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ABSTRACT

This study investigated the role of muscle strength and voluntary activation (VA) on
symptomatic fatigue in individuals with multiple sclerosis (MS). Nine women with relapsing-
remitting or secondary-progressive MS (mean age, 43yrs) were compared to nine healthy women
(mean age, 37yrs). Symptomatic fatigue was assessed using the Modified Fatigue Impact Scale
(MFIS), Fatigue Severity Scale, and Visual Analogue Fatigue Scale. Functional capacity was
assessed with a 6-Minute Walk Test (6-MWT). Muscle strength and VA were determined using
twitch interpolation applied to the right dorsiflexor muscles during maximal voluntary isometric
contractions (MVIC). Muscle fatigue was assessed during a sustained submaximal contraction.
Distance during the 6-MWT, muscle strength and VA were significantly lower in the MS group.
MFIS scores were negatively associated with muscle strength and VA. The MS group was more
easily fatigued, as measured by MVIC. In conclusion, symptomatic fatigue is associated with

muscle fatigue and weakness in individuals with MS.

Keywords: Multiple Sclerosis (MS); Interpolated twitch technique (ITT); Voluntary activation

(VA); Symptomatic fatigue; Muscle strength; Fatigue
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LIST OF ABBREVIATIONS

CNS- central nervous system

DF- dorsiflexor

DMTs- disease-modifying therapies

FSS- fatigue severity scale

ITT- interpolated twitch technique

LMN- lower motor neuron

M1- primary motor cortex

MFIS- modified fatigue impact scale

MS- multiple sclerosis

MV IC- maximal voluntary isometric contraction
NJM- neuromuscular junction

PNS- peripheral nervous system

RRMS- relapsing-remitting multiple sclerosis
SPMS- secondary progressive multiple sclerosis
UMN- upper motor neuron

VA- voluntary activation

VAFS- visual analogue fatigue scale



GLOSSARY OF TERMS

Central nervous system (CNS)- a portion of the nervous system which includes the brain and
spinal cord

Kurtzke expanded disability status scale (EDSS)- clinical evaluation of quantifying disability
in multiple sclerosis

Neuromuscular fatigue- a reduction in muscle force production following exertion

Fatigue- an overwhelming sense of exhaustion or tiredness that renders an individual from being
able to initiate or complete an activity that he/she would normally be able to do

Fatigue severity scale (FSS)- a self-administered questionnaire used to assess the severity of
fatigue and the impact on daily functioning during the past week

Interpolated twitch technique (ITT)- a technique used to assess the completeness of skeletal
muscle activation

Maximal voluntary isometric contraction (MVIC)- maximal effort voluntary contraction
where the joint angle remains constant during the contraction

Modified fatigue impact scale (MFIS)- a self-administered questionnaire used to assess the
perceived impact of fatigue within the past four weeks

Multiple sclerosis (MS)- non-traumatic central nervous system (brain and spinal cord) disorder
Neuromuscular junction- a specialized synapse between a motor neuron and a muscle end-plate

Peak torque- the maximum production of force about a vector (the dynamometer arm) for a
single contraction, measured in newton-meters (Nm)

Peripheral fatigue- a progressive reduction in force production resulting from fatigue occurring
in the muscle distal to the neuromuscular junction

Voluntary activation (VA)- the level of central drive achieved during a voluntary isometric
contraction at any target force

Visual analogue fatigue scale (VAFS)- a research instrument designed to measure an attribute
that is best illustrated by a continuum of values versus discrete points

Weakness- loss of strength within a given muscle independent of previous work or activity



CHAPTER 1

FATIGUE IN THE NEUROMUSCULAR SYSTEM

1.0 GENERAL INTRODUCTION

1.01 Multiple Sclerosis

Multiple sclerosis (MS) is the most common non-traumatic central nervous system (brain
and spinal cord) disorder of young adulthood, affecting approximately 100,000 people in Canada
and 2.5 million people worldwide [1-4]. The diagnosis of MS most commonly occurs in the
second or third decade of life, with a female:male ratio of 2:1 [2-5]. Although the etiology of
MS has yet to be clearly established, interactions between environmental, infectious, and genetic
factors are currently considered as possible causes [6-9]. MS involves unpredictable episodes of
axonal demyelination, resulting in lesions along axons of nerve fibers in the central nervous
system (CNS) pathways [7]. The demyelination of the nerve fibers interferes with the neuronal
conduction from the CNS to effector organs [7,10-13]. This interference manifests as various
symptoms such as sensory loss, cognitive impairment, gait disturbance, visual impairment,

bladder and bowel control, spasticity, weakness and fatigue [7,12,14].



Multiple Sclerosis

Figure 1.1. Nerve Fibre (neuron) from a healthy individual and person with MS (with

permission from Alexandra Lynette-Krech, (2017))

The clinical course of MS is characterized by acute periods of worsening (relapses),
progressive deterioration of neurological function, or combinations of both [15]. Relapsing-
remitting MS (RRMS) is the most common disease course, affecting approximately 85% of
individuals with MS [16]. This disease course manifests as a period of relapse followed by a
period of remission, during which symptoms improve partially or completely [7,15]. Secondary-
progressive MS (SPMS) follows the initial RRMS disease course with a steady progression, with
or without relapses [2,15,17]. Sixty percent of people who are initially diagnosed with RRMS
will transition to SPMS [2,15]. Primary-progressive MS occurs in approximately 10% of

individuals with MS, and is characterized by steadily worsening neurological function from the



onset, with no distinct relapses or remission [2,7,15]. Lastly, progressive-relapsing MS is the
least common of the four disease courses, occurring in approximately 5% of individuals with
MS, and is characterized by steadily progressing disease from the beginning with occasional
relapses along the way [2,7]. The disease continues to progress without remissions. The pattern

of clinical symptoms and descriptors is complex; the types are displayed in Fig 1.2.
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Figure 1.2. Clinical types of MS (with permission from Fred D. Lublin, M.D, (2016))

Therapies are a key component of MS care, along with treating symptoms and managing
MS relapses. The approach to the treatment of MS is individualized to ones’ relative disabilities,

needs, and support system.



There are currently 12 disease-modifying therapies (DMTSs) that have been approved by
Health Canada; seven are injectable, three are oral, and two are infused [2]. These are currently
the best approach available to slow the natural course of MS [2]. DMTs target some aspect of the
inflammatory process of MS while reducing the severity and frequency of relapses, the
development of new lesions, and the progression of disability [2]. Both clinical experience and
clinical investigation have suggested that early intervention with DMTs may help to prevent
permanent damage in the CNS, increasing ones’ overall level of function and quality of life [2].

The majority of current treatments for MS are pharmaceutical. However, due to the
variability of MS symptoms, individuals often seek relief through rehabilitation and alternative
medicine [2]. Rehabilitation specialists, such as physical therapy, occupational therapy, speech-
language pathology, vocational rehabilitation and cognitive rehabilitation provide evaluation and
treatment to improve and maintain function [2,18]. Alternative medicine includes a wide variety
of interventions from naturopathy to stress management and acupuncture, and are instrumental in
the management of the disease[18]. As well, assistive devices (e.g. walkers, scooters,
wheelchairs) and appropriate orthoses (e.g. ankle foot orthoses) should be considered as they

play a viable role in the management of mobility [18].

1.02 The Motor System

The motor systems in the CNS control a multitude of functional outputs, both voluntary
and involuntary [19]. The motor systems are organized in hierarchy from the cerebral cortex,
brainstem to spinal cord, to peripheral motor system. The spinal cord is the lowest level in the
CNS hierarchical structure, and conduits information through neuronal circuits that control
various reflexes and rhythmic movement [20]. The brainstem is the middle level in the

hierarchical structure, and contains neuronal circuits that mediate locomotion and orofacial



movement [20]. The cerebral cortex is the highest level in the hierarchical structure, housing the
motor cortex [20]. The motor cortex consists of the primary motor cortex (M1), premotor area,
and secondary motor areas, and are responsible for the planning, initiating, and execution of
voluntary movement [20].

Movement is initiated through motor commands from the M1 and premotor areas.
Commands are transmitted down the corticospinal tract to the spinal cord via upper motor
neurons (UMNSs) [19,20]. Axons of UMNSs synapse in the ventral horn of the spinal cord with
lower motor neurons (LMNSs) either directly or indirectly, via spinal interneurons [19]. LMN
axons exit as the ventral root, and combine with the dorsal root to form the peripheral nerve [19].
Axons of the LMNs leave the CNS, forming peripheral axons and eventually branch distally near
their target muscle to form a terminal arborization [19]. Each of the terminal branches form a
synapse-like junction, known as the neuromuscular junction (NMJ), innervating skeletal muscle
and thus initiating movement [19].

Motor system dysfunction can result from damage or disease at any level of the motor
system hierarchy. Damage to the UMNSs of the descending motor pathways results in the upper
motor neuron syndrome, and gives rise to a set of signs and symptoms such as weakness, fatigue,
positive Babinski sign, spasticity, hyperreflexia of superficial reflexes, and loss of dexterity
[21,22]. These acute manifestations tend to be most severe in the arms and legs and would be
seen in conditions such as cerebral palsy, primary lateral sclerosis, and multiple sclerosis.
Damage to the LMNs of the brainstem and spinal cord are referred to as the lower motor neuron
syndrome, and would be characterized by weakness of the affected muscles, loss of reflexes, loss
of muscle tone, and atrophy [21,22]. These signs would be seen in conditions such as spinal

muscular atrophy, focal peripheral nerve injury, and generalized neuropathies. MS is a central



nervous system disorder and thus only results in impairment and disability secondary to UMN

dysfunction.

1.03 Fatigue in the Neuromuscular System

The neuromuscular system is a complex system that provides humans with movement,
from respiration and saccadic movements of the eye, to walking and standing [19,23]. The
peripheral component of the neuromuscular system, also known as the lower motor neuron, is
comprised of the alpha motor neurons and peripheral motor axons, which innervate and control
skeletal muscle fibres. Motor neurons are responsible for relaying signals from the peripheral
motor system, along the motor pathway, to the skeletal muscle which initiates contraction [24].
Muscle fibres are then responsible for contracting, thus generating the torque necessary for
movement [24]. Muscular fatigue, or fatigability, results from a reduction in muscle torque
production following exertion [25-27]. This may occur at various sites along the motor pathway
from the brain and spinal cord to the muscle itself. Since multiple sites are involved in the
development of neuromuscular fatigue, they can be divided into the CNS and peripheral nervous
system (PNS). Changes in the CNS or the PNS both contribute to the reduction in muscle torque
production [28,29].

Central fatigue results from the inability of the CNS to adequately drive the muscle to
produce torque during a muscular contraction [30]. It can originate from various sites along the
motor pathway, and can therefore result from either a reduction in central drive (central
activation) or modulations to the central drive at the level of the spinal cord [26,31]. During a
fatiguing task, the CNS increases its central drive to overcome fatigue [32]. Despite an increase
in central drive, torque production decreases progressively with fatigue [33]. This is referred to

as central fatigue, and can be identified using variants of the twitch interpolation technique



[25,34-36]. Central fatigue has been demonstrated in several muscle groups of both healthy and
patient populations, including elbow flexors, quadriceps and ankle dorsi- and plantar-flexors for
sustained, intermittent, maximal or submaximal voluntary contractions. Using electrical
stimulation, an estimate that 12% and 20% of the loss of strength during maximal voluntary
isometric contractions (MVIC) of the elbow flexors and of the ankle dorsiflexors are due to
central fatigue, respectively [6,26,37]. Furthermore, several transcranial magnetic stimulation
(TMS) studies have shown that central fatigue can account for over 25% of the reduced torque
seen during sustained, maximal contractions [38—40]. However, central fatigue appears to
contribute more significantly to the reduced torque during low-intensity exercise [38]. For
example, it has been suggested that low-torque, long-duration contractions are more likely to
lead to the development of central fatigue than high-torque, short-duration contractions
performed by the same muscle group [41]. In fact, Sogaard et al [42] have indicated through the
use of TMS, that 40% of fatigue can be attributed centrally during a submaximal (15% MVIC)
contraction of the elbow flexors until exhaustion.

Peripheral fatigue, results from loss of muscular torque that occurs at or distal to the
neuromuscular junction [30]. This can be thought of as fatigue within the peripheral nerve or
muscle itself [30]. It is also referred to as peripheral fatigue because changes occur within the
PNS as opposed to the CNS [31]. Schillings et al [43] demonstrated a significant difference in
voluntary torque before and after a fatiguing task. Their findings suggest a large peripheral
contribution to fatigue, accounting for 89% of the voluntary force loss after a 2-minute sustained
MVC. Gandevia et al [33] and Kent-Braun and Le Blanc [6] reported a 26% and 80% loss of
voluntary torque after a sustained voluntary contraction, respectively, attributing it to peripheral

factors. Furthermore, Sharma et al [35] found excessive decline in tetanic torque during



peripheral nerve stimulation, along with the greater metabolic changes (reduction in phosphorus
energy metabolites and pH) in individuals with MS. These findings indicate that the source of

excessive fatigue was peripheral rather than central.

1.04 Fatigue in MS

Many of the tasks that we perform during our everyday activities, such as walking up a
flight of stairs, shopping, or simply getting up from a chair, become increasingly difficult as a
result of fatigue. In fact, adults with MS report fatigue as their most disabling symptom, affecting
up to 90% of the MS population [44]. However, despite its high prevalence, fatigue in MS
remains poorly understood [45]. The term fatigue has been used to describe a multitude of
physical and cognitive complaints [27,34,46]. As reported by patients, fatigue typically refers to
a state of exhaustion or tiredness [9,27,47-50]. Factors such as weakness, pain, sleep
disturbance, and mental illness (depression) all potentially contribute to the increased level of
fatigue [23,27,51-54]. Fatigue can also be manifested as muscular fatigue or fatigability, and can
be described as the magnitude of change in the physical performance over a period of time
[27,55-57]. Therefore, fatigue can be subjectively evaluated with self-report fatigue scales, or
objectively evaluated with quantitative parameters, such as a reduction in peak torque [34,47].

Earlier studies that investigated the interrelationship between fatigability and the
physical, cognitive and psychosocial complaints of fatigue in individuals with MS, reported no
relation between symptomatic fatigue, central activation, muscle weakness, or any other clinical
function measure, including fatigability [35,49,58,59]. Sharma et al [35] studied the extent to
which fatigability was related to clinical status and symptomatic fatigue. Fatigue was examined
in 42 participants by measuring muscle torque (MVIC), muscle activation (compound muscle

action potential), and energy metabolism (phosphorus energy metabolites and pH) of the tibialis



anterior muscle, as well as a self-report fatigue questionnaire (FSS) [35]. The main findings of
the study showed excessive decline in tetanic torque during peripheral nerve stimulation in
individuals with MS, as well as a positive correlation between fatigability and UMN dysfunction
and metabolic changes during exercise, but not with symptomatic fatigue ratings [35]. Van der
Werf et al [59] studied the extent to which cerebral abnormalities, as indicated by white matter
lesions on magnetic resonance imaging (MRI), had any relation with the severity of fatigue
complaints of individuals with MS. Forty-five participants rated fatigue severity through a self-
report fatigue questionnaire (Checklist Individual Strength-Fatigue) and the use of a 2-week
diary, while the MRI provided measures for cerebral abnormalities (white matter lesion load,
brain atrophy) [59]. These findings suggested no relation between symptomatic fatigue in
individuals with MS and the extent of cerebral abnormalities, nor to the extent of MRI
abnormalities in discrete cerebral areas [59].

Conversely, later studies using self-report fatigue scales and sustained maximal and
submaximal contractions confirm a relation between symptomatic fatigue and fatigability
[28,60]. These findings suggest that a combination of complaints is necessary to explain MS-
related fatigue [28,60]. Steens et al [28] investigated associations between symptomatic fatigue
and measure of fatigability, while correcting for muscle torque. Fatigue was examined in 40
participants by measuring muscle torque (MVIC), muscle activation (ITT), and corticospinal
integrity (TMS) during electrical stimulation of the first dorsal interosseous muscle, as well as
self-report fatigue questionnaires (FSS and HADS). The main results demonstrated a strong
association between symptomatic fatigue in individuals with MS and the decline in torque during
an MVIC, as well as measures of voluntary activation [28]. Wolkorte et al [60] took previous

research one step further and evaluated the robustness of the association between symptomatic



fatigue, depression scores, and muscle fatigability in individuals with MS [60]. Fatigue was
examined in 100 participants by measuring muscle torque (MVIC) of the index finder abductor,
as well as self-reported fatigue questionnaires (FSS, MFIS, and HADS) [60]. Wolkorte et al [60]
reported a strong association between symptomatic fatigue and the combination of depression

and muscle fatigability in individuals with MS [60].

1.05 Quantifying Fatigue in MS

A great deal of attention in the past 20 years has been focused on the accurate
identification and measurement of fatigue [61]. Several methods have been developed to assess
fatigue due to the broad range of underlying mechanisms and confounding factors associated
with it [62]. A multidimensional approach incorporating both subjective evaluation and torque
measurements is most useful for a comprehensive analysis when studying fatigue in individuals
with MS [27,63,64].

Measurement of subjective evaluation typically requires the use of self-reported scales
[1,65-67]. Both the Modified Fatigue Impact Scale (MFIS) and Fatigue Severity Scale (FSS)
have rapidly become the most widely used tools in MS, clinically [61,68]. Using a Likert-scale
format, the MFIS is a 21 item questionnaire that quantifies the subjective experience of fatigue
by addressing the constructs of physical, psychosocial and cognitive fatigue [1,61,66]. The FSS
is a nine item questionnaire that quantifies the subjective impact and severity of fatigue
[1,10,67]. In addition, the Visual Analogue Fatigue Scale (VAFS) is a one item questionnaire
that evaluates the subjective perception of global fatigue experienced in MS [69].

Objective evaluation of fatigue typically requires the use of torque for its measurement.

The most direct way of objectively quantifying fatigue involves measuring the change in torque

10



production through the use of a dynamometer [70—72]. This can be achieved by attempting a
sustained maximal voluntary isometric contraction (MVIC), or a submaximal voluntary
isometric contraction held to the limit of endurance [26,71,72]. Isometric contractions are
defined by the production of increasing tension with a constant muscle length or joint angle.
Measuring percentage drop of initial torque within a predetermined time has been used to
facilitate group comparisons in special population studies [73,74]. Another way to objectively
quantify fatigue involves measuring the extent of voluntary activation (VA) through twitch
interpolation [26,39,75]. The underlying principle involves electrically stimulating the
appropriate peripheral nerve or muscle at the point of maximal voluntary torque production [25].
If central activation is inadequate, the stimulation will evoke additional torque from the muscle
[30]. The size of the additional torque is proportional to the central drive and number of inactive
motor units that are not being maximally driven [25]. A decrease in activation, as can occur
during a sustained contraction, can contribute to the development of fatigue [25].

Voluntary activation can be determined using the interpolated twitch technique and calculated

according to Equation 1 [28].

VA (%) _ ( 1— ( Interpolated twitch)) x 100 (1)

Potentiated twitch

Interpolated twitch represents the maximal torque stimulated using a supramaximal
stimulus during an MVIC. Potentiated twitch represents the torque using the same supramaximal
stimulus following the MVIC, while the muscle is at rest [76].

Applying a fatigue protocol that incorporates changes in torque as the primary outcome

measure provides a logical approach to objectively compare fatigue in individuals with MS.
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Quantitative indicators of muscle weakness may provide direct evidence of neuromuscular
fatigue in MS. Alternatively, objective measurements of fatigue might provide indirect evidence
of subjective fatigue in individuals with MS.

1.06 Anatomy

When investigating fatigue and neuromuscular health, the physiology and function of the
muscle must be considered. Flexors in the lower limbs, such as the ankle dorsiflexor muscles,
tend to be more affected in MS due to the upper motor neuron patterns of weakness.

Literature studying muscle strength in MS reports an increase in muscle weakness and a
reduction in muscle strength, specific to knee extensors [34,73,77,78], knee flexors [73,79], and
ankle DF [58] muscle groups. Similarly, muscles of the lower extremities demonstrate a greater
degree of muscle weakness compared to muscles of the upper extremities [74]. For the study of
muscular fatigue in individuals with MS, muscles of the lower extremities that are particularly
active during ambulation are most relevant. For the present investigation, the ankle DF muscles
of the lower extremities have been selected due to their specific role in mobility and ankle
stabilization during every day activities, such as walking or climbing up a flight of stairs [80].

The anterior compartment of the leg consists of muscles that dorsiflex the foot and extend
the toes. These muscles include the tibialis anterior (TA), extensor hallucis longus, extensor
digitorum longus and fibularis tertius. The TA is a long, thick muscle against the lateral surface
of the tibia [81]. It originates on the lateral condyle and body of the tibia and interosseous
membrane (sheet of fibrous tissue that holds shafts of tibia and fibula together) and inserts onto
the first metatarsal and medial cuneiform [81,82]. The extensor hallucis longus is a thin muscle
between the TA and extensor digitorum longus muscles [81]. It originates on the anterior surface

of the fibula and interosseous membrane and inserts onto the distal phalanx of the great toe [81].
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The extensor digitorum longus originates on the lateral condyle of the tibia, anterior surface of
the fibula, and interosseous membrane and inserts onto the middle and distal phalanges of toes 2-
5 [81]. Lastly, the fibularis tertius muscle is part of the extensor digitorum longus, with which it
shares a common origin, and inserts onto the base of the fifth metatarsal [81]. Innervated by the
peroneal nerve, the ankle DF muscles serve to dorsiflex the foot at the ankle joint, invert
(supination) and evert (pronation) the foot at the intertarsal joints, and extension of toes 1-5

[81,82]. The dorsiflexor muscles of the leg are displayed in figure 1.3.
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Figure 1.3. Dorsiflexor muscles of the leg (with permission from Alexandra Lynette-Krech,
(2017))
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The overall purpose of this thesis was to objectively evaluate the interrelationship between

symptomatic fatigue and fatigability in individuals with MS.

Objectives

1. To compare dorsiflexor isometric strength in individuals with MS and healthy individuals

2. To compare voluntary activation in individuals with MS and healthy individuals

3. To compare fatigability in individuals with MS and healthy individuals

4. To compare 6-Minute Walk Times in individuals with MS and healthy individuals

5. To measure subjective perception of fatigue in individuals with MS and healthy
individuals using the Modified Fatigue Impact Scale, Fatigue Severity Scale, and Visual
Analogue Fatigue Scale

6. To measure fatigue severity and fatigability in individuals with MS and healthy

individuals through the use of fatigue questionnaires and submaximal isometric testing

Hypotheses

1. Individuals with MS will show decreased dorsiflexor isometric strength in comparison to
healthy individuals

2. Individuals with MS will show decreased voluntary activation in comparison to healthy
individuals

3. Individuals with MS will exhibit greater fatigue in comparison to healthy individuals

4. Individuals with MS will have a reduced 6-Minute Walk time in comparison to healthy

individuals

14



Individuals with MS will show higher subjective ratings of fatigue in comparison to
healthy individuals

Individuals with a higher subjective rating of fatigue will experience greater muscle
fatigue

. The Modified Fatigue Impact Scale and the Fatigue Severity Scale scores will negatively

correlate with muscle fatigue
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CHAPTER 2

QUANTITATIVE ASSESSMENT OF MUSCLE STRENGTH AND FATIGUE IN
INDIVIDUALS WITH MS

2.0 INTRODUCTION

Individuals with multiple sclerosis (MS) characteristically present fatigue as one of their
most prevalent and disabling symptoms [1-3]. It has been suggested that up to 95% of
individuals with MS are affected by fatigue, and that it creates a major impact on quality of life
and overall well-being [2,3]. The term fatigue can be expressed by various combinations of
physical, emotional or cognitive complaints [1,4]. It can be described by individuals as a feeling
of exhaustion [5-7] or lassitude, [8,9] or from a neuromuscular standpoint, it can be described as
an inability to sustain a required or expected torque [8,10].

Fatigue remains a challenging symptom for individuals with MS and their care providers
[11]. Due to its complexity, quantifying muscle fatigue is essential when attempting to fully
understand the underlying causes. Self-report scales that can broadly be classified as measuring
subjective fatigue, have emerged as preferred tools clinically [12,2,13]. In addition, objective
measurements have been employed to quantify the decline in muscle torque during a fatigue-
inducing task [8,12,14-18]. While it has been established that changes in both central and
peripheral fatigue play a large role in the decline of muscle torque, it is possible to determine
whether central fatigue or weakness is present during a fatigue-inducing task [8]. The simplest
approach to determining this is to deliver a supramaximal electric stimulus to the motor nerve
and to look for a twitch superimposed on the torque produced during a maximal voluntary
isometric contraction (MVIC) [8,19,20]. Greater recruitment and central drive leaves fewer

inactive motor units to be stimulated by the superimposed stimulus, yielding a smaller torque
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recording, or a greater voluntary activation [21]. This commonly used technique is known as
twitch interpolation and has been applied to various clinical and special populations such as knee
osteoarthritis [21], chronic fatigue syndrome [22], amyotrophic lateral sclerosis [23], adult aging
[24], and more.

Studies investigating voluntary activation (VA) [25-28,16,29] reported that individuals
with MS have impaired central activation during both non-fatiguing and fatiguing motor tasks
compared to healthy individuals. A study by Steens et al [25] reported that muscle fatigue was
strongly associated with a decline in central activation during a fatiguing task of the first dorsal
interosseous. Studies investigating direct muscle torque [25,30,27,29] reported that individuals
with MS are significantly weaker than healthy individuals during a MVIC. Using surface EMG,
van der Kamp et al [31] found MVICs of the thenar muscles were 40% weaker in individuals
with various courses of MS.

Researchers continues to investigate the interrelationship between symptomatic fatigue
and fatigability [5,32]. Earlier studies [5,7] showed no association between symptomatic fatigue
in individuals with MS and objective measures of fatigability, while later studies [25] found a
stronger association. The differences in these findings between symptomatic fatigue and
fatigability might be specific to the methodology used. Therefore, a multidimensional approach
used to study both the subjective (self-report scales) and objective (direct muscle torque)
components of fatigue will provide a viable framework to study muscle strength and fatigue in
individuals with MS [1].

The aim of this study was to objectively investigate the role of muscle strength and
voluntary activation on symptomatic fatigue in individuals with MS. The muscle group chosen

for this study was the ankle dorsiflexor (DF) muscles because of their specific role in mobility
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and ankle stabilization when performing every day activities. Furthermore, weakness in the
flexors of the lower limbs, such as DF muscles tend to be more common in individuals with MS
due to upper motor neuron patterns of weakness. We hypothesize that individuals with MS who
are experiencing fatigue will exhibit deficits in muscle strength and voluntary activation.
Additionally, quantitative indicators of muscle weakness and fatigue may provide indirect

evidence of symptomatic fatigue.

2.1 METHODS

2.1.1 Study Participants

A schematic representation of the study protocol is included in Figure 2.1. Eighteen
participants (nine women with relapsing-remitting MS (RRMS) or secondary-progressive MS
(SPMS) and nine healthy aged matched women; ages 20-60 years) were invited to participate in
the study. Participants’ health was determined through the inclusion/exclusion criteria of the
study protocol as well as informal screening prior to commencement of the study. All
participants were otherwise healthy with no self-reported neuromuscular or musculoskeletal
disorders that would affect their gait or ability to perform strong muscle contractions in the lower
leg. RRMS/SPMS participants were recruited and screened using an Expanded Disability Status
Scale (EDSS) [33] (Appendix A) by Dr. S. Morrow, an experienced neurologist from the London
Health Science Centre MS Clinic. Participants with an EDSS score between 2.0-6.5 were eligible
to partake in the study. Healthy participants were recruited from the Western University student
population, as well as the London community. All participants provided informed written
consent and the study was approved by Western University, Health Sciences Research Ethics

Board (Appendix F).

24



18 participants

Fatigue Force i
Questionnaires G- Measurement Fatigus Test

Modified Fatigue Maximal voluntary L Submaximal
— Impact Scale — isometric isometric

(MFIS) contraction (MVIC) contraction
Fatigue Severity | Twitch
Scale (F55) interpolation
Visual Analogue
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Figure 2.1. Schematic representation of the study protocol

2.1.2 Measures of Fatigue

All data was collected during a single visit to the Neuromuscular Performance Laboratory
at Parkwood Institute (London, Ontario). At the beginning of the visit, participants completed the
Modified Fatigue Impact Scale (MFIS) [34,36] (Appendix B), Fatigue Severity Scale (FSS)
[34,35] (Appendix C), Visual Analogue Fatigue Scale (VAFS) [35] (Appendix D) and a 6-
Minute Walk Test (6MWT) [37] (Appendix E).

The MFIS is a 21-item self-administered questionnaire used to assess the perceived
impact of fatigue within the past four weeks, and is aggregated into physical, cognitive and

psychosocial domains [34,38,12]. Participants rate on a 5-point Likert scale 0 being ‘never’ to 4
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being ‘almost always’, the extent to which they feel the statement applies to them. A total sum
score out of 84 is calculated, with higher scores indicating a greater impact of fatigue.

The FSS is a 9-item self-administered questionnaire used to assess the severity of fatigue
and the impact on daily functioning during the past week [34,38,12,39]. Participants indicate on
a 7-point Likert scale 1 being ‘strongly disagree’ to 7 being ‘strongly agree’, the extent to which
they feel each statement applies to them. A total sum score out of 63 is calculated, with higher
scores indicating a greater impact of fatigue.

The VAFS is a one-item questionnaire used to assess the participants’ global fatigue.
Participants rate on a 10-point Likert scale 0 being ‘worst’ to 10 being ‘normal’, the extent to
which they feel the statement applies to them. A total sum score out of 10 is calculated, with
lower scores indicating an increase in fatigue severity.

Following completion of the fatigue questionnaires, participants were required to
complete a 6BMWT. Procedures were adopted from the American Thoracic Society guidelines.
Participants were able to use assistive devices if needed, while walking a 26 meter linear course,
marked by 2 meter increments. Participants were instructed to walk as fast as possible along the
marked course, turn around at the last marker, return to the start, and repeat this course as often
as possible in six minutes. The time elapsed was measured with a stopwatch, and the distance
walked per minute was measured and summed for total distance in meters. Verbal
encouragement was provided and a scripted text was used to provide guidance before, during,

and after the six minutes.
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2.1.3 Measurement of Isometric Strength and Fatigue

Participants were seated upright in the ankle dynamometer (McComas and Belanger
1981) with their right ankle positioned at 30° plantar flexion and hip and knee angles of 90°.
Velcro straps were fastened across the participant’s foot (Figure 2.2). Additionally, during all
contractions, participants were instructed to fold their arms across the chest to avoid extraneous
movement.

The test protocol commenced with a series of submaximal isometric contractions for the
purpose of warm-up and familiarization. Participants then performed repeated (3-5 repetitions),
brief (~ 5s) MVICs of the ankle DF, each separated by 2 minutes of rest. Maximal torque was
attained when two consecutive MV ICs differed by less than 5%. Participants were provided with
strong verbal encouragement. Torque was displayed in real-time on an online system using the
Spike 2 software in attempt to obtain maximal effort.

The fatigue protocol consisted of a sustained submaximal voluntary isometric contraction
(50% MVIC) held to the limit of endurance. Torque produced by each participant and two lines
identifying the target torque (50% MVIC) and cut off torque level (40% MVIC) were displayed
using Spike 2 software. Task termination resulted when the participants torque dropped below
the 40% MVIC line twice and the time to task failure (TTF) in seconds was recorded.
Immediately following task termination, participants completed one final MVIC of the ankle DF
muscles, while the study examiner manually delivered an electrical stimulation ~ 1s prior, during
maximal plateaued torque, and ~1s following their maximal contraction. To score global fatigue,

the ratings of VAFS were requested from the participants following fatiguing task.
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2.1.4 Measurement of VVoluntary Activation

Voluntary activation

Participants were seated upright in the ankle dynamometer (McComas and Belanger
1981) with their right ankle positioned at 30° plantar flexion and hip and knee angles of 90°.
Velcro straps were fastened across the participant’s foot (Figure 2.2). Additionally, during all
contractions, participants were instructed to fold their arms across the chest to avoid extraneous
movement.

To obtain the maximal twitch torque, electrical stimulation was applied to the peroneal
nerve around the fibular head with a constant current stimulator (DS7AH, Digitimer, UK). A series
of incremental stimuli of increasing intensity were delivered to the resting muscle. Once the
torque output reached a plateau, the stimulus was deemed maximal. The stimulus was then
increased an additional ~10% to achieve supramaximal stimulation.

The test protocol commenced with a series of submaximal isometric contractions for the
purpose of warm-up and familiarization. Participants then performed brief (~ 5s) MVICs of the
ankle DF muscles. A single supramaximal stimulus was applied to the peroneal nerve prior to
their MVIC. A second supramaximal stimulus was applied at the point of maximal voluntary
torque, which was visually determined as the point of torque plateau. A third single
supramaximal stimulus was delivered at rest ~1s following their MVIC to obtain the potentiated
twitch. This procedure was repeated 3-4 times for each participant, followed by 2 minutes rest
between trials.

A standard equation (VA (%) = (1 — (interpolated twitch /potentiated twitch)) x 100 was

used to calculate the percent of VA. VA is considered maximal when there is no superimposed
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twitch evoked at the peak of the MVIC in response to the supramaximal stimulation of the

peripheral nerve.

' clamp
CP nerve

[ stimulating electrode

L&

|

__force transducer
/

Figure 2.2. Schematic representation of the experimental setup (with permission from
Alexandra Lynette-Krech, (2017))

2.1.5 Statistical Methods

All analyses were performed using Statistical Package for the Social Sciences (Version
24; IBM SPSS Inc., Chicago, IL). Data was testing for normal distribution using the Shapiro-

Wilk Test. A two-tailed independent samples t-test was used to identify any differences between
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groups for demographic data, fatigue-scaled scores, 6-MWT, MVIC, VA, and TTF. The
association between the dependent variables, such as the MFIS, FSS and VAFS, and the different
measures of MVIC, VA, 6-MWT, and TTF as the independent variables were determined using
Pearson's correlation analysis. A split-plot analysis of variance (group by time) was performed to
investigate a potential interaction for MS participants versus healthy controls at baseline and
post-fatigue on MVIC, VA and VAFS scores. If a significant interaction was detected, a Tukey
post hoc analysis was performed to determine where the differences existed. A significance level

of p<0.05 was used for all statistical tests. All values are reported in mean =+ standard deviation

(SD).

2.2 RESULTS

2.2.1 Demographics

Subject characteristics are present in Table 1. Participants ranged in age from 22 to 60
years, with an average age of 39 years (SD= 10 years). No difference was observed in age
between the MS group and healthy controls. The majority of participants were of Caucasian
descent, with the exception of one African Canadian participant belonging to the MS group.
According to international classification standards for body mass index (weight (kg) / height
(m)?), on average, both groups were slightly overweight (BMI > 25). EDSS scores for the MS
group ranged from 2.0 to 6.5 points, with an average of 4 points (SD= 2 points). The majority of
MS participants were currently taking DMTs as a part of their MS treatment regime. A brief

history of diagnosis date as well as current treatment are displayed in Table 2.
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Table 1. Subject Characteristics

Group n Age (years) BMI EDSS
mean = SD mean + SD mean £ SD
Control 9 35+7 25+3 n/a
MS 9 43 +11 27+4 4+2

BMI= body mass index, EDSS= expanded disability status scale.
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Table 2. History of MS Participants

Code Dx Treatment
MS 01 2011 Rebif
MS 02 2012 None
MS 03 2009 None
MS 04 2017 Aubagio
MS 05 2004 Copaxone
MS 06 2009 Tysabi
MS 07 2011 None
MS 08 1994 None
MS 09 2010 Aubagio

Dx = date of diagnosis
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2.2.2 Fatique Questionnaires and 6-MWT

An overview of scores resulting from the MFIS, FSS and VAFS are included in Table 3.
According to the MFIS, the MS group experienced more fatigue compared with healthy controls
(p<0.05). Distance walked during the 6-MWT (r=-0.720, p= 0.001) (Figure 2.4), baseline MVIC
torque (r=-0.689, p= 0.002), post-fatigue MVIC torque (r=-0.666, p=0.003), and baseline VA
(r="-0.589, p=0.010) scores were all negatively associated with MFIS scores. No association
was found between MFIS scores and post-fatigue VA and TTF scores.

The MS group experienced more physical fatigue compared with healthy controls
(p<0.05). A negative association was observed between MFIS physical scores and distance
walked during the 6-MWT (r = -0.659, p= 0.003), baseline MVIC torque (r =-0.641, p = 0.004),
post-fatigue MVIC torque (r = -0.541, p = 0.020), and baseline VA (r =-0.609, p = 0.007)
scores. These findings suggest that the higher ratings of perceived physical fatigue were
associated with lower activation and strength of the DF muscles. No association was found
between MFIS physical scores and post-fatigue VA and TTF scores.

Like physical fatigue scores, the MS group experienced more cognitive fatigue compared
with healthy controls (p<0.05). Distance walked during the 6-MWT (r = -0.477, p = 0.045),
baseline MVIC torque (r = -0.498, p = 0.036), post-fatigue MVIC torque (r = -0.596, p = 0.009),
and post-fatigue VA (r = -0.504, p = 0.033) scores were all negatively associated with MFIS
cognitive scores. No correlation was found between MFIS cognitive scores and baseline VA and
TTF scores.

MFIS psychosocial scores did not differ between groups (p>0.05). However, MFIS

psychosocial scores were negatively associated with distance walked during the 6-MWT (r = -0
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.628, p = 0.005). No association was found between MFIS psychosocial scores and MVIC, VA,
and TTF scores.

No difference was observed in FSS scores between the MS group and healthy controls
(p>0.05). However, the FSS was negatively associated with distance walked during the 6-MWT
(r=-0.731, p = 0.001), indicating higher ratings of perceived fatigue were accompanied by
shorter distance walked. No association was found between FSS scores and MVIC torque, VA,
and TTF scores.

Results from the 2-item VAFS indicated no difference between groups or scores
(p>0.05). In addition, disability status (EDSS) showed a significant association with FSS (r =

0.687, p = 0.041) scores but not with MFIS scores.
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Table 3. Fatigue Scales

Group MFIS MFIS MFIS MFIS FSS Baseline Post-fatigue
Total physical cognitive  psychosocial Total VAFS VAFS
mean+*SD mean+SD mean+ SD mean*SD mean+=SD mean+ SD mean + SD
range range range range range range range
Control 31+9 13+4 15+4 3+2 31+12 8+1 8+1
22 t0 49 7to0 20 11to 24 1to6 14 to 49 6to9 7t09
MS 51 + 14* 26 +12* 21 + 6* 4+2 42 +11 7+2 7+2
32t0 79 10to 35 91to 30 2t07 18 to 53 41010 41010

MFIS = modified fatigue impact scale, FSS = fatigue severity scale, VAFS = visual analogue
fatigue scale. * Indicates a significant difference between controls and MS.
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2.2.3 Force Measurement and Fatigue Test

As shown in figure 2.3, the MS group walked a shorter distance compared with healthy
controls during the 6-MWT (p<0.001). A positive relation was found between distance walked
and baseline MVIC torque (r = 0.547, p = 0.019) scores, indicating that increased distance
walked was associated with increased MVIC torque.

Baseline and post-fatigue scores on MVIC, VA, 6-MWT, and TTF are outlined in Table
4 and Table 5, respectively. The average strength (MVIC) for healthy controls was 26.06 + 3.33
Nm, which was significantly stronger than the MS group who had an average MVIC of 18.61 +
7.33 Nm (p<0.05). As shown in Figure 2.5, when normalized to participants’ body mass (BM),
healthy controls had greater MV IC torque scores compared with the MS group at baseline and
post-fatigue testing (p<0.05). Both groups MVIC torque decreased post-fatigue (p<0.05). There
was no interaction between participants (MS and healthy controls) and MVIC torque (F (1,16) =
0.94, p>0.05) at baseline and post-fatigue testing. There was a main effect on MVIC torque
within participants (F(1,16) = 37.60), p<0.001), as well as between groups (F(1,16) = 18.97,
p<0.001). As shown in figure 2.6, healthy controls had greater VA scores compared with the MS
group at baseline and post-fatigue testing (p<0.05). There was no interaction between participants
(MS and healthy controls) and VA (F(1,16) = 9.34, p>0.05) scores at baseline and post-fatigue
testing. There was a main effect on VA scores between groups (F(1,16) = 9.34, p<0.05). A
positive association was observed between MVIC torque and VA scores at baseline, indicating
that lower MVIC torque was accompanied by lower VA levels (r =0.607, p =0.008; r = 0.743, p
= 0.001, respectively).

As shown in Figure 2.7, no difference was found in average TTF scores between the MS

group and healthy controls (p > 0.05).
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Table 4. Baseline Quantitative Parameters

Group Baseline MVIC Baseline MVIC 6-MWT Baseline VA
(Nm) (Nm/kg BM) (m) (%)
mean + SD mean + SD mean + SD mean £ SD
Control 26.0 £3.33 0.39 £ 0.06 458 + 63 95+2
MS 18.6 £ 7.33* 0.25 £ 0.07* 312 + 85* 76 £ 23*

* Indicates a significant difference between healthy controls and MS participants.
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Table 5. Post-fatigue Quantitative Parameters

Group TTF Post-fatigue MVIC Post-fatigue VA
(s) (Nm/kg BM) (%)
mean + SD mean + SD mean + SD
Control 149 + 69 0.30 £ 0.06 95+4
MS 118 + 31 0.19+£0.07* 78 £ 17*

* Indicates a significant difference between healthy controls and MS participants.

38



600

500

400

300

6-Minute Walk Test (m)

200

100

Control MS

Figure 2.3. Distance walked during the 6-minute walk test
Distance walked (m) during the 6-MWT for healthy controls (black) and MS participants (grey).

Distance walked was significantly shorter in the MS group (p<0.05). Values are presented as
means + SD. * Represents a significant difference between healthy controls and MS participants.
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Figure 2.4. Correlation between 6-minute walk times and MFIS scores

A strong correlation exists between distance walked during the 6-minute walk test and MFIS
scores (r = 0.720, p = 0.001) in healthy controls (black) and MS participants (grey).
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Figure 2.5. Strength of the DF muscles

Peak torque (Nm/kgBM) of the DF muscles normalized to subjects’ BM of healthy controls
(black) and MS participants (grey). MS participants were significantly weaker than healthy
controls (p<0.05). Both groups decreased torque post-fatigue (p<0.05). Values are presented as
means = SD. ~ Represents a significant effect within healthy controls and MS participants.

* Represents a significant effect between healthy controls and MS participants.
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Figure 2.6. Voluntary activation of the DF muscles

Voluntary activation (%) of the DF muscles for healthy controls (black) and MS participants
(grey). Voluntary activation was significantly lower in MS participants at baseline and post-
fatigue testing (p<0.05). Values are presented as means + SD. * Represents a significant effect
between healthy controls and the MS participants.
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Figure 2.7. Time to task failure
Time to task failure (s) during submaximal contraction of the DF muscles held to the limit of

endurance for healthy controls (black) and MS participants (grey). No difference was observed
between groups (p>0.05). Values are presented as means + SD.
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2.3 DISCUSSION

The study assessed the impact of muscle strength and voluntary activation on
symptomatic fatigue in individuals with MS. It was hypothesized that individuals with MS would
exhibit 1) reduced muscle strength and voluntary activation, which would correlate to 2) a higher
symptomatic fatigue rating, 3) greater fatigability on an objective test of neuromuscular fatigue
and 4) a reduced 6-minute walk time. The main findings demonstrated that individuals with MS
have reduced muscle strength, voluntary activation, and 6-minute walk times compared with
healthy controls. Individuals with MS reported higher levels of symptomatic fatigue, which were
strongly associated with normalized peak torque and voluntary activation for DF muscles. No
relation exists between symptomatic fatigue and fatigability.

As fatigue is a predominant characteristic of MS, the observation that individuals with
MS report greater fatigue than healthy controls is well supported by previous research [7,44,20].
In the present study, individuals with MS subjectively reported themselves significantly more
fatigued on the MFIS, FSS and VAFS than healthy controls. A difference in the total MFIS score
was observed between groups. Furthermore, a significant difference in MFIS physical and
cognitive scores was observed between groups. However, no difference was observed in
psychosocial scores. Previous research using self-report scales have indicated a strong
correlation between total MFIS and FSS scores [34,45]. Consistent with the findings, a strong
relation existed between MFIS and FSS scores in the present study, however, no difference was
observed in FSS scores between groups. One possible explanation for the non-significant finding
in the FSS may be due to the relatively small sample size (N=18), and large group variance in the
present study. Studies that have reported significant findings incorporated a larger sample size

(N>100), increasing the power to detect a statistically significant relationship [34,36,46]. In
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addition, previous studies have shown a stronger relation with depression scores and total MFIS
scores, compared with FSS scores [34,45,36]. Thus, the MFIS may have been more sensitive to
the psychological variables that presented in the healthy control group.

The relationship between decreased muscle strength and a subsequent increase in
physical inactivity and psychological factors has been determined in individuals with MS
[34,47]. Despite the well-known benefits of physical activity, it has been established that
individuals with MS report being less physically active than healthy controls [48,49,38].
Engaging in physical activity may further improve cognitive function, fatigue, and quality of life.
In a study by Trojan et al [51], researchers compared symptomatic fatigue and biopsychosocial
correlates of fatigue (disease course, physical inactivity, and depression) in 53 individuals with
MS. One main finding was the association between physical inactivity and increased
symptomatic fatigue in individuals with MS. The majority of participants in Trojan’s study were
slightly overweight (B.M.l > 25) or obese, potentially contributing to the indirect cause of
physical activity and subsequently leading to an increased perception of fatigue [51]. Further,
studies have found significant associations between psychological variables, such as depression
and fatigue in individuals with MS [3,52]. A longitudinal study by Kinsinger et al [3] examined
the influence of depression and fatigue on symptomatic cognitive fatigue and neuropsychological
impairment in a clinical trial. Self-report scales and structured interviews were conducted over
127 participants with MS. Findings suggest that the treatment of depression and fatigue
symptoms can influence an individual’s ability to accurately perceive their cognitive
performance. This study supports previous findings [53-56] by demonstrating the impact of
depression and symptomatic fatigue on cognitive function [3]. In the present study however,

behavioural or psychosocial variables were not measured. Through structured conversations,

45



38% of participants in the present study (17% controls, 21% MS) presented a mental illness
(depression and or anxiety), potentially contributing to the increased symptomatic fatigue
experienced in both groups. Therefore, the interaction between symptomatic fatigue and muscle
fatigue merits further investigation. Determining the impact of biopsychosocial variables on
symptomatic fatigue will offer the opportunity to implement new treatments to reduce
experienced fatigue in the MS population.

A primary objective of this investigation was to determine if there were differences in
muscle strength and activation between individuals with MS and healthy controls. After
accounting for differences in body mass and age, we found that overall, absolute peak torque was
36% lower in the MS group than healthy controls. This finding is slightly lower than previous
research studying similar parameters [25,15,29,30]. A difference in peak torque was observed
between groups at baseline (pre-fatigue) and immediately following the fatigue task. Following
the fatigue task, both groups exhibited decreased torque. One explanation for lower torque-
generation in the MS group is the impaired central drive from the CNS to the LMNs of specific
muscles, such as the DF muscles [57]. It has been reported that when a supramaximal electrical
stimulus is imposed on the working muscle during a MVIC, there is a large increase in torque in
individuals with MS. This suggests that individuals with MS have a reduced ability to fully
activate their muscles [15]. Rice et al [26] have reported that motor neuron firing rates during a
MVIC are significantly lower in individuals with MS which may indicate reduced central drive.
In the present study, a strong association was demonstrated between MVIC torque and voluntary
activation levels, indicating that higher MVIC torques were accompanied by higher voluntary
activation levels. Furthermore, we used interpolated twitch to measure voluntary activation of the

DF muscles between the MS group and healthy controls. Complete voluntary activation
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represents a state in which all motor units are recruited and firing at their optimal rate [58].
Several muscles, including muscles of the lower limbs, have demonstrated a reduction in
voluntary activation following prolonged activity [26,58,59,40]. This decrease in voluntary
activation has been defined as central fatigue [26,58,59,40]. The mean non-fatigued level of
voluntary activation in lower limb muscles ranges from 94%-100% in healthy controls. In
comparison, the mean non-fatigued level of voluntary activation in individuals with MS is quite
variable, ranging from 47%-93% [60]. Consistent with these findings, in the present study, a
significantly lower activation was demonstrated in the MS group. The MS group produced a
mean activation level of 77% versus 96% in healthy controls. This difference could account for
almost all of the difference observed in MVIC torque scores between groups. The remaining
difference could be attributed to the changes within the muscle, such as muscle mass or intrinsic
strength. However, no difference was observed between groups following the fatigue task. One
possible explanation relates to central and peripheral adaptions during the fatigue task. Following
prolonged muscle activity, lower limb muscles have demonstrated that the extent to which
central fatigue develops may be dependent on the task performed [26]. Studies suggest that low-
torque, long-duration contractions are more likely to lead to the development of central fatigue
than high-torque, short-duration contractions performed by the same muscle group [59]. Ina
study by Behm and St-Pierre [59], two intermittent fatigue tasks were used to examine central
fatigue in the quadriceps muscle. The contraction intensity largely influences the duration of the
fatiguing task [59]. The high-torque, short duration fatiguing task consisted of a 50% MVIC
intensity, while the low-torque, long duration fatiguing task consisted of a 25% MVIC intensity.
A greater decline in voluntary activation was observed following the low-torque (25%), long

duration MVIC compared to the high-torque (50%), short duration MVIC. Therefore, the similar
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times to fatigue in the current study may be dependent on the similar 50% contraction intensity
of the fatiguing task performed. Further, sample size and variability are two important factors
that influence the power of a study, such that the greater the sample size and the lower the
variance, the greater the power. In the present study, a relatively small sample size in addition
with high variability was observed during the fatiguing task, potentially contributing to a greater
type Il error.

Significant differences between symptomatic fatigue and measures of fatigability have
been demonstrated in previous research [29,27,61]. In the present study however, no association
was observed between symptomatic fatigue and fatigability, as measured by time to task failure.
Thus, higher MFIS and FSS scores were not correlated to higher muscle fatigability at a
submaximal intensity. A study by Romani et al [62] examined the relationship between
symptomatic fatigue and measures of fatigability in individuals with MS. A multidimensional
assessment tool was used to categorize individuals who experienced high (75™ percentile) fatigue
versus low (25™ percentile) fatigue. Fatigability was measured through sustained MVICs of the
thumb adductors. Results indicated no difference in fatigability between individuals who
reported experiencing high fatigue versus low fatigue. Similar findings were presented in
individuals with Chronic Fatigue Syndrome (CFS) [63]. Individuals with CFS reported high
levels of effort associated with physical activity with no apparent difference in fatigability
compared with healthy controls [63]. It has been suggested that fatigue in individuals with CFS
is central in origin resulting from disrupted signaling between normal firing frequency upon
motor units [64]. Thus, the underlying pathophysiology of fatigue could provide a framework for

fatigue perceived by individuals with MS.
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A study by McKenzie and Gandevia [65] provides evidence of a relationship between
absolute muscle torque and fatigability, suggesting that the greater the absolute torque the more
quickly the muscle fatigues [65]. In the present study, a lower absolute torque was observed in
the MS group compared with healthy controls and thus, potentially contributing to greater fatigue
resistance experienced. The underlying pathophysiology of fatigue in MS may be curtailed by a
significantly lower absolute torque. Furthermore, studies have reported a greater decline in
distance walked during the 6-minute walk test in individuals with MS compared to healthy
controls [66]. The decline in distance walked correlated with greater symptomatic physical
fatigue and poorer physical function [66]. In the present study, distance walked during a 6-
minute walk test was shorter in the MS group compared with healthy controls. A strong
association was demonstrated in the 6-minute walk time and MVIC torque, indicating that
stronger MV IC torques were accompanied by greater distances walked. The 6-minute walk test
distance also distinguished a relationship between various disability scores on the EDSS and
distance walked. A higher disability score was associated with a reduced distance walked during
the 6-minutes compared to lower disability scores in the MS group. These findings were not
surprising as higher EDSS (4.0-6.5) scores are primarily based upon walking ability. However,
this observation was not significant. Due to the large difference in distance covered on the 6-
MWT between the MS group and healthy controls, it would be interesting to quantify VA after a
fatiguing task similar to the 6-MWT. In the present study, fatigability, as measured by time to
task failure, did not produce a significant difference between the MS group and healthy controls
but distanced covered on the 6-MWT did.

In summary, individuals with MS reported higher levels of symptomatic fatigue on the

MFIS, FSS and VAFS, while demonstrating reduced muscle strength, voluntary activation and
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distanced covered on the 6-MWT compared with healthy controls. Symptomatic fatigue assessed
by the MFIS was associated with fatigability, as measured by MVIC torque but not time to task

failure.

2.4 LIMITATIONS

It is important to consider the limitations of the present study before applying the findings to
a broader population of individuals with MS. One limitation of the study was that the sample size
of each group was relatively small, decreasing the overall power of the study. Although previous
literature has been able to identify a significant difference between symptomatic fatigue and
fatigability, a sample size of eighteen participants used in the present study in addition with high
variability may have contributed to the non-significant results observed in the FSS and TTF
scores.

Another limitation in the present study was that MS participants were not severely affected
by the disease. The study targeted individuals with relapsing-remitting or secondary-progressive
MS, at a moderate level of disability (EDSS= 4 + 2). Therefore, it is unknown whether similar
results may be obtained in a more progressive stage of MS or disabled population.

Other variables may distort the relationship between symptomatic fatigue and fatigability.
For example, mental illness, such as depression, is positively associated with fatigue. Through
structured interview, 38% of participants (17% controls, 21% MS) in the present study reported a
history of mental illness, possibly contributing to the non-significant result. A more definitive
study could examine symptomatic variability and consider excluding confounding variables

including mental illness.
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Lastly, fatigue is a broad and multidimensional construct. Despite the good psychometric
properties of the MFIS and FSS, self-reported questionnaires have their acknowledged
limitations, such as retrospective bias. Therefore, the ability to directly link symptomatic fatigue
to muscle fatigability in the present study is somewhat limited. A multidisciplinary approach was
used in the present study to limit this problem, however in a clinical population it is challenging

to avoid all potentially confounding variables.

2.5 CONCLUSIONS AND FUTURE DIRECTIONS

In summary, the data presented here demonstrate that individuals with MS have significant
reductions in distance walked during 6-minutes, peak torque, and voluntary activation of the DF
muscles compared with healthy controls. Symptomatic fatigue, established from the MFIS, was
associated with fatigability, as measured by MVIC but not time to task failure. Overall our
findings provided an introductory contribution to research in quantifying muscle strength and
fatigue in individuals with MS. Further, MRIs directly measuring muscle mass may contribute to
greater understanding of mechanisms for muscle weakness and fatigue. Future research in
quantifying muscle strength and fatigue should emphasize more functionally relevant fatiguing
tasks, such as the 6-minute walk test or sit to stand tasks. This would allow studies to determine
how muscle strength and fatigue may impact activities of daily living in individuals with MS. In
addition, repeating the present study that establishes a sub-group analysis based on disease

severity, may also yield unique findings.

51



2.6 REFERENCES

1.

10.

11.

12.

13.

14.

Charvet L, Serafin D and Krupp LB. Fatigue in multiple sclerosis. Fatigue: Biomedicine,
Health & Behavior. 2013;2(1):3-13.

Krupp LB. Fatigue in multiple sclerosis: a guide to diagnosis and management. New York
(NY); Demos Medical Publishing; 2004. p. 3-16.

Kinsinger SW, Lattie E and Mohr DC. Relationship between depression, fatigue,
subjective cognitive impairment, and objective neuropsychological functioning in patients
with multiple sclerosis. Neuropsychology. 2010;24(5):573-580.

Kluger BM, Krupp LB and Enoka RM. Fatigue and fatigability in neurologic illnesses:
proposal for a unified taxonomy. Neurology. 2013;80:409-414.

Iriarte J. Correlation between symptom fatigue and muscular fatigue in multiple sclerosis.
European Journal of Neurology. 1998;5(6):579-585.

Downey DC. Fatigue syndromes: new thoughts and reinterpretation of previous data.
Medical Hypotheses. 1992;39(2):185-190.

Sheean GL, Murray NMF, Rothwell JC, Miller DH and Thompson AJ. An
electrophysiological study of the mechanism of fatigue in multiple sclerosis. Brain.
1997;120:299-315.

Macintosh BR, Gardiner PF and McComas AJ. Skeletal muscle: form and function.
Champaign (IL); Human Kinetics; 2005. p. 225-227.

Komaroff AL. An examination of the working case definition of chronic fatigue
syndrome. American Journal of Medicine. 1996;100(1):56-64.

Edwards RH. Human muscle function and fatigue. Ciba Foundation Symposium.
1981:821-18.

Surakka J, Romberg A, Ruutiainen J, Virtanen A, Aunola S and Méentaka K. Assessment
of muscle strength and motor fatigue with a knee dynamometer in subjects with multiple
sclerosis: a new fatigue index. Clinical Rehabilitation. 2004;18(6):652-659.

Krupp LB. Fatigue in multiple sclerosis: a guide to diagnosis and management. New York
(NY); Demos Medical Publishing; 2004. p. 17-24.

Kos D, Kerckhofs E, Nagels G, D’hooghe MB and Ilsbroukx S. Origin of fatigue in
multiple sclerosis: review of the literature. Neurorehabilitation Neural Repair.
2008;22(1):91-100.

Schillings ML, Kalkman JS, Janssen HMHA, van Engelen BGM, Bleijenberg G and
Zwarts MJ. Experienced and physiological fatigue in neuromuscular disorders. Clinical
Neurophysiology. 2007;118(2):292-300.

52



15.

16.

17.

18.

19.

20.
21.

23.

23.

24,

25.

26.

27.

28.

Lambert CP, Archer RL and Evans WJ. Muscle strength and fatigue during
isokinetic exercise in individuals with multiple sclerosis. Medicine & Science in Sports &
Exercise. 2001;33(10):1613-1619.

Schwid SR, Thornton CA, Pandya S, Manzur KL, Sanjak M, Petrie MD, McDermott MP
and Goodman AD. Quantitative assessment of motor fatigue and strength in MS.
Neurology. 1999;53(4):743-750.

Sharma KR, Kent-Braun JA, Majumdar S, Huang Y, Mynhier M, Weiner MW and Miller
RG. Physiology of fatigue in amyotrophic lateral sclerosis. Neurology. 1995;45(4):733—
740.

Cairns SPSP, Knicker AJAJ, Thompson MWMW and Sjggaard G. Evaluation of models
used to study neuromuscular fatigue. Exercise and Sport Science Reviews. 2005;33(1):9—
16.

Belanger AY and McComas AJ. Extent of motor unit activation during effort. Journal of
Applied Physiology. 1981;51(5):1131-1135.

Merton PA. Voluntary strength and fatigue. Journal of Physiology. 1953;123:553-564.

Lewek MD, Rudolph KS and Snyder-Mackler L. Quadriceps femoris muscle weakness
and activation failure in patients with symptomatic knee osteoarthritis. Journal of
Orthopaedic Research. 2004;22(1):110-115.

Zwarts MJ, Bleijenberg G and van Engelen BGM. Clinical neurophysiology of fatigue.
Clinical Neurophysiology. 2008;119(1):2-10.

Boe SG, Stashuk DW and Doherty TJ. Motor unit number estimates, quantitative motor
unit analysis and clinical outcome measures in amyotrophic lateral sclerosis. Clinical
Neurophysiology. 2009;60:181-188.

McNeil CJ, Doherty TJ, Stashuk DW and Rice CL. Motor unit number estimates in the
tibialis anterior muscle of young, old, and very old men. Muscle & Nerve.
2005;31(4):461-467.

Steens A, de Vries A, Hemmen J, Heersema T, Heerings M, Maurits N and Zijdewind I.
Fatigue perceived by multiple sclerosis patients is associated with muscle fatigue.
Neurorehabilitation Neural Repair. 2012;26(1):48-57.

Rice CL, Vollmer TL and Bigland-Ritchie B. Neuromuscular responses of patients with
multiple sclerosis. Muscle & Nerve. 1992;15(10):1123-1132.

Wolkorte R, Heersema DJ and Zijdewind I. Muscle fatigability during a sustained index
finger abduction and depression scores are associated with perceived fatigue in patients
with relapsing-remitting multiple sclerosis. Neurorehabilitation Neural Repair.
2015;29(8):796-802.

Steens A, Heersema DJ, Maurits NM, Renken RJ and Zijdewind I. Mechanisms

53



29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

underlying muscle fatigue differ between multiple sclerosis patients and controls: a
combined electrophysiological and neuroimaging study. Neurolmage. 2012;59(4):3110—
3118.

Andreasen AK, Jakobsen J, Petersen T and Andersen H. Fatigued patients with multiple
sclerosis have impaired central muscle activation. Multiple Sclerosis. 2009;15(7):818—
827.

Ng AV, Miller RG, Gelinas D and Kent-Braun JA. Functional relationships of central and
peripheral muscle alterations in multiple sclerosis. Muscle & Nerve. 2004;29(6):843—-852.

Van der Kamp W, Denoordhout AM, Thompson PD, Rothwell JC, Day BL and Marsden
CD. Correlation of phasic muscle strength and corticomotoneuron conduction time in
multiple sclerosis. Annals of Neurology. 1991;29(1):6.

Lloyd AR, Gandevia SC and Hales JP. Muscle performance, voluntary activation, twitch
properties and perceived effort in normal subjects and patients with the chronic fatigue
syndrome. Brain. 1991;114A(1):85-98.

Cao H, Peyrodie L, Boudet S, Cavillon F, Agnani O, Hautecoeur P and Donzeé C.
Expanded disability status scale (EDSS) estimation in multiple sclerosis from
posturographic data. Gait and Posture. 2013;37(2):242-245.

Learmonth YC, Dlugonski D, Pilutti LA, Sandroff BM, Klaren R and Motl RW.
Psychometric properties of the fatigue severity scale and the modified fatigue impact
scale. Journal of Neurological Sciences. 2013;331:102-107.

Mills R, Young C and Nicholas R. Rasch analysis of the fatigue severity scale in multiple
sclerosis. Multiple Sclerosis. 2009;15:81-87.

Mills RJ, Young CA, Pallant JF and Tennant A. Rasch analysis of the modified fatigue
impact scale (MFIS) in multiple sclerosis. Journal of Neurology, Neurosurgery, and
Psychiatry. 2010;81(9):1049-1051.

Crapo RO, Casaburi R, Coates AL, Enright PL, MaclIntyre NR, McKay RT, Johnson D,
Wanger JS, Zeballos RJ, Bittner V and Mottram C. ATS statement: guidelines for the six-
minute walk test. American Journal of Respiratory and Critical Care Medicine.
2002;166(1):111-117.

Learmonth YC: Therapeutic exercise for those moderately affected with Multiple
Sclerosis [dissertation]. [Glasgow (UK)]: University of Glasgow; 2012.

Schwid SR, Covington M, Segal BM and Goodman AD. Fatigue in multiple sclerosis:
current understanding and future directions. Journal of Rehabilitation Research and
Development. 2002;39(2):211-224.

Kent-Braun JA, Sharma KR, Weiner MW, Massie B and Miller RG. Central basis of
muscle fatigue in chronic fatigue syndrome. Neurology. 1993;43(1):125-131.

54



41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51,

52.

Berger MJ, McKenzie CA, Chess DG, Goela A and Doherty TJ. Quadriceps
neuromuscular function and self-reported functional ability in knee osteoarthritis. Journal
of Applied Physiology. 2012;113(32):255-262.

Machner A, Pap G and Awiszus F. Evaluation of quadriceps strength and voluntary
activation after unicompartmental arthroplasty for medial osteoarthritis of the knee.
Journal of Orthopaedic Research. 2002;20(1):108-111.

Miller M, Downham D and Lexell J. Superimposed single impulse and pulse train
electrical stimulation: a quantitative assessment during submaximal isometric knee
extension in young, healthy men. Muscle & Nerve. 1999;2(8):1038-1046.

Vercoulen JHMM, Hommes OR, Swankink CMA, Jongen PJH, Fennis JFM, Galama JM
D, Van der Meer JWM and Bleijenberg G. The measurement of fatigue in patients with
multiple sclerosis: a multidimensional comparison with patients with chronic fatigue
syndrome and healthy subjects. Archives of Neurology. 2996;53(7):642-649.

Téllez N, Rio J, Tintoré M, Nos C, Galan | and Montalban X. Does the modified fatigue
impact scale offer a more comprehensive assessment of fatigue in MS. Multiple Sclerosis.
2005;11(2):198-202.

Greim B, Benecke R and Zettl UK. Qualitative and quantitative assessment of fatigue in
multiple sclerosis (MS). Journal of Neurology. 2007;254(2):58-64.

Dalgas U, Stenager E, Jakobsen J, Petersen T, Hansen HJ, Knudsen C, Overgaard K and
Ingemann-Hansen T. Fatigue, mood and quality of life improve in MS patients after
progressive resistance training. Multiple Sclerosis. 2010;16(4):480-490.

Rietberg MB, van Wegen EE, Uitdehaag BM and Kwakkel G. The association between
perceived fatigue and actual level of physical activity in multiple sclerosis. Multiple
Sclerosis Journal. 2011;17(10):1231-1237.

Andreasen A, Stenager E and Dalgas U. The effect of exercise therapy on fatigue in
multiple sclerosis. Multiple Sclerosis. 2011;17(9):1041-1054.

Kempen JCE, De Groot V, Knol DL, Lankhorst GJ and Beckerman H. Self-reported
fatigue and energy cost during walking are not related in patients with multiple sclerosis.
Archives of Physical Medicine and Rehabilitation. 2012;93(5):889-895.

Trojan D, Arnold D, Collet J-P, Shapiro S, Bar-Or A, Robinson A, Le Cruguel J-P,
Ducruet T, Narayanan S, Arcelin K, Lapierre Y, Caramanos Z and Da Costa D. Fatigue in
multiple sclerosis: association with disease-related, behavioural and psychosocial factors.
Multiple Sclerosis. 2007;13(8):985-995.

Bol Y, Duits AA, Hupperts RMM, Vlaeyen JWS and Verhey FRJ. The psychology of
fatigue in patients with multiple sclerosis: a review. Journal of Psychosomatic Research.
2009;66(1):3-11.

55



53.

54,

55.

56.

S7.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Maor Y, Olmer L and Mozes B. The relation between objective and subjective impairment
in cognitive function among multiple sclerosis patients- the role of depression. Quality of
Life Research. 2000;9(3):131-135.

Bakshi R. Fatigue associated with multiple sclerosis: diagnosis, impact and management.
Multiple Sclerosis. 2003;9:219-228.

Bruce JM and Arnett PA. Self-reported everyday memory and depression in patients with
multiple sclerosis. Journal of Clinical and Experimental Neuropsychology.
2004;26(2):200-214.

Ziemssen T. Multiple sclerosis beyond EDSS: depression and fatigue. Journal of the
Neurological Sciences. 2009;277:S37-541.

McDonald WI and Sears TA. The effects of experimental demyelination on conduction in
the central nervous system. Brain. 1970;93(3):583-598.

Gandevia SC, Allen GM, Butler JE and Taylor JL. Supraspinal factors in human muscle
fatigue: evidence for suboptimal output from the motor cortex. The Journal of Physiology.
1996;490(2):529-536.

Behm DG, St-Pierre DM and Perez D. Muscle inactivation: assessment of interpolated
twitch technique. Journal of Applied Physiology. 1996;81(5):2267—2273.

Manca A, Cabboi MP, Ortu E, Ginatempo F, Dragone D and Zarbo IR. Effect of
contralateral strength training on muscle weakness in people with multiple sclerosis: proof
of concept case series. Physical Therapy. 2016;96(6):828-838.

Enoka RM and Stuart DG. Neurobiology of muscle fatigue. Journal of Applied
Physiology. 1992;72(5):1631-1648.

Romani A, Bergamaschi R, Candeloro E, Alfonsi E, Callieco R and Cosi V. Fatigue in
multiple sclerosis: multidimensional assessment and response to symptomatic treatment.
Multiple Sclerosis. 2004;10(4):462-468.

Stokes MJ, Cooper RG and Edwards RHT. Normal muscle strength and fatigability in
patients with effort syndromes. BMJ: British Medical Journal. 1988;297(6655):1014—
1017.

Chaudhuri A and Behan PO. Fatigue in neurological disorders. Lancet. 2004;363(9413)
:978-988.

McKenzie DK, Bigland-Ritchie B, Gorman RB and Gandevia SC. Central and peripheral
fatigue of human diaphraghm and limb muscles assessed by twitch interpolation. Journal
of Physiology. 1992;454(1):643-656.

Goldman MD, Marrie RA and Cohen JA. Evaluation of the six-minute walk in multiple
sclerosis subjects and healthy controls. Multiple Sclerosis. 2008;14(3):383-390.

56



APPENDIX A

Kurtzke Expanded Disability Status Scale (EDSS)

(J 0.0 - Normal neurological exam (all grade 0 in all Functional System (FS) scores®).
(J 1.0-No disability, minimal signs in one FS* (i.e., grade 1).

3 15-No disability, minimal signs in more than one FS* (more than 1 FS grade 1).
D 2.0 - Minimal disability in one FS (one FS grade 2, others 0 or 1).

(1 2.5 - Minimal disability in two FS (two FS grade 2, others 0 or 1).

D 3.0 - Moderate disability in one FS (one FS grade 3, others 0 or 1) or mild disability in three or
four FS (three or four FS grade 2, others 0 or 1) though fully ambulatory.

CI 3.5 - Fully ambulatory but with moderate disability in one FS (one grade 3) and one or two FS
grade 2; or two FS grade 3 (others 0 or 1) or five grade 2 (others 0 or 1).

3 40- Fully ambulatory without aid, self-sufficient, up and about some 12 hours a day despite
relatively severe disability consisting of one FS grade 4 (others 0 or 1), or combination of
lesser grades exceeding limits of previous steps; able to walk without aid or rest some 500
meters.

as- Fully ambulatory without aid, up and about much of the day, able to work a full day, may
otherwise have some limitation of full activity or require minimal assistance; characterized
by relatively severe disability usually consisting of one FS grade 4 (others or 1) or
combinations of lesser grades exceeding limits of previous steps; able to walk without aid
or rest some 300 meters.

a 5.0 - Ambulatory without aid or rest for about 200 meters; disability severe enough to impair
full daily activities (e.g., to work a full day without special provisions); (Usual FS
equivalents are one grade 5 alone, others 0 or 1; or combinations of lesser grades usually
exceeding specifications for step 4.0).

Q s5s- Ambulatory without aid for about 100 meters; disability severe enough to preclude full
daily activities; (Usual FS equivalents are one grade 5 alone, others 0 or 1; or combination
of lesser grades usually exceeding those for step 4.0).

d 6.0 - Intermittent or unilateral constant assistance (cane, crutch, brace) required to walk about
100 meters with or without resting; (Usual FS equivalents are combinations with more than
two FS grade 3+).
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J 6.5 - Constant bilateral assistance (canes, crutches, braces) required to walk about 20 meters
without resting; (Usual FS equivalents are combinations with more than two FS grade
3+).

Q 7.0 - Unable to walk beyond approximately 5 meters even with aid, essentially restricted to
wheelchair; wheels self in standard wheelchair and transfers alone; up and about in
wheelchair some 12 hours a day; (Usual FS equivalents are combinations with more than
one FS grade 4+, very rarely pyramidal grade 5 alone).

D 7.5 - Unable to take more than a few steps; restricted to wheelchair; may need aid in transfer;
wheels self but cannot carry on in standard wheelchair a full day; May require motorized
wheelchair, (Usual FS equivalents are combinations with more than one FS grade 4+).

D 8.0 - Essentially restricted to bed or chair or perambulated in wheelchair, but may be out of
bed itself much of the day; retains many self-care functions; generally has effective use of
arms; (Usual FS equivalents are combinations, generally grade 4+ in several systems).

D 8.5 - Essentially restricted to bed much of day; has some effective use of arm(s); retains some
self-care functions; (Usual FS equivalents are combinations, generally 4+ in several
systems).

D 9.0 - Helpless bed patient; can communicate and eat; (Usual FS equivalents are
combinations, mostly grade 4+).

D 9.5 - Totally helpless bed patient; unable to communicate effectively or eat/swallow; (Usual FS
equivalents are combinations, almost all grade 4+).

(J 10.0 - Death due to MS.

*Excludes cerebral function grade 1.

Note 1: EDSS steps 1.0 to 4.5 refer to patients who are fully ambulatory and the precise step
number is defined by the Functional System score(s). EDSS steps 5.0 to 9.5 are defined by
the impairment to ambulation and usual equivalents in Functional Systems scores are
provided.

Note 2: EDSS should not change by 1.0 step unless there is a change in the same direction of at
least one step in at least one FS.

Sources: Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).
Neurology. 1983 Nov;33(11):1444-52,

Haber A, LaRocca NG. eds. Minimal Record of Disability for multiple sclerosis. New York: National Multiple
Sclerosis Society; 1985.
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APPENDIX B

Modified Fatigue Impact Scale (MFIS)

Fatigue is a feeling of physical tiredness and lack of energy that many people
experience from time to time. But people who have medical conditions like MS
experience stronger feelings of fatigue more often and with greater impact than others.

Following is a list of statements that describe the effects of fatigue. Please read each
statement carefully, the circle the one number that best indicates how often fatigue has
affected you in this way during the past 4 weeks. (If you need help in marking your
responses, tell the interviewer the number of the best response.) Please answer every
question. If you are not sure which answer to select choose the one answer that comes
closest to describing you. Ask the interviewer to explain any words or phrases that you
do not understand.

Because of my fatigue during the past 4 weeks...

é
> B 7 2
2B ER
2 & ® 0 =<
1. | have been less alert. 0 1 2 3 4
2. | have had difficulty paying attention for long periodsof 0 1 2 3 &
time.
3. | have been unable to think clearly. 9 1 2 3 4
4. | have been clumsy and uncoordinated. 0 1 2 3 4
5. Ihavebeenforgetful. =~~~ 0 1 2 3 4
6. | have had to pace myself in my physical activities. 0 1 2 3 4
7. | have been less motivated to do anything thatrequires 0 1 2 3 4
physical effort. , ,
8. | have been less motivated to participate in social 0 1 2 3 4
activities.
9. | have been limited in my ability to do things awayfrom 0 1 2 3 4
home.
10. | have trouble maintaining physical effort for long 0 1 2 3 4
___periods. [ R
11. | have had difficulty making decisions. o 1 2 3 4
12. | have been less motivated to do anything thatrequires 0 1 2 3 4
thinking
13. My muscles have felt weak 0o 1 2 3 4
14. | have been physically uncomfortable. o 1 2 3 4
15. | have had trouble finishing tasks that require thinking. 0 1 2 3 4
16. | have had difficulty organizing my thoughts whendoing 0 1 2. 3 4
things at home or at work.
17. 1 have been less able to complete tasks that require 0 1 52 3 4
_physical effort.
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18. My thinking has been slowed down. 0 1 2 3 4
19. | have had trouble concentrating. 0 1 2 3 4
20. | have limited my physical activities. 0 1 2 3 4
21. | have needed to rest more often or for longerperiods. 0 1 2 3 4
Instructions for Scoring the MFIS
ltems on the MFIS can be aggregated into three subscales (physical, cognitive, and
psychosocial), as well as into a total MFIS score. All items are scaled so that higher
scores indicate a greater impact of fatigue on a person's activities.
Physical Subscale
This scale can range from 0 to 36. It is computed by adding raw scores on
the following items: 4+6+7+10+13+14+17+20+21. 0
Cognitive Subscale
This scale can range from 0 to 40. It is computed by adding raw scores on
the following items: 1+2+3+5+11+12+15+16+18+19. 0
Psychosocial Subscale
This scale can range from 0 to 8. It is computed by adding raw scores on
the following items: 8+9. ) 0
Total MFIS Score
The total MFIS score can range from 0 to 84. It is computed by adding
scores on the physical, cognitive, and psychosocial subscales. 0
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APPENDIX C

Fatigue Severity Scale (FSS)

Your Name

Date: Date of birth:

This questionnaire contains nine statements that rate the severity of your fatigue symptoms. Read cach
statement and circle a number from 1 to 7, based on how accurately it reflects your condition during the
past week and the extent to which you agree or disagree that the statement applies to you,

##*A low value (c.g. 1) indicates strong disagreement with the statement, whereas a high value (e.g. 7)

indicates strong agreement.

During the past week, I have found that:

1. My motivation is lower when I am fatigued

J

. Exercise brings on my fatigue.

=

. Lam easily fatigued.

4. Fatigue interferes with my physical functioning.

5. Fatigue causes frequent problems for me.

>

. My fatigue prevents sustained physical functioning.

~-J

8. Fatigue is among my three most disabling symptoms.

9. Fatigue interferes with my work, family or social life.

61

. Fatigue interferes with carrying out certain dutics and responsibilities,

Disagrec ¢———» Agree

1 2 3
1 2 3
1 2 3
1 2 3
I 2 3
1 2 3
I 2 3
1 2 3
1 2 3
Total Score:

4

5

6

7



APPENDIX D

VISUAL ANALOGUE FATIGUE SCALE (VAFS)

Please mark an “X" on the number line which describes your global fatigue with 0 being worst
and 10 being normal.

10
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APPENDIX E

American Thoracic Society

ATS Statement: Guidelines for the Six-Minute Walk Test

Tris OrF1ciaL STATEMENT OF THE AMERICAN THORACIC SOCIETY was ApPROVED 8Y THE ATS Boaro or DIRECTORS

March 2002
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PURPOSE AND SCOPE

This statement provides practical guidelines for the 6-minute
walk test (6MWT). Specifically, it reviews indications, details
factors that influence results, presents a brief step-by-step pro-
tocol, outlines safety measures, describes proper patient prep-
aration and procedures, and offers guidelines for clinical inter-
pretation of results. These recommendations are not intended
to limit the use of alternative protocols for research studies.
We do not discuss the general topic of clinical exercise testing,

As with other American Thoracic Socicty statements on
pulmonary function testing, these guidelines come out of a
consensus conference. Drafts were prepared by two members
(P.L.E. and RJ.Z.) and were based on a comprehensive Med-
line literature search from 1970 through 2001, augmented by
suggestions from other committee members, Each draft re-
sponded to comments from the working committee. The guide-
lines follow previously published methods as closely as possi-
bie and provide a rationale for cach specific recommendation.
The final recommendations represent a consensus of the com-
mittee. The committee recommends that these guidelines be
reviewed in five years and in the meantime encourages further
research in areas of controversy.

BACKGROUND

There are several modalities available for the objective evalu-
ation of functional exercise capacity. Some provide a very
complete assessment of all systems involved in exercise per-
formance (high tech), whereas others provide basic informa-
tion but are low tech and are simpler to perform. The modality
used should be chosen based on the clinical question to be ad-
dressed and on available resources. The most popular clinical
exercise tests in order of increasing complexity are stair climb-
ing, a GMWT, a shuttle-walk test, detection of exercise-induced
asthma, a cardiac stress test (¢.g., Bruce protocol), and a cardio-

Am § Respir Crit Care Med Vol 166, pp 111-117, 2002
DOI: 10.1164/rcom. 166/1/111
Internet address: www. atsjournals.org
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pulmonary exercise test (1, 2). Other professional organiza-
tions have published standards for cardiac stress testing (3, 4).

Assessment of functional capacity has traditionally been
done by merely asking patients the following: “How many
flights of stairs can you climb or how many blocks can you
walk?" However, patients vary in their recollection and may
report overestimations or underestimations of their true func-
tional capacity. Objective measurements arc usually better
than self-reports. In the early 1960s, Balke developed a simple
test to evaluate the functional capacity by measuring the dis-
tance walked during a defined period of time (5). A 12-minute
field performance test was then developed to evaluate the
level of physical fitness of healthy individuals (6). The walking
test was also adapted to assess disability in patients with
chronic bronchitis (7). In an attempt to accommodate paticnts
with respiratory discase for whom walking 12 minutes was too
exhausting, a 6-minute walk was found to perform as well as
the 12-minute walk (8). A recent review of functional walking
tests concluded that “the 6MWT is casy to administer, better
tolerated, and more reflective of activities of daily living than
the other walk tests™ (9).

The 6MWT is a practical simple test that requires a 100-ft
hallway but no exercise equipment or advanced training for
technicians, Walking is an activity performed daily by all but
the most severely impaired patients. This test measures the dis-
tance that a patient can quickly walk on a flat, hard surface in a
period of 6 minutes (the 6BMWD). It evaluates the global and in-
tegrated responses of all the systems involved during exercise,
including the pulmonary and cardiovascular systems, systemic
circulation, peripheral circulation, blood, neuromuscular units,
and muscle metabolism. It does not provide specific informa-
tion on the function of each of the different organs and systems
involved in exercise or the mechanism of exercise limitation, as
is possible with maximal cardiopulmonary exercise testing, The
self-paced 6BMWT assesses the submaximal level of functional
capacity. Most patients do not achieve maximal exercise capac-
ity during the SMWT; instead, they choose their own intensity
of exercise and are allowed to stop and rest during the test.
However, because most activities of daily living are performed
at submaximal levels of exertion, the SMWD may better reflect
the functional exercise level for daily physical activities.

INDICATIONS AND LIMITATIONS

The strongest indication for the SMWT is for measuring the re-
sponse to medical interventions in patients with moderate to
severe heart or lung disease. The 6MWT has also been used as
a one-time measure of functional status of patients, as well as a
predictor of morbidity and mortality (see Table 1 for a list of
these indications). The fact that investigators have used the
6MWT in these settings does not prove that the test is clinically
useful (or the best test) for determining functional capacity or
changes in functional capacity due 1o an intervention in pa-
tients with these discases. Further studics are necessary to de-
termine the utility of the 6MWT in various clinical situations.
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Formal cardiopulmonary exercise testing provides a global
assessment of the exercise response, an objective determina-
ton of functional capacity and impairment, determination of
the appropriate intensity needed to perform prolonged exer-
cise, quantification of factors limiting exercise, and a defini-
tion of the underlying pathophysiologic mechanisms such as
the contribution of different organ systems involved in exer-
cise. The BMWT does not determine peak oxygen uptake, di-
agnose the cause of dyspnea on exertion, or evaluate the
causes or mechanisms of exercise limitation (1, 2). The infor-
mation provided by a 6MWT should be considered comple-
mentary to cardiopulmonary exercise testing, not a replace-
ment for it. Despite the difference between these two functional
tests, some good correlations between them have been re-
ported. For example, a significant correlation (r = 0.73) be-
tween 6MWD and peak oxygen uptake has been reported for
patients with end-stage lung diseases (36, 37).

In some clinical situations, the 6MWT provides informa-
tion that may be a better index of the patient’s ability to per-
form daily activitics than is pcak oxygen uptake; for example,
6MWD correlates better with formal measures of quality of
life (38). Changes in 6MWD after therapeutic interventions
correlate with subjective improvement in dyspnea (39, 40).
The reproducibility of the MWD (with a coefficient of varia-
tion of approximately 8%) appears to be better than the re-
producibility of 1-second forced expiratory volume in patients
with chronic obstructive discase (COPD) (8, 41-
43). Questionnaire indices of functional status have a larger
short-term variability (22-33%) than does the 6MWD (37).

The shuttle-walking test is similar to the 6MWT, but it uses
an audio signal from a tape cassette to direct the walking pace
of the patient back and forth on a 10-m course (44-47). The
walking speed is increased every minute, and the test ends when
the patient cannot reach the turnaround point within the re-
quired time. The exercise performed is similar to a symptom-
limited, maximal, incremental treadmill test. An advantage of
the shuttle walking test is that it has a better correlation with
peak oxygen uptake than the 6MWD. Disadvantages include
less validation, less widespread use, and more potential for
cardiovascular problems.

CONTRAINDICATIONS

Absolute contraindications for the 6MWT include the follow-
ing: unstable angina during the previous month and myocar-

TABLE 1. INDICATIONS FOR THE SIX-MINUTE WALK TEST
2 and p
Lung transplantation (9, 10)
Lung resection (11)
Lung volume reduction surgery (12, 13)
Pulmonary rehabiitation (14, 15)
COPD (16-18)
Pulmonary bypertension
Heart tailure (19, 20)
Functional status (single messurement)
COPD (21, 22)
Cystic fibeosis (23, 24)
Heart tailure (25-27)
Peripheral vasouar disease (28, 29)
Fbeormyalgia (30)
Older patients (11)
Predictor of morbidity and mortalty
Heart failure (32, 33)
COPD (34, 35)
Primary pulmenary hypertension (10, 36)
Defintion of abdveviation: COPD « cheonic obstructive pulmonary disease.

compariions

dial infarction during the previous month. Relative contraindi-
cations include a resting heart rate of more than 120, a systolic
blood pressure of more than 180 mm Hg, and a diastolic blood
pressure of more than 100 mm Hg.

Patients with any of these findings should be referred to the
physician ordering or supervising the test for individual clini-
cal assessment and a decision about the conduct of the test.
The results from a resting electrocardiogram done during the
previous 6 months should also be reviewed before testing, Sta-
ble exertional angina is not an absolute contraindication for a
6MWT, but patients with these symptoms should perform the
test after using their antiangina medication, and rescue nitrate
medication should be readily available.

Rationale

Patients with the previously mentioned risk factors may be at
increased risk for arrhythmias or cardiovascular collapse during
testing. However, cach patient determines the intensity of their
exercise, and the test (without clectrocardiogram monitoring)
has been performed in thousands of older persons (31, 48-50)
and thousands of pancnu with heart failure or cardiomyopathy
(32, 51, 52) without serious adverse events, The contraindica-
tions listed previously here were used by uudy mvuupwns
based on their impressions of the general safety of the 6MWT
and their desire to be prudent, but it is unknown whether ad-
verse events would occur if such patients performed a 6MWT;
they are, therefore, listed as relative contraindications.

SAFETY ISSUES

1. Testing should be performed in a location where a rapid,
appropriate response (o an emergency is possible. The ap-
propriate location of a crash cart should be determined by
the physician supervising the facility.

2. Supplies that must be available include oxygen, sublingual
nitroglycerine, aspirin, and albuterol (metered dose inhaler
or nebulizer). A telephone or other means should be in
place to cnable a call for help.

3. The technician should be certified in cardiopulmonary re-
suscitation with a minimum of Basic Life Support by an
American Health Association-approved cardiopulmonary
resuscitation course. Advanced cardiac life support certifi-
cation is desirable. , experience, and certification
in related health care fields (registered nurse, registered re-
spiratory therapist, certified pulmonary function techni-
cian, etc.) are also desirable. A certified individual should
be readily available to respond if needed.

4. Physicians are not required to be present during all tests.
The physician ordering the test or a supervising laboratory
physician may decide whether physician attendance at a
specific test is required.

5. If a patient is on chronik oxygen therapy, oxygen should be
given at their standard rate or as directed by a physician or
a protocol.

Reasons for immediately stopping a 6MWT include the follow-
ing: (1) chest pain, (2) intolerable dyspnea, (3) leg cramps, (4)
staggering, () diaphoresis, and (6) pale or ashen appearance.

Technicians must be trained to recognize these problems
and the appropriate responses. If a test is stopped for any of
these reasons, the patient should sit or lie supine as appropri-
ate depending on the severity or the event and the technician's
assessment of the severity of the event and the risk of syncope.
The following should be obtained based on the judgment of
the technician: blood pressure, pulse rate, oxygen saturation,
and a physician cvaluation. Oxygen should be administered as
appropriate.
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TECHNICAL ASPECTS OF THE 6MWT
Location

The 6MWT should be performed indoors, along a long, flat,
straight, enclosed corridor with a hard surface that is seldom
traveled. If the weather is comfortable, the test may be per-
formed outdoors. The walking course must be 30 m in length.
A 100-ft hallway is, therefore, required. The length of the cor-
ridor should be marked every 3 m. The tumaround points should
be marked with a cone (such as an orange traffic cone). A start-
ing line, which marks the beginning and end of each 60-m lap,
should be marked on the floor using brightly colored tape.

Rationale. A shorter corridor requires patients to take more
time to reverse dircctions more often, reducing the 6MWD.
Most studies have used a 30-m corridor, but some have used
20- or 50-m corridors (52-55). A recent multicenter study
found no significant effect of the length of straight courses
ranging from 50 to 164 fi, but patients walked farther on con-
tinuous (oval) tracks (mean 92 [t farther) (54).

The use of a treadmill to determine the 6MWD might save
space and allow constant monitoring during the exercise, but
the use of a treadmill for 6-minute walk testing is not recom-
mended. Patients are unable to pace themselves on a tread-
mill, In one study of patients with severe lung disease, the
mean distance walked on the treadmill during 6 minutes (with
the speed adjusted by the patients) was shorter by a mean of
14% when compared with the standard 6MWD using a 100-t
hallway (57). The range of differences was wide, with patients
walking between 400-1,300 ft on the treadmill who walked
1,200 ft in the hallway. Treadmill test results, therefore, are
not interchangeable with corridor tests.

REQUIRED EQUIPMENT

1. Countdown timer (or stopwaltch)

2. Mechanical lap counter

3. Two small cones to mark the turnaround points

4. A chair that can be casily moved along the walking course
5. Worksheets on a clipboard

6. A source of oxygen

7. Sphygmomanometer

8. Telephone

9. Automated electronic defibrillator

PATIENT PREPARATION

1. Comfortable clothing should be worn.

2. Appropriate shoes for walking should be worn,

3. Patients should use their usual walking aids during the test
(cane, walker, etc.).

4. The patient’s usual medical regimen should be continued.

5. A light meal is acceptable before early morning or early af-
ternoon tests.

6. Paticnts should not have exercised vigorously within 2 hours
of beginning the test.

MEASUREMENTS

1. Repeat testing should be performed about the same time
of day to minimize intraday vaniability.

2. A “warm-up” period before the test should not be performed.

3. The patient should sit at rest in a chair, located near the
starting position, for at least 10 minutes before the test
starts. During this time, check for contraindications, mea-
sure pulse and blood pressure, and make sure that cloth-
ing and shoes arc appropriate. Compete the first portion
of the worksheet (see the ApPENDIX).
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4, Pulse oximetry is optional. If it is performed, measure and
record baseline heart rate and oxygen saturation (SpO;)
and follow manufacturer's instructions to maximize the sig-
nal and to minimize motion artifact (36, 57). Make sure the
readings are stable before recording. Note pulse re ty
and whether the oximeter signal quality is acceptable,

The rationale for measuring oxygen saturation is that al-
though the distance is the primary outcome measure, im-
provement during serial evaluations may be manifest either
by an increased distance or by reduced symptoms with the
same distance walked (39). The SpO, should not be used for
constant momnitoring during the exercise. The technician
must not walk with the patient 1o observe the SpO,. If worn
during the walk, the pulse oximeter must be lightweight (less
than 2 pounds), battery powered, and beld in place (perbaps
by a “fanny pack™) so that the paticnt does not have to hold
or stabilize it and so that stride is not affected. Many pulse
oximeters have considerable motion artifact that prevents
accurate readings during the walk. (57)

S. Have the patient stand and rate their baseline dyspnea
and overall fatigue using the Borg scale (see Table 2 for
the Borg scale and instructions [58]).

6. Set the lap counter to zero and the timer to 6 minutes. As-
semble all necessary equipment (lap counter, timer, clip-
board, Borg Scale, worksheet) and move to the starting

point.
. Instruct the patient as follows:

“The object of this test is to walk as far as possible for 6
minutes. You will walk back and forth in this hallway. Six
minutes is a long time to walk, so you will be exerting your-
self, You will probably get out of breath or become ex-
hausted. You are permitted to slow down, to stop, and o
rest as necessary. You may lean against the wall while rest-
ing. but resume walking as soon as you are able.

You will be walking back and forth around the cones.
You should pivot briskly around the cones and continue
back the other way without hesitation, Now I'm going to
show you. Please watch the way I turn without hesitation.”

Demonstrate by walking one lap yourself. Walk and
pivot around & cone briskly,

“Are you ready to do that? [ am going to use this
counter to keep track of the number of laps you complete. |
will click it each time you turn around at this starting line.
Remember that the object is 1o walk AS FAR AS POSSI-
BLE for 6 minutes, but don't run or jog,

Start now, or whenever you are ready.”

TMZTN&!ORGSCAI.E

0 Nothing at al

os Very, very sight (st noticeable)
Very shight

Skght (ght)

Moderate

Somewhit severe

Severe (heavy)

Very severe

= OXDNOWVDL W~

0 Very, very severe {(maximal)

This Borg scale should be pristed on hesvy paper (11 inches high and perhagn lami-
nated) in 20-point type sive. At the begirning of the 6-mimse exercise, show the scalke
10 the patient and ask the patient this: “Piease grade your level of shortness of breath
wiing this scale.” Then ask tha: "Mease grade your level of fatigue using this scale.”

At the end of the exercise, remind the patient of e teeathing number that they
chose before the exerose and ask the patient to grade ther tevel again, Then
25k the patient to grade their level of fatigue, after reminding them of their grade be-
fore the exercise.
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8. Position the patient at the starting line. You should also
stand near the starting line during the test. Do not walk
with the patient. As soon as the patient starts to walk,
start the timer.

. Do not talk to anyone during the walk. Use an even tone
of voice when using the standard phrases of encourage-
ment. Watch the patient. Do not get distracted and lose
count of the laps. Each time the participant returns to the
starting line, click the lap counter once (or mark the lap
on the worksheet). Let the participant see you do it. Ex-
aggerate the click using body language, like using a stop-
watch at a race.

After the first minute, tell the patient the following (in
even tones): “You are doing well. You have 5 minutes to
go.”

When the timer shows 4 minutes remaining, tell the pa-
tient the following: “Keep up the good work. You have 4
minutes to go."

When the timer shows 3 minutes remaining, tell the pa-
tient the following: “You are doing well. You are halfway
dome.”

When the timer shows 2 minutes remaining, tell the pa-
tient the following: “Keep up the good work. You have only
2 minutes left.”

When the timer shows oaly 1 minute remaining, tell the
patient: “You are doing well. You have only 1 minute to
go.”

Do not use other words of encouragement (or body lan-
guage Lo speed up).

If the patient stops walking during the test and needs a
resl, say this: “You can lean against the wall if you would
like; then continue walking whenever you feel able.” Do
not stop the timer. If the patient stops before the 6 minutes
are up and refuses to continue (or you decide that they
should not continue), wheel the chair over for the patieat to
sit on, discontinue the walk, and note on the worksheet the
distance, the lime stopped, and the reason [or stopping pre-
maturely.

When the timer is 15 seconds from completion, say this:
“In a moment I'm going to tell you to stop. When I do, just
stop right where you are and I will come to you.™

When the timer rings (or buzzes), say this: “Stop!™ Walk
over 1o the patient. Consider 1aking the chair if they look
exhausted. Mark the spot where they stopped by placing a
bean bag or a piece of tape on the floor.

10. Post-test: Record the postwalk Borg dyspnea and fatigue
levels and ask this: “What, if anything, kept you from walk-
ing farther?”

11. If using a pulse oximeter, measure SpO, and pulse rate
from the oximeter and then remove the sensor,

12. Record the number of laps from the counter (or tick marks
on the worksheet),

13. Record the additional distance covered (the number of meters
in the final partial lap) using the markers on the wall as dis-
tance guides. Calculate the total distance walked, rounding to
the nearest meter, and record it on the worksheet.

14. Congratulate the patient on good effort and offer a drink
of water,

QUALITY ASSURANCE

Sources of Variability

There are many sources of 6MWD variability (see Table 3).
The sources of variability caused by the test procedure itself
should be controlled as much as possible, This is done by fol-
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lowing the standards found in this document and by using a
quality-assurance program.

Practice Tests

A practice test is not needed in most clinical settings but
should be considered. If a practice test is done, wait for at least
1 hour before the second test and report the highest 6SMWD as
the patient's MWD baseline.

Rationale. The 6MWD is only slightly higher for a second
6MWT performed a day later. The mean reported increase
ranges from 0 to 17% (23, 27, 40, 41, 54, 59). A multicenter
study of 470 highly motivated patients with severe COPD per-
formed two 6MWTs 1 day apart, and on average, the 6MWD
was only 66 ft (5.8%) higher on the second day (54).

Performance (without an intervention) usually reaches a
plateau after two tests done within 2 week (8, 60). The training
effect may be due to improved ceoordination, finding optimal
stride length, and overcoming anxiety. The possibility of a
practice or training cffect from tests repeated after more than
a month has not been studied or reported; however, it is likely
that the effect of training wears off (does not persist) after a
few weeks,

Technidan Training and Experience

Technicians who perform 6MWTs should be trained using the
standard protocol and then supervised for several tests before
performing them alone. They should also have completed car-
diopulmonary resuscitation training.

Rationale. One multicenter study of older people found
that after correction for many other factors, two of the techni-
cians had mean 6MWDs that were approximately 7% lower
than the other two sites (31).

Encouragement
Only the standardized phrases for encouragement (as speci-
fied previously here) must be used during the test.

Rationale. E: ment significantly increases the dis-
tance walked (42). Reproducibility for tests with and without
encouragement is similar. Some studies have used encourage-
ment every 30 seconds, every minute, or every 2 minutes. We
have chosen every minute and standard phrases, Some studies
(53) have instructed patients to walk as fast as possible, Al-
though larger mean 6MWDs may be obtained thereby, we rec-
ommend that such phrases not be used, as they emphasize ini-
tial speed at the expense of earlier fatigue and possible
excessive cardiac stress in some patients with heart disease.

TABLE 3. 6MWD SOURCES OF VARIABILITY

Factors reduding the MWD

Shorter height

Older age

Higher body welght

Fermale sex

Impaired cognition

A shorter corridor (more turns)

Pulmonary dsease (COPD, asthma, Cystic fibroais, interstitial lung disease)
Cardh lr disease (angina, M1, CHF, stroke, TIA, PVD, AAT)
Musculosheletal disorders (arthritls, ankde, kvee, or hip injuries, muscle wasting, etc.)
Factors Increasing the 6MWD

Taler beight (longer legs)

Male sex

High motivation

A patient who has peeviously performed the test

Medication for 8 dissbling disease taken just before the test

Oxygen supplementation in patients with exercise-induced hypoxemia

Definition of abdveviations: COPD « chronic cbstructive pudmonary disease; SMWD -
6-mirste walking distance.
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Supplemental Oxygen

If oxygen supplementation is nceded during the walks and se-
rial tests are planned (after an intervention other than oxygen
therapy), then during all walks by that patient oxygen should
bedcliveredinlheslmnwaywithmcsamcﬂow. If the flow
must be increased during subsequent visits due to worsening
gas exchange, this should be noted on the worksheet and con-

sidered during interpretation of the change noted in 6MWD.

The type of oxygen delivery device should also be noted on
the report: for instance, the patient carried liquid oxygen or
pushed or pulled an oxygen tank, the delivery was pulsed or
continuous, or a technician walked behind the patient with the
oxygen source (not recommended). Measurements of pulse
and SpO; should be made after waiting at Jeast 10 minutes af-
ter any change in oxygen delivery.

Rationale. For patients with COPD or interstitial lung dis-
ease, oxygen supplementation increases the 6MWD (17, 59,
61, 63), Carrying a portable gas container (but not using it for
supplemental oxygen) reduced the mean 6MWD by 14% in
one study of patients with severe respiratory disability, but us-
ing the container to deliver supplemental oxygen during the
exercise increased the mean 6MWD by 20-35% (59).

Medications

The type of medication, dose, and number of hours taken be-
fore the test should be noted.

Rationale. Significant improvement in the distance walked,
or the dyspnea scale, after administration of bronchodilators
has been demonstrated in patients with COPD (62, 63), as well
as cardiovascular medications in patients with heart failure (19).

INTERPRETATION

Most 6MWTs will be done before and after intervention, and
the primary question to be answered after both tests have
been completed is whether the patient has experienced a clini-
cally significant improvement. With a good quality-assurance
program, with patients tested by the same technician, and af-
ter one or two practice tests, short-term reproducibility of the
6MWD is excellent (37). It is not known whether it is best for
clinical purposes to express change in 6MWD as (/) an abso-
lute value, (2) a percentage change, or (3) a change in the per-
centage of predicted value. Until further research is available,
we recommend that change in 6MWD be expressed as an ab-
solute value (¢.g., the patient walked 50 m farther).

A statistically significant mean increase in 6MWD in a
groupohmdypamapanunoﬁcnmmhmman a clinically
significant increase in an individual patient. In onc study of
112 paticnts (half of them women) with stable, severe COPD,
the smallest difference in 6MWD that was associated with a
noticcable clinical difference in the patients” perception of ex-
ercise performance was a mean of 54 m (95% confidence in-
terval, 37-71 m) (64). This study suggests that for individual
patients with COPD, an improvement of more than 70 m in
the 6MWD after an intervention is necessary to be 95% confi-
dent that the improvement was significant. In an observational
study of 45 older patients with heart failure, the smallest dif-
ference in 6MWD that was associated with a noticeable differ-
ence in their global rating of worsening was a mean of 43 m
(20). The 6MWD was more responsive 1o deterioration than
to improvement in heart failure symptoms.

Reported Mean Changes in 6MWD After Interventions

Supplemental oxygen (4 L/min) durning exercise in patients with
COPD or mterstitial lung disease increased mean 6MWD by
approximately 95 m (36%) in one study (59). Patients taking
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an inhaled corticosteroid experienced a mean 33 m (8%) in-
crease in 6MWD in an international COPD study (16), Pa-
tients with COPD in a study of the effects of exercise and dia-
phragmatic strength training experienced a mean increase in
6MWD of 50 m (20%) (65). Lung volume reduction surgery in
patients with very severe COPD has been reported to increase
6MWD by a mean of 55 m (20%) (13).

Cardiac rehabilitation in patients referred with various heart
diseases increased 6MWD by a mean of 170 m (15%) in a recent
study (66). In 25 clder patients with heart failure, an angiotensin-
con enzyme inhibitor medication (50 mg captopril per
day) improved 6MWD a mean of 64 m (39%) compared with a
mean increase of only 8% in those receiving a placebo (19).

Interpreting Single Measurements of Functional Status

Optimal reference equations from healthy population-based
samples using standardized 6MWT methods are not yet avail-
able. In one study, the median 6MWD was approximately 580
m for 117 healthy men and 500 m for 173 healthy women (50).
A mean 6MWD of 630 m was reported by another study of 51
healthy older adults (55). Differences in the population sam-
pled, type and frequency of encouragement, corridor length,
and number of practice tests may account for reported differ-
ences in mean 6MWD in healthy persons. Age, height, weight,
and sex independently affect the 6MWD in healthy adults;
therefore, these factors should be taken into consideration
when interpreting the results of single measurements made to
determine functional status. We encourage mvaugnlou to pub-
lish reference equations for healthy persons using the previ-
ously mentioned standardized procedures,

A low 6MWD is nonspecific and nondiagnostic. When the
6MWD is reduced, a thorough scarch for the cause of the im-
pairment is warranted. The following tests may then be help-
ful: pulmonary function, cardiac function, ankle-arm index,
muscle strength, nutritional status, orthopedic function, and
cognitive function.

Conclusions

The 6MWT is a useful measure of functional capacity targeted
at people with at least mederately severe impairment. The test
has been widely used for preoperative and postoperative eval-
vation and for measuring the response to therapeutic inter-
ventions for pulmonary and cardiac disease, These guidelines
provide a standardized approach to performing the 6MWT.
The committee hopes that these guidelines will encourage fur-
ther research into the 6MWT and allow direct comparisons
among different studies.

This statemnent was developed by the ATS Committee on Proficiency Stan.
dards for Clinical Pulmonary Function Laboratories.
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