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Abstract 

All melodies have shape: a pattern of ascents, descents, and plateaus that occur as 

music moves through time. This shape—or contour—is one of a melody’s defining 

characteristics. Music theorists such as Michael Friedmann (1985), Robert Morris (1987), 

Elizabeth Marvin (1987), and Ian Quinn (1997) have developed models for analyzing 

contour, but only a few compare contours with different numbers of notes (cardinalities), and 

fewer still compare entire families of contours. Since these models do not account for 

familial relations between different-sized contours, they apply only to a limited musical 

repertoire, and therefore it seems unlikely that they reflect how listeners perceive melodic 

shape.  

This dissertation introduces a new method for evaluating familial similarities between 

related contours, even if the contours have different cardinalities. My Familial Contour 

Membership model extends theories of contour transformation by using fuzzy set theory and 

probability. I measure a contour’s degree of familial membership by examining the contour’s 

transformational pathway and calculating the probability that each move in the pathway is 

shared by other family members. Through the potential of differing alignments along these 

pathways, I allow for the possibility that pathways may be omitted or inserted within a 

contour that exhibits familial resemblance, despite its different cardinality. 

Integrating variable cardinality into contour similarity relations more adequately 

accounts for familial relationships between contours, opening up new possibilities for 

analytical application to a wide variety of repertoires. I examine familial relationships 

between variants of medieval plainchant, and demonstrate how the sensitivity to familial 

variation illuminated by fuzzy theoretical models can contribute to our understanding of 



 

ii 

 

musical ontology. I explain how melodic shape contributes to motivic development and 

narrative creation in Brahms’s “Regenlied” Op. 59, No. 3, and the related Violin Sonata No. 

1, Op. 78. Finally, I explore how melodic shape is perceived within the repetitive context of 

melodic phasing in Steve Reich’s The Desert Music. Throughout each study, I show that a 

more flexible attitude toward cardinality can open contour theory to more nuanced judgments 

of similarity and familial membership, and can provide new and valuable insights into one of 

music’s most fundamental elements. 

Keywords 

Melodic Contour, Cardinality, Fuzzy Set Theory, Probability, Transformational Theory, 

Plainchant, Musical Motive, Johannes Brahms, Minimalism, Steve Reich, Musical Ontology, 

Music Perception, Music Theory.  
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CHAPTER 1: Introduction 

 

All melodies have shape: a pattern of ascents, descents, and plateaus that occur as 

music moves through time. This shape—or “contour”—is one of a melody’s defining 

characteristics. It helps listeners to identify and group related melodies into coherent 

families. Music theorists have developed models for analyzing melodic contour, but only 

a few compare contours with different numbers of notes (or cardinality), and fewer still 

compare entire families of contours. Since these models do not account for relations 

between family members that have different cardinalities, they apply only to a limited 

musical repertoire, and it seems unlikely that they reflect the way listeners perceive 

melodic shape. In this dissertation, I will introduce a new method for evaluating 

similarities in a family of related contours, even if the contours are different cardinalities. 

Robert Morris (1987) and Elizabeth Marvin and Paul Laprade (1987) have 

developed matrices that quantitatively account for similarity between a pair of contours. 

Ian Quinn (1997) has generalized these matrices by employing fuzzy set theory to 

determine a contour’s degree of membership within a family of related contours. Though 

useful, these matrix-based models cannot meaningfully compare contours of different 

cardinalities, and therefore have limited application. Additionally, Morris (1993), Rob 

Schultz (2008), and Mustafa Bor (2009) developed algorithms that reduce a contour to its 

most basic shape, which permits comparisons between contours regardless of their initial 

cardinalities. As Quinn demonstrated, however, these models measure contour 

equivalence and are therefore too restrictive to measure familial membership because 
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they cannot admit partial members into a set of related contours (Quinn 1997, 237–38). 

These limitations can be avoided through a shift in perspective. Rob Schultz (2009) 

provided such a shift, moving away from matrices and toward a linear representation of 

contour: a transformational process that tracks a contour’s pathway as it unfolds in time.  

In this dissertation, I introduce a new method for evaluating familial membership 

of contour segments (hereafter referred to as c-segs) within a family of related c-segs, 

without requiring that the c-segs be the same length.1 Just as Quinn used fuzzy sets to 

extend the theory behind contour matrices, I extend Schultz’s theories of contour 

transformation by turning to probability. I measure a contour’s degree of familial 

membership by examining the contour’s transformational pathway and calculating the 

probability that each move in the pathway is shared by other family members. Through 

the potential of differing alignments along these pathways, I allow for the possibility that 

pathways may be omitted or inserted within a contour that exhibits familial resemblance, 

despite its difference in length. 

This dissertation is divided into two parts. Part I consists of Chapter 1 and 

Chapter 2, and introduces my new model in the context of existing methodologies. This 

first chapter contains a brief overview of existing models for contour, and outlines the 

underlying issues regarding the current theories of contour relations. Chapter 2 then 

introduces my new Familial Contour Membership Model, and explains how its 

                                                

1 As described below, a c-seg is a formal, numerically represented expression of a melodic segment’s 

specific contour. However, music theorists often use the term ‘c-seg’ to refer both to melodies and their 

formal representations. 
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transformational perspective allows for contours with different cardinalities to share 

familial characteristics. 

Integrating variable cardinality into similarity relations for contour more 

adequately accounts for the similarity of contours within a family, and opens up new 

possibilities in terms of analytical application to a wide variety of repertoires. In Part II of 

this dissertation, I will demonstrate the analytical usefulness of the Familial Contour 

Membership model through three case studies. Chapter 3 will examine familial 

relationships between variants of medieval plainchant, and will show how the sensitivity 

to familial variation illuminated by fuzzy models can contribute to our understanding of 

musical ontology. In Chapter 4, I will explain how melodic shape contributes to motivic 

development and the creation of narrative in Brahms’s “Regenlied” Op. 59, No. 3, and 

the related Violin Sonata No. 1, Op. 78. Chapter 5 will explore how melodic shape is 

created and perceived within the repetitive context of minimalist music through a case 

study of melodic phasing in Steve Reich’s The Desert Music. Finally, Chapter 6 will 

provide some concluding thoughts and suggest some potential areas for future research. 

Throughout each chapter, I will show that a more flexible attitude toward cardinality can 

open contour theory to more nuanced judgments of similarity and familial membership, 

and can provide new and valuable insights into one of music’s most fundamental 

elements. 
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Early Models for Contour Representation 

Theorists have often qualitatively described the contour of a motive or phrase, 

characterizing the way it rises or falls, and commenting on its relationship to the 

construction of the work. For example, Ernst Toch comments that “with the combination 

of ascending and descending scale segments melody approaches its real nature: the wave 

line” (1948, 78). Beginning in the 1980s, however, music theorists have begun to 

approach contour with more systematic precision.2 Several theorists, including Michael 

Friedmann, Robert Morris, Elizabeth Marvin, Paul Laprade, Ian Quinn, Rob Schultz, and 

Mustafa Bor have developed rigorous models with which to quantitatively describe 

contour, and to study relationships between contours. 

Friedmann’s 1985 article, “A Methodology for the Discussion of Contour: Its 

Application to Schoenberg’s Music” begins to develop this more systematic approach by 

calling for theorists to look beyond more abstract pitch classes when analyzing post-tonal 

music.3 He writes that “we are confronted…with a serious gap between the vivid realities 

of the surface of twentieth-century music and our accounts of the rather remote 

abstractions that are supposed to be its prime determinants” (1985, 223). He continues, 

describing the heavy influence that pitch class has on the analysis of twelve-tone music. 

He writes:  

                                                

2 Early precursors to this include the ethnomusicological work of Charles Seeger (1960) and Charles 

Adams (1976), both of whom would influence the more common models music theorists use today. 

3 Seeger (1960) and Adams (1976) notated melodies using ascents and descents as well. Seeger’s “+” and 

“-” refer to “tension” and “detension”. Adams also enumerates a background gestalt for his melody 

categorization, using the first, last highest and lowest notes to represent the overall melody. These early 

precursors have influenced the more rigorous models that we see developed in the 1980s in the pc-set 

theoretic literature (Marvin 1995, 135–171). 
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The control of pitch class exercised in twelve-tone music…is as much a 

delimitation of its sovereignty, as it is a tribute to its importance, and this 

autonomy of pitch class and interval class has a logical corollary, the autonomy of 

contour. Thus, the independent associative power of each musical parameter is the 

major consequence of the classical twelve-tone premises of composition. (1985, 

224) 

 The increased autonomy associated with each parameter of music drives 

Friedmann to develop a rigorous way to define the parameter of contour, borrowing ideas 

from pitch-class set theory. He outlines two ways to model the structural characteristics 

of a given contour. The first is the Contour Adjacency Series (CAS), which accounts for 

relationships between adjacent pitches in a contour by providing an ordered series of 

direction changes (or moves), using the symbols “+” and “-” to account for the direction 

changes up and down respectively.4 Figure 1.1, for example, shows a nine-note contour, 

which possesses a CAS of +-++---+, describing the relative direction from each note to 

the next. This approach is especially useful when accounting for the transformational 

development of a contour, and it is in this way that the CAS is used throughout this 

dissertation. 

Figure 1.1 Application of Friedmann’s CAS and CC models (Wallentinsen 2013, 3) 

 

                                                

4 These symbols were derived from the pitch-class set theoretic concept of ordered pitch intervals, simply 

removing the crisp intervallic distinction. This, combined with the fact that Friedmann is using the model 

for serial music, is why the model as it is presented in his article lacks a third “=” symbol to represent the 

static plateau associated with a pitch repetition. 
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 Despite its usefulness, the CAS does not describe the global relationships between 

the nine notes of the contour. To address this, Friedmann creates the Contour Class (CC), 

which “describes contour relations among all the pitches…and can reflect the 

occurrences of pitch repetitions. In the CC, 0 is the lowest pitch, and n-1 (n=number of 

different pitches in the unit) is the highest pitch” (1985, 227). As shown in Figure 1.1, the 

example contour’s CC would be 671254103, where 0 reflects the lowest pitch (F4), and 

the highest pitch (F5) would be represented by n-1, which would equal 7 in this case, 

because two pitches are identical (the G4).5 Elizabeth Marvin and Paul Laprade (1987) 

also used this nomenclature, defining a contour segment, or c-seg, as an ordered set of 

pitches labeled in the same way that Friedmann does with his CC.6 

 Similarly, Robert Morris introduces new models of contour representation in his 

1987 book Composition with Pitch Classes. He defines a contour space (or c-space) as 

“the basic and most musically immediate pitch-space” (1987, 26). This c-space is made 

up of a “pitch-space of n elements, called c-pitches [for contour-pitches]. C-pitches are 

numbered in order from low to high” (1987, 26) in the same manner as Friedmann’s CC. 

                                                

5 Friedmann goes on to discuss other models for contour analysis, including a Contour Interval Array, and 

various contour vectors based on the CAS and CC. These models fall outside the scope of this dissertation 

and will not be discussed here. 

6 Marvin and Laprade (and Morris too, for that matter) use the same kind of enumeration as Friedmann’s 

CC for their c-seg representations (i.e., numeric designations for each pitch ranging from 0 as the lowest to 

n-1 as the highest). However, it is important to note that it has become traditionally accepted in the theory 

community to use the term c-seg to refer both to the contour itself (connoting a process of segmentation on 

the part of an analyst) as well as the contour-segment’s numeric representation, such as 671254103 (in the 

same way that we might use an ordered set of pitch-classes to identify and label an ordered pitch-segment. 

In this dissertation, I shall use the term c-seg in the same manner. 
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 Morris also creates a matrix-based representation, called the COM matrix, that 

displays the relationship between each ordered pair of c-pitches in the contour. Morris 

writes that “COM (a,b) is the comparison function of two c-pitches, a and b, in any c-

space. If b is higher than a, COM (a,b) = +1; if b is the same as a, COM (a,b) = 0; and if b 

is lower than a, COM (a,b) = -1…[in the matrix] the plus and minus signs stand for the 

+1s and -1s of the various comparisons involved” (1987, 28). This matrix provides 

analysts with a comprehensive account of the relative position of each c-pitch within c-

space. Figure 1.2 shows the COM matrix for the contour in Figure 1.1: following the first 

row, we can see that the first c-pitch is higher than all other c-pitches except for the 

second, as indicated by the “-” symbols in the majority of the first row. This matrix 

allows analysts to examine the internal structure of the contour, enabling them to see the 

relationship between any two c-pitches in the c-seg. 

Figure 1.2. COM Matrix for the 671254103 contour (Wallentinsen 2013, 6) 

 6 7 1 2 5 4 1 0 3 

6 0 + – – – – – – – 

7 – 0 – – – – – – – 

1 + + 0 + + + 0 – + 

2 + + – 0 + + – – + 

5 + + – – 0 – – – – 

4 + + – – + 0 – – – 

1 + + 0 + + + 0 – + 

0 + + + + + + + 0 + 

3 + + – – + + – – 0 
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Methods of Contour Comparison 

 The systematically defined representations of musical contour established by 

Friedmann, Morris, and Marvin and Laprade paved the way for the development of 

multiple similarity relations that allowed theorists to compare two contours more 

thoroughly than previous qualitatively descriptive approaches had been able to do. 

However, Ian Quinn (1997, 2001) points out that many of them have limitations when it 

comes to comparing a family of multiple contours at the same time. Many are also 

limited in that they cannot compare contours of different cardinalities. In this section, I 

will review pertinent contour comparison methods, and will comment on their limitations 

with regard to their abilities to compare multiple contours of different sizes. 

 Marvin and Laprade created a contour similarity measure called CSIM, which 

measures similarity between two contours by comparing the COM matrices of the 

contours, counting the number of identical entries in the matrices and dividing by the 

total number of entries in the matrices, as shown in Figure 1.3. The result is a quantitative 

gauge of the contours’ similarity between 0 (not similar at all) and 1 (identical). In the 

case of the contours in Figure 1.3, this pair of contours has a CSIM value of 0.8, 

indicating that, according to this model, they are 80% similar to one another (1987, 234–

237). Because CSIM relies on matching positions within the corresponding COM 

matrices, the contours in question need to be the same cardinality in order for the 

comparison to work properly. Contours of different lengths, and therefore different-sized 
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matrices, are not comparable using this method because the models themselves depend 

on the matrices’ identical number of entries.7 

Figure 1.3. Demonstration of CSIM procedure (Quinn 1997, 241) 

 

 Morris (1993), Schultz (2008), and Mustafa Bor (2009) have taken a different 

approach toward contour comparison, developing algorithms that recursively reduce a 

contour to its most basic shape, which permits comparisons between contours regardless 

of their initial cardinalities. Morris’s Contour Reduction Algorithm (shown in Figures 

1.4a and 1.4b) introduces a systematic process for the reduction of a contour to a prime—

a gestalt representing the generalized shape of the contour, outlining the first, last, 

highest, and lowest c-pitches in the c-seg. Schultz extended the algorithm to account 

                                                

7 Marvin and Laprade also introduced various embedding functions that measure the degree to which one 

contour is embedded within another. These are useful for the study of contour, but because they are 

measuring embedding and not similarity (a finely grained distinction, to be sure), they fall outside the scope 

of this dissertation and will not be discussed further. 
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more sensitively for primes that were not previously accounted for in Morris’s algorithm 

(2008, 96). Bor introduced a similar reductive approach: a window algorithm that reduces 

a contour to its prime by pruning c-pitches that are neither the lowest c-pitch nor the 

highest c-pitch in consecutive strands of three to five c-pitches (Bor 2009, 55–73). In the 

cases of these reductive approaches, similarity is judged on the basis of primes: two 

contours are similar if they reduce to the same prime. However, these methods base their 

similarity judgments on assumptions of equivalence (i.e., “same prime”), and therefore 

are not a true similarity relation because they miss aspects of similarity that may have 

been reduced out through the algorithmic process.  

These models are incapable of comparing individual contours to an entire family 

of related contours primarily because these models require pairs of discrete c-segs in 

order to work. These individual units prohibit the possibility that the relationship between 

members of a family revolve more around average familial characteristics that do not 

necessarily manifest the same way in each family member. Quinn argues that the 

structure of these average familial characteristics is an important way that listeners 

categorize melodies within a work. He posits that these families, like human families, 

cohere based on sets of average characteristics, and argues that these earlier models of 

contour comparison cannot reflect this way of human categorization because they cannot 

create an average member of the family (Quinn 1997, 240). Quinn then works to develop 

a new model that can make these comparisons, basing his method on mathematic 

principles from fuzzy set theory.  
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Figure 1.4a. Morris’s Contour Reduction Algorithm (Morris 1993, 212) 

Definition: Maximum pitch: Given three adjacent pitches in a contour, if the second is higher 

than or equal to the others it is a maximum. A set of maximum pitches is called a maxima. 
The first and last pitches of a contour are maxima by definition. 

Definition: Minimum pitch: Given three adjacent pitches in a contour, if the second is lower 

than or equal to the others it is a minimum. A set of minimum pitches is called a minima. 

The first and last pitches of a contour are minima by definition. 

Algorithm: Given a contour C and a variable N: 

[STAGE ONE:] 

Step 0: Set N to 0. 

Step 1: Flag all maxima in C; call the resulting set the max-list. 

Step 2: Flag all minima in C; call the resulting set the min-list. 

Step 3: If all pitches in C are flagged, go to step 9. 

Step 4: Delete all non-flagged pitches in C. 

Step 5: N is incremented by 1 (i.e., N becomes N + 1). 

[STAGE TWO:] 

Step 6: Flag all maxima in max-list. For any string of equal and adjacent maxima in max-list, 
either: (1) flag only one of them; or (2) if one pitch in the string is the first or last pitch of C, 

flag only it; or (3) if both the first and last pitch of C are in the string, flag (only) both the 

first and last pitch of C. 

Step 7: Flag all minima in min-list. For any string of equal and adjacent minima in min-list, 

either: (1) flag only one of them; or (2) if one pitch in the string is the first or last pitch of C, 

flag only it; or (3) if both the first and last pitch of C are in the string, flag (only) both the 

first and last pitch of C. 

Step 8: Go to step 3. 

Step 9: End. N is the “depth” of the original contour C. 
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Figure 1.4b. Application of Morris’s contour reduction algorithm to the c-seg 

671254103 (Wallentinsen 2013, 11) 
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Some “Fuzzy” Preliminaries 

 In his article “Listening to Similarity Relations” (2001), Quinn challenges 

common conceptions about similarity relations. He describes similarity relations in terms 

of fuzzy set theory, a generalization of crisp mathematics developed in 1965 by Lofti 

Zadeh. In this theory, fuzzy sets, unlike their crisp counterparts, are “class[es] of objects 

with a continuum of grades of membership” (Zadeh 1965, 338). 

George Klir and Bo Yuan give a very clear example of how fuzzy set theory 

works to arrive at these degrees of membership (called membership functions or 

membership values) within a fuzzy set. Consider the various descriptions that one might 

use to describe the weather. They write: “Instead of describing the weather today in terms 

of the exact percentage of cloud cover, we can just say that it is sunny” (Klir and Yuan 

1995, 4). The designation sunny is vague: it does not have a single precise measurement. 

Its meaning is not totally arbitrary, however; a cloud cover of 100% is not sunny, 

and neither, in fact, is a cloud cover of 80%. We can accept certain intermediate 

states, such as 10% or 20% of cloud cover, as sunny. But where do we draw the 

line? If, for instance, any cloud cover of 25% or less is considered sunny, does 

this mean that a cloud cover of 26% is not? This is clearly unacceptable, since 1% 

of cloud cover hardly seems like a distinguishing characteristic between sunny 

and not sunny. We could, therefore, add a qualification that any amount of cloud 

cover 1% greater than a cloud cover already considered to be sunny (that is, 25% 

or less) will also be labeled as sunny. We can see, however, that this definition 

eventually leads us to accept all degrees of cloud cover as sunny. (Klir and Yuan 

1995, 4) 

 

The imprecision of the term “sunny” initially looks to be quite problematic from a 

quantitative point of view, but the introduction of a continuum of graded membership 

solves this problem. It allows a “gradual transition from degrees of cloud cover that are 

considered to be sunny and those that are not” (Klir and Yuan 1995, 4). In this sense, the 
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word “sunny” is understood as a fuzzy set: a container full of values that either fully or 

partially represent the meaning of the word. 

 Fuzzy sets can also intersect with each other within a continuum that represents 

the universal set—the entirety of the space one is considering. Figure 1.5 represents the 

three intersecting sets of young, middle-aged, and old. Here we can see that as individuals 

age past 20, they are considered members of both the young and middle-aged categories 

to varying degrees: at age 21, for example, they are still considered almost full members 

of the young set, and almost non-members of the middle-aged set. As individuals age, 

their membership function in the middle-aged set rises and their membership function in 

the young set falls. An individual’s respective membership functions within both sets 

meet in the middle around age 27, after which point the person might be considered more 

middle-aged than young. Finally, after age 34, the person will no longer be considered a 

member of the fuzzy set young. In this way, fuzzy set theory can account not only for 

partial members within a category, but also for transitions between particular states, and 

this type of measurement could be quite valuable when examining many different 

musical parameters. 

 

 

 

 

 



 

15 

 

 

Figure 1.5. Membership functions representing the fuzzy sets of young, middle-aged, 

and old (Klir and Yuan 1995, 20) 

 

 Just like states of cloud-cover and people of varying ages, objects such as pitches, 

pitch class sets, c-segs, or motives can be described as partial members within a fuzzy set. 

This partial membership is based on the degree of membership that these individual 

objects possess, according to a particular analytical model. Quinn examines musical 

similarity relations that can produce grades of membership ranging between 0 (not a 

member) and 1 (a full member). He lists ASIM, IcVSIM, and CSIM just to name a few, 

to show that methods already exist within the realm of music theory that make judgments 

similar to those described in fuzzy set theory. Such similarity relations, he states, are 

extensions and generalizations of equivalence relations, something that was previously 

considered separate. If similarity indeed maps elements onto a continuum between 0 and 

1, then the oppositional binary that creates the crisp equivalence vs. non-equivalence 

relation lies at either end of that continuum. The area in between is fuzzy—an area where 

objects bear some resemblance to each other but are not completely equivalent. Similarity 
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relations, therefore, are fuzzy relations: they are particular types of relations that take 

pairs of pc-set theoretic elements as their intension, and map them onto a numeric range 

between 0 and 1 (Quinn 2001). 

 

Quinn’s Fuzzy Contour Model 

Quinn’s exploration of fuzzy relations in contour theory emphasizes certain 

limitations regarding existing similarity relations. He explains that not all models have 

the ability to make these kinds of judgments, because they do not base their 

measurements on the 0 to 1 continuum, but rather measure equivalences in a purely 

musical context (like the contour reduction algorithms). Furthermore, other existing 

models that do possess the required membership continuum are limited in that they only 

map pairs of c-segs, excluding the possibility of adequately studying averaged family 

structure without further modification. As such, Quinn’s search for a way to model fuzzy 

contour relations leads him to modify CSIM, a similarity relation that compares two c-

segs and returns a measurement between 0 and 1, as shown in Figure 1.3. 

Quinn bases his theoretical model on the foundational assumption that motive or 

melody families may be treated as fuzzy sets by allowing motives to be partial members 

within the family based on their degree of similarity to the overall family. First, Quinn 

modifies the COM matrix to show ascent vs. non-ascent (a matrix that he calls a C+ 

matrix). This matrix, such as the one shown in Figure 1.6a, registers a 1 for “higher than” 

designations and a 0 for all others (“equal to” and “lower than”). The circled “1” value in 

the figure, for example, tells the analyst that c-pitch e is higher than c-pitch b. Quinn then 



 

17 

 

 

averages the C+ matrices of all existing family members to represent the probability that 

any given pitch in the family is higher than another, as shown in Figure 1.6b. This allows 

him to compare potential new members to the entire family by comparing matrices in a 

procedure which he calls “fuzzy C+SIM”: he compares the matrix of the new member to 

the probability matrix he created for the family, as shown in Figure 1.6c, arriving at a 

value between 0 and 1 that represents the new contour’s degree of membership within the 

family. These membership values give us insight into both how a contour is potentially 

related to a family of contours and how it is unique within the bounds of the familial 

resemblance.  

Figure 1.6a. Quinn’s C+ matrix (1997, 252) 
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Figure 1.6b. Quinn’s method of creating an averaged contour family using C+ matrices (1997, 252) 
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Figure 1.6c. Calculating fuzzy C+SIM using two fuzzy C+matrices (Quinn 1997, 

257) 

 

 

Explicit and Implicit Categorization 

Quinn creates this fuzzy model in order to address a family of contours he 

identifies from Steve Reich’s The Desert Music (shown in Figure 1.7), yet the model is 

based on a series of hidden assumptions that require more careful study.8 The fuzzy 

C+SIM relation maps the comparison between a single crisp new contour and an entire 

family of contours onto a continuum between 0 and 1, representing the degree of 

membership of the potential member of the family within the existing family of c-segs. 

This seems like a very logical construct, and for the purposes of fuzzy C+SIM, it works 

well.  

                                                

8 Quinn’s analysis of the piece itself is also worthy of more careful study. This shall be taken up in Chapter 

5, where I will more fully demonstrate the limitations of Quinn’s model to provide an analysis that is 

sensitive to the context in which the melodies occur. 
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 Quinn’s model specifically measures membership within the family on the sole 

basis of contour similarity. By itself, this approach is analytically sound: Quinn’s stated 

intention is to study contour similarity, ignoring other musical categories that contribute 

to overall similarity. However, the contours that Quinn chooses for his initial family are 

not admitted to the family under this same sole criterion. Regarding the formation of the 

initial family, Quinn writes: 

No more than a casual hearing of the piece, or a cursory glance at [Figure 1.7], is 

necessary to inspire in the observer the intuition that all of the first-violin and flute 

melodies are of a kind. Specifically, they all follow the same rhythmic pattern, and 

they share a strong family resemblance of contour, despite individual local 

differences. (1997, 233)  

 

Quinn bases his initial family on the human perception that these passages are “of a 

kind.” He goes on to list several categories to which these similar passages belong; 

rhythmic pattern and contour most obviously, but the categorization also includes 

instrumentation (first-violin and flute, which also brings about some tacit categorizations 

regarding register, tessitura, timbre, etc.), and even location within the piece.  

Admission to the initial family on the basis of all of these either explicit or 

implicit categories (even though it occurs in the guise of a contour similarity judgment) 

creates a double standard regarding the way that passages are judged within the analysis. 

New contours must be admitted on the basis of strong contour resemblance alone, while 

the initial family members were admitted to the family based on an overall perceived 

similarity across a number of different categorical attributes. This accounts for some of 

the larger contour variations that occur within the family: some contours within the 

family have relatively low degrees of membership, such as M6b, which has a membership  
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Figure 1.7. The sixteen melodies of Quinn’s melody family, labeled “M” (Quinn 

1997, 234) 

 



 

22 

 

 

value of 0.545, as shown in Figures 1.8a through 1.8c.9 These contours fall below 

Quinn’s chosen threshold of 0.7, the requirement he chose for membership of new 

passages within the family. If the goal is to examine contour only, should not the initial 

family be also governed by contour only? I would posit that all members should be 

admitted to the family in the same manner, regardless of whether they belong to the 

initial family or are new potential members of the family, and this requires us to look 

further into the ways melodies are categorized. 

Figure 1.8a. Quinn’s average C+ matrix for his melody family “M” (Quinn 1997, 

253) 

 a b c d e f g h i j k 

a 0 0.14 0.03 0.13 0.00 0.03 0.03 0.00 0.00 0.03 0.06 

b 0.86 0 0.13 0.39 0.35 0.00 0.12 0.00 0.13 0.00 0.13 

c 0.97 0.87 0 0.38 0.37 0.25 0.12 0.12 0.23 0.41 0.33 

d 0.74 0.61 0.62 0 0.34 0.37 0.14 0.30 0.23 0.38 0.46 

e 1.00 0.65 0.61 0.66 0 0.49 0.49 0.25 0.35 0.5 0.16 

f 0.97 0.95 0.57 0.63 0.51 0 0.25 0.23 0.62 0.67 0.36 

g 0.97 0.88 0.72 0.86 0.51 0.75 0 0.36 0.67 0.75 0.63 

h 1.00 0.90 0.88 0.66 0.63 0.63 0.64 0 0.77 0.66 0.75 

i 1.00 0.73 0.51 0.63 0.52 0.34 0.33 0.23 0 0.62 0.36 

j 0.97 0.85 0.24 0.51 0.37 0.13 0.12 0.20 0.38 0 0.36 

k 0.94 0.87 0.64 0.54 0.63 0.49 0.35 0.25 0.51 0.64 0 

                                                

9 The calculations presented in Figures 1.8b and 1.8c are derived using Quinn’s fuzzy C+SIM formula 

presented in Figure 1.6. The calculations are based on the comparison between the crisp C+ matrix of each 

individual contour and the average C+ matrix shown in Figure 1.8a. 
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Figure 1.8b. Fuzzy C+SIM values for existing members of M, calculated against 

Quinn’s average C+ matrix. 

Member of Family “M” Fuzzy C+SIM value against the fuzzy family “M” 

M1 0.669 

M2a 0.697 

M2b 0.681 

M3a 0.705 

M3b 0.552 

M4a 0.721 

M4b 0.736 

M5 0.684 

M6a 0.560 

M6b 0.545 

M6c 0.559 

M7a 0.650 

M7b 0.711 

M8a 0.694 

M8b 0.703 

M8c 0.695 
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Figure 1.8c. Graph of membership values for each existing member of family M 

 

 

Categories in Music 

 Lawrence Zbikowski (2002) addresses the kind of cognitive processes required to 

hear Quinn’s family as “of a kind.” He states that understanding music requires the 

ability to assign motives (or larger passages) to a single cognitive construct, in essence 

creating a family of passages that fit together on the basis of perceived similarity. Such a 

family, however, is not solely based on a single category (only rhythm or only contour, 

for example) and it is the particular categorical structure that provides meaning to an 

analysis based on motivic similarity or development (Zbikowski 2002, 42–49). 

 In music, the motive is what is called the basic-level category—the category that 

is the most immediate and easiest to call to mind. These categories lie in the middle of the 

taxonomic structure of categories within the work. It is made up of smaller parts; pitches 

0.5

0.55

0.6

0.65

0.7

0.75

M1 M2a M2b M3a M3b M4a M4b M5 M6a M6b M6c M7a M7b M8a M8b M8c

Fuzzy C+SIM Values of "M" Family Members

Membership Value Quinn's Threshold for New Members



 

25 

 

 

and durations for example, and lies below the more general level, such as exposition, 

movement, or piece. 

 This basic-level category is comprised of various subcategories that Zbikowski 

calls attributes. These attributes describe the motive, and can account for the perceived 

similarity of motives in the category. The hierarchical structure of these attributes in 

relation to the motive forms Zbikowski’s conceptual model. He offers the motive of 

Beethoven’s Fifth Symphony as an example: he breaks down the motivic category into 

attributes like rhythmic pattern, orchestration, dynamics, and diatonic melodic profile, as 

shown in Figure 1.9a (Zbikowski 2002, 47). Such attributes then have particular values 

that individual members of the motivic category possess. Orchestration for example, is 

divided up into tutti, solo, and ensemble. Motives that are all tutti may seem more related 

to one another than to ones that possess the solo attribute. 

 

Figure 1.9a. Conceptual model for the category motive forms of the opening of 

Beethoven’s Fifth Symphony (Zbikowski 2002, 47) 

 



 

26 

 

 

 These attributes are themselves categories, to which individual motives belong. 

For example, the value piano has ten members: ten individual motives across mm. 1-19 

that display the characteristic piano. In a way then, these values and attributes are 

categories that can be described in terms of crisp and/or fuzzy families.10 If one had the 

right analytical tools in place, one could create membership functions for each of these 

families, turning them into fuzzy sets.11 For example, a category mezzo forte could be 

represented as a fuzzy set, where specific motives are placed in the set with regard to 

their particular decibel level. Such a fuzzy set would look much like the middle-aged 

example discussed earlier, where a range of decibel levels would be categorized as full 

members of mezzo forte, and membership would decrease gradually on the softer and 

louder sides of that particular decibel range, intersecting with the adjacent categories 

within the dynamic range. 

 Returning to Quinn’s analysis, we can now examine more closely what exactly 

we are saying when we perceive melodies to be “of a kind.” The melodies Quinn uses all 

belong to the category “similar melodic material from the third movement of Reich’s The 

Desert Music,” which he calls “Family M.” Following Zbikowski’s model and diagram, 

Figure 1.9b shows the attributes Quinn chooses to highlight for this category: rhythmic 

pattern, contour, instrumentation, and placement within the piece. The values for such 

                                                

10 I follow Quinn’s usage of the word family, to avoid confusion between the notion of mathematical sets 
and the musical connotation that the word set has in post-tonal theory. In mathematical parlance, these ten 

members of the piano category would form a set. Additionally, the term crisp is used in mathematical 

parlance to refer to sets that are not fuzzy. 

11 As stated previously, such a model would need to be able to compare a potential member of the category 

with a generator of the category, or else in some way compare it to existing members of the category as a 

whole, and return a value between 0 and 1, representing the degree of membership within that category. 



 

27 

 

 

attributes can all be quantified, given the right kinds of similarity relations, and the 

members’ degrees of similarity over all attributes is what contributes to our sense that the 

melodies are similar and indeed belong to this same category. 

Figure 1.9b. A category tree representing Quinn’s motivic categorization for his 

“family M” 

 

 Take a hypothetical example of a different piece, where the overarching category 

is “similar sounding motives from piece x.” Four attributes for this category may include 

contour, tempo, dynamic, and register.12 Each member of the family would possess a 

degree of membership within “family x” for each of these four attributes, as judged by the 

membership value (the method or equation used to derive the degree of membership) for 

each of these fuzzy sets. If the family has 10 potential members, their degrees of 

                                                

12 These are by no means the only attributes that might categorize motives into groups based on perceived 

similarity, nor are they attributes that would immediately come to mind when judging similarity. I merely 

chose these because they are easily quantifiable into a value between 0 and 1 using existing models, and 

thus are good for explaining the formation of the fuzzy attribute sets, and the subsequent formation of the 

fuzzy family of motives. 
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membership are contingent upon the degrees of membership of each member in each 

attribute category, as shown in Figure 1.10. 

Figure 1.10. Hypothetical membership of a motive within a family based on multiple 

attributes 

 Contour Tempo Dynamic Register Total average membership 

value 

x1 0.90 0.620 0.280 0.550 0.587 

x2 0.730 0.840 0.640 0.390 0.650 

x3 0.820 0.500 0.370 0.630 0.580 

x4 0.410 0.900 0.590 0.270 0.540 

x5 0.200 0.360 0.820 0.670 0.510 

x6 0.560 0.700 0.670 0.480 0.602 

x7 0.900 0.830 0.720 0.760 0.802 

x8 0.500 0.480 0.640 0.520 0.535 

x9 0.270 0.360 0.290 0.400 0.330 

x10 0.870 0.260 0.930 0.750 0.702 

 

Each particular motive has a degree of membership within each fuzzy set, 

representing its similarity to either the generator of the family, or the average member of 

the family. One can average the membership values for each of the four attribute 

categories in order to arrive at an overall degree of membership. This membership value 

represents the motive’s place within the basic-level category of “similar sounding 

motives from piece x.” This type of structure models the perception of similarity across 

all attributes of a category: members that have high values across all attributes (x7, for 

example) will have a high degree of membership within the overall category. Likewise, 

members that have low similarity across all attributes (x9, for example) will have a low 

degree of membership within the overall category. If there were a drastic decrease in the 

membership value of any one attribute, a motive would need high values in other 
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categories to offset that low value in order to still possess a high degree of membership. 

Motive x10 for example, has a marked difference in tempo from the average motive in the 

category (perhaps it is a great deal slower or faster than the other instances of the motive 

in the piece), yet it still bears a decently high degree of membership within the category: 

a value of 0.702. Here, the high values of the other three categories (0.87 for contour, 

0.93 for dynamic, and 0.75 for register) make up for the marked difference in tempo, and 

this follows logically with general categorical perception of motives: one may hear the 

similarity across the other three attributes, and therefore still judge the motive as similar 

to the motives in the category. 

 With this understanding of quantifiable category structure, as represented by 

multiple particular fuzzy sets, we can understand that Quinn’s formation of the initial 

family from The Desert Music is not in error. The original intent of Quinn’s paper was 

not to provide a comprehensive listing of potential new members of the family from the 

music, but rather to illustrate the potential of fuzzy set theory to describe contour 

relationships, and the relative inadequacy of the current models to do so. However, by 

ignoring the other attributes upon which his initial family was based, he opened the door 

for some low-valued members to enter into his initial family, potentially throwing off his 

subsequent study of contour relations. By understanding that contour is only one attribute 

in a series of attributes that comprises fuzzy membership within the family, some of these 

values can be more adequately explained, and the analysis would be more complete.13 

                                                

13 A potential solution may be to accept potential contours with a threshold developed by examining the 

membership values of existing members: in the case of Quinn’s family, that would be 0.545. This would 
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The Hidden Category: Cardinality 

 In addition to the explicit categories chosen by an analyst such as Quinn, certain 

hidden categories can arise from the properties of the models one uses to measure the 

attributes of the chosen categories. As such, it is important to examine the assumptions 

and limitations of the models used to make these membership judgments, as these 

judgments may be colored by categories we haven’t explicitly accounted for in our 

analysis. Quinn’s C+SIM model (as well as many others) has one very specific such 

hidden category: cardinality. 

The supposition of cardinality equality is built into many of the theoretical models 

that study contour, yet the notion that a pair of c-segs must have the same number of c-

pitches in order to be considered similar is not necessarily reflective of every case of 

contour similarity. Quinn’s analysis works because the c-segs he studies all happen to 

have the same cardinality, and therefore the use of his model adds an implicit new 

category to the attributes upon which Quinn bases his initial family: all contours in the 

family must have eleven c-pitches. Figure 1.11 shows a revised conceptual model of 

Quinn’s family M, reflecting this hidden category. Because he finds only such contours 

in the course of building his family, the hidden category implicit in the model does not 

introduce any errors for him. However, this hidden requirement of cardinality 

equivalence is what limits the wider applicability of Quinn’s theory to other analytical 

                                                

reflect the true variety of contour inherent within this family, and it would be a more analytically sensitive 

representation of the context in which this model works. 
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contexts. Consider the following two c-segs, shown in Figure 1.12a: 012342 and 

0123452. Based on human judgment, these c-segs seem related: the second is simply a 

slightly larger version of the first. In Quinn’s system, however, these two c-segs are not 

even comparable, nor are they comparable under Marvin and Laprade’s CSIM upon 

which Quinn’s model is based. 

 

Figure 1.11. A revised conceptual model for Quinn’s Family M, showing the hidden 

category of cardinality 

 

Figure 1.12a. Two c-segs that appear similar despite their difference in cardinality 

 



 

32 

 

 

 Consider also Figure 1.12b, which shows slightly altered versions of the melody 

M4a from Figure 1.7. These alterations occur either through the addition or subtraction of 

a single pitch, resulting in a ten-note and a twelve-note c-seg respectively.14 Both c-segs 

derive from M4a, a member of Quinn’s family M, and feature all of the characteristics that 

Quinn points to in his family: a background overall descent, and a middle-ground W 

shape. Unfortunately, however, these two new c-segs would not be admitted to family M 

using his algorithm because of the cardinality problem, despite the general perception of 

similarity between them and the c-segs in M. 

Figure 1.12b. Cardinality variants of M4a showing their similarity in reduction, 

using the Contour Reduction Algorithm 

 

                                                

14 This is a hypothetical analytical construct displaying the cardinality problem. I am not advocating this in 

terms of actual musical analysis in reference to Quinn’s selection of melodies, or the relationships of 

melodies that he shows in Reich’s The Desert Music. 
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 Furthermore, the models that we do have to compare c-segs of differing 

cardinalities appear to corroborate this intuitive sense of similarity: under the Contour 

Reduction Algorithm (Schultz 2008), the two c-segs reduce to the same prime as their 

progenitor (M4a) at the same depth level. They also feature two identical intermediary c-

subsegs between the prime and the surface. These crisp measurements do not offer a 

fuzzy analog with which to determine these c-segs’ similarity to the other members, or to 

the average family of M, but these measurements are enough to suggest that perhaps a 

measurement of membership—fuzzy or otherwise—should not always be dependent on 

the requirement of equal cardinality. 

 

Conclusion 

As I have demonstrated, the limitations inherent in these existing models highlight 

a significant gap between our perception of contour similarity and our ability to quantify 

these perceptions. Quinn rightly suggests that perception of melodic similarity, and 

subsequent inclusion within a family of related melodies, can be based on multiple 

parameters, and his supposition that one can create a model capable of reflecting human 

judgments of inclusion is laudable. However, none of the models explored in this chapter 

(including Quinn’s) has the power to explain fully how contours of differing cardinalities 

relate to one another within the bounds of familial resemblance. They either have the 

capacity to relate entire families of equal-length contours, or else have the ability to 

compare individual contours of different lengths. None has the capacity to do both, and 

therefore it seems unlikely that they model the nuances of melodic similarity. However, 

Quinn’s use of fuzzy set theory in his fuzzy C+SIM model is useful in two ways: first, it 
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gives us a way to measure contour membership within an entire family of related 

contours, confirming that this type of measurement can indeed be useful. Second, it 

further illuminates the need for sensitivity toward cardinality in these relations. 

 Removing cardinality from a fuzzy measurement of membership is no simple 

task. It will not do simply to modify the C+SIM matrix to allow for the possibility of 

more or less than eleven c-pitches, primarily because the mathematic operations 

governing these particular matrices prohibit the combination of matrices with different 

sizes. Developing a model that is sensitive to the requirements of fuzzy membership 

without invoking cardinality equivalence will require a shift of perspective away from the 

static representations of contour offered by the COM matrix, toward a more fluid 

representation of contour structure. It is to this task that I will turn in Chapter 2, 

examining just such a perspective shift, and developing a new model that does not rely 

upon strict cardinality equivalence in order to arrive at an averaged contour, nor a 

membership value of a new contour within an existing contour family. 
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CHAPTER 2: The Familial Contour Membership Model 

 

Introduction  

 The first movement of Beethoven’s Fifth Symphony contains a family of very 

familiar motives. The family is structured around several shared characteristics, as shown 

earlier in Chapter 1 (Figure 1.5a). Contour is one of these defining characteristics, yet the 

models discussed in Chapter 1 cannot account for the similarity found in the motive 

family because Beethoven introduces motive-variants that are shorter or longer than the 

prototypical four-note motive heard at the outset of the piece. To model more adequately 

the relationships found within families whose members have varying numbers of notes, 

we must shift our perspective away from the matrix-based representations of contour that 

limit our comparisons to contours of identical cardinality. 

 Rob Schultz (2009) provides such a shift, moving toward a linear representation 

of contour: a diachronic transformational process that tracks the pathway of moves that a 

contour makes as it unfolds in time. This perspective offers a way of relating contours of 

differing cardinalities by examining the commonalities of their respective pathways, even 

if one is longer than the other. In this chapter, I extend Schultz’s theories of diachronic 

contour transformation by turning to probability. My Familial Contour Membership 

Model (hereafter referred to as the FCM model) measures a contour’s degree of familial 

membership by calculating the probability that each move in the contour’s pathway is 

shared by other family members. In doing so, the model allows for the possibility that 

pathways may be omitted or inserted within a contour that exhibits familial resemblance, 

yet is shorter or longer than others in the family. By using this method, I can quantify a 
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new contour’s relationship to an existing family regardless of its cardinality, opening up a 

new dialogue about familial relationships within motive families across a wide variety of 

repertoires. 

 

Schultz’s Diachronic-Transformational Contour Model 

 Schultz’s dissertation, “A Diachronic-Transformational Theory of Musical 

Contour Relations” (2009), critiques several existing models, stating that  

a crucial phenomenological problem lurks behind each of these approaches, one 

that has yet to be adequately addressed in the literature. Every analytical 

observation made above…hinges upon the synchronous, rather than diachronic 

view of contour—that is, one that treats all c-pitches as fully and simultaneously 

present within their respective contours. (Schultz 2009, 11) 

 

 He explains that contours are, by definition, ordered in time, each unfolding 

linearly as the music progresses. He writes that “all temporally ordered contours therefore 

cannot be regarded as autonomous entities in themselves, as is the case in each of the 

contour measurements explained above [like CSIM], for they are in fact but a single link, 

so to speak—albeit the crucial culminating link—in this implicit chain of contour 

transformations” (Schultz 2009, 11–12).  

 Schultz introduces this diachronic-transformational perspective by observing that 

every melody begins as a single pitch and then is transformed through the addition of 

new pitches that “will be either higher than, lower than, or equal to the first note, as 

dictated by the nature of c-space” (Schultz 2009, 17). Each added pitch follows one of 

these three paths, as shown in Figure 2.1. The process begins with the parental generation 
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(labeled P), and each transformation is marked as a new filial generation (labeled F1, F2, 

etc.), borrowing a term from Mendelian genetic analysis (Schultz 2009, 23). As the 

contour grows, the relations between the individual c-pitches will transform, until the 

contour reaches its final “culminating link.” For example, a c-seg that begins at 0 and 

then moves down will require a recontextualization of that first pitch. In the context of 

the new contour with two c-pitches, the second pitch would become 0, as it is lower than 

the first, and the c-seg would then be 10. This process continues for each additional 

added c-pitch. “Every contour presented in [Figure 2.1] (and beyond) thus possesses its 

own unique transformational path based upon its left-to-right unfolding in time, and 

families are formed according to these similarities of their respective paths on the graph” 

(Schultz 2009, 24).15 

This transformational approach offers a more dynamic way to understand contour 

relations, and Schultz demonstrates its usefulness when relating contours to one another 

through his generational tree diagrams. However, for the purposes of fuzzy membership 

values, the lens provided by Schultz’s network is a bit too crisp. He posits a network that 

theoretically includes all possible c-segs in the entirety of c-space, the beginnings of 

which are shown in Figure 2.1. Therefore, no two unique c-segs will possess exactly the 

same transformational pathway. Our lens must therefore be shifted slightly out-of-focus, 

and this requires some generalization. 

                                                

15 It is important to note that Schultz uses the term “family” to refer to contours that share transformational 

history—his family members are those that travel for a time along the same transformational paths. 

Therefore, he does not use the term “family” here in the same sense that Quinn uses in his theory, although 

as we shall see, the two are not as dissimilar as they may initially seem. 
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Figure 2.1. Schultz’s universal contour tree diagram (Schultz 2009, 19) 

 

 Fortunately, one can make further observations within the contour tree diagram 

Schultz introduced, and these observations lead to a fuzzier conception of contour 

transformation. Under Schultz’s system, the family network revolves around the 

possession of common ancestors. For example, the c-seg 021 seen in the F2 generation 

possesses four other siblings, which all branch from the same parent in the F1 generation: 

01. Such siblings are derived from the possible ways one can move from 01: one can 
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ascend, producing a single F2 generational member (012); one could plateau, again 

producing a single F2 generational member (011); or one could descend, this time 

producing three F2 generational members (021, 010, and 120). Schultz accounts for 

this with a measurement that he calls C-pitch adjacency subsets (C-PAS), which 

highlights contiguous subsets with the cardinality one less than the entire c-seg (n-1). In 

the case of 021 for example, C-PASA would be 01, the parent of 021. Its C-PASB 

value on the other hand, would be 10; the same value one would find for the other two 

siblings that also moved down from the F1 generation. This C-PASB relationship can be 

seen in the oval-shaped nodes in Figure 2.2. “In this way, C-PASB establishes a hierarchy 

of relationships amongst the members of these…contour families, and thus the sibling 

relationships in general” (Schultz 2009, 66). Siblings that share C-PASB relationship are 

more related than those that do not, a relation that Schultz names “sibling0.” 

 This type of grouping based on which “move” is performed (ascent, descent, 

plateau), points toward a more generalized model: instead of mapping each individual 

possible filial generation c-seg (021, 010, and 120 for example), a fuzzy model 

might map only the possible moves. One could think of this as mapping the 

transformation of Michael Friedman’s (1987) Contour Adjacency Series (CAS)—a 

model that tracks only successive moves between adjacent c-pitches in a c-seg—rather 

than tracking the specific c-segs that the moves produce. A tree, such as the one in Figure 

2.3, provides a more general visualization of how a contour unfolds through time. Our 

021 example would be written as +–, and would follow the transformational path “up, 

then down,” as highlighted in the figure. This path is then shared by 021’s other two 
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sibling0-related c-segs 010 and 120, by virtue of the fact that this model is now 

fuzzier then Schultz’s original theory. 

Figure 2.2. Schultz’s universal C-PASb-inclusive contour tree diagram (Schultz 

2009, 62) 
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Figure 2.3. Generalized CAS transformational tree diagram 

 

Mapping Familial Probability onto the CAS Tree 

 The beauty of both Schultz’s transformational tree and the CAS tree is that they 

map the entirety of c-space. Any c-seg can be mapped onto the tree and it will follow one 

of the paths through c-space. C-segs that map similarly through the space are therefore 

more related than those that follow substantially different paths, and it is this property of 
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the CAS tree diagram that allows for the creation of a fuzzy relation in a similar manner 

to that which Quinn describes. 

Imagine, for example, that you are following the path of a c-seg’s CAS as it 

unfolds. This c-seg is related to some degree to a family of similar c-segs, perhaps from 

an earlier section of a piece from which the c-seg was taken, but the extent to which this 

new c-seg belongs with the rest of the family is unknown. As you move through the 

transformational path of the c-seg, you might wonder how many of the other c-segs in the 

family move as you do. These musings point to our answer: if a c-seg’s first move is an 

ascent, how many others ascended and how many descended? Calculating these numbers 

from the existing family would tell us how related the new c-seg is to the existing family, 

based on how it aligned with other members of the family. If the vast majority of the 

family ascended, a new c-seg that descends might not be as central a member of the 

family. 

When one maps an entire family of c-segs onto the CAS tree, some pathways will 

be traversed by many members of the family, while other members will traverse 

pathways that aren’t shared by many members. As Quinn does, we need to average these 

c-segs together to arrive at what Quinn calls the “average member” of the family (Quinn 

1997, 240). Figure 2.4a shows as an example a family of related c-segs, each represented 

by its numeric c-seg designation and their CAS values. Laying each of these on the CAS 

tree (Figure 2.3) gives us a table of values that carries information about the statistical 

probability of the average familial shape, shown in Figure 2.4b. We derive these values 

by tallying the quantity of ascents (+), descents (-), and plateaus (=) for each position in 

CAS. For example, in CAS position one, three members of the family rise, six members 
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fall and zero members plateau. Therefore, we can say that three of nine contours in the 

family ascend, and subsequently that we have a 33% confidence that a contour in the 

family will rise in position one, as shown in Figure 2.4b.16 

Figure 2.4a. List of six-note contours in a contour family 

Member C-seg CAS Membership Value 

1 432501 --+-+ 0.667 

2 453201 +---+ 0.667 

3 453201 +---+ 0.667 

4 542031 ---+- 0.556 

5 243104 +---+ 0.667 

6 431201 --+-+ 0.667 

7 431210 --+-- 0.600 

8 514320 -+--- 0.511 

9 542013 ---++ 0.622 

Potential 10 431023 ---++ 0.622 

 

Figure 2.4b. CAS probability matrix, derived from the six-note contour family 

 Pos. 1 2 3 4 5 

+ 0.333 0.111 0.333 0.222 0.667 

= 0 0 0 0 0 

- 0.667 0.889 0.667 0.778 0.333 

 

The chart in Figure 2.4b can then be mapped onto the CAS tree diagram shown in 

Figure 2.4c. Here, it is easy to show the method in which existing members are related to 

                                                

16 Quinn discusses the probabilities in his averaged contour as confidence values. Instead of saying that 
there’s a 33% chance of rising, he would say that we can be 33% sure that a contour in the family will rise. 

The semantic difference is small, yet significant: describing probability in terms of fuzzy set theory can be 

described as either a fuzzy predicate or a fuzzy confidence level. Fuzzy predicates indicate that content is 

fuzzy (i.e., not knowing whether a numeric set represents pitch classes, pitches, or contour pitches), while 

fuzzy confidence levels indicate that the quantity or existence of the content is fuzzy (i.e., not knowing 

whether a contour is in a family or not). 
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one another, and the way in which potential new members are judged for membership 

within the family. If we have a potential new member of the family—431023 or ---++ 

for instance—we can map its pathway through c-space onto the tree diagram, highlighted 

in red. On this tree, each arrow connecting the nodes carries a probability that such a 

move will occur in the family. Examining the sum total of all the arrows that the 

contour’s pathway activates shows us the degree to which it resides in the family. In this 

case, the pathway sums to 3.11 (0.667 + 0.889 + 0.667 + 0.222 + 0.667 = 3.11). Dividing 

3.11 by the five moves gives us an average of 0.622, indicating that we have a 62% 

confidence that this c-seg is in the family. This membership value suggests that the 

member is partially in the family, but perhaps is not the most centrally located member. 

Membership values for existing members are measured in the same way, 

producing a range of membership values of 0.511 to 0.667, as shown in Figure 2.4a. This 

range indicates that, while there is some contour resemblance, family members exhibit 

unique traits that indicate variety within the family as a whole. However, there is a small 

but significant difference between potential and actualized membership. Members 

already in a family have a degree of membership within that family and help to make up 

that family. It is, in essence, an actualized member. Potential members however, such as 

the potential tenth member of the family presented in Figure 2.4a, occur when we 

compare contours to a family other than the one(s) to which they belong (or to a family in 

which we are not certain of its membership within the family). In essence, they do not yet 

play a role in the creation of the average family member. This definition of “potential” 

helps to distinguish between “membership within” and “similarity to” a family. Judgment 

of inclusion for potential members can be made on the basis of their similarity to the 
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family, as calculated by their potential membership value. Given the range of values of 

the family in Figure 2.4a (0.511 to 0.667), it would stand to reason that the potential tenth 

c-seg—with its potential membership value of 0.622 falling within the family’s range—

would be a good candidate for inclusion within the family. 

Once the analyst determines whether a new c-seg should be included in the 

family, it can be added to the family by adding its CAS values into the probability 

calculation that creates the table from Figure 2.4b, in essence becoming an actualized 

member of the family. For example, in position one the probability of descent is no 

longer calculated as 6/9, but rather 7/10 because of the added c-seg. The new table is now 

shown in Figure 2.4d. In this way, the family can grow and change with the addition of 

new c-segs. Adding a new contour into an existing family is up to the analyst: like Quinn, 

one may choose a threshold that is analytically meaningful to the particular context. For 

example, one may choose to admit only c-segs sharing a high degree of similarity into the 

family, accepting only c-segs that have a probability above 0.7 (as Quinn suggests). In 

that case, the potential new member discussed above would not be admitted to the family. 

One may also choose to judge inclusion based on the range of membership values for 

existing family members, as was done in our discussion of Figure 2.4. On the other hand, 

one may choose to include more members within the family—ones that have lower 

potential membership values—especially if one is not examining the attribute of contour 

alone. In this case, the unique properties of the c-seg that result in its lower membership 

value need to be represented in the family, so one should include these unique 

characteristics in the family. The flexibility of this method thus allows an analyst to use 

the model in different contexts. 
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Figure 2.4c. The CAS tree illustrating the probabilities of each transformational 

pathway in the family, with the red line indicating the pathway of the potential tenth 

c-seg 
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Figure 2.4d. Probabilities derived from the six-note contour family, including the 

tenth member 

 Pos. 1 2 3 4 5 

+ 0.3 0.1 0.3 0.3 0.7 

= 0 0 0 0 0 

- 0.7 0.9 0.7 0.7 0.3 

 

Schultz’s recency relation and the notion of best fit 

 With the logic of the system in place, we may address families with members of 

differing cardinalities. The family of contours in Figure 2.4 all have the same cardinality. 

However, a potential new member of the family—34201 or +--+—appears to be quite 

similar to members 2, 3, and 5, despite that it is now one c-pitch shorter. Recognizing this 

similarity, one would logically conclude that it might be a member of the family, but how 

is that membership quantified?  

 Once again, Schultz’s approach toward contour transformation suggests a way to 

include these c-segs into a family. His discussion of C-PASB is illustrative of the fact that 

contours can be related by their “right-to-left” orientation as well as their “left-to-right” 

diachronic unfolding. Figure 2.2 also showed that some of the contours in the F2 

generation are more related than others. An emphasis on C-PASB, or the last two c-

pitches of the c-segs in the F2 generation, further refines the relationships between 

siblings that otherwise share the same generational history. 

 Schultz gives another example of this phenomenon, shown in Figure 2.5. Here, 

two basic ideas (labeled in the figure as BI1 and BI2) from Chopin’s Waltz in B minor 

Op. 69, No. 2 are compared using Schultz’s diachronic model. In the “left to right” 
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orientation, what Schultz calls the primacy relation, the two c-segs are only fourth 

cousins (meaning that they share a very distant common ancestor: in this case a great-

great-great grandparent), a relatively distant relationship. However, in the “right to left” 

orientation, what Schultz terms the recency relation, the two c-segs are siblings (meaning 

that their common ancestor, and thus their point of divergence, is only a generation 

removed from them), a much stronger relationship. He states that:  

BI2 emerges as distinct from BI1 relatively early in its process of becoming; the 

two thus exhibit a rather distant primacy-oriented c-seg relationship. However, 

following this divergence, BI2’s similarity to BI1 steadily increases as it continues 

to unfold due to the extensive number of common recent contour subsets that the 

two c-segs share. Therefore, their recency-oriented relationship is far closer than 

their primacy-oriented one. (Schultz 2012, 6) 

 

Figure 2.5. An example of Schultz’s recency relation (Schultz 2012) 

 

Schultz states that the recency-oriented relationship is stronger, and therefore 

perhaps more representative of the overall relationship between the two passages of 
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music. The choice between primacy and recency orientations provides contrasting 

analytical perspectives, and from there, the analyst chooses the best fit: the orientation 

that provides the strongest relationship, or the one that is most representative of the music 

and the issues addressed in the analysis. It is this process of best fit that points us to our 

answer regarding the multiple cardinality issue. 

 

Best-fit procedures for the CAS probability tree 

 Let us return to the family in Figure 2.4. In order to calculate the membership of 

the new member 34201, we must align its positions along the CAS tree, and this 

requires that somewhere a position on the tree must be left out of the calculation. The 

question then becomes, which position gets left out? 

 For example, the potential new member 34201, with its CAS of +--+ bears 

similarity to members of the family, in both its beginning and ending: the +-- is strongly 

reminiscent of members 2, 3, and 5; while the ending -+ bears resemblance to members 

1, 2, 3, 5, and 6. However, when one examines the family, no members have the 

contiguous pattern of +--+. Aligning this c-seg along the probability tree in that 

contiguous manner, shown in Figure 2.6a, and making a calculation based on this 

alignment yields a membership value of 0.55. Such a membership value does not really 

reflect our judgment that this c-seg is similar to the family. Recalling Schultz’s recency 

relation, aligning the comparison based on a right-to-left approach, shown in Figure 2.6b, 

also yields a membership value of 0.55. Once again, this does not align with our 

judgment of the c-seg’s similarity to the family.  
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Figure 2.6a. Contiguous diachronic mapping (in red) of +--+ onto the contour 

family of figure 2.4d 
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Figure 2.6b. Contiguous recency relation mapping (in blue) of +--+ onto the 

contour family of figure 2.4d 
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Figure 2.6c. Alignment (in green) of +--+ onto the contour family of figure 2.4d, 

omitting position three 
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Both of these calculations imply that some sort of contiguous measurement is 

necessary to make a judgment of similarity: they leave off either the first or last position, 

and maintain the integrity of the entire smaller c-seg. However, this leaves out the 

possibility that our judgment of similarity of this c-seg might be based on an alignment 

that omits one of the middle pitches. Consider Figure 2.6c: this tree shows the new c-seg 

aligned in a way that omits position three, yielding a membership value of 0.65. While 

this membership value is also not particularly high, it is the highest membership value out 

of all the possible alignments. Perhaps this c-seg is not the most average of members 

within the family, yet this higher membership value does indicate that this alignment may 

more accurately reflect the similarity perceived between the c-seg and the family. 

 Put in more general terms: in order to find the membership value of a c-seg with a 

smaller cardinality than that of the family, one must calculate membership values for all 

possible alignments, omitting each position in turn. For a family with c-segs containing 

five positions, five calculations will be made. Figure 2.6d shows this set of calculations 

for the potential new c-seg discussed above. 

Figure 2.6d. Calculations of best fit for each alignment of +--+ onto the contour 

family of figure 2.4d 

Pos. 1 2 3 4 5 Total Membership 

value 

Omit 0.1 (+) 0.7 (-) 0.7 (-) 0.7 (+) 2.2 0.55 

0.3 (+) Omit 0.7 (-) 0.7 (-) 0.7 (+) 2.4 0.6 

0.3 (+) 0.9 (-) Omit 0.7 (-) 0.7 (-) 2.6 0.65 

0.3 (+) 0.9 (-) 0.7 (-) Omit 0.7 (+) 2.6 0.65 

0.3 (+) 0.9 (-) 0.7 (-) 0.3 (+) Omit 2.2 0.55 
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 These kinds of membership values reflect a fuzzy degree of confidence that a c-

seg will be in the family of related c-segs. However, as with the above illustration, our 

degrees of confidence can themselves be imprecise, and this type of uncertainty is 

actually quantifiable using fuzzy set theory. Klir and Yuen discus this kind of 

uncertainty, stating that:  

membership functions are often overly precise. They require that each element of 

the universal set [in this case each c-seg within the family] be assigned a 

particular real number. However, for some concepts and contexts in which they 

are applied, we may be able to identify appropriate membership functions only 

approximately. (Klir and Yuen 1995, 16) 17 

 

These approximate membership values accept that there is additional fuzziness in the 

definition of membership, and instead includes “a closed interval of real numbers 

between the identified lower and upper bounds.” These sets are called interval-valued 

fuzzy sets, and an example of this type of set is graphed in Figure 2.7. Here, for each 

element (x), the membership value of that element in the fuzzy set is represented as the 

range between the two curves. So the equation belonging to the graph is “A(a)=[α1,α2]” 

where the upper and lower bounds are represented by α1 and α2. It is this type of 

membership that is produced by calculating the “crisp” membership values of each 

possible alignment. Here, we have a membership value for the c-seg 34201 that is 

within the bounds of 0.55 to 0.65. 

 

                                                

17 Klir and Yuen refer to these membership values as membership functions. I use the term value to be 

more inclusive of potential situations where calculations of membership may not be true mathematical 

functions. 
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Figure 2.7. An example of an interval-valued fuzzy set (Klir and Yuan 1995, 16) 

 

Integrating contours of differing cardinality into the CAS probability tree 

 Two possibilities exist for the integration of this new c-seg into the family’s 

probability tree, and these approaches reflect the possible contexts in which these new 

potential family members present themselves in musical situations. One may or may not 

know how a particular c-seg emerged from the context of the other members of a family, 

and this knowledge will affect how the c-seg is integrated into the larger familial 

framework. 

 Beethoven’s Fifth Symphony provides an excellent example of a context where 

the analyst has a good idea of how a particular c-seg emerged from the context of other 

members of the family. Lawrence Zbikowski provides a comprehensive categorization of 

the motives of Beethoven’s fifth symphony, from mm. 1–37, shown in Figure 2.8a 
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(Zbikowski 2002, 45). This general motive is a good example because of its familiarity 

and strong presence in the symphony. He displays a conceptual model of the motive, 

shown in Figure 2.8b: we typically understand the motive as having the rhythmic pattern 

of three eighth notes followed by a longer note, and a CAS of ==-. When varied forms 

of that motive appear, we can understand them in the context of this pattern. Figure 2.9a 

shows a list of the unique CAS values for the motive family that Zbikowski highlights, 

and Figure 2.9b shows a CAS probability matrix for the family. 

Figure 2.8a. Twenty-seven contours from the motive family in mm. 1–37 of 

Beethoven’s Fifth Symphony  

Contour CAS (Friedmann, 

1985) 

Number of 

occurrences  

Musical example 

1110 ==- 15 

 
2210 =-- 3 

 
0000 === 2 

 
0012 =++ 2 

 
0001 ==+ 2 

 
2201 =-+ 2 

 
0111 +== 1 
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Figure 2.8b. Conceptual model for the category motive forms of the opening of 

Beethoven’s Fifth Symphony (Zbikowski 2002, 47) 

 

Figure 2.9a. CAS values for the Beethoven’s 5th Symphony motive family 

CAS Number of occurrences  

==- 15 

=-- 3 

=== 2 

=++ 2 

==+ 2 

=-+ 2 

=+= 1 

+== 1 

 

Figure 2.9b. CAS Probability matrix derived from the Beethoven motive family 

 Pos. 1 2 3 

+ 1/28=0.036 3/28=0.107 6/28=0.214 

= 27/28=0.964 20/28=0.714 4/28=0.142 

- 0/28=0 5/28=0.178 18/28=0.642 
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This is the family against which one can compare the contours of motives that occur 

throughout the rest of the piece. Consider for example, the passage from mm. 171–187, 

shown in Figure 2.9c. Beethoven has varied the motive, shortening it by removing one of 

the opening eighth notes characteristic to the motive in the exposition. The motive in the 

violins in mm. 186–187, for example, features a contour of 110 and a CAS of =-. The 

best fit procedure comparing this c-seg to the family is shown in Figure 2.9d. 

Figure 2.9c. Beethoven Symphony No. 5 in C Minor, Op. 67, mm. 171–187 

 

 

Figure 2.9d. Best-fit alignments for 110 on the Beethoven motive family 

Pos. 1 2 3 Total Membership 

value 

Omit 0.714 (=) 0.642 (-) 1.356 0.68 

0.964(=) Omit 0.642 (-) 1.606 0.80 

0.964 (=) 0.178 (-) Omit 1.142 0.57 

The membership value for this motive within the contour family ranges from 0.57 

to 0.8. However, the conceptual model posited by Zbikowski may give us some 

information about what is most “typical,” and we may be able to make a judgment 

regarding the proper alignment of this particular motive against the family tree of the 

previous motives in the piece. Using this knowledge, we might be able to rule out the 
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alignment that omits position three, because the third position is typically the downward 

motion that is so characteristic to the motive, and which occurs in our potential new 

member of the family. We may also be able to make a case that the motive in mm. 186–

187 comes from the omission of position two, ruling out the omission of position one. 

Because some motive forms in the family have ascents or descents in position two, this 

makes position two far more variable than position one. The alignment that omits 

position two therefore preserves the more stable characteristics of the motive family. 

These judgments, based on the context from which the motive emerged, point us to a 

single proper alignment, which we can use to calculate a representative value out of the 

interval-valued membership that we are examining, and to integrate the respective 

positions of this c-seg into the family. In this case, we might select the alignment that 

omits position two as our most representative alignment, yielding a membership value of 

0.8. 

To integrate this new c-seg into the family, one must follow the chosen alignment 

and add one to each activated position within the probability matrix. The new matrix is 

shown in Figure 2.9e. The values for positions one and three have changed to reflect that 

those positions are present in 29 members of the family, yet the values for position two 

did not change, reflecting that this position does not exist in the new c-seg we have just 

integrated into the family. It therefore only possesses 28 members. 

Figure 2.9e. Integration of =- into the Beethoven motive family using the single 

best-fit method 

 Pos. 1 2 3 

+ 1/29=0.034 3/28=0.107 6/29=0.206 

= 28/29=0.965 20/28=0.714 4/29=0.138 
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- 0/29=0 5/28=0.178 19/29=0.655 

 

 This approach, which I will refer to as the melodic best-fit integration process, is 

useful when examining the development of a particular motive, because it allows one to 

pick a best fit based on the musical context; a potential alignment that most accurately 

reflects the analyst’s perception of the relationship between the new member and the 

existing family. Such a perception can be based on factors outside the realm of contour, 

and such factors can lead to a choice of alignment that does not necessarily yield the 

highest possible membership value within the interval-valued fuzzy set. The ability to 

make such a choice will lead to more analytically rich observations using this model. 

 The Beethoven example showed that when one has knowledge of musical context, 

and a desire to make specific claims to similarity based on a relatively stable conceptual 

model, one can pick a “best fit” from the possible alignments made in the best-fit 

calculation. However, when knowledge of musical context is lacking or the conceptual 

model is not stable with regard to contour, it becomes difficult (and perhaps undesirable) 

to make the same kind of best-fit judgment out of the possible alignments. In these cases 

the integration of a new member with differing cardinality into an existing family needs 

to reflect the true interval-valued nature of the fuzzy set: the manner of integration must 

in some way reflect all possible alignments of the c-seg along the CAS tree. This 

integration method will be called the mathematic best-fit integration process. 

 Returning to Figure 2.9d, we can see that each position has two potential motions 

and one missing motion (the omission). For position one, both possible motions involve 
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plateaus between the first and second c-pitches. Similarly, in position three, both 

possibilities involve descent. However, position two is split two ways in terms of its 

possible motions: one option is to plateau, and the other one is to descend. This means 

that we know with certainty that position one will be aligned as a plateau, and position 

three will be aligned as a descent. Because of the two possibilities for position two, we 

are only 50% certain that it could plateau and 50% certain that it could descend. Such an 

uncertainty needs to be reflected in how we distribute the value of this new member. 

In a similar way to calculating the membership values of the initial family, one 

can create a matrix that shows how the new c-seg should be distributed within the family, 

shown in Figure 2.9f. This matrix tallies the number of occurrences of a particular motion 

within the best-fit calculations, and divides this number by the total number of entries for 

that position. From here, one needs only to add the value for each position to the CAS 

matrix of the family, as shown in Figure 2.9g. Using this method, the new c-seg has been 

distributed throughout all the possible positions, so the total members for all positions is 

increased to 29, and each probability is then calculated out of 29. 

Figure 2.9f. Distribution matrix for integration into the CAS probability matrix 

 Pos. 1 2 3 

+ 0 0 0 

= 2/2=1 1/2=0.5 0 

- 0 1/2=0.5 2/2=1 

 

Figure 2.9g. Integration of =- into the Beethoven motive family using the 

distributive method 

 Pos. 1 2 3 

+ 1/29=0.0344 3/29=0.103 6/29=0.206 
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= 28/29=0.9655 20.5/29=0.707 4/29=0.138 

- 0/29=0 5.5/29=0.189 19/29=0.655 

 

 This approach keeps intact the notion that one cannot precisely pinpoint the 

degree of membership of this new c-seg within the family of existing c-segs. By 

distributing all the possible best-fit calculations in this way, we have recreated the 

imprecision reflected by the interval-valued fuzzy membership value within the family 

structure. All the possible alignments are now reflected in the family, such that new c-

segs that align well with one of the possible alignments may have a higher degree of 

membership than if only one alignment was integrated into the family.  

Both approaches toward integration make different assumptions about musical 

relations, and as such it is important for the analyst to examine exactly what each 

approach says about the music in question. In this way, the model builds in, and indeed 

requires, interpretation on the part of the analyst. Such flexibility adds a qualitative 

component into an otherwise purely quantitative model, and this qualitative subjectivity 

is what gives the model the sensitivity needed to address a wide variety of musical 

contexts. However, it is important to note that this sensitivity also requires interpretive 

responsibility on the part of the analyst to be sensitive to the musical environments in 

which the contours under examination occur. 

C-segs that are larger than the family 

 Up to now, we have only examined c-segs that are either equal or smaller in 

cardinality than the family in question, yet the logic works in similar ways for c-segs that 

are larger than the family as well. Imagine for example that we are trying to determine if 
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a c-seg 22201, with a CAS of ==-+ has a high degree of membership within the 

family from Figure 2.9b, reproduced as Figure 2.10a. The procedure is similar, except 

this time, the larger c-seg is the crisp one, and not the fuzzy family representation as it 

was in the previous examples. This requires us to reverse the logic we used to calculate 

the best-fit values. 

Figure 2.10a. CAS Probability matrix derived from the Beethoven motive family 

 Pos. 1 2 3 

+ 1/28=0.036 3/28=0.107 6/28=0.214 

= 27/28=0.964 20/28=0.714 4/28=0.142 

- 0/28=0 5/28=0.178 18/28=0.642 

 

 Instead of aligning the new c-seg along the existing family tree, we must instead 

align the family tree along the new c-seg. Omitted positions then are the positions in the 

new c-seg that have to be omitted in order for the c-seg to match up with the family. For 

example, the calculation shown in Figure 2.10b shows the omissions of the four positions 

respectively: when the matrix states that position one is omitted, the first “=” in the crisp 

c-seg’s CAS is the omitted value, and the c-seg is treated like a three-position c-seg. 

When position one is omitted, the CAS becomes =-+; when position two is omitted, the 

CAS becomes =-+; when position three is omitted, the CAS becomes ==+; when 

position four is omitted, the CAS becomes ==-; and these shorter CAS values are then 

mapped against the CAS family tree yielding an interval valued membership value of 

0.45 to 0.77. 
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Figure 2.10b. Best-fit alignments for ==-+ on the Beethoven motive family 

Pos. 1 2 3 4 Total Membership 

Value 

Omit 0.964 (=) 0.178 (-) 0.214 (+) 1.356 0.45 

0.964 (=) Omit 0.178 (-) 0.214 (+) 1.356 0.45 

0.964 (=) 0.714 (=) Omit 0.214 (+) 1.892 0.63 

0.964 (=) 0.714 (=) 0.642 (-) Omit 2.32 0.77 

 

 From here, the melodic best-fit integration process follows a similar procedure as 

for smaller c-segs. If one chooses a single best-fit—the alignment that omitted the final 

position, for example—one would then integrate the entire c-seg into the probability tree, 

adding a position where the omitted position occurred. Figure 2.10c shows the added 

position 4 at the end of the c-seg. On its face, this type of integration may seem 

counterintuitive as a value of 1.00 for the new position seems like an inordinately high 

probability. However, in this case it is important to remember that not all positions occur 

in the family, and for each CAS position, the values are stating that if the position does 

occur in a c-seg, these are the probabilities that it will go in a particular direction. The 

value of 1.00 for the ascent in position four, especially when written as the fraction 1/1, 

indicates that this position rarely occurs, but when it does (in the single member of the 

family that possesses this position) it always goes down. 

Figure 2.10c. Integration of ==-+ into the Beethoven motive family using the single 

best-fit method 

 Pos. 1 2 3 4 (the added 

position) 

+ 1/29=0.034 3/29=0.103 6/29=0.207 1/1=1.00 

= 28/29=0.966 21/29=0.724 4/29=0.137 0/1=0 

- 0/29=0 5/29=0.172 19/29=0.655 0/1=0 
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 The alternative method of integration, where all possible alignments are 

integrated into the family, presents a more challenging calculation when dealing with 

new c-segs that are larger. In the case of the larger c-segs, the uncertainty involved with 

the alignment procedure addresses where the missing position in the crisp c-seg should be 

added into the fuzzy family (since the family is now larger). As a result, the mathematic 

best-fit method of integration involves the even distribution of the entire fuzzy set across 

the now larger framework represented by the new crisp c-seg. In essence, it requires the 

recontextualization of all the other (smaller) crisp c-segs in the family against the crisp c-

seg in exactly the method of mathematic best-fit calculation outlined earlier. These 

calculations are conceptually challenging without the aid of a computerized 

computational model. Fortunately, as we shall see in the coming chapters, situations 

where this becomes a problem are relatively rare, and do not come up at all in the 

analyses in this dissertation. 18 

 

Conclusion 

 Quinn is certainly correct when he discusses the analytical usefulness of fuzzy set 

theory, and explains how it can lead one to a more refined understanding of musical 

                                                

18 Because of this computational challenge, it is advisable always to begin with the calculation of the CAS 

family probability matrix with the largest c-seg in the known family, unless it is the goal to show the 

addition of c-segs into the family in a specific alternate ordering (for example, if the goal of the analysis is 

to show the diachronic development of the family, in the same manner that is done in Chapter 5). In this 

way, one is able to include effectively the mathematical imprecision into the family without any added 

difficulty. 
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similarity across a variety of parameters. As I have illustrated, accepting the notion of 

fuzziness and uncertainty into our notion of cardinality can open the door to even more 

refined judgments of similarity and familial membership. Integrating multiple cardinality 

capabilities into our similarity relations for contour more adequately accounts for the 

similarity of c-segs within a family, and offers new possibilities in terms of analytical 

application. 

 The FCM model developed in this chapter addresses this cardinality issue by 

including a number of procedures for the integration of c-segs with variable cardinalities 

into a single family. Such procedures model the fuzziness that occurs when cardinality 

differences occur, and integrate that fuzziness into the overall fuzzy family of the c-segs 

in question. In doing so, the FCM model provides a multifaceted representation of 

contour similarity, which can illustrate many possible kinds of relationships between c-

segs in a melody family. This potential offers new possibilities in terms of analytical 

application to a wide variety of repertoires, as we shall see in Part II of this dissertation. 
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CHAPTER 3: Fuzzy Families in Plainchant: What Fuzzy Set 

Theory Can Say about Musical Ontology 

 

Medieval plainchant “was a kind of traditional practice specific to local liturgical 

communities but under pressure since the Carolingian era to cleave to the practice of 

Rome…and thereby to constitute a uniform, universal practice” (Treitler 2003, 131). 

However, its origin as an oral tradition resulted in differences in practice that have 

yielded a multiplicity of chant variants. Such variants complicate both the intentions of 

the Carolingians as well as our modern understanding of plainchant’s ontology. 

Regarding such chant variants, Leo Treitler writes that “the scores of these melodies 

themselves challenge one’s sense of what counts as ‘the same melody’” (1993, 491).  

This multiplicity has sparked larger discussions regarding musical ontology, 

which rely on human interpretation to understand the complicated nature of the musical 

object (Popper 1977, Ingarden 1989, Treitler 1993, Bohlman 1999, Cook 2013). Karl 

Popper, for example, puts forth a traditional theory that the musical work is “a real ideal 

object which exists, but exists nowhere, and whose existence is somehow the potentiality 

of its being reinterpreted by human minds” (Popper 1977, 450). Treitler likens the 

musical work to “that of a unicorn” (1993, 483): the unicorn’s existence relies on 

individual interpretations, resulting in many depictions that obscure the “ideal image” of 

the unicorn. The multiplicity in both the representations of unicorns and of plainchant 

melodies precludes the possibility of a single ideal form. In other words, the musical idea 

itself is fuzzy. 
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This chapter examines how the principles underlying fuzzy set theory (Zadeh 

1965), exemplified by the FCM model, can contribute to our understanding of musical 

ontology, especially with regard to plainchant. Using the model developed in Chapter 2, I 

quantify a chant passage’s familial membership on the basis of contour. In this way, I 

illuminate the fuzzy relationship between individual representations of a chant, as well as 

their collective relationship to the chant as an abstract musical idea. Examining chant 

passages in this way allows us to come closer to an “ideal image” of the chant in 

question. The convergences highlight structural tendencies common to the family, 

allowing us to imagine a fuzzy representation of the passage as a whole. It is, in many 

ways, like Treitler’s unicorn: there is no one “ideal” unicorn and no singular 

representation of a musical idea. Using fuzzy contour membership to quantify 

convergences and divergences between the notated variants of a chant, one can gain a 

more thorough understanding of the fuzziness within the musical idea itself. 

 

Plainchant’s Ontological Complications 

Leo Treitler’s seminal article “Homer and Gregory: The Transmission of Epic 

Poetry and Plainchant” examines several ontological complications with regard to the 

oral transmission of plainchant by “work[ing] out a detailed account of how such a prolix 

body of traditional song can have come into existence and have been disseminated in an 

oral culture” (2003, 131). He draws upon theories of memory and recall, as well as 

theories of epic poetry performance in order to illustrate possible ways of understanding 

plainchant’s complicated origin, a task fraught with ontological complications when one 
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considers that our primary body of evidence is the notated chant texts that are the result 

of hundreds of years of oral dissemination.  

The ontological status of a chant (involving both text and melody) in the absence 

of notation relies on the collective memory and reconstruction of the chant within the 

community (in this case being the wide spread community of the Roman Catholic church 

as it existed across Europe before notation).19 Because of this reliance of communal 

memory and oral transmission, it is difficult to pinpoint with any certainty an exact 

melody, as we may be more easily able to do in the era of the Western canon. Theodore 

Karp writes that “it is difficult to establish why one particular Burgundian, Aquitanian, 

Beneventan, German, Northern Italian, Northern French, or insular source is more 

representative of the medieval tradition as a whole than any other source with a different 

reading” (1989, xiv), suggesting that there is no one prototypical representation, and 

instead looking for a representation that can speak to average practice. 

Historical accounts of this oral transmission point toward a desire for unity, but 

also illuminate the practical impossibilities of such desire’s exactitude. For example, in 

the ninth century, John the Deacon wrote “Of the various European peoples it was the 

Germans and the Gauls who were especially able to learn and repeatedly to relearn the 

suavity of the schola’s song, but they were by no means able to maintain it without 

distortion” (quoted in Strunk and Treitler 1998, 179). The effect of constant remembering 

                                                

19 Many scholars discuss this in great detail, citing several hypotheses regarding possible modes of oral 

transmission that contributed to stability in pre-notation times. However, Karp warns that “without a deeper 

acquaintance of source material than we presently possess, we are able to give free rein to the tendency to 

seek simple solutions where they do not exist” (Karp 1989, xii). 
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and reconstruction results in changes to the chant melody that complicate the notion of 

what defines the melodies. However, the notated evidence we have as the chants were 

written down across the various regions in Europe point to a certain level of fixity that 

help us to understand how the process of remembering and recreation may have taken 

place. Treitler has stated that “efforts to reach behind the notated manuscripts have 

depended largely on a principle derived essentially from the adaptation to music of the 

dictum formulated by the liturgist Walter Frere: ‘Fixity means antiquity, that is to say that 

if the same formulary appears in many sources it must be relatively old’” (Treitler 2003, 

144). 

Theories regarding the fixity of chant variants fall into two broad categories. 

Some theories posit a singular origin, wherein fixity observed in the notated variants 

arises from the existence of a singular archetypical source of notated chant. Kenneth 

Levy, for example, postulates the existence of “an authoritative neumed recension of the 

Gregorian propers ca. 800, a century sooner than is presently supposed” (Levy 1998, 82). 

In essence, this approach toward fixity treats the early descendants of the original notated 

chant (i.e., our existing body of evidence) as deviations from an “ideal.”20  

 Other theories propose that fixity arose from the gradual coalescence of multiple 

traditions into a practice that coheres musically as a single entity. James McKinnon, for 

example, puts forth that “if one compares the same chants as they appear in a generously 

                                                

20 It is important to note that Treitler and others are skeptical of this single-origin view, creating significant 

debate in the musicological community regarding these theories of fixity (Treitler 1988, Levy 1988, 

Hughes 1988, Zijlstra and Van Der Werf 1997). My aim here is not to contribute to the debate, but rather to 

show that both sides can potentially benefit from being represented using fuzzy set theory. 
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representative selection of early notated manuscripts and finds them to be nearly 

identical, then one must conclude that the chants existed in substantially the same form 

for a considerable period before the manuscripts were written” (1991, 99). Similarly, 

David Hughes writes that “the evidence of the manuscripts clearly shows the chant to 

have acquired fixed form well before the appearance of the earliest surviving notated 

manuscripts” (1987, 377). Both McKinnon and Hughes point to a desire for fixity before 

the advent of notation, resulting in the relative uniformity we see in the early notated 

sources. 

These theories all describe the coherence of these variant families qualitatively, 

but according to Treitler, they “lack clearly formulated criteria for our own judgments 

about what makes variants ‘slight,’ ‘negligible,’ ‘insignificant’, ‘minor’, and ‘trivial’, and 

for determining the boundaries of a chant’s ‘identity’” (Treitler 2003, 148). Fuzzy set 

theory provides a quantitative lens through which to examine these issues. Using this 

lens, a family of chant variants would be represented as a fuzzy set, wherein each variant 

is assigned a membership value corresponding to “the degree to which that individual is 

similar or compatible with the concept represented by the fuzzy set” (Klir and Yuen, 

1995, 4). Examining melodic passages from a group of chant variants in this way sheds 

light on Treitler’s question regarding the criteria for our judgments about a chant’s degree 

of variance from the imagined “ideal.” 
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Fuzziness and Familial Grouping 

Fuzzy set theory relies on familial resemblance to determine membership values 

for members of a fuzzy set. In many ways, musicologists are already thinking along these 

lines in terms of their practice of grouping regional chant variants into families. Theodore 

Karp, for example, writes that “the variety exhibited in the various readings creates a 

malaise if one refers to the group in terms of ‘a melody;’ it seems preferable to speak of a 

melody complex” (Karp 1989, 13). This established tradition of grouping has helped 

many chant scholars approach their analyses with sensitivity to this ontological problem, 

yet most rely on qualitative description of their observations of the group in order to 

theorize regarding the group’s potential origin and dissemination.21  

Fuzzy set theory offers two models that align in similar ways with the theories of 

fixity outlined above. The first model provides gradations of membership within a fuzzy 

set based on a 0-to-1.0 scale, measured against a single crisp source representing the 

“concept represented by the fuzzy set.” This model is most analogous to the theory of 

fixity posited by Levy, who theorized a single source from which all variants originally 

arose. However, there are many issues with this model ontologically when it comes to the 

“concept” of the melody. Treitler writes that 

there is still a missing element: the story needs to persuade its readers that in the 

[musically] scriptless culture in which it is placed, where music had always been 

passed from teacher to pupil or from one singer to another; musical notation, 

immediately upon its invention, would have functioned in the prescriptive mode 

                                                

21 The notable exception is the work of Kate Helsen, whose big-data approach toward plainchant helps to 

quantify relations among families in a similar manner to that which I am proposing in this chapter (Helsen 

2009, 2014). However, as with other musicological approaches, this methodology does not treat the corpus 

as fuzzy, and does not examine contour in the same way, and therefore does not make the same claims that 

I am making.  
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that we take for granted today and the authority of a written text would at once 

have been accepted and texts adopted as the preferred medium of transmission. It 

seems that these ideas have been so inculcated into the habitus of the field of 

musical practice as it is today that Levy did not see fit to mention them. (Treitler 

2003, 147) 

Like Levy’s theory of fixity, the concept of a single crisp musical idea lacks the 

flexibility to model the very human manner of oral melody transmission. 

 The second model proffered by fuzzy set theory treats the “concept represented by 

the fuzzy set” as fuzzy in and of itself. It bases the gradations of membership of 

individuals within the family against the average of all members of the family. In other 

words, because there is no one exemplar, membership is measured against averaged 

characteristics of members already in the family. In this way, this model is better able to 

account for dominant family traits, while still allowing individuals to possess more 

recessive traits—more of a true “family” structure. This model is most in alignment with 

the theories of McKinnon and Hughes, both of whom posit that melodic stability arose 

before notation and is based on the human process of remembering and reconstruction. It 

is this model that also approaches the nuance with which we must think of the musical 

object in these cases. As Karp mentioned, to think singularly of “the melody” is to miss 

the depth that the melody idea contains. 

Treitler offers one particular melody family that exemplifies exactly this type of 

fuzziness: his Example II.3, reproduced here as Figure 3.1, shows a family of variants of 

the trope Filius ecce patrem, a genre of plainchant designed to interject between sections 

of existing plainchants—in this case, introits. Indeed, variation between the passages calls 

into question the crispness with which we conceive of the term “melody,” suggesting that 

for this repertoire the notion of melody is ontologically fuzzier than we tend to think. 
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Figure 3.1. Passages from the trope Filius ecce patrem, showing regional variants 

(Treitler 2003, 276) 
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 Treitler identifies six trope variants that share similarities in both melody and 

liturgical use.22 Each variant is labeled a–f, and the variants are laid out vertically in the 

figure in order to align similar melodic segments with one another. Of those that bear the 

same text (a–d), two are Aquitanian, one is from northern France, and one is from 

southern Italy. Despite the difference in region, the melodies manifest similarly, so much 

so that a casual observation (such as the kind that Quinn suggests in his article on fuzzy 

contour) of the melodies would lead the observer to believe that they belong together. 

Indeed, Treitler writes that “At a quick glance it will strike everyone that in a–d we have 

essentially the same melody. What is difficult is to find ways of describing the 

similarities and differences that a closer examination will bring into focus” (2003, 266). 

In essence, Treitler questions how one can understand the slight differences between each 

variant in the context of this larger family resemblance. The monophonic nature of chant 

suggests that melodic shape—or contour—plays a critical role in its structure and 

organization, so analysis of contour could prove to help address Treitler’s quandry. 

Figure 3.2a–b shows the analysis of these contours using the FCM model: for example, 

Figure 3.2a shows the contours and membership values of the variants a–d for phrase 

“M” (“Fillius ecce patrem”). For example, the variant b possesses a CAS of =+=-++----

+++-=, which is distributed and measured against the CAS grid of the averaged family 

shown in Figure 3.2b. In this measurement, the averaged values for each motion in the 

contour (+, =, or -) are represented in the grid of Figure 3.2b, such as the plateau in 

position one or the ascent in position two that both possess 1.0 membership, or the 

                                                

22 The last two, designated as “e” and “f”, feature different text, and are used at a different date within the 

liturgical calendar, yet the function is similar, as will be described below. 
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plateau in position three that exhibits a 0.250 membership. This calculation follows thus: 

(1.0 + 1.0 + 0.250 + 0.333 + 1.0 + 1.0 + 1.0 + 0.333 + 0.667 + 1.0 + 0.333 + 1.0 + 0.750 

+ 1.0 + 1.0) / 15 = 11.666 / 15 = 0.778. Examining the membership values of the family 

in this way, one can see that the variants possess relatively high degrees of membership 

within the family. Indeed, the average membership of these chants within their family 

ranges from 0.762 to 0.916 (see Figure 3.2a).23 Within these phrases, we can see shared 

structural tendencies that contribute to these high values. Phrase M displays several 

affinities that each of the melodies in the family share: in Figure 3.2b, we see that 

positions 1, 2, 5, 6, 7, 10, 12, 14, and 15 all display 1.0 membership/non-membership 

within the family, indicating that all family members follow the same contour pathway at 

these points in their respective contour transformations. For example, all of the chants 

have a strong middle ascent followed by descent in positions 5–7, as seen in Figure 3.2c. 

Likewise, the majority of the chants finish with a descent followed by a plateau, as shown 

in positions 14 and 15: all except variant a follow this pathway.24 

 We find similar affinities in the phrases labeled “N” and “O,” as shown in Figure 

3.3: the family of phrase N shows considerable uniformity in its averaged family, only 

varying in the final position. As a result, the members of phrase N have very high 

membership values, ranging from 0. 933 to 1.0. The family of phrase O shows a little 

                                                

23 Granted, this is a rather small family, so the membership degrees that we see in smaller families have 
the potential to reside on the more drastic ends of the spectrum. Nonetheless, that these membership values 

fall toward the high end is significant. 

24 Variant a does not end in this way because the variant’s ending seems to align better with the middle 

points of the other three phrases, specifically positions 10-12. It lacks the “ending” of the others, but is still 

conceptually a member of this family because of these other shared melodic characteristics as well as the 

shared text. 
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more variety (only four of the thirteen positions has a 1.0 membership), yet the melodies 

still maintain a range of membership values between 0.692 to 0.885. 

Figure 3.2a. Contours of variants A–D for phrase M of the trope Filius ecce patrem 

ID C-SEG CAS Card. of 

CAS 

Membership  

A 1012101 -++--+ 6 0.916 

B 0011034321012311 =+=-++----+++-= 15 0.778 

C 120124232102311 +-+++-+---++-= 14 0.762 

D 110123122102211 =-+++-+=--+=-= 14 0.833 

 

Figure 3.2b. Averaged family of phrase M 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

+ 0 1.0 0 0.667 1.0 1.0 0 0.667 0 0 0.333 1.0 0.750 0 0 

= 1.0 0 0.250 0 0 0 0 0 0.333 0 0 0 0.250 0 1.0 

- 0 0 0.750 0.333 0 0 1.0 0.333 0.667 1.0 0.667 0 0 1.0 0 

 

Figure 3.2c. The family of phrase M, showing internal consistencies within the 

familial membership 
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Figure 3.3a. Contours of variants A–D for phrase N of the trope Filius ecce patrem 

ID C-SEG CAS Card. of CAS Membership  

A 14432121011 +=---+--+= 10 0.933 

B 01201 ++-+ 4 1.0 

C 121010 +--+- 5 0.933 

D 0121010 ++--+- 6 0.945 

 

Figure 3.3b. Averaged family of phrase N 

 1 2 3 4 5 6 7 8 9 10 

+ 1.0 0 0 0 0 1.0 0 0 1.0 0 

= 0 1.0 0 0 0 0 0 0 0 0.333 

- 0 0 1.0 1.0 1.0 0 1.0 1.0 0 0.667 

 

Figure 3.3c. Contours of variants A–D for phrase O of the trope Filius ecce patrem 

ID C-SEG CAS Card. of CAS Membership  

A 22101224221321 =--++=+-=-+-- 13 0.885 

B 01334532123101 ++=++---++--+ 13 0.692 

C 0132453203311 ++-++---+=-= 12 0.750 

D 01333213311 ++==--+=-= 10 0.700 

 

Figure 3.3d. Averaged family of phrase O 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

+ 0.750 0.750 0 1.0 1.0 0 0.250 0 0.750 0.250 0.500 0 0.250 

= 0.250 0 0.500 0 0 0.500 0 0 0.250 0.500 0 0 0.500 

- 0 0.250 0.500 0 0 0.500 0.750 1.0 0 0.250 0.500 1.0 0.250 

 

Such analyses suggest that the similarities between variants contribute to a sense among 

listeners and performers alike that these are “the same melody,” calling into question—as 

Treitler indicates—the notion that each specific notated variant accounts for the complete 

notion of “the melody.” What this analysis using the FCM model gives us is the degree to 

which each specific notated variant resembles the melody, or rather the degree to which 
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the variant is able to represent the ideal concept of the melody. It also enables us to 

understand where the shared characteristics occur in the phrases (as they are not always 

readily apparent), and what those shared characteristics are in terms of relative contour.25  

 This analysis also allows one to explore the role that these shared characteristics 

play in the act of remembering and reconstructing a chant in performance. Such 

considerations are crucial to the understanding of chant’s ontology because the manner of 

oral transmission is mostly responsible for the great degree of multiplicity that we see in 

chant families like these. Treitler considers various psychological principles at play in the 

process of memory and recall. He notes that remembering depends on the active 

perceptual process of organization, and that this organization is dependent upon salient 

features of chant (such as its beginning and ending) that serve as structural signposts. 

Furthermore, the process of reconstructing chant from memory is dependent upon 

patterns of past experience, which leads to formal categorization depending on the 

chant’s salient features (Treitler 2003, 159). It is this process of reconstruction that opens 

the door for variability, as the recall of past experience is not crisply accurate. In short, 

the active organization around salient structural signposts gives a singer or listener a 

framework (or form) from which one can reconstruct the finer details of the melodic 

passage. This notion of memory for melody is not especially novel, nor does it pertain 

                                                

25 In using this method, I am not claiming that we can examine ontological coherence on the basis of 

contour alone—as ontological coherence can occur across multiple musical and extra-musical parameters—

but rather am using contour as an example of the way in which studying these parameters using a fuzzy 

approach can lead us to new questions and new ways to investigate both the ontology of melody and the 

ontology of chant. 



 

80 

 

 

only to the melody of plainchant.26 Nevertheless, plainchant is much more dependent on 

the perceptual aspects of memory and reconstruction than is the more modern conception 

of music because of its oral transmission in the absence of written notation.27 

Treitler’s theories regarding memory in plainchant (especially with regard to what 

constitutes enough similarity to count as a salient feature) are not always so readily 

apparent, and the example presented in Figures 3.2 and 3.3 is too small to see some of the 

complexities that can obscure the judgment of salient features. Figure 3.4 shows a larger 

family of related chant variants, this time of the opening of the communion Mirabantur 

omnes. Like Figure 3.1, each variant is identified by a letter a–l, and arranged such that 

analogous melodic segments in each variant are aligned vertically. Karp has grouped this 

family based on mode, genre, and “melody type,” suggesting that the family coheres at 

least in part on melodic shape (1989, 14). Karp refers to this example as a highly variable 

“melody complex.” His examination, however, relies not on a holistic observation as 

does Treitler’s. Instead, he has parsed the phrase by syllable, and then uses the variation 

within the syllabic structure to critique Treitler’s theories of reconstructive memory as a 

process for oral chant transmission. He writes that reconstructive memory cannot account 

for several of the differences found within the body of this family. Karp cites mode, 

                                                

26 Cognitive studies have explored these issues of structure and memory for melody, including Berz 1995; 

Boltz 1986, 1991; Dowling 1978, 1994; Hasher and Griffin 1978; Oura 1991; Quinn 1997; Schmuckler 

1997.  

27 In fact, because of the oral nature of chant’s transmission, each notated excerpt can be conceived of as a 

fuzzy representation in itself, a representation of all the possible oral variations that came before it and 

contributed to the stability of the particular variant that we see written down. In this way, chant families 

resemble level-2 fuzzy sets, in that each representation included in the family is itself fuzzy. Of course, we 

cannot know what that lower level-1 fuzzy set entails without the aid of a time machine, but we should 

remain sensitive to the fact that the fuzziness is there. 
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starting pitch, cadential preparation, and lack of “melodic personality” as factors that 

contribute to his impression that this phrase has had an unstable transmission within the 

oral tradition of chant. What in the music then (aside from text) allows him to group these 

meaningfully as variants of the same chant and not different chants bearing the same 

text? In a word, contour: while these melodies may vary, there are similarities in their 

contours’ structural characteristics that lead one to consider them variants of the same 

melodic idea rather than separate melodic ideas. 

A closer examination of the contour assigned to each syllable reveals an 

underlying pattern that may account for the logical grouping of these variants together, 

and suggests that cognitive processes associated with Treitler’s theories of memory may 

indeed occur in the transmission of this chant. Figures 3.5a–i show a familial analysis of 

the contours of each syllable of the first word “Mirabantur.” Figure 3.5a, for example, 

lists the contours of the melody assigned to the syllable “Mi” for each variant a–l, and 

includes each variant’s membership value when measured against the averaged family for 

this segment shown in Figure 3.5b. Figures 3.5c–h show analogous charts for the 

syllables “ra” “ban” and “tur.”  
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Figure 3.4. Karp’s example 1: Different regional variants of Mirabantur omnes 

(1989, 14) 
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Figure 3.5a. Contour family for the syllable “Mi”28 

ID C-SEG CAS Card. of CAS Membership 

A 0 NA 0 1.0 

B 0 NA 0 1.0 

C 012 ++ 2 1.0 

D 0 NA 0 1.0 

E 01 + 1 1.0 

F 01 + 1 1.0 

G 0 NA 0 1.0 

H 01 + 1 1.0 

I 0 NA 0 1.0 

J 0 NA 0 1.0 

K 01 + 1 1.0 

L 01 + 1 1.0 

 

Figure 3.5b. Averaged family for the syllable “Mi” 

 1 2 

+ 1.0 1.0 

= 0 0 

- 0 0 

 

  

                                                

28 It is interesting that since all members of this family only involve ascent, they all possess a 1.0 

membership value. For example, the third chant, labeled C aligns with the family as follows:  

(1 + 1) / 2 = 2 / 2 = 1.0. Even the smaller c-segs, bearing only a single ascent, also possess 1.0 membership, 

no matter which method of calculation is used. The melodic best-fit approach would simply align the ascent 

with one of the ascents in the fuzzy family represented by Figure 3.5b, resulting in a 1.0 membership. 

Under the mathematic best-fit approach, the distribution of the ascent would be uniform across both 

positions in the CAS grid, again resulting in (0.5 + 0.5) / 1 = 1 / 1 = 1. 
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Figure 3.5c. Contour family for the syllable “ra”29 

ID C-SEG CAS Card. of CAS Membership 

A 012 ++ 2 0.883 

B 012 ++ 2 0.883 

C 012 ++ 2 0.883 

D 012323 +++-+ 5 0.733 

E 012323 +++-+ 5 0.733 

F 0 NA 0  

G 012323 +++-+ 5 0.733 

H 0 NA 0  

I 012 ++ 2 0.883 

J 012323 +++-+ 5 0.733  

K 012323 +++-+ 5 0.724 

L 0123234 +++-++ 6 0.817 

 

Figure 3.5d. Averaged family for the syllable “ra” 

 1 2 3 4 5 6 

+ 1.0 1.0 1.0 0.700 0.600 1.0 

= 0 0 0 0 0 0 

- 0 0 0 0.300 0.400 0 

 

  

                                                

29 These calculations were made using the mathematic best-fit approach, since the ontology of the 

relationships between the variants, and thus their respective positions, is fuzzy. For example, the 

calculation for the 012 c-seg is as follows: (1 + 1 + 0.850 + 0.800 + 1 + 1 + 0.850 + 0.800 + 1 +0.850 + 

0.800 + 1 + 0.650 +0.850 + 0.8) / 15 = 13.25 / 15 = 0.883 This is calculated as the average of the 

membership values of all possible alignments of the two CAS ascents against the six-position CAS grid, so 

the first 1 in the equation represents the c-seg aligned against the first two CAS positions, the second 1 in 

the equation represents the c-segs alignment along positions 1 and 3 in the CAS grid, etc. 



 

85 

 

 

Figure 3.5e. Contour family for the syllable “ban” 

ID C-SEG CAS Card. of CAS Membership 

A 012 ++ 2 0.599 

B 012 ++ 2 0.599 

C 012 ++ 2 0.599 

D 21210 -+-- 4 0.565 

E 1210 +-- 3 0.610 

F 012323321 +++-+=-- 8 0.518 

G 2321 +-- 3 0.610 

H 012 ++ 2 0.599 

I 210 -- 2 0.667 

J 22210 ==-- 4 0.417 

K 22210 ==-- 4 0.417 

L 21210 -+-- 4 0.565 

 

Figure 3.5f. Averaged family for the syllable “ban” 

 1 2 3 4 5 6 7 8 

+ 0.583 0.607 0.591 0.467 0.497 0.365 0.333 0.333 

= 0.167 0.167 0.143 0.105 0.062 0.107 0 0 

- 0.250 0.183 0.266 0.428 0.440 0.528 0.667 0.667 

 

Figure 3.5g. Contour family for the syllable “tur” 

ID C-SEG CAS Card. of CAS Membership 

A 10121 -++- 4 0.914 

B 10121 -++- 4 0.914 

C 10121 -++- 4 0.914 

D 10121210 -++-+-- 7 0.843 

E 20210 -+-- 4 0.973 

F 20121210 -++-+-- 7 0.843 

G 20121210 -++-+-- 7 0.843 

H 10121 -++- 4 0.914 

I 101210 -++-- 5 0.898 

J 20121210 -++-+-- 7 0.843 

K 20121210 -++-+-- 7 0.843 

L 20121210 -++-+-- 7 0.843 
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Figure 3.5h. Averaged family for the syllable “tur” 

 1 2 3 4 5 6 7 

+ 0 0.764 0.894 0.404 0.817 0.167 0 

= 0 0 0 0 0 0 0 

- 1.0 0.236 0.105 0.596 0.183 0.833 1.0 

 

Figure 3.6 shows a graph of membership values for each variant (labeled a–l) 

across the entire word “Mirabantur.” In the graph, we see the membership values for each 

variant a–l plotted across their syllables shown on the x-axis of the graph, revealing the 

patterns of coherence and variety inherent within this chant.30 Here, we see that many of 

these membership values are clustered together, such that multiple chants are represented 

by only one point on the graph. These tight clusters show us that the membership values 

of these variants are relatively uniform, suggesting that these segments might be varied in 

similar ways. Additionally, in the familial structures of these first four syllables, for 

example, we see a pattern of structural stability that is reflective of the psychological 

principle that beginnings and endings are more memorable (Roberts 1986, 153): the first 

syllable displays remarkably high contour membership within its own family. Of the 

variants that move between pitches in this syllable, each contour ascends, resulting in a 

1.0 membership value for each of these members. Karp cites the fact that not all members 

actually move on the first syllable, yet the potential of the first pitch to ascend in the next 

                                                

30 The dotted lines connecting syllables for each chant variant are meant only as a visual aid to assist the 

reader in understanding which points belong to specific chant variants. 
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syllable (whether it is actualized or not) is still suggestive of uniformity on the part of 

memory.31 

Figure 3.6. Graph of membership across the word “Mirabantur” 

 

 

The second syllable, “ra,” displays less similar memberships: between 0.724 and 

0.883. These values are still relatively high, suggesting strong connections among the 

variants in the family, yet they are more varied due to small changes in the middle of the 

segments. The third syllable, “ban,” shows the lowest degrees of membership: between 

0.417 and 0.667, indicating that this syllable is the most widely varied of the four 

                                                

31 Schultz posits a Husserlian view of anticipation called protention, where the indeterminacy of the future 

motion is captured through its potential possible motions (2009, 14-18). The tendencies of other family 

members (in this case the family of the first syllable “Mi-”) may influence the expectation for movement in 

that moment, and it is this heightened potential that maintains the suggestion of ascent in this family in the 

absence of actualized motion. In other words, since most of the family ascended, those that only possessed 

one pitch (i.e., no motion) could have the potential to ascend as well. 
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syllables. This may be where Karp sees the lack of “melodic personality,” as the family 

displays a less coherent connection in this segment. Finally, the last syllable, “tur,” once 

again returns to high degrees of membership, as well as a smaller range: 0.843 to 0.973. 

These membership values suggest that at the level of the word, structural 

signposts seem to exist at the beginning and ending syllables, with the potential for 

greater variety in the inner syllables. Furthermore, if we look at the familial probabilities 

indicated for each syllable on its own, we also see that in all but the third (most varied) 

syllable, the families themselves display strong beginning and ending similarities, 

indicated by the fact that they all begin and end with the same motions. These important 

similarities contribute to the cohesiveness of the family, despite its other unstable aspects: 

the average membership across all four syllables, after all, ranges from 0.7 to 0.9, 

indicating continuity in the face of variation. 

If we include the second word “omnes” in our analysis, as shown in Figure 3.7a-

d, as Karp suggests, we actually see an even stronger signpost at the cadential point G4. 

Parsing again by syllable, we see that the first syllable “om” is quite variable, as Karp 

claims: the family’s variants have membership values ranging from 0.565 to 0.675. 

However, as the word finishes with its cadence on G4, the family of the final syllable 

displays a membership of 1.0, indicating exact identity.  
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Figure 3.7a. Contour family for the syllable “om” 

ID C-SEG CAS Card. of CAS Membership 

A 21010 --+- 4 0.565 

B 1210 +-- 3 0.675 

C 21010 --+- 4 0.565 

D 012121 ++-+- 5 0.638 

E 0121212 ++-+-+ 6 0.629 

F 01312 ++-+ 4 0.619 

G 012101 ++--+ 5 0.648 

H 210101 --+-+ 5 0.568 

I 012101 ++--+ 5 0.648 

J 0121212 ++-+-+ 6 0.629 

K 0121212 ++-+-+ 6 0.629 

L 0121 ++- 3 0.672 

 

Figure 3.7b. Averaged family for the syllable “om” 

 1 2 3 4 5 6 

+ 0.667 0.633 0.358 0.533 0.283 0.583 

= 0 0 0 0 0 0 

- 0.0.333 0.367 0.642 0.467 0.717 0.417 

 

Figure 3.7c. Contour family for the syllable “nes” 

ID C-SEG CAS Card. of CAS Membership 

A 10 - 1 1 

B 10 - 1 1 

C 10 - 1 1 

D 10 - 1 1 

E 10 - 1 1 

F 10 - 1 1 

G 10 - 1 1 

H 10 - 1 1 

I 10 - 1 1 

J 10 - 1 1 

K 10 - 1 1 

L 10 - 1 1 
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Figure 3.7d. Averaged family for the syllable “nes” 

 1 

+ 1.0 

= 0 

- 0 

 

Adding these syllables into our graph, shown in Figure 3.8, gives us a strong 

picture of the shared characteristics that this melody complex possesses. The structural 

tendencies we see in the contour of this melody family give us a foundation with which to 

investigate the stability (or lack thereof) of a particular chant. In the case of Mirabantur 

omnes, we see that the primary area of instability occurs in the third syllable, which in all 

cases centers on C5, which Karp calls “the first contrasting pole to the final” (1989, 14). 

Likewise, the cadential preparation Karp cited as a feature of the family’s instability, 

features similarly low membership values, again indicating it as an area of variability 

within the structure of the phrase. However, other structural elements, such as the 

beginning ascent, the stability found at the fourth syllable, and the concluding descent 

provide the contextual evidence for the conceptual grouping of these variants. In doing 

so, one can see that perhaps Treitler’s theory of reconstructive memory is not so far out 

of reach as Karp would suggest. 

As noted above, we can see indications of Treitler’s theory of reconstruction at 

work in the body of notated chant variants that we have as our primary body of evidence. 

The shared characteristics in the above examples show where these salient features may 

be, pointing us to the structural signposts that facilitate reconstruction of the chant. This 



 

91 

 

 

is especially noticeable in the beginnings and endings I mentioned with regard to the 

Mirabantur omnes chant family: syllables at the beginning and ending of words possess 

higher membership values within their respective families than do syllables in the middle. 

Within these forms, however, variation is introduced as a result of the reconstruction 

process: as a singer continually relies on past experiences singing a chant, small 

variations may be introduced that, while not sacrificing the structural integrity of the 

chant as a whole, cause the identity of the chant idea to change. This is seen especially in 

the middle syllables of the Mirabantur omnes family (such as the syllable “ban” and the 

syllable “om”), exemplified by the graph in Figure 3.8. 

Figure 3.8. Graph of membership across the phrase “Mirabantur omnes” 
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 In measuring the fuzziness of the multiple notated variants in this example, we 

can gain a better understanding of what aspects of the melody contribute to the stability 

of the melody, and conversely which aspects tend to change. In the analysis of both 

Karp’s and Treitler’s examples, we see segments that are similar across variants, and 

areas in which notable differences occur.  

 

Further Ontological Complications 

In the analyses of both Filius ecce patrem and Mirabantur omnes, we see that the 

notion of a chant’s ontology is closely interconnected to the resemblances shared by its 

melodic variants. However, it was often the case in the practice of plainchant to adapt 

existing melodies to different texts. In doing so, the ontological status of a melody or 

melodic segment is severed from its attachment to specific chants, further complicating 

the ontology of both the melody and the chant or chants to which it belongs. 

Recall in Figure 3.1 that Treitler includes two additional tropes within his trope 

family beyond the four that bear the same text. These two (variants e and f) deviate from 

the other members of the family in that they have different texts, but were used in 

accompaniment with the same introit as the other tropes in the family. Treitler bases the 

inclusion of these two tropes on melodic similarity, specifically that these tropes contain 

some of the same range constraints and the same melodic progression through the range 

of the mode.  

Analyzing these phrases against the other four members of the family shows that 

while melodic underpinnings do exist, these two tropes exhibit greater variety than the 
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members of the initial family. Figure 3.7, for example, shows this analysis across phrase 

M. While the original members of the family displayed membership values ranging from 

0.762 to 0.916 (as shown in Figure 3.2a, reproduced in contours A-D in Figure 3.9), the 

values for the tropes labeled E and F are much lower: 0.595 and 0.348 respectively. 

Figure 3.9. Analysis of phrase M of variants E and F of Fillius ecce patrem (with 

variants A–D for reference) 

ID C-SEG CAS Card. of 

Cas 

Membership 

A 1012101 -++--+ 6 0.916 

B 0011034321012311 =+=-++----+++-= 15 0.778 

C 120124232102311 +-+++-+---++-= 14 0.762 

D 110123122102211 =-+++-+=--+=-= 14 0.833 

E 101123432121011 -+=+++---+--+= 14 0.595 

F 011123321222110011 +==++=--+==-=-=+= 17 0.348 

 

 Given the remarkably low membership values across the variants of E and F, one 

may wonder why Treitler is so inclined to include them in this family at all. Treitler 

explains, however, that his grouping of these in the family is based on shared melodic 

traits that are deeper than can be seen in the surface-level contour, suggesting that surface 

level contour is not the only feature we should examine.32 It is the relative depth at which 

the similarity occurs, I believe, that may be the deciding factor in Treitler’s question of 

what constitutes minor vs. significant differences. Underlying melodic similarities may 

                                                

32 In these cases, it would be profitable to examine such variants using a combination of the FCM model 

and the Contour Reduction Algorithm (Morris 1993, Schultz 2008), which algorithmically reveals deeper 

structures within the contours in question. In doing so, one could compare prime representations of the 

variants, and could use the FCM model to arrive at membership values for each prime within the family of 

the variants. While this kind of analysis falls beyond the scope of this dissertation, it would be an 

interesting avenue for future research. 
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indeed be present, and may be structurally significant in the perception and 

reconstruction of variants E and F, but the lack of surface level contour similarity 

suggests a much looser relationship of these chants to the family as a whole, calling into 

question their ontological status within the family. Treitler writes that it may be valuable 

to reconsider the “variant” relationship in this family, as the variation seen especially in 

chants E and F stretch the limits of what may be considered as “the same melody.” 

Instead, he writes that  

the conception that its versions are all actualizations of a matrix defined by the 

constraints that have been described here is preferable to the conception that the 

versions are related as variants of one another or some hypothetical 

archetype…The conception that the versions are all actualizations of an 

underlying model has four advantages. First, it is of a greater generality. Second, 

it provides a more adequate account of the observable facts of the transmission (or 

to put it the other way around, it does not require us to posit masses of 

irretrievable evidence). Third, it is consonant with a general conception that is 

proving to be more satisfactory to account for the transmission of other repertories 

of medieval melody and polyphony. Fourth, it offers a category for assimilating 

the facts of variation, other than the stemma that no one has yet been able to 

reconstruct. (2003, 269–70) 

Such a model puts the measure of similarity at a deeper level. To call them melodic 

variants in the same way that we might call the members of the Mirabantur omnes family 

variants seems illogical, suggesting that there is a distinction to be made between the 

ontological status of variants that more closely resemble each other, and those that have 

deeper structural connections, but vary more widely on the surface. Such distinctions are 

challenged additionally because of differences in text—which in many cases 

automatically result in minor differences between variants—but the main idea remains 

the same. In short, these two variants E and F lie at the border between what are minor 

variations and what are more significant. 
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Melodic Formula Families with Different Texts 

 In studying this issue in more depth, I would like to bring in another analysis of 

chants with different texts—this time a family that coheres more closely. Rebecca 

Maloy’s book Inside the Offertory studies a large body of chants with different texts in 

both the Old Roman tradition and the Gregorian tradition. In her study, she identifies a 

range of melodic similarities that inform her analysis of the differences between 

traditions. One significant point that she makes is that the Old Roman offertories make 

heavy use of melodic formulae, which Maloy defines as a “relatively” stable melodic 

phrase that gets used in multiple places within the chant repertoire. Such a formula is 

different from standard melodic material (which Maloy calls “ideomelic”) in that it 

always appears in the same or similar form or order (Maloy 2010, 90–92). Ontologically 

speaking, these formulae would constitute a melody family, despite appearing in different 

chants with different texts. 

Since these formulas are long, Maloy defines smaller shapes within them, which she 

calls “functions” because each one serves a function within the phrase. She defines eight 

such functions (although not all formulae must possess all eight functions, and some 

functions may be repeated) shown in Figure 3.10: 

 

 

 

 



 

96 

 

 

Figure 3.10. Maloy’s formualic functions (2010, 93) 

I Pre-accent “all segments in columns labeled I serve the role of accent 

preparation” 

II Accent “all segments in columns labeled II fall on an accent” 

III Post-accent “segments under this heading fall after the accent or on the final 

syllable of the word” 

IV Accent-

neutral 

recitation: 

“this neume occurs on both accented and unaccented syllables 

and is repeated as often as needed to accommodate syllables 

remaining before the cadential pattern.” 

V Pre-

cadential 

“may occur on either an accented or unaccented syllable” 

VI Cadential 1 these functions are cadential, “accommodating the final three or 

four syllables of the clause.” VII Cadential 2 

VIII Cadential 3 

 

These eight functions (shown with Roman numerals) break up the melodic formula into 

segments that have specific purposes within a phrase of plainchant, often associated with 

where they are placed against the specific stresses of the text. Maloy discusses the overall 

stability of these formulae, but also the interchangeability of functions within certain 

formulae. In some cases, not all functions are present, and some functions overlap, as in 

cases where the post-accent function may also serve as the pre-cadential function leading 

into the end of the phrase. Analyzing these functional segments using the FCM model 

shows the stability that Maloy discusses. I have chosen a formula specific to mode-2 

offertories that Maloy identifies as “formula 2-1,” examples of which are shown in Figure 

3.11. In the figure, Maloy identifies four instances of the formula, found in four different 

offertories. For each, she segments the formula according to the functions identified in 

Figure 3.10, and aligns the formulae according to functional similarity.  
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Figure 3.11a. Maloy’s function segmentation of formula 2-1 (2010, 97) 

 

 As one may notice in the figures above, the length of the text to be fitted to the 

formula determines the extent to which certain functions are activated within the 

formulaic segment itself. Yet, as we might see in the figure, the functions themselves 

have a bit of variability, and this is found in other versions of the formula as well. I have 

identified seventeen instances of the formula within the Old Roman offertories that 

Maloy includes in her book, categorized according to Maloy’s chant ID number, which is 

based on placement of the chant within the liturgical calendar. These formulae are shown 

in Appendix 1. A familial analysis of each of these functions across the seventeen 

identified members shows the ways in which the melody family of formula 2-1 coheres. 

Figures 3.12 a–n show the familial analyses of the eight functions across these seventeen 

variants.33 

                                                

33 Note that Function IV is not present in this formula. 
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Throughout Figures 3.12a through 3.12n, we see a variety of membership value 

ranges emerge for each of the eight functions, suggesting that certain functions are more 

stable than others, and subsequently that certain places within the melody are more stable 

than others. The pre-accent and post-accent functions (functions I and III) are the most 

unstable with regard to contour: the pre-accent function (Figures 3.12a and 3.12b) 

features a range of membership values from 0.352 to 1.0, while the post-accent function 

(Figures 3.12e and 3.12f) has a range of 0.277 to 0.583. A closer analysis of these 

functions shows crucial differences between the ways in which the two families vary. The 

average membership value for the pre-accent function is 0.850, suggesting that there are 

strong family resemblances with a few drastic outliers. When we examine the table for 

function I in Figure 3.12a, we see this to be the case. All but four of the thirteen members 

that possess function I feature 1.0 membership: in essence, they all follow the initial 

ascent. The four that do not have 1.0 membership are considerably more varied in their 

opening gestures, although each also ends with an ascent that could be compared 

analogously to the ascent of the remaining members. In short, these four outliers are 

elaborations upon the shape presented by the rest of the family. On the other hand, the 

average membership value for the family of Function III is 0.489, considerably lower 

than that of Function I. This suggests a different makeup, with much more variety 

inherently in the family. We see this in the family, as some members plateau (for 

differing lengths of time), while others feature prominent ascents and descents in 

different places.34 In other words, there is no real central pattern from which to “deviate” 

                                                

34 These differences are difficult to compare using a melodic best-fit approach, and so because of this 

variety, it is necessary to use the mathematic best-fit approach for the analyses of this formula. 
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as we saw in Function I. Therefore, in these charts we see that not only do the family 

members of these various functions differ from each other significantly; they also differ 

in ways that further reinforce the differences between functions. 

Figure 3.12a. Contour family for Function I (pre-accent) 

ID Location C-SEG CAS Card. of 

CAS 

Membership  

22 Line 1 01 + 1 1 

17 Line 2 01 + 1 1 

36 Line 5a 01 + 1 1 

6 Line 4 

(second 

line) 

101 -+ 2 0.602 

13 Line 6 01 + 1 1 

72 Line 7 01 + 1 1 

36 Line 5a 01 + 1 1 

36 Line 8 01 + 1 1 

14 Line 4 11001 =-=+ 4 0.352 

23 Line 2 

(line 2) 
1201 +-+ 3 0.658 

58 Line 6 1001 -=+ 3 0.444 

10 Line 2 01 + 1 1 

10 Line 6 01 + 1 1 

 

Figure 3.12b. Averaged family for function I 

 1 2 3 4 

+ 0.769 0.743 0.795 1.0 

= 0.077 0.051 0.128 0 

- 0.154 0.205 0.077 0 
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Figure 3.12c. Contour family for Function II (Accent) 

ID Location C-SEG CAS Card. of 

CAS 

Membership  

22 Line 1 0121 ++- 3 0.918 

22 Line 1 010 +- 2 1 

22 Line 1 

(line 3) 
010 +- 2 1 

17 Line 2 0121 ++- 3 0.918 

36 Line 5a 0121 ++- 3 0.918 

6 Line 4 

(line 2) 
0121 ++- 3 0.918 

6 Line 4 

(line 3) 
010 +- 2 1 

13 Line 6 0121 ++- 3 0.918 

72 Line 1 

(line 3) 
010 +- 2 1 

72 Line 3 

(line 2) 
021 +- 2 1 

72 Line 7 0121 ++- 3 0.918 

36 Line 5a 0121 ++- 3 0.918 

36 Line 8 010 +- 2 1 

36 Line 8 01231 +++- 4 0.797 

36 Line 8 010 +- 2 1 

14 Line 4 010 +- 2 1 

14 Line 4 010 +- 2 1 

14 Line 4 010 +- 2 1 

14 Line 5 010 +- 2 1 

14 Line 5 010 +- 2 1 

23 Line 2 

(line 2) 
0121 ++- 3 0.918 

23 Line 2 

(line 2) 
010 +- 2 1 

58 Line 3 

(line 2-3) 
010 +- 2 1 

58 Line 6 010 +- 2 1 

58 Line 6 010 +- 2 1 

10 Line 2 010 +- 2 1 

10 Line 2 021 +- 2 1 

10 Line 6 010 +- 2 1 

10 Line 6 1210 +-- 3 0.856 

10 Line 6 021 +- 2 1 
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Figure 3.12d. Averaged family for function II 

 1 2 3 4 

+ 1.0 0.756 0.433 0 

= 0 0 0 0 

- 0 0.244 0.567 1.0 

 

Figure 3.12e. Contour family for function III (Post-accent) 

ID Location C-SEG CAS Card. of 

CAS 

Membership  

22 Line 1 00 = 1 0.583 

22 Line 1 

(line 3) 
00 = 1 0.583 

17 Line 2 00 = 1 0.583 

13 Line 6 10 - 1  

72 Line 1 

(line 3) 
00 = 1 0.583 

36 Line 8 210 -- 2 0.374 

36 Line 8 1210 +-- 3 0.277 

14 Line 4 2101 --+ 3 0.277 

14 Line 4 000 == 2 0.583 

14 Line 5 000 == 2 0.583 

23 Line 2 

(line 2) 
00 = 1 0.583 

58 Line 6 0 NA 0  

10 Line 2 0 NA 0  

10 Line 6 210 -- 1 0.374 

10 Line 6 0 NA 0  

 

Figure 3.12f. Averaged family for function III 

 1 2 3 

+ 0.083 0 0.083 

= 0.583 0.583 0.583 

- 0.333 0.416 0.333 
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Figure 3.12g. Contour family for function V (Pre-cadential) 

ID Location C-SEG CAS Card. of CAS Membership 

22 Line 1 (line 3) 00 = 1 1 

36 Line 5a 00 = 1 1 

6 Line 4 (line 2) 00 = 1 1 

6 Line 4 (line 3) 0 NA   

72 Line 1 (line 3) 0000 === 3 1 

72 Line 3 (line 2) 000 == 2 1 

72 Line 7 00 = 1 1 

36 Line 5a 00 = 1 1 

36 Line 8 00 = 1 1 

14 Line 4 00 = 1 1 

14 Line 5 00 = 1 1 

58 Line 3(lines 2-3) 000 == 2 1 

58 Line 6 000 == 2 1 

10 Line 2 000 == 2 1 

10 Line 6 000 == 2 1 

 

Figure 3.12h. Averaged family for function V 

 1 2 3 

+ 0 0 0 

= 1.0 1.0 1.0 

- 0 0 0 
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Figure 3.12i. Contour family for function VI (Cadential) 

ID Location C-SEG CAS Card. of 

CAS 

Membership 

22 Line 1 (line 

3) 
13210 +--- 4 0.994 

36 Line 5a 13210 +--- 4 0.994 

6 Line 4 (line 

2) 
1210 +-- 3 1 

6 Line 4 (line 

3) 
13210 +--- 4 0.994 

13 Line 6 023210 ++--- 5 0.861 

72 Line 1 (line 

3) 
13210 +--- 4 0.994 

72 Line 3 (line 

2) 
13210 +--- 4 0.994 

72 Line 7 1210 +-- 4 0.994 

36 Line 5a 1210 +-- 3 1 

36 Line 8 13210 +--- 4 0.994 

14 Line 4 13210 +--- 4 0.994 

14 Line 5 13210 +--- 4 0.994 

58 Line 3 (line 

2-3) 
13210 +--- 4 0.994 

58 Line 6 13210 +--- 4 0.994 

10 Line 2 13210 +--- 4 0.994 

10 Line 6 13210 +--- 4 0.994 

 

Figure 3.12j. Averaged family for function VI 

 1 2 3 4 5 

+ 1.0 0.328 0.021 0 0 

= 0 0 0 0 0 

- 0 0.672 0.979 1.0 1.0 
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Figure 3.12k. Contour family for function VII (Cadential) 

ID Location C-SEG CAS Card. of 

CAS 

Membership 

22 Line 1 1321210 +--+--

 

6 0.701 

22 Line 1 

(line 3) 
321210 --+-- 5 0.7 

36 Line 5a 321210 --+-- 5 0.7 

6 Line 4 

(line 2) 
32120 --+- 4 0.883 

6 Line 4 

(line 3) 
321210 --+-- 5 0.7 

13 Line 6 321210 --+-- 5 0.7 

72 Line 1 

(line 3) 
321210 --+-- 5 0.7 

72 Line 3 

(line 2) 
321210 --+-- 5 0.7 

72 Line 7 321210 --+-- 5 0.7 

36 Line 5a 321210 --+-- 5 0.7 

36 Line 8 321210 --+-- 5 0.7 

14 Line 4 321210 --+-- 5 0.7 

14 Line 5 321210 --+-- 5 0.7 

23 Line 2 

(line 2) 
1321210 +--+--

 

6 0.701 

58 Line 3 

(line 2-3) 
321210 --+-- 5 0.7 

58 Line 6 321210 --+-- 5 0.7 

10 Line 2 321210 --+-- 5 0.7 

10 Line 6 321210 --+-- 5 0.7 

 

Figure 3.12l. Average family for function VII 

 1 2 3 4 5 6 

+ 0.111 0 0.516 0.644 0.033 0 

= 0 0 0 0 0 0 

- 0.889 1.0 0.483 0.356 0.967 1.0 
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Figure 3.12m. Contour family for function VIII (Cadential) 

ID Location C-SEG CAS Card. of 

CAS 

Membership 

22 Line 1 210 -- 2 0.928 

22 Line 1 

(line 3) 
10210210 -+--+-- 7 0.772 

17 Line 2 210 -- 2 0.928 

36 Line 5a 1021021 -+--+- 6 0.758 

6 Line 4 

(line 2) 
210 -- 2 0.928 

6 Line 4 

(line 3) 
210 -- 2 0.928 

13 Line 6 10210210 -+--+-- 7 0.772 

72 Line 1 

(line 3) 
210 -- 2 0.928 

72 Line 3 

(line 2) 
210 -- 2 0.928 

72 Line 7 1021021 -+--+- 6 0.758 

36 Line 5a 1021021 -+--+- 6 0.758 

36 Line 8 210 -- 2 0.928 

14 Line 4 210 -- 2 0.928 

14 Line 5 1021021 -+--+- 6 0.758 

23 Line 2 

(line 2) 
1021021 -+--+- 6 0.758 

58 Line 3 

(line 2-3) 
10210210 -+--+-- 7 0.772 

58 Line 6 10210 -+-- 4 0.828 

10 Line 2 210 -- 2 0.928 

10 Line 6 10210210 -+--+-- 7 0.772 

 

Figure 3.12n. Averaged family for function VIII 

 1 2 3 4 5 6 7 

+ 0 0.456 0.119 0.024 0.309 0.219 0 

= 0 0 0 0 0 0 0 

- 1.0 0.544 0.881 0.976 0.691 0.781 1.0 

 

 The instances of wide variability are typically a product of the differences 

between texts. Figure 3.13a, for example, shows that in the pre-accent function (Maloy’s 
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function I), not all of the texts are the same length.35 Typically, in the Latin language 

(both spoken as well as sung) the accent falls on the penultimate syllable: Take the 

formula from the offertory Meditatibor (chant ID 22), for example: the text reads “in 

mandatis tuis.” In this phrase, the accent is placed on the “da” of “mandatis” as it is the 

penultimate syllable in the first word of substance in the formula. For this phrase, there 

are only two syllables preceding the accent, “in man,” resulting in the single ascent from 

C4 to D4, as shown in Figure 3.13b. However, consider the same formulaic phrase from 

the offertory Tollite portas (chant ID 6), possessing the text “et plenitudo eius” (Figure 

3.13c). In this phrase, we have three syllables “et ple-ni” before we get to the accent 

function on the syllable “tu.” As a result of this extra syllable, the pre-accent function has 

been lengthened by the addition of the initial D4 on “et.” Therefore, the variety with 

regard to the stability of the pre-accent function is a product of the length of the words 

selected for the phrase. The fact that these different texts can affect such change is a 

strong contributing factor to the complexity with which we must regard the ontology of 

the melodies in this section. As we see from Figures 3.13 a–c, the variety exhibited may 

not detract from our sense that it is “the same melody,” yet we must remain sensitive to 

the variation that comes when we put the melody to different texts.  

  

                                                

35 For reference, see the notated chants in Appendix 1. 
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Figure 3.13a. Syllabic breakdown of the pre-accent function (showing the text of the 

accent function in parenthesis)36 

ID Location C-SEG CAS Membership  Text: Syllable

s 

22 Line 1 01 + 1 In man-(datis) 2 

17 Line 2 01 + 1 In-i-(micos) 2 

36 Line 5a 01 + 1 Be-ne-(dictus) 2 

6 Line 4 

(second line) 
101 -+ 0.602 Et ple-ni-(tudo) 

2 word… 

3 

13 Line 6 01 + 1 Et (exaudivit) 1 

72 Line 7 01 + 1 Be-ne-(dictus) 2 

36 Line 5a 01 + 1 Be-ne-(dictus) 2 

36 Line 8 01 + 1 Iu-bi-(late) 2 

14 Line 4 11001 =-

=+ 

0.352 Quam ma-gni-fi-(ca-

ta) 

4 

23 Line 2 (line 

2) 
1201 +-+ 0.658 Re-tri-bu-ti-(on-es) 4 

58 Line 6 1001 -=+ 0.444 Quo-ni-am (de-us) 3 

10 Line 2 01 + 1 Re-ges 2 

10 Line 6 01 + 1 Et iu-(sti-ti-am) 2 

Figure 3.13b. Formulaic phrase from Meditatibor (chant ID 22), showing a two-

syllable pre-accent function 

 

Figure 3.13c. Formulaic phrase from Tollite portas (chant ID 6), showing a three-

syllable pre-accent function 

 

                                                

36 In this family, we see a significant number of single motion 01 contours, each with membership values 

of 1.0. These membership values indicate that the ascent occurs in every contour (although other contours 

have additional motions) and therefore that this ascent is a crucial feature of the family. 
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 With regard to the melody’s stability, we see some interesting patterns emerge. 

The most stable functions are the accent function (function II) and the pre-cadential 

function (function V).37 The family of function II (Figures 3.12c and 3.12d) ranges in 

membership from 0.797 to 1.0, with an average membership of 0.967. The family of the 

pre-cadential function (Figures 3.12g and 3.12h) has a 1.0 membership across all 

members, suggesting that they possess identical melodic shapes (a plateau motion, 

differing only in length).38 Such points of structural stability within the melody suggest 

that these are important melodic signposts within the formula, and thus the uniformity 

found in both the accent and pre-cadential functions greatly contributes to the stability of 

the melodic formula as a whole. 

 The cadential functions also possess a good deal of similarity, although, as is 

shown in the tables above, there is still room for variability within these three functions. 

The cadential functions’ membership values all seem high, with the lowest values 

hovering around 0.7, indicating that in addition to being melodically more stable than the 

pre- and post-accent functions, these functions exhibit variety in a very uniform way. 

Examining the averaged probability matrix for Function VII (Figure 3.12l), for example, 

we see that the family possesses 1.0 memberships in the downward motions of position 2 

and position 6. Likewise, position 1 and position 5 exhibit strong tendencies toward a 

                                                

37 To refer back to the definitions of each function, please see Figure 3.10. 

38 In this family, each member only features a plateau. What results is a family where there is only one 

possible motion, resulting in a 1.0 membership/non-membership for all positions in the family. Therefore, 

each member of the family will also possess 1.0 membership. 
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downward motion, indicating that only a minority of members ascends in these positions. 

The greatest variability comes in the middle of the c-segs, in positions 3 and 4, where the 

values for ascent and descent hover closer toward the middle of the spectrum. This 

uniformity in variation contributes to the relative stability we see in these cadential 

sections. 

 These membership values all seem logical in that the pre- and post-accent 

functions serve as more flexible connecting material between structural entities like the 

accent, pre-cadential, and cadential functions. As such, it would stand to reason that this 

material is more varied according to the specific needs of the text. However, when we 

examine the overall degree of membership by combining the membership values of each 

function throughout each formula, we see that these variable sections do not detract from 

the stability of this melodic formula. Figure 3.14a shows these averages: the average 

membership value for the family of entire formulae ranges from 0.769 to 0.946. Figure 

3.14b graphs the membership values of the functions for each formula, and shows that 

each formula exhibits a relatively consistent pattern of coherence and variety. Within 

these membership values we can see how the more variable functions have affected the 

familial similarity between these formulae. In Figure 3.14a, we see that the formula from 

chant 23 (shown in the third row from the bottom in Figure 5.14a), for example, features 

the lowest membership of the entire family, primarily because it makes use of the 

functions that are less stable such as functions I and III, while at the same time not using 

functions such as V and VI that have markedly high membership values. In addition, 

when we look at the chants with the highest degrees of membership, we see that they 

either possess high-end values in the more variable functions, such as chant 22 (shown in 
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the top row of Figure 3.14a) which features the highest values for functions I and III, or 

do not make use of those functions at all, such as chant 72, line 3 (shown in the eighth 

row from the bottom in Figure 3.14a).  

Figure 3.14a. Overall familial membership for the formula 2-1 (X indicates that the 

function is not present in the given formula) 

ID Location I II III V VI VII VIII Overall 

average 

membership 

22 Line 1 1 0.918, 

1, 1 

0.583, 

0.583 

1 0.994 0.701, 

0.7 

0.928, 

0.772 

0.848 

17 Line 2  1 0.918 0.583 X 0.885 0.928 0.857 

36 Line 5a 1 0.918 X 1 0.994 0.7 0.758 0.895 

6 Line 4 0.602 0.918 X 1 1 0.883 0.928 0.888 

6 Line 4 

(partial 

repeat) 

X 1  1 0.994 0.7 0.928 0.924 

10 Line 2  1 1, 1 X 1 0.994 0.7 0.928 0.946 

13 Line 6 1 0.918 0.416 X 0.861 0.7 0.772 0.778 

13 Line 6 

(full 

repeat) 

1 0.918 0.416 X 0.861 0.7 0.772 0.778 

72 Line 1 X 1 0.583 1 0.994 0.7 0.928 0.867 

72 Line 7 1 0.918 X 1 1 0.7 0.758 0.896 

72 Line 3 X 1 X 1 0.994 0.7 0.928 0.924 

10 Line 6 1 1, 

0.856, 

1 

0.374 1 0.994 0.7 0.772 0.855 

36 Line 8 1 1, 

0.797, 

1 

0.374, 

0.277 

1 0.994 0.7 0.928 0.807 

14 Line 4 0.352 1, 1, 1 0.277, 

0.583 

1 0.994 0.7 0.928 0.783 

14 Line 5 X 1,1 0.583 1 0.994 0.7 0.758 0.862 

23 Line 2 .658 0.918, 

1 

0.583 X X 0.701 0.758 0.769 

58 Line 3  X 1 X 1 0.994 0.7 0.772 0.893 

58 Line 6 0.444 1,1 X 1 0.994 0.7 0.828 0.852 
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Figure 3.14b. Graph of membership across functions (also showing the overall 

average membership values) for each member in the family of formula 2-1 

 

Ontologically speaking, these melodic formulae cohere much more than the variants 

presented in the Treitler example, and as such, we can group them more soundly 

according to the notion of “variant,” even though there is still a fair amount of structural 

actualization happening in the activation of certain functions within the formula. 

However, the high degrees of membership we see, combined with Maloy’s discussion of 

the use of melodic formulae as an easily remembered unit inserted in multiple chants 

across the repertoire, seem to affirm our ontological conceptions of the melodies in this 

family being “of a kind.” Indeed, Maloy comments that Treitler even distinguishes 

between formula and what he calls “formulaic system” in that the formulaic system relies 

on melodic constraints including “the underlying tonal characteristics of a melody, such 

as its typical range and emphasized pitches…principles of text declamation and the 
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stylistic or formal traits of a particular genre” (Maloy 2010, 90), just as we saw in the two 

outlying members of Treitler’s family of tropes. A formula on the other hand, has a more 

limited connotation. Maloy writes that “a formula is defined simply as a standard phrase 

that occurs, with some variation, in more than one offertory…a formula consists of a 

series of small melodic segments that occur in a predictable order” (Maloy 2010, 91). 

Therefore, while there is indeed a separation between the ontology of chant as a whole 

and the more specific ontology of the melody as shown by the differences in text, there is 

indeed a quantifiable difference between the melody families categorized as variants or 

formulae and those that more loosely cohere around structural underpinnings as described 

by Treitler’s formulaic system. Those melodies that cohere as a formulaic system have 

typically lower membership values: as we saw with the two outlying members of 

Treitler’s trope family, these membership values ranged from 0.348 to 0.595 (as shown in 

Figure 3.7). Conversely, those melodies that cohere as a formula (or as variants) contain 

higher membership values such as those we saw in Figure 3.14, ranging from 0.769 to 

0.946. 

 

Regional Variants: How Different is too Different? 

So far we have examined mostly chants that group coherently into melody 

families possessing strong ontological connections with each other. We have looked at 

the ontological coherence of chants possessing the same text and melody, and we have 

considered the ontological complications of chants with different texts that bear the same 

melody. However, another ontological complication stems from regional and 

chronological differences that call into question when melodies may be called variants of 
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one another, and when they must be considered different melodies, even if they bear the 

same text and liturgical function. 

The set of offertories containing the formula 2-1 come from offertories in the Old 

Roman Tradition. Rebecca Maloy examines these chants both in that tradition and in the 

analogous Gregorian tradition.39 She contemplates the melodic relationships between the 

two sets of sources, and explores the theories behind their potential shared origin. She 

writes that  

There can be little doubt that the offertory formed a part of the core repertory 

transmitted from Rome to Francia in the eighth century…evidence of the 

offertory’s presence in the core repertory lies in its verbal texts, liturgical 

assignments, and the division of responds and verses, which are generally the 

same in Roman and Gregorian traditions. Despite these indices of an early origin, 

however, many offertories lack the musical resemblance between the two 

traditions that has been demonstrated in other genres. (2010, 8–9)  

What then, if anything, do these pairs of offertories have in common? Maloy explains her 

judgments of the relationship between what she calls the two differing dialects:  

[S]tylistic preferences typically result in differences of surface detail between 

cognate pairs. Although surface similarities do occur, they are usually brief. 

Affinity between the two traditions is more often manifest in underlying structural 

traits: range, tonal structure, melodic contour, and the distribution of neumatic 

passages and melismas. Despite stylistic differences, then, the two versions can 

often be seen as different realizations of the same underlying musical structure, 

                                                

39 Put rather simplistically, Old Roman chant was the tradition practiced in Rome in the eighth century, 

while Gregorian chant refers to the tradition adapted by the Frankish kingdom by the late ninth century. 

However, it is important to note that the distinction between the two traditions is much more complicated 

than that, giving rise to several questions and debates in musicological circles. Maloy writes that “The 

decades between the Frankish reception of Roman chant and its preservation in notation, however, have left 
us with scores of unresolved questions. Did the Frankish cantors intend to reproduce the Roman chant 

verbatim…or did they deliberately modify the melodies to conform to their own sensibilities?...Is the 

melodic tradition recorded in the late ninth century as ‘Gregorian chant’ the same one the Franks first heard 

the Romans sing some fourteen decades earlier?” (Maloy 2010, 5–6). While these questions are indeed 

important, and reflect the complexity of the differences between the chants, these specific questions lie 

beyond the scope of this dissertation. 
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with the surface details of the melodies determined by dialectical preference. 

(2010, 107) 40  

Maloy uses the word “dialect” in a way that suggests ontological consistency between the 

Roman and Gregorian variants, as if they are variants of the same chant, therefore 

belonging to the same family. However, just as Treitler described, Maloy sees the 

melodic similarities occurring not on the surface, but in the structural underpinnings, 

suggesting that for the melody at least, the ontological status of each pair of Gregorian 

and Roman variants do not constitute “versions of the same melody.” Such an ontological 

split between chant and melody must be explored further in order to truly understand the 

nature of the relationship between these Gregorian and Roman chant pairs.  

Maloy identifies five categories of similarity as shown in Figure 3.15, depending 

on the degree of similarity between what she calls cognate pairs of Gregorian and Roman 

chant versions. She continues to claim that certain variants in her collection of Gregorian 

and Roman offertories are more similar than others along these categorical structures. 

Figure 3.16 shows a table of membership values for cognate pairs from each category. 

Those with the identifier “G” belong to the Gregorian tradition, while those with “R” 

come from the Roman family of formula 2-1 studied above. The chart then shows the 

membership values for the seven functions (as was noted earlier, Function IV is missing 

in this set of formulae) functions across each formula, ending with an average of all of 

each formula’s membership value. For example, Figure 3.17a shows the formula from 

                                                

40 By “melodic contour,” I believe Maloy is referring more generally to overall shape, in a similar manner 

to that which I described in chapter 1, and not to the more specific intricacies of the surface-level contours 

of the phrase. 
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Meditatibor (chant ID 22), with the Gregorian version on the left and the Roman version 

on the right. In the Roman version, we have a single pre-accent function (function I, on 

the syllables “in man”), two accent functions (function II, the first on the syllable “da” 

and the second on the beginning of the syllable “tu”), a single post accent function 

(function III, on the syllable “tis”), no pre-cadential function (function V), and only the 

last two cadential functions (functions VII, and VIII, on “tuis”). The chart in Figure 3.16 

shows the distinct membership values for each of these functions (with two values for the 

accent function, reflecting the two distinct accent functions), as well as the overall 

average membership value for the entire formula (as calculated by the average of the 

values across all functions).41  Through these calculations, we see a steadily decreasing 

average membership value for the Gregorian variant within each category, just as Maloy 

describes. 

Figure 3.15. Maloy’s categories of similarity (2010, 108–110) 

Category of Similarity Descriptive Features 

Category 1 “The two versions correspond in range and contour on a 

phrase-by-phrase basis and occasionally resemble one another 

in surface detail.” 

Category 2 “exhibit specific points of similarity between cognate pairs, 

but contain one or more longer passages that are dissimilar in 

range, contour, or placement of melismas.” 

Category 3 “exhibit a general similarity in range and tonal structure but 

show only traces of specific similarity.” 

Category 4 “share a broad tonal similarity but lack evidence of a more 

specific continuity” 

Category 5 “lack even the broadest similarity in tonal structure…exhibit a 

stark contrast between the two traditions.” 

                                                

41 This calculation for the Roman version of Meditatibor (chant ID 22R) is as follows:  

(1.0 + 0.918 + 1.0 + 0.583 + 0.701 + 0.928) / 6 = 0.855. 
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Figure 3.16. Comparison of membership values for Gregorian and Roman cognate pairs against the family of formula 2-142 

ID Name Locatio

n 

Categor

y 

I II III V VI VII VIII Averaged 

Membership 

22G Meditatibo

r 

Line 1 1 0.448 1, 1 0.583 1 0.994 X 1 0.860 

22R Line 1 1 0.918, 1 0.583 X X 0.701 0.928

, 

0.855 

36G Benedicte 

gentes 

Line 5a 2 1 1 0.583 X 0.667 X 0.485 0.747 

36R Line 5a 1 0.918 X 1 0.994 .7 0.758 0.895 

6G Tollite 

portas 

Line 4 3 0.602 0.5, 1 0.249 1 0.326 0.503 0.728 0.614 

6R Line 4 0.602 0.918 X 1 1 0.883 0.928 0.888 

36G Benedicte 

gentes 

Line 8 4 1 0.5, 

0.918, 1, 

0.522 

0.194, 

0.374, 

0.374 

0 0.745 0.524 1 0.596 

36R Line 8 1 1, 0.797, 

1 

0.374, 

0.277 

1 0.994 0.7 0.928 0.807 

14G Bonum est 

confiteri 

Line 5 5 X 0.478, 

0.144 

0.583, 

0.416 

0 0 X 0.728 0.474 

14R Line 5 X 1, 1 0.583 1 0.994 0.7 0.758 0.862 

                                                

42 X indicates that this function is not present in the phrase, which should be kept distinct from the notion of 0 membership within the family of the function, 

which does happen. 
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Maloy states that the pair shown in Figure 3.17a (the Gregorian and Old Roman 

versions of Meditatibor) has category 1 similarity. The second line of the Roman version, 

in mandatis tuis, is our familiar formula from the formula family 2-1. While the non-

formulaic passages have changed, the larger formulaic passage still remains quite close to 

both the Roman version, and the fuzzy melody family to which the Roman formula 

belongs. Figure 3.16 shows the Gregorian version’s membership values within each 

function of the formula 2-1 family. We see that across individual functions, the chant 

displays similar patterns of membership to that of its Roman counterparts, and indeed 

also possesses a high average membership across the entire formula: 0.860. Indeed, the 

Gregorian and Old Roman versions differ in overall membership by 0.005, a very low 

quantitative difference, and this is also seen in the pattern similarity in the graph in Figure 

3.17b. What is interesting about this particular example, however, is that a few distinct 

differences between the two versions give the Gregorian version a slightly higher 

membership value, indicating it is even closer to the family than its Roman counterpart. 

The cadential patterns in each phrase differ, making their comparison difficult. The 

Roman version displays a cadential function initially resembling function VII, while the 

Gregorian version uses a cadential function that initially resembles function VI. Since 

function VI is a more stable family from a membership standpoint, the higher value for 

function VI gives the Gregorian version that higher value in the overall membership 

average.  
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Figure 3.17a. Comparison of Gregorian and Roman versions of the formulaic 

phrase from Meditatibor 

 

Figure 3.17b. Graph of membership across functions (also showing the overall 

average membership values) for the Gregorian and Roman versions of the phrase 

from Meditatibor 

 

 Despite these differences, it is quite clear that these phrases are related both to 

each other and to the fuzzy family of formula 2-1. The overall membership value of the 

Gregorian version falls comfortably within the range of the family, and its similarity 
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across functions is quite high.43 Consider Figure 3.18a, which shows the 

Gregorian/Roman comparison of a formula from the chant Benedicte gentes (chant ID 36, 

line 5a), which Maloy has defined as having category 2 similarity. In this comparison, we 

see that the melodies begin in a similar manner, but differ more dramatically with regard 

to the ending cadential material. Figure 3.16 and Figure 3.18b show that the memberships 

across functions corroborate this judgment: we see that the pre-accent and accent 

functions remain melodically identical, and feature 1.0 membership within the family. 

Similarly, Function III (the post-accent function) has the same membership as many of 

function III’s existing family members. However, the differences in the cadential section 

vary more widely: function VI (the first of the cadential functions), which typically has 

membership values in the 0.9 range, displays a membership of 0.667, and function VIII 

only has a 0.485 membership, indicating that conceptually speaking, these sections are 

markedly different from the traditional cadential segments of the Roman formula.44 As a 

result, the overall membership of the phrase within the family of formula 2-1 is 0.747, 

falling just short of the lower bound of the Roman family’s range of familial 

membership. As Maloy states, the category 2 similarity between these cognate pairs 

                                                

43 It is interesting to note in this variant, however, that despite its high degree of membership, we can 

already see in this variant that the strict rules regarding the placement of certain melodic functions against 

the structure of the text have been loosened. Rearranging certain syllables changes the shape of the 

individual functions in ways that weaken it, despite its overall similarity in many instances (the accent 

function and cadential functions especially). From this, one might be able to see how loosening the rules 

regarding accent placement and structure may lead to increased variation that may result in drastically 

lower membership values. 

44 In the comparison of cadential functions, I have chosen to segment the melodic segment <0100> on the 

syllable “do” as analogous to function VI, and <0010> on the syllables “mi-nus” as analogous to function 

VIII. The reason I have decided not to include the conceptual space of function VII is because the segment 

on “do” more closely resembles the analogous function VI, and separates it from the final syllabic “accent” 

of the word that would have been on “mi,” and would occasionally spill over into the last syllable of the 

word. 
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“exhibit[s] specific points of similarity” in their similar openings “but contain one or 

more longer passages that are dissimilar in range, contour, or placement of melismas” 

which is seen in the marked difference between the cadential sections (2010, 108).  

Figure 3.18a. Comparison of Gregorian and Roman versions of a formulaic phrase 

from Benedicte gentes 

 

Figure 3.18b. Graph of membership across functions (also showing the overall 

average membership values) for the Gregorian and Roman versions of the category 

2 phrase from Benedicte gentes 
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melodic construction, almost to the point where it becomes difficult to distinguish the 

functional resemblances on the surface. Nonetheless, we do still see similarities across 

the phrase that allow us to segment and compare them to functions within the Roman 

family, as shown in Figure 3.16 and Figure 3.19b. Doing this returns an overall 

membership value of 0.614, significantly lower than the category 2 similarity. In the 

comparison of functions, we see that many of the values for the functions in the 

Gregorian version are significantly lower than those of its Roman counterpart, most 

notably in the post-accent function (III) and the first two cadential functions (VI and VII). 

Indeed, we see this in the music itself, the pre-cadential and cadential material looks very 

different on the last word “eius,” although a small contribution toward similarity between 

function VII exists in the repeated +-+-+- contour beginning in the tenth note before the 

end. In essence, this motion nods toward the +--+--+- motion we see in the Roman 

version for function VII, but has omitted the additional descents, lessening its 

membership within the family of function VII. 

Figure 3.19a. Comparison of Gregorian and Roman versions of the formulaic 

phrase from Tollite portas 
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Figure 3.19b. Graph of membership across functions (also showing the overall 

average membership values) for the Gregorian and Roman versions of the phrase 

from Tollite portas 

 

 Where our Tollite portas example showed a breakdown of similarity in the 

cadential area, line 8 of Benedicte gentes (chant ID 36, Figure 3.20a) begins to wear away 

the similarities between other structurally important (and traditionally high-valued 

membership) functions, such as the accent function. For example, the accent on “la” of 

Iubilate in the Roman version features the +- shape so prevalent in function II’s family. 

When we study the Gregorian version, we see =+ instead, which features a 0.5 

membership within function II, as shown in Figure 3.16. The Gregorian version features 

four accent functions, two of which fall between 0.5 and 0.522, compromising the overall 

membership of the phrase within the family of formula 2-1. This phrase has a category 4 

similarity, and a membership value of 0.596 indicating that it is starting to break down 

the structurally stable continuities that both held the Roman family together, and that 
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comprised the structurally similar elements of the previous three similarity categories in 

their Gregorian counterparts. 

 Regarding category 5, Maloy writes that the Gregorian versions “lack even the 

broadest similarity in tonal structure…exhibit a stark contrast between the two 

traditions.” In some cases, this is very true. Consider Figure 3.21, which shows the 

beginning of verse 2 (line 6) from Ascendit deus. In the Roman version, the formula is 

very clearly and deliberately laid out, such that there is little question regarding the 

functional segments Maloy identifies in this phrase. The Gregorian version, however, 

shows so much variety with regard to this phrase that segmenting into meaningful 

analogous functional sections is nearly impossible, and certainly not productive. 

However, not all category 5 chants deviate so drastically, and it is prudent to examine one 

of them to continue to see where and how the breakdown of similarity is taking place. 

Figure 3.22a shows part of Verse 1 (line 5) from Bonum est confiteri (chant ID 

14). This chant is slightly easier to segment analogously to the Roman chant. In doing so, 

we see just how much the contour of the phrase has changed. The initial accent function 

of the Gregorian version on “nimis” features a +=+ contour rather than the more 

balanced +- contour typical of the Roman accent functions.45 This +=+ contour has a 

membership value of 0.478. We see significant change again with the second accent 

function on “fun”, where the segment is +==+ instead of +-, and features a 

membership value of 0.144. Both of these Gregorian accents, when measured against the

                                                

45 Here this pair is missing the pre-accent function, beginning on the accent function instead. 
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Figure 3.20a. Comparison of Gregorian and Roman versions of a formulaic phrase from Benedicte gentes 

 

Figure 3.20b. Graph of membership across functions (also showing the overall average membership values) for the Gregorian 

and Roman versions of the category 4 phrase from Benedicte gentes 
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Figure 3.21. Comparison of Gregorian and Roman versions of a formulaic phrase from Ascendit deus 

 

 

Figure 3.22a. Comparison of Gregorian and Roman versions of a formulaic phrase from Bonum est confiteri 
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Figure 3.22b. Graph of membership across functions (also showing the overall 

average membership values) for the Gregorian and Roman versions of the phrase 

from Bonum est confiteri 

 

 

family of function II, feature remarkably low membership values, signifying that the 

differences between the versions are significant enough to question whether the melodic 

fragments are even related. Furthermore, any resemblance of cadential material seems to 

have disappeared, as evidenced by the complete non-membership of the phrase against 

functions V and VI. The only cadential motion that gives function VIII a higher value is 

the descent of the final three notes. The -+ at the end fits somewhat into the average 

family of function VIII, mainly because it features the initial descent, and then an ascent 

that we see in the middle of function VIII (despite the fact that it is the end of the 

function in the Gregorian version). The overall membership of this chant is 0.474, which 
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falls drastically outside the familial bounds of formula 2-1, as seen in the graph in Figure 

3.22b. 

 It is interesting to note that these examples are crisp realizations of a category of 

similarity that is in itself fuzzy. Indeed these categories possess a range of membership 

values when taking all variants into account, and in some cases, the lines between 

categories are blurred, suggesting the possibility of potential categorical overlap. One can 

especially see this in the closeness in membership between the category 3 example in 

Figures 3.19a and 3.19b (membership value: 0.614) and the category 4 example in 

Figures 3.20a and 3.20b (membership value: 0.596). Perhaps these two examples fell 

toward the lower and upper bounds of their category, respectively, and this explains the 

closeness in membership value of these two pairs. While these categories are important to 

Maloy’s understanding of the differences between the cognate pairs, my approach adds 

valuable information about the extent to which each version is a member of the same 

melody family, adding nuance to Maloy’s categorical labels. 

Certainly there are historical, liturgical, and societal reasons to group these chants 

together under a single ontological conception, and this throws into stark relief the 

difference between the ontological status of chant itself and our modern conception of the 

ontological status of the melody. While some of the Gregorian variants can truly be 

considered variants of the melody presented in the Roman family, it is clear that as the 

two traditions separated, they grew to become melodically independent of each other. 

Maloy posits a number of theories regarding the family’s transmission that would explain 

this separation. She sees a number of patterns in the placement of resemblances, mainly 

that those with greater degrees of resemblance fall earlier in the liturgical calendar, 
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growing more divergent after Septuagesima. Furthermore, among those with greater 

resemblance, the relationship is greatest in the early verses; indeed we see this with the 

two examples from Benedicte gentes. Maloy cites that in many of the “breaches of 

affinity,” the Gregorian variant no longer relies on the formula that the Roman version 

possesses, and states that “The lack of resemblance between the two dialects in the later 

seasons, however, evinces substantial melodic change, in one dialect or both, after their 

separation in the eighth century” (2010, 122).  

Given these theories of separation, is it conceptually valid to consider these 

variants of the same melody? I do not think so. Instead, as Treitler puts forward, we could 

conceptualize them as actualizations of more abstract patterns (akin to the real 

actualization of, for example, a 3-line Schenkerian Ursatz), and in that case, it becomes 

the abstract pattern that possesses the ontological consistency, not the melody itself in 

any of its realizations. 

 

Fuzziness of Oral Transmission 

In this chapter, we have looked at a variety of chant families, and these families 

each possessed unique traits that called the ontological status of the chant family into 

question. Through my analyses, I have shown how fuzzy set theory can add meaningful 

information to this discussion. In the first section, I used my FCM model to examine how 

stability of melodic variants can be quantified through contour, examining how the 

ontological idea of melodic identity (and subsequently chant identity) can be represented 

more appropriately in fuzzy terms than if one were to try to think of melody as a singular 
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phenomenon. In the second section, I explored how changes in text affect the stability of 

the melody family, and how thinking of these families using fuzzy set theory can help to 

differentiate between the ontology of melody and the ontology of the chant itself. Finally, 

in the third section, I explored how regionally separated development call into question to 

what extent regional variants can be considered members of the same melody and chant 

family. My model was able to illustrate quantifiable differences between Gregorian and 

Roman variants of offertories containing formula 2-1, providing additional nuance that 

will aid future analysts in grappling with the ontological discussion of developmental 

differences between regional variants. 

To be certain, the ontology of plainchant is complex, with intricacies arising from 

the oral nature of chant’s transmission that the study of later musical ontology may not 

need to deal with. However, later music is rife with other complications, namely that 

variety is achieved in many more ways, across multiple parameters such as harmony, 

rhythm, form, tempo, dynamic contrast, etc. Nonetheless, thinking in fuzzy terms across 

these parameters is a good way to explain and deal with ontological issues surrounding 

music in all its forms and representations. To put this back into the context of Treitler’s 

unicorn, the use of fuzzy set theory in the study of ontology can help us to show when a 

representation of a unicorn ceases to be a unicorn. It helps to answer the question of how 

different representations of the unicorn can be reconciled in the same ontological family, 

and can show how different conceptions of the unicorn may cohere more closely than 

others. Treitler and others have written about musical ontology in ways that come close 

to this representation, yet each have lacked the analytical rigor that tools rooted in the 

logic of fuzzy set theory can provide. In other words, the conception that musical 



 

130 

 

 

ontology is fuzzy is perhaps not a new idea, though it has yet to be written in just that 

way, but to study it in a manner that is sensitive to that fuzziness, such as with the FCM 

model, may bring us closer to fully appreciating its meaning. 
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CHAPTER 4: Contour’s Role in Motivic Development in 

Brahms’s “Regenlied” (Op. 59, no. 3) and Regenliedsonate (Op. 

78) 

 

I have tried the Sonata with Heermann. We were so glad of the opportunity that 

we went into the work quite thoroughly. The way you have blended all the motifs 

together strikes me as wonderful. How charming the dreamy accompaniment of 

the last motif ŒÒ‰|Œ. sounds at the beginning of the first motif. It is as if the spirit 

of the whole piece were wafted to one’s ears at the very opening. The grace and 

warmth of the melodies, and the masterly way you treat all the motifs, captivate 

one’s heart and soul from the first to the last note. What heavenly passages there 

are in it, not to mention the beauty of some of the organ points! And then the 

ascent in the last movement of the first melody where it finally returns and rises 

and falls full of sadness and yearning! For such feelings sound alone, and not 

words, are adequate…Many people may be better able to speak about these things 

than I am, but no one can feel them more deeply than I do. The deepest and most 

tender chords of my heart vibrate at the sound of such music. 

         --Clara Schumann (1971, 49) 

This beautiful letter from Clara Schumann to Johannes Brahms praises Brahms’s 

first Violin Sonata, Op. 78. As Clara describes, the sonata is a testament to Brahms’s 

melodic development. Indeed, Op. 78 is arguably one of his most lyric pieces. It is 

popularly titled the Regenliedsonate because of its motivic connection to Brahms’s 

earlier song “Regenlied” Op. 59, no. 3 completed in 1873. Walter Frisch lauds the sonata, 

stating that “Op. 78 seems to assume the thematic or motivic legacy: its harmonic 

language is not especially remarkable, but the purely horizontal dimension unfolds with a 

sophistication and flexibility that Brahms himself was never able to surpass” (1984, 120). 

Because the sonata’s familiar song-like melodies seem to take precedence over the formal 

design and harmonic procedures within the sonata, one can see the mastery that both 

Clara Schumann and Walter Frisch extol occurring in a crucial domain: melodic contour. 
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Either directly or indirectly, contour is often considered to be a defining 

characteristic of a motive. Scholars following Schoenberg’s perspective on motivic 

development—such as Jack Boss (1992), Walter Frisch (1984), and David Epstein 

(1979)—identify contour directly as an element of motivic identity. For example, 

Schoenberg writes that a motive is comprised of “intervals and rhythms, combined to 

produce a memorable shape or contour” (1967, 8). Still others who discuss motivic 

identity invoke contour more indirectly, as a secondary attribute of directed interval 

motion. For example, Lora Gingerich (1986), Edward Pearsall (2004), David Lewin 

(1987, 1992), and others have developed tools that explain changes to the directed 

interval pattern of a motive as it develops, potentially affecting the contour of the motive 

as a result. 

 Despite this acknowledged importance of contour to a motive’s identity, few have 

directly explored contour’s dynamic potential to influence a motive’s development. 

Schoenberg, when describing the notion of developing variation, calls for composers to 

alter some features of a motive while at the same time maintaining others, so as not to 

produce a motive-form that is too foreign to the motive family (Schoenberg 1967, 8–9). 

Certainly, development across a number of different motivic features could conspire to 

tip the balance of a motive-form into this “foreign” category, as a motive loses the 

comprehensibility that identifies it as a meaningful variant within a motive family. 

Maintaining a balance between development and continuity is therefore crucial to 

Schoenberg’s notion of motivic comprehensibility. Contour, being one feature of a 

motive, has the potential to influence either side of this continuity-development 

continuum: when contour remains fairly constant, it contributes to motivic cohesion; 
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when it varies, it can drive motivic development. Given that contour is also an element 

that listeners use to make sense of new and recurring melodies, it stands to reason that its 

contribution to these sides of the continuum will affect how a listener experiences the 

work.46 

 In this chapter, I use my Familial Contour Membership model to examine how 

contour contributes to the two sides of the cohesion-development continuum within 

Brahms’s Regenlied works. Modeling Brahms’s motive families this way illuminates 

how the motives within each family develop, and how different motive families within 

the sonata are related. I show how the contours of the “Regenlied” Op. 59 No. 3 follow a 

developmental trajectory that mirrors the narrative trajectory of the song’s text, which 

sees the present fall away in favor of a past memory. I then explore the related motive 

families in the Violin Sonata, and draw connections between the two works, showing 

how contour serves to remind the listener of the narrative presented in the song, while at 

the same time pushing the narrative further to reflect personal aspects of Brahms’s life. In 

this way, I show how contour exposes aspects of Brahms’s developmental tendencies, 

such as the relationship between contour and narrative in the song, or the developmental 

relationships that add to the narrative throughout the sonata. Using contour to shed light 

onto Brahms’s motivic development in this way gives us a new way to discuss the 

melodic aspect of Brahms’s developing variation. 

                                                

46
 A number of studies have shown that contour can aid in the immediate perception and recall of novel 

melodies: Dowling and Fujitani 1971, Dowling 1991, Dyson and Watkins 1984, Quinn 1999, and 

Schmuckler 1999. Exploring the findings in these studies in the context of motivic identification throughout 

musical works (such as the Regenlied) would be an interesting future avenue of study, but lies beyond the 

scope of this dissertation. 
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Coherence and Development in Regenlied, Op. 59, No. 3: 

 Brahms wrote “Regenlied” using a poem by Klaus Groth (the text and translation 

for which is shown in Figure 4.1), wherein the poet experiences “the flood of childhood 

memories awakened by a summer rain, and the accompanying sadness for the loss of 

childhood’s capacity for wonder” (Russell 2006, 63).47 The song takes an A-B-C-A′ 

form, as shown in the form diagram in Figure 4.2a. These significant formal markers 

revolve around differing temporal states within the poet’s life. The poem opens in the 

present as the poet experiences a rainstorm and longs to be taken away to the memories 

of his childhood. In the B section beginning in m. 45, however, the poet moves into the 

past, with a depiction of the physicality of the childhood memory. The C section moves 

into a more spiritual reflection on that past (when the poet is speaking of his soul opening 

up and the holy web of creation piercing into his secret life), and the closing A′ section 

returns to the present.  

  

                                                

47
 Brahms had previously set another of Groth’s poems entitled “Regenlied” to music (WoO 23), yet the 

poem and musical motives are quite different. Interestingly enough, Brahms revisited this poem when he 

wrote “Nachklang” of Op. 59, bearing the same motives discussed in this chapter: Brahms’s sole resetting 
of a same poem (Sams 2000, 129-130, 187-188). One might speculate on the connection of motives of the 

“Regenlied” Op. 59 no.3 to the earlier poem of WoO 23 in order to add further nuance to the meaning of 

the music in “Nachklang.” The setting in “Nachklang,” as Russell explains, evokes an “intense grief for 

something unspecified” (Russell 2006, 64). This connection may add meaning to both the musical motives 

themselves, and to Brahms’s feelings toward them as he revisits them in the violin sonata. However, a 

study of the “Nachklang” is beyond the scope of this chapter.  
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Figure 4.1. Text of the Regenlied (with Fischer-Dieskau translation) 

Regenlied (Klaus Groth) Rain Song (Fischer-Dieskau 1976, 319–20) 

Walle, Regen, walle nieder, 

Wecke mir die Träume wieder, 

Die ich in der Kindheit träumte, 

Wenn das Naß im Sande schäumte! 

 

Wenn die matte Sommerschwüle 

Lässig stritt mit frischer Kühle, 

Und die blanken Blätter tauten, 

Und die Saaten dunkler blauten. 
 

Welche Wonne, in dem Fließen 

Dann zu stehn mit nackten Füßen, 

An dem Grase hin zu streifen 

Und den Schaum mit Händen greifen. 

 

Oder mit den heißen Wangen 

Kalte Tropfen aufzufangen, 

Und den neuerwachten Düften 

Seine Kinderbrust zu lüften! 

 
Wie die Kelche, die da troffen, 

Stand die Seele atmend offen, 

Wie die Blumen, düftetrunken, 

In dem Himmelstau versunken. 

 

Schauernd kühlte jeder Tropfen 

Tief bis an des Herzens Klopfen, 

Und der Schöpfung heilig Weben 

Drang bis ins verborgne Leben. 

Walle, Regen, walle nieder, 

Wecke meine alten Lieder, 

Die wir in der Türe sangen, 
Wenn die Tropfen draußen klangen! 

 

Möchte ihnen wieder lauschen, 

Ihrem süßen, feuchten Rauschen, 

Meine Seele sanft betauen 

Mit dem frommen Kindergrauen. 

Stream down rain, stream down rain, 

wake for me those dreams again, 

which I in my childhood dreamt 

when water foamed upon the sand! 

 

When oppressive summer heat 

with cool freshness idly strove, 

and shiny leaves dripped with dew, 

and crops were of a darker blue. 
 

What bliss then to stand 

with naked feet in the flow, 

to brush along against the grass 

and with my hands to grab the foam, 

 

or upon my ardent cheeks 

to catch cold drops, 

and to the fresh-awakened scents 

lay bare one’s childish breast! 

 
Like the flower-cups dripping there, 

open, breathing, stood my soul, 

like the flowers, fragrance-drunk 

immersed in heaven’s dew. 

 

Awesomely each drop struck cold, 

deep to where the heart was beating 

and the sacred motion of creation 

broke through to the hidden life. 

Stream down rain, stream down rain, 

waken these old songs of mine, 

which in the doorway we would sing 
when, outside, the drops resounded! 

 

I would like again to listen 

to their sweet moist rustling noise, 

like softly to bedew my soul 

with innocent childish awe. 

 

Figure 4.2a. Formal structure of the song 

Formal Section A B C A′ 

measures 1–44 45–70 71–94 95–147 

Keys F# minor             A major D major              F# minor 

Poet’s temporal 

state 

present 

reminiscence  

physical 

past 

spiritual past present 

contour 

membership 

Family A Family B (Family C) Family A 
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 This study focuses on the opening A and B sections (mm. 1–70), exploring the 

motivic relations found between the two contrasting sections. The motives in the A 

sections—representing the poet in the “present”—resemble the initial germinal A motive, 

and occur twenty-three times (as shown in Figure 4.2b). These twenty-three motives form 

family A, and have relatively high membership values within the family (as shown in 

blue in Figure 4.2b). In many instances, this motive is characterized by an opening series 

of melodic plateaus that feature a dotted-quarter-eighth-dotted half rhythm, followed by a 

more varied melodic contour ending the motive. 

 Section B, beginning in m. 45, bears text that invokes memories from the poet’s 

childhood of physically feeling the sensations of a rainstorm. Words like “touching,” 

“smelling,” and “reaching” all convey physical actions that point to the tactile sensation 

of the memory. Brahms represents this action melodically with a much more active and 

directed line. Throughout this section, motives resembling the germinal B section motive 

occur nine times, and these motives form family B (as shown in Figure 4.2b, with 

membership values shown in red). The motive is characterized by more upward motion, 

beginning with an +=+ run in eighth notes, followed by a more varied, yet more 

pointedly angular shape ending the motive. We are now inside the memory, and this is 

signified by a shift in motivic content that now forms family B (the motives from mm. 

45–70). 
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Figure 4.2b: Annotated score excerpt for the opening A 

and B sections, featuring the A and B families 

(membership values compared to family A are in blue, 

while membership values compared to family B are in 

red.) 
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Figure 4.2b: (cont.) 
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Figures 4.3 and 4.4 show the contour representation of the motive families of 

these two sections, and it is through each family’s strong internal similarities that we see 

contour’s role as a cohesive feature of the motive family. Figure 4.3a lists the contours of 

family A’s motives, including each motive’s c-seg and CAS representation.48 Columns 

five and six then quantitatively describe the degree of membership that each motive has 

within family A, as well as the degree of similarity to family B (as measured by degrees 

of potential membership within family B, which I will discuss later in this chapter).  

These membership values are derived by comparing each individual motive to an 

averaged representation of the family, called the average family member. Using the 

Familial Contour Membership model, I created the averaged member of motive family A, 

which tracks the probability that a c-seg within the family will ascend, descend, or 

plateau in any given portion of the contour, as labeled using positions within the CAS 

representation. The columns of Figure 4.3b feature each CAS position within the family, 

while the rows indicate how many members ascend (+), plateau (=), or descend (-) in that 

CAS position. For example, 14 of the contours in family A plateau from the first note to 

the second, so their CAS would feature an “=” in position 1.49 Furthermore, there are no 

                                                

48
 The contour segment, or c-seg, is a numeric representation of a melody, with 0 as the lowest pitch 

(Marvin and Laprade 1987). The Contour Adjacency Series tracks the directional motion between adjacent 

pitches, with “+” for ascent, “=” for plateau, and “-” for descent (Friedmann 1985). 

49
 Because of the cardinality differences, contours can be positioned among the family such that they do 

not possess position 1 when measuring the contour against the average family member. This is consistent 

with the notion that relationships can occur without invoking the beginning or ending of a contour segment, 

as is the case in motives between mm. 4-6 and mm. 7-8. In mm. 7-8, the contour is but the ending of the 

motive in mm. 4-6, so this contour would not be aligned against position 1 when measuring it against the 

average family member. 
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family members that descend or ascend in position 1, making it 100% probable that a 

new motive will plateau in the family’s position 1 (if position 1 is included in the 

contour). This set of probabilities was derived using a combination of the mathematical 

best-fit (which takes the potential alignment that produces the highest membership value 

as the proper alignment within the family) and the musical best-fit models (which uses 

musical characteristics to determine the desired alignment within the family) I proposed 

for the fuzzy contour membership tool. I positioned the family in musical accordance 

with the germinal motive of mm. 4–6, using a more holistic approach that used melodic, 

harmonic, and rhythmic characteristics in order to determine the proper positioning of 

each contour against the family. In many cases, musical and mathematical best-fit 

procedures agreed on the proper positioning of the c-segs within the family.50 What 

results is the averaged family member—a series of probabilities, shown in Figure 4.3b, 

that describe the directional tendencies of any given position within the CAS of c-segs in 

the family. From these probabilities one can find the degree of contour membership of 

each motive within the motive family, the quantities for which are shown in column five 

of Figure 4.3a. Contours that have a high degree of membership (0.6–1.0 for the purposes 

of this chapter) share dominant family traits as exhibited by high probabilities within the 

chart in Figure 4.3b. Conversely, contours that have mid-range or low degrees of 

membership display less dominant family traits (most common for mid-range values), or 

are missing family traits altogether (most common for low values). 

                                                

50
 Brahms’s motivic development here develops motives from the starting point of the germinal motive at 

the outset of the song, so in this case it is logical to make reference to this germinal motive when forming 

the averaged member of the family. In other analytical cases however, it may not be as logical to use a 

germinal member as a reference. In these cases, the mathematical best-fit provides a reliable model for 

measuring these probabilities in the formation of an average family member. 
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 Despite the occurrence of 23 individual motive variants throughout the song, 

family A only has nine different contours, suggesting a great degree of coherence. One 

can already begin to see patterns, such as an opening plateau or the -++ segment 

featured in at least 11 individual motives. Furthermore, column five of Figure 4.3a shows 

that the membership values for each motive within the family also suggest a relatively 

high degree of cohesion: all but three exhibit a membership value between 0.6 and 

0.837.51 In essence, most of the motives within family A contribute to the cohesion of the 

motive family by resembling each other, and in turn by resembling the opening germinal 

motive. 

Figure 4.3a. The crisp members within Family A 

Example 

measures 

C-SEG CAS Membership 

in family A 

Similarity to 

Family B 

mm. 0–2, (2x) 

(piano) 
333210 ==--- 0.837 0.842 

mm. 4–6 (4x) 11102432 ==-++-- 0.776 0.792 

mm. 7–8 (4x) 423410 -++-- 0.754 0.866 

mm. 9–11 (4x) 432110 ---=- 0.646 0.816 

mm. 12–15 

(3x) 
4442432012 ==-+---++ 0.711 0.463 

mm. 16–19 33224102 =-=+--+ 0.696 0.583 

mm. 32–35 

(2x) 
0033345221 =+==++-=- 0.432 0.574 

mm. 39–44 1123453210 =++++---- 0.53 0.574 

mm. 127–131 44433210 ==-=--- 0.679 0.613 

 

 

                                                

51
 It is interesting to note that the lowest members of the family occur toward the end of the first A section, 

indicating a turn away from the core of family A. This is consistent with the textual narrative, wherein the 

poet turns toward thoughts of the past. In these sections, from mm. 32 to the end of the A section, the poet 

begins to reminisce about the past, but we have not arrived at the full-fledged memory yet. These lower 

values within family A indicate a dropping off of the present. 
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Figure 4.3b. Family A probabilities 

 1 2 3 4 5 6 7 8 9 

+ 0 0.2 0.043 0.667 0.579 0.087 0 0.5 0.625 

= 1.0 0.667 0.174 0.143 0 0.174 0 0.333 0 

- 0 0.133 0.783 0.190 0.421 0.739 1.0 0.167 0.375 

 Figure 4.4a shows an analogous list of the motives’ contours for family B, and 

Figure 4.4b shows its averaged family probability, from which we can find membership 

values within the family. In these tables, we can see that family B is a highly coherent 

motive family: all members of the family exhibit relatively high degrees of membership, 

ranging from 0.643 to 0.898, with no outliers. In addition, we can see this coherence in 

the averaged table itself: CAS positions 1, 5, 6, 7, 9, and 11 all have a crisp 1.0 

membership/non-membership probability, resulting in higher membership values for 

contours that follow these pathways. For example, all of the family members except two 

ascend in the family’s first position (the motives in mm. 54–55 and 65–67 do not ascend 

first because they are missing the familial first position, which is akin to a family member 

exhibiting all the dominant family traits except one). As a result, the members that have 

this ascent are very similar to the average member of the family. Take the first motive in 

mm. 45–46 for example: the contour invokes the pathways in CAS positions 

1,2,3,4,5,6,7,9, and 11, and therefore follows all of the pathways that exhibit this 1.0 

membership/non-membership value, as shown in Figure 4.4c. What results is a very high 

degree of membership, as (1 + 0.833 + 0.875 + 0.375 + 1 + 1 + 1 + 1 + 1) / 9 = 0.898. 

This potential for high probability suggests that for a potential member that follows these 

CAS positions, it is guaranteed to follow the path laid out by all of the other existing 

members of the family, or conversely that potential motives that do not follow these paths 
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will have significantly lower membership values within the family.52 In essence, the 

motions in these positions are dominant family traits that significantly affect the 

relationship of the c-segs to the family.  

Figure 4.4a. The crisp members of Family B 

Measures C-SEG CAS Membership 

in this family 

Similarity 

to family A 

in song 

45–46 0223310231 +=+=--++- 0.898 0.320 

47–49 0224523154 +=++-+-+- 0.870 0.418 

49–51 

(x2) 
0112212121 +=+=-+-+- 0.870 0.360 

54–55 75316420 ---+--- 0.761 0.543 

56–59 01234454 ++++=+- 0.643 0.362 

60–62 022453133564 +=++--+=++- 0.787 0.256 

62–64 13432110 ++---=- 0.851 0.534 

65–67 654321401 -----+-+ 0.661 0.404 

 

Figure 4.4b. Family B probabilities 

 1 2 3 4 5 6 7 8 9 10 11 

+ 1.0 0 0.875 0.375 0 0 1.0 0 1.0 0.333 0 

= 0 0.833 0 0.375 0 0 0 0.25 0 0.333 0 

- 0 0.167 0.125 0.25 1.0 1.0 0 0.75 0 0.333 1.0 

 

Figure 4.4c. The contour of mm. 45–46 measured against Family B’s probabilities 

 1 2 3 4 5 6 7 8 9 10 11 

+ 1.0 0 0.875 0.375 0 0 1.0 0 1.0 0.333 0 

= 0 0.833 0 0.375 0 0 0 0.25 0 0.333 0 

- 0 0.167 0.125 0.25 1.0 1.0 0 0.75 0 0.333 1.0 

                                                

52
 Because of the method for measuring membership of contours of lesser cardinality, not every member of 

a family has all of the family’s CAS positions. For example, the contour described in Figure 4.4c is missing 

positions 8 and 10, suggesting that the contour does not possess the family traits exhibited in those 

positions. 
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 In addition to the coherence of each family within itself, family B exhibits a 

relatively high degree of distinction when compared to family A. When the individual 

motives of family B are compared to the averaged family A, they exhibit a range of 

potential membership from 0.256 to 0.543, for an average potential membership of 0.395. 

This relation says that the motives in family B are relatively unlikely also to be members 

of family A. The large discrepancy between families in this case is suggestive of a form 

that is clearly demarcated, and this is consistent with the formal distinctions I have 

offered in Figure 4.2. Between the A and B sections, we see a dramatic shift of key to the 

relative major, as well as a shift of the text’s narrative context from present to the past. In 

each case, contour serves as a feature that aids in the coherence of each section, and 

subsequently contrasts with the other section. 

 

Contour Development and Narrative Context 

Despite this convincing sense of coherence, Brahms’s motivic treatment 

throughout mm. 1–70 can be viewed as developmental when we examine the relationship 

between the two families as a whole. As I showed above, the motives in family B are 

outlying members of family A, yet when we look at the relationship from the opposite 

lens—where we examine the individual members of family A against the tendencies of 

family B—we find a much closer relationship. Column five of Figure 4.3a shows these 

specific membership values for the individual members of family A. Here we see a 

somewhat surprisingly high degree of potential membership within the averaged family 

B, with values ranging from 0.46 to 0.866, for an average of 0.68. Such high degrees of 

membership indicate that there are still underlying relationships binding these motive 



 

145 

 

 

families together, despite their outward appearance as unique and individually cohesive. 

In essence, while there is enough similarity to make a convincing case for coherence, 

their outward appearance suggests that development has occurred in order to 

conceptually separate the two families. For example, Figure 4.5 shows the germinal 

motives of families A (mm. 4–6) and B (mm. 45–47) (hereafter referred to as A1
 and B1 

respectively). Although they are rhythmically unique and belong to different keys, one 

can see similarities in contour that suggest deeper relationships between the families in 

the contour domain. Both feature prominent plateaus in the outset of the motive, and 

feature a similar -++- motion toward the end. These prominent similarities between the 

two motives explain the high potential membership value that motive A1 has within 

family B, yet development is still present that suggests emerging distinction of family B 

away from family A. In B1 the two plateaus are now separated by two prominent ascents, 

in CAS positions 1 and 3. Additionally, Brahms adds an extra descent in the middle, 

while removing one from the end. 

 

Figure 4.5. Similarities in CAS between the two germinal motives of the song 
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 Consider Figure 4.6, which shows a graph summarizing the developmental paths 

of motive families A and B in the first two sections of the song. This graph shows the two 

families’ interaction across the whole opening binary section by reinterpreting the data 

from columns four and five of Figures 4.3a and 4.4a respectively. Each node represents 

the membership value of the motive occurring in the measures across the x-axis within 

the two respective families, with blue representing the membership within family A and 

orange representing the membership within family B. By examining the membership 

values in context of both families, we see an interesting formal distinction begin to 

emerge. The lines move closely together throughout the A section, ending in m. 44, and 

then dramatically split apart as the B section takes over in m. 45. Throughout the A 

section, the blue “value family A” line measures the crisp motives throughout the A 

section against the fuzzy family A. The orange “value family B” line measures the crisp 

motives of the A section against the fuzzy family B. Throughout the B section, the blue 

“value family A” represents the crisp motives occurring in the B section against the fuzzy 

family A, while the orange “value family B” line represents the crisp motives of the B 

section against the fuzzy family B. 

Figure 4.6 shows that the motives in the A section, which helped to build fuzzy 

family A, have the potential to also fall within the norms of family B. However, the 

opposite cannot be said for the motives in the B section: the graph of the B section 

suggests that these motives are more outliers within family A. There are a few ways to 

explain this pattern: one is to suggest that the motives in family B are somehow emergent 

from those in family A as I had previously suggested in my discussion of Figure 4.5, such 

that the motives in family A still bear resemblance to family B despite family B’s 



 

147 

 

 

emerging distinction from family A. There is also a second, more convincing explanation 

that relies on the text’s temporal relationships, and it is to this explanation that I shall 

now turn. 

Figure 4.6. Motivic Membership throughout the A and B sections 

  

 The text of the A section (shown in Figure 4.1) describes the present: the rain 

falling, the state of the poet, and his current desire to relive past memories. The text of the 

B section, on the other hand, depicts the past: memories of the poet’s childhood spent 

running through the fields, feeling the rain on his feet, and touching the grassy dew with 

his hand. These convey different specific time periods within the poet’s life, and the 

particular pattern of motivic development reinforces this. In the A section, we see the 

motives exhibiting high potential membership within both families, suggesting that the 

state of these motives in the present are colored by memories of the past: the potential of 

both families coexist in the A motives, just as memories of the past coexist with and 
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influence experiences in the present. When the B section arrives in m. 45 however, we 

see family A drop off. This is also consistent with a flashback to the past: high degrees of 

membership within family B suggest a unified cohesive set of motives that are also not 

highly related to the present that is represented by family A. In the past, the present of 

family A has not yet occurred, and therefore cannot have as great an influence on the past 

as the past does on the present. 

 If we were to return to the germinal motives of each family, shown in Figure 4.5, 

we might recontextualize the type of development I suggested between the families. 

Instead of the germinal contour for family B emerging from family A with the prominent 

additions of ascents at the beginning, we might flip this development to consider that 

these prominent ascents might have been smoothed out or forgotten as time spanned from 

the temporal context of family B to family A, as shown in Figure 4.7. This might again 

point convincingly to the idea of memory: as time passes, specific details of a memory 

may fall away or otherwise be remembered differently as we have progressed through 

time and experience. The memory may have taken on new context and changed, as 

signified by these significant “missing” contour motions in the germinal motive of family 

A. 
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Figure 4.7. The similarities between the germinal motives of the song, with an 

emphasis on the retroactively discovered relationship of the B motive to family A 

 

In this depiction of the past, the present represented by family A has not occurred 

yet, and therefore the membership of the motives of family B within the fuzzy family A 

are low, indicating that they are outliers in family A: capable of hinting at a potential 

future, but unable to achieve any value higher. The present, however, possesses reference 

to both itself and the past, in many cases having a stronger affinity toward family B than 

family B does to family A (as in the case of the motives that appear in mm. 7–8, 9–11, 

27–28, and 29–31). In this sort of retrospective analysis, we can see that these motives 

are colored by the memory of the past, just as the poet’s present existence is colored 

heavily by his strong affinity for the memory depicted in the B section. In both cases, 
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“past” events are strong members within one’s present existence. In the case of the 

Brahms song, we only discover this as the past is relived through the flashback to the 

memory: a development that is, in a way, backwards. 

 

Motivic Identity and Development in the Sonata (Sonata No. 1, Op. 78, mvt. III) 

 These motivic ideas resurface for Brahms five years later in his first violin sonata 

in G Major, Op. 78. Most notably, the germinal motive-forms of the song appear not in 

the opening movement as one might guess, but rather in the last movement of the sonata, 

almost as if Brahms required the two previous movements to build up to their entrance. 

The movement is a 5-part rondo as shown in Figure 4.8. The refrains in mm. 1–28, 61–

83, and 124–164 (including the coda from 140–164) feature material stemming from the 

two germinal motives of the song, this time in the key of G minor. The work’s two 

episodes, mm. 29–60 and 84–123, feature what seems to be new and contrasting material, 

although as we shall see later, the material is not entirely unrelated.  

The sonata movement expresses difference between these two motive families in 

similar ways: both families take as their germ the opening melodies from each family of 

the song, and develop from there. Although the germinal motives may be highly related, 

the families built from the contours of the sonata are significantly different, suggesting a 

more extensive developmental attitude within the contour domain, such that the members 

of family A and B in the sonata bear lower overall potential membership within their 

respective averaged families in the song. For example, the germinal member of family A 

appears in mm. 0–1 of the sonata movement, shown in Figure 4.9a, comes directly from 
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the germinal motive in mm. 4–6 of the song. In both families, the motive has a high 

degree of membership: 0.785 in family A of the sonata and 0.776 in family A of the song, 

as shown in the membership chart in Figure 4.9b. Despite this initially high degree of 

similarity, the potential membership of the rest of the motives in family A of the sonata 

within the average family of the song (shown in the fifth column of Figure 4.9b, which 

derived its values by comparing the individual contours of the sonata against the 

averaged member of Family A in the song, shown in Figure 4.3b) exhibit a wide 

continuum, ranging from 0.255 (very dissimilar) to 0.837 (very similar, in fact this 

member has an identical counterpart in family A of the song). Such a wide range suggests 

that Brahms takes the motive to a wider variety of variants than were heard in the song.53 

Additionally, unlike the song, which only features twenty-three total members and only 

nine unique members of family A, the family A of the sonata has fifty-five total members 

and twenty-seven unique contours, suggesting again that the motive is developed much 

more in this context than it is in the song. This is not unexpected, given the tendency of 

the instrumental genre to be longer and more developmental, since it is not as constrained 

by the presence of text or the smaller range of the voice. 

                                                

53
 In fact, of all the twenty-seven distinct contours found in family A of the sonata, only three exact 

matches are found in the family of the song. 
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Figure 4.8. Form diagram of the third movement of Brahms’s violin sonata No. 1, Op. 78 
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Figure 4.9a: Annotated score excerpt for the opening 

refrain of the sonata. Membership values of each motive 

compared to family A are shown in blue, while 

membership values of each motive compared to family 

B are shown in red. 
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Figure 4.9b. The members of Family A from the sonata movement 

Measures C-SEG CAS Similarity 

to family 

A in song 

Membe

rship in 

this 

family 

Similarity 

to Family 

B in 

Sonata 

0–1(2x) 

(germinal 

member) 

11102432 ==-++-- 0.776 0.785 0.533 

2 (5x) 323410 -++-- 0.754 0.862 0.531 

3–4 (2x) 201354687 -+++-+++- 0.255 0.536 0.484 

4–5 (8x) 11211011 =+-=-+= 0.537 0.770 0.570 

7 (4x) 65124301 --++--+ 0.647 0.827 0.597 

8 (2x) 43223120 --=+-+- 0.502 0.575 0.513 

14 (3x) 102432 -++-- 0.754 0.862 0.531 

16 (2x) 2013201442 -++--++=- 0.183 0.560 0.586 

21 (2x) 3212001 --+-=+ 0.589 0.689 0.748 

52–53 

(4x) 
111023 ==-++ 0.739 0.794 0.679 

54–55  222110 ==-=- 0.725 0.73 0.651 

(56) 20013456 -=+++++ 0.446 0.586 0.585 

57 1023 -++ 0.691 0.93 0.774 

58–60 444332210 ==-=-=-- 0.570 0.644 0.521 

113–115 

(2x) 
000001 ====+ 0.560 0.544 0.490 

115–116 

(2x) 
00154321 =++---- 0.647 0.591 0.864 

123–124  11203543 =+-++-- 0.710 0.789 0.615 

126–127 32143215211 --+---+--= 0.285 0.414 0.534 

127–128 

(2x) 
333210 ==--- 0.837 0.793 0.771 

129–130 5553214210 ==---+--- 0.521 0.647 0.605 

131 53214210 ---+--- 0.543 0.695 0.648 

133 102543 -++-- 0.754 0.862 0.531 

134 (2x) 32103210 ---+--- 0.543 0.695 0.648 

135–136 5432100 -----= 0.578 0.646 0.773 

136–137 134022 ++-+= 0.549 0.528 0.766 

137 135402 ++--+ 0.722 0.78 0.929 

160–163 11101024321 ==-+-++--- 0.533 0.675 0.519 
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Figure 4.9c. The averaged member of family A of the sonata 

 1 2 3 4 5 6 7 8 9 10 

+ 0 0.5 0.111 0.136 0 0.979 0.811 0.104 0.051 0.588 

= 0.714 0.467 0 0.682 0 0 0 0.270 0.051 0.176 

- 0.286 0.033 0.889 0.182 1.0 0.021 0.189 0.625 0.897 0.235 

 

Since family A in the sonata has more developmental tendencies, the family 

features a more graded internal continuum of membership (as measured against the 

probabilities of the averaged member of family A shown in Figure 4.9c), with a more 

substantial minority of motives (thirteen out of the fifty-five) falling below 0.6 within the 

sonata’s family A than that of the song. In these thirteen members falling below 0.6, we 

see aspects of developing variation at work. For example, mm. 3–4 (shown in Figure 

4.10) feature a motive that looks fairly different from the two motive-forms immediately 

preceding it. Here, Brahms has chosen to elaborate upon a small part of the initial motive 

that is a fairly dominant trait within the family: the -++ c-subseg that features 

prominently in the previous two motives. Brahms has altered the rhythm, the interval 

size, and has repeated the motion twice in order to create the new motive form. In 

essence, Brahms took a family trait that was fairly dominant, and repeated it, and it is this 

repetition that is unique, making the membership value fall. As a result, the contour of the 

new motive form bears a looser relationship to the rest of the family, a 0.536 

membership, which is still a strong enough relationship to be connected (as suggested by 

the use of the dominant family trait), yet distinct enough to show development (as shown 

by the repetition). Because of these lower-valued members, we see a family that is wider 

in range as a result of Brahms’s more developmental tendencies. This happens in the 

song as well, and it is here that we might see Brahms’s desire to move away from the 
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development that occurs in the song. This gesture in mm. 3–4 features a good degree of 

upward motion, suggesting further potential action in the music, while the analogous 

gesture in the song, seen in mm. 9–11 of the song features a mostly downward descent 

ending the phrase. 

Figure 4.10. The development of mm. 3–4 from the germinal motive 

 

The motives’ relationships here highlight the mastery with which Brahms 

approaches thematic development: the family is coherent enough to hold together, yet 

loose enough to promote development, exemplifying Schoenberg’s statement that the 

motives shall not be developed to the point that they lose comprehensibility. These 

outliers within family A do not fall below 0.5, keeping them related enough to retain 

motivic identity within family A. 

Family B begins with a truncated version of the motive found in the song: the 

sonata takes the first +=++ motion of the song motive as its germ (shown in Figures 
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4.11a and 4.11b). This truncated version of the song motive has an extremely high degree 

of membership within the family of the song, 0.958 (as shown in the membership chart in 

Figure 4.11c), since it is such a prominent feature in so many of the song’s B-section 

motive-forms. Its frequent repetition throughout the sonata, therefore, connects it very 

closely to the song. In fact, the majority of family B in the sonata displays the same kind 

of high degree of coherence that the song’s family B showed, with only five members of 

the family falling below 0.6. 

Figure 4.11a. Germinal family B motive of the sonata, truncated from the family B 

motive of the song 

 

Figure 4.11b. Germinal family B motive of the song 
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Figure 4.11c. The members of Family B of the sonata 

Measure C-SEG CAS Similarity 

to A in 

Sonata 

Membership 

in this family 

Similarity 

to B in 

song 

10 (x4) 

(germinal) 
01123 +=++ 0.472 0.881 0.958 

10 (x7) 01123 +=++ 0.472 0.881 0.958 

12–13 (2) 022451336 +=++-+=+ 0.443 0.783 0.791 

23–24 02245432120 +=++----+- 0.284 0.757 0.783 

25–26 01134326561 +=++--+-+- 0.346 0.784 0.883 

27–28 25406173 +--+-+- 0.411 0.62 0.964 

140 01123 +=++ 0.472 0.881 0.958 

140–141 12246543201 +=++-----+ 0.403 0.81 0.617 

144 01123 +=++ 0.472 0.881 0.683 

145–146 011598765423 +=++------+ 0.403 0.767 0.561 

146–47 43201 ---+ 0.574 0.722 0.938 

147–148 765430112 -----+=+ 0.528 0.474 0.599 

149–150 32011 --+= 0.260 0.444 0.813 

152–53 235544332011 ++=-=-=--+= 0.411 0.41 0.303 

156–157 0122344 ++=++= 0.558 0.501 0.764 

157–159 287655443301 +---=-=-=-+ 0.483 0.519 0.330 

 

Figure 4.11d. The averaged member of family B of the sonata 

 

Furthermore, the relationship between family B in the song and sonata is 

substantial: although there are no exactly identical members as there are in Family A, 

most of the motives within the sonata’s family B have a high degree of potential 

membership within the song’s averaged family B. The seventh column in Figure 4.11c 

shows that with the exception of two outliers (which also belong to the set of outliers 

falling below 0.6 in the sonata’s family B), the members all range from 0.6 to 0.958. Yet 

even within these values, one can see a degree of developmental activity that takes this 

family further from its relationship to the song’s close-knit family B. Family B’s first 

 1 2 3 4 5 6 7 8 9 10 11 

+ 1.0 0.087 0.826 0.870 0 0 0.545 0 0.25 0.222 0.778 

= 0 0.826 0.087 0 0.25 0 0.182 0 0.416 0 0.222 

- 0 0.087 0.087 0.130 0.75 1.0 0.273 1.0 0.333 0.778 0 
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occurrence in the opening refrain shows a high degree of membership and coherence, 

featuring membership values ranging between 0.958 and 0.783 within the song’s family 

B. The second reprise, beginning in m. 61 features similarly high values, as it features an 

exact repetition of the opening reprise’s B material. The third refrain’s B motives, 

however, feature much lower resemblance to the B material of the song, indicated by a 

wider range of potential membership values, ranging from 0.958 to 0.303, and include all 

five of the outliers within the sonata’s own family B. 

These five outliers deserve a deeper examination. Each falls within the final 

refrain of the movement, as shown in Figure 4.12. Three of the motives each in turn 

recall a specific episode from the sonata, bridging the divide between motive families 

within the work, while at the same time contributing to the variety found within family B. 

The remaining two motive forms, found in mm. 156–157 and mm. 157–159 respectively 

work to draw the movement to a close. The first of these motives in mm. 156–157, shown 

in Figure 4.13, features striking resemblance to the initial +=+= contour (or its variant 

contour of +=++). However, Brahms has drawn out the motive in terms of rhythm by 

filling in the third jump with a stepwise ascent, elongating the contour of the motive as a 

result. What we have then is a ++=++= motion, which still resembles the family, as 

indicated by its 0.501 membership value, and this relationship can easily be seen at a 

deeper level.54 However, Brahms gives the motive more linearity by adding the ascents 

in, accounting for its difference from the rest of the motives in family B.   

                                                

54
 Using Morris’s (1993) contour reduction algorithm, it would be the N=1 level to be specific, which 

eliminates all local passing c-pitches. 
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Figure 4.12: Annotated score excerpt for the closing 

refrain (including the coda). Membership values for 

motives compared to family A are shown in blue, while 

membership values for motives compared to family B 

are shown in red 
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Figure 4.12 (cont.) 

 



 

162 

 

 

Figure 4.13. The motive in mm. 156–157, showing its resemblance to the germinal 

motive of family B 

 

 

Relationship between Family A and Family B 

 The “development” that occurred throughout the song dealt with the shift in 

relationship between the two families, as each motive possessed to a certain degree a 

membership within each family. Therefore, an examination of the relationship between 

families A and B throughout the sonata may reveal significant relationships between the 

song and sonata. Consider Figure 4.14a, which shows a graph of membership over time 

similar to the graph I introduced for the song (Figure 4.6), this time featuring the motives 

of the opening refrain of the sonata movement’s rondo form. In this expositional refrain, 

we see similar tendencies to that of the opening of the song: the A sections in mm. 0–9 

and mm. 14–22 (bearing motives belonging to the A family) feature a closer relationship 

between the two families, as shown in the graph of Figure 4.14b. Overall, the 

mathematical difference between the two membership values, as exhibited by the 

columns in the figure, are smaller for the A sections than the B sections, from columns 1–

7 and columns 13–19. Similarly, the B sections of the song in mm. 10–14 and mm. 23–29 
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display that same strong divide between the A and B families that exists in the song, with 

the membership values of family A dropping off consistently while the membership 

values of family B are quite high, as indicated in the large differences between values 

exhibited in Figure 4.14b. 

Figure 4.14a. Membership over time for the motives of the first reprise 
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Figure 4.14b. Difference between family A and B membership values (positive bars 

feature higher values for family A, negative bars feature higher values for family B) 

 

 The similarity to the song that these patterns exhibit suggest that Brahms’s 

conceptions of the song and sonata are not so distinctly separated, and therefore one may 

even suggest that a reminiscence of the narrative associated with these patterns may exist 

within the sonata as well. Despite this similarity, Brahms has made changes to the 

families that add a more unique identity within each family in this opening refrain. The 

two families alternate more rapidly than they did in the song, which divided the 

respective families among first and second section more or less equally. Unlike the two 

families in the opening of the song, the two potential families’ membership values here 

only cross twice outside of the transition between A and B sections: the first time in mm. 

16–17 (the middle of the second A section), and the second time in mm. 21–22 (at the 

end of the second A section). This stands in stark contrast to the opening of the song, 

where values for family B crossed higher than those for family A seven out of thirteen 

times. This gives family A greater independence from the context of family B in the 
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sonata, contributing to a higher degree of motivic identity and coherence throughout this 

opening section. This could be due in part to the truncation of the opening motive of 

family B, and its subsequent development, emerging as more different from family A in 

the sonata than family B did in the song. As the opening refrain of an instrumental rondo 

form, it is not unexpected to see this clearer differentiation between motive families: 

since it is serving an expository function, it introduces the themes and therefore it is 

desirable for reasons of comprehensibility for the two families to be more separate. 

Because the motive is no longer tied to the textual meaning as it was in the song, Brahms 

can show greater separation here at the beginning.  

However, the motive families do not remain as separate as this throughout the 

entire sonata. The closing refrain and coda show a significantly different relationship 

between family A and family B than is seen in the outset of the movement. Figure 4.15 

shows the graph of the motivic membership within the entire final refrain (including the 

coda material that features motive family B in the major mode). Here, we see a series of 

motives that are so intertwined in terms of membership values that it is perhaps difficult 

to determine from the graph alone where the section markers might occur, whereas the 

earlier graphs featured prominent shifts in motivic membership among families that serve 

as clear markers of formal separation. We see that at m. 140, where the family A value 

drops off for a few measures, yet the values for family B eventually drop to join the 

levels of family A. In this section, we see how the distinctions that once divided the 

families more clearly are beginning to fall away and the families are becoming more 

difficult to distinguish using contour alone.  
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Figure 4.15. Family membership over time for the final refrain (including the coda) 

 

For example, Figure 4.16a shows the motive in mm. 127–129: it features a 0.793 

membership within family A and a 0.771 membership within family B (as shown in 

columns six and seven of Figure 4.9b). It features the prominent opening ==- motion 

that is characteristic of family A, but also shares similarities with the way family B 

develops. Although it does not resemble the initial germ of family B, it does share a 

similar descending motion in the second half of the motive with the motive forms from 

mm. 23–24 and mm. 25–26 (which are also featured in mm. 140–141, and 145–146). We 

see these developments coming to affect the averaged families of each motive family: 

Figure 4.16b shows that the characteristic ==- motion receives relatively high values in 

the opening three positions of the averaged member of family A, as well as two other 

prominent descents throughout the averaged family that contribute to the high degree of 

membership of this motive within family A. Meanwhile, Figure 4.16c shows that the 
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motive’s second half invokes three prominent descents in Family B’s averaged member: 

positions 6, 8, and 10. This, combined with the prominent plateau in the second position 

contributes to this motive’s high degree of relationship with motives of family B, and 

subsequently the connection between the two motives in general. Because it shares these 

features from each family, the motivic coherence of each family is subsequently called 

into question. Overall motivic coherence in these cases must therefore rely on high 

degrees of membership within the domains of other elements such as rhythm, because 

contour is no longer serving a unifying role within the motive family, and is now acting 

as a developmental element.  

Figure 4.16a. Relationship between the motives in mm. 127–129 to an earlier 

development in family B 

 

Figure 4.16b. The contour of mm. 127–129 measured against the averaged member 

of family A of the sonata 

 1 2 3 4 5 6 7 8 9 10 

+ 0 0.5 0.111 0.136 0 0.979 0.811 0.104 0.051 0.588 

= 0.714 0.467 0 0.682 0 0 0 0.270 0.051 0.176 

– 0.286 0.033 0.889 0.182 1.0 0.021 0.189 0.625 0.897 0.235 
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Figure 4.16c. The contour of mm. 127–129 measured against the averaged member 

of family B of the sonata 

 

Inter-Movement Motivic Connections and Narrative Development 

It is here in this final refrain and coda where we see the greatest difference from 

the structure of the song: the motivic connection between the sonata and the song is clear, 

enough so that Brahms’s audience would recognize the reference to the song and its 

narrative when listening to the sonata. However, with Brahms’s motivic development 

comes a shift in the narrative context originally held in the song, adding new meaning to 

the story. This shift is not entirely lost on Brahms’s audience: Brahms’s friend Theodor 

Billroth, for example, writes in a letter to Brahms that  

It is a strange thing to be made to hear well-known song motifs in sonata form. In 

your composition, the song, like the ‘Homeland’ by Klaus Groth, is to me one of 

the most beautiful of all poetic creations; I can forget both words and tones over 

the depth and pathos of its feelings, the feeling is transfigured into an almost 

religious enthusiasm…I find it absolutely impossible to imagine what sort of an 

impression this sonata will make on people who do not have the song completely 

and fully within themselves like a creation of their own. To me the entire sonata is 

like an echo of the song, like a fantasy about it (Billroth, quoted in Floros 2010, 

133). 

 Billroth alludes to the fact that the relationship moves beyond mere motivic borrowing: 

the sonata movement stands on its own, unique in its differing developmental attitudes—

such that it does indeed become “strange” to hear the motivic connections in this new 

way. As such, the motivic variety throughout this last refrain highlights Brahms’s 

 1 2 3 4 5 6 7 8 9 10 11 

+ 1.0 0.087 0.826 0.870 0 0 0.545 0 0.25 0.222 0.778 

= 0 0.826 0.087 0 0.25 0 0.182 0 0.416 0 0.222 

- 0 0.087 0.087 0.130 0.75 1.0 0.273 1.0 0.333 0.778 0 
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narrative development that takes it beyond the story of the song. In order to understand 

fully this new musical and narrative perspective, we must turn to the first two movements 

of the sonata, and examine motivic interaction across the movements. 

 

The First Movement 

 The first movement opens with the familiar dotted plateau opening ==-… 

motive that is so characteristic of Family A of the song: such an opening by itself carries 

a membership of 0.82 within the song’s Family A, and can indeed be seen in many 

prominent motives of both the song’s family A and the third movement’s Family A. The 

motive opening the first movement, bearing a contour of ==----, is nearly identical to an 

opening motive found in the piano introduction to the song: Figure 4.17 shows the motive 

in the piano, and in the violin at the opening of the sonata. Both have high degrees of 

membership within Family A of the song, 0.837 and 0.768 respectively. 

Figure 4.17a. The =--- motive appearing in the piano introduction of the song 
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Figure 4.17b. The opening ==---- motive of the first movement of the violin sonata 

 

 As Brahms builds upon this initial motive in the first movement, one can see clear 

resemblances to Family A throughout most of the exposition. A sampling of key motives 

in the sonata’s exposition, shown in Figure 4.18a, shows these degrees of membership. 

Here we see an interesting relationship to family A across the sections of the exposition: 

each section (the primary theme, the secondary theme, and the closing theme) begins 

with a motive that has a strong membership within family A, as shown in the graph of 

Figure 4.18b. As each section progresses, Brahms develops the motives away from that 

strength, each in a different way. The primary theme section, for example, begins with 

the germinal motive (a 0.768 membership), and winds up at a motive with membership of 

0.427. The second theme section follows very similarly, beginning with a motive 

featuring a 0.774 membership, and gradually lessening until it winds up with motives 

featuring 0.524 and 0.570 memberships at the end.  
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Figure 4.18a. Chart of motivic membership of motives in the first movement’s 

exposition 

Measures C-SEG CAS Membership 

within Song A 

family 

mm. 1–2 4443210 ==---- 0.768 

mm. 3 00011112 ==+ 0.778 

m.5–655 412032 -+-+- 0.665 

mm. 11–

12 

04765321 ++----- 0.510 

mm. 20–

21 

4443210 ==---- 0.768 

mm. 21–

2256 

10123465 -+++++- 0.427 

mm. 36 112301 =++-+ 0.774 

m. 37 02331 ++=- 0.605 

m. 38 012431 +++-- 0.637 

m. 39 21330 -+=- 0.656 

m. 44 2134320 -++--- 0.691 

m. 45 1012 -++ 0.676 

m. 48 123440 +++=- 0.524 

m. 6157 23312120 +=-+-+- 0.570 

m. 70 323101 -+--+ 0.762 

m. 71 343210 +---- 0.640 

m. 78 0123456 ++++++ 0.443 

 

 

 

                                                

55
 This motive is a bit unwieldy because it has such a high quantity of notes: in the original motive there 

are twelve CAS positions, ten of which make up the global 021 shape that ends the motive in m. 6. An 

N=1 level reduction (Morris 1993, Schultz 2008) here provided a better sense of this motive’s true shape. 

56
 The opening 1 is elided with the 0 of previous c-seg in the chart. 

57  A three-note connector motive appears in mm. 63-64 that features a CAS of +-. Since it is so small, it 

has a high degree of membership, yet this melodic material serves only to connect the end of the second 

theme to the beginning of the third in a more fluid way, and is not a true motivic member of the second 

theme’s section. 
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Figure 4.18b. Motivic Membership across the exposition of the first movement 

 

Even the development features prominent contour relationships to Family A. In 

fact, throughout this development section, Brahms follows and develops the motives 

heard throughout the opening Primary Theme section. He even begins the development 

(mm. 82–90) with an exact repetition of the first nine bars of the opening of the 

exposition, except that the primary motives are now heard in the piano, as shown in 

Figure 4.19a. Brahms does not introduce developmental material until after that, at the 

end of m. 90. From there, Brahms continues his development of family A-based motives, 

as shown in the chart of Figure 4.18b. Measures 90–99 elaborate upon the descending 

figures heard in mm. 89–90: this development features a series of downward scalar 

movements in much the same vein as those heard at the end of the exact repetition. 

Following this, mm. 99–107 cycles through versions of the two germinal motives heard 

at the opening of the sonata: the ==---- and ==+ motives (each featuring 0.768 and 

0.778 memberships within family A respectively), as shown in Figure 4.19b. From there, 
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developmental sections include variations upon the motives in mm. 11–12, m. 70, and m. 

78. In short, the development section is built around the opening A section, which as we 

saw in the exposition, is conceptually built around family A. Brahms is not using contour 

as a primary developmental agent in this case, and contour is instead contributing to the 

sense of unity and motivic familiarity throughout this development section. Given that 

most of the material within the sonata either belongs strongly to Family A or is developed 

from a motive strongly belonging to family A, it is therefore safe to say that the first 

movement is conceptually built on the idea of Family A. 

Figure 4.19a. The opening bars of the development section, showing the motives of 

the exposition now in the piano (mm. 73–90) 
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Figure 4.19b. mm. 99–108 of the development, featuring prominent motives from 

the exposition 

 

 

Second Movement: Introducing a Biographical Narrative 

 If the first movement is conceptualized around Family A, then one might expect 

Family B to appear in the second movement—if Brahms were indeed keeping to the strict 

motivic connections with the song. However, the second movement instead presents a 

family that is aurally distinct from both families of the song. Its germinal motive, shown 
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in Figure 4.20 features a contour of +--+=, and has a 0.456 membership within the 

song’s family A and a 0.741 membership within the song’s family B. 

Figure 4.20. The germinal motive of the second movement 

 

 This high family B value for the germinal motive of this movement suggests that, 

while audibly differentiated in other motivic parameters, it shares similarities of shape 

with the family one might have expected following the first movement. As such, this 

motive family may share a similar narrative connotation: an idea of “past” or nostalgia 

that was associated with family B of the song. Nostalgia is indeed present within the 

context of the second movement, but it is a nostalgia more personal to Brahms than that 

of the protagonist in the song. 

Brahms initially wrote the second movement as a stand-alone work in order to 

comfort Clara Schumann after hearing about her son Felix’s diagnosis with terminal 

tuberculosis (Sandberger 2008, iv; Floros 2010, 129). The meaning present within this 

compositional act associates this movement not only with the idea of nostalgia, but with a 

concrete character. Brahms is, in essence, placing himself in the character of the narrator, 

and his memories of Felix’s youth at the center of the nostalgic remembrance. 
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Brahms was godfather to Felix, often described as the youngest and most talented 

of Robert and Clara’s children. Brahms was very close to his godson: he once said “I 

don’t know how I should contain myself with happiness if I had a son like Felix,” (quoted 

in Swafford 1997, 220), and he set several of Felix’s poems to music. The talent and 

potential young Felix showed was cut short, however, as he was diagnosed with 

tuberculosis in September of 1873, at the age of nineteen. Constantin Floros makes 

associations with the time of his initial diagnosis and the Rain Songs of Op. 59, which 

had been sent to Clara on her birthday, also in September of 1873. On September 17th of 

1873, Clara responded to Brahms’s gift:  

Your dear letter was the first written greeting I found awaiting me on the morning 

of my birthday. And it pleased me more than I can say. The Regenlieder followed 

yesterday—thank you for everything….Four days before my birthday [Felix] got 

pleurisy, which, as the doctor said, had been coming on for some time…You can 

imagine what an anxiety this will be for me. My poor heart seems always to be 

subjected to fresh trials. How glad I am now that we decided to have Felix with us 

(Clara Schumann 1971, 271).  

Such associations within the timeline do not suggest a compositional narrative for the 

songs of Op. 59, but rather might posit an associational connection between the feelings 

both Johannes and Clara had regarding Felix’s illness as it progressed through the years 

of 1873–1879, and the nostalgia for youth presented through the motivic connections in 

the “Regenlied.” 

It is, however, not only the circumstances of Felix’s illness that contribute to this 

association, but the circumstances surrounding his birth and early childhood that make 

this association all the more poignant. Felix was born into a family already fraught with 

troubles. As the last of the Schumann children, he was born several months after his 

father was committed to the Sanitorium in Endenich in February of 1854 following his 
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suicide attempt. During Clara’s pregnancy with Felix, she was under a great deal of strain 

regarding her husband’s condition, having to manage the household affairs in her 

husband’s stead. In fact, as time wore on, Clara became quite morose, despairing over her 

husband’s slow deterioration (Worthen 2007, 346–49). 

After Robert was taken to Endenich, Brahms went to Düsseldorf to comfort Clara 

at considerable personal expense, and he remained by her side for the next few years. 

During this time, he became a routine figure in the lives of the Schumann children, caring 

for them, and comforting Clara in her grief regarding her husband’s condition (Swafford 

1997, 109–146). Brahms was present for Felix’s birth in 1854, and when Clara began 

touring again in 1855, Brahms often remained behind in Düsseldorf, and even moved into 

a room on the first floor of the Schumann household. He worked as a private instructor, 

and kept Clara apprised on household activities, including those of her children 

(Swafford 1997, 138). In one such letter to Clara, he wrote: “Eugenie has got a bad cold, 

she has no appetite, her head is very hot and she is constantly falling asleep. The boys are 

very well, including Felix. No headway is being made with the alphabet yet in spite of 

any amount of loaf sugar…” (Brahms 1971, 24). In another, he wrote to her of a storm 

that wreaked havoc upon their home: 

There was a clap of thunder as if the world were splitting in half…they [the 

children] were crawling about on their knees and screaming, believing the Day of 

Judgment had come. The two boys were also crawling about in the room. I then 

took them on my lap and let them fall asleep. Felix was fast asleep and Eugenie 

was quiet. (1971, 49) 

In still another, Brahms wrote of the children: “Ferdinand is too lazy, Ludwig is too self-

willed, and Felix is even more so. Genchen [Eugenie] is for the moment just a little bit 

too passionate. But they are all very good and charming. Yesterday Ferdinand received a 
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number of smacks because he would not read” (1971, 69). Throughout all of these 

passages, we see Brahms as an important figure in the day-to-day lives of the younger 

Schumann children. Brahms therefore had an important role in the initial development of 

Felix’s young life, and as a result, had powerful memories surrounding Felix’s youth. 

 Given the role Brahms played in Felix’s developmental years, it is conceivable 

that the narrative themes of nostalgia presented in the “Regenlied” might resonate with 

him as he came to terms with Felix’s illness in 1873, and again later as Felix’s condition 

was pronounced terminal in 1878. Indeed, these feelings toward Felix can especially be 

seen through a letter, written to Clara on the back of an elaborately written-out leaf 

containing the first twenty-four measures of the violin sonata’s second movement. He 

writes: 

Dear Clara, if you play what is written overleaf quite slowly, it may tell you more 

clearly than any other utterance of mine how cordially I am thinking of you and 

Felix—even of his violin, though it is probably at rest. I thank you from my heart 

for your letter; while I did not, and do not, like to ask for it, I am always very 

anxious to hear about Felix… (quoted in Sandberger 2008, iv) 

 

It is a rare occurrence in Brahms’s compositional output to have such a direct tie 

between a composition and a personal element within his life. Floros writes “This 

important letter is of exceptional value inasmuch as it is one of the very few documents in 

which Brahms himself speaks about the personal and semantic background of his music” 

(Floros 2010, 129). Here in this instance, we see Brahms directly tying the opening 

twenty-four measures of the second movement (shown in Figure 4.21) to his feelings for 

Clara and Felix during this difficult time in their lives. The violin—a reference to the 

primary instrumentation of the sonata—is also mentioned specifically in the letter: a 

nostalgic longing for his godson, who studied the violin. In making these associations in  
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Figure 4.21. Score excerpt of the second movement (mm. 1–24) 
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the second movement—where one might structurally expect the nostalgia themes to 

appear—Brahms links the narrative of nostalgia to the biographical narrative of his 

feelings regarding Felix’s illness.  

 Musically, the motives of the opening twenty-four bars of this second movement 

(the family for which is shown in Figure 4.22a and 4.22b), which I will term the “Felix 

family,” warrant closer consideration as they share several familial tendencies with 

Family B.58 Consider the motives highlighted in mm. 0–2, 3–5, and 7–9 of Figure 4.22c. 

These motives seem unique from the motives of the “Regenlied,” yet the motives here 

bear at least some resemblance to these earlier motives: the chart in Figure 4.22c shows 

the membership of these three motives within their own family in the second movement, 

as well as family A and family B of the song. Here, we see low values corresponding 

with family A of the song—ranging from 0.355 to 0.531. When we look at their 

correspondence with family B, we see higher values, ranging from 0.741 to 0.875. 

Looking musically at these connections, we see that there is some resemblance of these 

main motives in the Felix family to those of family B in the song, namely the prominent 

descending figures in the middle of both motive families, as shown in Figure 4.23a. 

Furthermore, one can see these resemblances in the average members of the families 

themselves. Similar positions within both families share prominently high/low values, as 

                                                

58
 It should be noted that this movement is in ternary construction, and also features a contrasting motive 

family in the B section of the movement, which I call the “Funeral family” after the funerary quality that 

Floros associates with this passage (Floros 2010, 127). This “Funeral family” serves to contrast with the 

Felix family: it is not significantly related to earlier material from a contour perspective and will not be 

discussed further. It is worth noting, however, that one could observe some rhythmic similarities between 

the Funeral family and Family A. While analysis of these rhythmic similarities is beyond the scope of this 

chapter, it would be a fruitful avenue for further study. 
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highlighted in Figure 4.23b and c: both begin with a strong ascent, feature a prominent --

+ motion in the middle, and exhibit descents toward the end. The degrees of membership 

exhibited by these prominent motives in the Felix family, combined with the similarities 

in the family traits themselves, associates these motives more with family B than with 

family A, subtly bringing elements of family B into the opening of the second movement. 

Figure 4.22a. Motives of the Felix family, with membership values within the family 

Measures C-SEG CAS Membership in Felix Family 

0–2 (6x) 132011 +--+= 0.843 

2–3 (2x) 012 ++ 0.875 

3–5 (2x) 01243122 +++--+= 0.770 

5–6 (2x) 210 -- 0.928 

6–7 (2x) 3210 --- 0.729 

7–9 (2x) 243120 +--+- 0.799 

9–11 (2x) 1210 +-- 0.925 

11–13 (2x) 4564323401 ++---++-+ 0.808 

13–14 (2x) 1230 ++- 0.869 

14–15 (2x) 1234 +++ 0.631 

15–17 (2x) 544322100 -=--=--= 0.527 

19–20 (2x) 031243 +-++- 0.866 

22–24 (2x) 43120 --+- 0.770 

 

Figure 4.22b. Membership probabilities for the Felix family 

 1 2 3 4 5 6 7 8 9 

+ 0.917 0.833 0.143 0 0 0.889 0.667 0 0.111 

= 0 0.167 0 0 0 0.111 0 0 0.556 

- 0.083 0 0.857 1.0 1.0 0 0.333 1.0 0.333 

 

Figure 4.22c. Comparison of motives in mm. 0–2, 3–5, and 7–9 with family A and 

family B from the song 

Measures C-SEG CAS Membership 

in Felix 

Family 

Similarity to 

Song A 

Similarity to 

Song B 



 

182 

 

 

0–2 (6x) 132011 +--+= 0.843 0.456 0.741 

3–5 (2x) 01243122 +++--+= 0.770 0.355 0.797 

7–9 (2x) 243120 +--+- 0.799 0.531 0.875 

 

Figure 4.23a. A comparison of germinal motives from the Felix family in the second 

movement and Family B of the song 

 

Figure 4.23b. The probabilities of the Felix family, highlighting common traits with 

family B of the song 

 1 2 3 4 5 6 7 8 9 

+ 0.917 0.833 0.143 0 0 0.889 0.667 0 0.111 

= 0 0.167 0 0 0 0.111 0 0 0.556 

- 0.083 0 0.857 1.0 1.0 0 0.333 1.0 0.333 

Figure 4.23c. The probabilities of the song’s Family B, highlighting common traits 

with the Felix family 

 1 2 3 4 5 6 7 8 9 10 11 

+ 1.0 0 .875 .375 0 0 1.0 0 1.0 .333 0 

= 0 .833 0 .375 0 0 0 .25 0 .333 0 

- 0 .167 .125 .25 1.0 1.0 0 .75 0 .333 1.0 
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 While this second movement does not seem to have the same strong audible 

associations with the motives of the “Regenlied” that the first and third movements have, 

one can see relationships to family B within it, and these musical relationships help to 

weave a biographical narrative throughout the entire sonata, tying the circumstances of 

Felix’s illness and death—as well as reminiscences about his youth—to the story told by 

the song. The association that the Felix family shares with Family B, both in the contours 

themselves and in the structural layout of the sonata, ties the very real affinities Brahms 

had for Felix and his memories of his violin to the theme of nostalgia presented in family 

B of the song. As a result, the development of the Felix motives in the second movement 

takes the place of family B both narratively and motivically in the expectation set up in 

the large-scale layout of the sonata: the first movement introduces and explores motives 

highly associated with family A, setting up the expectation that a similar exposition and 

exploration of family B might follow. What we get instead is a new family that has loose 

associations with family B, but similar narrative connotations. Here, Brahms structurally 

replaces the abstract idea of the poet’s nostalgia with a very real representation of his 

own nostalgia for Felix’s youth. The story of nostalgia for one’s youth is no longer a 

story told by an anonymous protagonist, but now features very important, very personal 

characters.  

This motivic and narrative association between the Felix family and the nostalgia 

represented by family B is further reinforced in the third movement, and this is where we 

return to our discussion of the third movement: the iconic member of the Felix family 

resurfaces unexpectedly during the second episode, and its presence alters the structural 
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coherence of the contours in both families from this point throughout the remainder of the 

work. About this resurgence, Walter Frisch writes:  

Still more striking is the literal reappearance, in the finale, of the main theme from 

the Adagio, which enters quite suddenly in its original key (Eb major) at the point 

where we expect a return of the second theme in D minor (bar 84). The direct 

reminiscence rings rather hollow here, despite the skill with which Brahms 

proceeds to weave the Adagio theme seamlessly into its new environment. 

Brahms uses the technique to much better effect in the finales of the Third 

Symphony and the Clarinet Quintet, Op. 115, where the opening theme does not 

reappear suddenly, but emerges gradually to dominate the closing moments. 

(Frisch 1984, 117)  

Once again, the Felix motive family takes the place of an otherwise expected formal 

event, as Frisch observes. However, I disagree with his assessment of its efficacy in this 

context: in this episode, the Felix family enters into a dialog with the motives of family A 

and family B. The Felix family presented in this episode shares strong affinities to both 

the Felix family of the second movement, as well as B families in both the song and 

sonata. In short, Brahms uses the guise of an episode as a space to intermingle the 

motives of the Felix family with those of the third movement’s other motive families.  

Figure 4.24a shows the opening bars of the “Felix episode” starting in m. 83: as 

Frisch points out, the Felix motive suddenly appears in its home key of E♭ major. It is an 

exact match to the central motive of the Felix family, first heard in mm. 0–2 of the 

second movement. As such, it has a high degree of membership in the Felix family: 

0.843, as shown in Figure 4.24b. Immediately following it is a dotted +=++ pattern 

occurring in the inner-voice of the violin connecting it to the next motive in m. 86. It is 

this pattern that is most intriguing here, because this is the first time we see a direct 

instance of Family B material in the space of what is supposed to be the Felix family. 
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This +=++ pattern is the familiar ascending figure seen many times in family B space 

during the refrains of this final movement. It has a membership of 0.881 within the 

sonata’s family B, while only a 0.66 membership within the Felix family of the second 

movement.59 Furthermore, when taking mm. 85–86 together, one sees a similar pattern 

emerging to those in sonata family B: In many members of family B (six to be precise), 

the opening +=++ motion serves as an opening to a longer motive-form that introduces 

variety into the tail-end of family B, mimicking the phrase-structure of the song. These 

motives state the +=++ motive before moving on to new material, and when one 

examines mm. 85–86 in this fashion, we arrive at a longer motive form that bears a closer 

resemblance to family B than it does to the Felix family, with a membership of 0.662 

within family B and only a 0.561 membership within the Felix family. This process 

repeats in mm. 107–109: the Felix motive is heard at the outset, before rising again in a 

characteristically family B fashion (a +=+= motion) before moving into the angular 

motive in m. 109. Here, the family B motive heard in m. 108 has been raised more 

audibly to the outer voice, and is indeed more reminiscent of the song’s family B (a 0.771 

membership within the song’s family B, as opposed to a 0.725 membership within the 

sonata’s family B), which features a second plateau in the last of the four positions rather 

than a second ascent. 

  

                                                

59
 In the context of what I have been designating similar enough to constitute continuity, 0.66 does fall 

above that line, but I am making a distinction here that is more finely grained than that, because I have 

already established that the Felix family and the Sonata’s family B are loosely related to begin with. As 

such, finer-grained distinctions allow for further differentiation between two already-related families. 
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Figure 4.24a. Score excerpt of the opening of the Felix episode, beginning in m. 83 
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Figure 4.24b. Motives in the Felix Episode, showing membership within other families 

Example 

measures 

C-SEG CAS Membership in 

Felix 2nd mvt. 

Family 

Similarity 

to Sonata 

family A 

Similarity 

to Sonata 

family B 

Similarity 

to Song 

family B 

83–85 (2x) 132011 +--+= 0.843 0.728 0.742 0.741 

85–86 01123 +=++ 0.66 0.472 0.881 0.958 

85–86 (3x) 23012401 +-+++-+ 0.63 0.697 0.729 0.738 

(85–86 

whole) 
02234123512 +=++-+++-+ 0.561 0.509 0.662 0.642 

86–87 (4x) 36543210 +------ 0.777 0.619 0.733 0.762 

87–89 (3x) 243120 +--+- 0.799 0.853 0.815 0.875 

89–90 (x2) 54320123 ----+++ 0.658 0.676 0.610 0.678 

108–109 01122 +=+= 0.632 0.315 0.725 0.771 

109 33012401 =-+++-+ 0.527 0.751 0.6 0.595 

(108–109 

whole) 
02244012501 +=+=-+++-+ 0.547 0.564 0.630 0.642 
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Figure 4.25. Motivic membership graph of the Felix Episode, showing membership 

within the Felix family, Sonata family A, Sonata family B, and Song family B60 

 

In addition to these very prominent instances of family B motives occurring 

within Felix family space, a case can be made that the motives present in this episode are 

actually more coherently related to family B than they are to the Felix family: these 

motives display consistently high membership values within family B (ranging from 0.6–

0.881 in the sonata’s family B, and an even higher range of 0.642–0.958 in the song’s 

family B), while as a whole, their membership within the Felix family is slightly lower 

                                                

60
 I find it particularly important here to compare the motives to both the song’s family B and the sonata’s 

family B because the Felix material of the second movement compositionally predates the composition of 

the third movement, and so it is important to compare them to both the song and sonata to account 

thoroughly for all the similarities found within this episode. 
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(ranging from 0.52–0.843). Even more striking is that thirteen out of the nineteen motives 

in this section have higher values for one of the B families (either the song or sonata) 

than they do in the Felix family. In essence, what Brahms does here with these related 

families, is to bring out the dominant family B traits within the context of the Felix 

motive family. We can see this with the comingling of the exact motives from each 

family, as well as the fact that these motives share dominant traits from both families in 

the graph of Figure 4.25. 

However, this is not the only intermingling occurring in this episode: one also can 

see prominent instances of family A within the space of the episode as well. Consider 

Figure 4.26, which shows m. 86 compared to mm. 3–4 and mm. 16–17, both of which 

exist within family A: the motives are very similar, and related to family A as I have 

shown earlier in Figure 4.10. In mm. 3–4 and 16–17, this motive had a loose connection 

to family A: a 0.536 and 0.560 membership value respectively. The instance in m. 86 is 

higher, with a membership value of 0.697. The repeated instance at m. 109 is even 

higher, with a membership value of 0.751. By contrast, these motives in m. 86 and m. 

109 have lower values within family B and the Felix family. By including these motive-

variants into this episode, Brahms brings all three families into dialog with each other: 

free to intermingle, interact, and change the very nature of each family as they coexist 

within the space of this episode.61 Brahms is doing this very subtly however, as he firmly 

couches this within the framework of the Felix family: the episode begins with the Felix 

                                                

61
 With this in mind, we actually see the succession of the three motives in mm. 83-86 as “Felix”-B-A: in 

essence “righting” the temporal reversal of the song.  
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motive, ends with the Felix motive, is in the key of the second movement, and features an 

overall resemblance to the Felix family of the second movement, so much so that many 

prominent scholars, such as Frisch, label this episode based on the second movement and 

leave it at that. As such, this episode coheres as its own family, despite its strong 

relationship to the other families within the sonata. In addition, the family—which I will 

call the “Felix episode” family—possesses its own set of dominant and recessive 

tendencies, as shown in the table in Figure 4.27: 1.0 values are featured prominently in 

positions 1, 5, 8, and 10 indicating that the motions in these positions are traits that most 

of the family members have, while other positions feature more varied membership 

values indicating that these tendencies would be more recessive.  
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Figure 4.26. Comparison showing the motivic development of the motive in mm. 3–4 

across the movement 

 

Figure 4.27. Membership probabilities for the Felix episode family 

 1 2 3 4 5 6 7 8 9 10 

+ 1.0 0 0.4 0.6 0 0.733 0.6 1.0 0 1.0 

= 0 0.313 0 0.4 0 0 0 0 0.153 0 

- 0 0.687 0.6 0 1.0 0.267 0.4 0 0.846 0 
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In this context, both Family A and Family B are changed as a result of their 

interaction with the Felix motive within this episode, and this is where the episode’s 

narrative potential comes into play: by prominently associating this section with the 

second movement, which Brahms linked with Felix Schumann and his illness, one can 

see the character of Felix come to influence both motive families. The themes of 

nostalgia for Felix’s youth that are present in the second movement come to add nuance 

to the meaning of the families of this third movement, as the character of the second 

movement family comes to directly interact with the motives from the song. Here, the 

associations and interactions between the nostalgia themes of the Felix family and family 

B are impacting the structure of family A, just as the new associations of the past change 

how the present is experienced. It is this interaction that contributes to the motivic variety 

we begin to see as we leave the black box that is this particular episode and enter the final 

refrain and coda—Brahms’s last retelling of the motivic story of the song.  

Returning to the discussion of the final refrain, in which the coherence of the 

family structures begins to break down, we see the effects of the episode on the two 

families initially presented in the sonata. Going into that final refrain, changes occur in 

the family A motives: where the motive presented in mm. 3–4 involved the -++ portion 

of the opening A motive, Brahms has changed it in this last refrain to --+, which more 

closely resembles the middle of the Felix motive --+ than it does to the middle of the 

Family A motive, as shown in Figure 4.28a. This change has the power to explain the 

lower membership value that the motive that mm. 126–127 has within family A: Figure 

4.28b shows the pathways the motives take in mm. 3–4, 16–17, and 126–127 

(membership values of 0.536, 0.560, and 0.414, respectively). This figure shows the 
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switch from + to - in positions 2 and 6 that cause significant drops in membership 

values, as the contour of the motive in mm. 126–127 now follows a less dominant 

pathway, taking the membership value of this contour within family A even lower to 

0.414. However, this motive in mm. 126–127 bears a much higher resemblance when 

compared to the Felix family: a 0.655 membership, as shown in Figure 4.28c.  

Figure 4.28a. Comparison of the motive in mm. 126–127 to the motive in mm. 16–17, 

as well as to the germinal family A motive and the germinal Felix motive 
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Figure 4.28b. Comparison of motive pathways in mm. 3–4, 16–17, and 126–127 

within the sonata’s family A 

Mm. 3–4: 0.536 membership 

 1 2 3 4 5 6 7 8 9 10 

+ 0 0.5 0.111 0.136 0 0.979 0.811 0.104 0.051 0.588 

= 0.714 0.467 0 0.682 0 0 0 0.270 0.051 0.176 

– 0.286 0.033 0.889 0.182 1.0 0.021 0.189 0.625 0.897 0.235 

 

Mm. 16–17: 0.560 membership 

 1 2 3 4 5 6 7 8 9 10 

+ 0 0.5 0.111 0.136 0 0.979 0.811 0.104 0.051 0.588 

= 0.714 0.467 0 0.682 0 0 0 0.270 0.051 0.176 

- 0.286 0.033 0.889 0.182 1.0 0.021 0.189 0.625 0.897 0.235 

 

Mm. 126–127: 0.414 membership 

 1 2 3 4 5 6 7 8 9 10 

+ 0 0.5 0.111 0.136 0 0.979 0.811 0.104 0.051 0.588 

= 0.714 0.467 0 0.682 0 0 0 0.270 0.051 0.176 

- 0.286 0.033 0.889 0.182 1.0 0.021 0.189 0.625 0.897 0.235 

 

Figure 4.28c. Motive pathway of mm. 126–127 within the sonata’s Felix family 

mm. 126–127: 0.655 membership 

 1 2 3 4 5 6 7 8 9 

+ 0.917 0.833 0.143 0 0 0.889 0.667 0 0.111 

= 0 0.167 0 0 0 0.111 0 0 0.556 

- 0.083 0 0.857 1.0 1.0 0 0.333 1.0 0.333 

 

Likewise, mm. 136–137 features a similarly low membership value within family 

A, despite the fact that these measures share certain structural and formal affinities with 

family A. Here the low membership value is 0.528, which is again perhaps high enough 

to still indicate membership, but low enough to indicate that there has been significant 
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development within the family. Consider Figure 4.29, which shows mm. 136–137 in 

relation to the germinal motive form in family A: again, Brahms has chosen to elaborate 

upon the -++ c-subseg found in the middle of the germinal motive, repeating the idea 

twice. Just as in mm. 126–127, this motive also shares a high degree of membership 

within the families representing Felix. It has a membership value of 0.751 within the 

family of the Felix episode, and an even higher 0.839 membership within the Felix family 

of the second movement. While the opening ++ motion may have originated from the 

middle of the germinal motive of family A (just as we saw in m. 3), Brahms modifies it in 

the repetition, ending the motive form in mm. 136–137 with the -+= motion that so 

characteristically ends the germinal motive of the Felix family, as shown in Figure 4.29. 

It is striking that these outlying members of family A within this final refrain 

should share these higher degrees of membership within the Felix motive families. The 

outlying members of family A heard previously feature negligibly low values within the 

Felix motive families as shown in Figure 4.30, such that the presence of Felix is not seen 

in these earlier developments of the family A motive. Their appearance in this final 

refrain then indicates that the Felix motive has influenced the turn of events in this final 

restatement. The Felix motive has come to alter the notion of the “present” that is 

invoked by family A. Because of the inversely causal narrative relationship seen 

previously between family A and family B (in that the past represented by family B 

comes to influence the present of family A), one might then come to expect that the Felix 

family has altered the structure of family B.  
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Figure 4.29. Comparison of the motive in mm. 136–137 with the germinal members of Sonata family A and the Felix family 

 

Figure 4.30. Outlying family A motives before reaching the final refrain 

Measures C-SEG CAS Membership 

in Family A 

Membership 

in Felix 2
nd

 

movement 

family 

Membership in 

Felix episode 

family 

3–4 201354687 -+++-+++- 0.536 0.439 0.575 

16–17 2013201442 -++--++=- 0.560 0.550 0.523 

113–115 000001 ====+ 0.544 0.256 0.312 

115–116 00154321 =++---- 0.591 0.615 0.546 
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In the final restatement of the B motive material, we see that this is the case. 

Family B resurfaces in m. 140 at the beginning of the coda, and the section exhibits a 

similar weakening within the coherence of family B, as shown in the graph of this last 

section in Figure 4.31. The significance of this weakening comes from the fact that it is 

weakened through the introduction of material introduced in the Felix family of the 

second movement, and reinforced in the Felix episode. The theme of the second 

movement is not blatantly reintroduced within family B in this closing coda, but rather 

works underneath the surface to contribute to the motivic variety we see in this section 

with regard to contour.  

Figure 4.31. Graph of motivic membership values of coda motives within family A 

and family B 

 

There are several notable instances within this last B section that feature mid-

range levels of membership in both families A and B: these are the outliers that I 
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discussed previously with regard to family B. These mid-range members occur because 

they seem to include traits from both families, and are also influenced by the Felix family 

through their association within the Felix episode. As a result, they are not as central 

within either Family A or Family B. Take, for example, the motive in mm. 157–158, 

shown in Figure 4.32a: it has 0.483 membership within family A, and 0.519 membership 

within family B. The motive initially does not appear to have very strong audible 

connection to either family, and one may initially dismiss it as a closing gesture. 

However, upon closer examination, one can see resemblances to all three families within 

it. The opening bears resemblance to the opening germ of family A, with one note 

changed that alters the contour of the opening significantly, as shown in Figure 4.32b. In 

the opening, the motive segment in question rises from C5 to E♭5 to G5 before falling 

stepwise to F5 and E♭5 (++--), eventually leading toward a D5 that begins the next 

motive form. In mm. 157–158, the motive in question rises from C♯5 to A5, and then 

falls stepwise to G5, F♯5, and E5 (+---)—a contour change in just a single position. The 

key has changed, as well as the harmonic context, and the rhythm is not as evenly 

distributed in eighth notes as it was in the opening, yet the resemblance is present. 

Additionally, this motivic alteration brings the first half of this motive into alignment 

with one of the motives from the development of the Felix episode: m. 87 (with an 

anacrusis in m. 86) features an identical +---… beginning, which can be seen in Figure 

4.24a. This reproduction of episodic material shows that Brahms is taking that episodic 

development to highlight similarities between all three families, as seen in this particular 

motive in mm. 157–158. 
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Figure 4.32a. The motive in mm. 157–159, exhibiting mid-range membership in both 

families 

 

 This only explains part of the motivic development in these two measures though, 

and we must turn to Family B to explain the rest, as shown in Figure 4.32b. The second 

half of the motive, in m. 158, features a chromatic descent from E5 through E♭5 to D5, 

before falling to F♯4 and rising to G4, for a c-seg of 4332201 and a CAS of -=-=-+. 

On the surface, this doesn’t strongly resemble the core motives of family B, yet the 

trajectory that the coda takes with regard to family B significantly alters its structure, 

such that when listening to the coda, I still hear this segment as associated with family B. 

This segment develops from a previous motive variant in this B section in mm. 152–153. 

It begins with a composed-out ascent from C5 through D5 to E5 for a CAS of ++=, 

similar to the development of the B motive I spoke of earlier in m. 156 (shown in Figure 

4.13, where the +=++ motive was expanded to ++=++= with the use of passing tones), 

and then ends with a similar chromatic descent to that in m. 158, moving from E5 

through E♭5 to D5 and then to C5 before ending with an A♯4 rising to B4. This contour is 

an earlier variant that introduces the idea of the chromatic descent E5-E♭5-D5 as an 

element of family B, yet it is still an outlier, with a rather low membership value of 0.41 

in family B, signifying that this motive variant also has developed away from the core of 



 

200 

 

 

family B. This motive variant in mm. 152–153 can trace its development even further 

back, to the motive in mm. 140–141, where the initial germinal motive of +=++ is 

joined by a descending line that ends with a final chromatic ascent, just as the motives in 

mm. 152–153 and in mm. 156–158. This ending material initially stems from the Felix 

episode, which is based on the Felix motive family of the second movement: a --+= 

motion that is an iconic feature of the family. Despite its origin in the second movement, 

this motion also bears a strong resemblance to the ending of multiple core motive variants 

within earlier refrains, such as mm. 23–24. It is here where we see Brahms once again 

using the similarities between the families to alter the structure of the B family, subtly 

underscoring the presence of the Felix family—and the narrative shift that comes with 

it—within the coda. Specifically, the motive in mm. 23–24 features an ending that varies 

in only two positions (but only one note has changed) when compared to the motive 

opening the coda: the motive form in mm. 140–141 features an ending descent from G5 

down to A♯4 with the chromatic ascent to B4 for a CAS segment of -----+, whereas the 

ending of mm. 23–24 features a descent from G5 down to C♯5, rising to D5 before falling 

to the B♭4, for a CAS segment of mm. 23–24 is ----+-, as shown in Figure 4.17b. This 

strong relationship between the motive form in the closing refrain and the motive form in 

the opening refrain suggests a high degree of membership of the motive here in mm. 

140–141: indeed, we see that this motive has a membership value of 0.81, which 

definitely falls within the core of family B. In essence, Brahms is using the relationship 

between these two motives in order to introduce material from the Felix families into 

family B in this last refrain, and this introduction changes the way family B develops 

throughout the coda, growing less and less similar to the germinal motives of the opening 
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refrain. Returning to the motive in mm. 157–158 then, we can see how it relates to the 

newly developed family B motive variants, yet also why it has comparatively low 

membership value within family B. Its low membership across both families indicates a 

good degree of development within both families, as I have shown in this example. 

 These developmental instances are significant in that these outlying members of 

family B often have higher membership values within one or both of the Felix families 

than they do in family B. The graph in Figure 4.33 shows this in a graph of the coda, 

indicating membership values of family B, as well as the two Felix families. In the graph 

we see a gradual rise in membership values of the Felix family within the motives of the 

coda. These outlying contours therefore seem to have greater resemblance to the Felix 

families than they do to Family B.62 Because of these strong connections between the 

motives here in the coda and the Felix families, Brahms has colored his earlier theme of 

nostalgia with the reminiscences he presented in the second movement.  

  

                                                

62
 Granted, a few of these higher values are only marginally higher, yet I believe overall that this result is 

significant, especially given the larger gaps between the more prominently “Felix-esque” motives. 
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Figure 4.32b. Motivic Transformations toward the motive form in mm. 157–159 
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Figure 4.33. Motivic membership of coda motives within Family A, Family B, and 

both Felix families 

 

In this last refrain, then, we see Brahms’s developmental strategies hard at work. 

The examination of the contours in this section also reveals that the element of contour 

has become less of a unifying parameter and more of a developmental one, as the degrees 

of membership become comingled and also tend to drop off in both families A and B as 

the work draws to a close. Contour no longer serves as an aid to the comprehensibility of 

motive—such a role might be replaced with a combination of rhythmic factors, formal 

factors, and others—and now acts as an element that highlights Brahms’s motivic 

development. Brahms’s intermingling of families and placement of the Felix motive 

elements within the development of both families A and B transforms family B in order 
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to attach the biographical nostalgia onto the abstract nostalgia carried over from the song. 

In doing so, he comes to change the meaning of the nostalgia initially presented in the 

song, and consequently alters the “present” represented by family A as well. In this way, 

Brahms changes the very nature of these motivic identities, bringing the character of 

Felix firmly into both families such that when we reach the final refrain and coda, they 

are forever changed by Felix’s presence. 

 

Conclusion 

When writing the violin sonata in Pörtschach, Brahms wrote that “Here the 

melodies are flying so thick that one must be careful not to step on one” (quoted in Frisch 

1984, 117). Through the lens of contour, we have shed light onto the richly complex 

tapestry of melodic motives that Brahms has masterfully woven together throughout this 

sonata. Both the sonata and the song share significant relationships between motive 

families, and as such, share similar narrative connotations. The song presents a story 

featuring an anonymous narrator experiencing a rainstorm and longing nostalgically to be 

whisked away to memories of his youth spent playing in the rain. Groth’s poetic text is 

set to motives that, when analyzed using the FCM model, mimic the temporal trajectory 

of the work, attaching narrative meaning to the motive families involved. The sonata then 

uses these motive families to build upon the narrative of the song: the introduction of the 

Felix families in the second movement and the third movement episode alter the meaning 

of the nostalgic motives, giving them a character that is no longer anonymous. The 

interaction of these families throughout the sonata in effect makes the story presented in 
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the song about Brahms and his relationship with his young godson—a uniquely personal 

and elegiac addition to Groth’s poem. 63 

Using the FCM model to understand the motivic interactions throughout these 

two pieces illuminates melodic aspects of the work that give additional potential meaning 

to motivic elements that might otherwise seem to “ring hollow” as Frisch claims. The 

intermingling of families toward the end of the third movement, therefore, is not a 

compositional aberration for Brahms, but a deliberate developmental choice that can be 

illuminated and explained in terms of contour. In this analysis, I have shown how an 

examination of contour can be used to highlight these features of Brahms’s mastery of 

motivic development. Using my FCM model for fuzzy contour membership, I have 

shown how cohesive contour families with high membership values among its members 

indicates that contour plays a unifying role, serving as an aid to the comprehensibility of 

the motive, while development occurs in other musical parameters of the work. 

Alternatively, contour families that feature a wider variety of membership values are not 

as cohesive and suggest the presence of development in the pitch and contour domains. In 

this way, the model exposes aspects of development that may have previously been less 

apparent, such as the relationship between contour and narrative in the song, or the large-

scale developmental relationships across the movements of the sonata that point toward a 

                                                

63
 Billroth once commented on the elegiac nature of the sonata, especially at the end of the third 

movement, where we see the influence of Felix upon family B. In a letter to Hanslick, he wrote “It is a 

piece of music entirely in elegy…The feelings are too fine, too true and warm, and the inner self is too full 

of the emotion of one’s heart for publicity” (Billroth 1977, 82-83). Furthermore, Brahms also comments 

that “My sonata is no more useful for publicity than I am myself” (Brahms 1977, 83). Hans Barkan links 

this quotation to his deep personal feelings, and the highly personal nature of the sonata. 
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reconceptualization of the song’s original narrative. Using contour as a way to highlight 

Brahms’s developing variation technique therefore gives us new appreciation for the 

subtle complexities of his motivic mastery. 
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CHAPTER 5: Implications of Phasing for Contour Perception 

in Steve Reich’s The Desert Music 

 

“it is a principle of music 

to repeat the theme. Repeat 

and repeat again, 

as the pace mounts. The 

theme is difficult 

but no more difficult 

than the facts to be 

resolved.” 

 --William Carlos Williams, “The Orchestra” 

 This excerpt from William Carlos Williams’s poem “The Orchestra” (1954) 

serves as text for the third movement of Steve Reich’s The Desert Music (1984), and 

highlights a key aspect of Reich’s compositional philosophy. In his processes of melodic 

phasing, the pattern “repeats and repeats again” until it seems different, due to the 

placement of a melody against itself at various distances of rhythmic displacement. In 

The Desert Music, Reich uses phasing as an element of melodic process, creating regions 

of multilinear melodies that challenge the active listener to hear and understand melody 

in different ways. Contour plays a significant role in the perception of these melodic 

processes, so in this final study, I would like to return to the article from which this 

dissertation began: Ian Quinn’s article on fuzzy extensions to musical contour, and his 

analysis of melodies from The Desert Music. 

 Quinn creates a family of contours from the outer flanks of the third movement in 

order to expound upon his fuzzy model for contour relations. Regarding his melody 

family, which he labels “M,” Quinn writes that “no more than a casual hearing of the 

piece, or a cursory glance at Example 1 [reproduced as Figure 5.1a], is necessary to 



 

208 

 

 

inspire in the observer the intuition that all of the first-violin and flute melodies are of a 

kind. Specifically, they all follow the same rhythmic pattern, and they share a strong 

family resemblance of contour, despite individual differences” (1997, 233). Quinn seems 

to imply that his analysis of the melody family places all members at about 0.7 in 

membership, suggesting that he is correct about familial coherence, but this only raises 

further questions about how the melodies are used in the context of the piece. 

Surprisingly, Quinn has little else to say about the work, which leads me to ask: is his 

familial representation the way listeners really experience the melodies in the context of 

the work? How is this family built throughout the course of the movement? How does the 

coherence of this family tie in with the rest of the work? How does it tie in with what 

Steve Reich says about the work? And what can it say about our experience of minimalist 

music? Many of these questions can influence one’s perception of familial resemblance, 

and may therefore affect the structure of the contour family that Quinn has identified. 

Quinn does not—and I would argue, because of the limitations of his model, cannot—

answer these questions. Granted, Quinn is more concerned with using the family as an 

example for his discourse on the need for fuzziness in contour relations, and in this 

context, the family works quite well. However, I contend that from the standpoint of an 

analysis sensitive to the musical contexts found in The Desert Music, the family falls 

short.  

 In this chapter, I will expand upon Quinn’s analysis, using my model of familial 

contour membership. I will examine the familial coherence that Quinn addresses, but will 

also explore how the temporal unfolding and positioning of family members against one 

another creates a wealth of experiential possibility within the context of these passages. 
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This possibility suggests further connections with phenomenological theories of 

multistability (Ihde 2012, Karpinski 2012), in that it is possible to hear multiple contours 

as the work progresses (few to none of which are actually printed on the page), even 

though the stimulus remains the same. By examining the relationships between the 

melodies in terms of these multistable possibilities, the FCM model provides a more 

sensitive account of the contour relations that a listener may perceive within the music, 

and this will give us a better understanding of Reich’s minimalist processes. 

 

Quinn’s Analysis 

 Ian Quinn claims that his family of melodies, shown in Figure 5.1a, exhibits 

strong family resemblances. However, as we saw in Chapter 1, the actual membership 

values of the crisp contours against Quinn’s fuzzy family range from 0.544 to 0.736. As 

shown in Figure 5.1b, twelve of the sixteen melodies fall below the threshold of 

resemblance of 0.7 that Quinn establishes for potential new members. The FCM model’s 

membership values also suggest a greater degree of variety, as shown in Figure 5.1c and 

Figure 5.1d. This is not to say that there is no resemblance: ranges between 0.506 and 

0.736 still indicate that member melodies are not completely dissimilar (as values below 

0.5 may suggest). Indeed, Quinn suggests this by pointing to the middleground “W” 

shape formed by most of the c-segs in the family (1997, 235). 
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Figure 5.1a. Quinn’s melody family from The Desert Music (Quinn 1997, 234) 
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Figure 5.1b. Membership Values of Quinn’s Family Members Using Quinn’s 

C+SIM Method 

 

 

Figure 5.1c. Membership values of contours in Quinn’s family using the FCM model 

ID Occurrences CSEG CAS Card. of CAS Membership 

M1 14 54361232430 --+-++-+-- 10 0.592 

M2a 9 67430210345 +---+--+++ 10 0.608 

M2b 3 57430210346 +---+--+++ 10 0.608 

M3a 10 87416302453 ---+--+++- 10 0.655 

M3b 3 35412541054 +--++---+- 10 0.556 

M4a 10 87563540251 --+-+--++- 10 0.685 

M4b 3 76454310352 --+----++- 10 0.687 

M5 14 73654102424 -+----++-+ 10 0.546 

M6a 8 75201365431 ---+++---- 10 0.534 

M6b 2 86301576542 ---+++---- 10 0.534 

M6c 2 86324675201 ---+++---+ 10 0.506 

M7a 9 86427413025 ---+--+-++ 10 0.571 

M7b 4 65314201342 ---+--+++- 10 0.654 

M8a 9 75276410253 --+----++- 10 0.687 

M8b 2 75376210354 --+----++- 10 0.687 

M8c 2 64265310243 --+----++- 10 0.687 
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Figure 5.1d. The Fuzzy Family of Quinn’s contours 

 1 2 3 4 5 6 7 8 9 10 

+ 0.144 0.135 0.385 0.365 0.490 0.25 0.356 0.770 0.712 0.356 

- 0.856 0.865 0.615 0.635 0.510 0.846 0.644 0.230 0.384 0.644 

 

 But is this how a listener experiences these melodies in the work? I would say no. 

In the music, each of these melodies identified by Quinn is played against various 

versions of itself displaced by a certain rhythmic value, as well as a contrapuntal melody  

(in the second violins and clarinets) that is also played against various displaced versions 

of itself. Indeed, Steve Reich states that “I wanted to use all the orchestral instruments to 

play the repeating interlocking melodic patterns found in much of my earlier music” 

(Reich 2002, 121). 

 

Reich’s Phasing 

These interlocking melodic patterns refer to Reich’s earlier phasing music, 

wherein melodies would be played against themselves at a certain level of rhythmic 

displacement, termed by Richard Cohn (1992) and John Roeder (2003) as beat-class 

transposition. Cohn and Roeder have discussed this kind of melodic construction, as well 

as the emergent listener experience that results from the polyphonic union of phased 

melodies. Their work on beat-class sets focuses on the properties of the union of the beat-

class set with transpositions of itself that displace the metric pattern by a given number of 

beats. Cohn writes that “As a principal rhythmic pattern is ‘run through’ the phasing 

process, it enters into different transpositional relations with itself. Each ‘prologational 

region’ features a new beat-class set that results from a combination of transpositions of 

the original set…the characteristics of these emergent beat-class sets directly result from 
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properties of the principal beat-class set” (1992, 153). He continues: “In exploring the 

pattern of attack-point frequencies through the various prolongational regions, we are 

essentially inquiring into the cardinality of the union of the principal beat-class set with 

each of its transpositions” (154). Through his analysis, Cohn’s emphasis on the union of 

the beat-class set with its transpositions ultimately yields a composite set that represents 

what is actually heard in terms of attack-points in each region. 

In The Desert Music, as with other later works of Reich’s, the phasing is not 

thoroughly exhausted as it is in the earlier works that Cohn describes. Instead, Reich 

creates the effect of phasing as an element of a larger composition, building it up but not 

exhaustively running through the entire phasing process. While both Cohn and Roeder 

are concerned with the beat-class structure of these kinds of patterns, I am interested in 

the emergent melodic possibilities that arise from the composite patterns that Reich 

creates. Since Reich’s conception of the melodic unit involves the initial pattern 

combined simultaneously with its beat-class transpositions, in order to understand the 

melodic unit, and the subsequent family that Quinn identifies, we need a model capable 

of encompassing the potential ways that a listener can experience the composite pattern 

from a contour perspective. The FCM model’s flexibility with regard to cardinality 

allows us to model this composite in a more nuanced and rhythmically sensitive way. 

Consider Figure 5.2a, which shows a two-measure unit beginning at rehearsal 122 

in the third movement: an instance of what Quinn labels as the melody M1. Here, the flute 

1, doubled in the first violins, presents the main melody beginning on the downbeat of the 
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measure.64 Flute 2 presents the same melody, transposed to begin on the second eighth 

note of the measure—what Cohn and Roeder would call a beat-class transposition of T1. 

Flute 3 presents a similar melody (with the same rhythmic pattern) at a transposition of 

T2, or a quarter note displaced from the downbeat. These transpositions complicate the 

listener’s awareness of the contour of the passage, as the composite pattern obscures the 

individuality of each voice’s melody. 

Among the three lines, there are 21 attack points in the two-measure unit, and it is 

against these points that we can begin to model the emergent melodic possibilities 

inherent within the composite pattern. Each melodic segment can be placed against the 

20-position CAS grid (CAS positions occur between the 21 attack points) by placing each 

motion in its proper metric place in the grid. For example, the descent between the first 

two attack points in the flute 1 melody (the B♭5 to the G5) is placed in position one of the 

20-position CAS grid. 

Figure 5.2a. The melody M1 in the flutes (and first violins), showing the T1 and T2 

phasing 

 

                                                

64
 Note that the three lines in the flutes are always doubled exactly by the first violins (broken into three 

groups). For the sake of this discourse, I shall only make reference to the flute melodies. 
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 Figure 5.2b shows the placement of the flute 1 melody against the 20-position 

CAS grid (each position of which occurs between the 21 attack points in the unit).65 

Figures 5.2c and 5.2d model the flute 2 and flute 3 lines respectively. These placements 

allow an analyst to create a fuzzy representation of the measure as it is experienced in 

time, as shown in Figure 5.2e. The fuzziness of the family arises from the fact that 

multiple lines have differing motions at the same point in time, and this fuzzy multilinear 

representation captures that by modeling the probability of these differing motions to 

occur at a particular point throughout the passage. Figure 5.2e shows the fuzzy 

multilinear representation of the two-measure unit, encompassing all three lines shown in 

Figures 5.2b, 5.2c, and 5.2d. What we see is that there are certain places where the 

contour is clear, in the positions that present 1.0 membership. These positions arise either 

because only one line is sounding at that moment, or that all sounding lines are in 

agreement with regard to contour at that moment. Other positions become fuzzier, 

because the lines are moving in different directions due to their transposition.  

Furthermore, Roeder points out that in many of his later works, Steve Reich’s 

compositional strategy involves the gradual build-up of the phasing pattern in order to 

resemble the gradual process of his earlier phasing compositions. Roeder writes that 

“They are not exhaustively phased; more typically, they appear in two- or three-voice 

canons at fixed, not varying, temporal intervals. Moreover, the pieces often feature 

‘build-ups’ in which an entering voice, beginning with one attack and adding attacks with 

each iteration, gradually assembles a complete beat-class transposition of a pattern 

                                                

65
 Motions between gaps are marked on their initial side. For example, the gap between position 4 and 

position 8 indicates that there are rests in between on positions 5-8. 
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Figure 5.2b. Placement of CAS of M1T0 (flute 1) against articulation grid66 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0 0 1.0 0 0 0 0 1.0 1.0 0 0 0 0 1.0 0 0 0 0 0 0 

- 1.0 1.0 0 1.0 0 0 0 0 0 1.0 0 0 0 0 0 1.0 1.0 0 0 0 

 

Figure 5.2c. Placement of CAS of M1T1 (Flute 2) against the articulation grid 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0 0 0 0 1.0 0 0 0 0 1.0 1.0 0 0 0 1.0 0 0 0 0 0 

- 0 1.0 0 1.0 0 1.0 0 0 0 0 0 1.0 0 0 0 0 0 1.0 1.0 0 

 

Figure 5.2d. Placement of CAS of M1T2 (Flute 3) against the articulation grid67 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 1.0 0 0 1.0 0 1.0 1.0 0 0 0 0 1.0 1.0 0 0 1.0 0 0 0 0 

- 0 0 0 0 0 0 0 1.0 0 0 0 0 0 1.0 0 0 0 0 0 1.0 

 

Figure 5.2e. Fuzzy multilinear representation of M1 at rehearsal 122 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.5 0 1.0 0.333 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 0 0 0 0 

- 0.5 1.0 0 0.667 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 1.0 1.0 1.0 1.0 

                                                

66
 Note that these CAS grids do not have a row representing the plateau motion (=) because these melodies do not make use of the plateau motion. 

67
 This contour is slightly different as, in its rotation, begins with an ascent, not a descent. 
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repeating concurrently in another voice” (2003, 276).68 Figure 5.3a shows rehearsals 

120–126: the build-up and repetition of the M1 composite pattern. The first two iterations 

(rehearsals 120–121) occur in only one voice, such that there is no ambiguity in terms of 

melodic identity. Beginning at rehearsal 121, however, flutes 2 and 3 begin to build up 

their variants of the M1 melody, compromising the clarity with which a listener might 

hear the original melody presented at rehearsal 120. These variants become fully formed 

at rehearsal 122, and the three voices continue in their phased relationship until the end of 

the section at rehearsal 126. 

Figures 5.3b–d show an analysis of the diachronic build-up of the passage. In this 

analysis, membership values for each M1 variant are continually adjusted as each 

iteration of the two-measure unit is introduced into the family. These continual 

adjustments reflect the listener’s experience of increasing complexity as the passage 

unfolds. The first three iterations of the pattern in the M1 region possess 1.0 membership, 

reflecting the clarity of the single line, as shown in the chart in Figure 5.3b and the graph 

in Figure 5.3d.69 After these lines, the membership values of the original M1 melody 

begin to drop as the build-up of M1(T1) and M1(T2) in flutes 2 and 3 begins. As these 

build-ups in flutes 2 and 3 become incorporated into the family, the crisp positions of the 

M1T0 melody in the CAS grid become compromised, resulting in values lower than 1.0. 

This reflects the loss of clarity that begins to occur as these additional lines introduce 

Reich’s phasing. As each iteration is added into the family of the melody, one can see 

                                                

68
 The term “build-up” is used by Reich to describe his compositional strategy in these kinds of passages.  

69
 The third iteration is relatively unproblematic, since it is measured against a family that only includes 

the M1(T0) version.  
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that the clear comprehension of the original M1 melody becomes compromised. By the 

time all iterations of M1 have been heard, the T0 version’s identifiability within the 

context of the composite pattern has dropped from 1.0 down to 0.757. Meanwhile, the 

phased versions experience an increase in membership as the repetitions of the full 

pattern continue.70 These combined membership values indicate that the melody itself in 

this phased context is fuzzy, containing multiple possibilities for hearing the particular 

contour of the pattern.71 

The patterns we see in the build-up of the M1 region occur in many other areas of 

the work as well. The other movements of The Desert Music exhibit exactly this kind of 

phasing, and as such, understanding the tendencies that the phasing process creates is 

crucial to understanding both the structure and the listening experience of the work. 

Returning to Quinn’s melodies then, the sixteen melodies fall into eight of these phasing 

regions (reflected in Quinn’s labeling of melodies as 1–8, with letter differences 

differentiating slight modifications that occur within each region). The form diagram in 

Figure 5.4 shows the breakdown of these regions. Figure 5.5a–h shows the eight fuzzy 

multilinear families of each of these regions, which incorporate all melodies in each 

region, as shown in Figure 5.4.

                                                

70
 Again, since the initial fragments occurring in lines 3 and 4 are occurring against the single crisp contour 

of the M1(T0) melody, their initial values are high, but as their full pattern emerges in line 5, the values 

become much lower. 

71
 This potentiality is emphasized more in the timbral and registral uniformity of the instruments involved 

in the phasing of this melody. Such uniformity limits one’s ability to segregate streams on the basis of 

timbre and register. 
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Figure 5.3a. Flute lines from rehearsal numbers 120-126, showing the build-up of phasing in the M1 region 
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Figure 5.3b. Graduated analysis of membership values through the build-up of the M1 region 

Iteration of M1 

composite 

Membership 

M1(T0) (flute 1) 

Membership 

M1(T1) (flute 2) 

Membership 

M1(T2) (flute 3) 

1st time 1.0 -- -- 

2 1.0 -- -- 

3 1.0 1.0 0.75 

4 0.975 0.9 0.55 

5 0.967 0.6 0.363 

6 0.873 0.806 0.511 

7 0.835 0.808 0.54 

8 0.812 0.810 0.558 

9 0.789 0.811 0.570 

10 0.785 0.812 0.578 

11 0.771 0.813 (0.8126) 0.586 

12 0.770 0.813 (0.8129) 0.591 

13 0.765 0.813 0.595 

14 0.761 0.814 (0.8136) 0.598 

FINAL 

MEMBERSHIP 

0.757 0.814 (0.8139) 0.601 

 

Figure 5.3c. The Final Version of the Fuzzy Multilinear Family of M1 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.44 0 1.0 0.278 1.0 0.5 1.0 0.538 1.0 0.417 1.0 0.5 1.0 0.583 1.0 0.417 0 0 0 0 

- 0.56 1.0 0 0.722 0 0.5 0 0.461 0 0.583 0 0.5 0 0.417 0 0.583 1.0 1.0 1.0 1.0 
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Figure 5.3d. Graph of membership value development in the M1 region 

 

 

 From these families, we can make a few observations about Reich’s melody 

regions. First, many areas of crispness exist within each family: with the exception of the 

M3 family, each family possesses 1.0 crispness in over half of its twenty respective CAS 

positions. For example, the M1 fuzzy multilinear family has 1.0 values in twelve CAS 

positions, and the M2 fuzzy multilinear family has seventeen 1.0 values in its CAS 

representation. Such crispness ultimately suggests that listeners can perceive these 

patterns of clear contour within the passage, especially in cases such as the M2 region that 

feature large strings of crisp motions. 
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Figure 5.4. Form diagram of The Desert Music, movement III, showing where the melodies in Quinn’s family occur 

FORM A B A’ 

REGION -- M1 M2 M3 M4 -- -- M5 M6 M7 M8 -- 

MELODY a b a b a b a b c a b a b c 

REHEARSAL 
NUMBERS 

116 120 126 129 130 133 134 137 138 160 211 212 218 223 224 225 230 232 237 238 239–
250 

 

Figure 5.5a. M1 Fuzzy Multilinear Family 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.44 0 1.0 0.278 1.0 0.5 1.0 0.538 1.0 0.417 1.0 0.5 1.0 0.583 1.0 0.417 0 0 0 0 

- 0.56 1.0 0 0.722 0 0.5 0 0.461 0 0.583 0 0.5 0 0.417 0 0.583 1.0 1.0 1.0 1.0 

 

Figure 5.5b. M2 Fuzzy Multilinear Family 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 1.0 0 0.645 0 0.5 0 0 1.0 0 1.0 0 1.0 0 0 0.55 1.0 1.0 1.0 1.0 1.0 

- 0 1.0 0.355 1.0 0.5 1.0 1.0 0 1.0 0 1.0 0 1.0 1.0 0.45 0 0 0 0 0 

 

Figure 5.5c. M3 Fuzzy Multilinear Family 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.364 0.727 0.15 0.727 0.136 0 0.591 0 0.5 0 0.545 0.333 0.136 0.769 0.455 0.667 0.333 0.667 1.0 0 

- 0.636 0.273 0.85 0.273 0.864 1.0 0.409 1.0 0.5 1.0 0.455 0.667 0.864 0.231 0.545 0.333 0.667 0.333 0 1.0 

 

  



 

223 

 

 

Figure 5.5d. M4 Fuzzy Multilinear Family 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.458 0 0.591 0 0.5 0 0.410 0 0.476 0 0.273 0 0.333 0 0.591 1.0 0 1.0 0 1.0 

- 0.542 1.0 0.410 1.0 0.5 1.0 0.591 1.0 0.524 1.0 0.727 1.0 0.667 1.0 0.410 0 1.0 0 1.0 0 

 

Figure 5.5e. M5 Fuzzy Multilinear Family 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.417 1.0 0.5 1.0 0.583 1.0 0.417 0 0 0 0 0 0 0.583 1.0 0.333 1.0 1.0 1.0 1.0 

- 0.583 0 0.5 0 0.417 0 0.583 1.0 1.0 1.0 1.0 1.0 1.0 0.417 0 0.667 0 0 0 0 

 

Figure 5.5f. M6 Fuzzy Multilinear Family 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.454 0 0 0 0 0 0.571 1.0 1.0 1.0 0.429 1.0 0.5 1.0 0 0 0.167 0 0.182 0 

- 0.545 1.0 1.0 1.0 1.0 1.0 0.429 0 0 0 0.571 0 0.5 0 1.0 1.0 0.833 1.0 0.818 1.0 

 

Figure 5.5g. M7 Fuzzy Multilinear Family 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.414 1.0 0.222 1.0 0 0 0.619 0 0.5 0 0.381 0 0 1.0 0.182 1.0 0.211 1.0 1.0 0.692 

- 0.586 0 0.778 0 1.0 1.0 0.381 1.0 0.5 1.0 0.619 1.0 1.0 0 0.818 0 0.789 0 0 0.307 

 

Figure 5.5h. M8 Fuzzy Multilinear Family 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.409 0 0.710 0 0.45 0 0.375 0 0 0 0 0 0 0 0.591 1.0 0.48 1.0 1.0 1.0 

- 0.591 1.0 0.290 1.0 0.55 1.0 0.625 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.409 0 0.52 0 0 0 
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Second, these crisp areas give us an insight into the unique properties of these 

particular melodies, since they afford the opportunity to create regions with crisp contour, 

despite the potential of the phasing process to create conflict with regard to contour (as 

seen in the M3 region). Consider Figure 5.6, which shows a fully-phased occurrence of 

M5 at rehearsal 214. We see multiple forces at work in this passage that contribute to the 

crispness displayed in M5’s fuzzy multilinear family. First, strategic rests during attacks 

9, 10, 11, and 12 in M5T0 open space for the contours of the M5T1 and M5T2 melodies to 

emerge, resulting in the long uninterrupted descending string that we see in positions 8-

13 in the fuzzy multilinear family.72 Similarly, the held note at attack point 7 in M5T2 

permits these descents to be heard more fully, since they are the moving lines. Finally, 

repeating motions, such as the double descent from the A5 to the F♯5 highlighted with 

brackets in the figure, allow for overlapping of fragments that results in a long string of 

non-competing motions. These features of Reich’s melodies are important to note 

because, although they occur frequently throughout this piece, the same cannot be said of 

just any melody, suggesting a compositional desire on the part of Reich for these 

emergent patterns to occur within the work. 

  

                                                

72
 This same phenomenon also contributes to the string of ascents heard at the end of the pattern. 
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Figure 5.6. M5 in the flutes, showing the T1 and T2 phasing in flute 2 and flute 3 

respectively 

 

Third, the placement of these crisp regions can set up expectations with regard to 

pattern completion and the formal structure of each region. In some families, the crisp 

regions begin intermittently, with either one or two positions in a row. The M8 family, for 

example, features intermittent crisp motions in positions two, four, and six. Such 

crispness does not continue beyond a single position until position eight. However, two 

significant areas within the CAS grid possess longer strings of crispness in many of the 

families. First, a long string of crispness occurs around position eight, which is toward 

the end of the first measure of the two-measure pattern. For example, a long string of 

crispness occurs from positions six to fourteen in M2, and similar strings occur in 

positions eight through 13 in M5, in positions eight through ten in M6, and in positions 

eight through fourteen in M8. This string of crispness occurs in about half of the fuzzy 

families, although others also possess more isolated instances of crispness at position 8, 

which still contributes to this perception. A second, even stronger tendency for crispness 

occurs at the end of the pattern itself. In all but M7, the fuzzy multilinear families possess 

strings of crispness at least two positions long (but more commonly ranging to four or 

five positions). Such strong crispness may become an indicator of “ending” that the 

listener may be able to perceive as the pattern moves through its various repetitions, in 

essence becoming a convention of these multilinear melody units. 
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These melodic tendencies come to the forefront as the pattern repeats, making it 

important to also discuss the build-up of these units, as the gradual process of phasing the 

melody will result in changes to our perception of the passage’s contour. In the M1 

region, we saw that the build-up of the phasing began to challenge the originally clear 

perception of the M1T0 melody. As iterations of the phasing were introduced, lower 

membership values for M1T0 indicated that its primacy within the pattern became less 

stable, as the two phased melodies gradually became more stable, as shown in Figure 

5.3b and Figure 5.3d. Analyzing the build-up of each melody region shows us that all of 

the melodies follow this pattern (complete analyses of each melody region appear in 

Appendix 2). In each melody region, the phasing process begins with the crisp statement 

of the T0 melody, and then that melody gradually becomes obscured by the phasing 

process. For example, consider the build-up of the M7 region, shown in Figures 5.7a and 

7b. In this analysis, we see two forces at work. First the phasing process has caused the 

membership values of the T0 version to drop from 1.0, while the transposed melodies 

gradually rise in membership as each iteration is added. Second, the M7 region features a 

melodic change after the ninth iteration, as shown in Figure 5.7c. This change alters two 

of the CAS positions, causing the familial membership values to drop for the T0 and T1 

versions, as this initial hearing of the altered melody is unexpected. However, the T2 

version rises in membership. Therefore, this addition of altered melody further 

complicates our ability to perceive these melodic versions. Our perception recovers 

slightly as new iterations are heard, but these complicating factors challenge one’s sense 

of what “the melody” is, giving way to new possibilities for perception that are reflected 

in the fuzzy multilinear families of Figure 5.5. 
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Figure 5.7a. Gradual membership of M7 melodies within the evolving M7 

multilinear family 

Iteration of M7 

composite 

Membership 

M7(T0) (flute 1) 

Membership 

M7(T1) (flute 2) 

Membership 

M7(T2) (flute 3) 

1st time 1.0 -- -- 

2 1.0 -- -- 

3 1.0 0.333 0.333 

4 1.0 1.0 1.0 

5 1.0 0.400 0.400 

6 0.938 0.770 0.720 

7 0.910 0.782 0.748 

8 0.894 0.789 0.764 

9 0.883 0.793 0.773 

10 0.691 0.694 0.788 

11 0.705 0.706 0.787 

12 0.715 0.715 0.787 

13 0.724 0.722 0.787 

FINAL 

MEMBERSHIP 

0.732 0.727 0.786 

 

Figure 5.7b. Graph of Membership Value across the M7 Region 
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Figure 5.7c. Comparison of phased M7a and M7b melodies, showing where the CAS 

changes 

 

 

Multistable Perceptions 

 The possibilities inherent in the fuzzy multilinear families open the door for 

multiple possible hearings of each pattern, and this multiplicity is an important aesthetic 

quality that Steve Reich cultivates in his music. About Reich’s music, Paul Hillier writes 

that his “special brilliance lies in making apparently simple melodic/rhythmic states yield 

surprising aural ambiguities, so that our sense of a phrase’s identity—its beginning and 

end, or the precise location of its downbeat or principle accents—may suddenly shift as 

new light is shed on it from within” (Hillier 2002, 4-5). Similarly, Reich himself writes 

that “In this way, one’s listening mind can shift back and forth within the musical fabric, 

because the fabric encourages that…But if you don’t build in that flexibility of 

perspective then you wind up with something extremely flat-footed and boring” (Reich 
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2002, 130). The musical design itself is about possibilities, suggesting intentional 

ambiguity regarding the perception of these kinds of passages.  

 Reich’s words call to mind ambiguities inherent in many visual phenomena. 

Images such as the Necker cube (Necker 1832, Fournier 2010, Karpinski 2012), the duck-

rabbit (Ogden 2010, Karpinski 2012), the Rubin vase/face illusion (Rubin 1958, Fournier 

2010), and many others (shown in Figure 5.8) possess an inherent ambiguity that causes 

the viewer of the image to “shift back and forth” between two or more different 

interpretations (i.e., different faces of the cube, the vase or faces, and the duck or the 

rabbit). The kind of ambiguity we see in these images is termed multistability.  

 

Figure 5.8. Multistable visual phenomena (Necker 1832, Rubin 1958, Fourner 2010, 

Ogden 2010, Karpinski 2012) 
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 Consider Figure 5.9a, which shows another visual stimulus that is multistable in 

its perception. Don Ihde writes that one could view the image either as a hallway, or as a 

cut-off pyramid (2012, 47). Ihde uses this figure to illustrate a series of hierarchical levels 

of perceptual awareness that occur when presented with figures such as these. Those 

experiencing the first level, which he terms “literal-mindedness” only see one of the 

multiple possibilities in a figure, and cannot see others.73 Those in the second level, 

which Ihde terms “polymorphic-mindedness” are able to see both the hallway and the 

cut-off pyramid (albeit not at the same time). The ability of the viewer at this level to 

switch between perceptions at will becomes permanent at this stage and the viewer will 

no longer be able to return to the literal-mindedness of the previous level (Ihde 2012, 45-

50). 

Figure 5.9a. Ihde’s pyramid/hallway diagram (Ihde 2012, 47) 

 

                                                

73
 In visual phenomena, such as these, Ihde asserts that this “literal-mindedness” level occurs at a level 

lower than that with which most of us begin, since most will see both the hallway and the pyramid within a 

few moments. However, I contend that when we discuss multistability in the auditory realm, listeners 

experience this “literal-mindedness” level much more often, especially when listening passively. 
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 This second level opens a possibility for more active observation of the figure, 

allowing the viewer not only to see both initial possibilities, but also allows us to ask 

what further interpretations could exist within the figure. Ihde posits a third 

interpretation: “Suppose, now, the figure is presented again, only this time there is a third 

response from a group of people viewing the drawing. This new group, temporarily 

placed at the literal-minded level, claims the figure is neither a hallway nor a pyramid, 

but is a headless robot” (2012, 51), shown in Figure 5.9b. He continues:  

This new modification of polymorphic-mindedness introduces a new variable and 

a new question. If what was taken to be the appearance of the noema has given 

way to two alternate appearances, and these have now given way to a third, has 

the range of noematic possibilities been exhausted?...The new element points to 

the inherent radicalism of variational method. The possiblilization of a 

phenomenon opens it to its topographical structure. The noema is viewed in terms 

of an open range of possibilities and these are actively sought noetically. Thus, a 

special kind of viewing occurs, which looks for what is not usually seen. (Ihde 

2012, 53)74 

 

In this depiction, Ihde illustrates a switch from what Husserl would call a natural attitude 

to a phenomenological one, wherein the viewer begins to discover the “genuine 

possibilities and the invariants inhabiting those possibilities” (Ihde 2012, 50) within the 

figure. This phenomenological attitude seeks a level of richness within the phenomenon 

that passive observation associated with the natural attitude lacks. 

  

                                                

74
 In Husserlian phenomenology, a noema is an intentional object, an object of thought or perception (Ihde 

2012, 25–26) 
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Figure 5.9b. Ihde’s guide picture depicting the multistable image as a headless robot 

(Ihde 2012, 51) 

 

 

 It is this richness of possibility inherent within multistable visual phenomena that 

I believe is analogous to Reich’s compositional desires, which is further reinforced by yet 

another quote from Williams’s “The Orchestra” that Reich chose to set in the second 

movement: “I am wide awake. The mind is listening” (Williams 1986, 251). Reich’s 

musical fabric encourages the active phenomenological perspective through the 

experience of perceptual possibilities, which occur through the context of repetition.  

 This repetitive structure is crucial to the multistability analogy for minimalist 

music. Ihde, Karpinski (2012), and others note that in the visual realm, a key 

characteristic of multistability that distinguishes it from other kinds of ambiguity is that 

the perceptual shift between possibilities occurs without the figure actually changing at 

all. Since the nature of music is fleeting, the use of repetition is a way to capture this kind 

of stasis on the part of the (in this case, musical) stimulus. The repetitions afford the 

listener the same kind of sense that they are hearing “the same figure” in the repetitions 

of a musical pattern, just as they would understand that they are looking at “the same 
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figure” in the visual stimulus examples. In the context of these repetitive figures, it 

becomes possible for the active listener to hear the repeated passages in different ways. 

Consider Figure 5.10a, which shows a highly repetitive, yet seemingly simplistic passage 

from Philip Glass’s Two Pages. In this passage, the D-E♭-F passage is repeated so many 

times (nineteen to be exact), that the listener begins to perceive a kind of stasis in the 

unchanging repetitions of the figure. The active mind then is able to move beyond the 

literal-mindedness of the initial contour pattern they hear, in order to perceive two other 

possible contour patterns within the unchanging passage, as shown in Figure 5.10b. The 

first possible pattern takes the ascent from D to F to be the structurally organizing 

framework (i.e., placing the lowest pitch as the perceived downbeat), the second may 

structure perception around hearing the upper corner of the pattern created by the E♭-F-D 

figure as important, and finally the third possibility treats the highest notes (F) as 

structural downbeats, placing them at the beginning of each repeated unit. Additionally, 

the timespan of the repetitions gives the listener time to explore the perceptual shift that 

happens when one is aware of each of these patterns. Therefore, actively attending to 

different structural organizations within the unit opens the listener to possibilities beyond 

a literal-minded hearing of the passage. 

Figure 5.10a. Excerpt from Philip Glass’s Two Pages 
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Figure 5.10b. Multistability of contour perception within the static passage from 

Glass’s Two Pages 

 

 

Multistability in Reich’s Music 

Indeed, scholars of Reich’s music have commented that this kind of perception 

takes place in Reich’s phasing music as well, given a mind that is attuned to this kind of 

phenomenological attitude. Regarding Reich’s earlier phasing piece Phase Patterns 

(1970), Richard Cohn discusses potential ways one could experience the patterns of the 

work. He writes that his analysis focused “on the assumption that variations in attack-

point frequency are a primary component of the listening experience” (1993, 157). 

However, he acknowledges that other possible ways of hearing are possible depending on 

what kinds of parameters one considers important. He explains that if one were to attend 

instead to attack density rather than attack frequency, one would “be susceptible to a 

different phenomenological interpretation: while the total number of attacks intensifies to 

maximum, the number of doubled attacks deintensifies, at the same rate, to zero. A 
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listener exclusively attuned to such relations will thus have a different teleological 

experience than a listener attuned to variations in attack-point density” (157). 

 Similarly, Roeder’s analysis of accent patterns in Reich’s music illustrates how 

the repetitiveness that is unique to minimalist music permits listeners to attend to 

different kinds of accents and subsequent patterns that they create within the repetitive 

framework of the music. Regarding the build-up of a pattern in New York Counterpoint 

(1985), he writes that “when a pattern is building up, the accent one attributes to its attack 

varies considerably with the degree of completeness of the pattern. When one attends to 

accent, one hears hardly any exact repetition in this nominally ‘repetitive’ music” (2003, 

287). In this quote, Roeder describes a listener who is attending to a specific parameter, 

and as a result hears different patterns within the repetitive context of the music. Such 

analyses describe the potential inherent within Reich’s musical structures that allow for 

multistable perceptions of the same passage to occur. 

Returning then to the quasi-phased passages in The Desert Music, we see that 

Reich’s conception of melody in this passage is inclusive of this multistability, or 

“flexibility” as he calls it. Such flexibility allows active listeners to attend in different 

ways to the passage, and the relative stability or ease with which these ways are 

perceived can be measured by placing the perception against the fuzzy multilinear 

families shown in Figure 5.5, and calculating the potential membership that this 

perception may have within the family. When listening to the M1 region for example, a 

listener intent on preserving the untransposed M1 melody that began the section may 

continue to hear that pattern. Figure 5.11 shows this alignment: the positions highlighted 

in red indicate M1T0’s pathway through the M1 region’s multilinear space that the grid 
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represents. Aligned against the family in this way, the M1T0 pattern produces a 

membership value of 0.757, suggesting that this hearing is possible (and indeed probable 

given the relatively high value), but requires some degree of active engagement on the 

part of the listener (in other words, it may not be a passive hearing) given the interference 

created by M1T1 and M1T2 that contribute to M1T0’s non-1.0 membership value.75 Figures 

5.12a and 5.12b present an alternative potential hearing of the M1 region’s multilinear 

family: a listener attending to the uppermost line of the composite melody presented in 

Figure 5.12a may hear an oscillation of ascent and descent, as highlighted by the line’s 

CAS <=-+-+-+-+-+-+-+-+-+->, carrying a membership of 0.688 within the M1 region’s 

fuzzy multilinear family, shown in Figure 5.12b.76 Conversely, a listener attentive to 

overall contour may perceive the pattern according to the crisp motions within the M1 

region’s CAS grid (as shown in Figure 5.13), and following the most dominant path in 

positions where multiple directional motions are occurring simultaneously. Such a 

hearing would produce a potential CAS of --+-+++++-+++++----, which has a 

membership value of 0.828 within M1’s fuzzy multilinear family.77 This would reflect the  

                                                

75
 The calculation of this membership value is calculated based on the pathways highlighted in Figure 5.11, 

and is as follows: (0.56 + 1 + 1 + 0.722 + 0.538 + 1 + 0.583 + 0.583 + 0.583 + 1) / 10 = 0.757. 

76
 The line of zeros in Figure 5.12b represents the fact that there are no plateaus in any of the individual 

melodies that make up the fuzzy multilinear family. However, the composite shown in Figure 5.12a 

highlights a possibility that a listener may hear a plateau in the composite melody. This hearing is 

accounted for in position one of Figure 5.12b, where the motion between the two B5s is perceived, despite 

its presence in the family. This lessens this potential hearing’s overall membership value. The calculation 

for this hearing is as follows: (0 + 1 + 1 + 0.722 + 1 + 0.5 + 1 + 0.461 + 1 + 0.583 + 1 + 0.5 + 1 + 0.417 + 

1 + 0.583 + 0 + 1 + 0 + 1) / 20 = 13.766 / 20 = 0.688. 

77
 This best-fit CAS actually yields four equal possibilities because there are two positions (positions 6 and 

12) that are evenly distributed between ascent and descent. This further contributes to the flexibility with 

which a listener may be able to switch between possibilities upon multiple hearings of the pattern. As with 

the calculations in Figure 5.11 and Figure 5.12, this membership value is calculated by finding the sum of 

the values highlighted in red, and dividing by the number of highlighted values (in this case, 20). 
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Figure 5.11. Alignment of M1T0 against the fuzzy multilinear family of the M1 region 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.44 0 1.0 0.278 1.0 0.5 1.0 0.538 1.0 0.417 1.0 0.5 1.0 0.583 1.0 0.417 0 0 0 0 

- 0.56 1.0 0 0.722 0 0.5 0 0.461 0 0.583 0 0.5 0 0.417 0 0.583 1.0 1.0 1.0 1.0 

 

Figure 5.12a. Composite melody of the M1 region 

 

Figure 5.12b. Alignment of composite contour against the fuzzy multilinear family of the M1 region 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.44 0 1.0 0.278 1.0 0.5 1.0 0.538 1.0 0.417 1.0 0.5 1.0 0.583 1.0 0.417 0 0 0 0 

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

- 0.56 1.0 0 0.722 0 0.5 0 0.461 0 0.583 0 0.5 0 0.417 0 0.583 1.0 1.0 1.0 1.0 

 

Figure 5.13. Potential alignment that follows highest-valued motions against the fuzzy multilinear family of the M1 region 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.44 0 1.0 0.278 1.0 0.5 1.0 0.538 1.0 0.417 1.0 0.5 1.0 0.583 1.0 0.417 0 0 0 0 

- 0.56 1.0 0 0.722 0 0.5 0 0.461 0 0.583 0 0.5 0 0.417 0 0.583 1.0 1.0 1.0 1.0 
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least conceptually challenging pathway on the part of the listener, although this may not 

directly suggest that this is the most probable hearing. More likely, a listener may hear 

some variant combination of these possibilities, depending on what the active listener is 

attending to. Furthermore, as the passage repeats nine times, there is potential for 

listeners to experience the passage slightly differently each time it is heard. The result is a 

number of possible interpretations of the passage, each possessing a specific relationship 

(as indicated by the membership value) to the fuzzy multilinear family. 

This potential is significant because it is what enables the listener to perceive the 

potential relatedness between the melodies (and thus corresponding regions) that Quinn 

highlights. Figure 5.14a, for example, shows the beginning of the next section, containing 

the melody M2a. The CAS of this melody, <+---+--+++>, has a best-fit membership value 

of 0.771, suggesting that it is a contender among the possibilities inherent within the 

fuzzy multilinear family of M1, as shown in Figure 5.14b.78 Indeed, the melody’s best-fit 

membership value falls within the range of membership values exhibited by the various 

transpositions of M1, which range from 0.601 to 0.814 as shown in the chart in Figure 

5.15. 

This is not to say that the listener will easily hear this, intentionally pick this 

contour out of the fuzzy multilinear structure, or indeed even perceive this relationship at 

all in the continuous hearing of the work. This relationship is significant, however, in that 

M2a’s retrospective relationship to the M1 region promotes a smoother transition between    

                                                

78
 The calculation is as follows: (0.44 + 1.0 + 0.722 + 0.5 + 1 + 0.461 + 0.583 + 1 + 1 + 1) / 10 = 7.706 / 

10 = 0.771. 
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Figure 5.14a. Melody 2a in the flute 

 

Figure 5.14b. CAS of M2a against the multilinear composite family of M1, showing best fit 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.44 0 1.0 0.278 1.0 0.5 1.0 0.538 1.0 0.417 1.0 0.5 1.0 0.583 1.0 0.417 0 0 0 0 

- 0.56 1.0 0 0.722 0 0.5 0 0.461 0 0.583 0 0.5 0 0.417 0 0.583 1.0 1.0 1.0 1.0 

 

Figure 5.15. Membership values of transposed variants within their own family, as well as best fit of the melody against 

preceding fuzzy families  

ID Alignment M1 M2 M3 M4 M5 M6 M7 M8 

M1 T0: (1,2,3,4,8,9,10,14,16,17) 0.757  

T1:(2,4,5,6,10,11,12,15,18,19) 0.814 

T2:(1,4,6,7,8,12,13,14,16,20) 0.601 

Best Fit 0.881 

M2a T0:(1,2,3,7,8,9,13,15,16,17)  0.883  

T1:(1,3,4,5,9,10,11,14,17,18)  0.914 

T2:(3,5,6,7,11,12,13,15,19,20)  0.860 

Best Fit 0.771  

M2b T0:(1,2,3,7,8,9,13,15,16,17)  0.883 

T1:(1,3,4,5,9,10,11,14,17,18)  0.914 

T2:(3,5,6,7,11,12,13,15,19,20)  0.860 

Best Fit 0.771  
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ID Alignment M1 M2 M3 M4 M5 M6 M7 M8 

M3a T0:(1,5,6,7,11,13,14,15,19,20)   0.763  

T1:(1,2,3,7,8,9,12,15,16,17)  0.633 

T2:(1,3,4,5,9,10,11,13,17,18)  0.705 

Best Fit 0.900  

M3b T0:(1,5,6,7,11,13,14,15,19,20)  0.700 

T1:(1,2,3,7,8,9,12,15,16,17)  0.485 

T2:(1,3,4,5,9,10,11,13,17,18)  0.480 

Best Fit 0.850  

M4a T0:(1,2,3,7,9,10,11,15,16,17)   0.752  

T1:(3,4,5,8,11,12,13,16,18,19)  0.785 

T2:(1,5,6,7,9,13,14,15,18,20)  0.664 

Best Fit 0.810  

M4b T0:(1,2,3,7,9,10,11,15,16,17)  0.757 

T1:(3,4,5,8,11,12,13,16,18,19)  0.830 

T2:(1,5,6,7,9,13,14,15,18,20)  0.697 

Best Fit 0.865  

M5 T0:(1,5,7,8,9,13,14,15,16,20)   0.800  

T1:(1,2,3,6,9,10,11,14,16,17)  0.767 

T2:(3,4,5,7,11,12,13,16,18,19)  0.800 

Best Fit 0.959  

M6a T0:(1,2,3,7,9,10,11,15,16,17)   0.852  

T1:(3,4,5,8,11,12,13,16,18,19)  0.875 

T2:(1,5,6,7,9,13,14,15,18,20)  0.838 

Best Fit 0.767  

M6b T0:(1,2,3,7,9,10,11,15,16,17)  0.852 

T1:(3,4,5,8,11,12,13,16,18,19)  0.875 

T2:(1,5,6,7,9,13,14,15,18,20)  0.838 

Best Fit 0.767  
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ID Alignment M1 M2 M3 M4 M5 M6 M7 M8 

M6c T0:(1,2,3,7,9,10,11,15,16,17)  0.785 

T1:(3,4,5,8,11,12,13,16,18,19)  0.811 

T2:(1,5,6,7,9,13,14,15,18,20)  0.838 

Best Fit 0.883  

M7a T0:(1,5,6,7,11,13,14,15,19,20)   0.833  

T1:(1,2,3,7,8,9,12,15,16,17)  0.768 

T2:(1,3,4,5,9,10,11,13,17,18)  0.731 

Best Fit 0.699  

M7b T0:(1,5,6,7,11,13,14,15,19,20)   0.732  

T1:(1,2,3,7,8,9,12,15,16,17)  0.727 

T2:(1,3,4,5,9,10,11,13,17,18)  0.786 

Best Fit 0.699  

M8a T0:(1,2,3,7,8,9,13,15,16,17)   0.803 

T1:(1,3,4,5,9,10,11,14,17,18)  0.762 

T2:(3,5,6,7,11,12,13,15,19,20)  0.804 

Best Fit 0.915  

M8b T0:(1,2,3,7,8,9,13,15,16,17)  0.803 

T1:(1,3,4,5,9,10,11,14,17,18)  0.762 

T2:(3,5,6,7,11,12,13,15,19,20)  0.804 

Best Fit 0.915  

M8c T0:(1,2,3,7,8,9,13,15,16,17)  0.803 

T1:(1,3,4,5,9,10,11,14,17,18)  0.762 

T2:(3,5,6,7,11,12,13,15,19,20)  0.804 

Best Fit 0.915  
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regions that are already marked with jarring changes of texture (drastic reduction of 

forces, sudden lack of phasing, etc.). Additionally, it is the multiplicity of possibilities 

inherent within the fuzzy multilinear family that has the ability to mask the differences 

between the crisp M1 and M2a melodies. 

Figure 5.15 shows the analogous best-fit memberships of all of the melodies 

against the fuzzy multilinear family of the melody immediately preceding it. The chart 

highlights a pattern of transitional possibility indicated by high potential values of 

membership for melodies against the preceding region’s family. The M3a melody’s 

membership within M2 for example, is 0.900, a very high membership value that again 

falls within the range of membership values for the six M2 variants (ranging from 0.860 

to 0.915). The M4a melody’s membership within M3 is 0.810, higher than the six 

members of M3. These values suggest a uniformity of process, as well as a significant 

degree of shared contour material. 

Region M4 is the last region in the A section of the movement (as shown in the 

form diagram in Figure 5.4), and the M5 region picks up the melodic process again in the 

A’ section. Nevertheless, M5’s relationship to the fuzzy multilinear family of the M4 

region is quite high, 0.959. M6a’s membership against the M5 family is 0.767, M7a’s 

membership against the M6 family is 0.699, and M8a’s membership against the M7 family 

is 0.915. This range of transitional values from 0.699 to 0.959 shows that although these 

melodies may initially seem different when examined by themselves (as indicated by 

their mid-range membership values calculated in Figure 5.1c), the context of phasing 

provides a sonic environment that not only facilitates the transition between regions, but 

offers a heightened perception of familial similarity between members. In other words, 
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the ability to understand and perceive different possible contours within the context of the 

fuzzy multilinear family gives us the conceptual apparatus necessary to understand the 

potential relationships between the melodies themselves. 

 

Level-2 Fuzzy Relations Between Fuzzy Multilinear Families 

One may wonder if the above observations are coincidental, but I am not 

convinced that this is the case. Reich intentionally builds “flexibility” into his musical 

fabric, and this flexibility opens the door to these kinds of phenomenological 

possibilities. The fuzzy multilinear families themselves have a good deal in common with 

one another, such that it is not surprising to see an ability to discern the other melodies 

from the fabric of one phased pattern. Consider Figure 5.16, which shows a fuzzy family 

that is comprised of the average of the eight fuzzy multilinear families in the passage.79 

This kind of fuzziness is termed a level-2 fuzzy family, and this family is the most 

representative illustration of the melodic regions that Quinn identifies.80 It encompasses 

not only the melodies, but the fuzzy contour possibilities created by Reich’s phasing of 

the melodies. 

                                                

79
 This fuzzy representation is comprised of the mathematical average of each position within the eight 

fuzzy multilinear families. For example, the ascent value for position one is calculated by averaging all 

position one ascents from the eight families shown in Figure 5.5: 

(0.44 + 1 + 0.364 + 0.458 + 0.417 + 0.454 + 0.414 + 0.409) / 8 = 0.495 

80
 Klir and Yuen define the level-2 fuzzy set as “fuzzy sets defined within a universal set whose elements 

are ordinary fuzzy sets” (Klir and Yuen 1995, 18). To put this into terms of melody families, the level-2 

fuzzy family comprises elements that are fuzzy, with membership values that relate each fuzzy element to 

the higher-level fuzzy family, in similar ways that membership values of crisp melodies relate to a level-1 

(standard) fuzzy family. 



 

244 

 

 

Adapting an equation from Quinn, one can measure the degree of membership of 

each fuzzy family within this larger level-2 fuzzy family. Quinn’s equation, shown in 

Figure 5.17a, adjusts the calculation of C+SIM according to the mathematical difference 

between two corresponding positions, thereby accommodating two fuzzy sets. He writes 

that  

it would be illogical to call (a,b) and (a’,b’), 0.9 and 0.8 respectively, a mismatch 

simply because they are not the same, when in fact they are quite close. Let us 

rather increment C+SIM on that score, but discount the increment in proportion to 

the slight absolute difference of 0.1 between their membership levels. (Quinn 

1997, 225) 

Quinn’s previous work with C+SIM allowed him to compare crisp contours with the 

fuzzy family, just as I have done with the CAS grids in this dissertation. What this 

equation allows Quinn to do is to compare contour families that are already fuzzy, by 

accounting for the degree of similarity between two non-identical quantities (in Quinn’s 

case 0.9 and 0.8). Quinn’s equation adds 0.9 to the value of C+SIM since the 

corresponding positions aren’t a crisp match, but are close (a difference of only 0.1). 

Likewise, we can adapt the equation to our CAS grid in order to determine how closely 

related each fuzzy multilinear family is to the average of all multilinear families. In 

essence, each position in the CAS grid is treated like one of Quinn’s positions in his 

fuzzy C+matrices (“µc+a,b”, for example), and corresponding positions in each fuzzy 

CAS grid are compared just as Quinn compares corresponding C+matrix values. The 

overall membership value i is then calculated out of the total number of CAS positions 

(instead of C+matrices in Quinn’s equation). For example, Figures 5.17b and 5.17c show 

hypothetical pairs of fuzzy contour families, and Figure 5.17d shows the analogous 

calculation that arrives at the value of similarity between the two families. 
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Figure 5.16. The Level-2 Fuzzy Family Comprised of the Eight Fuzzy Multilinear Families 
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Figure 5.17a. Quinn’s Fuzzy C+SIM formula 
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Figure 5.17b. Hypothetical fuzzy family a 

Pos 1 2 

+ 0.760 0.667 

- 0.24 0.333 

 

Figure 5.17c. Hypothetical fuzzy family b 

Pos 1 2 

+ 0.8 0.6 

- 0.2 0.4 

 

Figure 5.17d. Adaptation of Quinn’s equation that compares fuzzy families a and b 

((1-|0.760-0.8|) + (1-|0.667-0.6|) + (1-|0.24-0.2|) + (1-|0.333-0.4|)) / 4 = 

0.96 + 0.933 + 0.96 + 0.933 / 4 = 

3.786 / 4 = 0.947 

 

Each of the four CAS positions are compared using the top part of Quinn’s equation, and 

then the sum of these position comparisons is divided by four, resulting in a membership 

value of 0.947.81 Using this method to compare the eight level-1 fuzzy multilinear 

families presented in Figure 5.5 with the larger level-2 fuzzy family shown in Figure 

5.16, Figures 5.18a and 5.18b show that the eight fuzzy multilinear families range in 

membership from 0.572 to 0.790.  This is a more accurate portrayal of the familial 

relationships between these particular passages: it captures familial resemblances not 

                                                

81
 Note that this adaptation of Quinn’s equation happens to work because the cardinality of the CAS grids 

is the same in this chapter. I do believe that it will be possible to adjust the equation further in order to 

accommodate fuzzy families of different cardinalities, yet this falls outside of the scope of this dissertation. 
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only between crisp melodies, but also the resemblances between the kinds of listener 

possibilities that each fuzzy multilinear family affords. Since these possibilities are an 

important compositional outcome for Reich, capturing them within these membership 

values provides an analysis that is truer to the musical experience of the work. 

Furthermore, the membership values for these fuzzy multilinear families fall much more 

consistently closer to the 0.7 threshold for membership that Quinn proposes; in fact the 

average for the membership values is 0.693, closer than the average membership values 

derived by examining the melodies in the absence of phasing (0.660 using Quinn’s 

C+SIM, and 0.612 using the FCM model). This increase highlights not only the fact that 

attending to the musical context enhances judgments of membership, but also that the 

method of using the FCM model combined with the type-2 fuzzy set formula yields a 

more accurate depiction of what Quinn desired to show in the first place. 

 

Figure 5.18a. Membership of the eight fuzzy multilinear families within the level-2 

fuzzy family 

Fuzzy Multilinear Family Membership in type-2 fuzzy set 

M1 0.730 

M2 0.615 

M3 0.790 

M4 0.749 

M5 0.650 

M6 0.571 

M7 0.710 

M8 0.731 
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Figure 5.18b. Membership within the level-2 fuzzy family, showing average 

membership and Quinn’s threshold for membership 

 

 

Conclusion 

 

The nuance of the fuzzy comparisons, both between the crisp melodies and their 

fuzzy multilinear familial regions and between the fuzzy multilinear families and the 

level-2 fuzzy family, allow us to understand more fully how these melodies may be “of a 

kind,” as Quinn claims. The analytical readings above show that the melodic regions 

identified by Quinn’s melodies share similarities not only in the crisp representation of 

Reich’s original melodies, but they also share similarities in build-up, in phasing process, 

and in the affordances inherent within the fuzzy multilinear families that give rise to 

multistable perception. Indeed, this process does not only occur in the A sections of the 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

M1 M2 M3 M4 M5 M6 M7 M8

Membership of fuzzy multilinear 

families within level-2 fuzzy family

Membership in type-2 fuzzy set

Quinn's threshold for membership (0.7)

average (0.693)



 

 

249 

third movement, but rather permeates the entire work. The phased multilinear melody is 

therefore a crucial aspect of Reich’s concept of melody, and has potential to inform both 

the structure of the work, as well as the musical structure’s interaction with Reich’s 

chosen text, and the work’s subsequent meaning. These interactions seem deliberate on 

Reich’s part, and are worthy of further research. 

As I have shown, the FCM model is uniquely suited to illustrate these phenomena 

due to its flexibility in terms of cardinality and subsequently its ability to accommodate 

rhythmically displaced family members. Through this process, one can show how 

Reich’s phasing creates possibilities of perception that align with the composer’s intent to 

build flexibility into his musical fabric for the phenomenologically minded. The FCM 

model therefore yields deeper insight into the inner workings of the music, Reich’s 

compositional process, and the listener’s potential perceptions of the work. Through the 

application of the FCM model, we become “wide awake” to new possibilities of hearing, 

and this can have a profound effect on our ability to perceive these families as related. In 

other words, our minds are listening. 
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CHAPTER 6: Conclusions 

 

 It has been around thirty years since systematic tools for the study of contour 

made their way into pitch-class set theory. In that time, many analysts have made use of 

these tools to comment on relations between melodic shapes in various genres including 

post-tonal music (Marvin and Laprade (1987), Morris (1987, 1993), Quinn (1997), and 

Schultz (2008, 2009, 2012) just to name a few) and world music (notably in the work of 

Rob Schultz (2016, 2009), but also in the works of Michael Tenzer (2006), and Aaron 

Carter-Enyi (2016)). Until recently, however, the limitations of those earlier tools have 

prevented them from achieving a wider popularity, and subsequently truly having a seat 

at the table in the discussion of the various musical parameters that contribute to our 

larger understanding of musical structure. In this dissertation, I hope to have addressed a 

few of these limitations, namely those that rely on strictly defined cardinality 

relationships between contours as well as those that only measure relationships between 

two contours at a time. 

 The familial contour membership model (FCM model) that I have developed is 

capable of addressing both of these concerns. The model combines the mathematical 

power of Ian Quinn’s fuzzy set-theoretical approach (1993, 2001) with the analytical 

power of Rob Schultz’s diachronic-transformational model of contour relations (2009, 

2012). By creating a generalized transformational tree diagram that expresses all contour 

motions within a family of related contours in terms of their probability to occur in the 

family, the model allows an analyst to judge not only specific relationships between 
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contours, but also relationships between specific contours and expectations created by the 

perceptual experience of all the other contours in a family of related melodies. Because 

this model does not rely on internal structural characteristics, but rather transformational 

possibilities, it has the power to include families of related contours that do not have the 

same number of notes in ways that are sensitive to both the familial relationship of a set 

of related contours, as well as the crisp individuality that each contour in the family 

possesses. It is in this way that the FCM model addresses issues that I believe have 

limited contour theory’s use in wider theoretical and analytical circles in the past. 

 Through my three analytical case studies in Part II, I have shown that this model 

of contour relations has the analytical power to apply to a wide variety of repertoire, and 

to comment on many broader theoretical areas of inquiry, including musical ontology, 

narrative, compositional strategy, and perception. In Chapter Three, I explored how fuzzy 

contour relations can contribute to our understanding of the complications surrounding 

the ontology of plainchant (and of music in general). By quantifying familial 

relationships between chant variants, we can begin to examine more systematically the 

distinction that Leo Treitler makes between significant and minor variations between 

chants that are understood to be “the same” (Treitler 2003, 148). In exploring these 

issues, the data I collected through the model also allowed me to comment on issues of 

memory and melodic reconstruction in the performance of the oral tradition of plainchant 

both before and after notation. 

 Chapter Four demonstrated the FCM model’s ability to address issues of 

compositional strategy through the study of Brahms’s motivic development. By 
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examining the motivic relationships between Brahms’s Regenlied, Op. 59 No. 3, and the 

related Violin Sonata No. 1 in G major, Op. 78 I illustrated how the study of contour 

families could explain Brahms’s use of contour in some places to contribute to motivic 

cohesion and in other places to drive motivic development. In doing so, I also explored 

how Brahms’s use of contour in these ways contributes to the development of a narrative 

connection between Klaus Groth’s poem and the motivic relationships developed in the 

music. Furthermore, I explored how Brahms’s use of the Regenlied motives in the violin 

sonata shifted the narrative of the song to one of personal grief that reflects Brahms’s 

feelings regarding the death of his godson, Felix Schumann. In this way, I showed how 

contour exposes aspects of Brahms’s compositional tendencies, such as the relationship 

between contour and narrative in the song, or the developmental relationships across the 

sonata. Using contour to shed light onto Brahms’s motivic development therefore gives 

us new appreciation for the complexities of his motivic mastery. 

 In Chapter Five, I returned to the analytical environment in which fuzzy contour 

theory began: the minimalist compositions of Steve Reich, as illustrated through his 1984 

work The Desert Music. I showed how the FCM model is uniquely suited to demonstrate 

the perceptual possibilities inherent within Reich’s use of phasing as an aspect of melodic 

construction. The lack of cardinality constraint enabled me to use the generalized CAS 

grid as an articulation grid, allowing the beat-class transpositions of each melodic 

segment to be modeled against one another in their proper rhythmic position as presented 

in the music. In doing so, I was able to show how the phasing patterns that Reich creates 

allow listeners a range of multistable possibilities with regard to their hearing of the 
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melody in each passage; a compositional intention, I might add, that lies at the heart of 

Reich’s compositional philosophy. 

 

Avenues of Further Research 

 Through these analyses, I have explored contour’s ability to speak to many 

aspects of music-theoretical and musicological areas of inquiry. I hope also to have 

shown that the FCM model’s sensitivity to cardinality differences is crucial to our 

understanding of melody in each case. The model’s particular strength of providing 

comparative data for large families of related contours paves the way for new analytical 

avenues when it comes to understanding melody. I believe that the model’s adaptability 

to varying analytical contexts gives it the power to shape the way we understand melody 

in more nuanced ways, connecting with debates about melodic structure in music 

cognition, musicology, and ethnomusicology. 

 The FCM model has particularly unique potential when it comes to corpus study. 

Bringing a quantitative measure of melodic similarity between members of a large family 

into corpus studies of many genres has the power to reveal structural characteristics of 

melody that might otherwise be missed in less quantitative approaches to melodic shape. 

This kind of analysis could be particularly useful in analyses of current musical traditions 

that have retained an oral approach toward dissemination and performance. Such corpora 

could include the historical spread and current practice of folk song traditions, or the 

improvisational practices found in jazz. These kinds of studies could also have the ability 
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to comment on modern-day level-2 fuzzy families of the kind that have been lost to us in 

plainchant, and this will not only yield insights into the ontology of these corpora, but 

could also yield some insights into the potential structures of plainchant’s oral tradition in 

the era before notation.82 

 Just as the model can comment on the ontologies and structures of oral corpora, it 

also has the potential to distinguish between the generic and the specific with regard to 

melodic shape in many genres of the Western canon of classical music. For example, it 

could help to define generic characteristics of phrase segments such as basic ideas, 

contrasting ideas, etc., and the relationships between phrase segments such as basic ideas 

and contrasting ideas in theme type analysis (Caplin 1998). It could also continue to 

illuminate compositional tendencies with which certain composers develop their motives 

throughout their compositional output.  

 Such analytical capabilities could be expanded even further to include contour in 

elements other than pitch, as first proposed by Marvin (1991, 1995). Scholars have 

adapted contour theories in order to study other musical domains such as rhythm, 

dynamics, and timbre, just to name a few (Marvin 1991, 1995; Boor 2009; Scotto 2016). 

The FCM model could easily be adapted to analyze these other musical domains: 

studying them using a fuzzy familial approach could help us to understand how these 

                                                

82
 This is in reference to the level-2 type of fuzzy set put forth by Klir and Yuen (1995), that is built upon 

the notion that a fuzzy set can be comprised of fuzzy sets, in similar ways that a set of notated chants are 

fuzzy representations of the tradition of oral chant dissemination (which are fuzzy sets in themselves). For 

more, see Chapter 3. 
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characteristics influence both the way that music is constructed, and the way that we 

perceive it. 

 Finally, it would be very interesting to conduct a related perceptual study to see 

how listeners categorize gradations of contour similarity, such as those offered by the 

FCM model. How do listeners hear familial relationships between melodies? At what 

membership value is their threshold of familial admittance? How do the presence of other 

musical parameters (such as rhythm, form, tonal progression, dynamics, etc.) influence 

this threshold? These are all empirical, testable questions that could lead to further 

refinement of the model, and would give us new insight into how we perceive relatedness 

in music. 

 These potential avenues of further research are by no means exhaustive. However, 

I hope that those I have presented, combined with the analyses I have included, continue 

to illustrate the point that I have endeavored to make throughout this dissertation: the 

study of contour should not be relegated to mere description, nor should it be limited by 

the cardinality constraints of some of the tools that have come before. Instead, more 

flexible models of melodic contour relations, such as the one I have proposed, can have a 

profound impact on the way we study melodic shape, providing new and valuable 

insights into one of music’s most fundamental elements. 
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Appendices 

APPENDIX 1. Variants of formula 2-1 (Maloy, 2010) 

Figure A1.1. Formula 2-1 Variants 

ID Chant Location  

22 Meditatibor Line 

1(second 
line) 

 
17 Exaltabo te Line 2 

(second 
half) 

 

36 Benedicte 

gentes 

Line 5a 

 

6 Tollite portas Line 4 

(second 

line) 
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6 Tollite portas Line 4 

(third line) 

 

10 Reges tharsis Line 2  

 

13 Dextera 
domini 

Line 6 
(first line) 

 

13 Dextera 

domini 

Line 6 

(second 
line) 

 

72 Anima nostra Line 1 

(third line) 
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72 Anima nostra Line 3 

(second 

line) 

 

72 Anima nostra Line 7 

 

10 Reges tharsis Line 6 

(second 

line) 

 

36 Benedicte 

gentes 

Line 8  

 

14 Bonum est 

confiteri 

Line 4 
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14 Bonum est 

confiteri 

Line 5 

(partial) 

 

23 Benedic 

anima mea 

Line 2 

(second 

line) 

 

58 Ascendit deus Line 3 

(lines 2 

and 3) 
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58 Ascendit deus Line 6 

(all) 
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APPENDIX 2: Analysis of diachronic build-up for the eight melodic regions in Steve Reich’s The Desert Music 

 

Figure A2.1a. Graduated analysis of membership values through the build-up of the M1 region 

Iteration of M1 

composite 

Membership 

M1(T0) (flute 1) 

Membership 

M1(T1) (flute 2) 

Membership 

M1(T2) (flute 3) 

1st time 1.0 -- -- 

2 1.0 -- -- 

3 1.0 1.0 0.75 

4 0.975 0.9 0.55 

5 0.967 0.6 0.363 

6 0.873 0.806 0.511 

7 0.835 0.808 0.54 

8 0.812 0.810 0.558 

9 0.789 0.811 0.570 

10 0.785 0.812 0.578 

11 0.771 0.813 (.8126) 0.586 

12 0.770 0.813 (.8129) 0.591 

13 0.765 0.813 0.595 

14 0.761 0.814 (.8136) 0.598 

FINAL 

MEMBERSHIP 

0.757 0.814 (.8139) 0.601 
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Figure A2.1b. Graph of membership value development in the M1 region 

 

 

Figure A2.1c. The Final Version of the Fuzzy Multilinear Family of M1 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.44 0 1.0 0.278 1.0 0.5 1.0 0.538 1.0 0.417 1.0 0.5 1.0 0.583 1.0 0.417 0 0 0 0 

- 0.56 1.0 0 0.722 0 0.5 0 0.461 0 0.583 0 0.5 0 0.417 0 0.583 1.0 1.0 1.0 1.0 
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Figure A2.2a. Graduated analysis of membership values through the build-up of the M2 region 

Iteration of M2 

composite 

Membership 

M2(T0) (flute 1) 

Membership 

M2(T1) (flute 2) 

Membership 

M2(T2) (flute 3) 

1st time 1.0 -- -- 

2 1.0 0.2 0.2 

3 0.967 0.767 0.9 

4 0.95 0.6 0.6 

5 0.918 0.807 0.832 

6 0.907 0.910 0.843 

7 0.901 0.912 0.849 

8 0.898 0.913 0.853 

9 0.895 0.913 0.855 

10 0.894 0.914 0.856 

11 0.892 0.914 0.858 

12 0.891 0.914 0.859 

FINAL 

MEMBERSHIP 

0.890 0.915 0.860 
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Figure A2.2b. Graph of membership value development in the M2 region 

 

 

Figure A2.2c. The Final Version of the Fuzzy Multilinear Family of M2 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 1.0 0 0.645 0 0.5 0 0 1.0 0 1.0 0 1.0 0 0 0.55 1.0 1.0 1.0 1.0 1.0 

- 0 1.0 0.355 1.0 0.5 1.0 1.0 0 1.0 0 1.0 0 1.0 1.0 0.45 0 0 0 0 0 
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Figure A2.3a. Graduated analysis of membership values through the build-up of the M3 region 

Iteration of M3 

composite 

Membership M3 

(T0) (flute 1) 

Membership 

M3(T1) (flute 2) 

Membership 

M3(T2) (flute 3) 

1st time 1.0 -- -- 

2 1.0 -- -- 

3 1.0 0.5 0.0 

4 1.0 1.0 1.0 

5 1.0 0.3 0.4 

6 0.939 0.722 0.728 

7 0.908 0.733 0.742 

8 0.890 0.740 0.750 

9 0.878 0.744 0.756 

10 0.869 0.748 0.760 

11 0.663 0.350 0.363 

12 0.678 0.407 0.411 

13 0.690 0.450 0.450 

FINAL 

MEMBERSHIP 

0.700 0.485 0.480 
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Figure A2.3b. Graph of membership value development in the M3 region 

 

 

Figure A2.3c. The Final Version of the Fuzzy Multilinear Family of M3 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.364 0.727 0.15 0.727 0.136 0 0.591 0 0.5 0 0.545 0.333 0.136 0.769 0.455 0.667 0.333 0.667 1.0 0 

- 0.636 0.273 0.85 0.273 0.864 1.0 0.409 1.0 0.5 1.0 0.455 0.667 0.864 0.231 0.545 0.333 0.667 0.333 0 1.0 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Membership Value Development throughout the 

build-up of the M3 Region

Membership M3 (T0) Membership M3(T1) Membership M2a(T2)



 

 

276 

 

Figure A2.4a. Graduated analysis of membership values through the build-up of the M4 region 

Iteration of M4 

composite 

Membership M4 

(T0) (flute 1) 

Membership 

M4(T1) (flute 2) 

Membership 

M4(T2) (flute 3) 

1st time 1.0 -- -- 

2 1.0 0.0 0.0 

3 1.0 1.0 0.5 

4 0.975 1.0 0.625 

5 0.967 0.3 0.233 

6 0.879 0.740 0.586 

7 0.835 0.750 0.615 

8 0.808 0.760 0.632 

9 0.790 0.767 0.643 

10 0.777 0.771 0.651 

11 0.743 0.800 0.657 

12 0.749 0.813 0.674 

13 0.755 0.823 0.688 

FINAL 

MEMBERSHIP 

0.757 0.830 0.697 
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Figure A2.4b. Graph of membership value development in the M4 region 

 

 

Figure A2.4c. The Final Version of the Fuzzy Multilinear Family of M4 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.458 0 0.591 0 0.5 0 0.410 0 0.476 0 0.273 0 0.333 0 0.591 1.0 0 1.0 0 1.0 

- 0.542 1.0 0.410 1.0 0.5 1.0 0.591 1.0 0.524 1.0 0.727 1.0 0.667 1.0 0.410 0 1.0 0 1.0 0 
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Figure A2.5a. Graduated analysis of membership values through the build-up of the M5 region 

Iteration of M5 

composite 

Membership M5 

(T0) (flute 1) 

Membership 

M5(T1) (flute 2) 

Membership 

M5(T2) (flute 3) 

1st time 1.0 -- -- 

2 1.0 -- -- 

3 1.0 0.0 0.0 

4 0.975 0.625 1.0 

5 0.967 0.233 0.367 

6 0.900 0.717 0.750 

7 0.867 0.733 0.767 

8 0.846 0.743 0.777 

9 0.833 0.75 0.783 

10 0.824 0.755 0.788 

11 0.817 0.758 0.792 

12 0.811 0.761 0.794 

13 0.807 0.763 0.797 

14 0.803 0.765 0.798 

FINAL 

MEMBERSHIP 

0.800 0.767 0.800 
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Figure A2.5b. Graph of membership value development in the M5 region 

 

 

Figure A2.5c. The Final Version of the Fuzzy Multilinear Family of M5 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.417 1.0 0.5 1.0 0.583 1.0 0.417 0 0 0 0 0 0 0.583 1.0 0.333 1.0 1.0 1.0 1.0 

- 0.583 0 0.5 0 0.417 0 0.583 1.0 1.0 1.0 1.0 1.0 1.0 0.417 0 0.667 0 0 0 0 
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Figure A2.6a. Graduated analysis of membership values through the build-up of the M6 region 

Iteration of M6 

composite 

Membership 

M6(T0) (flute 1) 

Membership 

M6(T1) (flute 2) 

Membership 

M6(T2) (flute 3) 

1st time 1.0 -- -- 

2 1.0 0.0 0.0 

3 1.0 1.0 0.5 

4 0.975 0.400 0.425 

5 0.927 0.870 0.803 

6 0.905 0.879 0.816 

7 0.893 0.883 0.823 

8 0.887 0.886 0.828 

9 0.880 0.888 0.831 

10 0.876 0.890 0.834 

11 0.773 0.791 0.836 

12 0.780 0.802 0.837 

FINAL 

MEMBERSHIP 

0.785 0.811 0.838 
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Figure A2.6b. Graph of membership value development in the M6 region 

 

 

Figure A2.6c. The Final Version of the Fuzzy Multilinear Family of M6 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.454 0 0 0 0 0 0.571 1.0 1.0 1.0 0.429 1.0 0.5 1.0 0 0 0.167 0 0.182 0 

- 0.545 1.0 1.0 1.0 1.0 1.0 0.429 0 0 0 0.571 0 0.5 0 1.0 1.0 0.833 1.0 0.818 1.0 
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Figure A2.7a. Graduated analysis of membership values through the build-up of the M7 region 

Iteration of M7 

composite 

Membership 

M7(T0) (flute 1) 

Membership 

M7(T1) (flute 2) 

Membership 

M7(T2) (flute 3) 

1st time 1.0 -- -- 

2 1.0 -- -- 

3 1.0 0.333 0.333 

4 1.0 1.0 1.0 

5 1.0 0.400 0.400 

6 0.938 0.770 0.720 

7 0.910 0.782 0.748 

8 0.894 0.789 0.764 

9 0.883 0.793 0.773 

10 0.691 0.694 0.788 

11 0.705 0.706 0.787 

12 0.715 0.715 0.787 

13 0.724 0.722 0.787 

FINAL 

MEMBERSHIP 

0.732 0.727 0.786 
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Figure A2.7b. Graph of membership value development in the M7 region 

 

 

Figure A2.7c. The Final Version of the Fuzzy Multilinear Family of M7 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.414 1.0 0.222 1.0 0 0 0.619 0 0.5 0 0.381 0 0 1.0 0.182 1.0 0.211 1.0 1.0 0.692 

- 0.586 0 0.778 0 1.0 1.0 0.381 1.0 0.5 1.0 0.619 1.0 1.0 0 0.818 0 0.789 0 0 0.307 
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Figure A2.8a. Graduated analysis of membership values through the build-up of the M8 region 

Iteration of M8 

composite 

Membership 

M8(T0) (flute 1) 

Membership 

M8(T1) (flute 2) 

Membership 

M8(T2) (flute 3) 

1st time 1.0 -- -- 

2 1.0 0.0 0.0 

3 1.0 0.667 1.0 

4 0.960 0.800 1.0 

5 0.957 0.243 0.500 

6 0.895 0.700 0.790 

7 0.865 0.724 0.792 

8 0.836 0.737 0.794 

9 0.833 0.745 0.797 

10 0.824 0.751 0.799 

11 0.817 0.755 0.801 

12 0.812 0.758 0.802 

13 0.807 0.761 0.803 

FINAL 

MEMBERSHIP 

0.803 0.762 0.804 
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Figure A2.8b. Graph of membership value development in the M8 region 

 

 

Figure A2.8c. The Final Version of the Fuzzy Multilinear Family of M8 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

+ 0.409 0 0.710 0 0.45 0 0.375 0 0 0 0 0 0 0 0.591 1.0 0.48 1.0 1.0 1.0 

- 0.591 1.0 0.290 1.0 0.55 1.0 0.625 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.409 0 0.52 0 0 0 
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