2000). Such an encroachment will further 

reduce the area of habitat available to P. smintheus through the edge avoidance effect 

(Ross et al., 2005). In broad terms, the edge effect occurs when species prefer one habitat 

type over another, and so will avoid the boundaries where the preferred habitat transitions 

to another land cover type (Ries and Debinski, 2001). In P. smintheus, this behaviour 

causes the butterflies to fly away from forest edges and towards the center of meadows. 

Small meadows (less than 50 m wide) are prone to this effect throughout and may 

become unsuitable butterfly habitat as a result of further shrinkage (Ross et al., 2005). 
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These changes will invariably result in a decrease of resources and habitat available for 

P. smintheus, and so will have the potential to reduce their population sizes and habitat 

patch connectivity in the future. My results, particularly from Circuitscape analysis, 

support previous studies that show that intervening forests can reduce dispersal and 

increase genetic differentiation among populations of P. smintheus. Therefore, my results 

reinforce the predicted isolating effects of encroaching tree lines on P. smintheus 

(Keyghobadi et al., 1999; Roland et al., 2000; Ross et al., 2005). Forest encroachment not 

only affects P. smintheus, but also other species that depend on alpine meadows 

(Illerbrun and Roland, 2011). 

With global trends of climate change and habitat fragmentation and loss resulting in loss 

of biodiversity, landscape genetics is an essential tool that can provide in-depth analysis 

at relevant scales and actionable results for the purposes of conservation (Epps and 

Keyghobadi, 2015). Understanding the effects of individual land cover types on dispersal 

and gene flow is paramount in understanding and quantifying species responses to a 

changing landscape (Manel and Holderegger, 2013). With limited resources and time, 

knowing which habitat patch, landscape corridor, or population should be prioritized to 

maximize conservation efforts will make a big difference (Dennis et al., 2013). I have 

shown through my project that, in order to get an accurate and precise representation of 

how the dispersal patterns of the species of interest are affected by the landscape, genetic 

differentiation between population sites should ideally not be the only source of species 

‘movement data’. I suggest that by combining genetic data with direct dispersal data, 

researchers can create improved models of landscape connectivity and dispersal of the 

species of interest.  

4.6 Next steps 

The LCTA may not have performed well in my study system because of the occurrence 

of few land cover types and the arrangement of sites along a single ridge top. Future 

studies wishing to continue this line of inquiry about the landscape effects on genetic 

differentiation as well as dispersal could address similar questions at locations with 

different landscape composition and a more even, two-dimensional configuration of sites. 

Indeed, replicating my study across several other landscapes would be a powerful way of 
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assessing the performance of the different approaches I used. It would also be interesting 

to extend my analyses to other species, as the approaches I used should be applicable to 

any species with distinct populations occurring in landscapes with discrete land cover 

types. It would also be valuable to conduct similar analyses in species with smaller 

population sizes and with less interconnected populations, as the results would then be 

more applicable to endangered species in need of conservation.  

4.7 Conclusions 

It is common for landscape genetics studies to use genetic differentiation, either 

implicitly or explicitly, as a proxy for dispersal. But landscape variables that best explain 

genetic differentiation may not also best explain dispersal patterns. I tested the effects of 

the landscape on genetic differentiation and dispersal in parallel, to explore the extent to 

which using genetic differentiation can provide insights into landscape effects on 

dispersal, using both circuit theory (Circuitscape) and LCTA. The results of my findings 

did not support my hypothesis that landscape effects on genetic differentiation between 

populations and landscape effects on dispersal would be highly similar. In particular, the 

precision of estimates derived using genetic data may be much lower than that of 

estimates derived using dispersal data directly. My study suggests that in studies that aim 

to determine landscape effects on animal movement and dispersal, genetic differentiation 

should ideally not be used as a simple proxy for dispersal, but when possible should be 

used in conjunction with other, more direct measures of dispersal. 
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Appendices 

Appendix A The seven microsatellite loci used for genotyping Parnassius smintheus. 

Expected heterozygosity and observed heterozygosity were averaged over all 15 

sites. This table is reproduced based on information from Table 1 in Keyghobadi et 

al. (1999) and Table 1 from Keyghobadi et al. (2002). 

Locus 

Name 

No. of 

alleles 

Size range 

(bp) 

Mean 

He 

Mean 

Ho 
Primers 

Ps50 8 98 - 126 0.762 0.562 
FAM GATCACCGAGAAAGAGAAAG 

TTTTTGCGTCTGTTACATAA 

Ps81 7 122 - 133 0.582 0.206 
TET AAATGGAGCAATTATACCTA 

GTTGCCCCGTTGAGTGAAAG 

Ps85 8 118 -135 0.553 0.318 
HEX CACGCTCTGGCACTATCTACC 

TGCGCAGATAGGGCTGAC 

Ps76 29 260 - 364 0.86 0.399 
FAM GGCAAATACCCTCCCTA 

GTAACGCTCAGTAAATCTGC 

Ps163 9 283 - 136 0.221 0.234 
TET CATTACCGAAACACGCACTT 

GTTTGCCAGGTCACGTTTAGGA 

Ps165 36 180 - 250+ 0.878 0.472 
HEX CATGCGTAAATGTTGTAA 

CTAAACTAGGCGACGAAC 

Ps262 33 71 - 175 0.911 0.83 
TET TTTGGTGTGTGCAAATGAAA 

TGCGACTGGATGGGATT 
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Appendix B Genetic diversity of the 15 sites at Jumpingpound Ridge. A total of 474 

Parnassius smintheus individuals were sampled. ‘Mean no. alleles’ refers to the 

number of observed alleles, including a null allele, and is averaged over seven 

microsatellite loci. Avg. He is the unbiased estimate of expected heterozygosity 

averaged over loci. This table is reproduced based on information from Table 1 in 

Keyghobadi et al. (2005). 

Site Sample size 
Mean no. 

alleles 
Avg. He 

F 41 10.9 0.743 

G1 40 11.3 0.698 

g2 40 10.6 0.754 

I 21 8.7 0.766 

J 31 10.1 0.732 

K 40 10.9 0.764 

L 40 10 0.715 

M 38 10.9 0.724 

O 12 6.7 0.674 

P 39 11 0.751 

Q 40 10.6 0.727 

R 24 9.3 0.734 

S 14 6.9 0.643 

Y 13 7.4 0.712 

Z 41 10.1 0.722 
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Appendix C The location of center points of butterfly capture in 1995 and 1996 in 

each of the 15 sites at Jumpingpound Ridge in UTM coordinates. These center 

points were used as the location of the site’s focal node (where movement from each 

site begins and ends) in Circuitscape. The study site is in UTM zone 11.  

Site Eastings Northings 

F 645710 5649352 

G1 645678 5648879 

g2 645770 5648926 

I 645797 5647823 

J 646060 5647425 

K 646204 5647643 

L 646554 5646678 

M 646063 5646382 

O 647666 5646994 

P 648105 5647016 

Q 648269 5647334 

R 648808 5647312 

S 649131 5647648 

Y 646209 5649652 

Z 646693 5649860 
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Appendix D Least cost transect analysis: comparison of maximum likelihood 

population effects (MLPE) models explaining genetic differentiation (FST) between 

populations of the butterfly, Parnassius smintheus. All models are shown. 

‘Resistance of forest’ is the resistance value assigned to forest in the surface that was 

used to generate the least cost paths. ‘Transect width’ is the buffer applied to the 

least cost path to create the least cost transect. ‘Model predictors’ refer to the 

combination of predictors (proportion of meadow, barren rock, or forest land cover 

in the least cost transect) that were included in the model. The corrected Akaike 

information criterion (AICc) are presented for each model.  

Resistance 

of forest 

Transect 

width 

(m) 

Model predictors 

Meadow Forest 
Barren 

rock 

Meadow 

& forest 

Meadow 

& 

Barren 

rock 

Forest 

& 

Barren 

Rock 

Meadow, 

forest, & 

Barren 

rock 

1 4 -763.99 -764.23 -758.33 -762.04 -762.29 -762.03 -760.70 

2 4 -764.76 -760.09 -762.77 -762.92 -762.95 -763.01 -761.55 

3 4 -761.76 -758.16 -764.46 -762.27 -762.29 -762.29 -760.06 

4 4 -759.22 -757.97 -760.79 -758.42 -758.61 -758.59 -757.70 

10 4 -759.12 -757.99 -760.78 -758.35 -758.67 -758.62 -766.92 

50 4 -764.31 -757.97 -767.77 -765.75 -765.69 -765.68 -763.59 

99 4 -764.86 -758.83 -773.31 -772.07 -771.67 -771.75 -771.20 

1 20 -764.03 -764.44 -758.60 -762.24 -762.53 -762.28 -760.94 

2 20 -766.27 -761.47 -763.20 -764.41 -764.47 -764.57 -763.90 

3 20 -762.09 -758.47 -764.77 -762.57 -762.69 -762.71 -761.15 

4 20 -759.63 -758.02 -761.19 -758.77 -758.99 -759.00 -758.37 

10 20 -759.30 -757.96 -761.12 -758.57 -758.93 -758.91 -766.62 

50 20 -764.21 -758.06 -767.86 -765.88 -765.91 -765.91 -763.67 

99 20 -764.87 -758.00 -773.25 -771.47 -771.16 -771.19 -769.86 

1 100 -765.86 -766.06 -758.72 -763.89 -764.21 -763.86 -764.41 

2 100 -768.60 -765.56 -762.22 -766.60 -766.61 -766.61 -764.36 

3 100 -764.55 -761.45 -763.94 -763.72 -763.80 -763.83 -761.77 

4 100 -760.80 -759.10 -762.13 -759.70 -760.22 -760.34 -761.82 

10 100 -760.09 -758.55 -762.32 -759.47 -760.17 -760.23 -766.63 

50 100 -764.56 -759.90 -767.60 -766.30 -766.30 -766.30 -764.05 

99 100 -765.11 -759.40 -771.94 -770.24 -769.91 -769.88 -769.02 

1 200 -765.95 -765.83 -758.62 -763.78 -764.02 -763.63 -764.91 
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2 200 -765.97 -763.46 -761.41 -764.53 -764.41 -764.28 -762.77 

3 200 -762.97 -760.69 -763.39 -762.66 -762.57 -762.53 -760.46 

4 200 -759.39 -758.27 -763.00 -759.61 -760.82 -760.80 -762.85 

10 200 -758.98 -758.07 -763.19 -759.70 -761.17 -761.06 -767.12 

50 200 -762.21 -758.90 -767.59 -765.55 -765.57 -765.57 -763.32 

99 200 -762.57 -758.55 -772.06 -770.26 -769.87 -769.88 -768.92 

1 400 -765.35 -764.39 -757.96 -763.65 -763.20 -762.69 -764.51 

2 400 -764.22 -761.98 -762.07 -764.11 -763.58 -763.35 -764.34 

3 400 -761.70 -759.81 -764.78 -763.55 -762.94 -762.88 -762.33 

4 400 -758.44 -757.96 -764.80 -761.30 -763.70 -763.45 -764.21 

10 400 -758.25 -757.97 -765.02 -761.68 -764.82 -764.38 -768.73 

50 400 -760.18 -758.10 -768.97 -766.92 -766.90 -766.90 -764.68 

99 400 -760.28 -757.97 -773.75 -772.85 -772.69 -772.72 -770.60 

1 800 -767.45 -765.72 -757.97 -767.42 -765.74 -764.78 -768.80 

2 800 -762.77 -760.93 -761.82 -764.08 -763.66 -763.51 -761.97 

3 800 -760.18 -759.04 -763.01 -761.80 -761.32 -761.26 -759.67 

4 800 -758.01 -758.01 -763.65 -760.11 -762.23 -762.09 -761.11 

10 800 -757.96 -758.12 -764.05 -760.46 -763.53 -763.24 -763.58 

50 800 -758.73 -757.97 -767.14 -765.64 -765.03 -765.06 -763.55 

99 800 -758.59 -758.18 -770.63 -768.58 -769.02 -769.00 -766.84 

1 1200 -764.38 -762.71 -757.97 -764.16 -762.30 -761.09 -769.68 

2 1200 -759.50 -758.66 -759.04 -759.08 -758.35 -758.12 -757.79 

3 1200 -758.19 -757.97 -759.21 -757.81 -757.09 -757.04 -756.38 

4 1200 -758.10 -758.38 -759.08 -756.97 -757.43 -757.37 -755.37 

10 1200 -758.23 -758.63 -759.29 -757.31 -758.15 -758.00 -756.45 

50 1200 -758.02 -758.37 -761.90 -760.77 -759.73 -759.79 -760.52 

99 1200 -758.01 -758.83 -764.82 -762.80 -762.83 -762.83 -760.58 
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Appendix E Least cost transect analysis: comparison of maximum likelihood 

population effects (MLPE) models explaining estimated dispersal between 

populations of the butterfly, Parnassius smintheus.  All models are shown. 

‘Resistance of forest’ is the resistance value assigned to forest in the surface that was 

used to generate the least cost paths. ‘Transect width’ is the buffer applied to the 

least cost path to create the least cost transect. ‘Model predictors’ refer to the 

combination of predictors (proportion of meadow, barren rock, or forest land cover 

in the least cost transect) that were included in the model. The corrected Akaike 

information criterion (AICc) are presented for each model.  

Resistance 

of forest 

Transect 

width 

(m) 

Model predictors 

Meadow Forest 
Barren 

rock 

Meadow 

& forest 

Meadow 

& 

Barren 

rock 

Forest 

& 

Barren 

Rock 

Meadow, 

forest, & 

Barren 

rock 

1 4 464.10 464.85 529.68 465.09 462.67 466.79 453.74 

2 4 517.29 515.92 530.09 515.93 515.52 516.16 505.53 

3 4 527.79 529.21 529.76 529.99 529.96 530.15 522.38 

4 4 531.18 523.40 528.90 522.80 524.43 523.29 512.76 

10 4 530.89 515.46 527.82 514.15 514.31 514.18 516.34 

50 4 529.64 517.92 530.14 520.11 519.46 520.09 517.97 

99 4 528.94 524.51 531.29 526.41 525.66 526.50 516.89 

1 20 461.98 463.63 529.47 463.29 461.09 465.35 450.10 

2 20 512.22 511.02 529.59 510.73 510.26 511.02 499.95 

3 20 526.72 527.84 529.89 528.86 528.78 529.04 522.98 

4 20 531.29 528.69 529.31 528.03 529.08 528.53 520.57 

10 20 531.14 525.05 528.41 523.57 523.82 523.66 525.36 

50 20 530.32 525.28 530.47 527.15 526.82 527.09 527.63 

99 20 529.67 528.64 531.26 530.73 530.37 530.79 522.36 

1 100 452.69 455.15 528.94 454.31 452.96 456.23 440.70 

2 100 502.08 497.58 530.38 499.41 498.29 499.62 474.98 

3 100 519.65 518.51 530.43 520.51 520.11 520.62 514.49 

4 100 530.75 531.26 530.07 531.66 532.27 532.25 526.95 

10 100 531.12 531.13 529.05 530.27 530.64 530.55 531.32 

50 100 531.28 530.81 530.33 531.82 531.70 531.74 533.38 

99 100 531.21 531.19 531.29 533.40 533.35 533.39 522.58 

1 200 448.21 449.45 526.75 449.62 447.76 451.29 435.61 
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2 200 497.22 494.96 530.96 496.53 494.87 497.02 473.32 

3 200 516.57 516.34 529.97 518.13 517.60 518.40 512.22 

4 200 531.22 531.07 529.56 529.66 531.15 530.84 526.20 

10 200 531.28 530.34 528.70 527.80 528.57 528.34 529.05 

50 200 531.04 529.84 530.03 530.15 529.93 530.00 531.16 

99 200 530.84 530.55 531.26 532.69 532.48 532.61 521.26 

1 400 447.05 445.45 525.15 447.07 443.70 447.61 436.33 

2 400 498.55 497.61 530.88 499.34 498.27 499.73 489.58 

3 400 520.02 520.38 529.29 522.17 521.90 522.46 518.46 

4 400 530.23 527.01 529.70 520.51 524.73 523.24 518.64 

10 400 528.52 521.79 528.77 511.31 512.87 512.00 513.53 

50 400 526.21 519.30 530.03 518.00 516.31 517.20 509.80 

99 400 525.72 522.40 531.28 524.14 522.66 523.71 506.76 

1 800 456.29 447.84 512.90 449.48 447.24 448.40 449.29 

2 800 500.90 497.04 530.31 498.93 499.64 499.08 500.75 

3 800 525.62 524.25 531.20 525.52 526.10 525.83 527.32 

4 800 524.76 522.43 531.29 524.12 524.95 524.35 526.12 

10 800 513.94 505.01 531.09 505.02 504.54 504.49 506.64 

50 800 506.77 500.17 531.21 502.37 499.53 502.24 492.50 

99 800 508.58 509.49 530.60 509.39 508.00 510.50 496.90 

1 1200 474.43 452.86 491.06 448.67 440.91 443.36 441.64 

2 1200 519.03 511.22 513.68 504.74 503.11 503.26 505.36 

3 1200 530.79 529.09 518.70 520.49 519.99 519.93 522.12 

4 1200 516.89 525.95 518.29 513.69 509.68 508.23 509.04 

10 1200 497.23 510.14 521.13 498.83 497.17 494.77 496.22 

50 1200 488.65 504.94 528.72 490.83 490.52 494.17 488.48 

99 1200 489.55 515.30 519.75 490.49 490.56 490.88 492.63 
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