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Abstract

Motivated by some real problems, our thesis puts forward two general two-period pricing

models and explore optimal buying and selling strategies in two states of the two-period de-

cision, when buyer/seller’s decisions in the two periods are uncertain: commodity valuations

may or may not be independent, may or may not follow the same distribution, be heavily or

just lightly influenced by exogenous economic conditions, and so on. For both the example

of buying laptops and the example of selling houses, the connections between each example

and the two-envelope paradox encourage us to explore optimal strategies based on the works of

McDonnell and Abbott (2009) and McDonnell et al. (2011), which proposed optimal strategies

on the condition that the amount of the first envelope is known. In the case of buying laptop

whether on Black Friday, or on Boxing day, We derive an optimal strategy for minimizing the

expected loss in the two-period economy when a pivotal decision needs to be made during

the first time-period and cannot be subsequently reversed. In the cases of selling real estate in

Punta del Este, a resort town in Uruguay, real-estate property is in demand by both domestic

and foreign buyers. There are several stages of selling residential units: before, during, and

after the actual construction. Different pricing strategies are used at every stage. We propose

a general model to derive, under various scenarios of practical relevance, optimal strategies

for setting prices within two-stage selling framework, as well as to explore the optimal timing

for accomplishing these tasks in order to maximize the overall seller’s expected revenue. The

optimal strategies in this model draw hints from the example of selling real estate proposed by

Egozcue et al. (2013), where the ideas of McDonnell and Abbott (2009) and McDonnell et al.

(2011) were applied in two states of the one-period decision scenario. All our optimal buy-

ing/selling strategies are illustrated with numerical and graphical examples using appropriately

constructed parametric models.

Keywords: Decision theory; two-period economy; price discrimination; strategy; game

theory; conditional probability; statistical modelling; behavioral economics; uncertainty; back-

ground risk model; gamma distribution.
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Chapter 1

Introduction

Optimal strategies and decisions in two-period economies are important and popular in decision

making and economic analysis. Naturally, in a two-period model, the first period is the current

period (or today) and the second period represents the latter period (the future, or tomorrow).

These kinds of studies cover domains of economic problems including the consumer’s prob-

lems, the producer’s problems, and general equilibrium models (Chiang, 1984; Daher et al.,

2014; Farmer, 1993; Grossmann and Dietl, 2009; Hlouskova et al., 2017; Obstfeld and Rogoff,

1996; Rabitsch and Stepanchuk, 2014).

We are now focusing on decision-making theory frameworks to exploring optimal decision-

making strategies which balance the trade-off between the benefits in the present (current pe-

riod) and the benefits in the future (next period). The vast majority of these kinds of studies are

of these types:

• the buying decisions which consider buying today at current prices or waiting until next

period;

• the selling decisions which consider selling today at current prices or waiting until next

period.

Incorporating time dimensions into decision making and economic analysis, we construct

a two-period framework of optimal decision-making strategies to understand inter-temporal

1



2 Chapter 1. Introduction

choices and dynamic decision-making issues. The generalization to multiple periods is straight-

forward: if the two-period framework is constructed, then we can consider a three-period

framework as a initial stage connecting the rest stage, which is also a two-period framework;

so continue, until you can consider all multistage framework into the two-period framework.

The rest of this chapter is organized as follows. In Section 1.1, we review the analyses of

optimal decision strategies in two states of the one-period scenario. Among these analyses, the

strategies suggested by McDonnell and Abbott (2009) and McDonnell et al. (2011) are attrac-

tive and very different. Based on the review of exploring optimal decision strategies in two

states of the one-period scenario, we describe optimal decision problems in two states of the

two-period scenario in Section 1.2. Section 1.3 gives an overview of the structure introduction

of the whole thesis.

1.1 Optimal decision strategies in two states of the one-period

scenario

Among vast amount of optimal strategies and decision theories with two states of the one-

period scenario, McDonnell and Abbott (2009) proposed novel strategies and decision theories

based on their solution of the famous “two-envelope” paradox 1.

Most of the solutions to the “two-envelope” paradox indicate temporal strategies when

making decisions that maximize the payoff (Albers et al., 2005). McDonnell and Abbott (2009)

and McDonnell et al. (2011) proposed new strategy that can enable a player to beat the game

regarding increasing their payoff. The strategies could be applied to optimize gains of buy-

ing strategies of consumers economic behavior, gains of selling strategies of firms theory of

economics, financial investments and so on.

Generally, in a standard two-envelope paradox, a player has to choose one of two envelopes,

1The “two-envelope” paradox attracts wide interest, because it impacts on various fields such as game theory,
probability theory, economic theory, and decision theory (Langtree, 2004).
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and therefore keep the money in it — one of them contains twice as much money as the other

one. Key points in the following strategies are

• if the player opens one envelope they choose, then he/she cannot choose the other one

any more;

• or he/she swaps envelopes, and therefore keeps the money in the other one.

Thus, indeed, everyone including the player knows the other envelope has either twice the

money or half the money as the former one. The player needs to make a wise decision even

though he/she does not know which is which in the initial period.

In a strategy without many careful considerations, since a player has a 50-50 chance of

choosing either envelope, he/she has an equal chance of gaining or losing money. It doesn’t

matter whether he/she decides to swap or keep the original envelope. However, a little bit more

mathematical calculations may indicate that it is always better to swap based on probability

theory (Falk, 2008).

Furthermore, McDonnell and Abbott (2009) and McDonnell et al. (2011) developed more

novel and different strategies for the “two-envelope” paradox. Their strategies followed Cover’s

switching function, which are,

• on the one hand, people want envelopes when the observed amount is a large sum of

money;

• on the other hand, people want to swap with greater likelihood if the initial observed

amount is small.

Cover’s proposal is that the probability of switching should be some monotonically decreasing

function of the observed amount. Based on these results, the strategy of McDonnell and Abbott

(2009, 2011) discovered — whether the player should swap the envelopes or not depends on

that the observed amount is large or not in the current period.

The strategies suggested by McDonnell and Abbott (2009, 2011) can be applied compre-

hensively in many fields. As an application in real estate, Egozcue et. al. (2013) put forward
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a model and then derived an optimal strategy that maximizes the expected real-estate selling

price when one of the only two remaining buyers had already made an offer, but the other one

had yet to make an offer. The strategies of McDonnell and Abbott (2009, 2011) provided pretty

useful hints for optimal real-estate sellers strategies. When selling a house, the seller can not

make sure whether the other buyer would make a lower or higher offer than the first-come (cur-

rent) buyer. Indeed, the seller needs optimal strategies to decide whether to accept or to reject

the first-come offer. By a connection between the motivating problem and the two-envelope

problem, Egozcue et. al. (2013) derived an optimal sellers strategy, which is used to maximize

the expected selling price based on the contributions of McDonnell and Abbott (2009, 2011)

from the seller’s perspective.

1.2 Optimal decision strategies in two states of the two-period

scenario

When it comes to optimal decision strategies in two states of the two-period scenario based on

the optimal decision strategies in two states of the one-period scenario, at least the following

three different pieces of information have to be considered:

• the trade-off between temporal decision and the decision in latter period;

• the impact of current decisions on decisions of next period;

• the effect of time between two terms on random variables of the latter period.

In our real life, many things that people encounter in daily life related to two states of the

two-period decisions would also pose an increasing practical demand for optimal strategies and

decision making.

For example, here is a case from the real life. The author had an urgent need to buy a

laptop in a very soon coming period, for example, in one or two months of rationality and he
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was looking for a good deal online. Due to the advantages of online shopping, he got much

information about the price of the particular type of Lenovo laptop, such as T540, very quickly.

He knew that, in coming two months, the price of T540 would fluctuate for many reasons, and

two important promotions among those reasons are more attractive, Black Friday promotion,

from November 27th, 2015, to December 3th, 2015, and Boxing day promotion, from December

26th, 2015, to January 3th, 2016. Based on that, his buying strategy was to get a better choice

among the two promotions.

Obviously, because of the promotion, it was prudent to buy the laptop during the Black

Friday promotion period, with the discounted price of 1,431.01 Canadian dollars for the laptop.

However, it was not easy to justify at that moment whether he wanted to buy the laptop at that

price or wait until the Boxing Day promotion. Can there be a good buying strategy for making

good decisions during the Black Friday promotion period?

The above example of buying the laptop here raises a practical demand for optimal buying

strategies in two states of the two-period decisions from the buyers’ perspective. Furthermore,

sometimes we can also observe the demand for optimal selling strategies in two states of the

two-period decisions from the sellers’ perspective. The real estate example below proposes a

real need for optimal selling strategies when selling houses.

Namely, in Punta del Este, a resort town in Uruguay, the real-estate property is in demand

by both domestic and foreigner buyers. As a recent example, the distribution of buyers for a

certain high-rise building were 10% Uruguayans, 75% Argentineans, 10% Brazilians, and the

remaining 5% were from the rest of the world (Chile, U.S.A., and so on). Naturally, the ratio

of domestic and foreign buyers varies and depends on many factors, such as economic and

financial. We also assume that the average foreign buyer is wealthier than the domestic one,

and thus tends to exhibit a higher bidding price. Furthermore, it is important to note that given

the diversity of buyers, the prices are usually in US dollars (USD), but some of the building

costs such as salaries of workers are in Uruguayan pesos (UYU).

Suppose now that, contracted by an investor, a construction company is in the process of
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building a high-rise apartment building. There are various stages of selling apartments: before,

during, and after the actual construction of the building. Different pricing strategies are used

at every stage. For the sake of concreteness, we only deal with the case when the building

has already been built, but some units are still to be sold. Suppose that, initially, the investor

wishes to sell the units en masse and thus hires a real estate agent for several months. If the

sale turns out to be unsuccessful during the initial selling stage, then the units would be put

on sale individually, with no particular time horizon set in advance and at a possibly different

(higher or lower) price. For the property investor, the task is to set a proper price for the initial

selling stage, and also another price, usually different from the original price, for higher profit.

Can there be a good selling strategy for making good decisions during initial period from the

seller’s perspective?

1.3 Overview

The rest of this thesis is organized as follows. In Chapter 2, we introduce all the fundamental

notions and techniques used throughout the thesis. The starting point of the logic of this the-

sis is “the two-envelope paradox”, which is described in Section 2.1.1. In Section 2.1.2, the

varies of solutions of the two-envelope paradox are briefly concluded. Among many valuable

solutions, McDonnell and Abbott (2009) proposed a wise strategy which is demonstrated in

Section 2.1.3. Also, all three particular cases of the strategy of McDonnell and Abbott (2009)

are illustrated in Section 2.1.4. Proposition 2.1.1 expresses clearly the strategy — it is optimal

to switch and complementary intervals where no-switching is the optimal strategy.

As an application of the strategies of McDonnell and Abbott (2009) and McDonnell et al.

(2011), Section 2.1.5 shows us an example of real-estate sale, which is analyzed in Egozcue et

al. (2013). Egozcue et al. (2013) solved the maximization problem of “strategy risk parameter”

described in the Proposition 2.1.2 as abstract of the logic of real-estate selling. And, in turn,

Proposition 2.1.3 solve the maximizing strategy function which is described in Proposition
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2.1.2 and Proposition 2.1.4 proposed a threshold-type strategy.

In Chapter 3, we propose an optimal strategy to minimize the expected buying price from

the buyer’s perspective in a two-period scenario. The story in this chapter is realistic. When

one of the authors need to buy a laptop in the Fall of 2015, it was prudent, but difficult, for

the author to buy during the former period — the Black Friday promotion period. The Section

3.1 describes the motivation problem from the buyer’s perspective. In Section 3.2, the optimal

strategy, which minimizes the expected buying price with no attempts to guess the possible

price to be offered during the second time-period, is shown in Theorem 3.2.1. As a natural

extended part of Theorem 3.2.1, the optimal strategy, which minimizes the expected buying

price with guessed price to be offered during the second time-period, is shown in Theorem

3.2.2. When specifying the detailed information in the proposed purchase laptop problems, the

behaviors of the salespersons L and H, who are defined in Section 3.2, are depicted by two

independent random variables and their distribution fXL,XH (x, y). Section 3.3 models the joint

distribution fXL,XH (x, y) through both the characters of the behaviors of the salespersons L and

H and the influences of the company’s marketing team or management. The probability that

the salesperson L makes an offer during the first time-period given that the prices provided by

L and H are x and y, respectively, is p(x, y), which is described in Section 3.4. Because of the

characters of the two-period economies, the theory of the third-degree price discrimination is

applied to shape p(x, y) in the monopolistic competitive market. Theorem 3.2.1 and Theorem

3.2.2 are proved in Section 3.5 as a somehow conclusion of Chapter 3.

In Chapter 4, we propose an optimal strategy from the seller’s perspective which maxi-

mizes the overall seller’s expected revenue. Especially we set first- and second-stage prices to

maximize the overall seller’s expected revenue under various scenarios of practical relevance

in a two-period scenario. In Section 4.1, we show a motivation problem of selling real-estate

property in Punta del Este, a resort town in Uruguay in the introduction part of Subsection

4.1.1. Following the introduction part, some basic results and findings of solving the moti-

vation problem are concisely concluded in Subsection 4.1.2. Subsection 4.1.3 reviews some
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pieces of literature related to the motivation problem, and its solutions.

In Section 4.2 we present several illustrative examples that clarify certain key aspects of our

general model, which will be proposed in Section 4.3. These aspects are described as sequential

and simultaneous price settings, differing valuations and thus bid prices, costs associated with

holding unsold property. The differences of four kinds of scenarios between setting the two

prices sequentially and simultaneously are shown by numerical 4 tables, Tables 4.1 – 4.4, and

16 graphs, Figures 4.2 – 4.17 in Subsection 4.2.2 . These different cases of 4 scenarios show

how many considerations influence the two prices in a two-period scenario.

When the second period, T , is pre-specified and thus deterministic, this kind of examples

were discussed in Wu and Zitikis (2017). When the second period, T , is generally unknown

and thus treated as a random variable, it is the general case that is considered as the general

model proposed in Section 4.3.

In order to figure out the ideas of the general model, a number of other simplifying yet

practically sound assumptions are made to simplify the technicalities in the general model.

Section 4.4 and Section 4.5. In Section 4.4 we analyze the initial-stage selling probability.

We concentrate on the forces that give rise to the amount of money that the buyer (domestic or

foreign) is willing to pay for the property during the initial selling stage. Subsection 4.4.1 takes

into account individual considerations detached both from the exogenous factors and various

exogenous factors to describe the initial-stage selling probability. These the exogenous factors

and various exogenous factors are modeled by some proper gamma distributions in Subsection

4.4.2.

The second-stage selling possibility is explored in Section 4.5. Very similar to the first

stage, we take into account individual considerations detached both from the exogenous factors

and various exogenous factors to describe the second-stage selling conditional probability in

Subsection 4.5.1. The exogenous factors and various exogenous factors are modeled by some

proper gamma distributions in Subsection 4.5.2. In Section 4.6 we discuss modeling initial-

and second-stage value functions and then use them to illustrate our general model through
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some figures numerically (See Figures 4.18-4.21).

In Chapter 5, the conclusions of the whole theses are given in Section 5.1 and remaining

open questions and future works are proposed in Section 5.2.



Chapter 2

Fundamental notions and the techniques

2.1 Two-envelope paradox and its resolutions

2.1.1 Two-envelope paradox

The two-envelope paradox, also known as the two-envelope problem, is a paradox in logic,

game theory, decision theory, probability, and mathematics. Sometimes this problem goes

to be very paradoxical, if you are not careful with your analysis. The problem typically is

expressed by a theoretical problem of the following descriptions.

Suppose you are playing a game for money, and you are given two indistinguishable en-

velopes. One containing some money, say $x, the other one contains twice, say $2x. But you

don’t know which one is which. Initially, you can pick one of the two envelopes and keep the

amount it contains, say $v. Before opening it, you are offered a chance to swap envelopes to

get more money (of course, if your guessing is wrong, then you would get less money). A

question is “should you swap the envelopes or not”?

Obviously swapping the envelopes or not depends on comparison of the value without

swapping envelopes and the expected returns with swapping envelopes. Suppose the player

has a 50-50 chance of choosing either envelope at this moment, and therefore he/she has an

equal chance of gaining or losing money. After a few steps of calculations, it is not difficult to

10



2.1. Two-envelope paradox and its resolutions 11

understand

• if he/she doesn’t swap, he/she get $v;

• if he/she swaps, he/she get

1
2

(v/2) +
1
2

(2v) [=
5
4

v > v].

The results would mean we expect to gain 5
4v on average based on swapping the envelopes.

It gives you some hints that it doesn’t matter which envelope you choose initially — you should

always swap.

Indeed, besides the above example, there are many other versions of the two-envelope

paradox. The beginning of the two-envelope paradox started from necktie paradox (Kraitchik,

1930) and wallet game (Gardner, 1982). A more popular version of the two-envelope paradox

was constructed by Zabell (1988).

There is a body of work related to the two-envelope paradox since the logic of the two-

envelope paradox is widely existing in the fields of game theory, probability theory, and deci-

sion theory. What’s more, when problems of random switching between two unstable states are

involved in a study, the two-envelope paradox can be applied to these problems frequently in

fields of physics, engineering and economics (Abbott, 2009; Allison & Abbott, 2001; Harmer

& Abbott, 1999a, 1999b, 2002).

2.1.2 Exploiting for resolutions of the two-envelope paradox

There are plentiful of resolutions to the two-envelope paradox, but many researchers insist that

most of them are meaningless because of the lack of consensus (Christensen & Utts, 1992;

McGrew et al., 1997; Castell & Batens, 1994; Clark & Shackel, 2000; Meacham & Weisberg,

2003). As a result, the two-envelope paradox is widely considered as an opening problem

(Albers et al., 2005).
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Among these abundant studies of finding the solutions of the two-envelope paradox, there is

one type of the two-envelope paradox — where the player observes the amount in one envelope

and keeps the amount of the other one unknown for exploiting (Nalebuff, 1989; Nickerson

and Falk, 2006). Following the idea that observing the amount in the first selected envelope,

the player swaps to the second envelope with a probability. Mcdonnell and Abbott (2009)

demonstrated a wise strategy for dealing with the two-envelope paradox. The smart strategy

shows

• to swap envelopes with less likelihood when the observed amount is a large sum of

money;

• to swap envelopes with more likelihood when the observed amount is small.

2.1.3 Problem formulation

Suppose there are two indistinguishable envelopes, the amounts of which are x and 2x respec-

tively. Let random variable X defined on (Ω,F ,P) be the amount of the first envelope opened

by the player with probabilities P(X = x) = p and P(X = 2x) = 1 − p. Then the switching

probabilities given the amount X = x are PS (x) and PS (2x) respectively, where 0 ≤ PS (x) ≤ 1

for all x > 0. Hence, the probability that the player ends the trial with amount x is

Px(x) = p (1 − PS (x)) + (1 − p)PS (2x),

and the probability that the player ends with amount 2x is

P2x(x) = pPS (x) + (1 − p) (1 − PS (2x)) .
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Thus, the unconditional expected return given X = x is

R(x) = x · Px(x) + 2x · P2x(x)

= x · p (1 − PS (x)) + (1 − p)PS (2x) + 2x · pPS (x) + (1 − p) (1 − PS (2x))

= x(2 − p) + p(x(PS (x) + PS (2x)) − xPS (2x)),

where x > 0. Assuming the density function of X is fX(x), then the unconditional expected

return is

R =

∫ ∞

0
fX(x)R(x)dx

=

∫ ∞

0
fX(x)(x(2 − p) + p(x(PS (x) + PS (2x)) − xPS (2x)))dx

= (2 − p)E[X] +

∫ ∞

0
fX(x)p(x(PS (x) + PS (2x)) − xPS (2x))dx. (2.1)

Here a natural benchmark strategy could be defined as “never switching”, which is equivalent to

PS (x) ≡ 0 for all x > 0. Then accordingly, the unconditional expected return of the benchmark

strategy is

RB := (2 − p)E[X].

Therefore, the gain or loss due to certain switching strategy PS is

S := R − RB =

∫ ∞

0
x fX(x)

[
pPS (x) − (1 − p)PS (2x)

]
dx. (2.2)

Clearly, to maximize the gain S, the player should determine the switching region depending

on PS . And such a switching region could be written as {x ∈ [0,∞) : s(x) > 0}, where

s(x) = pPS (x) − (1 − p)PS (2x). (2.3)
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2.1.4 McDonnell and Abbott (2009): three particular cases

It might be very difficult to obtain the optimal function PS through maximizing S directly.

However, if the form of function as well as certain parameters is given, it is possible to obtain

the required switching region. In McDonnell and Abbott (2009), three particular cases for

function PS are given to illustrate the derivation of the switching region from PS .

(i). Constant switching probability

Let the switching probability PS (x) be a constant with respect to x, namely, PS (x) ≡ q

for all x > 0. Then by (2.2) we have

S = q(2p − 1)E[X].

Hence, there are three cases for decision-making:

• If p = 0.5, then S = 0, which means that there are neither gain nor loss for the

unconditional expected return regardless of the player’s decision.

• If p < 0.5, then S ≤ 0 and the equality holds if and only if q = 0. Notice that

q = 0 corresponds to the benchmark strategy. We may conclude that the benchmark

strategy is the optimal one among all strategies under this situation, i.e. the player

should not switch no matter what value of x he/she observed when openning the

first envelope.

• If p > 0.5, then S ∈
[
0, (2p − 1)E[X]

]
and is maximized at q = 1. Thus, we may

conclude that the player should always choose to switch no matter what value of x

he/she observed when openning the first envelope.

(ii). Switching with smoothly decreasing probability

Suppose that PS (x) is a monotonically continuously decreasing function of x > 0. A
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particular case of this situation is that PS (x) decays exponentially, namely,

PS 1(x) = e−ax, x > 0

for some a > 0.

Definition 2.1.1 The logit of a number p ∈ [0, 1] is given by the formula

logit(p) = log(
p

1 − p
)

= log(p) − log(1 − p).

Hence, change envelope everywhere we have from (2.3) that the switching region is

{x ≥ 0 : x > c1} where

c1 = max
{
−

1
a

logit(p), 0
}
.

This result indicates that as long as p ≥ 0.5, the player should always choose to switch

no matter what value of x he/she observed when opening the first envelope. Similar cases

include the switching probability

PS 2(x) =
2

1 + ea1 x , x > 0

for some a1 > 0. Hence we have from (2.3) that the switching region is {x ≥ 0 : x > c2}

where

c2 =
1
a1

log

1 +
√

1 + 4y(1 − y)
2y

 ,
where y = min{p/(1 − p), 1}. This result also indicates that as long as p ≥ 0.5, the

player should always choose to switch no matter what value of x he/she observed when

openning the first envelope.
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Definition 2.1.2 sech function, also known as Hyperbolic secant function, is defined by

sech(x) =
2

ex + e−x

for x ∈ R.

The last case we would like to discuss is

PS 3(x) = sech(a2x), x > 0

for some a2 > 0.

Definition 2.1.3 cosh function, also known as Hyperbolic cosine function, is defined by

cosh(x) = cos(ix)

for x ∈ R, and i is the imaginary unit which satisfies i2 = 1.

Hence we have from (2.3) that the switching region is {x ≥ 0 : x > c3} where

c3 =
1
a2

cosh−1
(
1 +
√

1 + 8z
4z

)
,

where z = min{p/(1 − p), 1}. And the same conclustion that when p ≥ 0.5 the player

should always choose to switch no matter what value of x he/she observed when opening

the first envelope could be obtained again.

(iii). Switching according to a threshold value

For this case, the switching probability could always be written as

PS 4(x) = 1{x≤b}, x > 0
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for some b > 0, where 1{·} is the indicator function. Then according to (2.3), we have

s(x) =


2p − 1 if x ≤ 0.5b,

p if 0.5b < x ≤ b,

0 if x > b.

Thus, the switching region should be {x ≥ 0 : c4 < x ≤ b} where c4 = 0.5b1{p<0.5}.

Notice that when x > b there are neither gain nor loss for the unconditional expected

return regardless of the player’s decision. As a result, when p ≥ 0.5, the player could

choose to switch no matter what value of x he/she observed when openning the first

envelope.

In McDonnell et al. (2011), the suboptimality of PS is discussed as the ‘non-blind’ two-

envelope problem. Notice that from (2.2) we may derive that

S :=
∫ ∞

0
yPS (y)g(y)dy,

where

g(y) := p fX(y) −
1 − p

4
fX

(y
2

)
.

Hence the following result holds.

Proposition 2.1.1 (McDonnell et al. 2011, Theorem 2.4) The optimal switching function P∗S (y)

for the ‘non-blind’ two-envelope problem is

P∗S (y) = 1{g(y)≥0}.

This result indicates that there will be intervals of y for which it is optimal to switch and

complementary intervals where no-switching is the optimal strategy.
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2.1.5 Egozcue et al. (2013): applications to real-estate selling

An example of applying the two-envelope framework on other types of decision-making prob-

lems is considered in Egozcue et al. (2013). In that article, the seller of the house has to decide

between a current offer and a potential next offer (the seller will not wait for the third offer for

some reasons, for instance, he/she has a new position starting very soon in another city). In

this situation, the seller either accepts the current offer or rejects it, which means he/she has to

accept the next one no matter what price is offered. The main purpose of the article is to help

the seller make the decision based on the price of the current offer.

This problem is similar to a generalized version of the standard two-envelope problem. If

we consider the two offers as the two envelopes. Then the offered prices could be seen as the

rewards contained in the envelopes which are denoted as XH and XL respectively. Moreover,

XH represents the potentially higher price compared with XL. When the seller looks at the price

of the current offer, it is similar to that the seller opens one of the envelopes and sees the reward

in that envelope, however, he/she has no idea whether the amount stands for the higher one.

Thus, the framework of the two-envelope problem is a suitable tool for analyzing this situation.

The problem formulation is as follows. Suppose binary random variable Π1 ∈ {L,H} repre-

sents the person who comes first to put an offer. As the seller sees the price, his/her decision is

also a binary random variable ∆1 ∈ {A,R}. ∆1 = R means reject the current offer while ∆1 = A

means acceptance. Then the seller’s strategy function is

S (y) ≡ P
[
∆1 = R|XΠ1 = y

]
based on the price of the current offer given the following two assumptions:

1. Whether the first-come offer Π1 is made by L or H does not depend on the (random)

prices XL and XH. This assumption allows us to denote

p ≡ P [Π1 = L] = P [Π1 = L|XL, XH]
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and thus P [Π1 = H] = 1 − p.

2. The probability of rejecting the current offer depends only on the amount of the current

offer.

Similar to the discussion in McDonnell and Abbott (2009), a benchmark expected price is

defined as the unconditional expected value of the price at deal when the seller always accepts

the current offer, i.e. S (y) ≡ 0. Hence the benchmark expected price is

BEP = pE [XL] + (1 − p) [XH] ,

which is equivalent to RB in McDonnell and Abbott (2009). Hence if the unconditional ex-

pected price given that some strategy S (y) is adopted is denote as µX, the following result is

given by Egozcue et al. (2013).

Proposition 2.1.2 (Theorem 2.1, Egozcue et al., 2013) The difference of µX and BEP is

µX − BEP = pE [S (XL) {E [XH |XL] − XL}] + (1 − p)E [S (XH) {E [XL|XH] − XH}] .

And this difference is called “strategy risk parameter” and denoted as SRP(S ) given the strat-

egy S .

Proposition 2.1.2 reduces the main purpose to the following maximization problem:

max
S

SRP(S ) (2.4)

subject to 0 ≤ S (y) ≤ 1 for all y ∈ [0,∞). This maximization problem could be solved through

the following result.

Proposition 2.1.3 (Corollary 3.1, Egozcue et al., 2013) Assume that XL and XH have densities

fL and fH, respectively. Then the maximizing strategy function SMAX(y) is the indicator 1A(y)
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of the set A = {x ∈ [0,∞) : HMAX(x) > 0}, where

HMAX(x) = p {E [XH |XL = x] − x} fL(x) + (1 − p) {E [XL|XH = x] − x} fH(x).

According to the appendix of McDonnell et al. (2011), Proposition 2.1.3 is expected to be

proved in at least three ways. However, as we could write SRP(S ) as

SRP(S ) =

∫
S (x)HMAX(x)dx,

it is clear that if SRP(S ) is supposed to be maximized S (x) has to be equal to 1 whenHMAX(x) >

0 while S (x) has to be equal to 0 whenHMAX(x) ≤ 0 intuitively.

Egozcue et al. (2013) claims that the ultimate maximizing strategy SMAX(y) is often a

threshold-type strategy, namely, S b(y) = 1[0,b)(y), where b ≥ 0 is a “threshold”. Two situations

are discussed in that article to illustrate this intuition, of which the first situation is when random

variables XL and XH are independent. In this situation, the functionHMAX(x) reduces to

HMAX(x) = p {E [XH] − x} fL(x) + (1 − p) {E [XL] − x} fH(x).

Moreover, it is assumed that XH is greater than or equal to XL in the likelihood ratio sense,

namely,

w(x) =
fH(x)
fL(x)

is a non-decreasing function with respect to x (this is the reason why subscript H is used to

stand for potentially “higher” price while subscript L stands for potentially “lower” price).
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Notice that

µH : = E [XH]

= E [XLw (XL)]

= Cov (XL,w (XL)) + E [XL] ,

it is easy to verify that µH ≥ µL := E [XL] due to that w(x) is non-decreasing. Thus, if XL and

XH have the same support (x1, x2) for some 0 ≤ x1 < x2 ≤ ∞, the explicit solution of SMAX(y)

could be obtained as the following result.

Proposition 2.1.4 (Theorem 3.1, Egozcue et al., 2013) The optimal strategy function SMAX(y)

is

SMAX(y) = 1(x1,b)(y)

with the threshold b := sup{x > µL : v(x) > w(x)}, where

v(x) :=
p (µH − x)

(1 − p) (x − µL)
.

In particular, when

µL = µH(≡ µ),

then

SMAX(y) = 1(x1,µ)(y).

The other situation discussed in Egozcue et al. (2013) is that

XH = αXL

for a constant α > 1. This is equivalent to

fH(x) = (1/α) fL(x/α)
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and thus

SRP(S ) = (α − 1)
∫

S (x)x
[
p fL(x) − (1 − p)

1
α2 fL

( x
α

)]
dx.

Hence functionHMAX(x) could be chosen as

HMAX(x) = p fL(x) − (1 − p)
1
α2 fL

( x
α

)
.

The readers are referred to the integrand of (2.2) of McDonnell and Abbott (2009) as a particu-

lar case α = 2. As the result of SMAX(y) depends on fL(x), the rest of the discussion in Egozcue

et al. (2013) is based on three particular distributions for XL.

1. When XL is uniform on [A, B] for some 0 ≤ A < B ≤ ∞, then

SMAX(y) =


1[A,αA)(y) when αA ≤ B and p ≤ 1

1+α2 ,

1[A,B] otherwise.

To decipher this result in terms of the decision-making language, consider the doublet

(α, p) ∈ (1,∞) × [0, 1]. If we define a subset:

∆ :=
{

(α, p) ∈ (1,∞) × [0, 1] : α ≤
B
A
, p ≤

1
1 + α2

}
,

then the decision rule is:

• when (α, p) < ∆, then the current offer should always be rejected, irrespectively of

the price y;

• when (α, p) ∈ ∆, then the current offer should be rejected if the price y < αA.

Otherwise, the current offer should be accepted.

2. When XL is a log-normal random variable having density

fL(x) =
1

xσ
√

2π
exp

−(
log(x) − µ

)2

2σ2

 1(0,∞)(x)
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for some parameters µ ∈ (−∞,∞) and σ > 0. Then

SMAX(y) = 1(0,b)(y)

with the threshold

b =
√
αeµ

(
pα

1 − p

)σ2/ logα

.

3. When XL is a Pareto random variable having density

fL(x) =
θ

x0

( x0

x

)θ+1
1[x0,∞)(x)

for some parameters x0 > 0 and θ > 1. Then

SMAX(y) =


1[x0,αx0)(y) when p ≤ 1

1+α1−θ ,

1[x0,∞] otherwise.

To decipher this result in terms of the decision-making language, consider the doublet

(α, p) ∈ (1,∞) × [0, 1]. If we define a subset:

Ξ :=
{

(α, p) ∈ (1,∞) × [0, 1] : p ≤
1

1 + α1−θ

}
,

then the decision rule is:

• when (α, p) < Ξ, then the current offer should always be rejected, irrespectively of

the price y,

• when (α, p) ∈ Ξ, then the current offer should be rejected if the price y < αx0.

Otherwise, the current offer should be accepted.
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2.2 Price discrimination

Price discrimination describes pricing behaviors and pricing preferences of monopoly enter-

prises in a monopolistic competitive market. Price discrimination happens when units of the

same product are sold at different prices, either to the same consumers or different consumers.

Definition 2.2.1 Price discrimination is a microeconomic pricing strategy where identical or

largely similar goods or services are transacted at different prices by the providers in different

markets/consumers.

According to the classification of Pigou (1920), price discrimination may take three forms:

first-degree price discrimination, second-degree price discrimination and third-degree price

discrimination.

Definition 2.2.2 First-degree price discrimination is a pricing strategy where each consumer

is charged the maximum amount they are willing to pay for each unit.

First-degree price discrimination means that the producer can charge whatever the market will

bear and thus captures the entire consumer surplus. It involves the seller charging a different

price for each unit of the commodity in such a way that the amount charged for each unit

is equal to the maximum willingness-to-pay for that unit. It is also known as perfect price

discrimination.

Definition 2.2.3 Second-degree price discrimination is a pricing strategy where price varies

according to quantity demanded. Larger quantities of the same product are sold at a lower unit

price; Smaller quantities of the same product are sold at a higher unit price.

Second-degree price discrimination involves selling larger quantities of the same product at

a lower unit price. It occurs when price differs depending on the number of units that the

good bought, but not across consumers. This phenomenon is also known as nonlinear pricing.

Each consumer faces the same price schedule, but the schedule involves different price for
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the different amount of the good purchased. Quantity discounts or premia are the prominent

examples.

Definition 2.2.4 Third-degree price discrimination is a pricing strategy where producers charge

a different price to different consumer groups.

Third-degree price discrimination takes place when different prices are charged for the same

product to different consumers. It means that different purchasers are charged different prices,

but each buyer pays a constant amount for each unit of the good bought. It is perhaps the most

common form of price discrimination; examples are student discounts or charging different

prices on different days of the week.

2.2.1 Willingness-to-pay and marginal willing-to-pay of price discrimi-

nation

To understand three forms of price discrimination in an economic environment, we introduce

a model of willingness-to-pay (Varian, 1992). Suppose there are many potential consumers

whose utility functions are

ui(x) + y,

for i ∈ 1, 2, . . ., and x represents the interested good, y represents all other goods. Denote r(i)

is the maximum willingness-to-pay for some consumption level x such that it is the solution to

the equation

ui(0) + y = ui − ri(x) + y. (2.5)

We define ui(x) = 0 for simlicity, and get naturally

ri(x) ≡ ui(x). (2.6)
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Furthermore if the consumer faces a per-unit price p(x) of x, budget limit of m, and chooses

the optimal level of consumption, then equivalently it is the maximization problem

max
x,y

ui(x) + y

subject to p(x)x + y = m.

The first order condition for this problem is

p(x) = u′i(x). (2.7)

The price necessary to induce consumer i to choose consumption level x, i.e., the marginal

willing-to-pay, is

p(x) = pi(x) ≡ u′i(x).

Definition 2.2.5 Suppose that the maximum willingness-to-pay for the good by consumer k,

always exceeds the maximum willingness-to-pay by consumer j,

uk(x) > u j(x), (2.8)

for all x. For the marginal willingness-to-pay, we suppose

u′k(x) > u′j(x), (2.9)

which means the marginal willingness-to-pay for the good by consumer k exceeds the marginal

willingness-to-pay by consumer j. Then the consumer k is regarded as the high demand con-

sumer and the consumer j is regarded as the low demand consumer.
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2.2.2 First-degree price discrimination

First-degree price discrimination is also known as perfect price discrimination. In term of first-

degree price discrimination, the consumer surplus is 0, because it is reaped by the producer.

Selling an extra unit does not require lowering the price of the previously sold units, since each

one may be sold at a different price. Demand and marginal revenue curves are therefore con-

founded, and the profit maximizing condition (marginal revenue equals marginal cost) yields

the same output as a competitive market. If a monopoly can practice perfect discrimination,

the outcome will thus be Pareto efficient, which is a quite counter-intuitive result. Transaction

and research costs involved in finding the willingness-to-pay of each consumer make this case

extremely unlikely in the real world, i.e., it is an ideal case.

Definition 2.2.6 Consumer surplus is defined as the difference between the total amount that

consumers are willing and able to pay for a good or service (indicated by the demand curve)

and the total amount that they do pay (i.e. the market price).

Definition 2.2.7 Producer surplus is an economic measure of the difference between the amount

a producer of a good received and the minimum amount the producer is willing to accept for

a good. The difference, or surplus value, is the benefit the producer receives for selling the

commodity in the market.

Theoretically first-degree price discrimination requires the monopoly seller of a good or

service to know the absolute maximum price (or reservation price) that every consumer is

willing to pay. By knowing the reservation price, the seller is able to sell the good or service

to each consumer at the maximum price he is willing to pay, and thus transform the consumer

surplus into revenues. So the profit is equal to the sum of consumer surplus and producer

surplus (see Figure 2.1). The marginal consumer is the one whose reservation price equals to

the marginal cost of the product. Suppose a monopolist offers goods to one agent in the market
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Figure 2.1: The first-degree price discrimination. The vertical axis represents the price level
of a commodity. The horizontal axis represents the quantity of goods. Curve MC is marginal
cost curve. Curve D is demand curve, also known as marginal revenue curve here. The profit
maximizing condition (marginal revenue equals marginal cost MR = MC) indicates the pairs
of the quantity and the price, (QM, PM). The price PM is a market clearing price. QM is a market
clearing quantity, which matchs the market clearing price. A + B means the profit, which is
equal to the sum of consumer surplus and producer surplus here.

at this moment. The profit maximization problem of the monopolist is

max
x,r

r − cx

subject to u(x) ≥ r

where c is a constant marginal cost of per unit of the monopolist. The first order condition for

this problem is

u′(x∗) = c.

The corresponded willing-to-pay price is

r = r(x∗) = u(x∗).

Now let’s imagine next if the monopolist sells each unit of output to the consumer at a different
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price. Suppose, for example, that the firm breaks up the output into n pieces of size ∆x, so that

x = n∆x. Considering the willing-to-pay price,

u(0) = u(∆) − p1,

u(∆) = u(2∆) − p2,

...

u((n − 1)∆) = u(x) − pn.

we have
i=1∑
n

pn = u(x),

by adding up these n equations. That is the sum of the marginal willingnesses-to-pay, which

must equal the total willingness-to-pay.

2.2.3 Second-degree price discrimination

Second-degree price discrimination is also known as nonlinear pricing: prices vary across units,

but not across people. The usual example of second-degree price discrimination is quantity dis-

counts, when larger quantities of the same product are sold at a lower unit price. Producers use

this technique when they know different consumer groups exist, but have no way of observing

them. The complete extraction of consumer surplus is not possible as it was in the first-degree

price discrimination, but the producer can still design some price scheme to force consumers to

reveal their type. Second-degree price discrimination is a more realistic case of price discrimi-

nation. It is often practiced by public utilities, as the price per unit of water and electricity often

depends on how much is consumed. Consumers self-select themselves into consumption cate-

gories. The description for Figure 2.2 are as follows. Suppose there are two groups of people

with different numbers of people, a smaller number Q1 for group 1, and a larger number Q2 for

group 2. In terms of the second-degree price discrimination, the producers offer a higher price
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QQ1

P1

Q2

P2

P

D

Figure 2.2: The second-degree price discrimination. The vertical axis represents the price level
of a commodity. The horizontal axis represents the quantity of goods. Curve D is demand
curve here. The point (Q1, P1) on the curve D means the producers offer price P1 to the group
1 with the consumer group number who has the group number Q1. The point (Q2, P2) on the
curve D means the producers offer price P2 to the consumer group 2 who has the group number
Q1.

P1 of goods for group 1, and a lower price P2 of goods for group 2, i.e. Q1 < Q2 and P2 < P1.

Figure 2.2 shows a kind of price discrimination which indicates price varies according to the

quantity demanded.

We suppose there are two consumers, and each consumer want to consume the amount xi

and be willing to pay the price ri,

ui(xi) − ri ≥ 0,

for i = 1, 2. Also we suppose each consumer prefer his consumption to the consumption of the

other consumer 
u1(x1) − r1 ≥ u1(x2) − r2,

u2(x2) − r2 ≥ u2(x1) − r1.
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Because of the equations of 2.8 and 2.9, we can continue to calculate and get


r2 = u2(x2) − u2(x1) + r1,

r1 = u1(x1).

Considering the profit function of the monopolist is

π = (r1 − cx1) + (r2 − cx2),

we replace r1 and r2 and reach equivalently,

π = (u1(x1) − cx1) + (u2(x2) − u2(x1) + r1 − cx2).

Differentiating it with respect to xl and x2 to get a maximized expression


u′1(x1) = c + (u′2(x1) − u′1(x1)),

u′2(x2) = c.
(2.10)

Equation (2.10) says that at the optimal nonlinear prices, the high demand consumer has a

marginal willingness-to-pay which is equal to marginal cost; and the low demand consumer has

a (marginal) value for the good that exceeds marginal cost. Hence he consumes an inefficiently

small amount of the good.

2.2.4 Third-degree price discrimination

Third-degree price discrimination consists of distinguishing several groups of consumers with

different demands to charge them different prices. Producers discriminate between groups of

people, but not across units, as consumers are charged different prices, but each one faces a

constant price for all units of output purchased. It is used to take advantage of the fact that
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different groups of people have different demand functions. The usual example of third-degree

price discrimination is student discounts at the movies or sports events. Third-degree price

discrimination is also practiced by pharmaceutical firms who sell the same drugs in different

countries at different prices.

Definition 2.2.8 Price elasticity of demand is a measure used in economics to show the rela-

tionship between a change in the quantity demanded of a good or service and a change in its

price. It gives the percentage change in quantity demanded in response to a one percent change

in price.

ε(p) =
dQ/Q
dP/P

. (2.11)

where Q is the quantity demanded of a good or service, and P are the price of the good or the

service.

Figure 2.3 gives us a brief view about the third-degree price discrimination. Suppose there

are two markets/groups, markets/groups 1, and markets/groups 2, with different price elastic-

ities of demand. Assume group 1 is relatively lack of elasticity of demand, and group 2 is

relatively elastic. In terms of the third-degree price discrimination, the producers offer a higher

price p1 of goods for group 1, and a lower price p2 of goods for group 2, i.e. p2 < p1. Figure

2.3 shows a kind of price discrimination which indicates producers charge a different price to

different consumers of markets/groups.

The model description of the third-degree price discrimination is following. Indeed we

suppose there are two groups of consumers in two separate markets/groups, and define pi, for

i = 1, 2, as the inverse demand function for group i of consumers. The monopolist’s profit

maximization problem is

max
x1,x2

p1(x1)x1 + p2(x2)x2 − cx1 − cx2. (2.12)
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Figure 2.3: The third-degree price discrimination. The vertical axis represents the price level
of a commodity. The horizontal axis represents the quantity of goods. Curve MC is marginal
cost curve. Also, curve MC is supply curve here. Curve D is demand curve, also known
as average revenue curve here. The demand curves D1 and D2 are different, which means the
price elasticities of demand in two markets/groups are different. Curve MR is marginal revenue
curve. The profit maximizing condition (marginal revenue equals marginal cost MR = MC)
indicates the pairs of the quantities and the prices, (q1, p1), (q2, p2) and (q, p) respectively. A
means the profit from the market/group 1. B means the profit from market/group 2. A + B = C.
C means the total profits from both two markets/groups.



34 Chapter 2. Fundamental notions and the techniques

Differentiating the equation (2.12) with respect to xl and x2 to get a maximized expression


p1(x1) + p′1(x1)x1 = c,

p2(x2) + p′2(x2)x2 = c.
(2.13)

We rewrite the equations (2.13) by


p1(x1)(1 − 1

ε1
) = c,

p2(x2)(1 − 1
ε2

) = c.
(2.14)

Proposition 2.2.1 If we have the equations (2.14), then

p1(x1) > p2(x2)

if and only if

|ε1| < |ε2|.

As one of the behaviours of monopoly enterprises in a monopolistic competitive market,

the third-degree price discrimination means a selling strategy that the same provider charges

different prices for identical or just similar goods or services in different consumer groups with

different demand curves, and demand elasticities as well (cf., Aguirre, 2010; Holmes, 1989;

Pindyck, and Rubinfeld, 2001; Schmalensee, 1981; Schwartz, 1990; Yoshida, 2000; Varian,

1992). The product differentiation is one of the crucial reasons why firms have some degree of

control over the price. The more successful it is at differentiating its product from other firms

selling similar products, the more monopoly power the form has. Product differences are due

to quality, functional features, design, and so on, and so there is imperfect substitution between

commodities even when they are in the same category (cf., Krugman, 1980; Head, and Ries,

2001; Helpman, 1981; Nguyen, 2014; Varian, 1992).
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In our cases, the Lenovo laptop gets differentiated from other laptops because of its brand,

quality, reputation, and so on, and thus gets imperfect substitution between different kinds of

laptops. Consider that most consumers who buy laptops during the Black Friday promotion pe-

riod have stronger laptop buying intention than most of the consumers who buy laptops during

the Boxing Day promotion period. That is, the demand curves during these two periods have

different demand elasticities of price: during the Black Friday promotion period, the demand

elasticities of price is smaller than that during the Boxing Day promotion period. Considering

this difference between buying intentions during two periods, the buyers during the two periods

can be regarded as two separate markets with different demand curves and different demand

elasticities, and the monopolist firm can tend to enforce the division of the selling prices during

the two periods; this is the third-degree price discrimination.

2.3 Parametrical models

2.3.1 Beta distribution

Naturally, distributions supported on a bounded domain are considered for modelling the dis-

counted prices of certain goods since the given prices are bounded above by the original prices

while bounded below by 0 (in general, a seller will not sell a product if the price is below certain

levels xmin > 0). One of the very basic distributions with bounded supports is the Beta distribu-

tion, which will be employed to model the prices that vary within a fixed interval throughout

this thesis. A formall definition of the Beta distribution is provided below from the perspective

of the seller (the exact range of the discounted price is known to the seller).

Definition 2.3.1 A random variable X defined on [xmin, xmax] is said to have Beta distribution

if the density function fX(x) exists and has the following location-scale form:

fX(x) =


(x − xmin)α−1 (xmax − x)β−1

B(α, β)ρα+β−1 if xmin ≤ x ≤ xmax,

0 otherwise,
(2.15)
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where α > 0 and β > 0 are the shape parameters, xmin (xmin < xmax) is the location parameter,

ρ = xmax − xmin is the scale parameter, and B(α, β) is the Beta function of α and β.

Without loss of generality, we set xmin = 0 and xmax = 1, such that ρ = 1. We have graphed

the probability density functions and cumulative distribution functions of Beta distribution with

different values of α and β, in Figure 2.4 and in Figure 2.5.
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Figure 2.4: The probability density functions of Beta distribution with different parameter
values of α and β. The simulated random variable is defined on [0, 1] and the selected parameter
combinations of Beta distribution are B(0.5, 0.5), B(5, 1), B(1, 3), B(2, 2) and B(2, 5).

Some other distributional properties cannot be expressed in terms of elementary functions,

hence for the computational reason we introduce the hypergeometric functions defined below.

Definition 2.3.2 The hypergeometric function 2F1 is defined by the power series

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n

(c)n

zn

n!
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Figure 2.5: The cumulative distribution functions of Beta distribution with different parameter
values of α and β. The simulated random variable is defined on [0, 1] and the selected parameter
combinations of Beta distribution are B(0.5, 0.5), B(5, 1), B(1, 3), B(2, 2) and B(2, 5).

for |z| < 1, where (q)n is the Pochhammer symbol defined by

(q)n =


∏n−1

i=0 (q + i) if n > 1,

1 if n = 0.

A famous integral representation of the hypergeometric function 2F1(a, b; c; z) is given below,

which reveals the potential relation between 2F1(a, b; c; z) and a Beta distribution.

Proposition 2.3.1 For<(c) > <(a) > 0 and z < {x ∈ R : x ≥ 1}, the hypergeometric function

2F1(a, b; c; z) could be written as

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0
ta−1(1 − t)c−a−1(1 − zt)−bdt.

Hence some other distributional properties of the Beta distribution could be expressed in terms
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of the hypergeometric function 2F1(a, b; c; z) or Pochhammer symbol.

Proposition 2.3.2 If random variable X follows Beta distribution having density function (2.15),

then

1. The cumulative distribution function of X could be written as

FX(x) =



(x − xmin) /ρ
αB(α, β) 2F1(α, 1 − β;α + 1; (x − xmin) /ρ) if xmin ≤ x ≤ xmax,

0 if x < xmin,

1 if x > xmax.

2. The rth moment of X − xmin is

E
[
(X − xmin)r] =

ρr(α)r

(α + β)r
.

In particular,

E [X] = xmin +
ρα

α + β

and

Var(X) =
ρ2αβ

(α + β)2(α + β + 1)
.

3. The characteristic function of X could be written as

φX(t) = 1F1(α;α + β; iρt)e−itρxmin ,

where i =
√
−1 and 1F1(a; b; z) is the confluent hypergeometric function defined by

1F1(a; b; z) =

∞∑
n=0

(a)n

(b)n

zn

n!
.

In later chapters, the two-period choice problem as an analog of the two-envelope paradox will

be discussed, in which the dependence between the prices given in different period plays an
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important role. Hence the density function of the product of two independent random vari-

able following Beta distributions is provided below in terms of the hypergeometric function

2F1(a, b; c; z).

Proposition 2.3.3 (Corallary 3.1.2, Nagar and Zarrazola, 2004) If X and Y are two indepen-

dent random variables having the standard Beta distribution (xmin = 0 and ρ = 1) with the

shape parameters (αX, βX) and (αY , βY) respectively, then the density function of their product

could be expressed in terms of the Gauss hypergeometric function 2F1, namely,

fXY(z) =
Γ (αX + βX) Γ (αY + βY)
Γ (βX + βY) Γ (αX) Γ (αY)

zαX−1 (1 − z)βX+βY−1
2F1 (βY , αX + βX − αY ; βX + βY ; 1 − z)

for all z ∈ [0, 1], and fXY(z) = 0 otherwise.

Corollary 2.3.4 Under the assumptions provided in Proposition 2.3.3, if αY = αX + βX, then

XY follows a Beta distribution with shape parameters αX and βX + βY .

These distributional results will help illustrate how the optimal choice of purchase should be

made based on the theoretical framework provided in this thesis.

2.3.2 Gamma distribution

Unlike the discounted prices of goods, bidding prices do not seem to have an obvious upper

bound. As a result, Beta distribution may not be appropriate for modelling the bidding prices.

Instead, distributions with unbounded support such as the Gamma distribution could be a bet-

ter choice. Throughout this thesis, bidding prices are assumed to have Gamma distributions

(denoted as Ga(α, β)) with the following density function

fα,β(t) =


βα

Γ(α)
tα−1e−βt if t > 0,

0 if t ≤ 0.
(2.16)

where α > 0 is the shape parameter and β > 0 is the rate parameter.
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Without loss of generality, we have graphed the probability density functions and cumula-

tive distribution functions of Gamma distribution with different parameter values of α and β, in

Figure 2.6 and in Figure 2.7.
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Figure 2.6: The probability density functions of Gamma distribution with different parameter
values of α and β. The simulated random variable is defined on [0,∞) and the selected parame-
ter combinations of Gamma distribution are Ga(1, 0.5), Ga(2, 0.5), Ga(3, 0.5), Ga(5, 1), Ga(9, 2)
and Ga(7.5, 1).

Gamma distributions are extensively used in the literature of modeling prices (see, e.g.,

Hong & Shum, 2006; Pratt, Wise & Zeckhauser, 1979). In particular, Hong and Shum (2006)

apply the gamma distribution to model search costs, including time, energy and money spent

on researching products, or services, for purchasing. There are numerous cases of using the

gamma distribution when modeling insurance losses (e.g., Alai et al., 2013; Furman & Lands-

man, 2005; Hürlimann, 2001).

Distributional properties pertaining to the Gamma distribution parameterized as (2.16) in-

clude:
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Figure 2.7: The cumulative distribution functions of Gamma distribution with different param-
eter values of α and β. The simulated random variable is defined on [0,∞) and the selected
parameter combinations of Gamma distribution are Ga(1, 0.5), Ga(2, 0.5), Ga(3, 0.5), Ga(5, 1),
Ga(9, 2) and Ga(7.5, 1).

1. The cumulative distribution function corresponding to fα,β is

Fα,β(x) =
γ(α, βx)

Γ(α)
, x > 0,

where γ(·, ·) is the lower incomplete gamma function.

2. The rth moments of the gamma distribution are given by

E [Xr] =
Γ(α + r)
βrΓ(α)

.

In particular, the mean of Ga(α, β) is E[X] = α
β

and the variance is Var(X) = α
β2 .



42 Chapter 2. Fundamental notions and the techniques

3. The characteristic function of Ga(α, β) is

φX(t) =

(
β

β − it

)α
,

where i =
√
−1.

Similar to the Beta distributions, the distribution functions product of independent Gamma

random variables cannot be expressed in terms of elementary functions as well. Hence we

shall introduce the Meijer G-function defined as follows to help develop the representation of

these distribution functions.

Definition 2.3.3 In general, the Meijer G-function is defined by

Gm,n
p,q

z
∣∣∣∣∣∣a1, · · · , ap

b1, . . . , bq

 =
1

2πi

∫
L

∏m
j=1 Γ(b j − s)

∏n
j=1 Γ(1 − a j + s)∏q

j=m+1 Γ(1 − b j + s)
∏p

j=n+1 Γ(a j − s)
zsds, z , 0

for 0 ≤ m ≤ q and 0 ≤ n ≤ p where m, n, p, q ∈ N. Moreover, ak − b j , 1, 2, 3, . . . for

k = 1, 2, . . . , n and j = 1, 2, . . . ,m. The integral path L has three possible choices.

1. L runs from −i∞ to i∞ such that all poles of Γ(b j − s), j = 1, 2, . . . ,m are located on the

right of the path while all poles of Γ(1 − ak + s), k = 1, 2, . . . , n are located on the right

of the path. The integral then converges on {z ∈ C : |arg z| < δπ}, where

δ = m + n −
1
2

(p + q)

and δ > 0.

2. L is a loop beginning and ending at +∞, encircling all poles of Γ(b j − s), j = 1, 2, . . . ,m

exactly once in the negative direction, but not encircling any of poles of Γ(1 − ak + s),

k = 1, 2, . . . , n. Then the integral converges for all z if q > p ≥ 0; it also converges for

q = p > 0 on {z ∈ C : |z| > 1}.
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3. L is a loop beginning and ending at −∞, encircling all poles of Γ(1−ak+s), k = 1, 2, . . . , n

exactly once in the positive direction, but not encircling any of poles of Γ(b j − s), j =

1, 2, . . . ,m. Then the integral converges for all z if p > q ≥ 0; it also converges for

p = q > 0 on {z ∈ C : |z| > 1}.

Now the distribution functions as well as the Laplace transform of independent Gamma random

variables could be expressed in terms of the Meijer G-functions as shown by Nadarajah (2011).

Proposition 2.3.5 (Lemma 1, Nadarajah, 2011) Suppose X and Y are independent random

variables following Ga(αX, βX) and Ga(αY , βY) respectively. Then the Lapace transform of XY

are

E
[
e−sXY

]
=

1
Γ(αX)Γ(αY)

G1,m
m,1

 s
βXβY

∣∣∣∣∣∣1 − αX, αY

0


for s ∈ {z ∈ C : <(z) ≥ 0}.

Proposition 2.3.6 (Lemma 2, Nadarajah, 2011) Suppose X and Y are independent random

variables following Ga(αX, βX) and Ga(αY , βY) respectively. Then the density function and the

cumulative distribution function of XY are

fXY(z) =
1

Γ(αX)Γ(αY)z
G2,0

0,2

βXβYz

∣∣∣∣∣∣ −
αX, αY


and

FXY(z) =
1

Γ(αX)Γ(αY)
G2,1

1,3

βXβYz

∣∣∣∣∣∣ 1

αX, αY , 0


respectively, for z > 0.

2.3.3 Geometric Brownian motion

When foreign investors take part in the bidding for certain asset, the foreign currency exchange

rates matter. Particularly for the two-period decision problem, the decision-making procedure
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in the first period must take into account the projection of these exchagne rates for the second

period . A simplest model for describing the behavior of the exchange rates is the geometric

Brownian motion, which was used by Biger and Hull (1983) for valuing the currency options.

As this thesis is not focusing on modelling the exchange rates, we adopt the assumption that

exchange rates could be described by geometric Brownian motions. A formal definition of

geometric Brownian motion is given below.

Definition 2.3.4 Suppose that {Wt}t≥0 is a standard Brownian motion defined on
(
Ω,F , {Ft}t≥0 ,P

)
and that µB ∈ R and σB > 0. Let

Xt = x exp
{(
µB −

σ2
B

2

)
t + σBWt

}
, t ∈ [0,∞). (2.17)

Then the stochastic process {Xt}t≥0 is a geometric Brownian motion starting from x. GBM(µB, σB)

is a geometric Brownian motion with drift µB and volatility σB.

Without loss of generality, we have graphed the simulated geometric Brownian motion with

x = 1, and different drift parameters and volatility parameters of µB and σB, GBM(1, 0.5) and

GBM(0.5, 1), in Figure 2.8.

For any fixed t ≥ 0, the distributional properties of the random variable Xt are listed below:

1. Xt follows a log-normal distribution with density function

ft(x) =


1

√
2πtσBx

exp

−
[
log(x) −

(
µB − σ

2
B/2

)
t
]2

2σ2t

 if x ∈ (0,∞),

0 if x ≤ 0.

2. The cumulative distribution function of Xt is given by

Ft(x) =


Φ

 log(x) −
(
µB − σ

2
B/2

)
t

σB
√

t

 if x ∈ (0,∞),

0 if x ≤ 0,
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Figure 2.8: The simulated geometric Brownian motion with x = 1, and different drift param-
eters and volatility parameters of µ and σ. The simulated random variable is defined on [0, 1]
and the selected parameter combinations of geometric Brownian motion are GBM(1, 0.5) and
GBM(0.5, 1).

where Φ(·) is the standard normal cumulative distribution function.

3. The p-quantile function of Xt is given by

F−1
t (p) = exp

{(
µB − σ

2
B/2

)
t + σB

√
tΦ−1(p)

}
, p ∈ (0, 1),

where Φ−1(·) is the standard normal quantile function.

4. For n ∈ N, the n-th moment

E
[
Xn

t
]

= enµBt.

In particular, we have

E [Xt] = eµBt
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and

Var (Xt) =
[
exp

(
σ2

Bt
)
− 1

]
exp(µBt).

Besides, geometric Brownian motion satisfies centain stochastic differential equation.

Proposition 2.3.7 The geometric Brownian motion {Xt}t≥0 defined by (2.17) satisfies the stochas-

tic differential equation

dXt = µBXtdt + σBXtdWt, t ≥ 0.



Chapter 3

Two-stage optimal decisions from the

buyer’s perspective

3.1 Motivation

In need of a laptop in the Fall of 2015, I was looking for a good on-line deal. Benefiting

from the advantages of on-line shopping, he acquired considerable information on the Lenovo

T540 laptop price. Two forthcoming time-periods were of immediate interest: the Black Friday

promotion from November 27th to December 3rd, 2015, and the Boxing Day promotion from

December 26th, 2015, to January 3rd, 2016.

Obviously, it was prudent to wait until the Black Friday promotion period, which revealed

the discounted price of 1,431.01 Canadian dollars for the laptop, but it was not obvious at

that moment whether he wanted to buy the laptop at that price or wait until the Boxing Day

promotion. (The price of Lenovo T540 laptop during the Boxing Day promotion period turned

out to be 1,461.60 Canadian dollars, which was not, of course, known during the Black Friday

promotion period.) Can there be a strategy for making good decisions during the Black Friday

promotion period?

The present chapter aims at answering this question by deriving an optimal strategy that

47
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minimizes the expected buying price. The idea for tackling this problem stems from the pi-

oneering work of McDonnell and Abbott (2009) on the two-envelope paradox, with further

far-reaching considerations by McDonnell et al. (2011). It also relies on some of the tech-

niques put forward by Egozcue et al. (2013) who have extended the aforementioned works

beyond the two-envelope paradox.

The rest of this chapter is organized as follows. In Section 3.2 we lay out the necessary

mathematical background and derive two optimal strategies: one when there is no guessing of

the second time-period price, and another one when such guessing takes place. In Sections 3.3

and 3.4 we discuss price modeling and parameter specifications of practical relevance. Section

3.5 contains proofs.

3.2 Main results

We start out by carefully describing the decision-making process, and also introduce the nec-

essary notation. First, the prospective buyer contacts a sales representative during the first

time-period. To somewhat simplify the problem, we assume that there are two kinds of sales

representatives:

i) those, call them L, who tend to offer larger discounts and thus lower prices XL;

ii) others, say H, who tend to offer smaller discounts and thus higher prices XH.

Both XL and XH are random variables. We denote their joint cumulative distribution func-

tion (cdf) by FXL,XH (x, y) and assume that it is absolutely continuous, that is, has a density

fXL,XH (x, y), which is a natural assumption in the current context.

Let Π1 denote the random variable that takes the values L and H depending on which (kind

of) salesperson takes the prospective buyer’s call during the first time-period. Hence, when

Π1 = L, then the price is XL, and when Π1 = H, then XH.

Once the prospective buyer learns the price during the first time-period (i.e., Black Friday),

he has two options: to either accept the offer or reject it and then inevitably wait till the second
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time-period (i.e., Boxing Day). If the buyer thinks that the first time-period offer is good

enough, he accepts it and the purchasing process ends. However, if the buyer rejects the offer,

then he has to wait until the second time-period and then inevitably accept whatever offer is

made to him at that time. He has to do so, because he needs a laptop and the regular price is

less attractive than any of the discounted ones.

Let ∆1 denote the random variable that represents the prospective buyer’s decision during

the first time-period: ∆1 = A if the buyer accepts the first-period offer and ∆1 = R if he rejects

it. The aim of the present article is to offer an optimal strategy that minimizes the average

E[X] of the buying price X, which could be either XL or XH depending the the buyer’s decision

during the first time-period.

We assume that the decision to accept or reject the price offered during the first time-period

does not depend on who, L or H, makes the offer – it depends only on the price being offered.

That is, we assume that the equation

P[∆1 = δ | XΠ1 = x, XΠ2 = y,Π1 = π] = P[∆1 = δ | XΠ1 = x, XΠ2 = y] (3.1)

holds for every decision δ ∈ {A,R} (i.e., accept or reject) and for every salesperson π ∈ {L,H},

where Π2 (, Π1) denotes the salesperson who makes the offer during the second time-period.

Theorem 3.2.1 When the price of the first time-period is v and there is no attempt to guess

the possible price to be offered during the second time-period, then the strategy that minimizes

the expected buying price is to accept the offer when R(v) ≤ 0 and to reject it when R(v) > 0,

where the “no guessing strategy” function R(v) is

R(v) =

∫
(v − w)p(v,w) fXL,XH (v,w)dw +

∫
(v − w)

(
1 − p(w, v)

)
fXL,XH (w, v)dw (3.2)

with the notation

p(x, y) = P(Π1 = L | XL = x, XH = y), (3.3)
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which is the probability that the salesperson L makes an offer during the first time-period given

that the prices offered by L and H are x and y, respectively.

It is natural to think of the joint density fXL,XH (v,w) as a continuous function with compact

support [xmin, xmax] × [xmin, xmax], where xmin is the reservation price from the supply side (i.e.,

computer technology company) and xmax is the reservation price from the demand side (i.e.,

consumer). Hence, fXL,XH (w, v) = 0 when v or w, or both, are outside the interval (xmin, xmax).

We also expect that under normal circumstances there should be a point v0 ∈ (xmin, xmax)

such that R(v) < 0 (accept the offer) for all v ∈ (xmin, v0) and R(v) > 0 (reject the offer)

for all v ∈ (v0, xmax), with R(v0) = 0. We indeed see this pattern in our illustrative Figure

3.1, where and elsewhere when graphing in this chapter we set the reservation prices to be

1400 1450 1500 1550 1600

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

v

v0

ACCEPT REJECT THE OFFER

Figure 3.1: The no-guessing-strategy function R(v). v0 [≈ 1, 434.43] is the point where the
function R(v) crosses the horizontal axis and R(v0) = 0. The region where R(v) < 0 for all
v ∈ (xmin, v0) is the accept region (accept the offer) and the region where R(v) > 0 for all
v ∈ (v0, xmax) is the reject region (reject the offer).

xmin = 1, 400 and xmax = 1, 600 Canadian dollars. For other specifications, including modelling

of the functions fXL,XH (v,w) and p(v,w), we refer to Sections 3.3 and 3.4.

We note that under the specifications, the point where the function R(v) crosses the hori-

zontal axis is v0 ≈ 1, 434.43, which delineates the acceptance (to the left) and rejection (to the

right) regions. It should also be noted that the inclusion of the point v0 into the acceptance



3.2. Main results 51

region is arbitrary: whenever v ∈ (xmin, xmax) is such that R(v) = 0, we could very well flip a

coin to decide whether to accept the offer or reject it and wait until the next promotion period.

Theorem 3.2.2 When the price of the first time-period is v and the guessed price to be offered

during the second time-period is w, then the strategy that minimizes the expected buying price

is to accept the offer when R(v,w) ≤ 0 and to reject it when R(v,w) > 0, where the “guessing

strategy” surface is

R(v,w) = (v − w)p(v,w) fXL,XH (v,w) + (v − w)
(
1 − p(w, v)

)
fXL,XH (w, v) (3.4)

with p(v,w) defined in equation (3.3).

Note that R(v,w) = 0 when v = w, which is natural. It is also natural to expect that

R(v,w) < 0 (i.e., accept the first time-period price v) when v < w, and R(v,w) > 0 (i.e., reject

the first time-period price v) when v > w. We indeed see this pattern in Figure 3.2 and Figure

3.3, where we have depicted the surface R(v,w) and its contours.

We conclude this section with a brief note on the possible shapes of p(v,w), with more de-

tails to be provided in Section 3.4 below. Namely, upon recalling that p(v,w) is the probability

that L makes an offer during the first time-period, given that the offers of L and H are x and y

respectively, it is natural to model p(v,w) as F(v−w) with some cdf F such that F(0) = 1/2. In

Section 3.4, for example, we shall use the beta cdf with the same shape parameters, in which

case we shall have the equation F(x) = 1 − F(−x) for all x and thus, in particular, the require-

ment F(0) = 1/2. The following corollary to Theorems 3.2.1 and 3.2.2 deals with this special

case.

Corollary 3.2.3 Let p(v,w) = 1 − p(w, v) for all v and w. Then the guessing-strategy surface

is

R(v,w) = (v − w)p(v,w)
(
fXL,XH (v,w) + fXL,XH (w, v)

)
,



52 Chapter 3. Two-stage optimal decisions from the buyer’s perspective

v

w

Figure 3.2: The guessing-strategy surface R(v,w). This figure is a 3D - visualization of the
function R(v,w). The lower left part of the figure indicates the area where R(v,w) < 0 when
v < w, i.e. accept the first time-period price v. The top right part of the figure indicates the
area where R(v,w) > 0 when v > w, i.e., reject the first time-period price v. The area where
R(v,w) = 0 is fuzzy and uncertain in this figure, and we refer to the Figure 3.3.

and the no-guessing-strategy function is

R(v) =

∫
R(v,w)dw.

The earlier drawn Figures 3.1, 3.2 and 3.3 are based on this corollary, with practically

relevant modelling of fXL,XH (v,w) and p(v,w) to be discussed in the next two sections.

3.3 Modelling fXL,XH(x, y)

If the salespersons L and H were in total isolation, their offered prices would be outcomes of

two independent random variables, which we denote by X0
L and X0

H, both taking values in the

interval [xmin, xmax]. It is natural to assume that, for example, X0
L and X0

H are beta distributed on
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Figure 3.3: The contours of the guessing-strategy surface R(v,w). This figure is the contour
of the Figure 3.2. The diagonal here, from lower left to top right, is the line of R(v,w) = 0
when v = w. The top left area, where R(v,w) < 0 when v < w, is the accept region (accept the
first time-period price v) and the lower right area, where R(v,w) > 0 when v > w, is the reject
region (reject the first time-period price v).

[xmin, xmax] with positive shape parameters (αL, βL) and (αH, βH), respectively, that is,

fX0
L
(x) =

(x − xmin)αL−1(xmax − x)βL−1

B(αL, βL)ραL+βL−1 , xmin < x < xmax,

and

fX0
H
(x) =

(x − xmin)αH−1(xmax − x)βH−1

B(αH, βH)ραH+βH−1 , xmin < x < xmax,

where

ρ = xmax − xmin[> 0]

is the range of possible prices. Given the earlier noted numerical values of xmin and xmax,

we have ρ = 200. When graphing, we set the parameter values to (αL, βL) = (2.5, 4.5) and
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(αH, βH) = (4.5, 1.5) throughout this chapter.

The (observable) prices offered by L and H are, however, not X0
L and X0

H but those that have

been influenced by, e.g., the company’s marketing team or management. This naturally leads

us to the background model, which we choose to be multiplicative (cf., e.g., Franke et al., 2006,

2011; Asimit et al., 2016; and references therein). Namely, suppose that Y ∈ [xmin, xmax] is the

(random) price that the company’s marketing team, or management, would think appropriate,

and which therefore influences the actual decisions of L and H. The multiplicative background

model would suggest that the observable prices XL and XH would be of the form XLY and XHY ,

but when defined in this way they are outside the natural price-range [xmin, xmax]. To rectify the

situation, we first standardize the prices X0
L, X0

H, and Y using the equations

Z0
L = (X0

L − xmin)/ρ,

Z0
H = (X0

H − xmin)/ρ,

and

Z = (Y − xmin)/ρ,

and then model the observable prices as

XL = Z0
LZρ + xmin

and

XH = Z0
HZρ + xmin.

Throughout the rest of this section, we assume that X0
L, X0

H and Y are independent and thus,

in turn, their standardized versions Z0
L, Z0

H and Z are independent as well. We shall soon find

this assumption convenient; in fact, it is a natural assumption.

Let, for example, Y follow the beta distribution on the interval [xmin, xmax] with some (pos-
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itive) shape parameters (α0, β0). Then the pdf fZ(t) of Z is equal to

fα0,β0(t) :=
tα0−1(1 − t)β0−1

B(α0, β0)
, 0 < t < 1.

The marginal pdf’s of XL and XH are

fXL(x) =
1
ρ

∫ 1

tx

fαL,βL

( x − xmin

tρ

)1
t

fα0,β0(t)dt (3.5)

and

fXH (x) =
1
ρ

∫ 1

tx

fαH ,βH

( x − xmin

tρ

)1
t

fα0,β0(t)dt, (3.6)

respectively, where tx = (x − xmin)/ρ. We have depicted the pdf’s in Figure 3.4 and 3.5
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Figure 3.4: The influence of Y (dashed pdf in both panels) on X0
L.

using (α0, β0) = (2.5, 2.5), and the earlier noted parameter choices for (αL, βL) and (αH, βH).

Similarly to equations (3.5) and (3.6), we derive the joint pdf

fXL,XH (x, y) =
1
ρ2

∫ 1

tx,y

fαL,βL

( x − xmin

tρ

)
fαH ,βH

(y − xmin

tρ

) 1
t2 fZ(t)dt,
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Figure 3.5: The influence of Y (dashed pdf in both panels) on X0
H.

where tx,y = (max{x, y} − xmin)/ρ. We have depicted this pdf in Figures 3.6 and 3.7.

3.4 Modelling p(x, y)

To begin with, we view our problem within the context of two-period (also known as two-

stage) economy. Indeed, it is reasonable to assume that many consumers who buy laptops

during the first time-period have stronger buying intention than most of the consumers who

buy laptops during the second time-period. That is, the demand curves during the two periods

have different demand elasticities of price: during the first time-period, the demand elasticity of

price is smaller than that during the second time-period. Considering this difference, the buyers

during the two periods can be viewed as two separate markets with different demand curves

and different demand elasticities, and monopolistic firms would tend to enforce the division of

selling prices during the two periods.

This leads us to the topic of third-degree price discrimination (e.g., Aguirre et al., 2010;

Schwartz, 1990), which in the monopolistic competitive market means that the same provider
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x
y

Figure 3.6: The joint pdf of XL and XH. This figure is a 3 − D visualization of the joint
distribution fXL,XH (x, y). The arrows in the figure indicate the larger trend of the values of x, y
and fXL,XH (x, y).

would charge different prices for similar goods or services in different consumer groups having

different demand curves and demand elasticities, such as those who buy laptops during the first

time-period and those who buy during the second period. In general, product differentiation

is one of the key factors why firms have some degree of control over the prices, and the more

successful a firm is at differentiating its products from other firms selling similar products,

the more monopoly power the firm has. Product differences arise due to quality, functional

features, design, and so on, and so there is imperfect substitution between products even when

they are in the same category (e.g., Head & Ries, 2001; Krugman, 1980).

Hence, in the case of our problem concerning laptops, there is arguably a tendency to offer

higher prices during the first time-period because the demand curve in the first period is a

relatively inelastic demand curve, due to stronger buying intention. Hence, it is natural that

firms would take advantage of this buying intention and offer higher prices during the first



58 Chapter 3. Two-stage optimal decisions from the buyer’s perspective

x

y

1400 1450 1500 1550 1600

14
00

14
50

15
00

15
50

16
00

Figure 3.7: The contours of the joint pdf of XL and XH. This figure is the contour of the Figure
3.6.

time-period. Consequently, it would seem that the higher the price is offered by L, the higher

the probability that the consumer will receive an offer from L during the first time-period. The

higher the laptop price is offered by H, the lower the probability that an offer will come from

L during the first time-period. When L and H offer laptops at the same or similar price, then

the probability of getting an offer from L would be more or less the same as the probability of

getting an offer from H. In view of these arguments, the following properties seem natural:

1) p(x, y) is non-decreasing in x, for every fixed y ∈ (xmin, xmax);

2) p(x, y) is non-increasing in y, for every fixed x ∈ (xmin, xmax);

3) p(x, y) = 1/2 whenever x = y.

We next suggest an example of p(x, y) by setting it to be F(x − y), where F can be any

cdf such that F(0) = 1/2. For example, let F be the beta cdf on the interval [−ρ, ρ] with
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ρ = xmax − xmin and equal shape parameters, say γ > 0. That is,

p(x, y) =
1

B(γ, γ)(2ρ)2γ−1

∫ x−y

−ρ

(ρ + t)γ−1(ρ − t)γ−1dt,

depicted in Figure 3.8 and 3.9 with the parameter γ = 10, which we always use when graphing.

x
y

Figure 3.8: The probability surface p(x, y). This figure is a 3 − D visualization of the joint
distribution p(x, y). The arrows in the figure indicate the larger trend of the values of x, y and
p(x,y).

3.5 Proofs of Theorems 3.2.1 and 3.2.2

Our goal is to derive a strategy that leads to the minimal expected value E[X] of the buying

price X, which could be either XL or XH depending on the outcomes of the random variables

Π1 ∈ {L,H} and ∆1 ∈ {A,R}. We start with the equation

E[X] =

"
E[X | XL = x, XH = y]dFXL,XH (x, y) (3.7)
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Figure 3.9: The contours of the probability surface p(x, y). This figure is the contour of the
Figure 3.8.

and then work with the conditional expectation inside the integral.

Given XL = x and XH = y, the random variable X can take only the values x or y. Conse-

quently, we have the equation

E[X | XL = x, XH = y] = xP[X = x | XL = x, XH = y] + yP[X = y | XL = x, XH = y]. (3.8)

We next calculate the two probabilities on the right-hand of equation (3.8) based on which of

the two salespersons, L or H, is making offers during the first time-period, and also on the

consumer behavior during this period, who can either accept or reject the first-come offer.

To begin with, we employ the random variable Π1 ∈ {L,H} and have

P[X = x | XL = x, XH = y]

= P[X = x | XL = x, XH = y,Π1 = L]P[Π1 = L | XL = x, XH = y]

+ P[X = x | XL = x, XH = y,Π1 = H]P[Π1 = H | XL = x, XH = y]. (3.9)
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We next tackle the four probabilities on the right-hand side of equation (3.9), starting with the

first probability.

Using the random variable ∆1 ∈ {A,R}, we have the equation

P[X = x | XL = x, XH = y,Π1 = L]

= P[X = x | XL = x, XH = y,Π1 = L,∆1 = A]P[∆1 = A | XL = x, XH = y,Π1 = L]

+ P[X = x | XL = x, XH = y,Π1 = L,∆1 = R]P[∆1 = R | XL = x, XH = y,Π1 = L]. (3.10)

The first probability on the right-hand side of equation (3.10) is equal to 1, and the third prob-

ability is equal to 0. Hence, equation (3.10) simplifies to

P[X = x | XL = x, XH = y,Π1 = L] = P[∆1 = A | XL = x, XH = y,Π1 = L]. (3.11)

Similarly, we obtain the expression

P[X = x | XL = x, XH = y,Π1 = H] = P[∆1 = R | XL = x, XH = y,Π1 = H] (3.12)

for the third probability on the right-hand side of equation (3.9). Using equations (3.11) and

(3.12) on the right-hand of equation (3.9), we have

P[X = x | XL = x, XH = y]

= P[∆1 = A | XL = x, XH = y,Π1 = L]P[Π1 = L | XL = x, XH = y]

+ P[∆1 = R | XL = x, XH = y,Π1 = H]P[Π1 = H | XL = x, XH = y]

= P[∆1 = A | XΠ1 = x, XΠ2 = y,Π1 = L]P[Π1 = L | XL = x, XH = y]

+ P[∆1 = R | XΠ2 = x, XΠ1 = y,Π1 = H]P[Π1 = H | XL = x, XH = y], (3.13)

where Π2 (, Π1) is the salesperson who offers prices during the second time-period. We now

recall assumption (3.1) that tells us that the decision to accept or reject the first-come offer does
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not depend on who makes the offer – the decision depends only on the size of the offer. Hence,

we have the equations

P[∆1 = A | XΠ1 = x, XΠ2 = y,Π1 = L] = P[∆1 = A | XΠ1 = x, XΠ2 = y] (3.14)

and

P[∆1 = R | XΠ2 = x, XΠ1 = y,Π1 = H] = 1 − P[∆1 = A | XΠ1 = y, XΠ2 = x]. (3.15)

Given the description of our problem, we might naturally think that the decision variable ∆1

is independent of the hypothetical/speculative future value of XΠ2 , and thus the right-hand sides

of equations (3.14) and (3.15) simplify by leaving out the second conditions associated with

XΠ2 . We shall indeed consider this situation later, but at the moment we admit the possibility

(cf. Theorem 3.2.2) that some clues to the possible price offerings during the second time-

period might be available to the consumer.

With the notation

Sw(v) = P[∆1 = A | XΠ1 = v, XΠ2 = w],

the right-hand side of equation (3.14) is equal to Sy(x) and the right-hand side of equation

(3.15) is equal to

1 − Sx(y).

Consequently, equation (3.13) turns into the following one

P[X = x | XL = x, XH = y]

= Sy(x)P[Π1 = L | XL = x, XH = y] + (1 − Sx(y))P[Π1 = H | XL = x, XH = y]. (3.16)

This is a desired expression for the first probability on the right-hand side of equation (3.8). As
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to the second probability, analogous considerations lead to the equations

P[X = y | XL = x, XH = y]

= P[∆1 = A | XL = x, XH = y,Π1 = H]P[Π1 = H | XL = x, XH = y]

+ P[∆1 = R | XL = x, XH = y,Π1 = L]P[Π1 = L | XL = x, XH = y]

= Sx(y)P[Π1 = H | XL = x, XH = y] + (1 − Sy(x))P[Π1 = L | XL = x, XH = y]. (3.17)

Applying equations (3.16) and (3.17) on the right-hand side of equation (3.8), we have

E[X | XL = x, XH = y]

= x
(
Sy(x)P[Π1 = L | XL = x, XH = y] + (1 − Sx(y))P[Π1 = H | XL = x, XH = y]

)
+ y

(
Sx(y)P[Π1 = H | XL = x, XH = y] + (1 − Sy(x))P[Π1 = L | XL = x, XH = y]

)
which, with p(x, y) defined in equation (3.3), becomes

E[X | XL = x, XH = y] = x
(
Sy(x)p(x, y) + (1 − Sx(y))(1 − p(x, y))

)
+ y

(
Sx(y)(1 − p(x, y)) + (1 − Sy(x))p(x, y)

)
. (3.18)

We next rearrange the terms on the right-hand side of equation (3.18) by separating the strategy-

free and strategy-dependent terms:

E[X | XL = x, XH = y] = x(1 − p(x, y)) + yp(x, y)

+ Sy(x)
(
xp(x, y) − yp(x, y)

)
+ Sx(y)

(
y(1 − p(x, y)) − x(1 − p(x, y))

)
. (3.19)

Combining equations (3.19) and (3.7), we obtain the following decomposition

E[X] = µ0 + µ1(S), (3.20)
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where the strategy-free term is

µ0 =

" (
x(1 − p(x, y)) + yp(x, y)

)
dFXL,XH (x, y)

= E
[
XL(1 − p(XL, XH))

]
+ E

[
XH p(XL, XH)

]
and the strategy-dependent term is

µ1(S) =

"
Sy(x)

(
xp(x, y) − yp(x, y)

)
dFXL,XH (x, y)

+

"
Sx(y)

(
y(1 − p(x, y)) − x(1 − p(x, y))

)
dFXL,XH (x, y).

Rewriting the above equation in terms of the joint density fXL,XH (x, y), and also slightly chang-

ing some notation to avoid potential confusion, we arrive at the equation

µ1(S) =

∫ ∫
Sw(v)R(v,w)dvdw, (3.21)

where R(v,w) is defined by equation (3.4). Since Sw(v) is a probability and can thus take values

only in the unit interval [0, 1], integral (3.21) achieves its minimal value when

Sw(v) =


1 if R(v,w) ≤ 0,

0 if R(v,w) > 0.

This completes the proof of Theorem 3.2.2.

We next deal with the case (cf. Theorem 3.2.1) when the decision random variable ∆1 is

independent of XΠ2 and thus Sw(v) does not depend on the price w offered during the second

time-period. Hence, instead of Sw(v), we now deal with the strategy function

S(v) = P[∆1 = A | XΠ1 = v].
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Consequently, the above defined µ1(S) reduces to the integral

µ1(S) =

∫
S(v)R(v)dv, (3.22)

where R(v) is defined by equation (3.2). Integral (3.22) achieves its minimal value when

S(v) =


1 if R(v) ≤ 0,

0 if R(v) > 0.

This completes the proof of Theorem 3.2.1.



Chapter 4

Optimal two-stage pricing strategies from

the seller’s perspective

4.1 Introduction

Commodity pricing has been a prominent topic in the literature, with various models and strate-

gies suggested and explored. In this chapter, motivated by a problem described next, we put

forward and investigate (both theoretically and numerically) a general model for pricing within

the two-period framework that naturally arises in the context of the motivating problem.

4.1.1 Motivating problem

In Punta del Este, a resort town in Uruguay, real-estate property is in demand by both domes-

tic and foreign buyers. As a recent example, the frequency distribution of buyers for certain

high-rise buildings was approximately as follows: 10% Uruguayans, 75% Argentineans, 10%

Brazilians, and the remaining 5% from the rest of the world (Chile, U.S.A., and so on). A few

immediate observations follow. First, the ratio of domestic and foreign buyers varies depend-

ing on a number of factors, including economic, financial, and political. Second, it has been

observed that the average foreign buyer is wealthier than the average domestic one, and thus

66
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tends to exhibit higher bidding prices. Furthermore, given the diversity of buyers, the prices

are usually in the US dollars (USD), but some of the building costs such as salaries of workers

are in the Uruguayan pesos (UYU).

To properly understand our problem, we need to describe the property development and

selling processes. Namely, contracted by an investor, a construction company starts building,

say, a residential tower. There are several stages of selling residential units: before, during, and

after the actual construction of the tower. Different pricing strategies are used at every stage.

It is frequently the case that, at least initially, the investor wishes to sell the units en masse and

thus hires a real-estate agent for several months. If the sale is not successful during this initial

stage, then the units are put on sale individually, with no particular time horizon set in advance,

and at a possibly different price, which could be higher or lower than the original price.

The goal that we set out in this chapter is to derive, under various scenarios of practical

relevance, optimal strategies for setting first- and second-stage prices, as well as to propose the

optimal timing for accomplishing these tasks, in order to maximize the overall seller’s expected

revenue. In the next subsection, we give a brief appraisal of what we have accomplished in the

current chapter, with a related though brief literature review given in the following subsection.

4.1.2 Results and findings – an appraisal

First, in this chapter we put forward a highly encompassing, yet tractable, model and explore

optimal pricing strategies from the seller’s perspective when buyer’s real-estate valuations and

decisions in the two stages are uncertain: they can be independent or dependent, identically

distributed, or stochastically dominate each other, be influenced by exogenous factors at various

degrees, and so on. In particular, we shall see from our considerations and examples in the next

section that the simultaneous pricing strategies yield higher expected revenues than those under

the sequential pricing strategy.

Second, we study the case when real estate costs are possibly denominated in different

currencies, as is the case in our motivating problem and, in general, is an important and very
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common factor in developing countries where large fractions of building costs are denominated

in foreign currencies. Hence, currency exchange-rate movements become important in that

they influence optimal pricing determination.

Third, our model provides conditions under which second-stage prices could be higher or

lower than the first-stage prices. This might, initially, be surprising because it is a common

intuitive assumption that if a property is not sold during the first stage, then the property price

should be reduced before commencing the second stage. As we shall see from our following

considerations, however, the relationship between the two stage prices is much more complex:

higher holding costs, currency exchange movements, or some type of dominance between the

first- and second-stage price distributions, could very much influence the determination of the

second-stage price, thus possibly making it larger than that of the first stage, assuming of course

that the property was not sold during the first stage.

Finally, our general model accommodates sellers with different shapes of their utility func-

tions, such as those arising in Behavioral Economics (see, e.g., Dhami, 2016). In general, while

working on this project, we were considerably influenced by, and benefited from, research con-

tributions by many authors, and the following brief literature snapshot highlights some of those

that we have found particularly related to the present chapter.

4.1.3 Related literature

House pricing from the seller’s and buyer’s perspectives has been studied by many authors.

For instance, Quan and Quigley (1991), and Biswas and McHardy (2007) adopt the seller’s

viewpoint in their research. Furthermore, Stigler (1962), Rothschild (1974), Gastwirth (1976),

Quan and Quigley (1991), Bruss (2003), and Egozcue et al. (2013) explore the problem from

the buyer’s perspective. Pricing under different seller’s risk attitudes has been studied in the

real estate literature as well. For instance, seller’s risk neutral behavior has been researched by

Arnold (1992, 1999), and Deng et al. (2012). Biswas and McHardy (2007) analyze optimal

pricing for risk averse sellers. In addition, Genesove and Mayer (2001), Anenberg (2011), and
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Bokhari and Geltner (2011) study house price determination for sellers whose risk behavior

follows the teachings of Prospect Theory (Kahneman and Tversky, 1979).

Bruss (1998; 2003), Egozcue et al. (2013), Egozcue and Fuentes Garcı́a (2015), and Wu

and Zitikis (2017) apply a two-period model to determine optimal commodity (e.g., real estate,

computer, etc.) prices that maximize the expected revenue, or minimize the expected loss.

Some of the aforementioned works have been influenced by the two-envelope problem, and in

particular by the viewpoint put forward by McDonnell and Abbott (2009), and McDonnell et

al. (2011). Furthermore, Titman (1985) considers a two-period model to analyze the optimal

land prices when the condominium unit prices are uncertain. We also refer to Lazear (1986),

Nocke and Peitz (2007), Heidhues and Koszegi (2014), and reference therein, for additional

two-period pricing models for real estate.

4.2 Sequential vs simultaneous price setting

In this section we discuss scenarios that clarify various aspects of the problem at hand. In

particular, we shall see the difference between setting the two prices sequentially and simulta-

neously. We shall also see how the two prices are influenced by considerations such as seeking

certain gross or net profits, taking into account possibly different treatments of domestic and

foreign buyers, and so on.

We work with a discrete-time two-period economy: t = 0 and t = 1. Let X0 and X1 denote

the amounts (i.e., bidding prices) that the buyer is willing to pay for the property during the

initial (i.e., t = 0) and subsequent (i.e., t = 1) selling stages, respectively. Both X0 and X1

are random variables from the seller’s perspective, and thus we also view them in this way.

For the seller, the task is to set an appropriate price x0 for the initial selling stage, and also an

appropriate price x1 (which is usually different from x0) for the following selling stage.

It is natural to think that the seller would tend to first set x0 that would result in a desired

outcome such as the maximal expected profit during the initial selling stage, and then, if the
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sale fails, the seller would set x1 that would maximize the expected profit during the following

selling stage. As we shall illustrate below, the two prices set in this sequential manner may not

maximize the expected overall profit, and thus a sensible strategy for the seller who is not in

a rush would be to set both x0 and x1 before commencing the initial selling stage. The above

caveat ‘who is not in a rush’ is important because rushed decisions usually give rise to very

different forces at play, such as willingness to set the price x0 low enough to ensure a very

high probability of selling the property during the initial selling stage. There are of course

many other scenarios of practical interest, but in this chapter we concentrate on maximizing

the expected (gross or net) profit.

The rest of the section consists of two subsections: the first one contains preliminary facts

such as sequential and simultaneous pricing, and the second subsection discusses four scenar-

ios that clarify (and justify) the complexity of our general model that we start developing in

Section 4.3.

4.2.1 Preliminaries

Sequential price setting

Suppose that the seller decides to set the prices x0 and x1 sequentially: x0 before commencing

the initial selling stage and x1 just before the subsequent selling stage. In this case, the maximal

expected seller’s gross profit during the initial selling stage is the maximal value of the function

R0(x0) = P[X0 ≥ x0]x0, (4.1)

which is achieved at the price

x0,max = arg max
x0

R0(x0). (4.2)

Given the sequential manner of setting the prices, the maximal expected seller’s gross profit
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during the second selling stage is the maximal value of the function

R1(x1) = P[X0 < x0,max, X1 ≥ x1]x1, (4.3)

which is achieved at the price

x1,max = arg max
x1

R1(x1). (4.4)

Simultaneous price setting

The seller may decide to set the two prices x0 and x1 simultaneously, before commencing the

initial selling stage. In this case, the two expected-profit maximizing prices are

(xmax
0 , xmax

1 ) = arg max
x0,x1

R(x0, x1), (4.5)

where

R(x0, x1) = P[X0 ≥ x0]x0 + P[X0 < x0, X1 ≥ x1]x1. (4.6)

Since R0(x0,max) + R1(x1,max) is equal to R(x0,max, x1,max), which cannot exceed R(xmax
0 , xmax

1 ) by

the very definition of (xmax
0 , xmax

1 ), the seller cannot be worse off by simultaneously setting the

prices before commencing the initial selling stage.

Note 4.2.1 The simultaneous setting of prices can be viewed as a strategic decision, whereas

setting the prices sequentially just before commencing the respective selling stages are tactical

choices, which in view of the above arguments cannot outperform the strategic (i.e., simul-

taneous) one. Deciding on which of these alternatives, and when to make them, has been a

prominent topic in the literature, particularly in enterprise risk management (e.g., Fraser &

Simkins, 2010; Louisot & Ketcham, 2014; Segal, 2011).
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Gamma distributed bidding prices

To illustrate the above arguments numerically, and to also highlight certain aspects of the gen-

eral model to be developed later in this chapter, in the following subsection we consider four

scenarios based on dependent or independent random variables of the form

X0 = a0 + G0 and X1 = a0 + G1,

where a0, which we set to 200 thousands of dollars in our numerical explorations henceforth,

is the seller’s reservation price during the initial selling stage (i.e., t = 0), which is the smallest

amount that the seller could possibly ask given the building costs and other expenses, and G0

and G1 are two (dependent or independent) gamma distributed random variables.

Although our general model is not limited to any specific price distribution, in our nu-

merical illustrative considerations, we assume that the prices follow the gamma distribution,

which is a very reasonable assumption, extensively used in the literature (see, e.g.,Hong &

Shum, 2006; Pratt, Wise & Zeckhauser, 1979; Quan & Quigley, 1991). In particular, Quan

and Quigley (1991) characterize the density function of the reservation price of a group of

self-selected buyers using this distribution. Hong and Shum (2006) apply the gamma distribu-

tion to model search costs, including time, energy and money spent on researching products,

or services, for purchasing. There are numerous cases of using the gamma distribution when

modeling insurance losses (e.g., Alai et al., 2013; Hürlimann, 2001; Furman & Landsman,

2005; ).

Since different parameterizations of the gamma distribution have appeared in the litera-

ture, we note that throughout this chapter we work with the one, defined by Ga(α, β), whose

probability density function (pdf) is1

fα,β(t) =
βα

Γ(α)
tα−1e−βt, t > 0. (4.7)

1The mean of this gamma distribution is α/β and the variance is α/β2.
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We denote the corresponding cumulative distribution function (cdf) by Fα,β, which for numer-

ical purposes can conveniently be expressed in terms of the lower incomplete gamma function

γ(·, ·) by the formula

Fα,β(x) =
γ(α, βx)

Γ(α)
. (4.8)

We also recall that the mean of this gamma distribution is α/β. In Figure 4.1 we have depicted
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Figure 4.1: The pdf of the price X = 200 + G depicted in solid G ∼ Ga(100, 2), dashed
G ∼ Ga(25, 0.5), dot-dashed G ∼ Ga(6.25, 0.125), and dotted G ∼ Ga(2.78, 0.056) lines.

its pdf for several parameter choices that we use in our numerical explorations later in this

chapter. The choices are such that we always have the same mean µG = α/β = 50 of G

but varying standard deviations σG: equal to 5 (solid), 10 (dashed), 20 (dot-dashed), and 30

(dotted).
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4.2.2 Scenarios

Scenario A: identical X0 and X1

Consider the case when the buyer decides on the same bidding price irrespective of the seller’s

perspective. This bidding price is random, and we denote it by X. In other words, the earlier

introduced two random variables X0 and X1 are identical, that is, both are equal to a random

variable X, which we set to be

X = a0 + G (4.9)

with the earlier defined a0 and the gamma random variable G ∼ Ga(α, β). Naturally, if the

property is not sold during the initial stage, then under Scenario A, in order to at least hope

to be successful during the subsequent stage, the seller has no alternative but to reduce the

price, and we shall see this clearly from our following mathematical considerations. We note

at the outset, however, that other scenarios to be discussed below will show the possibilities of

increasing second-stage prices and still be able to successfully sell the property.

Hence, under Scenario A, and with x0,max defined by equation (4.2) via the function R0(x0)

given by equation (4.1) with X0 = X, the function R1(x1) is given by the formula

R1(x1) = P[x1 ≤ X1 < x0,max]x1. (4.10)

Note 4.2.2 As P[X0 ≥ x0]x0 is a continuous function of x0 and P[X0 ≥ x0]x0 ≤ E[X0], the

value of x0,max exists.

Note 4.2.3 As P[x1 ≤ X1 < x0,max]x1 is a continuous function of x1 and P[x1 ≤ X1 < x0,max]x1 ≤

P[x1 ≤ X1]x1 < E[X1], the value of x1,max exists.

The (simultaneous) expected gross profit R(x0, x1), which is defined by equation (4.6) with

X0 = X1 = X, becomes

R(x0, x1) = P[X ≥ x0]x0 + P[x1 ≤ X < x0]x1. (4.11)
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We now use specification (4.9) to reduce the above formulas to more computationally

tractable ones. First, we calculate x0,max, which is the point where the function

R0(x0) =

(
1 −

γ(α, β(x0 − a0))
Γ(α)

)
x0 (4.12)

achieves its maximum. Next, we calculate x1,max, which is the point where the function

R1(x1) =
γ(α, β(x0,max − a0)) − γ(α, β(x1 − a0))

Γ(α)
1{x1 ≤ x0,max}x1 (4.13)

achieves its maximum, where the indicator 1{x1 ≤ x0,max} is equal to 1 when x1 ≤ x0,max and 0

otherwise. Finally, we calculate the pair (xmax
0 , xmax

1 ) that maximizes the function

R(x0, x1) =

(
1 −

γ(α, β(x0 − a0))
Γ(α)

)
x0 +

γ(α, β(x0 − a0)) − γ(α, β(x1 − a0))
Γ(α)

1{x1 ≤ x0}x1. (4.14)

Note 4.2.4 As P [X0 ≥ x0] x0 ≤ E [X0] and P [x1 ≤ X1 < x0] x1 ≤ P [X1 ≥ x1] x1 ≤ E [X1], we

have

R (x0, x1) ≤ E [X0] + E [X1] .

Besides, since

lim
x0→∞

lim
x1→∞

R (x0, x1) = lim
x0→∞

P [X0 ≥ x0] x0 + lim
x0→∞

(
lim

x1→∞
P [x1 ≤ X1 < x0] x1

)
= 0,

due to Note 4.2.2 and the fact that P [x1 ≤ X1 < x0] x1 ≡ 0 whenever x1 > x0, while

lim
x1→∞

lim
x0→∞

R (x0, x1) = lim
x1→∞

(
lim

x0→∞
P [X0 ≥ x0] x0 + P [X1 ≥ x1] x1

)
= 0

due to the continuity of R (x0, x1) with respect to x0 and x1 as well as Notes 4.2.2 and 4.2.3.

Thus, for (x0, x1) → (∞,∞) from any path we have that R (x0, x1) vanishes. Therefore, there

exists a pair of prices
(
xmax

0 , xmax
1

)
maximizing R (x0, x1) simultaneously.
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We report the values of the aforementioned maximal points and the respective expected

profits in Table 4.1. We note that our chosen values of α and β are such that they lead to the

α β σG R(x0,max, x1,max) x0,max x1,max R(xmax
0 , xmax

1 ) xmax
0 xmax

1
100 2 5 238.3249 238.3686 232.1596 243.6800 246.8699 236.3763
25 0.5 10 229.9880 230.1152 220.5280 238.4024 244.7218 226.8302

6.25 0.125 20 217.1578 217.3732 206.2535 229.8237 241.8907 213.1633
2.78 0.056 30 207.4594 207.5638 200.5773 223.6389 240.9744 204.4544

Table 4.1: Prices and profits when X0 = X1 = X with X = a0 + G and G ∼ Ga(α, β).

same mean µG = 250 of G but different standard deviations σG (= σX). We see from the

table that we always have x0,max > x1,max and xmax
0 > xmax

1 , which is natural because X0 = X1.

As we already mathematically concluded (see below equation (4.6)), the numerical values in

Table 4.1 confirm that x0,max < xmax
0 and x1,max < xmax

1 , that is, setting the two selling prices

simultaneously before commencing the initial selling stage proves to be more beneficial for the

seller. Note also from the table that the values of all the four prices x0,max, xmax
0 , x1,max and xmax

1

decrease when the standard deviation σG (= σX) increases.

When α = 25 and β = 0.5, the functions R0(x0) and R1(x1) as well as the surface R(x0, x1)

are depicted in Figure 4.2 and 4.3, and in Figure 4.4 and 4.5 respectively.

Scenario B: independent X0 and X1

Now we assume that the bidding prices X0 and X1 are independent, which sets us apart from

Scenario A. However, we still let the two prices follow the same distribution. Specifically,

X0 =d X and X1 =d X, (4.15)

where X = a0 +G is the same as in equation (4.9) with G ∼ Ga(α, β), and ‘=d’ denotes equality

in distribution. Hence, x0,max is defined by equation (4.2) via the function R0(x0) given by

equation (4.1) with X0 = X, and the expected profits (4.3) and (4.6) become

R1(x1) = P[X < x0,max]P[X ≥ x1]x1 (4.16)
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Figure 4.2: The functions R0(x0) of price and gross profit when X0 = a0 + G with G ∼

Ga(25, 0.5).

and

R(x0, x1) = P[X ≥ x0]x0 + P[X < x0]P[X ≥ x1]x1. (4.17)

Obviously, x0,max and x1,max must be identical because X0 and X1 follow the same distribution,

but there is of course no reason why xmax
0 and xmax

1 should be identical: the clear difference

between the two will be seen from the following numerical example.

First, we see that x0,max is the same as in Scenario A but x1,max that maximizes the function

R1(x1) =
γ(α, β(x0,max − a0))

Γ(α)

(
1 −

γ(α, β(x1 − a0))
Γ(α)

)
x1 (4.18)

is different from the corresponding one in Scenario A. We see these facts in Table 4.2 where

we use the same shape α and rate β parameters as in earlier Table 4.1. In Table 4.2 we have
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Figure 4.3: The functions R1(x1) of price and gross profit when X1 = a0 + G with G ∼

Ga(25, 0.5).

α β σG R(x0,max, x1,max) x0,max x1,max R(xmax
0 , xmax

1 ) xmax
0 xmax

1
100 2 5 238.3595 238.3686 238.3686 244.1578 247.0367 238.3651
25 0.5 10 230.0839 230.1152 230.1152 239.2700 244.9522 230.1226

6.25 0.125 20 217.3058 217.3732 217.3732 230.9968 242.0798 217.3781
2.78 0.056 30 207.5201 207.5638 207.5638 224.4556 241.0434 207.5595

Table 4.2: Prices and gross profits when X0 and X1 are independent and follow the distribution
of a0 + G with G ∼ Ga(α, β).

also reported the pairs (xmax
0 , xmax

1 ) on which the maximum of the function

R(x0, x1) =

(
1 −

γ(α, β(x0 − a0))
Γ(α)

)
x0 +

γ(α, β(x0 − a0))
Γ(α)

(
1 −

γ(α, β(x1 − a0))
Γ(α)

)
x1 (4.19)

is achieved. Note from Table 4.1 that the values of all the four selling prices x0,max, xmax
0 , x1,max

and xmax
1 decrease when the standard deviation σG (= σX) increases. Note also that the bounds

x0,max < xmax
0 and xmax

0 > xmax
1 hold. Furthermore, we always see the ordering x0,max < xmax

0 in

Table 4.1, but the ordering of x1,max and xmax
1 seems to depend on the value of σG.

In the special case α = 25 and β = 0.5, we have depicted the functions R0(x0) and R1(x1) as
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Figure 4.4: The contour of the surface R(x0, x1) of prices and gross profits when X0 = X1 =

a0 + G with G ∼ Ga(25, 0.5).

well as the surface R(x0, x1) in Figure 4.6 and4.7, and in Figure 4.8 and 4.9.

Scenario C: X1 stochastically dominates X0

We see from previous two Tables 4.1 and 4.2 that neither sequential nor simultaneous second-

stage selling prices are higher than the corresponding first-stage prices: we always have x0,max ≥

x1,max and xmax
0 ≥ xmax

1 in Tables 4.1 and 4.2. In practice, however, we often observe that after

the failed initial sales, the sellers increase the prices and achieve successful results. There are

several explanations of this phenomenon, and we shall next discuss one of them, with the other

one making the contents of Scenario D below.

Namely, our first explanation is based on the assumption that, due to various reasons, buyers

are often willing to pay higher prices during the second selling stage. To illustrate this situation

numerically, we let

X0 = a0 + G0 and X1 = a0 + b1G1,
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Figure 4.5: The center area of the contour of the surface R(x0, x1) of prices and gross profits
when X0 = X1 = a0 + G with G ∼ Ga(25, 0.5).

where b1 > 0 is a constant, and G0,G1 ∼ Ga(α, β) are two independent random variables.

That is, the buyer is willing to change the bidding amount by (b1 − 1)100%. Note that b1G1 ∼

Ga(α, β/b1), which is useful when calculating. Namely, with the same x0,max as in Scenarios A

and B, we now have

R1(x1) =
γ(α, β(x0,max − a0))

Γ(α)

(
1 −

γ(α, β(x1 − a0)/b1)
Γ(α)

)
x1 (4.20)

and

R(x0, x1) =

(
1 −

γ(α, β(x0 − a0))
Γ(α)

)
x0 +

γ(α, β(x0 − a0))
Γ(α)

(
1 −

γ(α, β(x1 − a0)/b1)
Γ(α)

)
x1, (4.21)

where x1,max maximizes the function R1(x1) and the pair (xmax
0 , xmax

1 ) maximizes the surface

R(x0, x1). In Table 4.3 we have reported the numerical values of the expected gross profits

R(x0,max, x1,max) and R(xmax
0 , xmax

1 ), as well as of the prices at which these maximal expected
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Figure 4.6: The functions R0(x0) of price and gross profit when X0 and X1 are independent and
follow the distribution of a0 + G with G ∼ Ga(25, 0.5).

α β σG R(x0,max, x1,max) x0,max x1,max R(xmax
0 , xmax

1 ) xmax
0 xmax

1
b1 = 0.5 100 2 5 238.2429 238.3686 218.6924 241.1509 243.4476 218.6442

25 0.5 10 229.9149 230.1152 214.1065 235.7860 240.6705 214.1065
6.25 0.125 20 217.1670 217.3732 207.1570 228.2490 238.4532 207.1570
2.78 0.056 30 207.4754 207.5638 202.3953 223.0999 238.8913 202.3953

b1 = 1.1 100 2 5 238.3830 238.3686 242.3547 241.4216 243.7144 220.6309
25 0.5 10 230.1187 230.1152 233.4259 240.3086 246.1226 233.3253

6.25 0.125 20 217.3363 217.3732 219.6358 231.6847 242.9417 219.6334
2.78 0.056 30 207.5313 207.5638 208.8733 224.8072 241.2413 208.8733

b1 = 2.1 100 2 5 238.6217 238.3686 282.7481 241.4216 243.7144 220.6309
25 0.5 10 230.4780 230.1152 267.7370 250.7337 252.1044 248.5686

6.25 0.125 20 217.6737 217.3732 245.0225 241.6766 253.5593 244.0345
2.78 0.056 30 207.6767 207.5638 226.2926 229.9190 247.4248 225.7422

Table 4.3: Prices and gross profits when X0 = a0 + G0 and X1 = a0 + b1G1 with independent
G0,G1 ∼ Ga(α, β) and varying parameter b1 values.

gross profits are achieved, for several values of b1.

We see from Table 4.3 that for every noted value of b1, the prices x0,max and x1,max decrease

when the standard deviation σG (= σX) increases, but the pattern of xmax
0 and xmax

1 is unclear.

Note also from the table that the ordering x0,max < xmax
0 always holds, but various orderings hold
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Figure 4.7: The function R1(x1) of price and gross profit when X0 and X1 are independent and
follow the distribution of a0 + G with G ∼ Ga(25, 0.5).

between the second-stage prices x1,max and xmax
1 . Furthermore, we see that when b1 = 0.5, we

have x0,max > x1,max and xmax
0 > xmax

1 , but when b1 = 1.1 and b1 = 2.1, we have x0,max < x1,max

and xmax
0 > xmax

1 .

In the special case α = 25, β = 0.5 and a = 1.1, we have depicted the functions R0(x0) and

R1(x1) as well as the surface R(x0, x1) in Figures 4.10 and 4.11, and in Figures 4.12 and 4.13.

Scenario D: cost of holding the property

Based on Scenario C, when the seller guesses that the buyer might be willing to pay a large

price during the second-stage selling stage, the price in the second stage can be set larger and

still the maximal expected gross profit achieved.

There is also another reason why the second-stage selling price can be set larger and the

seller’s goals achieved, and it is based on the fact that the seller may wish to maximize, for

example, the net profit instead of the gross profit. To simplify our illustration of this fact, we
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Figure 4.8: The contour of the surface R(x0, x1) of Prices and gross profits when X0 and X1 are
independent and follow the distribution of a0 + G with G ∼ Ga(25, 0.5).

take into consideration only one deductible, which is the cost c1 of holding the property unsold,

in which case the (net) profit during the second selling stage becomes x1 − c1. Furthermore,

let the bidding prices X0 and X1 be the same as in Scenario B, that is, they are independent

and follow the same distribution as X = a0 + G with G ∼ Ga(α, β) (see (4.15)). Hence, x0,max

is the same as in Scenario B or, equivalently, as in Scenario A, that is, the selling price x0,max

is given by equation (4.2) via the same function R0(x0) as in equation (4.1). The function

R1(x1) and the surface R(x0, x1), however, need to be redefined in order to take into account the

aforementioned cost c1. Namely, we have

R1,c(x1) = P[X0 < x0,max]P[X1 ≥ x1](x1 − c1)

=
γ(α, β(x0,max − a0))

Γ(α)

(
1 −

γ(α, β(x1 − a0))
Γ(α)

)
(x1 − c1),
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Figure 4.9: The center area of the contour of the surface R(x0, x1) of Prices and gross profits
when X0 and X1 are independent and follow the distribution of a0 + G with G ∼ Ga(25, 0.5).

with the same x0,max as in Scenario B (or A), and

Rc(x0, x1) = P[X0 ≥ x0]x0 + P[X0 < x0,max]P[X1 ≥ x1](x1 − c1)

=

(
1 −

γ(α, β(x0 − a0))
Γ(α)

)
x0 +

γ(α, β(x0 − a0))
Γ(α)

(
1 −

γ(α, β(x1 − a0))
Γ(α)

)
(x1 − c1).

Thus, we have

x1,c,max = arg max
x1

R1,c(x1)

and

(xmax
0,c , x

max
1,c ) = arg max

x0,x1
Rc(x0, x1),

whose numerical values for different cost c1 values are reported in Table 4.4.

We see from the table that for all specified values of c1, the sequentially set selling prices

follow the order x0,max < x1,c,max, which is the opposite of what we have seen in the previous
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Figure 4.10: The function R1(x1) of price and gross profit when X0 = a0+G0 and X1 = a0+b1G1

with independent G0,G1 ∼ Ga(α, β) and b1 = 1.1.

α β σG R(x0,max, x1,c,max) x0,max x1,c,max R(xmax
0,c , x

max
1,c ) xmax

0,c xmax
1,c

c1 = 20 100 2 5 238.2367 238.3686 238.5186 241.0633 243.3410 238.5186
25 0.5 10 229.8538 230.1152 230.4159 234.9445 239.6038 230.4159

6.25 0.125 20 216.9603 217.3732 217.9019 225.1370 234.1515 217.9019
2.78 0.056 30 207.2347 207.5638 208.1217 217.2595 230.1206 208.1216

c1 = 100 100 2 5 237.7470 238.3686 239.3381 238.2509 239.9507 239.3381
25 0.5 10 228.9377 230.1152 232.1152 229.8364 233.0915 232.1152

6.25 0.125 20 215.5916 217.3732 221.1499 216.9273 222.2088 221.1500
2.78 0.056 30 206.1066 207.5638 212.1154 207.4254 212.7300 212.1154

c1 = 150 100 2 5 237.4428 238.3686 240.2109 237.6034 239.1895 240.2109
25 0.5 10 228.3730 230.1152 234.0368 228.6428 231.6018 234.0368

6.25 0.125 20 214.7622 217.3732 225.3874 215.1202 219.6026 225.3874
2.78 0.056 30 205.4343 207.5638 218.7960 205.7393 209.6705 218.7952

Table 4.4: Prices and profits for various holding cost c1 values when the bidding prices X0 and
X1 are independent and follow the distribution of a0 + G with G ∼ Ga(α, β).

scenarios. In the case of simultaneously set prices, we have xmax
0,c > xmax

1,c for the two smaller

costs c1 = 20 and c1 = 100, with the opposite ordering xmax
0,c < xmax

1,c in the case of the cost

c1 = 150. The sequentially set selling prices in the initial stage are always smaller than the

corresponding simultaneously set prices, that is, the ordering x0,max < xmax
0,c holds throughout
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Figure 4.11: The function R1(x1) of price and gross profit when X0 = a0+G0 and X1 = a0+b1G1

with independent G0,G1 ∼ Ga(α, β) and b1 = 1.1.

the entire table. The reported in Table 4.4 numerical values of the selling prices x1,c,max and

xmax
1,c are very similar.

In the special case α = 25, β = 0.5 and c1 = 20, we have depicted the functions R0(x0) and

R1(x1) as well as the surface R(x0, x1) in Figures 4.14 and 4.15, and in Figures 4.16 and 4.17.

4.3 The general model

We need to further elaborate on the motivating problem, and to also introduce additional no-

tation. Hence, during the initial selling stage, which we have agreed to collapse into only one

instance t = 0, the seller keeps the property on sale. Let X0 be the price, viewed as a random

variable, that the buyer is willing to pay for the property during the initial selling stage. Let x0

be the price set by the seller, who wishes it to be such that certain (economic, financial, etc.)

goals would be achieved. Hence, unlike X0, the price x0 is not random – the seller chooses it
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Figure 4.12: The surface R(x0, x1) of prices and gross profits when X0 = a0 + G0 and X1 =

a0 + b1G1 with independent G0,G1 ∼ Ga(α, β) and b1 = 1.1.

based on the available information and the goals to be achieved. When X0 ≥ x0, the property is

sold and the seller’s profit is v0(x0), where v0 is a function, usually such that v0(p) ≤ p for all

p ≥ 0. For example,

v0(x0) = (x0 − c0)+, (4.22)

where c0 is, e.g., the property development cost evaluated during the initial selling stage. (By

definition, x+ = x when x ≥ 0, and x+ = 0 when x < 0.) If, however, X0 < x0, then the buyer

rejects the offer and makes the second (and final) attempt to buy the property at a later time,

which is generally unknown and thus treated as a random variable, which we denote by T .

Note 4.3.1 There are of course situations when T is pre-specified and thus deterministic, say

T = 1. For example, Wu and Zitikis (2017) consider a two-period economy with t = 0 standing

for the Black Friday promotion period and t = 1 for the Boxing Day promotion period.

Let XT be the amount of money that the buyer is willing to pay at time T > 0 during
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Figure 4.13: The center area of the surface R(x0, x1) of prices and gross profits when X0 =

a0 + G0 and X1 = a0 + b1G1 with independent G0,G1 ∼ Ga(α, β) and b1 = 1.1.

the second selling stage. Conditionally on T , the price XT is a random variable from the

seller’s perspective. Let x1 be the price set by the seller some time prior to commencing the

second selling stage (the price can be set as early as the time of setting the initial price x0).

Analogously to the initial decision making, if XT ≥ x1, then the property is sold and the seller’s

profit is vT (p), where vT is a value (or utility) function, perhaps different from v0, but usually

such that vT (p) ≤ p for all p ≥ 0. For example,

vT (p) = (p − cT )+,

where cT is, e.g., the costs of property development and holding it unsold at time T . We shall

provide specific details on the structure of cT later in this chapter.

For the sake of concreteness, throughout the rest of the chapter we assume that the seller
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Figure 4.14: The function R0(x0) of profit and price when the cost is c1 = 20 and the bidding
prices X0 and X1 are independent and follow the distribution of a0 + G with G ∼ Ga(α, β).

wishes to determine x0 and x1 such that the overall two-stage expected profit

R(x0, x1) = P[X0 ≥ x0]v0(x0) +

∫ ∞

0
P[Xt ≥ x1, X0 < x0]vt(x1)dFT (t)

= P[X0 ≥ x0]v0(x0) +
(
1 − P[X0 ≥ x0]

) ∫ ∞

0
P[Xt ≥ x1 | X0 < x0]vt(x1)dFT (t) (4.23)

would be maximal, where FT is the cdf of T . The seller may have various goals to achieve,

and our following considerations can be adjusted accordingly. When deriving equation (4.23),

which involves conditioning on T , we have assumed that the events Xt ≥ x1 and T = t are

independent and in this way obtained the probability

P[Xt ≥ x1 | X0 < x0].

Even though the simplifying independence assumption is natural, it can be relaxed if a ne-
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Figure 4.15: The function R1(x1) of profit and price when the cost is c1 = 20 and the bidding
prices X0 and X1 are independent and follow the distribution of a0 + G with G ∼ Ga(α, β).

cessity arises, but there are also situations when this assumption is automatically satisfied. For

example, this happens in the static two-stage scenario when T always takes the same constant

value, say T = 1. We note in this regard that the chosen value 1 is just a symbolic repre-

sentation of the second selling stage, such as the Boxing Day promotion period that follows

the initial (i.e., t = 0) Black Friday promotion period (e.g., Wu & Zitikis, 2017). In this case

formula (4.23) reduces to

R(x0, x1) = P[X0 ≥ x0]v0(x0) + P[X1 ≥ x1, X0 < x0]v1(x1), (4.24)

where

v1(x1) = (x1 − c1)+. (4.25)

Henceforth, we shall make a number of other simplifying yet practically sound assumptions,

so that the technicalities would not be too complex.
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Figure 4.16: The surface R(x0, x1) of profits and prices when the cost is c1 = 20 and the bidding
prices X0 and X1 are independent and follow the distribution of a0 + G with G ∼ Ga(α, β).

4.4 The initial-stage selling probability

To assess the probabilities P[X0 ≥ x0] and P[Xt ≥ x1 | X0 < x0] on the right-hand side of

equation (4.23), we need to specify appropriate models for the random variables Xt, t ≥ 0.

Their distributions may involve population heterogeneity, as our motivating example shows,

which we take into consideration. Specifically, we assume that the population of potential

buyers consists of two groups: domestic buyers (D) permanently residing in Uruguay and

foreigners (A) wishing to make investments.

Note 4.4.1 We have reserved F for denoting cdf’s, as is usually the case in the literature, and

so use A to denote foreign buyers. This notation also reflects the fact that most of the foreign

property buyers in Punta del Este are Argentineans.

Since economic and financial considerations of the two types of buyers are usually different,

the structures of the corresponding random variables are also different. In this section we
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Figure 4.17: The center area of the surface R(x0, x1) of profits and prices when the cost is
c1 = 20 and the bidding prices X0 and X1 are independent and follow the distribution of a0 + G
with G ∼ Ga(α, β).

concentrate on the probability P[X0 ≥ x0] and thus specify the structure of X0. For this, we first

note the forces that give rise to the amount of money X0 that the buyer (domestic or foreign) is

willing to pay for the property during the initial selling stage.

In this section and throughout the rest of this chapter, background risk models will play

an important role. There are two major classes of such models: additive and multiplicative.

For applications and discussions of additive models in Economic Theory, we refer to Gollier

and Pratt (1996) and references therein, and to problems in Actuarial Science, we refer to

Furman and Landsman (2005, 2010), Tsanakas (2008), and references therein. Our current

research in subsection 4.4 is essentially based on the multiplicative model, which has been

extensively explored and utilized in the literature (see, e.g., Asimit et al., 2016; Franke et al.,

2006, 2011; Tsetlin & Winkler, 2005; references therein). It is worth noting that a number of

important parametric multiplicative models incorporate elements of both Pareto and gamma

distributions, and we refer to Asimit et al. (2016), Su (2016), and Su and Furman (2017) for
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details and further references.

4.4.1 General considerations

Consider first the population of domestic buyers. Suppose that, initially, their buying decisions

are based on individual considerations detached from all the exogenous factors, such as the

overall economic situation. Let Y0D be the amount of money (i.e., valuation) that the buyer

thinks is affordable and worthy to pay, based on the aforementioned personal considerations.

We call Y0D the endogenous domestic valuation.

Naturally, the valuation Y0D is subsequently revised into a more sophisticated and realistic

one, which we denote by X0D, taking into account various exogenous factors. We collectively

model these factors with a random variable Z0, that we call the exogenous valuation adjustment.

Let h0 be the function that couples Y0D with Z0 and gives rise to the aforementioned price X0D,

that is,

X0D = h0(Y0D,Z0). (4.26)

This is the amount of money (i.e., valuation) that the domestic buyer can afford, and is willing,

to pay for the property during the initial selling stage.

Likewise, we arrive at

X0A = h0(Y0A,Z0), (4.27)

which is the amount that the foreign buyer is willing to pay during the initial selling stage,

where Y0A is the corresponding endogenous valuation.

Note 4.4.2 Throughout this chapter we assume that the random variables Y0D, Y0A, and Z0 are

independent, which is a reasonable assumption as we argue next. Indeed, suppose that Y0D and

Y0A are dependent. This would suggest that we have not properly separated the exogenous in-

formation from the individual valuations of the domestic and foreign buyers, thus contradicting

the above description of the endogenous valuations Y0D and Y0A.
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Hence, with X0D representing the amount that the domestic buyer is willing to pay during

the initial selling stage, and with X0A representing the corresponding amount of the foreign

buyer, the valuation X0 can be expressed by the formula

X0 = ξ0X0D + (1 − ξ0)X0A, (4.28)

where ξ0 is a binary random variable taking values 1 and 0, with the event ξ0 = 1 meaning

‘domestic buyer.’ The proportion of domestic buyers depends on the value of the exogenous

valuation adjustment Z0, which naturally gives rise to the function

q0(z) = P(ξ0 = 1 | Z0 = z),

that plays a pivotal role in our subsequent considerations.

Namely, when calculating the probability P[X0 ≥ x0], we first condition on Z0, whose

cdf we denote by FZ0 , and then separate X0D from X0A by conditioning on ξ0. We obtain the

equations

P[X0 ≥ x0] =

∫
P[X0 ≥ x0 | Z0 = z]dFZ0(z)

=

∫ (
q0(z)P[X0 ≥ x0 | ξ0 = 1,Z0 = z]

+ (1 − q0(z))P[X0 ≥ x0 | ξ0 = 0,Z0 = z]
)
dFZ0(z). (4.29)

Using representation (4.28) and expressions (4.26) and (4.27) on the right-hand side of equation
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(4.29), we obtain

P[X0 ≥ x0] =

∫ (
q0(z)P[X0D ≥ x0 | ξ0 = 1,Z0 = z]

+ (1 − q0(z))P[X0A ≥ x0 | ξ0 = 0,Z0 = z]
)
dFZ0(z)

=

∫ (
q0(z)P[h0(Y0D, z) ≥ x0 | ξ0 = 1,Z0 = z]

+ (1 − q0(z))P[h0(Y0A, z) ≥ x0 | ξ0 = 0,Z0 = z]
)
dFZ0(z). (4.30)

We find it reasonable to simplify the right-hand side of equation (4.30) by first recalling that

the endogenous domestic and foreign valuations Y0D and Y0A are independent of the exogenous

valuation adjustment Z0, and then we additionally assume that the valuations Y0D and Y0A do

not depend on ξ0. All of these are justifiable assumptions from the practical point of view.

Hence, equation (4.30) simplifies into

P[X0 ≥ x0] =

∫ (
q0(z)P[h0(Y0D, z) ≥ x0] + (1 − q0(z))P[h0(Y0A, z) ≥ x0]

)
dFZ0(z). (4.31)

In the next subsection, we specialize formula (4.31) into a practically sound scenario based

on the gamma distribution, under which we subsequently explore the expected profit R(x0, x1)

numerically and graphically (Section 4.6 below).

4.4.2 Specific modelling

The gamma distribution provides a good way to model Y0D, Y0A, and Z0. In particular, we

model the endogenous domestic price Y0D using the shifted gamma distribution supported on

the intervals [a0,∞), with a0 denoting the seller’s reservation price, that is, we have the equation

Y0D = a0 + G0D,
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where G0D ∼ Ga(α0D, β0D). Assuming that the exogenous valuation adjustment Z0 is an inde-

pendent gamma random variable G0 ∼ Ga(α0, β0), the valuation X0D can then be modelled as

follows

X0D = a0 + G0DG0 = h0(Y0D,Z0),

with the coupling function

h0(y, z) = a0 + (y − a0)z. (4.32)

Analogously, starting with

Y0A = a0 + (1 + ϕ0)G0A,

where G0A ∼ Ga(α0A, β0A) is an independent gamma random variable, with the factor 1 + ϕ0

referring to the (1 + ϕ0)100% price change (e.g., increase when ϕ0 > 0) that the foreign buyers

additionally face when compared to the domestic ones, we arrive at the representation

X0A = a0 + (1 + ϕ0)G0AG0 = h0(Y0A,Z0),

with the same coupling function as in equation (4.32). We have used the same G0 as in the

‘domestic case’.

Note 4.4.3 To be in line with our earlier made assumption that foreign buyers generally offer

higher endogenous valuations than the domestic ones, in our numerical explorations we choose

the gamma parameters so that the average of G0D ∼ Ga(α0D, β0D) does not exceed the average

of G0A ∼ Ga(α0A, β0A), which is equivalent to bound

α0D

β0D
≤
α0A

β0A
. (4.33)

Bound (4.33) is satisfied for the parameter choices that we shall specify in Note 4.6.2 below.

Since the random variables G0D, G0A, and G0 are independent, formula (4.31) reduces to
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the following one:

P[X0 ≥ x0] = 1 −
∫ ∞

0

{
q0(z)Fα0D,β0D

( x0 − a0

z

)
+ (1 − q0(z))Fα0A,β0A

( x0 − a0

(1 + ϕ0)z

)}
fα0,β0(z)dz. (4.34)

It is natural to view the function q0(z) as decreasing, and such that q0(0) = 1 and q0(∞) = 0.

Thus, for example, we can model q0(z) as a survival function (i.e., 1 minus a cdf) on the interval

[0,∞). The gamma distributions serves a good model, and we thus set

q0(z) = 1 − Fγ0,δ0(z) (4.35)

in our numerical research later in the chapter 4, with appropriately chosen shape γ0 > 0 and

rate δ0 > 0 parameters.

4.5 The second-stage selling probability

In this section, we express the probability P[Xt ≥ x1 | X0 < x0] in terms of underlying quantities

at every time instance t > 0. We accomplish this task in a similar way to that for P[X0 ≥ x0] in

the previous section.

4.5.1 General considerations

We start with additional notations, mimicking the earlier ones. Firstly, we assume that the

endogenous valuations YtD and YtA as well as the exogenous valuation adjustment Zt are inde-

pendent random variables. The definition of the coupling function ht follows that in equation

(4.32) but now with at instead of a0, that is,

ht(y, z) = at + (y − at)z.
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Hence, with

XtD = ht(YtD,Zt) and XtA = ht(YtA,Zt),

we have

Xt = ξtXtD + (1 − ξt)XtA. (4.36)

Analogously to equation (4.30), we obtain

P[Xt ≥ x1 | X0 < x0] =

∫ (
qt(x0, z)P[ht(YtD, z) ≥ x1 | X0 < x0, ξt = 1,Zt = z]

+ (1 − qt(x0, z))P[ht(YtA, z) ≥ x1 | X0 < x0, ξt = 0,Zt = z]
)
dFZt(z), (4.37)

where

qt(x0, z) = P(ξt = 1 | X0 < x0,Zt = z)

is the proportion of domestic buyers at time t who did not buy during the initial selling stage

(i.e, X0 < x0).

To make our following considerations simpler, we assume that the endogenous domestic

and foreign valuations YtD and YtA are based solely on personal considerations at time t > 0, that

is, they do not depend on any past or current exogenous factors, nor on the past endogenous

factors Y0D and Y0A. In other words, we assume that the random variables YtD and YtA are

independent of X0, ξt and Zt. This simplifies equation (4.37) into the following one:

P[Xt ≥ x1 | X0 < x0]

=

∫ (
qt(x0, z)P[ht(YtD, z) ≥ x1] + (1 − qt(x0, z))P[ht(YtA, z) ≥ x1]

)
dFZt(z). (4.38)
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4.5.2 Specific modelling

Analogously to the initial selling stage, we set

YtD = at + GtD and YtA = at + (1 + ϕt)GtA,

where GtD ∼ Ga(αtD, βtD) and GtA ∼ Ga(αtA, βtA) with the factor 1 + ϕt referring to the (1 +

ϕt)100% additional amount at time t that the foreign buyer needs to pay when compared to the

domestic buyer. The exogenous valuation adjustment is

Zt = Gt ∼ Ga(αt, βt).

We assume that the three gamma random variables GtD, GtA, and Gt are independent, in which

case equation (4.38) reduces to

P[Xt ≥ x1 | X0 < x0] = 1 −
∫ ∞

0

{
qt(x0, z)FαtD,βtD

( x1 − at

z

)
+ (1 − qt(x0, z))FαtA,βtA

( x1 − at

(1 + ϕt)z

)}
fαt ,βt(z)dz. (4.39)

It is reasonable to assume that the seller’s reservation price at may change over time. For

example, it may grow at the inflation rate. Hence, in our numerical explorations we assume

that there is a constant ρ such that

at = (1 + ρt)a0,

for all t ≥ 0. This assumption reduces equation (4.39) to

P[Xt ≥ x1 | X0 < x0] = 1 −
∫ ∞

0

{
qt(x0, z)FαtD,βtD

( x1 − (1 + ρt)a0

z

)
+ (1 − qt(x0, z))FαtA,βtA

( x1 − (1 + ρt)a0

(1 + ϕt)z

)}
fα0,β0(z)dz, (4.40)

where, for the sake of simplicity, we have assumed that the distribution of the exogenous
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valuation adjustment Zt does not change with time t, that is, Zt ∼ Ga(α0, β0) for all t ≥ 0.

Finally, we introduce an appropriate model for qt(x0, z), which is more complex than that

for q0(z). We start with a few observations:

1. When x0 = a0, it is reasonable to assume that there is not anyone wishing to wait until

the second selling stage, and thus qt(a0, z) = 0 for every exogenous valuation adjustment

z.

2. When x0 = +∞, no one wishes to buy during the initial selling stage, and thus qt(+∞, z)

should look like q0(z). Hence, we let qt(+∞, z) be the survival function 1 − Ht(z) for a

cdf Ht(z) on the interval [0,∞). Just like in the case of t = 0, a good model for the cdf Ht

is the gamma cdf Fγt ,δt with shape γt > 0 and rate δt > 0 parameters, which may depend

on t.

3. It is reasonable to assume that qt(x0, z) is an increasing function of x0, because larger

prices during the initial selling stage would suggest that more domestic buyers are defer-

ring their purchases until the second selling stage.

In summary, we have arrived at the model

qt(x0, z) = Qt(x0 − a0)(1 − Ht(z)), (4.41)

where Qt is a non-negatively supported cdf. In Section 4.6 below, we work with the gamma

cdf, that is, we set

qt(x0, z) = Fηt ,θt(x0 − a0)(1 − Fγt ,δt(z))

=
γ(ηt, x0 − a0)

Γ(ηt)

(
1 −

γ(γt, δtz)
Γ(γt)

)
. (4.42)
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4.6 Value functions and a numerical exploration

To make formula (4.23) actionable, in addition to the already discussed probabilities P[X0 ≥ x0]

and P[Xt ≥ x1 | X0 < x0], we need to specify appropriate models for the value functions v0(x0)

and vt(x1).

Value function v0(x0)

We already have a model for v0(x0) given by equation (4.22), but in view of our motivating

example, an adjustment to this function needs to be made. Namely, property prices in Punta

del Este, Uruguay, are predominantly in the US dollars, while property development costs are

partially in the Uruguayan pesos and partially in the US dollars. In general, the costs are mainly

due to land, design and development, materials, labor costs and subcontracts. Those that are

in the Uruguayan pesos are labor costs (i.e., salaries of Uruguayan workers) and they can, for

example, be around 30% of the structure’s costs, that is, of the total cost minus the land cost.

Therefore, we can say that, for some ν ∈ (0, 1), the percentage ν100% of the total cost is in the

Uruguayan pesos and the rest (1 − ν)100% is in the US dollars.

To express these costs into one currency, we convert the Uruguayan pesos into the US

dollars – because the prices x0 and x1 are in the latter currency – using the exchange rate

(US dollars per one Uruguayan peso) at an appropriate time instance. Namely, let ε0 be the

exchange rate during the initial selling stage (i.e., t = 0). Then equation (4.22) turns into the

following one

v0(x0) =
(
x0 − νc0,UYUε0 − (1 − ν)c0,USD

)
+. (4.43)

Strictly speaking, the exchange rates are unknown in advance, and thus predicted values

need to be used. It is very likely, however, that the prices x0 and x1 are set just before com-

mencing the initial selling stage, and thus the value of ε0 can be reasonably assumed known,

and thus v0 defined in equation (4.43) becomes deterministic and fully specified.
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Value function vt(x1)

The exchange rate εt at time t > 0 cannot be known beforehand, that is, at time t = 0, and we

thus treat it as a random variable. For this reason, we define vt analogously as v0, but now with

the averaging over the distribution of εt, that is, we let

vt(x1) = E
[(

x1 − νc0,UYUεt − (1 − ν)c0,USD
)
+

]
= E

[(
x1 − νc0,UYUε0rt − (1 − ν)c0,USD

)
+

]
, (4.44)

where rt = εt/ε0. In our numerical explorations, we let rt follows the geometric Brownian

motion, that is,

rt = exp{µt + σWt},

where Wt is the standard Wiener process (i.e., Brownian motion). This simple model has been

a popular example in financial engineering. Equation (4.44) becomes

vt(x1) = E
[(

x1 − νc0,UYUε0 exp{µt + σ
√

t N0,1} − (1 − ν)c0,USD
)
+

]
, (4.45)

where N0,1 denotes the standard normal random variable.

We conclude this section with a note that arguments of Behavioural Economics may suggest

using the more general value functions

v0(x0) = u
(
x0 − νc0,UYUε0 − (1 − ν)c0,USD

)
and

vt(x1) = E
[
u
(
x1 − νc0,UYUε0rt − (1 − ν)c0,USD

)]
with some function u. Note that we have so far used u(t) = t+, which is a very simple member

in the class of so-called S -shaped functions: concave for t ≥ 0 and convex for t < 0. Reverse

S -shaped functions, which are convex for t ≥ 0 and concave for t < 0, have also been exten-
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sively employed by researchers. We also find many studies where even more complexly shaped

functions have been justified. For related discussions, we refer to, for example, Pennings and

Smidts (2003), Gillen and Markowitz (2009), Dhami (2016), and references therein.

A numerical illustration

Using formulas (4.34), (4.40), (4.42), (4.43) and (4.45) on the right-hand side of equation

(4.23), and with the parameter choices specified below, we obtain an expression for the ex-

pected profit R(x0, x1) whose maximum with respect to x0 and x1 we want to find. Alongside

the surface R(x0, x1) and the point (pmax
0 , pmax

1 ) where it achieves its maximum, in Figure 4.18

and 4.19, and in Figure 4.20 and 4.21 we have also depicted the profit functions R0(x0) and

R1(x1).
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Figure 4.18: The function R0(x0) of profit and price under the parameter specifications in Notes
4.6.1–4.6.4.

Next are the parameter choices that we have used in our numerical and graphical explo-

rations, summarized in the four panels of Figure 4.18 and 4.21, and subsequently detailed in
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Figure 4.19: The function R1(x1) of profit and price under the parameter specifications in Notes
4.6.1–4.6.4.

Figures from Figure 4.22 to Figure 4.24. We note that the parameter choices have arisen from

our statistical analyses of (proprietary) data sets, as well as from our Economic Theory based

considerations.

Note 4.6.1 We assume T ∼ Ga(α∗, β∗) and set the following parameter values:

• α∗ = 4 and β∗ = 4

Note 4.6.2 These are the specific parameter choices pertaining to the model of Section 4.4.2:

• a0 = 200

• α0D = 20 and β0D = 0.6

• α0A = 30 and β0A = 0.4

• α0 = β0 = 4
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Figure 4.20: The surface R(x0, x1) of profits and prices under the parameter specifications in
Notes 4.6.1–4.6.4.

• ϕ0 = 0.2

• γ0 = 10 and δ0 = 0.1

Note 4.6.3 These are the specific parameter choices pertaining to the model of Section 4.5.2:

• at = 200 (= a0)

• ϕt = 0.2

• ρ = 0.1

• αtD = 20 (= α0D) and βtD = 0.6 (= β0D)

• αtA = 30 (= α0A) and βtA = 0.4 (= β0A)

• αt = βt = 4 (= α0 = β0)
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Figure 4.21: The center area of the surface R(x0, x1) of profits and prices under the parameter
specifications in Notes 4.6.1–4.6.4.

• ηt = 8 and θt = 1

• γt = 10 and δt = 0.1

Note 4.6.4 These are the specific parameter choices pertaining to the value function vt(x1)

discussed in Section 4.6:

• ν = 0.3

• c0,UYUε0 = 150 and c0,USD = 150

• µ = 0 and σ = 1

The proposed model has been developed to facilitate well-informed decisions, and the real-

life example has guided us in every step of the model development. The model has, inevitably,

turned out to be complex. Hence, at this initial stage of our exploration, we have prioritized

certain aspects of the research according to their relevance in terms of policy implications, in
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order to keep considerations within reasonable space limits. The timing of price setting has

perhaps been the most significant aspect that is affecting all the other ones. The dependence

between the two-stage pricing decisions and the influence of the systematic (or background)

risk has been among the other important aspects. The exchange rate fluctuations, though very

important, have nevertheless been given a lesser attention in the present chapter, due to a jus-

tifiable reason. Namely, a detailed exploration of this aspect with due mathematical care of its

various issues such as change points, heteroscedasticity, and other non-linear structures man-

ifesting naturally in financial stochastic models would require considerable space. Our use of

the simple geometric Browning motion, instead of a more complex and realistic process, has

also been influenced by space considerations. Nevertheless, to give an initial idea about the

influence of the mean µ and the volatility σ, we have produced a set of graphs in Figures from

Figure 4.23 to Figure 4.24.
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(a) µ = 0 and σ = 0.5.
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(b) µ = 0 and σ = 1.
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(c) µ = 0 and σ = 2.
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(d) µ = 0 and σ = 3.

Figure 4.22: Π(p0, p1) for µ = 0 and various values of σ.
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(a) µ = 0.5 and σ = 0.5.
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(b) µ = 0.5 and σ = 1.
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(c) µ = 0.5 and σ = 2.
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(d) µ = 0.5 and σ = 3.

Figure 4.23: Π(p0, p1) for µ = 0.5 and various values of σ.
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(a) µ = 1 and σ = 0.5.
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(b) µ = 1 and σ = 1.
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(c) µ = 1 and σ = 2.
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(d) µ = 1 and σ = 3.

Figure 4.24: Π(p0, p1) for µ = 1 and various values of σ.



Chapter 5

Conclusions and future works

5.1 Conclusions

The thesis discusses optimal strategies and decisions in a two-period economy scenario, and

we propose general frameworks to involve a trade-off between the the present (current period)

benefits and the benefits in the future (next period). In this thesis, following the logic of the

two-envelope problem and inspired by the pioneer works of McDonnell and Abbott (2009),

McDonnell et al. (2011) and Egozcue et. al. (2013), we construct the two-period time horizon

economic models of optimal strategies and decisions to deal with the realistic problems.

In the case of buying laptop whether in Black Friday, or Boxing day, we have proposed the

general two-period optimal strategies to make decisions which minimize the expected buying

price from the buyers perspective. In this model, we have tackled this topic in the setup that

concerns shoppers facing two price-discount periods and needing a strategy for making ben-

eficial (for them) decisions. Incorporating the market structure theory of economics, we have

applied the third-degree price discrimination theory to describe the distribution of price vari-

ables in two stages respectively. Guided by these economic theories and also, some rigorous

probabilistic considerations, we have developed a practically sound model for making such de-

cisions. In particular, we have shown how to derive, analyze, and use strategy functions, which

111
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not only delineate the acceptance and rejection regions for the first-come offers but also tell us

how confident we can be when making such decisions.

In the cases of selling real estate, we have proposed the general two-period pricing mod-

els and explored various pricing strategies from the seller’s perspective. The model takes into

account such practical considerations as the facts that the buyer’s valuations, which are ran-

dom from the seller’s perspective, in the two periods may or may not be independent, may

or may not follow the same distribution, and so on. We have seen in particular that the

seller’s simultaneous-pricing strategies yield higher expected revenues than the sequential-

pricing strategies. Our general model allows for the possibility of commodity costs being

denominated in different currencies, and thus being impacted by currency exchange-rate move-

ments. The model also takes into accounts various endogenous and exogenous factors, such

as seller’s and buyer’s considerations, general economic conditions, different seller’s utility

or value functions. We have illustrated our theoretical findings both numerically and graphi-

cally, using appropriately constructed multiplicative background models that quickly take into

account various specific elements of the motivating problem.

5.2 Future works

This thesis provides some insights related to the application of the two-envelope paradox

framework on the general decision-making process from the perspectives of both purchasing

and selling. However, the distributional assumptions of the prices are straightforward. Hence

one possible future work is to generalize these assumptions. For instance, when considering

a discounted price (having bounded support), we could assume that the price offered by the

seller has a generalized Beta distribution of the second kind (GB2). More details about the

GB2 distribution could be found in textbooks such as Section 6.1 of Kleiber and Kotz (2003).

As a distribution widely used in modeling risks and prices, the GB2 distribution is more flex-

ible than Beta distribution and thus may provide more accurate results if the parameters are
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estimated from real data. Besides, the truncated gamma distribution used by Quan and Quigley

(1991) might be another choice for modeling the discounted price. Since this distribution is

less related to the Beta distribution than the GB2 distribution, if similar results hold in this

case then our method will seem to be useful for a broader range of distributions that could be

employed for modeling prices.

Similarly, when considering the offered prices of underlying assets such as real estates, the

distribution of the offered prices could be generalized in several different ways. For instance,

the offered prices could be assumed to follow the generalized gamma distribution (Kleiber and

Kotz, 2003, Section 5.1), which are usually used for modeling the incomes. Other choices may

include heavy tail distributions such as log-normal distribution or Pareto distribution if there is

a booming market for assets like real estate.

After studying the decision-making problems with specific distributions based on our gen-

eralized two-envelope paradox framework, a natural question is to identify certain classes of

distributions which may still lead to the similar results. For prices with a bounded-support,

we might be interested in the difference between the results by modeling the prices using a

“flatter” distribution (by flatter we mean the distribution has huge variance and similar to the

uniform distribution) or a “steeper” distribution. For prices without an upper bound, we might

be interested in the difference between the results by modeling the prices using a heavy-tailed

distribution and a light-tailed distribution, which correspond to a booming and a falling market

of certain assets, respectively.

Besides of generalizing the distributional assumptions of prices, another important potential

work is to apply our generalized two-envelope framework on multi-period decision processes

such as the American option. Assume an investor holds an American option, he/she has to

decide whether to exercise the option at the end of each period. If the option is not exercised,

the investor will keep making decisions until he/she decides to use it or the maturity date

of the option. The assumptions that required by the framework may include the martingale

assumption (the return of the underlying asset is a martingale), AR(1) assumptions (the return
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of the underlying asset is an AR(1) time series), or other more complex hypotheses.

Furthermore, in our analysis there is only one decision-maker who is considered and a

right decision is made depending on the curves we obtained. In fact, this piece of information

is much more crucial to the counterparty. If the seller knows the rules of decision-making of

the buyer, there might be a strategic adjustment on how to determine the discounted prices on

traditional holidays. Similarly, if the buyers of real estates know the rule of decision-making

of the seller, they will adjust their offered prices accordingly. Therefore, we may expect a

significant gaming problem between buyers and sellers under our generalized two-envelope

framework.
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