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Abstract 

The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is one of the 

most polyphagous herbivores feeding on cell contents of over 1100 plant species including 

more than 150 crops. However, despite its important pest status and a growing understanding 

of the molecular basis of its interactions with plant hosts, knowledge of the way mites 

interface with the plant while feeding and the plant damage directly inflicted by mites is 

lacking. Likewise, while the use of the reverse genetic tools in plants facilitated our 

understanding of the establishment of defense mechanisms against spider mite herbivory, 

such tools are lacking for spider mite, preventing the expansion of functional analysis to both 

sides of the interacting organisms.  

First, using various microscopy methods, I uncovered several key features of T. urticae 

feeding. By following the stylet path within the plant tissue, I determined that the stylet 

penetrates the leaf either in between epidermal pavement cells or through a stomatal opening, 

without damaging the epidermal cellular layer. Recordings of mite feeding events established 

that the duration of mite feeding ranges from several minutes to more than half an hour, 

during which time, mites consume a single mesophyll cell in a pattern that is common to both 

bean and Arabidopsis plant hosts. In addition, this study determined that leaf chlorotic spots, 

a common symptom of mite herbivory, do not form as an immediate consequence of mite 

feeding.  

Second, using a soaking delivery method of dsRNA, I successfully triggered the RNAi 

response in TuVATPase and TuCOPB2 target genes, resulting in visible phenotypes that 

correlated with reduced mite fitness and silencing of the VATPase gene. In addition, using 

RNAi-associated phenotypes, I enhanced RNAi efficiency by mixing dies with dsRNA, to 

preselect mites that successfully ingested dsRNA, and have established a minimum size of 

400 nucleotides of dsRNA to achieve a potent RNAi in spider mite. 

Overall, my findings established a cellular context of plant-spider mite interactions and 

contributed to the development of the efficient RNAi protocol, a critical step toward 

functional characterization in T. urticae. 
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Chapter 1  

1 General introduction 

1.1 The two-spotted spider mite – Tetranychus urticae 
(Koch) 

The two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) belongs to a 

group of plant pests whose members produce abundant silk (hence the name “spider 

mites”). The first specimen described was collected by the German arachnologist and 

entomologist Carl Ludwig Koch in 1836 on a stinging nettle, Urtica dioica (Koch, 1836). 

T. urticae belongs to the phylum of the Arthropoda, which are characterized by a 

segmented body, jointed appendages and presence of a chitinous exoskeleton. Within the 

arthropods, T. urticae belongs to the subphylum Chelicerata that represents the second 

largest group of arthropods. In the group of Acari, which is separated from spiders, 

phytophagous mites belong to the order of Trombidiformes, with about 22 000 species 

described (Walter, 2004). Despite its small size (about 0.5 mm long), T. urticae is an 

economically important agricultural pest with a global distribution (Bolland et al., 1998). 

The T. urticae genome was sequenced and annotated, and is characterized by a small size 

of 90 Mb (Grbić et al., 2011). 

The mode of reproduction follows parthogenesis, in which fertilized offsprings develop 

into females and unfertilized eggs develop into males (Olivier, 1971). The duration of the 

T. urticae life cycle from eggs to adults varies from about a week to several weeks 

depending on the temperature and humidity. Helle and Sabelis (1985), established a 

development time of about 7-8 days at 27.5-32.5°C. T. urticae development transits 

through four development stages with quiescent stages at the end of larval and nymphal 

development, called chrysalis, as shown in the Figure 1.1 (Boudreaux, 1963). The eggs 

hatch after about 4-day post oviposition into a larva that is recognizable by its 3 paired-

legs. Subsequently, the larva passes through a quiescent stage, the protochrysalis emerges 

into a protonymph with 4 pairs of legs. The protonymph undergoes another molting to 

become deutonymph. The last quiescent stage is the teliochrysalys from which new 

molted adults emerge (Shih et al., 1976). 
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Figure 1.1: The different development stages of T. urticae. The larva hatches from 
egg. The remaining immatures are nymph (Illustration by D. Kidd). 
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1.2 Feeding mechanism and digestive tract 
Since the 1940s, extensive studies have been carried out to depict mite anatomy and body 

structures associated with feeding. Bearing in mind the minute size of the mite, most of 

the reports on anatomic features used histological cross sections coupled with electron 

microscopy. Although, some nomenclature may vary between authors, a good agreement 

among reports regarding features of the mouthparts is established. A simplified 

description of a mite’s body is described below and in Figure 1.2.  

The mite body is divided in two functional domains: the gnathosoma, housing organs 

specialized in feeding (Becker, 1935), and the idiosoma, carrying the legs and organs 

dedicated in digestion, reproduction and excretion (Hammen, 1970). The gnathosoma is 

separated from the idiosoma by a flexible cuticule called circumcapitular furrow (Alberti, 

2006; Grandjean, 1969). The gnathosoma is composed of two parts, the stylophore (STY; 

dorsal part of the gnathosoma), housing mobile elongated cheliceral digits (CHD; feeding 

tube), and the infracapitlum (ventral part of the gnathosoma), including the buccal cavity 

(BC), the pharynx (PH) and the pedipalps (PE) (André and Remacle, 1984; Mothes and 

Seitz, 1981b).  

The stylophore is deeply inserted into the gnathosoma and a sclerotized invagination of 

the cuticule serves as the attachment site of a strong protractor muscle. The stylophore is 

flexible and independent from the infracapitulum where the protractor muscle is attached 

allowing a protraction of the stylophore. However, André and Remacle (1984), didn’t 

observe any retractor muscles and postulated passive retraction of the stylophore. The 

stylophore bear a pair of feeding/piercing structure known as cheliceral digits (Alberti 

and Crooker, 1985; André and Remacle, 1984; Nuzzacci and De Lillo, 1991b; Summers 

et al., 1973). The two flexible cheliceral digits are strongly curves upward with, in each 

inner part, a specialized cuticule that allowed each digit to interlock by a tongue-and-

groove shape (André and Remacle, 1984; Hislop and Jeppson, 1976; Summers et al., 

1973). Transversal sections of cheliceral digits showed innervation and its rounded shape 

with a regular size except the narrowing at the tip, assumed to facilitate the piercing of 

plant tissues and cells (André and Remacle, 1984). When establishing the feeding  
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Figure 1.2: Schematic representation of a sagittal section through T. urticae female. 
Abbreviations: APGL: anterior podocephalic gland; BC: buccal cavity; CHD: cheliceral 
digit; CNM: central nervous mass; DPGL: dorsal podocephalic gland; ES: esophagus; 
EX: excretory organ; FC: floating cell; PE: pedipalps; PH: pharynx; SILKGL: silk gland; 
STY: stylophore; TRGL: tracheal gland; VE: ventriculus. Scale bar: 100 µm. (Adapted 
from Alberti and Crooker (1985), with the permission of Elsevier).  
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process, a mite presses the infracapitulum in the contact with the leaf surface, using its 

pedipalps. The chemo- and mechano-sensing receptors that are presents within sensorial 

organ such as the setae (Mills, 1973), presumably help mites find a suitable feeding spot. 

In preparation for feeding, the protractor muscles contract and each cheliceral digit runs 

into the infracapitulum groove (rostral gutter), which helps interlock them in the 

narrowest part of the buccal cavity to form a hollow tube-stylet (Andre and Remacle, 

1984; Summers et al., 1973). Once protracted, the stylet length ranges from 100 µm in 

larval stages to about 150 µm in adult female mites (Avery and Briggs, 1968; Ekka, 

1969; Sances et al., 1979). The function of this tube remains unknown and it is still the 

subject of controversy among authors whether it can be used as a piercing structure to 

deliver salivary secretion into plant tissue and/or is used for the food uptake as well 

(André and Remacle, 1984; Hislop and Jeppson, 1976; Summers et al., 1973). 

Alternatively, the buccal cavity has been postulated to be the orifice by which the nutrient 

extruded from the epidermis is absorbed (Alberti and Crooker, 1985; Nuzzacci and De 

Lillo, 1991b).  

Five glands (two paired of podocephalic glands: one anterior (APGL) and one dorsal 

(DPGL), two paired of coaxal glands and one unpaired tracheal gland (TRGL), including 

the silk glands (SILKGL)) have been identified in T. urticae and located in the dorsal part 

of the gnathosoma (Mills, 1973). Except for the silk glands, the functions of other glands 

are still unknown. However, Hammen (1980), has shown a salivary canal running from 

the infracapitulum to the tip of the gnathosoma, suggesting a role of two podocephalic 

glands in secretion. In the order Tenuipalpidae, the Brevipalpus mite presents similarites 

in anatomic features of the glands (Alberti et al., 2014). The authors have proposed a 

specific function for each of the prosomal glands. The anterior and dorsal podocephalic 

glands were proposed to be involved in producing saliva enzyme-secretions, while the 

coaxial glands are responsible of water, ions and osmoregulation secretions. Finally, the 

tracheal gland would be involved in the production of a lubricant facilitating the stylet to 

slide in the groove (Summers et al., 1973). Recent studies have demonstrated that T. 

urticae excretes salivary secretions via salivary glands (Jonckheere et al., 2016; Villarroel 

et al., 2016). It has been proposed that these secretions mediate suppression of plant 

defenses (Alba et al., 2015; Kant et al., 2008; Wybouw et al., 2015). 
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Regardless of the way mites ingest plant nutrients, the food is absorbed into the buccal 

cavity, through the pharynx (PH) that produces a sucking force and acts as a pump. The 

nutrients flow into the esophagus (ES), and are absorb in the ventriculus (VE) that 

consists of large digestive “floating” cells (FC) in the midgut of the mite. The midgut is 

composed of the ventriculus above the nervous system (CNM) connected to the 

esophagus and the excretory system (EX). Two large cavities, the caeca specialized in 

digestion, fill most of the lateral part of mite body (Alberti and Crooker, 1985; Alberti 

and Storch, 1973). Large digestive “floating” cells are pinched from the ventriculus 

epithelium and are presumably involved in the absorption of the gut content by 

phagocytosis and pinocytosis (Mothes and Seitz, 1981a). These floating cells are 

transported into the excretory organ responsible for the elimination of food residue and 

nitrogenous wastes (Blauvelt, 1945). Two type of digestion product are excreted (Gasser, 

1951; Hazan et al., 1974). Black balls located in the ventriculus and in the caeca, and 

white pellets located only in the excretory organ. Recently, these two type of residues 

were visualized under confocal microscope (Occhipinti and Maffei, 2013). These authors 

demonstrated that the black pellets contain chlorophyll and its degradation products while 

the white pellets are composed of the guanine residue (see also personal observation, 

Appendix 1). 

1.3 Plant damage and cytological changes associated with 
feeding 

T. urticae feeding causes extensive damage and important physiological changes in the 

host plant. They have been reported to feed on all aerial parts of the plant including 

cotyledon, leaves, stems, fruits and flowers. Although mites are mostly found at the 

abaxial side of the leaf (the underside that is shaded by the leaf itself), they are able to 

feed on both sides. The degree and the depth of injury are depending of several factors: 1) 

the length of the stylet, from 100 to 150µm 2) the feeding duration 3) mite population 

density and 4) host plant features (Avery and Briggs, 1968; Campbell et al., 1990; Ekka, 

1969; Sances et al., 1979).  

Reports on T. urticae feeding on strawberry plants have shown damage being restricted to 

the spongy mesophyll layer with minimal injuries to the uppermost palisade mesophyll 
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layer (Campbell et al., 1990; Sances et al., 1979). Similar conclusion were made with 

mites feeding on cucumber (Park and Lee, 2002). Also, a low mite density seems to 

affect mostly the spongy mesophyll, while with a high density of mites, both spongy and 

palisade mesophyll layers were affected (Sances et al., 1979). 

Interestingly, the brown mites, Bryobia rubrioculus, feeding predominantly on the upper 

epidermis of almond leaves, caused damaged on the palisade layer, leaving the spongy 

layer unaffected (Summers and Stocking, 1972). The same authors evaluated the stylet 

length of B. rubrioculus to be 75 µm long while the palisade layer is 90 µm thick, leaving 

the spongy mesophyll layer unreachable for mites feeding from the upper epidermis. 

Also, it seems that, damage associated with feeding is localized within the mesophyll 

layer that is underneath the epidermis were the mite tends to settle. However, it is still 

unclear where the stylet is inserted in the epidermal cells. For instance, Avery and Briggs 

(1968) didn’t observe epidermal damage and postulated that the stylet was inserted 

between the epidermal cells along the anticlinal walls. Similarly, no evidence of tissue 

damaged were observed to the lower epidermis of strawberry leaves (Sances et al., 1979). 

However, Campbell (1990) observed the presence of stylet holes through the periclinal 

walls of epidermal cells.  

Although these studies represent the benchmark of T. urticae feeding pattern, these 

observations were made days or weeks post feeding, at the time when plant responses to 

mite feeding are triggered. As a consequence, these observations may be the combination 

of direct damage caused by mite feeding and plant responses, leaving the direct feeding 

injury unknown. For instance, changes to the stomatal apparatus reported by Sances et 

al., (1979) was not caused by direct T. urticae feeding, but rather resulted from injury to 

the spongy mesophyll layer that lead to reduced turgor in guard cells associated with 

plant’s physiological response to mite feeding. Similarly, Mothes and Seitz (1982) 

reported a strong reduction of leaf thickness in bean leaves by 50%, 6 days post feeding. 

Likewise, several other reports (Avery and Briggs, 1968; Mothes and Seitz, 1981a; 

Tanigoshi and Davis, 1978) showed an extensive cell death in leaf tissue upon prolonged 

mite infestation, leaving the extent of leaf damage directly caused by mite feeding 

unknown. Furthermore, the presence of coagulated protoplasts, lack of cell content and 
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chloroplast abnormalities in cells that appear adjacent to the punctured cell (that may 

have been consumed by mite feeding) has been reported by Avery and Briggs (1968) and 

Tanigoshi and Davis (1978). In contrast, no morphological distortion in mesophyll cells 

adjacent to mite-damaged cells were observed in strawberry, suggesting that plant 

responses may differ in different species and may be dependent on their physiological 

state (Campbell et al., 1990; Sances et al., 1979).  

1.4 Spider mite control strategy 
T. urticae, is one of the most polyphagous arthropods, feeding on more than 1100 plant 

species including more than 150 agricultural crops that belong to more than 140 different 

families (Jeppson et al., 1975; Migeon and Dorkeld, 2006-2017). Despite increasing 

effort from the scientific community and growers, spider mite control remains 

challenging. Three main factors contribute to spider mite spread: pesticide resistance, 

crop practice and global warming. The current Integrated Pest Management (IPM; 

defined as a combination of existing pest management measures to decrease pests and 

reduce or minimize the use of pesticides) of spider mite relies on biological control using 

predatory mites and pesticides. However, while biological control is efficient under 

specific condition and low population density, T. urticae control requires utilization of 

pesticides. Unfortunately, T. urticae rapidly develops resistance to pesticides making  

mites the arthropod with the highest occurrence of pesticide resistance. This is due to its 

short life cycle, high fecundity and its specific mating system through which recessive 

resistance alleles are easily fixed via haploid males (Carrière, 2003; Denholm et al., 

1998). Moreover, It has been evaluated that T. urticae can develop resistance to a new 

pesticide between 2 to 4 years (Van Leeuwen et al., 2015). 

One mechanism of resistance is based on the modification of the targeted site due to a 

mutation that alters the interaction between the protein target and the pesticide (Li et al., 

2006; Riga et al., 2017). The second mechanism consists of pesticide sequestration or 

enhancement of metabolism that prevent pesticide molecules from reaching their target 

(Roush and Tabashnik, 1990; Taylor and Feyereisen, 1996). In addition, major class of 

insecticides like the neonicotinoids (targeting acetylcholine receptor) do not have effect 
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on spider mites but affect mite predators, resulting in spider mite expansion. Also, 

damage caused by spider mite infestation coupled with an increase of mite population in 

warm weather is predicted to exacerbate plant damage as spider mites reproduce faster in 

high temperature. Likewise, drought-stress of host plants increases spider mite 

oviposition by two times (Ximénez-Embún et al., 2016).  

1.5 RNA interference 
Prior to the discovery and the characterization of RNAi mechanisms by Fire and Mello in 

1998, the phenomena was initially reported in the petunia by Jorgensen and his team in 

an attempt to overexpressed the chalcone synthase gene (chsA), involved in anthocyanin 

production (Napoli et al., 1990). Unexpectedly, transgenic petunia carrying the chsA gene 

under the control of the strong promoter (35S) yielded petunia plants with white flowers 

or partially white with a pigmented background instead of purple flowers. The authors 

demonstrated that both endogenous and exogenous chsA transcripts were suppressed and 

that the reduction of mRNA transcript was not related to the reduction of the transcription 

efficiency, suggesting a “co-suppression” of homologous mRNA. A similar phenomenon 

was observed in the fungus Neurospora crassa, in an effort to increase the production of 

an orange pigment. The transformation of N. crassa wild-type (orange phenotype) by the 

carotenogenic albino-3 (al-3) or albiono-1 (al-1) resulted in an albino phenotype in a few 

transformants in which transcripts levels were drastically reduced (Romano and Macino, 

1992). The authors qualified this phenomenon in fungus as “quelling”.  

In 1998, Fire and his colleagues demonstrated the nature of gene silencing by injecting 

double-stranded RNA (dsRNA) molecules into the body of the model organism 

Caenohabiditis elegans (Fire et al., 1998). They observed that injection of dsRNA was 

more efficient in reducing gene expression than sense mRNA or antisense mRNA single-

strands. Furthermore, they discovered the systemic effect of gene silencing that could 

affect not only the injected animal but its progeny as well. This work was the first to 

elucidate the phenomena of gene silencing, for which the authors received the Nobel 

Prize in 2006.   
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Since the RNAi discovery, key elements underlying the RNAi mechanism were 

discovered. For instance, Hamilton (1999), identified small double stranded RNA 

molecules of about 25 nucleotides that were complementary to the targeted mRNA. They 

hypothesized that these small RNAs are the mediators of mRNA degradation. This 

hypothesis was verified in a series of experiments in which exogenous short-interfering 

dsRNA (siRNA) fragments of about 21 nucleotides long were able to trigger gene 

silencing in Drosophila embryo (Hammond et al., 2000) and mammalian cell lines 

(Elbashir et al., 2001). In the same time, the key enzyme responsible for the cleavage of 

dsRNA into a population of siRNAs was identified in Drosophila melanogaster. It is a 

type III RNAse enzyme that is referred to as Dicer (for its dicing activity) (Bernstein et 

al., 2001; Hammond et al., 2000). Further, two proteins, Argonaute 1 (AGO1) and 

Argonaute 2 (AGO2) were identified in Drosophila to form a complex with the Dicer 

enzyme, yielding the RISC complex (RNAi-induced silencing complex), hypothesized to 

directly mediate the “slicing” activity (Hutvágner and Zamore, 2002; Martinez et al., 

2002; Nykänen et al., 2001). However, only Argonaute 2 has been demonstrated to have 

the endonuclease activity (Liu et al., 2004).  

1.6 RNAi pathways and biological function 
Three main RNAi pathways associated with small RNAs have been characterized, each 

displaying specific function in eukaryotic organisms. 

Micro RNAs (miRNA) are derived from long hairpin RNA encoded by the host genome. 

Its processing yields a single small non-coding RNA of about 22 nucleotides (Bartel, 

2004). This endogenous RNAi is involved in gene regulation and functions as a repressor 

of either gene translation (Translation Gene Silencing; TGS; Djuranovic et al., 2012) or 

at the post transcriptional level (Post-Transcriptional Gene Silencing; PTGS; Bushati and 

Cohen, 2007; Leucci et al., 2013; Pillai et al., 2017). The Piwi-interacting short RNAs 

(piRNAs) mediated pathway has been demonstrated to be involved in silencing of 

transposable elements, preserving genome integrity (Aravin et al., 2007; Lee, 2015; 

Sienski et al., 2012).  

Finally, the siRNA also called exogenous RNAi, is the pathway that has a role in 

protection against invading viral RNA (Ding, 2010; Ding and Voinnet, 2007). The 
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siRNA pathway can be manipulated through biotechnology to suppress a specific gene 

target by delivering dsRNA into the cell.  

1.7 Mechanism of RNAi through the exogenous application 
of dsRNA 

When exogenous dsRNA is introduced, dsRNA molecules are processed by the enzyme 

Dicer-2 into a population of uniformly sized siRNA molecules of 20 to 25 bp long and 

loaded into the RISC complex. siRNAs are subsequently recruited by the Argonaute 

proteins into a RISC complex that either cleaves the homologous mRNA or prevents its 

translation (Figure 1.3). This mechanism is particularly interesting, since the application 

of the exogenous dsRNA can be used to knock-down, in theory, any gene. Since RNAi 

depends on the complementarity between the target and dsRNA, the RNAi response is 

expected to be specific. For more than a decade, RNAi has been used as a reverse genetic 

tool (Lawson and Wolfe, 2011), therapeutic treatment (Aagaard and Rossi, 2007) and 

recently in plant-pest control (Baum et al., 2007). The use of RNAi in the control of 

plant-pests is based on the premise that if the targeted mRNA encodes an essential 

protein, its silencing leads to lethality. The sequence specificity of a dsRNA fragment 

used for the RNAi should secure effectiveness against a particular species without 

affecting other organisms.  

1.8 RNAi as a tool for pest control   
A potential use of RNAi in agricultural pest control has been established by Baum and 

Mao who independently demonstrated that artificial diets and transgenic plants can be 

used as delivery systems of dsRNA capable of silencing genes in insect pests (Baum et 

al., 2007; Mao et al., 2007). In the study done by Mao, transgenic plants were engineered 

to express hairpin dsRNA targeting the cytochrome P450 gene (CYP6AE14) of the cotton 

bollworm Helicoverpa armigera (CBW), involved in detoxification of the secondary 

metabolite gossypol that is produced by the cotton plant. When CBW was feed on 

transgenic Arabidopsis thaliana or Nicotiana tobacum that expressed dsRNA against 

P450, transcript levels of the target gene decreased in the insect midgut and larval growth 

was retarded. Moreover, the effects were intensified in the presence of gossypol. 
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Figure 1.3: Mechanism of RNA interference in eukaryotic cell. Exogenous dsRNA 
triggers RNAi by activating Dicer enzyme that is going to cleave long dsRNA fragment 
into a population of short interfering RNAs (siRNAs) of 20 to 25 base pairs. siRNAs are 
loaded into a RISC complex that induces either degradation of complementary mRNA or 
its inhibition. This phenomenon is called Post Translation Gene Silencing, (PTGS). 
(adapted from Bensoussan and Grbić, 2017). 
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Baum and his team, designed an RNAi screen in which they tested 290 dsRNAs, 

targeting genes coding for proteins of vital function and supplied in artificial diet. They 

identified 14 genes that strongly responded to RNAi, causing increased larval mortality in 

the western corn rootworm, Diabrotica virgifera virgifera (WCR). Subsequently, corn 

plants were transformed to express dsRNA against the proton pump VATPase of WCR, 

one of the targets identified in the artificial diet screen. These plants showed significant 

reduction of root damage with low nodal injury upon WCR infestation, indicating the 

efficiency of the RNAi in crop protection (Baum et al., 2007). Although, these studies 

highlight the potential of RNAi as a promising tool to control pests, RNAi efficiency has 

been shown to be variable among insects and arthropods. Even though the RNAi 

machinery is conserved across insect and arthropods classes, RNAi responsiveness 

differs among orders (Bellés, 2010). For example, it has been reported that coleopterans 

are very sensitive to RNAi. 

In contrast, RNAi responsiveness in lepidopterans has been reported to be low and 

variable between species, tissues, gene targets, delivery methods and required high 

concentration of dsRNA to trigger equivalent RNAi efficiency as in coleopterans 

(Ivashuta et al., 2015; Terenius et al., 2011). Moreover, factors including, but not limited 

to, RNAi design, dsRNA concentration, delivery method, targeted gene, life stage and 

expression level of RNAi machinery have been demonstrated to be critical (Bolognesi et 

al., 2012; Chu et al., 2014; Coleman et al., 2015; Huvenne and Smagghe, 2010; Ivashuta 

et al., 2015).  

1.9 Factors influencing RNAi efficiency  

1.9.1 dsRNA design 

Factors including dsRNA fragment size, concentration and targeted mRNA region can 

profoundly affect the RNAi efficiency, which also dependent on the targeted gene and the 

organism tested. For instance, in the red flour beetle, Tribolium castaneum, long dsRNA 

with a minimal size of 70 nucleotides was required to achieve effective RNAi, in which 

the length was shown to be crucial for cell uptake (Miller et al., 2012). Furthermore, they 

demonstrated a dose-response between the concentration of dsRNA and the interference, 
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with optimal concentration of 0.01 µg/µl, after which further increase of dsRNA 

concentration didn’t increase RNAi potency. 

In insects such as Drosophila, fragment sizes ranging from 21 to 592 base pairs have 

been tested for RNAi efficiency on S2 cells (Saleh et al., 2006). The authors clearly show 

a positive correlation between fragment size and increased RNAi efficiency. In addition, 

long dsRNAs were more efficient compare to siRNA when expressed in transgenic plants 

(Mao et al., 2011). Overall, most of the studies have shown that dsRNA of 100 to 600 bp 

are required for the successful RNAi. The region of mRNA sequence targeted by dsRNA 

can also influence RNAi efficiency. For instance, ingestion of dsRNA designed against 

the 3’ end of the apoptosis gene AeIAP1 of the mosquito Aedes aegypti, showed greater 

effect than dsRNA against the 5’ end region (Pridgeon et al., 2008). However, no 

differences where observed between dsRNA designed either against the 5’ or 3’ ends of 

the targeted gap gene hunchback, a key regulator in the anteroposterior patterning in the 

pea aphid, Acyrthosiphon pisum (Mao and Zeng, 2012). 

These studies point out the variability of RNAi sensitivity when designing dsRNA 

intrinsic to the target and the organism. Also, they hint at a need to design several 

fragments, each targeting different parts of the mRNA, which can also be used to test the 

experimental reproducibility. Also, in silico analysis of the targeted sequence must be 

performed prior to synthesizing dsRNA to avoid off-target effects form sequence match 

between population of siRNA (product from dsRNA cleavage) and mRNA from 

undesired targets (Du et al., 2005; Jackson et al., 2003). Although, to date, no consensus 

about the degree of sequence mismatch between siRNA derived from dsRNA and off 

targeted mRNA has been established. 

1.9.2 dsRNA delivery method 

Several methods have been developed to deliver dsRNA, including but not limited to: 

injection, feeding on artificial diet, transgenic plant expressing dsRNA, and soaking 

which consists of the immersion of the organism or cell culture into solution containing 

dsRNA (Yu et al., 2013). Injection was the first method used to deliver dsRNA and was 

done in D. melanogaster in the attempt to silence the frizzled gene (Kennerdell and 
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Carthew, 1998). The advantages associated with this method is the high silencing 

efficiency of the target gene and the control of the amount of dsRNA delivered into the 

body. However, variation of RNAi response has been observed when compared between 

delivery methods on the same organism (Terenius et al., 2011). Injection of dsRNA was 

more efficient to silence apn gene in Spodoptera litura compare to the interference from 

feeding on hairpin-loop transformed plants as a result of a lower concentration of 

delivered dsRNA with feeding (Rajagopal et al., 2002). 

In contrast, ingestion of dsRNA through oral delivery was more efficient than injection 

when a continuous feeding was applied in the Cotton Bollworm, Helicoverpa armigera 

(Yang and Han, 2014). The development of the oral delivery method was introduced as 

an alternative of injection, that is time consuming and subject to mechanical damage that 

is often lethal (Liu et al., 2010), or that induces an immune response (Han et al., 1999). 

Also, injection of dsRNA or small RNAs were widely used as a reverse genetics tool, 

while non-invasive methods of dsRNA delivery, such as soaking or feeding, are more 

suitable for the development of RNAi as biopesticide. Moreover, oral delivery is 

convenient, less invasive, and can be used as high-throughput screen. The first 

demonstration of RNAi through oral delivery was done in C. elegans feeding on 

Escherichia coli transformed to express dsRNAs (Timmons and Fire, 1998). 

Also, several studies have shown the potential of using artificial diet mixed with dsRNA 

for oral delivery. It was successful to trigger RNAi in whiteflies, aphids and honey bees 

(Aronstein et al., 2006; Ghanim et al., 2007; Whyard et al., 2009; Wuriyanghan et al., 

2011). Oral delivery through feeding on transgenic plants expressing dsRNA was 

efficient to trigger RNAi in Coleopteran (Baum et al., 2007), Lepidoptera (Dai et al., 

2008), Helicoverpa (Bally et al., 2016), and in Hemiptera (Zha et al., 2011).  

Soaking in a solution of dsRNA has been used to deliver dsRNA into nematodes (Conte 

et al., 2015; Tabara et al., 1998) and arthropods (Li et al., 2015; March and Bentley, 

2007; Timmons and Fire, 1998). Recently, RNAi-based efforts to control the mite honey 

bee parasite, Varroa destructor, have been reported by Campbell in 2010. In this study, 

injection and soaking mites in solution of dsRNA, were assessed. Soaking mites in a 
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solution of dsRNA resulted in 87% transcript level downregulation compare to 97% 

when injected, albeit rather associated with high mortality due to the mechanical stress. 

1.9.3 Gut Environment 

Although the oral delivery of dsRNA may provide an advantage to follow a natural 

ingestion route through the gut, the ability of dsRNA to be ingested and absorbed by 

epithelium gut cells can influence RNAi potency. Moreover, the spatio-temporal 

expression of key components of the RNAi machinery can also affect RNAi efficiency 

and its ability to spread through the body (Chintapalli et al., 2007; Rinkevich and Scott, 

2013). Recently, there is increasing evidence of the presence of nuclease in the gut and 

hemolymph in arthropods that, this could result in dsRNA degradation prior to cell 

uptake and a lack of potent RNAi in some species (Allen and Walker, 2012; Garbutt et 

al., 2013; Wynant et al., 2014). Interestingly, the elimination of the nuclease activity in 

the potato beetle, Leptinotarsa decemlineata, increased RNAi efficiency (Spit et al., 

2017). In addition to the presence of nucleases, extreme gut pH can provide a deleterious 

environment to dsRNA stability (Lomate and Bonning, 2016). However, an acidic gut 

environment has been shown to be required for SID-2 activity in dsRNA cell uptake in 

Drosophila S2 cells (McEwan et al., 2012).  

1.9.4 RNAi in Tetranychid mites 

The genome of T. urticae contains genes encoding for a complete set of RNAi processing 

machinery, including two Dicer homologs, pasha, Drosha and components of the RISC 

complex (including seven orthologs of both Argonaute and Piwi genes; Grbić et al., 

2011). In contrast to other arthropods and similar to Caenorhabditis elegans, T. urticae 

possesses five copies of the RNA-dependent RNA polymerase (RdRp) required for the 

systemic spread of RNAi responses. Expression levels of these genes in different T. 

urticae developmental stages are shown in Figure 1.4, suggesting that RNAi machinery is 

potentially efficient throughout spider mite development. Thus, screening for RNAi 

target genes is not limited to a specific developmental stage in spider mites.  
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Figure 1.4: Heatmap representing expression patterns of RNAi-associated genes at 
different developmental stages of Tetranychus urticae, based on the number of 
mapped RNAseq reads (Illumina). Boxes are colored yellow for low expression and 
red for high expression (see scale at the top). Row labels are tetur IDs grouped by gene 
function. Column labels are the developmental stages of T. urticae. (Adapted from 
Bensoussan et al., 2017). 
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Khila and Grbić (2007) demonstrated that parental RNAi can silence the expression of 

the homeobox gene, Distal-less (Dll). Injection of either Tu-Dll-specific dsRNA or 

siRNA into adult female mites resulted in offspring with truncated and fused leg 

segments. This study was the first to demonstrate that RNAi could be a valid reverse 

genetic approach in T. urticae. However, compared to other arthropods, for example 

Tribolium and Oncopeltus, dsRNA injection is not a viable delivery method for T. 

urticae, as females are less than 0.5 mm in length. Recently, Kwon et al., (2013) reported 

an alternative method for the administration of dsRNA to T. urticae. They developed a 

protocol for oral delivery of dsRNA using bean leaf discs that floated on a solution 

containing dsRNA. Using this method, they were successful in decreasing the expression 

levels of several genes involved in mite metabolism and physiology, resulting in mite 

mortality five days post feeding. Even though this method may not be practical for high 

throughput screens of potential mite targets, as it requires large quantities of dsRNA that 

must be replaced daily, it has been useful as a reverse genetics tool. For example, 

application of this dsRNA delivery method in the red mite, Pannonychus citri, has been 

successful in down-regulating the chitinase (PcCht1) gene by almost 60%. Associated 

with the reduced expression of this target gene was lethality that resulted from larval 

molting failure (Xia et al., 2016). Similarly, oral delivery of dsRNA to the carmine spider 

mite, Tetranychus cinnabarinus, was successful in down-regulating an esterase (TCE2) 

whose expression was implicated in acaricide resistance. The exogenous application of 

acaricides to the dsRNA-treated mites increased their effectiveness, indicating the 

correlation between the expression of TCE2 gene and acaricides resistance (Shi et al., 

2016). These examples reinforce the feasibility of using RNAi as a reverse genetics tool 

for functional studies of mite biology, and as a tool for the development of new mite 

management strategies. 

 

1.10 Rationale and specific goals of my research 
 
T. urticae is one of the most polyphagous herbivores feeding on cell contents of over 

1100 plant species including more than 150 crops. It is being established as a model 



19 

 

chelicerate herbivore with tools that enable tracking of reciprocal responses in plant-

spider mite interactions. However, despite their important pest status and a growing 

understanding of the molecular basis of interactions with plant hosts, knowledge of the 

way mites interface with the plant while feeding and the plant damage directly inflicted 

by mites is lacking. In addition, a critical step in the analysis of spider mite gene function 

is the availability of efficient reverse genetic tool. To further promote the establishment 

and use of T. urticae as a model herbivore, the objectives of my work were: 

 
 
 1) To characterize plant damage that directly results from mite feeding at a 

cellular level and duration of a feeding event. 

 

2) To investigate the T. urticae stylet pathway while feeding on host plants. 

 

3) To establish RNA interference in T. urticae through soaking of adult female 

mites in the solution of dsRNA against the target gene VATPase.  

 

4) To further optimize the soaking method and RNAi design in T. urticae using 

dsRNA against VATPase and COPB2. 
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Chapter 2  

2 Plant-herbivore interaction: dissection of the cellular 
pattern of Tetranychus urticae feeding on the host plant 

2.1 Introduction 
The chelicerates are the second largest arthropod group comprised of horseshoe crabs, 

scorpions, spiders, mites, and ticks (Brusca and Brusca, 2003). Horseshoe crabs, 

scorpions and spiders are predators that use pre-oral digestion as a shared digestive 

strategy. These organisms secret digestive enzymes, originating from the midgut, into 

their prey to aid in the pre-oral digestion and liquefaction of prey tissues before ingestion 

by morphologically diverse mouthparts (Cohen, 1995). Ticks and mites belong to the 

Acari, the most diverse group within chelicerates, with over 40,000 identified species. 

This group exhibits a plethora of different lifestyles ranging from parasitic to predatory to 

plant-feeding. Predatory Acari, similar to other chelicerate predators, utilize secreted 

proteins to facilitate the consumption of their prey. However, these digestive enzymes 

originate from salivary secretions rather than from the midgut (Cohen, 1995).  

Phytophagous mites represent a complex assemblage of saprophagous, fungivorous and 

herbivorous species (Krantz and Lindquist, 1979). Among them, Tetranychidae (spider 

mites), Tenuipalpidae (false spider mites), and some Eriophyoidea mites are exclusively 

phytophagous and include major agricultural pests. A common feature of the mouth 

apparatus of these mites includes the formation of the elongated cheliceral stylet that 

allowed adaptation to a piercing mode of feeding, in which the stylet is used to penetrate 

the host tissue to allow the consumption of the cells contents. While Tetranychidae and 

Tenuipalpidae mites have a single, long and retractable stylet (Alberti and Kitajima, 

2014), Eriophyoid mites have several stylets that are not retractable. Instead, Eriophyoid 

mites penetrate their stylets into the plant tissue by telescoping the palpal tissue that 

surrounds the stylet bundle (Krantz and Lindquist, 1979). 

Tetranychus urticae Koch (Acari: Tetranychidae), the two-spotted spider mite (T. 

urticae), is one of the most polyphagous herbivores that feeds on over 1100 plant species, 
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including more than 150 crop species (Jeppson et al., 1975; Migeon and Dorkeld, 2006–

2017). Similarly to phloem-feeding insects, this chelicerate pest has mouthparts adapted 

for a “sucking” mode of feeding, but exactly how T. urticae feeds on plant tissues 

remains controversial. In contrast to phloem-feeding herbivores that “suck” the sap from 

a plant's vascular system, T. urticae feeds on cells within the leaf mesophyll (Park and 

Lee, 2002). Associated with this difference in feeding preference is the length of the T. 

urticae stylet that ranges from 100 µm in larvae to ~150 µm in the adult female mites 

(Avery and Briggs, 1968; Ekka, 1969; Sances et al., 1979), relative to the much longer 

stylets of phloem-feeding insects that can reach up to 800 µm (Pointeau et al., 2012). The 

T. urticae stylet is a tube formed by the interlocking of two cheliceral digits with a single 

canal of ~2 µm in diameter (André and Remacle, 1984). This contrasts the more elaborate 

structure of stylets in phloem-feeding insects (e.g., aphids and psyllids), which consist of 

two canals: a feeding canal that transports the plant nutritive sap, and the salivary canal 

that allows secretion from the insect's salivary glands into the plant tissue (Tjallingii and 

Esch, 1993; Garzo et al., 2012). While the function of a stylet as a piercing-feeding organ 

is clearly described in phloem-feeding insects, its role in T. urticae feeding is still 

unclear. It is not known if T. urticae use their stylet to transport both the saliva and the 

plant nutritive fluid (Summers et al., 1973; Hislop and Jeppson, 1976; André and 

Remacle, 1984), or if they use the stylet to pierce the plant tissues, deliver salivary 

secretions, and then use the buccal cavity to directly ingest the nutritive fluid originating 

from mesophyll cells that is proposed to be extruded to the surface by capillary action 

(Alberti and Crooker, 1985; Nuzzaci and De Lillo, 1991a). 

Spider mites most frequently feed on leaf tissues, causing the formation of chlorotic spots 

that are associated with an extensive collapse of the mesophyll layer (Sances et al., 1979; 

Park and Lee, 2002). Ultrastructural studies of damaged plant tissue identified cells that 

were either plasmolysed, empty, collapsed, or had coagulated contents (Tanigoshi and 

Davis, 1978; Albrigo et al., 1981; Campbell et al., 1990). As cell wall disruption was 

associated with some of the affected cells, the observed damage was attributed to stylet 

penetration and mite feeding. In addition, it has been estimated that mites damage ~20 

clustered cells per minute directly leading to the formation of a chlorotic spot (Liesering, 

1960). While these studies provide a benchmark for our understanding of the T. urticae-
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plant relationship, some conclusions were inferred from the observation of the T. urticae 

feeding behavior or its long-term consequence on plant tissues, rather than on the direct 

and immediate analysis of plant-mite interface. For example, the assessment of plant 

damage was based on the analysis of leaf tissues that were exposed to mite herbivory for 

days, hindering the ability to distinguish between plant damage that directly resulted from 

mite feeding and damage that was a cumulative result of both mite feeding and plant's 

response to it. In addition, the number of cells consumed by mites was estimated based 

on the movement of T. urticae's mandibular plate and the assumption that every 

movement corresponds to the insertion of the stylet into an independent cell (Liesering, 

1960). 

T. urticae is being established as a model chelicerate pest. Its genome was recently 

sequenced (Grbic et al., 2011) and several plant-T. urticae interaction experimental 

systems were established (Zhurov et al., 2014; Martel et al., 2015; Wybouw et al., 2015; 

Diaz-Riquelme et al., 2016). The ability to track the whole-genome reciprocal responses 

in plant-T. urticae interactions allows dissection of molecular mechanisms underlying 

plant responses to mite herbivory. In addition, recent work indicated that the T. urticae 

and related mites can manipulate plant defense responses, suggesting that there is an 

elaborate interaction between these herbivores and their plant hosts, and an evolutionary 

arms-race between their genomes (Kant et al., 2008; Alba et al., 2014; Wybouw et al., 

2015; Villarroel et al., 2016; Jonckheere et al., 2016). In this context, the knowledge of 

spider mite feeding at the cellular level, using direct observations, becomes critical for 

understanding cellular interactions and signaling underlying mite feeding and plant-

induced responses. Here, I characterized plant damage that directly results from mite 

feeding at a cellular level and the interface between the mite and the plant during the 

feeding process. I show that T. urticae uses its stylet to penetrate into the leaf mesophyll, 

where it consumes individual cells without damaging epidermal cell layer. In addition, I 

show that the consumption rate of plant cells is much lower than previously estimated 

and that mite feeding per se does not result in the formation of chlorotic spots  

This study establishes the cellular context for the plant-spider mite interactions required 

for our understanding of the cell signaling associated with spider mite feeding. 



33 

 

2.2 Material and Methods 

2.2.1 Plant growth and material rearing 

The bean, Phaseolus vulgaris, cultivar California Red Kidney (Stokes, Thorold, ON), and 

Arabidopsis thaliana (Columbia-0) plants were grown from seed in peat–vermiculite 

growing mix (Premier Pro-mix BX; Premier Tech) at 24°C, under 100–150 µM m−2s−1 

cool-white fluorescent light and 16/8 h (light/dark) photoperiod. The reference spider 

mite strain, Tetranychus urticae (London), was reared on bean plants under the same 

conditions. 

2.2.2 Monitoring of T. urticae feeding 

To estimate the amount of time that spider mites spend at a feeding site, mites were first 

starved for 12 h and then 10 female mites were placed on either a bean or Arabidopsis 

leaf disk of 1.5 cm in diameter. Mite feeding was recorded under a dissecting microscope 

fitted with the Canon EOS Rebel T5i camera (Canon, Japan). 

2.2.3 T. urticae cuticular preparations 

Adult spider mites were starved for 12 h and were placed in 100% ethanol overnight. The 

following day, mites were transferred to a slide containing a drop of a mix of Hoyer's 

medium and lactic acid (1:1, v/v). The slides were incubated overnight at 60°C and were 

viewed using a Zeiss Axiophot microscope (Carl Zeiss AG, Germany) fitted with a Zeiss 

AxioCam Color HRc CCD Camera 412-312 (Carl Zeiss AG, Germany). 

2.2.4 Phalloidin staining 

Spider mite adults were collected and fixed in 4% formaldehyde in 0.1 M phosphate 

buffer saline (pH 7.4) overnight at 4°C. Mites were washed twice in 0.1 M phosphate 

buffer. Approximately 100 spider mites suspended in 100µl of phosphate buffer saline 

were incubated with 50 µl of phalloindin 546 (Alexa Fluor® 546 Phalloidin, 

ThermoFisher Scientific, USA) overnight at 4°C (Jiang et al., 2007). Phalloidin stained 

actin filaments were visualized using a Zeiss Axiophot confocal microscope (Carl Zeiss 

AG, Germany) using the following settings: Excitation: 543 nm, Filter: Ch1, LP 560; 

Image size: 2048 x 2048 pixels representing an area of 460.6 × 460.6 µm. 
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2.2.5 Scanning electron microscopy 

Spider mites were fixed overnight in 2.5% (v/w) glutaraldehyde (Electron Microscopy 

Sciences, USA) in 0.1 M sodium phosphate buffer (pH 7.2). Fixed mites were washed 

three times in 0.1 M sodium phosphate buffer (pH 7.2) and were dehydrated in a graded 

ethanol series of increasing concentration for 10 min at each concentration—50, 70, 80, 

90, 95, 100%, and 100% (v/v in H2O). The specimens were further dried in a graded 

series of hexamethyldisilazane (HMDS; Sigma, USA) diluted with 100% ethanol (v/v) to 

25, 50, 80, 100, 100% for 10 min at each step, followed by air-drying in a fume hood for 

1 h (Bray et al., 1993). Individual spider mites were mounted onto SEM stubs using an 

eyelash probe before coating them with gold particles in the sputter (Technics Hummer 

VI Sputter Coat Unit, Anatech, USA). Samples were examined with a Hitachi S-3400N 

electron microscope (Hitachi Science Systems, Tokyo, Japan) operated at a voltage of 5 

kV. 

2.2.6 Trypan blue staining of plant tissue and quantification of 
damage caused by T. urticae feeding 

Trypan blue staining was performed according to Keogh et al. (1980), with some 

modifications. Adult female mites were allowed to feed on either the adaxial or abaxial 

side of the Arabidopsis or bean leaf piece of 1 cm2 for 10 min, as described above. 

Subsequently, leaves were submerged in trypan blue solution (1:1:1:1 v/v, lactic acid, 

phenol, glycerol, water, and 1% trypan blue) diluted with 95% ethanol (1:2 v/v) in a 15-

mL conical polypropylene tube, and were placed in a boiling water bath. Arabidopsis 

leaves were boiled for a minute and bean leaves for 5 min. The tissue was left in the 

staining solution overnight at room temperature. Subsequently, leaves were cleared with 

a chloral hydrate solution (2.5 g/mL diluted in water; Sigma, USA) for ~6 h with two 

changes of the solution. Cleared leaves were either prepared for imaging or sectioning. 

Leaves for imaging were mounted in 50% glycerol in 0.1 M sodium phosphate buffer at 

pH 7.0 and observed by light or confocal microscopy using a Zeiss Axiophot microscope 

(Carl Zeiss AG, Germany) fitted with a Carl Zeiss AxioCam Color HRc CCD Camera 

412-312 (Carl Zeiss AG, Germany). For confocal imaging, the tissue was excited with a 

543 nm HeNe laser line and bi-directional scanning was used to scan leaf tissue regions 
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in sections of 230 × 230 µm at a 2048 × 2048 pixel resolution. Sectioning of the trypan 

blue-stained and cleared plant tissues: Trypan blue-stained bean tissue was prepared for 

sectioning by fixing the sample in 10% glutaraldehyde solution in 0.1 M sodium 

phosphate buffer (pH 7.0) overnight. Leaf tissue was manually dehydrated in an ethanol 

series up to 70% (v/v in H2O). Further dehydration and paraffin embedding was 

performed in a tissue processor (Leica ASP300TP). Embedded leaf tissue was sectioned 

on a microtome (Leica RM2255 Microtome) at a thickness of 10 µm. Sections were 

dewaxed in two 10 min changes of 100% xylene, were mounted with PermountTM 

Mounting Medium (Fisher, USA) and were examined under a Carl Zeiss AxioCam Color 

HRc CCD Camera 412-312. Several attempts to paraffin-embed trypan blue-stained 

Arabidopsis leaves resulted in an excessive tissue disruption. Instead, a free-hand 

sectioning of Arabidopsis tissue had to be performed. Briefly, a surgical blade (Feather, 

No. 23) was used to cut leaf sections of 100–150 µm in thickness under the dissecting 

microscope. Leaf sections were mounted flat between layers of 2% agar (w/v in H2O) to 

provide physical support for the leaf tissue. The agar embedded tissue was excised, 

mounted in 50% glycerol (v/v in H2O) and observed under a light microscope using a 

Zeiss Axiophot microscope (Carl Zeiss AG, Germany) fitted with a Carl Zeiss AxioCam 

Color HRc CCD Camera 412-312 (Carl Zeiss AG, Germany). 

2.2.7 Histological analysis of T. urticae stylet path through the 
plant tissue 

Fully expanded adult bean or Arabidopsis leaves were cut into small pieces (0.4 × 0.8 

cm) that were placed on wet cotton with either adaxial or abaxial sides exposed and then 

infested with 50 mites that were starved for 12 h. Mites were allowed to feed for 10 min. 

Next, leaf pieces (with mites still feeding on them) were submerged in liquid nitrogen in 

order to fix mites in their natural feeding position. Frozen leaf pieces were transferred to 

a solution of 2.5% (v/v) glutaraldehyde in 0.1 M sodium phosphate buffer at pH 7. After 

24 h, the tissues were gently washed in 0.1 M sodium phosphate buffer at pH 7 and 

dehydrated in a graded alcohol series: 25, 50, 75, 95, 100% and 100% (v/v in H2O), for 

15 min in each solution. Leaf pieces with mites still attached were embedded in LR 

White resin (Electron Microscopy Science, USA) and were cured overnight at 55°C. 
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Specimens were cut with a Reichert Ultracut S ultramicrotome (Leica, Austria) into 1µm 

serial sections using a glass knife. Sections were stained with toluidine blue, 0.5% (w/v) 

in 0.1% (w/v) Na2CO3 in water, for 5 min on a slide warmer at 60°C and dried overnight 

at room temperature. Cross sections of mite-free plant leaves were prepared in parallel as 

controls. 

2.3 Results 

2.3.1 Determination of the T. urticae feeding event 

In order to determine the immediate consequence of mite herbivory on plants damage, I 

first had to establish the timing of  a mite's feeding event. A feeding event was defined as 

a process that is initiated by a mite's settlement at a particular leaf spot and is terminated 

when the mite raises its head away from the leaf surface. An example of a feeding 

initiation event is shown in the Supplemental Movie S1, beginning at 0 min 31 s, while a 

termination event can be seen at 5 min 2 s in the Supplemental Movie S2. The whole 

feeding event of this mite is shown in Supplemental Movie S3, which captures the mite 

feeding for over 12 min (See movies in supplemental data in: Bensoussan et al., 2016). In 

addition, two other mites that were continuously feeding are captured within the same 

frame. An analysis of 27 independent feeding events revealed a wide distribution of 

durations, ranging from as short as several minutes to over half an hour, with an average 

duration of mite feeding event of 13 min 22 s (Figure 2.1A). 

During feeding, mites move their stylophore (Sty in Figure 2.1B) leading to stylet 

protrusion and penetration into the plant tissue. The stylet, not directly visible as mites 

feed, is a tube composed of two movable cheliceral digits (Chd in Figures 2.1Bv–viii). 

Each cheliceral digit is attached dorsally to a retractable and extrudable stylophore. While 

feeding, protracted cheliceral digits slide into groves formed by the rostral gutter (Rg; 

seen in the inset in Figure 2.1Bi) to interlock together and form the stylet—a hollow 

tube—at the buccal cavity level (Bc in Figure 2.1B). Besides the stylet and buccal cavity, 

the spider mite feeding apparatus is composed of the propharynx (Pr), pharynx (Ph), 

esophagus (Es), and midgut (Figure 2.1B). Ventrally, a small opening through the cuticle,  
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Figure 2.1 T. urticae feeding duration and mouth-part organs. (A) Duration of 
individual mite feeding events in minutes (n = 27). (B), T. urticae mouth parts. i–iii, SEM 
imaging and v–vii, brightfield of mite gnathosoma. i and v, dorsal view with inset close 
up view of the rostral gutter (Rg); ii and vi, ventral view with inset close up view of the 
inferior oral commissure (Or); iii and vii lateral view; iv: phalloidin staining of actin 
filaments and viii: schematic representation of muscles associated with the mouth parts. 
Sty, stylophore; Bc, buccal cavity; ChD, Cheliceral digits; Es, Esophagus; Ph, Pharynx; 
Pr, Propharynx; scale bars: in inset i and ii, 10 µm; in iv (i–iv and vi–viii), 50 µm; in v, 
50 µm. (C–F), Mite feeding and plant damage. 
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referred to as the inferior oral commissure (Or) can be observed (see inset in Figure 

2.1Bii). This aperture was hypothesized to help the suction flow caused by the 

pharyngeal pump (Nuzzaci and De Lillo, 1991b). Both the stylophore and the pharynx 

are connected to head muscles that control their movements (Figures 2.1Biv, viii). While 

the movement of the pharyngeal pump cannot be observed, the pulsing of the mite 

opistosoma (the posterior part of the body) is readily visible as mites feed (Supplemental 

Movies 1–3). 

No visual plant damage can be observed following mite feeding. A representative feeding 

event is shown in Figures 2.2A, B. Once feeding is completed (this particular one lasted 

for 10 min), no macroscopic change can be observed at the site (Figures 2.2C, D). Thus, 

chlorotic spots that eventually form on infested leaves (see Figure 2.2F in inset) are not 

an immediate consequence of mite feeding. A similar duration of feeding with a lack of 

visible damage was also observed after mite feeding on the Arabidopsis leaves (data not 

shown). Thus, mites spend minutes feeding at the same leaf spot, without causing visual 

damage to plant tissue. 

2.3.2 Determination of T. urticae Feeding Pattern on Plant Tissue 

The frequency of stylophore movement associated with mite feeding led to the 

proposition that mites consume ~20 plant cells per minute (Liesering, 1960). To 

determine the extent of leaf damage occurring during a single mite feeding event, I 

allowed mites to feed on leaves for 10 min, after which I immediately stained the leaf 

tissue with trypan blue vital stain, to identify the number and the pattern of dead cells. As 

host-plant preference may affect mite feeding patterns, I infested both bean leaves 

(preferred host for the population used in this study) and Arabidopsis leaves (a non-

preferred host) with mites. In addition, since mites normally feed from both adaxial and 

abaxial leaf surfaces, I examined plant damage in a controlled experimental set-up that 

allowed mites to exclusively feed from only one of these surfaces. This allowed me to 

determine if accessing the leaf tissue from different epidermal surfaces has an effect on 

feeding patterns. Bean and Arabidopsis leaves have cell layers typical of dicotyledonous 

plants: the adaxial (upper) epidermis (ad), the palisade mesophyll (pm), the spongy 

mesophyll (sm), and the abaxial (lower) epidermis (ab) (Figure 2.3A). I used  
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Figure 2.2: Mite feeding event and plant damage. (A), Mite at the beginning of the 
feeding event. (B), Mite at the end of the feeding event. (C, D) Feeding site. F inset, a 
typical chlorotic spot (arrow head). Scale bars: 500 µm in (A–C); 250 µm in (D) (main 
panel and inset).  
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both histological and optical sectioning to observe cells that were damaged as a result of 

mite feeding, Figure 2.3A. The epidermal layers are cellular monolayers containing 

densely packed pavement cells, trichomes, and stomata. Stomata consist of two guard 

cells that form an opening through the epidermal layers that allow gas exchange between 

the leaf mesophyll and atmosphere. Below the adaxial epidermis is the palisade 

mesophyll, a monolayer in both bean and Arabidopsis leaves that is composed of densely 

packed cylindrical cells. Located further ventrally is the spongy mesophyll that is 

characterized by a multilayer of oval and sparsely packed cells that are interspaced with 

large volumes of the air space. The spongy mesophyll is in direct contact with the abaxial 

epidermis, which forms the most ventral leaf boundary. I used trypan blue to distinguish 

intact cells from those with disrupted cell membranes, since only damaged cells 

accumulate the dye and appear blue under a bright field microscope. To ensure that all 

cells that could have been damaged during a 10-min mite feeding were visualized, I 

examined the leaf tissue in both transverse and longitudinal serial sections after mite 

feeding (Figures 2.4A–D). 

When mites fed from the adaxial epidermis, the trypan blue staining was most frequently 

restricted to the palisade parenchyma that is in direct contact with the upper epidermis 

(86% of the total number of feeding events on bean leaves and 77% on Arabidopsis 

leaves, Table 2.1 and Figures 2.4A, C). The frequency of feeding events involving 

multiple cells negatively correlated with the number of dead cells. On bean and 

Arabidopsis leaves respectively, two stained cells were observed in 13 and 20% feeding 

events, and three stained cells were observed in 1 and 3% of feeding events. Thus, when 

placed on the adaxial epidermis, mites usually damaged a single palisade cell that was 

immediately below the epidermis. However, the epidermis was not damaged (Table 2.1 

and Figures 2.4A, C).  

When mites fed from the abaxial epidermis (where T. urticae preferentially feeds), the 

damage most frequently occurred in the layer immediately adjacent to the lower 

epidermis, the spongy parenchyma, in both bean and Arabidopsis leaves (76% of feeding 

events on bean and 69% on Arabidopsis involved a single cell in the spongy layer, Table  
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Figure 2.3: Bean and Arabidopsis leaves cell layer. (A), Longitudinal cross sections of 
bean and Arabidopsis leaves stained with toluidine blue (on the top) and Arabidopsis 
optical sections (at the bottom) visualized using confocal (upper row) and brightfield 
(lower row) microscopy. ad, adaxial epidermis; pm, palisade mesophyll; sm, spongy 
mesophyll; ab, abaxial epidermis. Scale bars: 50 µm in all panels.  
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Figure 2.4: Plant damage associated with spider mite feeding. (A–D), Representative 
images of damaged cells within trypan blue stained bean and Arabidopsis leaves after 
spider mite feeding for 10 min. Damaged cells appear blue and are marked with 
arrowheads in optical and cross sections. Scale bars: 50 µm in (A) through (E). 
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Table 2.1: Distribution of trypan blue stained cells within bean and Arabidopsis leaf 
tissues resulting from T. urticae feeding for 10 min.  
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2.1 and Figures 2.4B, D). Feeding that resulted in staining of two or three cells was 

observed in 24 and 31% of cases in bean and Arabidopsis leaves, respectively. Thus, 

spider mite feeding events (restricted to a 10-min period) most frequently resulted in the 

trypan blue staining of a single mesophyll cell that was adjacent to the epidermal layer 

that mites stand on, regardless of the plant host. This pattern suggests that mites: (a) do 

not have a preference for the cell type within the mesophyll, and (b) feed on internal leaf 

tissue cells without an apparent disturbance of the epidermal layer. 

2.3.3 Tetranychus urticae Feeding 

A lack of trypan blue staining within the epidermal cellular layers and the observed cell 

death of mesophyll cells resulting from mite feeding raises the question of stylet 

penetration through the plant tissue. Given these observations, at least two possible stylet 

paths are conceivable. First, the stylet can transverses epidermal cells, however, since the 

stylet is only 2 µm in diameter, the resulting damage may not affect cell viability. 

Consequently, epidermal cells remain colorless upon trypan blue staining. Alternatively, 

the stylet does not penetrate, but transverses the epidermal layer in between cells. 

To distinguish between these possibilities, I had to reconstitute stylet pathway within the 

leaf tissue.  Given that mites retract their stylet upon disturbance, I first had to develop a 

tissue preparation method that supports histological analysis of plant tissues with mites 

(and their stylets) in a feeding position (see Material and Methods). My first step was to 

find a good fixation method to keep mites in feeding position without disturbing stylet 

movement. I used different concentration and combination of chemical fixative, physical 

technics such as CO2
 incubation and finally immersion in liquid nitrogen. This last 

technic was the most efficient in preserving mites in feeding position on plant tissue. 

Next, I tested different histological methods in order to section internal leaf tissue and 

observe the stylet path. I tested cyrosectioning, which consists of embedding frozen tissue 

in a compound suitable for sectioning at very low temperature (-20; -30°C). However, 

this technic was not suitable as it caused mechanical distortion and tissue 

compression/extension from the blade (Appendix 2). I next tried paraffin embedding of 

frozen tissue that was previously fixed and dehydrated for microtome sectioning. The  
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Figure 2.5: Interface between T. urticae and plant tissue during feeding. (A), A 
longitudinal cross section of mite feeding from the abaxial side of the Arabidopsis leaf. 
(B, C), Serial sections (1 µm apart) of stylet penetration through epidermal cellular layers 
of Arabidopsis leaves while mites fed from the abaxial side (in B) and adaxial side (in C). 
Guard cells were labeled with arrows in (B). (D), T. urticae stylet penetration while 
feeding from the abaxial side of bean leaf. (E), Plant cell damage associated with spider 
mite feeding. Longitudinal cross sections of Arabidopsis (i and ii) and bean (iii and iv) 
leaves showing cells (marked with asterisks) that were in direct contact with mite stylet. 
Stylet is marked with arrowhead throughout. Scale bars: 100 µm in (A), 25 µm in (B–E). 
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quality was improved for the mite material and I could see the stylet in the leaf section 

(Appendix 3). However, the plant tissue was altered and plant cells were hardly 

distinguishable. Finally, when frozen tissue was embedded in epoxy resin and sectioned 

with the ultramicrotome, both plant and mite tissues were well preserved, allowing me to 

assess stylet penetration into plant tissue. Longitudinal serial sections of feeding mites, 

recovered with their stylets within leaf tissues, are shown in Figures 2.5A–E. These 

histological sections are oriented with the leaf adaxial (upper) epidermis toward the top 

and the mite's prosoma (anterior end) toward the left. The epidermal pavement cells, 

which lack chloroplasts, appear empty in cross sections of glutaraldehyde-fixed and 

toluidine blue-stained preparations. Interspersed among these cells are stomata, natural 

openings at the leaf epidermis. Stomata can be recognized on the longitudinal leaf cross 

sections by the presence of guard cells (marked with arrows in Figure 2.5B), which are 

smaller in size relative to the pavement cells, contain chloroplasts, stain blue in our 

preparations, and are positioned above the substomatal cavity. Cells within the mesophyll 

layer contain chloroplasts that can be seen as blue circles at the cellular periphery in our 

toluidine-blue stained leaf cross sections (Figure 2.5).  

A low magnification view of a mite feeding on an Arabidopsis leaf from the abaxial 

epidermis is shown in Figure 2.5A. In this particular case, the stylet penetrates the 

epidermal cellular layer through the stomatal opening (see Figures 2.5Bi–iv). Micron-

thick serial sections reveal stylet in two adjacent sections that is consistent with stylet's 

estimated diameter of 2 µm. The stylet transverses the epidermis in between the two 

guard cells that remain intact (see Figures 2.5Bii, iii), indicating that the stylet uses a 

stomatal opening to reach the leaf mesophyll. An examination of additional independent 

feeding events demonstrates that mites do not always use stomata to insert their stylets 

into the leaf. Serial sections in Figure 2.5C show stylet penetration during spider mite 

feeding from the adaxial epidermis of an Arabidopsis leaf. The plane of sectioning is not 

parallel to the stylet, resulting in the presence of stylet segments (marked by arrowheads) 

in consecutive sections. Importantly, the stylet crosses the epidermis in between the two 

pavement cells (Figures 2.5Cii, iii). Similarly, stylet penetration into the bean leaf upon 

mite feeding from the abaxial epidermis is shown in serial sections, Figure 2.5D. In this 

instance, the penetration occurs between pavement cells that are adjacent to stomata, 
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indicating that mites do not have a preference for transversing the leaf epidermis by 

inserting their stylet through the stomatal opening. Thus, our histological analysis 

indicates that stylet penetration occurs either through the stomatal opening (between 

guard cells) or between the pavement epidermal cells, leaving the epidermal cells intact. 

This stylet penetration path is consistent with the observed lack of cell death and trypan 

blue staining in the epidermis. 

Histological analysis of independent feeding events also allowed me to visualize for the 

first time, the appearance of cells that were direct targets of stylet penetration. While 

intact mesophyll cells have chloroplasts at the cell periphery that are stained dark with 

toluidine blue and a central vacuole that stains light blue, cells in contact with the stylet 

are either completely empty, or their cellular contents appeared condensed and partially 

removed (Figure 2.3E, see cells marked with asterisks). As a single trypan blue-stained 

mesophyll cell was the most frequently associated with mite feeding, sections shown in 

Figures 2.5Eiii, iv identify individual cells in which the stylet path terminated (labeled 

with the arrow head) and whose contents have been removed, resulting in empty 

plasmolysed cells. 

In other sections, multiple cells that were on the stylet path showed extensive damage 

(Figures 2.5Ei, ii) correlating with the identification of multiple cells that were stained 

with trypan blue. A stylet that transversed the stomatal cavity (Figures 2.5A, B) 

penetrated cells toward the adaxial side of the leaf. These cells lacked chloroplasts and 

were collapsed (Figure 2.5Eii). In addition, Figure 2.5Ei shows damage to multiple 

mesophyll cells whose contents were still partially present but were coagulated. 

Therefore, mite stylet pierces the leaf epidermis in between cells without damaging them 

to reach mesophyll layer. The stylet either passes between two pavement cells, or through 

the stomatal opening created by the two guard cells.  

Spider mite feeding results in the removal of the contents of a single or limited number of 

mesophyll cells that were on the stylet path. In some cases, the cell content can be seen, 

but is coagulated. The mesophyll cells surrounding damaged cells remained intact with 

unperturbed internal organization. 
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2.4 Discussion 

2.4.1 Mechanism of T. urticae feeding  

The reconstitution of complex relationships between mites and their hosts requires an 

understanding of mite feeding and its impact on plant integrity. In this study I identified 

several key features of T. urticae feeding: first, I showed that stylet penetrates the leaf 

either in between epidermis pavement cells or through a stomatal opening, without 

damaging the epidermal cellular layer (Figures 2.4, 2.5); second, mites feed from 

mesophyll cells without a preference for cell type within this layer (Figure 2.4 and Table 

2.1); third, the similarity of mite feeding on bean (preferred host) and Arabidopsis (a non-

preferred host for the strain used in this study) indicates that mite feeding pattern is not 

affected by the plant host preference (Figure 2.4 and Table 2.1); fourth, the duration of a 

single mite feeding event is longer than previously estimated, ranging from several 

minutes to more than half an hour (Figure 2.1 and Supplemental Movies); fifth, chlorotic 

spots that form on damaged leaves are not an immediate consequence of mite feeding 

(Figure 2.2). Finally, I initiated mapping of several gene expression domains in mite’s 

prosoma that may be associated with salivary secretion.  

The leaf epidermis, with its cuticular depositions, is one of the constitutive defenses 

developed by plants to deter pathogen infection and herbivory. However, stomatal 

openings disrupt epidermal confluence and are used by most microorganisms and some 

arthropod pests to access the inner leaf cellular layers (Melotto et al., 2008). Some 

Tetranychid and Tenuipalpidae mites exclusively target stomatal openings for stylet 

penetration, e.g., stomatal stylet penetration has been proposed for Tetranychus 

lintearius, which feeds on gorse, Ulex europaeus (Marriott et al., 2013) and was 

demonstrated for Raoiella mites on wide range of plant hosts (Beard et al., 2012). 

Exclusive utilization of stoma as an entry point for the stylet of these mites may arise due 

to the thick cuticle at the epidermis of host plants, which may present an impermeable 

physical barrier to stylet penetration. My analyses showed that T. urticae transverse the 

epidermis either through a junction between epidermal pavement cells or through stomata 

(Figure 2.5). Given the limited number of independent penetration events available for 

the histological analysis I cannot exclude the possibility that T. urticae sometimes 
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penetrate the epidermis by puncturing pavement cells, as proposed by Tanigoshi and 

Davis (1978), and Campbell et al. (1990). However, if that pattern occurs, it is rare (I did 

not encounter it in any of the 10 complete serial cross sections) and it does not result in 

disruption of the epidermal cells (I did not observe trypan-blue stained epidermal cells in 

the analysis of more than 600 independent feeding events (Figure 2.4 and Table 2.1)). 

Mites exclusively feed from cells within the mesophyll parenchyma of either bean or 

Arabidopsis leaves (Table 2.1). Most frequently, the disturbed cells were adjacent to the 

epidermal layer of the leaf surface that mites fed from (Figure 2.4). However, such a 

pattern is not a reflection of the mite's inability to reach deep into the leaf tissue when 

feeding. The T. urticae stylet is estimated to be up to ~150 µm in length (Avery and 

Briggs, 1968; Ekka, 1969; Sances et al., 1979). As leaf thickness ranges between 100 and 

150 µm (depending on species and part of the leaf blade), the mite stylet can completely 

transverse a leaf, allowing it to reach either the palisade or spongy mesophyll regardless 

of the leaf surface mites are on (see Figure 2.5A for example). Thus, my data suggest that 

mites have no preference for the mesophyll cell type, but apparently feed from the first 

parenchyma cell the stylet encounters. While T. urticae exclusively feeds from cells 

within the mesophyll parenchyma, the eriophyoid mites that are smaller in size and have 

short stylets only feed from the epidermal cells (Gibson, 1974; Krantz and Lindquist, 

1979; Rancic et al., 2006; Nahrung and Waugh, 2012). This demonstrates that epidermal 

cells could be a source of nutrients as well. Thus, the exclusive feeding of T. urticae on 

cells within the mesophyll layer reflects mite's preference for this cell type. The basis for 

this preference is currently not known. 

Mite feeding is not macroscopically visible (Figure 2.2). It causes limited damage to 

plant tissues and a feeding event usually results in the death of a single cell (Figure 4 and 

Table 2.1). Cells penetrated by the stylet collapse, with chloroplasts that are either 

completely removed or appear condensed, Figure 2.5. These changes are consistent with 

ultrastructural studies of plant damage caused by mite feeding that showed collapsed 

cells, devoid of any content, or those that contained condensed cellular debris (Tanigoshi 

and Davis, 1978; Campbell et al., 1990). Importantly, cells surrounding the dead cell 

remain alive with no apparent damage (Figure 2.5 and Campbell et al. 1990). In addition, 
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even though the formation of chlorotic spots has been used as a symptom of plant 

damage caused by mite feeding (Tanigoshi and Davis, 1978; Sances et al., 1979; Albrigo 

et al., 1981; Campbell et al., 1990; Park and Lee, 2002; Zhurov et al., 2014), they are not 

an immediate consequence of mite feeding. 

Two possible ways were proposed to explain how mites ingest plant nutritive fluids: 

fluids either surface on the leaf epidermis and mites intake them directly using their 

buccal cavity (Alberti and Crooker, 1985; Nuzzaci and De Lillo, 1991a), or, mites use 

their stylet to suck the cell content in situ (Summers et al., 1973; Hislop and Jeppson, 

1976; Andre and Remacle, 1984). If mites ingest the cell content from leaf surface, then it 

is unclear how mites can produce sufficient negative pressure to: (1) allow nutritive fluids 

to pass through the stylet holes that are created in the cell membrane and the cell wall, 

and are only few microns in diameter; (2) direct movement of nutritive fluids toward the 

epidermis, especially within the spongy mesophyll, which is greatly enriched in 

intracellular air space (Figure 2.3); and, (3) pass the nutritive fluid through the epidermis, 

which is otherwise non-permeable, to reach the surface. Moreover, contrary to what 

would be expected if fluid flowed from the damaged site to the leaf surface, I did not 

observe remains of cellular contents outside of disrupted cells nor in the apoplastic space 

leading toward the epidermis. I consider this mode of feeding improbable and favor the 

possibility that mites use their stylet to suck the nutritive fluid in situ. This possibility is 

consistent with the histological analysis showing stylets within cells whose content is 

either condensed or emptied (Figure 2.5) (the extremely high frequency of these 

observations while analyzing independent feeding events indicates that the stylet remains 

continuously protruded and inserted into the mesophyll cell during feeding). 

 However, if nutritive sap is sucked through the stylet, then some form of pre-oral 

digestion likely takes place within the feeding cell. Pre-oral digestion will facilitate 

consumption of cellular organelles whose size exceeds the stylet diameter (e.g., 

chloroplasts are several microns in diameter while the stylet tube is about 2 µm) and will 

reduce the viscosity of the cellular content. Digestive enzymes aiding the liquefaction of 

cellular content could originate from the mite's salivary secretions or from the plant cell 

itself. Predatory mites inject hydrolytic enzymes into their prey's body to liquefy its 
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content (Cohen, 1995). Thus, it is conceivable that phytophagous mites use a similar 

mechanism to liquefy the content of the plant cell that they feed on. Recently, serine 

proteases, deoxygenates and lipocalins were predicted to be part of the mite secretome 

(Villarroel et al., 2016), supporting the possibility that mites inject hydrolytic enzymes 

into the plant cell to facilitate nutrient acquisition. Alternatively, the tonoplast likely 

collapses upon stylet penetration, causing the release of vacuolar hydrolytic enzymes into 

the cytosol, leading to degradation of cellular structures in a manner similar to the 

vacuole-induced cell death associated with plant defenses against viruses and microbes 

(Hara-Nishimura and Hatsugai, 2011). The long duration of individual mite feeding 

events (Figure 2.1 and Supplemental Movies) supports the possibility of a complex 

process being required to prepare the cell contents for consumption.  

2.4.2 Mechanism of T. urticae Feeding: Comparison with other 
Cell-Content Feeding Herbivores and Implications for the 
Host Plant Defenses 

Phytophagous Hemiptera and Acari are cell-content feeders that evolved stylets as part of 

their feeding apparatus to puncture cells they feed from. Among this group of herbivores, 

the mechanism of aphid feeding is the best understood (Will et al., 2013; Jaouannet et al., 

2014). Both aphids and T. urticae use stylets to penetrate the epidermis between 

pavement cells and to reach feeding cells that are internal to the leaf tissue. However, 

despite being cell-content feeders, there are some important differences in feeding 

strategies of these herbivores. For example, aphids have an exclusive preference to feed 

from sieve element cells within the phloem. Aphids navigate their stylets through the leaf 

mesophyll and vascular bundle sheath apoplast and, guided by the cell chemical content, 

reach the phloem to insert the stylet into a sieve element cell (Hewer et al., 2011). Once 

in a sieve element cell, aphids use their stylet to suck the nutritive sap that is continuously 

replenished, keeping the feeding cell alive. In contrast, T. urticae feeds from mesophyll 

cells, without an apparent preference for the cell type (Table 2.1). In addition, mites feed 

by ingesting and emptying the content of the feeding cell, resulting in cell death. Thus, T. 

urticae feeding takes place in a different cellular context relative to aphids. A model 

depicting mite and aphid feeding is shown in Figure 2.4 and their anticipated 

consequences on induced plant defenses at feeding sites are discussed below. 
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The duration of a single T. urticae feeding event is measured in minutes (Figure 2.1). 

During this time, I envision four processes: stylet penetration into the cell, pre-digestion 

of the cellular content, liquefaction of nutritive fluids and finally the consumption of 

nutrients. Thus, the feeding cell has limited time to respond to mite feeding. Early 

responses, including plasma membrane depolarization (measured in seconds; Mousavi et 

al., 2013), changes in ion fluxes (that occur within a minute; Felix et al., 1991) and 

release of signaling/defense compounds (e.g., reactive oxygen species; Miller et al., 

2009) are expected to occur, but transcriptional reprogramming within the feeding cell is 

unlikely. Cell wall and membrane fragments generated as a result of stylet penetration, 

leakage of digested cell content, activation of mechano/turgor-sensitive channels, and 

potential presence of spider mite salivary secretions are among some of the potential 

damage- and herbivory-associated molecular patterns (DAMPs and HAPMs respectively) 

that can act as elicitors at the feeding site. These elicitors are expected to bind to the 

receptors at the surface of the intact cells surrounding the feeding cell and to trigger local 

and systemic defense responses, Figure 2.6B. Spider mite salivary secretions may also 

contain effectors, aimed at manipulating plant defenses, that have been discovered 

(Villarroel et al., 2016). 

Salivary secretions and effectors have been critical for the evolution of the aphid feeding 

mechanism. Aphids feed for hours (and even days) from a single sieve element cell that 

remains alive (Tjallingii, 1995). Such prolonged feeding necessitates interference with 

host defenses that act locally at the feeding site, including: (1) secretion of salivary 

deposits that form a protective sheet around the stylet as it penetrates the plant tissue in 

search of the phloem, and, (2) salivary secretions delivered to the sieve element cell to 

prevent its occlusion and to keep it alive (Figure 2.6B; Tjallingii, 2006; Will et al., 2007). 

Interference with the host-induced transcriptional responses at the feeding site occurs in 

particular in companion cells that have tight symplastic connections with the enucleated 

sieve element cell. On the other hand, the importance of mite salivary secretions and the 

cellular processes that are potential targets of mite effectors are presently unknown. The 

existence of effectors has been monitored through their ability to modify host-induced 

defenses. Transcriptional changes associated with manipulated plant defenses identified 

so far indicate that only a subset of induced responses is attenuated (Kant et al., 2008; 
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Alba et al., 2014; Zhurov et al., 2014; Martel et al., 2015; Wybouw et al., 2015; Diaz- 

Riquelme et al., 2016). Such a pattern suggests that there is an interaction between the 

effectors and the intracellular components of the responding plant cells, evoking the 

internalization of effectors deposited in the apoplast at the feeding site. Even though the 

targets of mite effectors are not known, it is unlikely that they include interference with 

defense compounds that act locally, as mites move away from the feeding site. It is thus 

postulated that interference with a plant's ability to mount an effective systemic response 

will be of greater benefit to spider mite performance. 

In summary, I have described the cellular pattern of spider mite feeding. I showed that 

mites feed from the content of a single mesophyll cell, resulting in its death. A model 

based on histological observations predicts the existence of both elicitor and effector 

molecules in the plant apoplast surrounding the feeding cell. The identification of mite 

effectors and determination of their interacting plant counterparts, as well as the 

identification of elicitors associated with mite feeding and their receptors, will ultimately 

allow mapping spatial and temporal events that are triggered by mite feeding. 
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Figure 2.6: Model of the interactions between the plant and the cell-content feeding 
herbivores—the two-spotte spider mite and the aphid. (A), Schematic of leaf cross-
section and feeding herbivores. Both T. urticae and aphid use stylets (red) to penetrate the 
leaf without disturbing epidermal cells. T. urticae feeds from the immediate cell in the 
mesophyll layer that stylet encounters, while aphid navigates its stylets through 
mesophyll apoplast to reach sieve element cell (SE). The schematic is drawn to scale; 
scale bar: 50 µm. (B), Close-up diagrams of T. urticae and aphid feeding sites. On the 
left, T. urticae feeding results in a cell whose content has been removed. Stylet hole 
(marked with the arrowhead) is disturbing the unity of the plasma membrane and the cell 
wall. Damage- and Herbivore-Associated Molecular Patterns (DAMPs and HAMPs) are 
shown as blue and black dots, while mite effector molecules are shown in red. These 
molecules are expected within the damaged feeding cell and in the apoplast surrounding 
it, where they may diffuse. Cells that directly respond to DAMPs and HAMPs trigger 
local responses and are shown in pink. Model predicts that some T. urticae effectors (red 
dots) targeting the modulation of plant transcriptional response are internalized by these 
cells. Cells surrounding the feeding site and not directly exposed to DAMPs and HAMPs 
(light green) mount the systemic response. On the right, aphid stylet (red) is surrounded 
with a salivary sheet (yellow). It penetrates the sieve element cell (SE) where effectors 
are delivered. Effectors that modulate plant transcriptional reprogramming diffuse into 
adjacent companion (CC) and bundle sheath (BSC) cells that are symplastically 
connected with the enucleated sieve element cell. DAMPs and HAMPs also accumulate 
within the SE and diffuse into CC and BSC cells. PM, palisade mesophyll; SM, spongy 
mesophyll; pd, plasmodesmata. Schematic in (B) is not drawn to scale. 
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Chapter 3  

3 RNA interference in the two-spotted spider mite 
Tetranychus urticae through soaking in solution of 
dsRNA. 

3.1 Introduction 
The chelicerates represent the second largest group of terrestrial animals after insects 

(Brusca and Brusca, 2003) that include horseshoe crabs, scorpions, spiders, mites and 

ticks. They display a plethora of different lifestyles and contain economically important 

species for human health and agriculture. Mite species exhibit a large range of 

adaptations including herbivory, predation, parasitism, detritivory and symbiosis 

(Dunlop, 2010; Dunlop and Alberti, 2008). With almost 50,000 species described by the 

end of 20th century, and 0.5 to 1 million species estimated to exist, mites are one of the 

most diverse groups in the animal kingdom (Halliday et al., 2000). The two-spotted 

spider mite, Tetranychus urticae (Koch), is the first chelicerate whose complete genome 

was sequenced and annotated (Grbić et al., 2011). It is a compact genome of 90 Mbp 

(54% of which is protein coding sequence), with simple gene structure. T. urticae 

develops rapidly. It is easy to maintain in the laboratory and can be enriched in specific 

developmental stages. Because it is a major agricultural herbivorous pest, a strong 

research community supports the emergence of T. urticae as a versatile chelicerate model 

organism (Grbic et al., 2007). Most organisms whose genome has been sequenced in the 

last few years lack genetic tools available in established model systems (e.g. 

Caenorhabditis elegans, Drosophila, zebrafish and mouse) thus, it is critical to develop 

high throughput platforms using reverse genetics aimed at the functional characterization 

of unknown genes. Since its discovery, RNAi has been a useful tool to dissect gene 

function (Cullen and Arndt, 2005; Kuttenkeuler and Boutros, 2004; Zhai et al., 2009). 

However, RNAi delivery is often a cumbersome process requiring the injection of 

dsRNA into the body of small animals to initiate gene silencing. In such cases, RNAi 

experiments remain limited to the silencing of individual genes, with the notable 

exception of the high throughput screen of over 5,000 genes in Tribolium (Schmitt-Engel 
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et al., 2015). The streamlined dsRNA delivery methods results in relatively large assays. 

For example, a medium size screen (hundreds of genes) was performed in the coleopteran 

western corn rootworm Diabrotica virgifera virgifera based on an artificial diet laced 

with dsRNA (Baum et al., 2007). Also, dsRNA delivery by soaking was implemented in 

a high throughput reverse genetic platform for C. elegans (Maeda et al., 2001; Tabara et 

al., 1998). The genome of T. urticae contains genes encoding for the complete RNAi 

processing machinery including components of the RISC complex. It has already been 

shown that the maternal injection of either dsRNA or siRNA in T. urticae induces RNAi 

in embryos and causes developmental aberrations consistent with the loss-of-function 

phenotype of the target gene (Khila and Grbić, 2007).  RNAi is thus a valid reverse 

genetic approach in T. urticae. However, compared to other arthropods, for example 

Tribolium and Oncopeltus (Bucher et al., 2002; Liu and Kaufman, 2005), injection of 

dsRNA in T. urticae females that are less than 0.5 mm in length remain challenging. 

More recently, Kwon et al., (2013), reported an alternative method for the oral 

administration of dsRNA via bean leaf discs floating on a dsRNA solution. 

Unfortunately, this protocol requires large quantities of dissolved dsRNA that must be 

replaced daily, making this method impractical for high throughput screens. To assess the 

potential of RNAi approaches in T. urticae, I developed a dsRNA delivery method in 

which mites are soaked in the solution containing dsRNA. In this study, I used the T. 

urticae target gene Vacuolar-type H+-ATPase (VATPase) encoding a protein that 

functions as a pump transferring protons across cellular membranes using the energy 

released by ATP hydrolysis (Finbow and Harrison, 1997). It has been previously used as 

a target for RNAi silencing in multiple arthropod system, e.g. the Western corn rootworm 

(Diabrotica virgifera virgifera), the pea aphid (Acyrthosiphon pisum), the red flour beetle 

(Tribolium castaneum), the tabacco hornworm (Manduca sexta), the whitefly (Bemisia 

tabaci) and the Colorado potato beetle (Leptinotarsa decemlineata) (Baum et al., 2007; 

Finbow and Harrison, 1997; Upadhyay et al., 2011; Whyard et al., 2009; Zhu et al., 

2011). These studies established the essential role of VATPase, demonstrating that 

effective silencing of its expression leads to significant and measurable reduction of 

fitness across arthropod species. In addition, these studies showed that orally-delivered 

dsRNA against VATPase induces RNAi. Finally, TuVATPase has already been shown to 
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yield modest but significant mite mortality when silenced in T. urticae though the leaf 

floating method (Kwon et al., 2013). 

Here I show that the application of dsRNA against TuVATPase by soaking resulted in the 

phenotypic change of mite body color correlated with gene downregulation and the 

reduction of mite fitness: survivorship and fecundity. However, these phenotypic changes 

occurred only in a subset of treated mite populations. The data suggested that variability 

in RNAi response were not due to the genetic background from heterogeneous mite 

population but were related to the intrinsic property of the soaking method. Overall, data 

gathered in this study show the potential towards the development of reverse genetic 

platforms applicable as high-throughput screens.  

3.2 Materials and Methods 

3.2.1 T. urticae rearing conditions 

The stock population of T. urticae referred as London strain originated from the Vineland 

region in Ontario. The London population were maintained on California red kidney 

beans (Phaseolus vulgaris L, stokes, Thorol, ON) grown in soil (PRO-MIX® BX 

MYCORRHIZAETM; Premier Tech, Rivière-du-Loup, QC), in a climate controlled 

chamber at light/dark photoperiod of 16/8 h, 26°C with relative humidity of 50%.  

3.2.2 Preparation of developmentally synchronized mites  

Adult female mites were allowed to lay eggs for 24 h on a fresh detached bean leaf at 

light/dark 16/8 h, 26°C, and 50% relative humidity (RH). After 24 h, the adult females 

were removed and 1-day-old eggs were allowed to develop until female mites became 

teleiochrysalis (7-8 days). Teleiochrysalis were collected and incubated at 18°C and 

100% RH for 24 h, after which they were returned to 26°C and 50% RH environment. 

Adult female mites, emerged within 3 hours upon transfer to a 50% RH environment and 

were collected for experimentation. 
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3.2.3 dsRNA fragments 

In this study 2 different dsRNA were used targeting the TuVATPase transcript to ensure 

the reproducibility and the specificity of the RNAi phenotype. Fragments corresponding 

to the region of TuVATPase, referred to as fragment A (an upstream fragment of 214 bp 

within the 3rd exon of the TuVATPase locus) and fragment B (a 416 bp fragment within 

the 4th exon) were chosen as templates for the preparation of dsRNA. In addition, a 382 

bp intergenic fragment spanning the region 1690614-1690995 of the genomic scaffold 12 

(Figure 3.1) was chosen as the template for the preparation of a negative control dsRNA, 

referred to as NC. A BLAST search against the T. urticae genome and transcriptome 

database confirmed that the 382 bp intergenic sequence is unique and not transcribed. 

3.2.4 dsRNA preparation for TuVATPase  

The nucleotide sequence of TuVATPase (tetur09g04140), and intergenic region (negative 

control (NC), genomic coordinates: scaffold 12, position 1690614 – 1690995) were 

obtained from the ORCAE database. Total RNA was extracted from the frozen mite 

females with the RNeasy Mini Kit (Qiagen, Valencia, CA) and cDNA was synthesized 

from 3 µg of the extracted total RNA with the SuperScript II cDNA Synthesis Kit 

(Thermo Fisher Scientific, Waltham, MA) and stored at −20°C. Fragments (A and B) of 

TuVATPase and a control sequence (NC) targeting a intergenic region were PCR 

amplified with primers shown in Table 3.1, using cDNA and genomic DNA as templates 

respectively, with Phusion DNA polymerase (NEB, New England Biolabs, UK). 

Amplified DNA fragments were purified with the Gel/PCR DNA Fragments Extraction 

Kit (Geneaid Biotech, New Taipei, Taiwan). Purified fragments were cloned in 

pLITMUS 38i vector (NEB, New England Biolabs, UK) containing T7 polymerase 

promotor sequence flanking multiple cloning sites to streamline dsRNA production. 

Inserts selected for the synthesis of dsRNA were re-sequenced to confirm their identity. 

RNA fragments were synthesized using 1 µg of DNA template with the TranscriptAid T7 

High Yiled Transcirption Kit (Thermo Fisher Scientific) in 1.5-ml centrifuge tubes, 

denaturated at 95°C for 5 min, followed by slow cool-down to room temperature to 

facilitate formation of dsRNA. dsRNA was purified by phenol-chloroform extraction  
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Figure 3.1: Fragment used for the synthesis of dsRNAs. Schematic of TuVATPase 
locus (A). DNA sequences used for the generation of dsRNA-TuVATPase are located in 
the 3rd exon, fragment A (214bp), and in the 4th exon, fragment B (416bp). UTR and 
coding sequences are shown in yellow and blue, respectively. Schematic of the part of 
scaffold 12 of T. urticae genome (B) depicting the location of the 382 bp fragment that 
was used to synthesized dsRNA-NC. 
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Table 3.1: Primers used in this study. 

 

 

 

 

Cloning primers 

Primer names Oligonucleotide sequence (5’ to 3’) Fragment names (bp) 

Tetur-VATP-F-A CAGTTCTCCGAACCGGTAAA  
A (214) 

Tetur-VATP-R-A CCACCGGTAATGTGACTACCA  

Tetur-VATP-F-B CCGTGATATGGGTTACCATG  

B (416) 
Tetur-VATP-R-B GAAGAGGTACGAAATCTGGG  

Tetur-sc12-F GCCCTCTCCTGGTTGTAAACTT  

Control, NC (382) 
Tetur-sc12-R CGACCCCATCAGGCTATTGA 

 
 
 
Spider mite RT-qPCR assay primers  

 

 
 

Primer names 

 

Oligonucleotide sequence (5’ to 3’) Primer efficiency  

RP49 (tetur18g03590) F 

 

CTTCAAGCGGCA TCAGAGC  

97.6%  
RP49 (tetur18g03590) R  CGCA TCTGACCCTTGAACTTC  

VATPase qPCR F  GGGTACCATCACATTCCTCG  104.1%  
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followed by ethanol precipitation. dsRNA was dissolved in nuclease free water and 

quantified using NanoDrop (Thermo Fisher Scientific, Waltham, MA). 

3.2.5 Soaking mites in solution of dsRNA 

About 50 newly-emerged adult females were soaked in 50 µL of dsRNA solution (160 

ng/µL; 0.1% v/v Tween 20) respectively and incubated at 20°C for 24 hours according to 

Suzuki et al., 2017. After soaking, mites were transferred onto fresh bean leaf discs (10-

mm diameter with 1 female per disc) placed on water-soaked cotton on the cup with a 

polyethylene lid with 4 venting holes each covered with a gas-permeable filter (0.45 

micron pore size; Milliseal; Millipore, Billerica, MA), and incubated at light/dark 16/8 h, 

26°C, and 50% RH. Survival of adult females were recorded over 10 days. The biological 

assays were conducted in 3 independent experimental runs. For RT-qPCR analysis, the 

adults were collected into 1.5-mL tube with at least 30 adults per tube at 5 days after 24 

hours soaking. The collected samples were frozen in liquid nitrogen and stored at −80°C 

until RNA extraction. The collection and the RT-qPCR analysis were conducted in 3 

independent experimental runs.  

3.2.6 Analysis of RNAi efficiency in inbred lines  

Newly-emerged adult females from thirteen inbred lines generated from the reference 

London population were soaked in 1.5-mL tube (60-80 adults per tube) with 50 µL of 

dsRNA solution (160 ng/µL; 0.1% v/v Tween 20).  Adult females soaked in the dsRNA 

solution were incubated at 20°C in a water bath for 24 hours. After soaking, mites were 

washed in 100 µL of double distilled water and transferred onto a bean leaf that was 

placed on top of water-soaked cotton in a cup with a vented lid, and incubated at 

ligh/dark 16/8 h, 26°C, and 50% RH. After 5 days, mites with dark and normal body 

color were evaluated for mortality; surviving mites from each phenotypic group were 

separated and placed on new fresh bean leaves. After 3 additional days, the fecundity 

from each group was evaluated. Each experimental run was performed with 4 replicates 

and the reference London population was used as a positive control. 
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3.2.7 RT-qPCR 

Mite total RNA was extracted with the RNAeasy Kit including a DNAse treatment 

(Qiagen). Two micrograms of total RNA was reverse transcribed with the Maxima First 

Strand cDNA Synthesis Kit for RT-qPCR (Thermo Fisher Scientific). qPCR reactions 

were performed in 3 technical replicates for each sample with the Maxima SYBR 

Green/ROX qPCR Master Mix (Thermo Fisher Scientific). The RT-qPCR was performed 

on an Agilent Mx3005P qPCR instrument (Agilent Technologies, Santa Clara, CA). The 

reference gene was RP49 (tetur18g03590) coding for a ribosomal protein. Primer 

sequences and amplification efficiencies (E) are listed in Table 3.1. Cycle Threshold (Ct) 

values from 3 technical replicates were averaged to calculate the Ct value of each 

independent experimental run. For plotting, expression value for each target gene (T) was 

normalized to the reference gene (R) and normalized relative quantity (NRQ) was 

calculated as follows: NRQ = (1+ER)CtR/(1=ET)CtT. NRQ values were then normalized to 

a mean of those control and treatments were analyzed with the Dunnett’s test (function 

glht, R package multcomp) in the R 3.2.5 software (R Core Team 2016). 

3.2.8 Data analysis of survival and fecundity  

Survival curves were calculated with the Kaplan-Meier method (function survfit, R 

package survival) with comparisons performed based on the log-rank test (function 

survdiff, R package survival). Results for the fecundity are display as box-plots where 

central lines (second quartile, Q2) indicate the median of data, the distance between the 

box bottom (first quartile, Q1) and top (third quartile, Q3) indicate interquartile ranges 

(IQRs), and the whisker bottom and top indicate the minimum and maximum of data 

(except outliers that are outside the range between the lower (Q1-1.5× IQR) and upper 

limits (Q3=1.5×IQR) that are plotted as a white circle). Significant differences in the 

median developmental time and the median number of eggs laid between the control and 

other treatments were analyzed with the Wilcoxon-Mann-Withney test (function 

wilcox.exact, R package exactRankTests). A significant difference in the proportion of 

color phenotype (normal or dark-body) was analyzed with the Fisher’s exact test 

(Function fisher.test). For multiple comparisons based on the paired tests, the level of 

significance (𝛼) was adjusted with the Bonferroni correction (𝛼/𝐾, where K is the 
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number of pairs in the multiple comparison). Analysis was performed with the R 3.2.5 

software (R Core Team 2016). 

3.2.9 Data analysis of TuVATPase RNAi effect on inbred lines 

RNAi was induced by soaking newly-emerged adult females. Number of alive and dead 

individuals, and phenotype (normal or dark-body) was assessed 5 days post soaking. 

Fecundity or surviving females was assessed over 3 days (days 5-8 after soaking). To 

build the heatmap, dead/alive and normal/dark-body counts were converted to proportion 

of total mites recovered after soaking procedure and hierarchical clustering analysis was 

performed based on Euclidian distance and with the average clustering method. 

Fecundity data were scaled to the 0-1 range and the heatmap was organized according to 

survival and phenotype clusters. The Wilcoxon-Mann-Whitney test was applied to 

analyze the differences in mortality and normalized fecundity between phenotype and 

treatment classes. P-values were adjusted for multiple testing with Bonferroni correction 

and K= 9. Analysis was performed with the R 3.2.5 software (R Core Team 2016). 

3.2.10 Imaging 

All images were taken using a stereomicroscope Leica MZ FLIII (© Leica Microsystems, 

Wetzlar, Germany) fitted with the Canon EOS Rebel T5i camera (Canon, Japan). 

3.3 Results 

3.3.1 Induction of RNAi in soaked mites  

To test the RNAi soaking method, newly-molted adults (Figure 3.2Ai) were synchronized 

and soaked in solution of dsRNA against VATPase and compared with the ones that were 

soaked in solution of dsRNA targeting the intergenic region, used as a negative control. 

The rational for the fragment selection is stated in the methods section. Treated mites 

were divided in three phenotypic classes. One day post soaking, about 15% and 25% of 

mites displayed a white phenotype (Figure 3.2Aii), while the rest of the mites had the 

normal phenotype characterized by the two-spots on the back as shown in Figure 3.2Aiii. 

This white phenotype occurred after soaking adult females with either dsRNA-

TuVATPase-B or dsRNA-NC respectively (Figure 3.2D), and resembled the phenotype of 
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Figure 3.2: White phenotype associated with soaking in solution of dsRNA. 
Representative picture of a newly-molted adult (Ai) recovering on the leaf; a white 
phenotype (Aii) and a normal phenotype (Aiii). The bar graph represents the percentage 
of white mite when newly-molted adults were soaked in solution of dsRNA-NC and 
dsRNA-TuVATPase-B. (scale bar: 100 µM). 
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of newly-molted adults. These mites do not feed and consequently they shrink and die. 

This phenotype was also observed when newly-molted adults were soaked in water, 

suggesting that such phenotype is a result of the stress from soaking rather than a 

response to dsRNA. Although these mites were not considered in the analysis in this 

study, it required an application of an increasing number of mites in order to keep the 

population size adequate. 

About 5 days post-soaking, a change in body color could be observed as a portion of the 

mites turned dark (Figure 3.3Ai). The two distinctive spots visible in the back of the mite 

and characterizing a normal phenotype (Figure 3.3Bii) were not visible in mites with the 

dark phenotype (Figure 3.3Ai). Over 37% of the adults soaked in dsRNA-TuVATPase-A 

and 47% of adults soaked in dsRNA-TuVATPase-B displayed the dark-body phenotype. 

Mites that were soaked in the control dsRNA did not display such phenotype; instead all 

mites had a normal body coloration (Figure 3.3B). To test whether the dark-body 

phenotype correlates with RNAi responses, mites displaying dark and normal phenotypes 

were followed separately. Adult mites with normal body color phenotype (normal in 

Figure 3.4A and 3.4C) soaked in dsRNA-TuVATPase-A or dsRNA-TuVATPase-B had 

the same survivorship as mites soaked in the solution containing the control dsRNA-NC. 

Although mites with the dark-body phenotype (dark in Figure 3.4B and 3.4D) soaked 

with the dsRNA-TuVATPase-A fragment had a slightly lower survival than the control, 

the difference was not significant. However, mites with the dark-body phenotype soaked 

with the dsRNA-TuVATPase-B fragment had a significantly lower survival than the 

control (Figure 3.4D). The fecundity was significantly affected by mite soaking in 

solution containing the dsRNA-TuVATPase (Figure 3.5A) and was more prominently 

reduced in mites with dark than with normal body color.  

To further confirm that the dark phenotype was associated with a RNAi response, I 

analyzed changes in target gene expression levels. I extracted RNA from dark and normal 

mites after 5 days post soaking and checked TuVATPase gene expression using RT-

qPCR. The endogenous TuVATPase transcripts were significantly reduced in the dsRNA-

TuVATPase treated mites. Moreover, the severity of the RNAi phenotypes correlated  
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Figure 3.3: Dark phenotype associated with RNAi response to dsRNA. Dark-body 
(Ai) and normal phenotype (Aii) female mites and frequency of phenotypes observed 
after application of dsRNA-TuVATPase-A, dsRNA-TuVATPase-B or dsRNA-NC 
through soaking. The bar graph represents dark-body mite frequencies collected from 3 
independent experimental runs (B). (Scale bars:100µm). 
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Figure 3.4: Adult survivorship after soaking treatment in solution of dsRNA-
TuVATPase separately for normal and dark-body mites. Survivorship of adult female 
with normal phenotype (A) and dark phenotype (B) after treatment with dsRNA-
TuVATPase-A (solid line) or dsRNA-NC (dashed line). Survivorship of adult female with 
normal phenotype (C) and dark phenotype (D) after treatment with dsRNA-TuVATPase-
B (solid line) or dsRNA-NC (dashed line). Survival curves were plotted using Kaplan-
Meier method and compared using the log-rank test with Bonferroni correction (no 
asterisk, P > 0.05; ***, P < 0.001).  
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Figure 3.5: Adult mite fecundity and TuVATPase gene expression after soaking 
treatment in solution of dsRNA-TuVATPase. (A) Normal and dark-body mite 
fecundity after soaking in solution of dsRNA-TuVATPase-A, dsRNA-TuVATPase-B or 
dsRNA-NC. Data were collected from 3 independent experimental runs and were 
compared using Wilcoxon-Man-Whitney test with Bonferroni correction (**, P < 0.01/4; 
***, P < 0.001/4). (B) TuVATPase gene expression relative to the expression of RP49 
reference gene in normal and dark-body female mites. Data were represented as 
mean±SE and analysed using Dunnett’s test relative to dsRNA-NC treatment (*, 
corrected P < 0.05; **, P < 0.01; ***, P <0.001).   

 

 

 

 

 

 



75 

 

with the residual levels of the endogenous TuVATPase only in the treatment with one of 

the dsRNA fragments, the dsRNA-TuVATPase-A (Figure 3.5B). These results hinted that 

TuVATPase-dsRNA in soaking solution is 1) absorbed by the mite and 2) is able to 

trigger RNAi response resulting in the phenotypic change of mite body color correlated 

with reduced mite fitness. 

3.3.2 Differential RNAi response in T. urticae inbred lines 

Given that changes in body color occurred only in mites treated with dsRNA-TuVATPase 

and not when mites were soaked in the solution containing the control dsRNA-NC 

fragment, the observed phenotype is not a general response to dsRNA, but a specific 

response to the RNA interference with TuVATPase expression. These assays involved 

adults that were tightly synchronized in their development (within a 3 hours’ interval) 

originating from the London mite population whose genetic variability is narrow. 

Nevertheless, the strong RNAi effects (characterized by dark-body color, significant 

increase of mortality and reduced fecundity) were observed only in a portion of treated 

mites. When mites were soaked in the solution of dsRNA-TuVATPase, around 50% of 

adults showed the strong RNAi effects despite well controlled age and uniform 

manipulations. This partial penetrance of the RNAi-induced phenotypes may be due to 

the biology of the mite or a heterogeneous genetic background in the London mite 

population.  To test the genetic contribution to the observed variability of RNAi 

responses, I analyzed them in thirteen inbred lines (inbred lines were derived from the 

London population through 6 generations of mother-son matings. Given the high number 

of mites to be soaked, the thirteen inbred lines were divided into 8 batches with one or 

two inbred lines soaked at a time along with the London reference population, which was 

used as a positive control. For this assay only dsRNA-TuVATPase-B was used as RNAi 

response from fragment B was greater than the fragment A.  For each inbred line, newly-

emerged adult female mites were soaked in a solution containing either the dsRNA-

TuVATPase-B or dsRNA-NC fragment. Mites with a normal or dark-body phenotype 

were then counted and the fitness (mortality and fecundity) of both classes was measured 

separately. When genotype/dsRNA combinations were clustered according to  
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Figure 3.6: RNAi response in soaked T. urticae inbred lines. Experimental 
combinations of 14 mite group (13 inbred lines and the reference population) with 2 
dsRNA (dsRNA-TuVATPase-B (label VA) and dsRNA-NC control (label NC) were 
classified using hierarchical average clustering and Euclidian distance based on 
normalized survivorship (dead/alive counts) and body color (proportion of dark mites). 
The mite/dsRNA combinations were tested in 8 experimental batches (indicated by colors 
at the right side of the panel) and analyzed together. Each run included a sample of the 
London reference population (label REF) and 1 or 2 inbred line samples (Label L). 
Normalized fecundity over 3 days and total proportion of dark mites are shown in the 
same order as dead/alive counts but were not taken in account for clustering. In most 
dsRNA-NC control treatments dark-body mites were not present and their fecundity 
could not be measured (not applicable, NA). Fecundity for VA-REF5 samples was not 
recorded (NR) due to technical issue. Data were collected from 4 independent 
experimental runs in 8 batches. All measurement are expressed as ratios relative to the 
total number of tested mites and represented accordingly to the heatmap color code 
(bottom). Data from 8 experimental batches was analyzed together and separated at the 
level of mite line type (REF and L), treatment (NC and VA), and phenotype (normal and 
dark-body) classes. As in most dsRNA-NC control treatments dark-body mites were not 
present their mortality and fecundity could not be measured (not applicable, NA). All P-
values shown are corrected for multiple comparisons.   
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survivorship and body color, the highest-level clusters clearly portioned treatments with 

dsRNA-TuVATPase-B (top) and the control dsRNA-NC (bottom) (Figure 3.6). Within 

these 2 major groups, mite genotypes (London population and inbred lines) were 

intermixed and their performance values were similar, indicating that inbred lines 

reconstituted genetic variability existing in the London population. The RNAi response 

triggered by dsRNA-TuVATPase-B was characterized by dark mites that invariably had 

higher mortality (Figure 3.7) and lower fecundity (Figure 3.8) relative to control or 

normal mites within the same population, further strengthening the link between the 

silencing of the TuVATPase gene with the body color phenotype and performance 

parameters. However, mites with a normal body color treated with dsRNA-TuVATPase-B 

also displayed an effect of the RNAi, albeit at reduced level. The mortality of normal 

mites treated with dsRNA-TuVATPase-B is indistinguishable from the control population 

(Figure 3.7), however, their fecundity is significantly reduced (Figure 3.8). Thus, mite 

populations treated with the dsRNA-TuVATPase-B partition in 2 phenotypic classes (dark 

and normal body color) that differ in the quantitative severity of the RNAi effects. None 

of the dsRNA-TuVATPase-B treated population (either inbred lines or London reference 

population), displayed 100% of dark mites. Moreover, the percentage of dark mites was 

not significantly different between inbred lines and the reference London population 

(Figure 3.9), indicating that the high RNAi efficiency is not completely penetrant and that 

the variability is intrinsic to the treatment. Two inbred lines (L2 and L14) were peculiar 

outliers that clustered with the control dsRNA-NC treatments (Figure 3.10) displaying a 

low percentage of dark mites, 16% and 7% respectively. However, despite a normal color 

phenotype, these mite lines had similar mortality and fecundity as other inbred lines and 

London population, indicating that they respond to RNAi but seemingly lack the ability 

to display a dark-body phenotype. 
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Figure 3.7: Inbred line mortality after treatment with dsRNA-TuVATPase. Normal 
and dark-body mite mortality (proportion of dead mites) in inbred lines (label L) and the 
reference population (label REF) treated with 2 dsRNA dsRNA-TuVATPase-B (label 
VA) and dsRNA-NC control (label NC). 
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Figure 3.8: Inbred line fecundity after treatment with dsRNA-TuVATPase. Normal 
and dark body mite fecundity in inbred line and the reference population treated with 
dsRNA-TuVATPase-B (label VA) and dsRNA-NC control (label NC). 
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Figure 3.9: Dark mite frequency in the inbred lines and London reference 
population after treatment with dsRNA. Bar graph representing the percentage of dark 
phenotype from inbred lines and London reference population after treatment with 
dsRNA-NC and dsRNA-TuVATPase-B. Each bar represents the mean the mean ± SE 
from inbred lines (n=13) or London reference population (n=8) including 4 replicate from 
each line. Mean followed by the same letter are not significant different, (P=0.05). 
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Figure 3.10: Scatter 3D function displaying RNAi response parameter as a collection 
of points, plotted using three-dimensional Cartesian coordinates. Scaled mite counts 
with the percentage of dark mites plotted on the x-axis and the mortality on the y-axis. 
Each bar represents normalized fecundity plotted on the z-axis. The red represents 
population treated with dsRNA-TuVATPase-B and the blue represents population treated 
with dsRNA-NC. Inbred lines L2 and L14 are shown with the black arrow. 
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3.4 Discussion 
Even though T. urticae reverse genetics protocols describing the maternal injection and 

oral delivery of dsRNA have been published (Khila and Grbić, 2007; Kwon et al., 2013), 

they are not suitable for high throughput screens. The efficiency of the soaking method 

was compared to the floating leaf disc assay, with the same dsRNA-TuVATPase fragment 

at the same concentration as previously reported by Kwon et al., (2013). Several mite 

fitness parameters, adult survivorship, fecundity and the endogenous targeted transcript 

levels were measured to determine RNAi efficiency. Soaking adult T. urticae females in 

the solution of dsRNA-TuVATPase resulted in a reduction of mite survivorship, fecundity 

and target gene expression. Similar dsRNA-TuVATPase silencing phenotypes have been 

described across multiple experimental systems, e.g. whiteflies, western corn rootworms, 

western flower thrips, Colorado potato beetles, fruit flies, flour beetles, pea aphids, and 

tobacco hornworms (Badillo-Vargas et al., 2015; Baum et al., 2007; Finbow and 

Harrison, 1997; Thakur et al., 2014; Whyard et al., 2009; Zhu et al., 2011) confirming the 

essential role of the VATPase pump in proton transport across cellular membranes of 

eukaryotic organisms. However, in addition to these phenotypes, and unique to this study, 

the silencing of TuVATPase resulted in a dark-body phenotype (Figure 3.3Ai). The effect 

of dsRNA-TuVATPase on body pigmentation is not understood and may reflect 

distinctive features of mite physiology. It may also be a more general phenomenon that is 

only now observed in mites because they have semitransparent integument. In this study, 

the dark-body phenotype tightly correlated with dsRNA-VATPase treatment and high 

RNAi effectiveness (Figure 3.4 and 3.6). However, it could also be observed in aging 

mites in untreated mite population (note that adult mites used in our study were newly 

molted adult female). Thus, the dark-body phenotype is not specific to the disruption of 

the TuVATPase gene function, but may reflect mite body color change that associates 

with the stress that can be induced in multiple independent ways. Unlike the dark 

phenotype associated with dsRNA response, the white mites were not able to recover 

from the soaking treatment which can be due to the stress from immersion. After soaking, 

once newly-molted adults recover on the leaf, they start to feed and increase their body 

size by almost 1.5 time, with the two distinctive spots becoming apparent the following 
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day. In contrast to the dark mites that undergo the same recovering process until they turn 

dark about 4 to 5 days post soaking, the white mite seems not capable of feeding. 

In this study, only a portion of mites treated with the dsRNA-TuVATPase-B fragment 

developed a dark body phenotype (Figure 3.3 and 3.6). The incomplete phenotypic 

penetrance is likely due to the differential ability to: 1) deliver dsRNA into a portion of 

the treated mites, or 2) to silence the target gene. In a previous study, dsRNA and siRNA 

designed to silence Tu-DLL, shown efficient RNA uptake with 50% and 60% of the total 

mites treated displaying downregulation, respectively. However, RNAi phenotype 

associated with truncated appendages was shown in only 33% of mite embryos that 

received the siRNA (Khila and Grbić, 2007). The partial RNAi efficiency was again 

observed in this study despite the homogeneity of mite genotype (inbred lines) and the 

tight synchronization of mite development in the experimental population (Figure 3.6). 

The instability of dsRNA due to the presence of nucleases has been shown to affect 

RNAi in several experimental systems (Garbutt et al., 2013; Kennedy et al., 2004; Wang 

et al., 2016). In addition, the sequence variability of gene regions targeted for interference 

and differential physiological backgrounds have been postulated as factors that affects 

RNAi efficiency (Chu et al., 2014). Further studies will be required to understand the 

source of partial and variable RNAi efficiency in spider mites. 

This study further highlighted the ability of genetic component(s) to modulate RNAi-

induced responses in mites. Two out of 13 inbred lines soaked in the solution containing 

dsRNA-TuVATPase-B did not develop the dark-body phenotype (Figure 3.9). However, 

the fecundity of these mites was significantly reduced relative to the dsRNA-NC treated 

controls (Figure 3.6 and 3.9), indicating effective RNAi despite the inability of these 

mites to develop a dark-body phenotype. The dark-body phenotype in dsRNA-

TuVATPase-B responsive mite populations may be used as an easily scorable trait to 

compare factors such as RNA chemical modification, transfection reagents and carriers 

when optimizing dsRNA penetration into mites. 

The analysis of the T. urticae genome sequence identified many genes that either belong 

to expanded known gene families or that are “orphan” genes, with no obvious 
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orthologues, often restricted to certain taxons (Grbić et al., 2011). Efficient reverse 

genetics platforms are urgently needed to study the biological and evolutionary role of 

theses uncharacterized sequences. In this perspective, the soaking method presented here 

could be adapted for the application of dsRNA as a reverse-genetic tool for spider mites 

that will be an important asset for both fundamental and applied sciences. T. urticae is a 

pest with a staggering host range and one of the pest arthropod species that is most 

resistant to chemical pesticides (Migeon and Dorkeld, 2006; Whalon et al.). It is a prime 

model to study the evolution of host range, plant-herbivore interactions and mechanisms 

of xenobiotic resistance. RNAi itself, applied on fields or greenhouses, could prove to be 

a valuable and sustainable biotechnological approach for pest control (Kwon et al., 2016; 

Livak and Schmittgen, 2001; Upadhyay et al., 2011). For this approach, future 

investigations on design of dsRNA consisting of post-lethal sequences that are highly 

specific to the pest species and use of carriers for increasing stability of dsRNA will be 

needed.  
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Chapter 4  

4 Towards the establishment of an optimized method for 
gene silencing in the two-spotted spider mite 
Tetranychus urticae  

4.1 Introduction 
RNA interference (RNAi) is an evolutionarily-conserved cellular process of gene 

silencing elicited by the presence of double-stranded RNA (dsRNA) (Fire et al., 1998; 

Meister and Tuschl, 2004; Mello and Conte, 2004). Induction of gene silencing can be 

triggered at the transcriptional level through the inhibition of endogenous gene translation 

(TGS) or at a post-transcriptional level through degradation of transcripts or interference 

with translation (PTGS; Hammond et al., 2000). This RNAi is a mechanism thought to 

have evolved to preserve the genome integrity against foreign DNA/RNA sequences (e.g. 

viruses; Ding and Voinnet, 2007) and transposition of transposons (Obbard et al., 2009). 

RNAi is based on complementarity between short RNAs and their targeted mRNAs, 

ultimately leading to either a cleavage of the target mRNA or prevention of its translation 

(Fire et al., 1998). Since its discovery in C. elegans, RNAi has been successfully used as 

a reverse genetic tool in model organisms for over a decade. More recently several 

studies have demonstrated the potential of RNAi as environmentally friendly control of 

plant pests through oral ingestion of dsRNA targeting vital genes, which results in death 

of the pest species (Baum et al., 2007; Whyard et al., 2009). Besides herbivorous insects, 

the chelicerate pests are also prominent herbivores that affect agricultural production. 

Among them, Tetranychus urticae is an extremely phytophagous pest that feeds on 

agricultural crops and ornamental plants with a global distribution. To date, T. urticae has 

been reported in 501 cases of resistance to pesticide including 94 active ingredients 

(Whalon et al., 2006-2017) making it one of the most resistant arthropod species, 

prompting development of new control methods. The T. urticae genome became 

available in 2011 and its analysis revealed that it encodes all elements required for a 

functional RNAi (Bensoussan and Grbić, 2017; Grbic et al., 2011). Recently, oral 

delivery of dsRNA through leaf disc has been reported. Application of dsRNA using this 
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method was successful to decrease gene expression of several lethal targets resulting in 

mortality in T. urticae (Kwon et al., 2013, 2016). Silencing of the proton pump VATPase 

and the coatomer b involved in vesicular trafficking from trans to cis Golgi and the 

endoplasmic reticulum induced 65% and 21% mite mortality, respectively. More 

recently, our group developed a soaking method consisting of an immersion of spider 

mites in a dsRNA-containing solution (Suzuki et al., 2017a). Using VATPase as a model 

target gene, I have shown that the soaking method induces a strong RNAi response 

characterized by a phenotypic change associated with gene downregulation and 80% 

mortality. However, these phenotypic changes occurred only in a subset of treated mite 

populations requiring the need for further optimization of dsRNA soaking delivery 

method. Moreover, due to its recent discovery, little is known about parameters required 

to achieve efficient RNAi in arthropod in general and T. urticae specifically. Our 

knowledge lies on studies from model insects like the red flour beetle (Tribolium 

castaneum), the Western corn rootworm (Diabrotica vigifera vigifera LeConte) and 

drosophila cell lines in which factors such as: dsRNA uptake, concentration, sequence 

position, length and tissue penetration have been shown critical for potent RNAi 

(Bolognesi et al., 2012; Miller et al., 2012; Ramadan et al., 2007).  

The aim of my project was to further improve the soaking method developed previously, 

and investigate the parameters required to achieve a greater effectiveness of RNAi 

response in T. urticae. To further exploit the parameters needed for efficient RNAi, I first 

expanded the number of target genes that were so far limited to TuVATPase, by testing 

the application of dsRNA against TuCOPB2, the coatomer protein complex I (COPI) that 

is involved in important physiological process such as endosomal activities (Whitney et 

al., 1995), autophagy (Razi et al., 2009) and tube expansion in the silk gland (Wang et al., 

2010). Moreover, silencing of the coatomer subunit has been shown to be lethal in the 

cotton bollworm H. armigera (Mao et al., 2015), the mosquito Aedes Aegypti  (Zhou et 

al., 2011) and in T. urticae trough application of dsRNA on leaf discs (Kwon et al., 2016) 

making COPB2 a good candidate for the model target to be used for the improvement of 

the soaking method. 
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Herein, I show that application of dsRNA against TuCOPB2 resulted in a phenotypic 

change in mite body color associated with the reduction of mite fitness: survivorship and 

fecundity. Moreover, I carried out in situ hybridization to localize the TuCOPB2 

transcript in the ovaries of the mite. Using the phenotypic changes associated with RNAi 

response to TuVATpase and TuCOPB2 as a proxy, I demonstrated the possibility to use 

dies mixed with dsRNA to control for the dsRNA uptake and to enriched the number of 

mites responding to RNAi. In addition, using a dsRNA size series against TuVATPase 

and TuCOPB2, I established a minimum dsRNA size of 400 bp for efficient RNAi in T. 

urticae. Furthermore, I found that no additive effects existed when mixing 2 short dsRNA 

fragments together, suggesting that dsRNA cellular intake in T. urticae is potentially 

more efficient with long dsRNA fragments. Data collected in this study not only initiated 

the understanding of the RNAi mechanism in T. urticae, but also provided optimized 

RNAi design for an efficient reverse genetic screen in this chelicerate model.  

4.2 Materials and Methods 

4.2.1 T. urticae rearing conditions 

The stock population of T. urticae referred to as London strain originated from the 

Vineland region in Ontario. The population was maintained on California red kidney 

beans (Phaseolus vulgaris L, stokes, Thorol, ON) grown in soil (PRO-MIX® BX 

MYCORRHIZAETM; Premier Tech, Rivière-du-Loup, QC), in a climate controlled 

chamber at light: dark photoperiod of 16/8 h, 26°C with relative humidity of 50%. 

4.2.2 Preparation of developmentally synchronized mites  

Adult female mites were allowed to lay eggs for 24 h on a fresh detached bean leaf at 

light/dark 16/8 h, 26°C, and 50% relative humidity (RH). After 24 h, the adult females 

were removed and 1-day-old eggs were allowed to develop into female teleiochrysalis (7-

8 days). Teleiochrysalis were collected and incubated at 18°C and 100% RH for 24 h, 

after which they were returned to a 26°C and 50% RH environment. Adult female mites, 

emerged within 3 h upon transfer to a 50% RH environment and were collected for 

experimentation. 
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4.2.3 dsRNA fragments  

Two different dsRNA fragments have been used to target the TuCOPB2 (tetur24g00150) 

transcripts to ensure the reproducibility and the specificity of the RNAi phenotype. The 

fragment B of TuVATPase (tetur09g04140) was used for RNAi optimization 

experiments, since it was associated with the strongest RNAi response (Suzuki et al., 

2017). Fragments corresponding to the region of TuCOPB2, referred to as fragments A 

(an upstream fragment of 308 bp overlapping the 4th and 5th exon of the TuCOPB2 locus) 

and B (a 513 bp fragment within the 5th exon) were chosen as templates for the 

preparation of dsRNA. For RNAi optimization, a dsRNA fragment size of 600 bp 

overlapping the fragment A of TuCOPB2 was synthesized and was used to generate six 

other nested dsRNA fragments of various lengths (Figure 4.1A). In the same way, the 

fragments corresponding to the region of TuVATPase, referred to as fragment B (a 416 bp 

fragment within the 4th exon of the TuVATPase locus) was chosen as template for the 

preparation of dsRNA (Figure 4.1B). For RNAi optimization, a dsRNA fragment size of 

600 bp overlapping the fragment B of TuVATPase was produced and was used to 

generate six other dsRNA fragments of various lengths. Details of sizes and positions of 

these dsRNA fragment series is shown in Figure 4.1C. Briefly, a fragment size of 600 bp 

was used as template to generate six shorter dsRNA fragments of 100, 200 and 400 bps 

spanning the 3’ and 5’ends for both 600 bp-fragments (see primers used in Table 1). In 

addition, the 600 bp was used as the longest dsRNA fragment. All fragments were used at 

the same concentration of 160 ng/µL in a volume of 50 µL. The fragment B of both genes 

corresponds to the dsRNA sequence previously used by Kwon et al (2013), enabling 

direct comparison of method efficiency between the previous report and this study.  In 

addition, a 382 bp intergenic fragment spanning the region 1690614-1690995 of the 

genomic scaffold has been chosen as the template for the preparation of a negative 

control dsRNA, referred to as NC. A BLAST search against the T. urticae genome and 

transcriptome database confirmed that the 382 bp intergenic sequence is unique and not 

transcribed (Figure 4.1D).  



93 

 

 

Figure 4.1: Fragments used for synthesis of dsRNAs. (A) Schematic of TuCOPB2 
locus. DNA sequences used for the generation of dsRNA-TuCOPB2 are in the 4th, 
fragment A (308 bp), and in the 5th exon, fragment B (513 bp). The dsRNA of 600 bp 
overlapping the targeted sequence of dsRNA-A (in red line) was used to generated 
dsRNA series. The green line represents the targeted region for in situ hybridization 
probes (B) Schematic of TuVATPase locus with the DNA sequence used to generate 
dsRNA-TuVATPase-B (416 bp) corresponding to the 4th exon. The dsRNA of 600 bp 
overlapping the targeted sequence of dsRNA-B (in red line) was used to generated 
dsRNA series. (C) Detailed schematic of the 7 dsRNA fragment series of 100, 200, 400 
bp spaning the 5’ or 3’ ends of the 600 bp dsRNA fragment. UTR and coding sequence 
are shown in yellow and blue, respectively. B) Schematic of the part of the scaffold 12 of 
T. urticae genome depicting the location of the 382 bp fragment that was used to 
synthesize dsRNA-NC. 
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Table 4.1: Primers used in this study. (Primer name, Function, Sequence, Product size, 
ISH: in situ hybridization)   

 

 

  

     Primer name/Function            Oligonucleotide sequence (5’ to 3’) Product size 

F_COPB2_dsRNA-A T7-TGGTCGGACAATGGAGATTT 308 bp  
R_COPB2_dsRNA-A 
F_COPB2_dsRNA-B 
R_COPB2_dsRNA-B 
F_VATPase_dsRNA-B 
R_VATPase_dsRNA-B 
 
F_COPB2_ISH_Sense 
R_COPB2_ISH_ 
F_COPB2_ISH_Antisense 
R_COPB2_ISH_Antisense 
 
F_COPB2_dsRNA_100_5’ 
R_COPB2_dsRNA_100_5’ 
F_COPB2_dsRNA_200_5’ 
R_COPB2_dsRNA_200_5’ 
F_COPB2_dsRNA_400_5’ 
R_COPB2_dsRNA_400_5’ 
F_COPB2_dsRNA_100_3’ 
R_COPB2_dsRNA_100_3’ 
F_COPB2_dsRNA_200_3’ 
R_COPB2_dsRNA_200_3’ 
F_COPB2_dsRNA_400_3’ 
R_COPB2_dsRNA_400_3’ 
F_COPB2_dsRNA_600 
R_COPB2_dsRNA_600 
 
F_VATPase_dsRNA_100_5’ 
R_VATPase_dsRNA_100_5’ 
F_VATPase_dsRNA_200_5’ 
R_VATPase_dsRNA_200_5’ 
F_VATPase_dsRNA_400_5’ 
R_VATPase_dsRNA_400_5’ 
F_VATPase_dsRNA_100_3’ 
R_VATPase_dsRNA_100_3’ 
F_VATPase_dsRNA_200_3’ 
R_VATPase_dsRNA_200_3’ 
F_VATPase_dsRNA_400_3’ 
R_VATPase_dsRNA_400_3’ 
F_VATPase_dsRNA_600 
R_VATPase_dsRNA_600 
T7 promoter sequence 

T7-TCAGGTGGAGTATAAACGGCT 
T7-TTCGGGAATCTACAACGTTGC 
T7-TCAGGTGGAGTATAAACGGCT 
T7-CCGTGATATGGGTTACCATG 
T7-GAAGAGGTACGAAATCTGGG 
 
T7-GTGAGGTTCCTGTTCGGTGT 
TTCAATTCTTCCGGATCGAC 
GTGAGGTTCCTGTTCGGTGT 
T7-TTCAATTCTTCCGGATCGAC 
 
T7-AGTTTGTGGTGACGGAGAAT 
T7-TGAGTCTAGGGCCCAAACAA 
T7-AGTTTGTGGTGACGGAGAAT 
T7-TGCTTCTGGTTTGAATGACGT 
T7-AGTTTGTGGTGACGGAGAAT 
T7-GCTTTGGCAACGTTATCAGG 
T7-GCTCGGTCAATAGACTCAATTATTTT 
T7-TTTTCCTTCGGCATGTATCC 
T7-ACGGAATTATTGATGCATTCG 
T7-TTTTCCTTCGGCATGTATCC 
T7-CCGTGATATGGGTTACCATG 
T7-TTTTCCTTCGGCATGTATCC 
T7-AGTTTGTGGTGACGGAGAAT 
T7-TTTTCCTTCGGCATGTATCC 
 
T7-TCCAACAGTGATGTTATTGTTTACG 
T7-TAATTGATTCAGTAACTCCATTG 
T7-TCCAACAGTGATGTTATTGTTTACG 
T7-ACGGAAATATTCAGATAATGTG 
T7-TCCAACAGTGATGTTATTGTTTACG 
T7-ACACTTCCTTCTCTTTCTGGATTAC 
T7-ACATTTTCCATCCATTAATTGG 
T7-TTTTCCTTCGGCATGTATCC 
T7-TCACCACCCGGTGGTGACTTC 
T7-TTTTCCTTCGGCATGTATCC 
T7-CCGTGATATGGGTTACCATG 
T7-TTTTCCTTCGGCATGTATCC 
T7-TCCAACAGTGATGTTATTGTTTACG 
T7-GAAGAGGTACGAAATCTGGG 
TAATACGACTCACTATAGGG 

 
513 bp 

 
416 bp 

 
 

577 bp 
 

577 bp 
 
 

~100 bp 
 

~200 bp 
 

~400 bp 
 

~100 bp 
 

~200 bp 
 

~400 bp 
 

~600 bp 
 
 

~100 bp 
 

~200 bp 
 

~400 bp 
 

~100 bp 
 

~200 bp 
 

~400 bp 
 

~600 bp 
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4.2.4 dsRNA synthesis 

Template preparation for dsRNA fragments TuCOPB2, TuVATPase and dsRNA fragment 

series for RNAi optimization was achieved with polymerase chain reaction amplification 

using specifically designed oligonucleotide primers containing the T7 RNA polymerase 

promoters at their 5`-ends to produce PCR-fragments that could be directly used for in 

vitro transcription, omitting cloning preparation steps.  

First, total RNA was extracted from the frozen mite females with the RNeasy Mini Kit 

(Qiagen, Valencia, CA) and cDNA was synthesized from 3 µg of the extracted total RNA 

with the SuperScript II cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA) 

and used as a template (Figure 4.2A). Template preparation for the control sequence 

(dsRNA-NC) targeting an intergenic region was performed by PCR using genomic DNA. 

Template preparation for dsRNA TuCOPB2-A and -B, TuVATPase-B, dsRNA-NC and 

all seven dsRNA fragments of different sizes of TuCOPB2 and TuVATPase was 

performed by PCR using template gene specific forward and reverse primers (Table 4.1) 

with a minimal T7 promoter sequence at their 5’ ends (Figure 4.2B). For the dsRNA 

fragment size series, one forward primer at the 5’ ends of the 600 bp fragment and 

specific reverse primers was used to generate the three short fragments spanning at the 5’ 

end (400 5’, 200 5’ 100 5’). In the same way one reverse primer at the 3’ ends of the 600 

bp fragment and specific forward primer was used to generate three short fragments 

spanning at the 3’ end (400 3’, 200 3’ 100 3’).  

Amplified DNA fragments were purified with the Gel/PCR DNA Fragments Extraction 

Kit (Geneaid Biotech, New Taipei, Taiwan). Purified fragments were sequenced to 

confirm their identity. dsRNA fragments were synthesized using 1 µg of DNA template 

with the TranscriptAid T7 High Yiled Transcirption Kit (Thermo Fisher Scientific) in 

1.5-ml centrifuge tubes. dsRNA was treated with DNase I for 30 min (Thermo Fisher 

Scientific), was denaturated at 95°C for 5 min, and were allowed a slow cool-down to 

room temperature to facilitate formation of dsRNA. dsRNA was purified by phenol-

chloroform extraction followed by ethanol precipitation. dsRNA was dissolved in 

nuclease free water and quantified using the NanoDrop (Thermo Fisher Scientific, 

Waltham, MA). 
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Figure 4.2: Schematic of the template preparation for dsRNA synthesis and mRNA 
DIG-labeled probes using the PCR method. (A) Total mRNA reverse transcribed and 
used as a template for downstream dsRNA synthesis or RNA labeling probes. (B) 
Schematic of PCR amplification using specific gene primer forward and reverse (black 
arrow; F: Forward; R: Reverse) tailed with the minimal T7 promoter sequence at the 5’ 
end of each primers. (C) Schematic of template generation for RNA sense probe using a 
forward gene specific primer tailed with T7 and a reverse primer. (D) Template 
preparation for RNA antisense probe using the same forward primer as the sense probe 
without T7 promoter and the same reverse primer were used with the T7 promoter 
sequence.  
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4.2.5 Localization of COPB2 mRNA expression pattern using 
whole mount in situ hybridization  

Whole-mount in situ hybridization in T. urticae was performed as described by Dearden 

et al., 2000 with some modification as per Jonckheere et al., (2016). Total RNA was 

extracted from T. urticae adult females as described above. PCR reactions using primers 

F-T7 with R (Figure 4.2C and Table 4.1), was used to generate the sense template and 

primers using F and R-T7 (Figure 4.2D and Table 4.1) was used to generate antisense 

templates for in vitro transcription. For generating the sense probe, a set of primers with 

only the forward primer containing the T7 promoter was used (Figure 4.2C). For the 

antisense probe, only the set of primers with the reserve primer containing the R7 

promoter was used (Figure 4.2D). Depending on the primer combination, sense and 

antisense probes labeled with digoxigenin (DIG) were generated using T7 polymerase 

(Roche, Anderlecht, Belgium) and DIG-UTPs (Roche) in the in vitro labeling reaction. 

The probes are then purified using SigmaSpin Sequencing Reaction Clean-Up Columns 

(Sigma) and mixed in 1:1 volume of hybridization buffer (50% formamide (Sigma), 4´ 

SSC (Sigma), 1´ Denhardt’s solution (Sigma), 250 µg/mL heparin (sodium salt, Sigma), 

0.1% Tween-20 (Sigma), 5% dextran sulfate (sodium salt, Sigma), and stored at - 20°C. 

T. urticae adults were fixed overnight in a solution containing PTw (PBS with 0.1% 

Tween-20) mixed with 4% formaldehyde and heptane in 1:1 volume ratio. Mites were 

washed with cold methanol at - 20 °C following by multiple washes with methanol at 

room temperature. Mites were gradually rehydrated in PTw, followed by a brief 

sonication in a sonic cleansing bath and re-fixed with 4% formaldehyde in PTw. Mites 

were subsequently washed 3 times in PTw and pre-hybridized in hybridization buffer at 

52 °C for 1 hour. Buffer was then replaced with probe (1µL in 200 µL hybridization 

buffer) and mites were incubated overnight at 52 °C. Afterwards, mites were washed six 

times with wash buffer (50% formamide, 2´ SSC, 0.1% tween-20) every 10-15 minutes 

at 52°C. Mites were then washed in a blocking solution composed of PBTw (PTw with 

0.1% BSA, Sigma) 2 times and incubated at RT for 2 hours with a 1:1000 dilution of 

anti-digoxigenin antibodies conjugated with (AP) alkaline phosphatase enzyme (Fab 

fragments, Roche) in PBTw. Mites were then washed in PTw and placed on a 9-cavity 
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Pyrex pressed plate (Pyrex, USA) in the dark with AP buffer (100 mM Tris pH 9.5, 100 

mM NaCl, 1M MgCl2, 0.1% Tween-20) mixed with 4.5 µL/mL of nitro blue tetrazolium 

(NBT, Sigma) and 3.5 µL of bromo-chloro-indolyl-phosphate (BCIP, Sigma) until purple 

staining was visible. Mites were washed in 100% methanol to reduce the background and 

were mounted in 50% glycerol in PTw for observation in the light microscope. 

4.2.6 Soaking mite in a solution of dsRNA 

About 50 newly-emerged adult females were soaked in 50 µL of dsRNA solution (160 

ng/µL; 0.1% v/v Tween 20) respectively and incubated at 20°C in a water bath for 24 

hours according to Suzuki et al. (2017). After soaking, mites were transferred onto bean 

leaf discs (10-mm diameter with 1 female per disc) placed on water-soaked cotton on the 

cup with a polyethylene lid with 4 venting holes each covered with a gas-permeable filter 

(0.45-micron pore size; Milliseal; Millipore, Billerica, MA), and incubated at ligh/dark 

16/8 h, 26°C, and 50% RH. Survival of adult females was recorded over 10 days. The 

biological assays were conducted in 3 independent experimental runs. For RT-qPCR 

analysis, the adults were collected into 1.5-mL tube with at least 30 adults per tube at 5 

days after 24 hours soaking. The collected samples were frozen in liquid nitrogen and 

stored at -80°C until RNA extraction. The collection and the RT-qPCR analysis were 

conducted in 3 independent experimental runs.  

4.2.7 Data analysis of survival and fecundity  

Survival curves were calculated with the Kaplan-Meier method (function survfit, R 

package survival) with comparisons performed based on the log-rank test (function 

survdiff, R package survival). Results for the fecundity are displayed as box-plots where 

central lines (second quartile, Q2) indicate the median of data, the distance between the 

box bottom (first quartile, Q1) and top (third quartile, Q3) indicate interquartile ranges 

(IQRs), and the whisker bottom and top indicate the minimum and maximum of data 

(except outliers that are outside the range between the lower (Q1-1.5× IQR) and upper 

limits (Q3=1.5×IQR) that are plotted as a white circle). Significant differences in the 

median number of eggs laid between the control and other treatments were analyzed with 

the Wilcoxon-Mann-Withney test (function wilcox.exact, R package exactRankTests). A 
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significant difference in the proportion of color phenotype (normal or dark-body) was 

analyzed with the Fisher’s exact test (Function fisher.test). For multiple comparisons 

based on the paired tests, the level of significance (𝛼) was adjusted with the Bonferroni 

correction (𝛼/𝐾, where K is the number of pairs in the multiple comparison). Analysis 

was performed with the R 3.2.5 software (R Core Team 2016). 

4.2.8 Analysis of dsRNA uptake  

To test the correlation between dsRNA uptake and RNAi response, newly-emerged adult 

females from the reference London population were soaked in a 1.5-mL tube (60-80 

adults per tube) with 50 µL of dsRNA solution (160 ng/µL; 0.1% v/v Tween 20) mixed 

with 6% of blue food dye (erioglaucine; McCormick, Sparks Glencoe, MD). Adult 

females soaked in the dsRNA solution were incubated at 20°C in a water bath for 24 

hours. After soaking, mites were washed in 100 µL of double distilled water and 

separated according to their color (blue or transparent) onto a bean leaf that was placed 

on top of water-soaked cotton in a cup with vented lid, and incubated at light/dark 16/8 h, 

26°C, and 50% RH. After 2 days, the body color associated with RNAi responses to 

either dsRNA against TuVATPase or TuCOPB2 were counted and frequencies calculated. 

A Mann-Whitney U-test was run to check the differences between phenotype and 

treatment. Analysis was performed with the R 3.2.5 software (R Core Team 2016). 

Differences were considered significant with a 5% significance level (P < 0.05). Each 

experimental run was performed in 3 independent replicates. 

4.2.9 Analysis of RNAi efficiency using various dsRNA fragment 
lengths  

Newly-emerged adult females from the reference London population were soaked in 1.5-

mL tubes (60-80 adults per tube) with 50 µL of dsRNA solution (160 ng/µL; 0.1% v/v 

Tween 20) after 6 hours of starvation.  Adult females soaked in the dsRNA solution were 

incubated at 20°C in a water bath for 24 hours. After soaking, mites were washed in 100 

µL of double distilled water and transferred onto a bean leaf that was placed on top of 

water-soaked cotton in a cup with vented lid, and incubated at light/dark 16/8 h, 26°C, 

and 50% RH. After 2 days, mites with dark, red and normal body color were counted. 
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Each experimental run was performed in 3 independent replicates. A significant 

difference in the proportion of color phenotype (normal, dark, or red-body) was analyzed 

with the Fisher’s exact test (Function fisher.test). For multiple comparisons, one-way 

ANOVA (Tukey HSD) tests were performed. Analysis was performed with the R 3.2.5 

software (R Core Team 2016).  

4.2.10 dsRNA-TuVATPase mix 

The two fragments of 200 bp spanning the 5’ and 3’ ends of the TuVATPase gene were 

used separately and mixed together to a final volume of 50 µL at a concentration of 160 

ng/µL. In parallel the fragment of 400 bp spanning the 5’ end of TuVATPase was used as 

the reference.  

4.2.11 Imaging 

All images were taken using a stereomicroscope Leica MZ FLIII (© Leica Microsystems, 

Wetzlar, Germany) fitted with the Canon EOS Rebel T5i camera (Canon, Japan). 

4.3 Results 

4.3.1 Induction of RNAi in dsRNA TuCOPB2 soaked mites  

When soaked in a solution of dsRNA-TuCOPB2 of either fragment A or B, I observed 

that a portion of adult mites developed a pale-red phenotype with a smaller body size 

compared to the mites that have been soaked in solution containing dsRNA-NC (Figure 

4.3A). About 51% of the adults soaked in dsRNA-TuCOPB2-A and 62% of mites treated 

with dsRNA-TuCOPB2-B developed the red-body color (Figure 4.3B). However, this red 

phenotype was not present in the mites treated with dsRNA-NC. To test the potential 

correlation between the red phenotype and RNAi response, I followed mites separately 

according to their body color.  I checked the survivorship of mites separated in groups 

based on their size and body color that were treated with either dsRNA-TuCOPB2-A or –

B (Figure 4.4A and 4.4C). Mites with normal body color had survivorship as mites 

treated with dsRNA-NC. However, the red mites treated with dsRNA-TuCOPB2-A or -B 

(Figure 4.4B and 4.4D) presented a significantly lower survivorship compared to the  
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Figure 4.3: Mite phenotype associated with RNAi response to dsRNA-TuCOPB2.   
Normal phenotype (Ai) and red-body (Aii) female mites and frequency of phenotypes 
observed after application of dsRNA-TuCOPB2-A, dsRNA-TuCOPB2-B or dsRNA-NC 
through soaking (B). The bar graph represents red-body mite frequencies collected from 
3 independent experimental runs. (Scale bars:100 µm). 
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Figure 4.4: Adult survivorship after soaking treatment in solution of dsRNA-
TuVATPase separately for normal and dark-body mites. Survivorship of adult female 
with normal phenotype (A) and dark phenotype (B) after treatment with dsRNA-
TuVATPase-A (solid line) or dsRNA-NC (dashed line). Survivorship of adult female with 
normal phenotype (C) and dark phenotype (D) after treatment with dsRNA-TuVATPase-
B (solid line) or dsRNA-NC (dashed line). Survival curves were plotted using Kaplan-
Meier method and compared using the log-rank test with Bonferroni correction (no 
asterisk, P > 0.05; ***, P < 0.001).  
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control (dsRNA-NC). Similarly, the fecundity of normal mites treated with dsRNA-

TuCOPB2 was not impaired compared to the control, showing a similar oviposition rate 

of about 5 eggs per female per day (Figure 4.5). However, the fecundity of mites with red 

body color were drastically affected, displaying a significantly lower fecundity compared 

to the control with a reduction of 90% and 96% oviposition rate when treated with 

dsRNA-TuCOPB2-A and dsRNA-TuCOPB2-B respectively (Figure 4.5). 

4.3.2 Whole mount in situ hybridization 

To examine the spatial expression pattern of COPB2, a whole mount in situ hybridization 

on T. urticae adults was carried out. A strong signal was detected in the medioventral part 

of the mite, on the body surface, posterior to the central nervous mass (Figure 4.6B). This 

pattern likely corresponds to the reproductive system of T. urticae female including 

ovaries and oviduct as shown in Figure 4.6A-C. The organs composing the reproductive 

system fill the ventral body cavity, extending from the anal region forward to the central 

nervous mass. No signal was detected when using the sense probe. Moreover, when off 

target effect was checked, no significant sequence match other than COPB2 was found 

when the sequence used to generate the antisense probe was BLAST against T. urticae 

coding sequence, indicating that the expression pattern is specific to COPB2. 

4.3.3 Testing the uniformity of the dsRNA uptake 

As previously shown with the treatment of dsRNA-TuVATPase (Suzuki et al., 2017) and 

in this study using the dsRNA-TuCOPB2, only a portion of dsRNA-treated mites 

displayed RNAi. This low RNAi penetration was postulated to be the consequence of the 

intrinsic property of the delivery method, mite manipulation, or mite physiology. In order 

to improve dsRNA delivery, non-toxic food dyes were tested in a soaking solution with 

mites, at different concentrations, to assess their potential to be a visual tracer of dsRNA 

intake. I found that 6% blue food dye was the optimum concentration that could be 

visualized through the transparent integument of the mite, accumulating in the midgut. 

Next, I examined the capacity of the blue dye to be used as a  
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Figure 4.5: Adult mite fecundity after soaking treatment in solution of dsRNA-
TuCOPB2. Normal and red-body mite fecundity after soaking in solution of dsRNA-
TuVATPase-A, dsRNA-TuVATPase-B or dsRNA-NC. Data were collected from 3 
independent experimental runs and were compared using Wilcoxon-Man-Whitney test 
with Bonferroni correction (no asterisk: NS, Not significant, P > 0.05; ***, P < 0.001). 
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Figure 4.6: Whole-mount in situ hybridization of COPB2 gene expression pattern in 
T. urticae female. (A) Schematic representation of a sagittal section of a female T. 
urticae (Adapted from Alberti and Crooker (1985), with the permission of Elsevier)). (B) 
Ventral and lateral (C) view of adult mite female showing COPB2 expression pattern 
localized in the ovary within the oocyte and part of the oviduct. BC: buccal cavity; OV: 
Ovary; OVI: Oviduct; R: Rectum; E: eggs in formation. Scale bar represents 100 µm. 
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marker of dsRNA uptake, with the hypothesis that when mites were soaked in dsRNA 

mixed with the blue dye, only mites with accumulated blue dye in their midgut would 

respond to RNAi. A lack of the blue dye in the midgut would indicate insufficient or no 

dsRNA uptake. I used the phenotypic change in body color associated with RNAi 

responses to dsRNA-TuVATPase and dsRNA-TuCOPB2 as a visual cue to test the 

correlation between accumulation of blue dye in the mite gut and RNAi response. When 

mites were treated with dsRNA-TuVATPase-B or dsRNA-TuCOPB2-B mixed with blue 

dye, around 94% and 95% of the mites with a blue gut presented a dark-body and a red-

body phenotype respectively (Figure 4.7). However, mites without visible blue 

accumulation in the gut showed a significantly lower frequency of change in body color 

normally associated with RNAi response in mites treated with dsRNA-TuVATPase-B or 

dsRNA-TuCOPB2-B (Figure 4.7B, C). Consequently, the blue dye could be used as a 

dsRNA tracer in future experiments. 

4.3.4 The effect of dsRNA size on RNAi efficiency 

To test the relationship between dsRNA size and its position relative to the targeted 

transcript on RNAi efficiency, a dsRNA size series was designed against TuVATPase 

(Figure 4.8A and 4.8B) and TuCOPB2 (Figure 4.9A and 4.9B). In these assays, seven 

nested dsRNA fragments of different sizes were generated (600, 100, 200 and 400 bps in 

length). These fragments are overlapping at either the 5’ or the 3’ end. 

When mites were treated with the fragment size series from 100, to 600 bp against 

dsRNA-TuVATPase, a positive correlation between the increase of the dsRNA fragment 

length and the increase of the frequency of dark mites was observed (Figure 4.8C). The 

100 bp dsRNA fragments from either the 5’ or 3’ ends, yielded only a small portion of 

dark mites, 1.7 and 2.3 % respectively, of the total population treated. This proportion 

slightly increased when the 200 bp fragment was used. It resulted in 15.8 and 17.5% of 

dark mites from the 5’ and 3’ ends, respectively. The two dsRNA fragments of 400 bp 

targeting either the 5’ or 3’ ends of TuVATPAse showed high RNAi efficiency with 54 

and 45 % of black mites respectively. When mites were soaked with dsRNA-TuVATPase 

of 600 bp, RNAi response was the strongest showing about 65 % of dark-body mites. The 

same correlation between the length of the dsRNA fragment size and the RNAi efficiency  
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Figure 4.7: Correlation between blue mite and RNAi response after soaking for 24 
hours in solution containing dsRNA with blue dye. Representative pictures showing 
absence (Ai) or accumulation (Aii) of tracer dyes in adult female midgut after soaking 24 
hours in solution of dsRNA and 6% blue dye. RNAi response after soaking treatment in 
solution of dsRNA-TuVATPase-B separately for white mite; no blue accumulation and 
blue mites (B). RNAi response after soaking treatment in solution of dsRNA-TuCOPB2-
B separately for white mite and blue mites (C). Data were collected from 3 independent 
experimental runs and were compared using Mann-Whitney U-test (*, P < 0.05); (scale 
bars: 250 µm). 
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was observed with TuCOPB2 (Figure 4.9). Only 5.4 and 3.13% of the red phenotype was 

observed when mites were soaked in the solution of 100 bp dsRNA fragments from the 5’ 

and 3’ ends respectively (Figure 4.9C). When treated with the fragment size of 200 bp, 19 

and 13 % from the 5’ and 3’ ends respectively, developed the red phenotype. When mites 

where soaked with the 400 from the 5’ ends, a significant increase of red phenotype was 

observed compared to the 200 5’ bp fragments but not with the 400 3’ fragments. As 

expected, the 600 bp dsRNA fragment yielded the strongest RNAi phenotype with 71% 

of the mites displaying a red-body phenotype. Similar to the treatment with TuVATPase, 

RNAi efficiency of two dsRNA fragments of 400 bp targeting either the 5’ or 3’ ends of 

TuCOPB2 were not significant compared to the 600 bp dsRNA fragment suggesting that 

there is a threshold of dsRNA size: dsRNA≥ 400 bp is required for the RNAi 

effectiveness. Also, there was no significant differences between dsRNA fragments 

targeting TuVATPase and TuCOPB2, indicating that correlation between dsRNA 

fragment size and RNAi responsiveness is a systematic feature of gene silencing in T. 

urticae. Interestingly, no significant differences were observed between fragments of the 

same length targeting the 5’ or the 3’ end of the 600 bp coding sequence for either 

TuVATPase or TuCOPB2. This indicates a negligible effect of the position of dsRNA 

within the target transcript, albeit within the coding region. From these series of 

experiment, a size-activity relationship was established: significant body-color changes 

frequency associated with RNAi response was measured with dsRNA sequence length 

equal or longer than 400 bp. These results suggest that a size cut-off of approximately 

400 bp for a dsRNA is required to achieve significant effect against T. urticae.  

Mixed VATPase dsRNA fragments  

To test whether the low RNAi efficiency caused by shorter dsRNA fragments was due to 

the low degree of sequence coverage, I used the combination of two short dsRNA 

fragments of 200 bp each (200 5’ and 200 3’), to test whether they could reconstitute the 

RNAi effects observed when the dsRNA fragment of 400 bp (400 5’) was used. 

Interestingly, when both short fragment of 200 bp were combined (200 5’ and 200 3’), 

the frequency of dark mites was similar to the one observed with the fragments of 200 5’ 

or 200 3’ alone with about 20% of the mites dark (Figure 10). As expected, the 400 bp  
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Figure 4.8: The effect of dsRNA-TuVATPase sequence sizes and variability of gene 
regions targeted on RNAi efficiency. Schematic representation of TuVATpase gene and 
location of the targeted region (A) represented by a red box. Schematic of dsRNA 
sequence sizes and position relative to the 3’ end (solid green line) or 5’ end (solid blue 
line) of the targeted region including the longest fragment of 600 bp (red solid line) (B). 
Frequency of dark-body mites after treatment with dsRNA-TuVATPase. Statistical 
analysis was performed using one-way ANOVA (Tukey HSD test). Means with the same 
letter are not significantly different from each other. (bars	=	mean	±	SE; *, P < 0.05). 
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Figure 4.9: The effect of dsRNA-TuCOPB2 sequence sizes and variability of gene 
regions targeted on RNAi efficiency. Schematic representation of TuCOPB2 gene and 
location of the targeted region (A) represented by a red box. Schematic of dsRNA 
sequence sizes and position relative to the 3’ end (solid green line) or 5’end (solid blue 
line) of the targeted region including the longest fragment of 600 bp (red solid line) (B). 
Frequency of red-body mites after treatment with dsRNA-COPB2. Statistical analysis 
was performed using one-way ANOVA (Tukey HSD test). Means with the same letter 
are not significantly different from each other. (bars	=	mean	±	SE; *, P < 0.05). 
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Figure 4.10: The effect of mixed dsRNA-TuVATPase fragments on RNAi efficiency.  
Bar graph are representing the frequency of dark mites from 3 independent replicates 
after soaking adult female in solution of dsRNA. Statistical analysis was performed using 
one-way ANOVA (Tukey HSD test). Means with the same letter are not significantly 
different from each other. (bars	=	mean	±	SE; *, P < 0.05). 
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fragment yielded the highest % of dark mites (about 58%), a significantly higher 

proportion then when dsRNA of 200 bp was used either as a mix (200 5’ and 200 3’) or 

individually. Therefore, the combination of the two short dsRNA fragments did not have 

an additive effect when compared to the 400 bp dsRNA fragment, suggesting that the 

absence of sequence diversity is not the cause of the ineffective RNAi response. Rather, it 

appears that the T. urticae RNAi machinery requires longer dsRNA fragments for its 

appropriate processing into a population of siRNAs. 

4.4 Discussion 

4.4.1 Induction of RNAi in dsRNA TuCOPB2 soaked mites  

In this study, soaking mites in a solution of dsRNA-TuCOPB2 induced a change in body 

color correlated with an increase of mortality and a decrease of fecundity. Although, 

reduction of mite fitness seems to be correlated with application of dsRNA-TuCOPB2, 

the downregulation of TuCOPB2 transcript must be confirmed by RT-qPCR. Unlike the 

treatment with dsRNA-TuVATPase displaying a dark phenotype in a subset of mites 

(Suzuki et al., 2017b), RNAi response to COPB2 yielded red and small sized mites 

(Figure 4.2Ai and 4.2Aii). Interestingly, this phenotype was not observed in the treatment 

with dsRNA control (dsRNA-NC), dsRNA-TuVATPase nor in the rearing colony. 

However, similar to the treatments with dsRNA-TuVATPase, only a portion of the mites 

responded to dsRNA-TuCOPB2 (51% with the fragment A and 62 % with the fragment B 

(Figure 4.3B)) supporting the hypothesis that RNAi phenotype penetration is limited to a 

fraction of mites due to the intrinsic property of the delivery method. Similarly to 

phenotypic change observed upon the application of dsRNA-TuVATPase, red body 

phenotype/reduced body size was not reported in study that delivered dsRNA-TuCOPB2-

B through the floating leaf disk assay (Kwon et al., 2013). Even though delivery of 

dsRNA via soaking has been shown to have greater efficiency relative to the floating leaf 

disk assay when TuVATPase was targeted, that did not seem to be the case with dsRNA-

TuCOPB2 fragment: Kwon et al., (2013) reported mortality of 65,4 % of treated mites 5 

days post feeding, while with the soaking method I recorded the mortality of 53% after 

10 days of treatment. Rather, the difference may be in the ability of dsRNA delivered by 

soaking to reach tissues outside of the mite gut, especially because the in situ localization 
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of COPB2 transcript is found in mite reproductive tissues rather than in the gut. 

Furthermore, when soaking treatments with dsRNA targeting TuVATPase-B and 

TuCOPB2-B are compared, mite fitness parameters were different. The mortality was 

higher with dsRNA treatment against TuVATPase-B (reaching about 80% compared to 

53% with TuCOPB2-B), however the fecundity was much lower in dsRNA TuCOPB2-B 

treated mites than when TuVATPase was targeted (with about 0.5 eggs per female per day 

and 2.5 eggs per female per day, respectively). Whole-mount in situ hybridization reveled 

transcript accumulation of TuCOPB2 in mite ovaries and the oviducts (Figure 4.6). These 

organs are essential for eggs development and maturation (Beament, 1951). Thereby 

disruption of vesicular trafficking function within these tissues is expected to impair egg 

formation and/or oviposition rates. However, despite detection of a strong localization 

signal of COPB2 transcript in mite reproductive tissues, I cannot exclude the possibility 

that this gene is also expressed at the lower level in the gut. In the yellow fever 

mosquitoes Aedes aegipty, downregulation of the COPI subunit has been shown to 

disturb integrity of midgut epithelial cells (Zhou et al., 2011), ovaries follicular 

development and eggshell formation (Isoe et al., 2011). Interestingly, in the silkworm 

Bombix mori, suppression of COPI expression disrupted tube expansion of the posterior 

silk gland involved in fibroin secretion for silk formation. These studies highlight the 

wide spectrum of potential processes that COPI may participate in and its potential to be 

used as a biocontrol. 

4.4.2 Optimization of dsRNA soaking method and RNAi design   

Although RNAi has become a valuable tool for reverse genetic studies in non-model 

organisms, parameters that associate with the successful RNAi may differ between living 

systems and need to be investigated. Until now, an obstacle towards RNAi optimization 

in T. urticae was the lack of a trackable phenotype that can be used as a proxy for the 

effectiveness of RNAi. Herein, I established two model targets, TuVATPase and 

TuCOPB2, whose silencing leads to easily scored phenotypes. Using these phenotypes to 

score effects of several experimental parameters I demonstrated a method to control for 

the dsRNA uptake. The food blue dye mixed with dsRNA-TuVATPase-B and dsRNA-

TuCOPB2-B can be used to preselect treated mites that absorbed higher concentration of 
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dsRNA/blue dye solution. Such preselection increased the frequency of RNAi responses 

from 47% to 94% and 62% to 95% for dsRNA-TuVATPase-B and dsRNA-TuCOPB2-B, 

respectively (Figure 4.7). Moreover, this method allows a more accurate estimation of 

gene knockdown measurements as it allows a preselection of individuals that ingested the 

die with dsRNA are selected. Bilgi et al., (2017) reported the use of the neutral red dye 

that was mixed with dsRNA. They showed that the target gene expression in red-stained 

aphids was significantly lower when compare to the treated aphids that were not selected 

for dye color. This method has been also reported successful in oral delivery in the fever 

mosquito, Aedes aegypti (Singh et al., 2013). Utilization of dyes as a proxy for the 

dsRNA uptake is particularly useful for studies where silencing of the target gene does 

not lead to visible phenotype. Combining dyes with such dsRNAs would enhance 

chances of discovering molecular or physiological changes associated with the target 

gene silencing that is expected to be present at high frequency in the selected population 

of treated arthropods, relative to a general treated population where phenotype may be 

present at relatively low frequency and thus harder to identify. 

Also, I demonstrated the positive correlation between dsRNA size and RNAi efficiency. 

Long dsRNA fragment of at least 400 bp is required to trigger high RNAi response in 

spider mite. This can be explained by: 1) longer dsRNA is required to be efficiently 

process by the RNAi machinery; 2) longer dsRNA is needed to generate more diverse 

population of siRNA that have greater coverage of target sequence; or 3) longer dsRNA 

fragments are absorbed more efficiently by cells than shorter fragments. I showed that the 

combination of two dsRNA fragments of 200 bp covering 400 bp of the VATPase 

sequence target didn’t have additive effect compare to each fragment alone and thus, 

despite the expected more diverse siRNA population generated and the higher number of 

siRNA molecules, longer dsRNA might be required for efficient dsRNA processing or 

can be absorb better by mite tissues than shorter fragments. Furthermore, a study using 

siRNA (21 bp) or dsRNA (130 bp) injected in T. urticae has shown a higher RNAi 

efficiency associated with development of phenotype concomitant with DLL disruption 

with siRNA, indicating that small RNAs of limited diversity is not a limitation for RNAi 

(Khila and Grbić, 2007). Similar observation was made in the western corn rootworm. 

Using a 240 bp dsRNA and a 21 bp siRNA labelled with a fluorchrome, Bolognesi et al., 
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(2012) demonstrated that only the long dsRNA was successfully absorbed, localizing 

fluorescence in epithelial cells of the western corn rootworm larvae. In addition, they 

showed that a dsRNA fragment with 100% complementarity to the target is more 

efficient in inducing an RNAi when compared to a chimeric dsRNA fragment with the 

same length but with only 21 bp complementarity to its target. Similar conclusions have 

been drawn in a study using the red flour beetle Tribolium castaneum (Miller et al., 

2012). Although further experiments need to be carried out to complete characterization 

of COPB2 in mite I showed the effectiveness of the soaking method. Furthermore, I 

initiated an understanding of RNAi process in T. urticae and provided tools to enhance its 

efficiency. 

In summary, I developed optimized method for RNAi delivery and demonstrated the use 

of dyes to control dsRNA uptake and the requirement of a long fragment to enhance 

RNAi response. I also established a time- and cost-effective pipeline for functional 

analysis of mite genes, including a PCR method for template preparation and for 

synthesizing dsRNA fragments, RNA labeled probes, paving new avenues for reverse 

genetics approach in spider mite. 
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Chapter 5  

5 Summary and Discussion 

5.1 T. urticae feeding and plant damage 
The first objective of my thesis was to determine the immediate damage on host plant 

caused by T. urticae feeding. To date this study was the first to establish the direct 

consequence of mite feeding. Following individual mites, I established that the duration 

of a single feeding event ranged from a few minutes to more than half an hour, with an 

average time spent per feeding site of about 13 minutes. This finding was surprising, as 

the previous literature suggested (Liesering, 1960 and others in the field) that mites 

consume an average of 20 cells per minute. Upon feeding, there were no macroscopic 

changes at the feeding site. Thus, a chlorotic spot that is a typical plant symptom of 

spider mite feeding is not an immediate consequence of mite feeding, but rather results 

from the plant response triggered by mite feeding. 

Furthermore, using a histochemical approach, I identified that plant damage caused 

directly by mite feeding is limited to a single mesophyll cell that was underneath the 

intact epidermal layer. My findings contrast the published images of macroscopic damage 

and epidermal injuries resulting from T. urticae feeding (Campbell et al., 1990; Park and 

Lee, 2002). The main difference between my report and previous studies was in the time 

when the analysis was performed. While others made their observations after days and 

even weeks post feeding, I was recording changes that were limited to the initial 10 

minutes of mite feeding and were thus happening within the feeding event. Differences in 

the observed damage thus indicate that excessive cell death that is seen over longer 

period of time of mite feeding also depends on plant responses that influence the degree 

of tissue injury. Such indirect effects might be originated from mechanical or chemical 

damaged from the feeding cells that have a stressful impact on the organism or the cells 

and tissues adjacent to the punctured cell which can result in destruction of the stomatal 

apparatus (Sances et al., 1979) or a reduction of leaf thickness (Mothes and Seitz, 1981).  
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T. urticae, has been reported to feed preferentially on the lower epidermis (Foott, 1963; 

Morimoto et al., 2006; Osakabe et al., 2006), to avoid deleterious effects of UV (Ohtsuka 

and Osakabe, 2009) or the rain (Jeppson et al., 1975). In my experimental set up mite 

feeding was restricted to one side of the leaf. Regardless of the epidermis surface mites 

fed from, cells immediately underneath the epidermis were most frequently injured, 

despite the mite’s ability to reach any leaf layer with the stylet, indicating no preference 

of cell type mites consume. Several reposts have been suggested that metabolism activity 

(Mokronosov et al., 1973; Outlaw et al., 1976; Seeni and Gnanam, 1983) and protein 

content (Shen and Outlaw, 1989) was similar between cells from the spongy and the 

palisade layer relative to their chloroplast number suggesting similar nutrient quality in 

both cell type. In some cases, I observed a cluster of dead cells (a maximum of 3 dead 

cells) in the spongy and palisade layers upon mite feeding, but at very low frequency. 

Interestingly, when more than one cell was injured, damaged cells were localized on the 

stylet trajectory, making it possible that mite fed on these cells sequentially: after feeding 

on the first cell underneath the epidermis, mites may have punctured deeper, below the 

first empty cell. 

The second objective of my thesis was to reconstitute T. urticae stylet pathway, as mites 

feeding from the internal leaf tissues resulted of non-visible damaged on the epidermis. 

This was a challenging task, as mites readily retract their stylets upon any disturbance. I 

successfully developed an experimental protocol that allowed the preparation of 

histological samples that capture mites in the feeding position, and have developed a 

fixation procedure that preserved the integrity of both plant and mite tissues that were 

previously frozen in liquid nitrogen. Using a histological cross section of a mite feeding 

on host plant, I visualized for the first time plant cells that were targeted by the T. urticae 

stylet. I estimated the length of the stylet of about 150 µm which was consistent with the 

range observed by other authors (100-150 µm; Avery and Briggs, 1968; Ekka, 1969; 

Sances et al., 1979). The stylet length, mite density and host plant characteristic may have 

an impact on the depth and level of injuries (Mothes and Seitz, 1981; Sances et al., 1979; 

Summers and Stocking, 1972). For instance, the brown mite B. rubrioculus feeding from 

the upper epidermis is limited to the cells from the palisade layer estimated to be 90 µm 

thick while its stylet was estimated to be 95 µm (Summers and Stocking, 1972). 
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Likewise, in contrast to my observation of T. urticae stylet insertion following a by 

straight route into the mesophyll layer, the brown mite B. rubrioculus stylet is capable of 

lateral flexion, splaying outward to cut obliquely into the sidewalls of palisade cells 

which may increase the sphere of damage and more severe injuries in this mesophyll 

layer compare to T. urticae feeding habit. In addition, I observed stylet insertion between 

epidermal cells as the most frequent pattern, explaining the lack of visible injuries to 

these cells. In one case, the stylet was inserted through a stomata, a pattern that appears 

less frequent in T. urticae but seems to be an obligatory path for T. lintearius that feeds 

on gorse, a plant with very thick cuticle (Marriott et al., 2013). In this context, it will be 

interesting to determine if T. urticae as well uses stomatal leaf apparatus in hosts with 

thick cuticle. If T. urticae is able to modify its feeding, it may be a reflection of mite’s 

ability to sense the physical properties of leaf surface and to adjust its feeding behavior 

accordingly. Lack of epidermal cellular injuries were observed when mites were feeding 

on apple or strawberry leaves (Sances et al., 1979; Tanigoshi and Davis, 1978). However, 

some authors have observed epidermal damage resulting from T. urticae feeding on 

cucumber and strawberry (Campbell et al., 1990; Park and Lee, 2002). Although, these 

observations were made days or week post feeding, time for which, plant response can 

influence the degree of injury.  

Analysis of several independent serial cross sections didn’t reveal damage in the cells 

neighboring the feeding cell as suggested by Kielkiewicz (1981) in strawberry leaves. 

Although, I was not able to see this feature, the time set for this experiment of 10 minutes 

of feeding and tissue processing might not allowed me to visualize this effect, if it is an 

indirect consequence of feeding. However, I observed cytological changes of cell content 

happened in the punctured cells: in most cells, there was a complete or partial removal of 

cell content or coagulated chloroplast were seen in cells in which the stylet was inserted, 

similar to cytological changes observed in strawberry, apple, citrus and cucumber 

(Albrigo et al., 1982; Park and Lee, 2002; Summers and Stocking, 1972; Tanigoshi and 

Davis, 1978). 

Some authors have suggested action of salivary glands in the secretion of hydrolytic 

enzymes into plant cells for a pre-oral digestion. For instance, Mothes and Seitz (1981) 
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suggested destruction of the outer chloroplast membrane by salivary enzymes as only 

thylakoid granules where found in the esophagus and the ventriculus. Alternatively, 

enzymes may be secreted into the midgut lumen, however this hypothesis has not been 

demonstrated. In contrast, they propose sequential digestion in which, a first external pre-

digestion within the plant cell is processed and subsequently, internal digestion takes 

place upon nutrient uptake into specialized cells, derived from midgut epithelium 

hydrolyzing thylakoid granules, chlorophyll and cell membrane by amylase activity. In 

this thesis, I brought new and strong evidence reinforcing a feeding model in which a pre-

oral digestion occurred prior to the uptake of cellular content by the mite: 1) the stylet 

diameter of 2 µm is small relative to several microns for plant cell organelles, and 2) the 

relatively long period of feeding time of about 13 minutes would support an existence of 

enzymatic breakdown of cellular content in situ. If pre-oral digestion exists, then the 

question remains if it is dependent on mite-produced enzymes that are secreted to the 

feeding cell by the stylet, or plant enzymes that are released from their storage 

compartments upon feeding (e.g. the central vacuole bursts upon stylet penetration), or 

there is involvement of digestive enzymes contributed by both interactive organisms. 

Likewise, histological section suggested a feeding model in which the mite uses the stylet 

as a channel for food uptake and salivary secretion. First, I showed that, no cellular debris 

or membrane were stained in the apoplast adjacent to the injured cell and secondly, in 

most of the section the stylet was protracted outside the mouth and visualized within the 

plant cell.  

5.2 RNAi establishment and further optimization in T. 
urticae through soaking in dsRNA  

The second part of my thesis was to further develop RNAi as a reverse genetic tool that is 

required for the functional characterization T. urticae genes and to prepare large-scale 

systematic RNAi screens as a first step towards the development of specific RNA-based 

pesticide. 

As previously demonstrated, injection of dsRNA into T. urticae female abdomen resulted 

in RNAi in embryos and caused developmental aberrations associated with 

downregulation of the targeted gene (Khila and Grbic, 2007). Moreover, sequence 
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analysis of the T. urticae genome uncovered a complete RNAi machinery. Only recently, 

Kwon et al., (2013) demonstrated efficient RNAi through oral delivery using a floating 

leaf disc in solution of dsRNA. However, this method was not suitable for high 

throughput screening, as it requires a lot of dsRNA quantity that needs to be refreshed on 

a daily basis. In our laboratory, a soaking method was under development, consisting of 

the immersion of synchronized adult female mites into a solution of dsRNA (Suzuki et 

al., 2017). 

The objective of my thesis was to further develop the RNAi soaking method. I first used 

the VATPase as a target gene, as successful silencing of this gene in other arthropods 

systems induced to a measurable fitness reduction (Baum et al., 2007; Kwon et al., 2013; 

Upadhyay et al., 2011; Whyard et al., 2009; Zhu et al., 2011). Moreover, the oral delivery 

method using leaf disc floating on dsRNA against TuVATPase was successful to trigger 

RNAi in T. urticae (Kwon et al., 2013). I established that RNAi had incomplete 

phenotypic penetration, leading to the efficient silencing of the target in only a portion of 

the treated mites. I further confirmed that the low RNAi phenotypic penetration was 

intrinsic to the delivery method and was not due to the potential genetic variation in loci 

that could affect RNAi response among treated mites. Subsequently, I investigated the 

individual parameters of the delivery method, to see if I can increase the RNAi 

efficiency. I first established COPB2, involved in vesicular trafficking, as additional 

target for RNAi as it wasao et 2011) and in T. urticae (Kwon et al., 2013). RNAi 

targeting both VATPase and COPB2 resulted in visible phenotypes, dark and red mite 

body color, respectively. Using these phenotypes, I tested different parameters to increase 

RNAi efficiency. First, I developed a method consisting of a mixture of dsRNA and a 

food dye, to preselected mites that have ingested dsRNA and enriched the pool of mites 

responding to RNAi. Second, I demonstrated that longer dsRNA fragments are more 

efficient in triggering RNAi in spider mites. Combining these two changes into a revised 

protocol, I was able to achieve RNAi in more than 95% of preselected treated mites. 

A critical remaining issue for the efficacy of gene silencing is the differential 

accessibility of tissues to supplied dsRNA, especially since delivery of fluorescently 

labeled dsRNA fragments demonstrated that most of the fluorescence remained in the 
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mite gut (Suzuki et al., 2017). To address the accessibility of the tissue to dsRNA, there is 

a need to assess the ability of dsRNAs to silence a set of test genes for which the 

expression patterns have been defined in a specific domain in the mite body. I have 

previously determined the expression patterns of several genes via whole mount in situ 

hybridization (Appendix 4) that identified different domains within the mite body. By 

delivering dsRNA directed against each of those genes, one can compare the 

effectiveness of dsRNA penetration to each of these domains by quantifying the extent of 

gene downregulation. Based on these results, one can select gene targets, expressed in the 

gut and/or outside the gut as a model target genes to compare the efficiency of dsRNA 

delivery. Moreover, chemically modify dsRNA and carrier such as lipofectamine could 

be tested to enhance RNAi response. 

Another interesting future initiative would be to test the ability to silence multiple genes 

within a gene family by targeting conserved sequence within the coding region. To 

specifically test the ability to silence multiple members of the gene family, dsRNAs 

against conserved sequences of the members of the gene family could be designed and 

tested for their effect by monitoring the expression of individual family members via 

locus-specific RT-qPCR. These results will be a useful method for functional analysis of 

gene families in T. urticae. 

Understanding the molecular mechanisms underlying the successful adaptation of T. 

urticae on a broad range of plant species has become essential to understanding the 

mutual interaction between plants and spider mites. The availability of efficient reverse 

genetic tools that are currently under development for spider mites, combined with 

resources available for plant models such Arabidopsis and the tomato host plant, will help 

reveal the fundamental processes governing plant-spider mite interactions. 
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6 List of Appendices 

 

 
Appendix 1: Brightfield and confocal microscopy observation of fecal pellets and 
crystals of guanine in T. urticae. (A) Dorsal view of T. urticae female with the mouth 
oriented to the left observed in brightfield. (B) Fecal pellet representing the chlorophyll 
degradation visualized with confocal microscopy using 633 nm wavelength excitation 
and a LP of 650 nm. (C) Crystals of guanine presents mostly in the excretory organ 
visualized with confocal microscopy using 543 nm wavelength excitation and a LP of 
650 nm. (D) Merge of autofluorescence from B and C. (scale bar applies in all panel: 100 
µm). 



129 

 

 

Appendix 2: Representative picture of a cryosection of a mite feeding on a bean leaf 
previously frozen and embedded in optimal cutting temperature compound (OCT 
compound). The leaf section is on the top and part of the body mite with detached legs is 
on the bottom. The section thickness is about 50 µm. (Scale bar: 500 µm). 
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Appendix 3: Representative picture of a microtome section of a mite feeding on a 
bean leaf previously frozen, fixed, dehydrated and embedded in paraffin. The arrow 
indicated the stylet within the plant tissue. The section is about 10µm thick. (Scale bar: 
250 µm.) 
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Appendix 4: Expression pattern of selected genes, highly expressed in mite’s head 
using whole-mount RNA in situ hybridization. (A) Schematic representation of a cross 
section of adult T. urticae female prosoma between legs 1 and 2 (Adapted from Mothes 
and Seitz, 1981). (B) Schematic representation of a sagittal section of a female T. urticae 
(adapted from Alberti and Crooker, 1985). In these two diagrams, the dorsal 
podocephalic glands (DPGL) are colored in orange, the anterior podocephalic glands 
(APGL) are colored in blue and the silk glands (SILKGL) are colored in green. The black 
arrow in the Figure B indicates the location of the section in the prosoma corresponding 
to the Figure A. (C-N) Expression patterns of selected genes using in situ hybridization 
with an antisense RNA probe DIG labelled. The purple signal was developed using anti 
DIG antibodies conjugated with AP enzyme in presence of NBT and BCIP substrates. On 
the far left the tetur ID corresponding to each panel. Figures C and E, dorsal view; Figure 
G, I, K and M, ventral view; Figures D, F, H, J, L and N, lateral view. On the panels C 
and D, the orange arrows show the signal development corresponding to DPGL, 
(tetur02g01710) whereas in the panel E and F, the signal corresponds to the APGL and 
shown with the green arrows, (tetur437g00010). In panels G and H, the green arrows 
indicate the silk glands, (tetur02g01710). The black arrows in panels I to N show 
expression domain in non-identified organs. CNM: central nervous mass; OV: ovaries; 
OVI: oviduct; EX: excretory organ; TRGL: tracheal gland; ST: stylet; PH: pharynx; 
CXO: coxal organ. The bars in panels C to N indicates 100 µm.  
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