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Abstract 

Melanoma cells recruit host tissue to become a part of the activated tumour stroma.  This 

stromal microenvironment is similar to that seen in fibrotic tissue.  CCN1 and CCN2 are 

tightly spatiotemporally regulated matricellular proteins involved in development and wound 

healing, and are abberantly expressed in fibrosis.  Additionally they have been seen to be 

abnormally highly expressed in several cancers, including melanoma.  Recent evidence has 

shown that deletion of CCN2 in the fibroblasts renders mice resistant to several models of 

fibrosis.  Given this, I tested the hypothesis that deletion of CCN1 and CCN2 from 

fibroblasts could similarly impede the formation of the activated stromal microenvironment 

in melanoma.   I used B16F(10) murine melanoma cells and syngeneic C57 BL6 mice with a 

tamoxifen-dependent conditional deletion of CCN1 or CCN2 in their fibroblasts.  First I 

determined that loss of CCN2 in the fibroblasts prevents the metastasis of melanoma to the 

lungs of the mice, while loss of CCN2 in the tumour alone does not.  Second I determined 

that loss of CCN2 from the fibroblasts prevented the expression of myofibroblast marker 

αSMA and reduced the expression of pluripotency marker SOX2.  This loss of CCN2 was 

accompanied by a reduced tumour vascularisation, and a reduction in tumour cell 

vasculogenic mimicry.  Finally I determined that loss of CCN1 in the fibroblasts results in 

highly disorganized collagen in the skin, which results in reduced metastasis of the 

melanoma cells.  These observations were supported by in vitro experiments showing that 

deletion of CCN1 or CCN2 from melanoma cells reduce their ability to invade through a 

collagen basement membrane, and that deletion of CCN2 impedes the ability of melanoma 

cells to form tubule networks in nutrient-deficient environments.  The results presented here 

suggest that CCN1 and CCN2 in the stromal microenvironment mediate the metastasis of 

melanoma through different mechanisms, with CCN2 being required for the activated 

stromal microenvironment and tumour vascularisation, and CCN1 being required for 

formation of a stiff and organized collagen network that facilitates tumour cell invasion, and 

thus they might both present novel targets for therapies to improve patient outcome. 
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Chapter 1  

1.1 Introduction 

Melanoma, a cancer that develops from melanocytes, is the second most common 

invasive cancer in young adults, and the incidence of diagnosis among this group is only 

increasing (Reed, Brewer et al. 2012). Of all skin cancers, melanoma is the most likely to 

metastasize making it the most likely to be fatal (Society 2013).  In 2017 in the US and 

Canada there will be an estimated 97,000 new cases of melanoma diagnosed, and 11,000 

fatalities (Society 2013, Society 2017).  Of the three types of skin cancer (basal cell 

carcinoma, squamous cell carcinoma, and melanoma) it is the least common; it accounts 

for only 4% of skin cancers, but its highly metastatic nature makes it so deadly that it 

accounts for over 80% of skin cancer deaths (Miller and Mihm 2006). 

1.1.1 Staging and Risk 

Melanoma progresses through several stages as it develops, and the survival rate of 

patients is highly variable based on the stage at which it is diagnosed.  The current 

staging system used to evaluate melanomas is the TNM staging system most recently 

updated by the American Joint Committee on Cancer in 2009 (Balch, Gershenwald et al. 

2009).  The TNM system is named for the three factors measured: primary Tumour 

characteristics (such as thickness, ulceration, and mitotic rate), presence or absence of 

metastases in regional lymph Nodes, and presence or absence of distant Metastases 

(Balch, Gershenwald et al. 2009).  This system will remain in use until December 31
st
 

2017 when the newly updated TNM system, which removes mitotic rate and puts more 

emphasis on circulating lactate dehydrogenase (LDH) levels, is implemented (AJCC 

2017).  Proper staging is important in developing a prognosis for patients diagnosed.  For 

example, a patient diagnosed while the tumour is thin and has not metastasized has a 10-

year survival rate of 95%, while a patient with multiple regional lymph node metastases 

has a 10-year survival rate of only 33% (Balch, Gershenwald et al. 2009). 
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1.1.2 Progression and Metastasis 

Under healthy conditions, melanocytes are found throughout the basal layer of the 

epidermis at a 1:10 ratio with keratinocytes where they extend their dendrites between 

keratinocytes to facilitate delivery of melanin (Cichorek, Wachulska et al. 2013).  In 

addition to their presence in the epidermis, melanocytes are also found in hair follicles, 

the uveal tract of the eye, and in lesser numbers in several other tissues (Shain and 

Bastian 2016).  In the epidermis, each melanocyte and its associated keratinocytes are 

known as an Epidermal-Melanin Unit (Haass and Herlyn 2005).  In this state their 

association with keratinocytes and their E-cadherin mediated cell-to-cell contacts regulate 

their proliferation and prevent transformation; in fact, when melanocytes are grown in 

monoculture they begin expressing surface markers consistent with those acquired during 

tumourigenesis of melanoma, and these markers disappear when the cells are then co-

cultured with undifferentiated keratinocytes (Haass and Herlyn 2005).  Typically 

melanocytes will escape the control of their associated keratinocytes in two 

circumstances: To divide, which occurs approximately twice a year, or as a result of a 

mutation (Shain and Bastian 2016).  These mutations can be familial (such as mutations 

in CDKN2A) or somatic (such as mutations in NRAS or BRAF), but these mutations are 

frequently insufficient to drive melanocytes transformation on their own, and require 

additional mutations which are frequently acquired through UV exposure (Sample and 

He 2017).   

Once sufficient mutations are accumulated the affected melanocytes will undergo the first 

stage of melanoma development in which they decouple from their associated 

keratinocytes, allowing them to proliferate and form a benign nevus – also known as a 

mole (Miller and Mihm 2006).  The majority of nevi enter a senescence-like state in 

which very few of the melanocytes within them are able to proliferate further until they 

acquire further mutations, such as inactivating mutations of the p53 tumour-suppressor 

gene (Miller and Mihm 2006, Shain and Bastian 2016).  In this state the nevus is typically 

symmetrical, smooth, evenly coloured, and does not penetrate the basement membrane 

(Miller and Mihm 2006). 
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Once a melanocyte within a benign nevus acquires sufficient mutations to escape its 

senescence-like state, it progresses to the second stage of development and becomes a 

dysplastic nevus.  Typically at this stage the lesion becomes asymmetrical, with abnormal 

colouration patterns and the melanocytes within it become irregularly and abnormally 

shaped (Miller and Mihm 2006).  While a benign nevus has very little proliferation once 

its senescence-like state has set it, it is believed that dysplastic nevi engage in constant, 

slow proliferation that is offset by attritional factors which are sometimes strong enough 

to reverse the development of the lesion entirely (Shain and Bastian 2016).   

The third stage, known as the radial growth phase is characterized by a cancerous 

histological phenotype, rapid growth across the epidermis with only minor incursions 

across the basement membrane, and constitutive activation of ERK signaling to drive 

rapid clonal cell proliferation (Haass and Herlyn 2005, Miller and Mihm 2006, Shain and 

Bastian 2016).  Explanted cells from lesions in the radial growth phase, or any earlier 

phase, are typically unable to produce colonies in soft agar, as they are typically reliant 

on exogenous growth factors (Miller and Mihm 2006, Steck 2014).  Since the cells are 

largely unable to penetrate deeper than the basement membrane, surgical excision up to 

this stage remains highly effective (Steck 2014).  

Once the lesion breaches the basement membrane and begins to expand through 

intradermal growth it has reached the vertical growth phase (Nesbit and Herlyn 1994, 

Miller and Mihm 2006).  This phase is characterized by a loss of E-cadherin expression, 

increased N-cadherin expression, and increased αVβ3 integrin expression that results in 

induction of MMP2 to break down the collagen of the basement membrane and BCL-2 to 

prevent apoptosis in the absence of cell-cell contacts, allowing explanted cells to colonize 

soft agar (Kuphal, Bauer et al. 2005, Miller and Mihm 2006, Shain and Bastian 2016).  

Additionally, the shift from E-cadherin to N-cadherin expression allows melanoma cells 

to interact with fibroblasts and vascular endothelial cells to better facilitate migration and 

intravasation (Haass and Herlyn 2005).  It has been theorized that this newfound ability 

to communicate and attach to fibroblasts might be instrumental in facilitating the 

transition from the radial growth phase to the vertical growth phase (Haass and Herlyn 

2005).  At this point the tumour is fully competent to invade and metastasize to distant 
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organs, though continuing accumulation of mutations may speed this process (Steck 

2014).  Once metastasis to distant organs has occurred, the tumour has entered its final 

stage and becomes metastatic melanoma. 

 

1.1.3 Current Therapies 

Despite major advances in therapies for other cancers, melanoma remains difficult to 

manage.  While other cancers are vulnerable to chemo- and radio-therapies, melanoma is 

largely unaffected by these traditional standbys (Soengas and Lowe 2003).  Treatment 

with dacarbazine, temozolomide, or fotemustine have very low response rates (with 

complete response in less than 5% of patients and most responses lasting only ~1.5 

months) and toxic combinatorial treatments not showing any significant increase in 

survival (Thompson, Scolyer et al. 2005, Palathinkal, Sharma et al. 2014).   Surgical 

excision is highly effective, but only when melanomas are caught early; while resection 

of non-metastatic lesions provides an approximately 5-year survival rate of 90%, even the 

presence of microsatellite metastases (discrete lesions greater than 0.05mm in diameter 

separated from the primary lesion) decreases this survival rate from 90% to 36% (Homsi, 

Kashani-Sabet et al. 2005, Cummins, Cummins et al. 2006).  Although conventional 

chemotherapies and surgical excision are of little use in late stage melanoma, there are 

several promising therapies, primarily in two major categories:  molecularly targeted 

inhibitors (primarily targeting the BRAF mutation) and anti-angiogenic therapies. 

1.1.3.1 BRAF inhibitors 

BRAF is a protein kinase of the RAF family that functions downstream of RAS to help 

stimulate cell growth and survival by phosphorylation of MEK to activate ERK (Chan, 

Singh et al. 2017).  In 2002, large-scale sequencing of genes in the RAS-RAF-MEK-

ERK-MAPK pathway revealed a mutation in the BRAF gene that resulted in constitutive 

activation of this pathway (Davies, Bignell et al. 2002).  The vast majority (92%) of these 

mutations were in the same codon: BRAFV600E, which prevents folding of BRAF in its 

inactive state and instead results in a new conformation that has 10-12 fold increased 

kinase activity (Davies, Bignell et al. 2002, DeLuca, Srinivas et al. 2008).  Present in 
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approximately 60% of melanomas, BRAF mutations drive melanoma progression from 

the earliest stages, and even contribute to the formation of a benign nevus (Miller and 

Mihm 2006).  While it is insufficient on its own to generate a cancerous lesion, when a 

melanocytes acquires secondary mutations BRAF becomes a major driver of disease 

progression (Miller and Mihm 2006, DeLuca, Srinivas et al. 2008).  Since the discovery 

of the BRAFV600E mutation, several inhibitors of its activity have been developed.  The 

two most promising inhibitors are vemurafenib and dabrafenib, both of which have gone 

through phase III clinical trials.  Although they both show significant increases in both 

overall and progression-free survival, they also have approximately 50% response rates, 

and both only increased overall survival by ~4 months (DeLuca, Srinivas et al. 2008, 

Lim, Menzies et al. 2017).  Whereas intrinsic resistance to BRAF inhibition is only 

present in approximately 10% of BRAFV600E mutant melanomas, acquired resistance is 

rapidly acquired by almost all patients (Lim, Menzies et al. 2017).  The exact mechanism 

behind this resistance is still being studied, but potential mechanisms include expression 

of splice variants with reduced inhibitor affinity, BRAF allele amplification, 

overexpression of alternative RAF isoforms, and activation of alternative ERK signaling 

pathways (Lim, Menzies et al. 2017).  One of the side-effects of the inhibition of 

BRAFV600E is a paradoxical activation of wild-type BRAF in non-mutant cells.  This 

has been shown to occur not only in wild-type BRAF melanomas, but also in the cancer 

associated fibroblasts of the stroma which results in increased contractility and matrix 

deposition (Hirata, Girotti et al. 2015). When BRAFV600E cells are grown in the 

presence of cancer associated fibroblasts, or when plated on an ECM layered rigid 

substrate they displayed BRAF inhibitor resistance that was disrupted by inhibition of 

integrin β1 or FAK indicating that the stiff matrix created by activation of the fibroblasts 

in the stroma was conferring BRAF resistance through an alternate ERK signaling 

pathway that relied upon integrin-mediated attachment to ECM (Figure 1) (Hirata, Girotti 

et al. 2015).  Collectively, these data suggest that disruption of this activated, stiff matrix 

might represent a strategy to overcome resistance to BRAF inhibitors.   
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Figure 1-1  BRAF inhibition is overcome by alternate ERK signaling 

by hyperactivated stroma 

Cells driven by a BRAFV600E mutation are sensitive to BRAF inhibition 

until they migrate to the hyperactivated stromal microenvironment.  In this 

microenvironment an alternate ERK signaling pathway stimulated by 

integrin-mediated attachment to the ECM compensates for the inhibition of 

BRAF. 

Reprinted from (Hirata, Girotti et al. 2015) 
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1.1.3.2 Immune therapy 

As melanoma is an immunogenic tumour, it must develop methods of evading immune 

responses in the host as the cancer progresses (Anderson, Stromnes et al. 2017, Pulluri, 

Kumar et al. 2017).  As such, therapies to increase the effectiveness of the body's 

immune response have been developed to combat melanoma.  Therapies such as high 

dose interleukin-2 inducing proliferation in T cell populations have been developed, but 

show limited efficacy and high rates of severe toxicity (Pulluri, Kumar et al. 2017).  More 

recently, however, targeted therapies such as immune checkpoint inhibition and adoptive 

T cell therapy have been developed and show more promise.  Adoptive T cell therapy is a 

therapy in which T cells are isolated from a patient and expanded in vitro before being re-

introduced back into the patient (Perica, Varela et al. 2015).  While the cells are being 

expanded in vitro they can be genetically engineered to recognize tumour-specific 

antigens, but this process is extremely expensive as a new line of T cells must be 

developed for each individual patient (Perica, Varela et al. 2015, Anderson, Stromnes et 

al. 2017).  Additionally, these T cells are still susceptible to the immunosuppressive 

mechanisms developed by the tumour microenvironment (Figure 2).  Activation of cancer 

associated fibroblasts into an αSMA expressing phenotype results in increased deposition 

of collagen-rich extracellular matrix which can act as a physical barrier preventing T cells 

from reaching the tumour, secretion of C-X-C motif chemokine 12 which coats tumour 

cells and prevents T cell infiltration, increased secretion of pro-inflammatory cytokines 

that create an immunosuppressive microenvironment by recruiting regulatory T cells and 

myeloid derived suppressor cells, as well as increasing the expression of programmed 

cell death ligand 1 (PD-L1) in tumour cells and the cells of the stromal microenvironment 

(Anderson, Stromnes et al. 2017, Frydenlund and Mahalingam 2017, Pulluri, Kumar et al. 

2017).  PD-L1 is a membrane-bound protein which serves as a checkpoint of self-

identification for the immune system by interacting with programmed cell death protein 1 

(PD-1) on T cells to inhibit their activity (Frydenlund and Mahalingam 2017).  Melanoma 

cells expressing high levels of PD-L1 have been shown to provoke fewer anti-tumour 

immune responses, and the expression of PD-L1 by stromal cells has been hypothesized 

to contribute to immune resistance as well (Frydenlund and Mahalingam 2017).   
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Figure 1-2  Immunosuppressive mechanisms of the activated tumour stroma 

Tumour cells activate cancer associated fibroblasts (CAF), which produce a thick 

extracellular matrix (ECM) and secrete CXCL12 that impede access of the T cells to 

the tumour.  Tumour cells secrete suppressive cytokines and chemokines that reduce 

the proliferation and activity of T cells, as well as attract suppressive cells like 

regulatory T cells and Tumour Associated Macrophages.  Expression of inhibitory 

ligands by both tumour and stromal cells reduce T cell activity.   

Reprinted from (Anderson, Stromnes et al. 2017) 

 



11 

 

One method of impairing the immunosuppressive defenses of melanoma has been the 

inhibition of immune checkpoints like PD-1 or cytotoxic T-lymphocyte associated 

protein 4 (CTLA-4), a protein that is expressed in response to increased T cell 

proliferation and reduces immune response (Pulluri, Kumar et al. 2017).  While these 

therapies have shown the capacity to increase overall survival rates of patients with 

advanced melanoma, they do not show universal efficacy with CTLA-4 antagonist 

therapies showing a response rate of 15% and PD-1 antagonist therapies showing an 

approximately 40% response rate (Emens, Ascierto et al. 2017, Pulluri, Kumar et al. 

2017).  These low response rates are likely due to the fact that T cells targeted by these 

inhibitors are still subject to the immunosuppresive mechanisms detailed above 

(Anderson, Stromnes et al. 2017).  Additionally, immune checkpoint inhibitors are 

expensive, with treatments potentially costing hundreds of thousands of dollars per 

patient per year (Frydenlund and Mahalingam 2017).  

1.1.3.3 Anti-angiogenic therapies 

As avascular tumours are theoretically limited in size to ~2mm
3
, the development of 

therapies that disrupt the vascular networks of tumours held great promise to not only 

limit the growth of smaller tumours, but also cause regression of larger lesions (Zaki, 

Basu et al. 2012, Maj, Papiernik et al. 2016).  In light of this, a large variety of anti-

angiogenic therapies have been developed, most of which fall into three major categories: 

monoclonal antibodies attacking the VEGF pathway (either anti-VEGF or anti-VEGFR), 

decoy receptor VEGF-trap peptides, or small molecule tyrosine kinase inhibitors (Maj, 

Papiernik et al. 2016). Despite effective inhibition of VEGF signaling resulting from 

these therapies, no study has shown a significant increase in overall survival from anti-

angiogenic monotherapy (Felcht and Thomas 2015, Maj, Papiernik et al. 2016).   

Additionally, while anti-VEGF therapy combined with chemotherapy in colorectal cancer 

shows an increase in progression-free survival, different trials showed mixed results for 

overall survival (Maj, Papiernik et al. 2016).  Tumours exhibit two different patterns of 

anti-angiogenic therapies:  Intrinsic resistance, where the tumour fails to respond to 

therapy immediately, or acquired resistance, where there is an initial response to therapy 
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followed by a resurgence of tumour growth and progression (Bergers and Hanahan 2008, 

Lupo, Caporarello et al. 2016, Maj, Papiernik et al. 2016).  

The reasons the therapies fail are multi-factorial, with most intrinsic resistance stemming 

from preexisting oncogenic activation of non-VEGF reliant pro-angiogenic pathways, the 

presence of inflammatory cell-mediated protection of vasculature, and vascular co-option 

while acquired resistance is typically driven by new activation of alternative (VEGF-

independent) pro-angiogenic pathways, compensatory vasculogenic mimicry and 

vascular co-option, increased progenitor cell recruitment from bone marrow, and vascular 

normalization (Bergers and Hanahan 2008, Pastushenko, Vermeulen et al. 2014, Felcht 

and Thomas 2015). In addition, even when the treatment is successful, long-term hypoxia 

in the tumour increases genetic instability, vascular permeability, and triggers 

paradoxically increased VEGF production (Lupo, Caporarello et al. 2016).    

In preclinical data using a pancreatic neuroendocrine cancer model, mice that were 

subjected to anti-VEGFR inhibition experienced a brief period of responsiveness to 

therapy before tumours began to regrow (Bergers and Hanahan 2008).  During tumour 

regression, these tumours had regions of hypoxia which began to express high levels of 

pro-angiogenic factors Fibroblast Growth Factor 1 (FGF1), FGF2, ephrin A1, ephrin A2, 

and angiopoeitin 1, and the treatment of these tumours with an FGF-trap protein was able 

to slow revascularization and tumour regrowth indicating that FGF is one part of the 

mechanism by which these tumours acquire resistance to anti-angiogenic therapies 

(Bergers and Hanahan 2008).  Other studies have found similar pro-angiogenic factors 

upregulated, with anti-VEGF therapies in human patients resulting in increased 

expression of placental growth factor, FGF2, and interleukin 8 as well as persistent 

upregulation of mTOR signaling (Maj, Papiernik et al. 2016).  Additionally, untreated 

late stage breast cancers show an increased tolerance for anti-VEGF therapy as well as 

elevated expression of pro-angiogenic factors like FGF2, suggesting that in addition to 

playing a role in acquired resistance these pathways are able to be activated and grant 

intrinsic resistance as well (Bergers and Hanahan 2008).  Similarly, in experiments 

performed using anti-VEGF therapies in mouse models a heterogeneous response to 

treatment was seen, where tumours with high levels of infiltrating inflammatory cells 
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prior to treatment showed a reduced response, likely due to pro-angiogenic factors being 

secreted by the inflammatory cells (Bergers and Hanahan 2008).  

Another barrier to effective inhibition of angiogenesis in tumours stems from the fact that 

sprouting and maturation are driven by competing signals:  When VEGF is 

overexpressed, a tumour will develop a large number of blood vessels, but this VEGF 

expression will prevent the association of perivascular cells like pericytes which drive 

vessel stability and maturation (Maj, Papiernik et al. 2016).  When anti-VEGF therapies 

block this overexpression, the vessels which have already been formed begin to recruit 

perivascular cells and undergo a process known as vessel normalization, which leads to 

increased vascular organization, decreased vessel permeability, increased vessel 

diameter, and more reliable delivery of nutrients throughout the tumour (Helfrich and 

Schadendorf 2011, Maj, Papiernik et al. 2016).  Since the association of perivascular cells 

protects these newly normalized vessels from anti-VEGF therapy-associated regression, it 

also explains why tumours in highly vascularized tissues such as brain metastases and 

cutaneous melanomas are more able to withstand anti-angiogenic therapies:  A significant 

portion of their vascular networks are formed by vascular co-option, in which they hijack 

already mature vasculature which do not undergo regression when deprived of VEGF 

(Felcht and Thomas 2015).   

Anti-angiogenic therapies have also been associated with high levels of side-effects.  

Complications from anti-VEGF antibody therapies include endocrine dysfunction, 

cardiac toxicity, gastrointestinal perforation, thrombosis, and impaired wound healing 

with tyrosine kinase inhibitors also showing malaise, fatigue, hypothyroidism, and 

cardiac failure due to off-target kinase inhibition (Lupo, Caporarello et al. 2016, Maj, 

Papiernik et al. 2016).  Additionally, even in cases where the therapy is successful in 

causing vascular regression it is possible that both antibody therapy and tyrosine kinase 

inhibitors may promote metastasis by damaging vascular walls that normally serve as a 

barrier to extravasation while simultaneously inducing a more invasive tumour cell 

phenotype (Bergers and Hanahan 2008, Lupo, Caporarello et al. 2016). 
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1.2 Tumour-host interactions 

As a tumour develops it not only alters the cells carrying oncogenetic mutations, but also 

begins to recruit host tissue cells to form an active stroma that participates in the 

development and progression of the disease (Le Bitoux and Stamenkovic 2008).  As the 

tumour grows it begins to secrete cytokines that recruit and activate several different cells 

types which develop into macrophages, mast cells, adipocytes, and carcinoma-associated 

fibroblasts which begin to secrete cytokines, disrupt existing extracellular matrix, and 

deposit new extracellular matrix in a fashion that can play a significant role in the 

progression of the disease (Le Bitoux and Stamenkovic 2008).  

1.2.1 Skin 

While melanoma can arise from any pigmented tissue in the body, including mucous 

membranes and the eye, the most common site for it to develop is the skin.  Skin is 

composed of four major layers:  The epidermis, the dermis, a basement membrane that 

separates them, and finally the hypodermis (Kanitakis 2002).  Each of these is further 

subdivided, and most melanomas arise from the epidermis. 

1.2.1.1 The Epidermis 

The epidermis serves as a barrier to protect the body from dehydration, toxins, 

mechanical perturbation, and microorganism intrusion.  In order to serve this purpose it is 

avascular, stratified, and composed of four layers of epithelium which undergo 

considerable transformation as they move from deep to superficial tissue (Simpson, Patel 

et al. 2011).   

1.2.1.1.1 Keratinocytes 

The most common cells in the epidermis, keratinocytes (and the corneocytes to which 

they will eventually differentiate), are produced in the stratum basale which is a single 

layer of cells attached to the basement membrane between the epidermis and the dermis 

(Kanitakis 2002).  This layer of cells is composed of proliferating stem cells which 

proliferate asymmetrically, with the daughter cell deeper in the tissue remaining a stem 

cell and the superficial one being a keratinocyte which becomes part of the stratum 
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spinosum (Kanitakis 2002, Proksch, Brandner et al. 2008).  The cell polarity that allows 

this asymmetry of proliferation is possible because of the strong attachment to the 

basement membrane by hemidesmosomes (Kanitakis 2002, Simpson, Patel et al. 2011).   

As keratinocytes differentiate off of the proliferating stem cells of the stratum basale, 

they begin a process of differentiation which begins with large, polygonal cells with a 

distinct nucleus and organelles and ends with completely squamous cells lacking both 

nuclei and organelles (Simpson, Patel et al. 2011).  This process progresses as the 

keratinocytes move through each of the layers of the epidermis.  Keratinocytes of the 

stratum spinosum stop proliferating, are connected to each other by a strong network of 

intracellular connections, and form a 5-15 cell thick layer.  Cells are pushed superficially 

by continually proliferating stem cells in the stratum basale, and as they move 

superficially they are subjected to gradually increasing calcium concentrations which 

eventually trigger differentiation (Bikle, Jiang et al. 2016).  These differentiating cells 

begin to produce lamellar bodies, which will eventually help form a barrier to hydrophilic 

substances that helps prevent water loss through the skin (Kanitakis 2002, Proksch, 

Brandner et al. 2008).  As calcium continues to increase and the cells enter the stratum 

granulosum, the lamellar bodies move from the Golgi where they are produced, and fuse 

with the plasma membrane to release their contents into the extracellular matrix (Proksch, 

Brandner et al. 2008).  While this process occurs the keratinocytes begin to flatten out, 

and form a layer 1-3 cells thick (Kanitakis 2002).  Finally, in the stratum corneum the 

cells differentiate from keratinocytes into corneocytes by degrading their major 

organelles with lysosomal enzymes (Simpson, Patel et al. 2011).  This layer is composed 

of highly squamous cells which are crosslinked together in order to form the primary 

barrier against chemicals and microbes, as well as allowing the cells to withstand 

mechanical forces (Proksch, Brandner et al. 2008, Simpson, Patel et al. 2011). 

1.2.1.1.2 Melanocytes 

While 90-95% of cells within the epidermis are keratinocytes, there are several other 

important cell types present throughout.  Langerhans cells are present throughout the 

epidermis, and within the stratum basale there are Merkel cells, lymphocytes, and 

melanocytes (Kanitakis 2002).  In most areas of the skin the stratum basale is made up of 
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a 1:10 ratio of melanocytes to proliferating stem cells.  Melanocytes are anchored to the 

basement membrane, with dendrites extending up through the epidermis to form an 

associated epidermal-melanin unit each consisting of a single melanocytes making 

contact with 30-40 keratinocytes (Kanitakis 2002, Cichorek, Wachulska et al. 2013). The 

epidermal-melanin unit has several important functions, with keratinocytes receiving 

protection from UV irradiation from the melanin secreted by melanocytes and with 

keratinocytes using both paracrine signaling and cell-cell adhesions with melanocytes to 

regulate melanocytes proliferation (Haass, Smalley et al. 2005, Cichorek, Wachulska et 

al. 2013).  While in the epidermis melanocytes typically do not proliferate.  This is 

believed to be in large part due to cell-cell adhesions with keratinocyte progenitor cells 

suppressing proliferation, as melanocytes grown in vitro display proliferative capacity 

that is suppressed when co-cultured with undifferentiated keratinocyte progenitors 

(Cichorek, Wachulska et al. 2013, Wang, Fukunaga-Kalabis et al. 2016).  Due to this lack 

of proliferation, combined with an accumulation of reactive oxygen species most humans 

show a 10-20% decrease in number of epidermal melanocytes per decade over the age of 

30, with older melanocytes becoming larger and more dendritic to reach more 

keratinocytes (Cichorek, Wachulska et al. 2013).   

In addition to control by cell-cell contact, keratinocytes can exert control over 

melanocytes through paracrine signaling.  This method of control is typically associated 

with exposure of keratinocytes to UV radiation, which causes secretion of stem cell 

factor, endothelin 1, and pro-inflamatory cytokines like interleukin 1 (Cichorek, 

Wachulska et al. 2013, Wang, Fukunaga-Kalabis et al. 2016).  These factors serve to 

activate several signal transduction pathways, with stem cell factor activating mitogen-

activated protein kinases and endothelin 1 activating protein kinase C to increase 

transcription of genes associated with melanocyte dendricity and melanogenesis, and 

interleukin 1β upregulating melanocytes expression of CCN3 which acts in an autocrine 

fashion to enhance adhesion to the basement membrane of the epidermis (Cichorek, 

Wachulska et al. 2013, Wang, Fukunaga-Kalabis et al. 2016).  Melanocytes also receive 

paracrine signals from dermal fibroblasts, who secrete stem cell factor and neuroregulin 1 

to help alter melanocytes function (Cichorek, Wachulska et al. 2013). 
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In addition to being found throughout the stratum basale, melanocytes can also be found 

in hair follicles, mostly at the apex of the dermal papilla and in the sebaceous glands 

associated with hair (Cichorek, Wachulska et al. 2013).  Here melanocytes are found in 

higher numbers, with a ratio that is usually closer to 1:5 than the 1:10 ratio found in most 

of the epidermis (Haass and Herlyn 2005, Cichorek, Wachulska et al. 2013).  While they 

undergo a lot of the same processes, there are several key differences between 

melanocytes found in the follicle.  Unlike epidermal melanocytes there is considerable 

turnover in follicular melanocytes, with all fully differentiated melanocytes undergoing 

apoptosis every 3-8 years and being replaced by resident melanoblasts located 

superficially in the follicle.  Additionally, their melanogenesis is regulated independently 

of UV exposure, with melanogenesis only taking place during the anagen phase when 

hair is growing, and not during catagen or telogen phases where there is little to no 

growth (Cichorek, Wachulska et al. 2013).  

Between the epidermis and the dermis is the basement membrane, which is composed of 

4 layers:  First is a layer of keratin and plectin attached to the basal plasma membrane of 

keratinocyte progenitor cells and melanocytes by hemidesmosomes, second is anchoring 

filaments composed of laminins, third is a the lamina densa which is composed of 

collagen IV and laminin V, and finally is the sub-basal lamina filamentous zone 

composed of collagen VII fibres anchoring the basement membrane to the dermis  

(Kanitakis 2002, Proksch, Brandner et al. 2008). 

1.2.1.2 The Dermis 

The dermis is a vascularized region composed primarily of large amounts of extracellular 

matrix, fibroblasts, and macrophages (Kanitakis 2002).  It is divided into two layers: the 

papillary dermis, which lies just below the basement membrane and is named for 

fingerlike dermal papillae it forms in order to increase surface area of attachment with the 

basement membrane, and the reticular dermis (Kanitakis 2002).  The papillary dermis 

consists of loose connective tissue that supports capillary networks which deliver oxygen 

and nutrients to both the dermis and the epidermis, as well as tactile sensors, while the 

reticular dermis is characterized by thicker connective tissue which provides strength to 

the dermis, and the presence of larger blood vessels which feed the capillaries of the 
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papillary dermis (Kanitakis 2002, Oosterhoff, Sluijter et al. 2012).  The reticular dermis 

also houses the roots of hair follicles, along with sebaceous and sweat glands (Kanitakis 

2002).  The vast majority of the mass of the dermis is made up of collagen fibres (mainly 

types I and III) with 90% of the fibres being collagen, providing the dermis with a high 

tensile strength (Kanitakis 2002, Arora, Falto-Aizpurua et al. 2017).  In addition to 

collagen, elastin and elastic fibres are present (mostly in the reticular dermis), making up 

another 2-4% of the dermis by mass, with the rest being composed of cells and a mixture 

of glycoproteins and proteoglycans known as ground substance (Kanitakis 2002, Arora, 

Falto-Aizpurua et al. 2017).  The extracellular matrix of the dermis is undergoing 

constant maintenance and has a high rate of turnover, with the synthesis of new 

connective tissue being conducted by spindle shaped cells called fibroblasts (Kanitakis 

2002, McAnulty 2007).  Fibroblasts regulate the extracellular matrix of the dermis by 

producing matrix metalloproteinases, which degrade extracellular matrix components, 

and by producing the majority of extracellular matrix components themselves (McAnulty 

2007).  In addition to their role in maintaining healthy extracellular matrix, fibroblasts are 

also key players in responding to tissue injury.  When tissue is damaged, cytokines are 

released that recruit fibroblasts to the wound to assist in deposition of new extracellular 

matrix and they are activated into a myofibroblast phenotype that is characterized by 

expression of α-smooth muscle actin stress fibers which allow them to assist with 

contraction and closure of the wound (McAnulty 2007).   

The deepest section of the skin is known as the hypodermis.  It is mostly composed of 

adipocytes surrounded by loose connective tissue, fibroblasts, nerves, and blood vessels, 

and it helps with storage of energy, thermoregulation, and protection from mechanical 

forces (Kanitakis 2002). 

1.2.2 Collagen Fibril Assembly 

Dermal collagen consists of a little less than 90% type I collagen, 10% type III collagen, 

and approximately 2% type V collagen (Krieg and Aumailley 2011).  Collagens are 

transcribed and synthesized as α chains of procollagen monomers before undergoing 

extensive post-translational modifications in the rough endoplasmic reticulum and Golgi 
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apparatus involving the hydroxylation of specific prolyl and lysyl residues and 

glycosylation of others (Kadler, Baldock et al. 2007, Krieg and Aumailley 2011).  Prolyl 

hydroxylation is required for each monomer to fold into a left-handed helix, at which 

point three α chain monomers supercoil into a right-handed triple helix, which is then 

stabilized with hydrogen bonds inside the rough endoplasmic reticulum (Mienaltowski 

and Birk 2014, Bella 2016).  Once this triple helix is properly formed the collagen 

molecules are released from the endoplasmic reticulum and can enter the extracellular 

space (Kadler, Baldock et al. 2007).  Once outside the cell the collagen molecules can be 

formed into fibrils through numerous mechanisms:  They can self-assemble around 

nucleators, they can be directed to assemble by cell-directed organizers, and their growth 

can be controlled by regulator molecules and enzymes  (Mienaltowski and Birk 2014, 

Du, Pang et al. 2017). 

While type I and type III collagen can self-assemble in vitro, it is only after considerable 

lag and is not seen to occur in vivo, where despite production and secretion of type I and 

III collagen molecules, they do not form into fibrils without type V collagen to act as a 

nucleator (Mienaltowski and Birk 2014).  In concert with nucleators, cells can direct the 

assembly of fibrils by assembling fibronectin into fibrils using integrins, forming 

fibronectin networks that contain binding sites that assist with collagen fibril assembly 

(Mienaltowski and Birk 2014).  Blocking the fibronectin binding sites, or alteration of 

integrins that assemble the fibronectin organizer complex, can result in alterations to 

collagen fibril assembly.  Regulator molecules like small leucine-rich proteoglycans and 

some non-fibril forming collagens are not necessary for the initiation of fibril assembly, 

but can alter the rate at which collagen fibrils grow, and also the characteristics that result 

from growth.  Disruption of these regulators can result in abnormally large fibril 

diameters which have functional defects (Mienaltowski and Birk 2014).  

Once fibrils have begun to form, their maturation into a stable network is governed by a 

balance of enzymatic activity.  Fibrils are stabilized by the formation of intramolecular 

and intermolecular cross-links after oxidative deamination by a class of enzymes called 

lysyl oxidases, and hydroxylation by lysyl hydroxylases (Krieg and Aumailley 2011).  

The key enzyme in mediating the hydroxylation of lysyl residues in type I collagen is 
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lysyl hydroxylase 2, which is encoded by the gene PLOD2, with decreased levels of 

PLOD2 expression in tumour stroma correlating with decreased lysine aldehyde-derived 

crosslinks (Du, Pang et al. 2017).  Additionally the extent of lysyl residue hydroxylation 

can have effects on the circumference of the triple helical domain of collagens, resulting 

in changes in fibril assembly (Mienaltowski and Birk 2014).  Once collagen networks are 

formed, matured, and stabilized they can be remodeled by the activity of matrix 

metalloproteinases MMP1 and MMP13 (Krieg and Aumailley 2011, Moro, Mauch et al. 

2014). 

1.2.3 Fibrosis: Cancer as a wound that won’t heal 

When tissue experiences an injury or insult it goes through several stages in attempting to 

resolve the damage:  Hemostasis (when the injury has caused bleeding), Inflammation, 

Proliferation of new tissues, and finally Remodelling of the newly formed tissue 

(Buganza Tepole and Kuhl 2013).  In the case of cancer, however, the insult is not easily 

resolved by these processes, and so the cancer cells persist, stimulating a wound healing 

response that is unable to resolve (Horimoto, Polanska et al. 2012, Kalluri 2016).  This 

results in sustained inflammation, and the recruitment of a wide variety of cells to form 

an activated stroma, similar to what occurs in fibrotic diseases like scleroderma.  In fact, 

activated tumour stroma and fibrosis are both characterized by high numbers of activated 

fibroblasts and an increased deposition of extracellular matrix (Kalluri 2016).  The link 

between cancer and fibrosis is reinforced by the fact that co-morbidity of cancer and 

scleroderma has been show to occur quite frequently with the incidence of melanoma 

being 3.3 times as high among patients diagnosed with scleroderma as among the general 

population (Videtic, Lopez et al. 1997, O'Byrne and Dalgleish 2001, Coussens and Werb 

2002, Hill, Nguyen et al. 2003, Shah, Rosen et al. 2010, Franks and Slansky 2012).  In 

addition to this increased incidence, there is a notable temporal proximity between 

diagnoses of cancer and fibroproliferative diseases, with almost 50% of breast cancer 

diagnoses amongst scleroderma patients occurring very close to the diagnoses of 

scleroderma itself (Shah, Rosen et al. 2010).  There is considerable debate as to what is 

causing this increased association of not only the incidence, but also time of onset 

between cancer and fibroproliferative diseases.  One theory is that the overactive 
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fibroproliferative processes in diseases such as scleroderma not only lay down excessive 

extracellular matrix which can lead to organ failure, but they also produce a tumour 

stroma which is conducive to the progression of malignancy (O'Byrne and Dalgleish 

2001, Rakoff-Nahoum 2006).  Additionally, the inflammatory cascade produced by an 

initial injury or insult produces high amounts of oxidative stress, resulting in the 

production of reactive oxygen species that not only perpetuate the inflammatory cascade 

but also cause DNA damage leading to DNA breaks, single base mutations, and genomic 

instability which are known to lead to tumourigenesis (Le Bitoux and Stamenkovic 2008, 

Elinav, Nowarski et al. 2013).  Cytokines like tumour necrosis factor α, interleukin 1β, 

and transforming growth factor (TGF)β1, that are elevated in the fibrotic 

microenvironment, trigger signaling cascades that introduce mutations in the genes 

encoding p53 and Myc which contribute to oncogenesis (Elinav, Nowarski et al. 2013).  

These cytokines also induce nuclear factor-κB signaling, which increases pro-

inflammatory, proliferative, and survival gene expression from both tumour and stromal 

cells (Le Bitoux and Stamenkovic 2008, Kalluri 2016).   

Once oncogenesis has occurred, a diverse tumour stroma is recruited, most importantly 

including the recruitment of immune cells and the recruitment and activation of activated 

cancer associated fibroblasts (CAFs) (Le Bitoux and Stamenkovic 2008, Horimoto, 

Polanska et al. 2012, Kalluri 2016).  Recruited immune cells play several roles, with 

activated macrophages producing cytokines to increase inflammatory signaling 

throughout the stroma, recruit additional immune cells like leukocytes, inhibit immune 

response, increase pro-angiogenic signaling, and promote gene expression associated 

with survival (Le Bitoux and Stamenkovic 2008).  Additional immune cells recruited by 

macrophages serve to amplify the signals secreted by macrophages, activate resident 

fibroblasts, and secrete proteolytic enzymes which can reduce physical barriers to tumour 

spread and cause the release of sequestered growth factors from the extracellular matrix 

(Le Bitoux and Stamenkovic 2008, Horimoto, Polanska et al. 2012).   

The activated fibroblasts of the tumour stroma have proven to be key drivers in the 

progression of many different cancers.  CAFs induce invasion of non-invasive cells in 
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many cancer models by secreting matrix metalloproteinases, which help remodel stromal 

matrix to increase stiffness and align extracellular matrix components to facilitate 

invasion, and TGFβ, allowing improved adhesion of cancer cells to the extracellular 

matrix: CAFs have also been shown to be highly migratory (Horimoto, Polanska et al. 

2012, Kalluri 2016). Additionally, CAFs secrete tenascin C and periostin, which have 

both been shown to be mediators of the development of a “cancer stem cell” phenotype 

that is able to take root in distant organs after metastasis and form metastatic sites 

(Horimoto, Polanska et al. 2012).  CAFs are a highly heterogeneous population:  although 

there are several markers which are absent in inactivated normal fibroblasts, such as  

fibroblast specific protein 1, vimentin, α-smooth muscle actin, PDGF receptor α and β, 

these markers are neither exclusive to activated fibroblasts, nor expressed by all cancer 

associated fibroblasts (Kalluri 2016). For example, fibroblast specific protein 1 also 

identifies immune cells, vimentin is expressed widely in mesenchymally-derived cells, 

and PDGF receptors are also present in the perivasculature (Kalluri 2016).  This 

heterogeneous pattern of marker expression pattern may simply reflect that CAFs are 

likely to originate from a variety of different sources.  Indeed, CAFs have been suggested 

to arise from bone marrow-derived precursors, mesenchymal stem cells, endothelial cells, 

resident fibroblasts, epithelial cells, pericytes, smooth muscle cells, and adipocytes 

(Bhattacharyya, Wei et al. 2012, Horimoto, Polanska et al. 2012, Kalluri 2016).  In 

fibrotic diseases, recruitment and proliferation of these cell types has been induced 

inflammatory cytokines, and differentiation has been seen to be caused by several 

different mechanisms.  Resident fibroblasts can be differentiated in to myofibroblasts by 

TGFβ1 signaling or by mechanical strain being transduced through integrins (Koivisto, 

Heino et al. 2014).  Blocking integrins αvβ5 or αvβ3 in vitro is able to prevent this 

differentiation, as is deletion if integrin β1 in vivo (Liu, Xu et al. 2010, Koivisto, Heino et 

al. 2014).  The protein Phosphatase and tensin homolog (PTEN), which inactivates pro-

adhesive signaling and is frequently mutated in cancers, can suppress myofibroblast 

differentiation of resident fibroblasts and loss of PTEN not only accelerates cancer 

progression, but when it is deleted from fibroblasts in vivo it results in spontaneous 
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generation of fibrosis (Horimoto, Polanska et al. 2012, Parapuram, Thompson et al. 

2015).  Damage to microvasculature has also been seen to cause pericyte differentiation 

into myofibroblasts in patients with scleroderma, and in mouse models of fibrosis 

myofibroblasts were observed to express pericyte/progenitor marker genes NG2 and 

SOX2 (Rajkumar, Sundberg et al. 1999, Tsang and Leask 2015).  Additionally, lineage 

tracing revealed some fibrotic myofibroblasts are derived from dermal progenitor cells, 

and the process requires expression of matricellular protein CCN2 which is highly 

upregulated in fibrotic diseases (Liu, Herault et al. 2014, Tsang and Leask 2015). 

1.2.4 Tumour vascularization 

Tumour vascularization is essential for the progression, growth, and metastasis of any 

tumour.  Since oxygen can only diffuse approximately 100-150µm through tissue 

avascular tumours are limited in the maximum size they can achieve (Felcht and Thomas 

2015).  While it has been estimated that an avascular tumour can reach up to 2-3mm
3
 in 

volume, vascularization typically begins when a tumour reaches approximately 1mm
3
, or 

the distance between two blood vessels is larger than 100-250µm (Helfrich and 

Schadendorf 2011, Zaki, Basu et al. 2012).  As tumours grow, they develop regions of 

hypoxia which are either too far removed from vasculature, or which have had their 

blood supply cut off when the vessels feeding them are occluded by the growing tumour 

(Muz, de la Puente et al. 2015).  Intratumoural hypoxia alters the balance between pro- 

and anti-angiogenic signals, primarily by signaling through the Hypoxia Inducible Factor  

(HIF) pathway, triggering what is known as the “Angiogenic Switch” when pro-

angiogenic signals are stronger than anti-angiogenic signals (Helfrich and Schadendorf 

2011, Muz, de la Puente et al. 2015).  This balance can also be altered by other factors 

like mechanical stress, inflammation, or genetic mutation (Helfrich and Schadendorf 

2011).  Once this switch is flipped, there are 4 major forms of neovascularization that 

take place within a tumour:  sprouting angiogenesis, vascular co-option (where the 

tumour will simply grow around an existing vessel and thus hijack it), vasculogenic 

mimicry and mosaic vessels, and bone marrow-derived vasculogenesis (Pastushenko, 

Vermeulen et al. 2014, Felcht and Thomas 2015).   
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1.2.4.1 Mechanisms of neovascularization 

Sprouting angiogenesis is a recapitulation of the angiogenesis that occurs during 

development and wound healing in which the growth of new capillaries occurs starting 

from existing vessels (Pastushenko, Vermeulen et al. 2014).  Although there are many 

factors that can trigger this process, the most predominant one is VEGF secretion from 

the tumour.  Not only does HIF signaling induce VEGF expression, but several 

oncogenes can cause constitutive overexpression of VEGF by the tumour through MEK 

activation, PI3K activation, NFκB activation, and ROS production (Pastushenko, 

Vermeulen et al. 2014, Muz, de la Puente et al. 2015).  When VEGF reaches the 

endothelial cells of a blood vessel, it causes them to reduce their cell-cell contacts (which 

help to keep endothelial cells quiescent and non-proliferative) with each other, increase 

their mitogenesis, proliferation, survival, and migration signals (Zaki, Basu et al. 2012, 

Mongiat, Andreuzzi et al. 2016).  Once these cell junctions loosen, there is extravasation 

of plasma proteins, which help serve as a scaffold for endothelial cell migration and 

organization, and the initiation of a proteolytic cascade involving matrix-

metalloproteases, which degrade both the basement membrane of the existing vessel and 

the extracellular matrix between the endothelial cells and the source of VEGF secretion 

resulting in both a path for endothelial cells to migrate through and release of bound pro-

angiogenic factors (Zaki, Basu et al. 2012, Pastushenko, Vermeulen et al. 2014, Mongiat, 

Andreuzzi et al. 2016).  As the process progresses endothelial cells will migrate in a 

specific pattern, with a polarized tip cell breaking off to migrate across the extracellular 

matrix, followed by some rapidly proliferating stalk cells which will begin to form the 

lumen of the new vessel, and lastly phalanx cells which have recruited perivascular cells, 

like pericytes, through secretion of Transforming Growth Factor β, and PDGF to help 

mature and stabilize them (Helfrich and Schadendorf 2011, Pastushenko, Vermeulen et 

al. 2014, Felcht and Thomas 2015, Muz, de la Puente et al. 2015).  The expression of 

Angiopoietin-1 by perivascular cells binds to Tie-2 receptors on endothelial cells, 

inducing quiescence (Helfrich and Schadendorf 2011).   

In addition to sprouting angiogenesis melanoma makes great use of vascular co-option, 

(Pastushenko, Vermeulen et al. 2014, Felcht and Thomas 2015).  Vascular co-option is 



25 

 

more prevalent in melanoma than some other cancers (for example breast cancer tends to 

grow primarily through sprouting angiogenesis) and while this process occurs in the 

primary tumour, it is especially prevalent in distant metastatic sites where the freshly 

extravasated melanoma cells will grow around the existing vasculature (Felcht and 

Thomas 2015).  These newly co-opted vessels are typically more mature and stable than 

newly formed vasculature within the tumour (Helfrich and Schadendorf 2011).  

Both sprouting angiogenesis and vascular co-option are ways in which the tumour can 

incorporate endothelial cells into its vascular network, but when that process proves 

insufficient to meet nutrient and waste disposal needs of rapidly proliferating cells the 

tumour can begin to reprogram its own cells to serve the same purpose in a process 

known as vasculogenic mimicry (Pastushenko, Vermeulen et al. 2014, Felcht and 

Thomas 2015).  Vessels created by vasculogenic mimicry can either be tube structures 

composed of either reprogrammed tumour cells or a mixture of endothelial cells and 

tumour cells which closely resemble normal endothelial lined blood vessels, or they can 

be patterned matrices consisting of collagens, heparin sulfate proteoglycans and laminins 

that closely resemble the basement membrane of a blood vessel but which lack any 

cellular lining (Pastushenko, Vermeulen et al. 2014, Pinto, Sotomayor et al. 2016).  In 

either case the melanoma cells lining them begin to express markers that are 

characteristic of endothelial cells, such as CD31 or vascular endothelial (VE)-cadherin 

(Pinto, Sotomayor et al. 2016).  Additionally, both tubular and non-tubular examples of 

vasculogenic mimicry have been shown to stain positive for periodic-acid Schiff (PAS) 

stain, and contain red blood cells in histological sections, indicating that they are both 

successful at conducting blood throughout the tumour (Pastushenko, Vermeulen et al. 

2014, Pinto, Sotomayor et al. 2016).   

Finally, new vasculature can be generated by recruitment of bone marrow-derived 

progenitor cells which will be integrated into new vessels and differentiated into 

endothelial cells by VEGF signaling (Pastushenko, Vermeulen et al. 2014, Felcht and 

Thomas 2015, Muz, de la Puente et al. 2015).  Several factors secreted by both tumour 

and stromal components have been identified in the recruitment process, including 
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VEGF, stromal derived factor-1, placental growth factor, stem cell factor, and 

interleukin-6 (Bergers and Hanahan 2008, Maj, Papiernik et al. 2016).   

1.2.4.2 Tumour vascular environment 

Despite the formation of new vasculature, the oxygenation of intratumoural tissue is far 

from consistent.  Due to high levels of VEGF secretion by tumour cells, highly 

heterogeneous makeup of vasculature, and periodic blood vessel occlusion tumours 

contain areas of acute, chronic, and cycling hypoxia (Helfrich and Schadendorf 2011, 

Muz, de la Puente et al. 2015) 

Tumour hypoxia can come in three major forms, with different consequences for each:  

acute hypoxia is a short term interruption in blood flow that is generally resolved in less 

than 72 hours and triggers autophagy to allow cells to survive, induces spontaneous 

metastasis and a more invasive phenotype; chronic hypoxia is a sustained state of low 

oxygen availability which impairs DNA repair systems and increases accumulation of 

DNA damage, leading to increased genomic instability and mutagenesis; cycling hypoxia 

is frequently caused by short-term occlusion of blood vessels, and results in recurring 

fluctuations in tissue oxygen levels which has been shown to increase reactive oxygen 

species production, and increase tumour cell survival and aggressiveness (Muz, de la 

Puente et al. 2015, Lupo, Caporarello et al. 2016).  

In addition to occlusion of vasculature, hypoxia can result from the disorganized and 

largely immature vasculature found within a tumour.  While high levels of VEGF 

secretion by tumour cells is helpful in generating new vasculature, it does not subside 

when the new vasculature has been established, and so the normal blood vessel 

phenotype that includes pericytes instructing endothelial cells to form tight junctions to 

prevent fluid leak does not occur:  Continuous VEGF expression acts on endothelial cells 

preventing them from entering their quiescent state, and prevents pericyte coverage of 

vessels by disrupting PDGF signaling (Greenberg, Shields et al. 2008, Helfrich and 

Schadendorf 2011).  Additionally, this non-quiescent endothelial cell phenotype results in 

increased vascular permeability, which increases intra-tumoural interstitial pressure and 

augments hypoxia (Zaki, Basu et al. 2012).   
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1.2.5 CCN Proteins 

The CCN proteins are a family of matricellular proteins named for the first three 

members (CYR61, CTGF, and NOV) characterized by a highly conserved modular 

structure consisting of an insulin-like growth factor binding domain, a Von Willebrand 

factor type C domain, a thrombospondin type 1 domain, and a C-terminal domain (Leask 

and Abraham 2006).  Matricellular proteins are non-structural, secreted proteins that 

modulate cellular reactions to external stimuli, and as such the CCN proteins are highly 

spatiotemporily regulated (Leask and Abraham 2006, Jun and Lau 2011).  Their activity 

is primarily mediated through direct binding to adhesion receptors like integrins and 

heparin sulphate proteoglycans (HSPGs), but they can also bind to other receptors like 

lipoprotein receptor-related proteins (LRPs) and modulate the expression and 

bioavailability of a wide variety of growth factors, cytokines and matrix 

metalloproteinases (Chen and Lau 2009, Jun and Lau 2011).  CCN protein expression is 

sensitive to signals from growth factors, UV radiation, hypoxia, mechanical forces, and 

inflammatory cytokines, allowing them to be regulated in response to a wide variety of 

stimuli (Chen and Lau 2009).  Each protein's function is highly context dependent:  

CCN1, CCN2, and CCN3 promote apoptosis in fibroblasts when bound as cell adhesion 

substrates, but when they bind to endothelial cells they serve as protection against 

apoptosis due to different integrin expression patterns between the cell types (Chen and 

Lau 2009, Jun and Lau 2011).  CCN1-3 are pro-angiogenic in vivo, and promote cell 

adhesion, migration, proliferation, and tubule formation of endothelial cells in vitro 

(Leask and Abraham 2006).  Given these pro-angiogenic roles it is unsurprising that 

CCN1 is required for the formation of a cardiovascular system during embryonic 

development, and mice lacking CCN2 display severe vascular defects (Jun and Lau 2011, 

Mongiat, Andreuzzi et al. 2016).   

CCN1 and CCN2 are upregulated in wound healing, with CCN2 being released from 

platelets and both CCN1 and CCN2 being transcriptionally upregulated in response to 

TGFβ signaling.  During wound healing they act as adhesion substrates for platelets and 

inflammatory cells, as well as modulating TGFβ activity on fibroblasts and unmasking 
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the cytotoxic effects of TNFα to facilitate the apoptosis of fibroblasts (Jun and Lau 

2011).   

Both CCN1 and CCN2 are also highly upregulated during fibrosis, but while CCN1 and 

CCN2 have been shown to have similar functions in vitro, it has been proposed that they 

have different functions in vivo, with CCN1 inducing a senescence-like phenotype in 

while CCN2 potentiates TGFβ signaling (Leask and Abraham 2006, Jun and Lau 2011).  

CCN2 expression in fibroblasts is essential for the development of fibrosis, and mice with 

Ccn2 deleted from their fibroblasts are resistant to both bleomycin-induced skin fibrosis 

and PTEN deficiency-induced fibrosis (Liu, Shi-wen et al. 2011, Liu, Parapuram et al. 

2013).   

Given the similarities between activated tumour stroma and fibrosis, the overexpression 

of CCN1 and CCN2 during fibrosis, and the pro-angiogenic activities of CCN1 and 

CCN2, the following study investigates the role of CCN1 and CCN2 in the progression of 

metastatic melanoma.  My hypothesis is that CCN1 and CCN2 play different, but 

complementary roles in the progression of melanoma, with CCN2 promoting the 

vascularization of the tumour and facilitating the development of a collagen producing 

activated stroma, and CCN1 promoting the processing and stabilization of produced 

collagen. 
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Chapter 2  

2 CCN2 Expression by Tumour Stroma is Required for 
Melanoma Metastasis 

2.1 Introduction 

Melanoma is the second most common invasive cancer in young adults, and the incidence 

of diagnosis among this group is increasing (Reed, Brewer et al. 2012). Of skin cancers, 

melanoma is the most likely to metastasize making it the most likely to be fatal: 

Approximately 5% of patients diagnosed with metastatic melanoma survive for 5 years 

after diagnosis,
 

whereas patients with no metastases have a 5 year survival rate 

approaching 90%
  
(Cummins, Cummins et al. 2006). 

Melanocytes, protective cells found in the skin, are subjected to assault by UV radiation 

on a routine basis, and thus require a strong resistance to apoptosis.  Unfortunately this 

resistance is retained when melanocytes progress into melanoma, leaving the cancer 

largely unaffected by chemotherapy and radiotherapy (Soengas and Lowe 2003, 

Cummins, Cummins et al. 2006, Gray-Schopfer, Wellbrock et al. 2007).  Given this high 

resistance to conventional therapies and the effectiveness of surgical excision in the 

absence of metastasis
 

(Cummins, Cummins et al. 2006), discovering methods of 

preventing metastasis is vital to increasing patient survival.  

For melanoma to metastasize, tumour cells must migrate through the extracellular matrix, 

which is built by cells in the stromal microenvironment.  Following the degradation of 

the extracellular matrix, tumour cells must migrate by forming new adhesive sites closer 

to their destination and degrading old adhesive sites further away.  The formation and 

degradation of these sites are governed by integrins, and the communication between 

cells and their surrounding matrix is mediated by a class of non-structural secreted 

proteins known as matricellular proteins (Steeg 2006). 
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It has long been recognized that expression of the CCN family of matricellular proteins, 

is highly associated with certain cancers (Bleau, Planque et al. 2005, Perbal 2013). CCN2 

(formerly known as connective tissue growth factor, CTGF) is a member of the CCN 

family of matricellular proteins, which act primarily in two ways; by directly binding to 

adhesion receptors like integrins, and by acting as co-factors for other regulatory 

molecules (Chen and Lau 2009, Perbal 2013).  Abnormal expression patterns of CCN 

proteins have been associated with progression of breast, prostate and pancreatic cancers 

(Xie, Nakachi et al. 2001, Yang, Tuxhorn et al. 2005, Dornhofer, Spong et al. 2006, Sha 

and Leask 2011, Wong and Rustgi 2013) and overexpression of CCN2 has been 

associated with malignant melanoma (Sha and Leask 2011). CCN2 expression can also 

be stimulated in surrounding tissues by the inflammatory response caused by tumour 

formation (Coussens and Werb 2002, Leask and Abraham 2006, Wong and Rustgi 2013). 

While these observations suggest that CCN2 plays a role in the metastasis of melanoma, 

the majority of studies involving the role of CCN proteins in cancer have only correlated 

expression levels of the proteins with tumour progression without incorporating loss of 

function studies.  Recently CCN2 was shown to be regulated by the Hippo pathway in 

melanoma cell lines (Nallet-Staub, Marsaud et al. 2014).  Moreover, an antibody to 

CCN2 was shown to revert established metastatic melanoma in a murine model (Finger, 

Cheng et al. 2014); however, the mechanism underlying CCN2 action is unclear. In 

particular, neither the relative roles of tumour- or stroma- derived CCN2 in melanoma 

metastasis, nor the downstream effectors of CCN2, are clear. 

In this report, we use a syngeneic B16F(10) murine melanoma model (cells derived from 

C57 BL6 mice) (Wack, Kirst et al. 2002) and C57 BL6 mice lacking CCN2 in fibroblasts 

to investigate the differential roles of cancer cell versus niche-derived CCN2 in 

melanoma invasion and metastasis. 

2.2 Methods 

2.2.1 Cell Culture and Western Blotting 

B16(F10) murine melanoma cells were purchased (ATCC) and cultured in high glucose 

Dulbecco's Modified Eagle's Medium (DMEM), 10% fetal bovine serum (FBS) and 1% 
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antibiotic/antimycotic solution  (Invitrogen).  C8161 and c81-61 cells were provided by 

Mary Hendrix, and experiments using them were performed at the University of Alberta.  

Cells were cultured until confluence prior to harvesting for mRNA or protein extraction.  

Where indicated, cells were treated with 10µM Bisindolylmaleimide I (BIM), a pan-PKC 

inhibitor (EMD Millipore), for 6 hours prior to RNA extraction. Cells were cultured until 

confluence prior to harvesting for mRNA or protein extraction.  CCN2 levels were 

detected by co-incubating cultures with 50µg/mL sodium heparin (Sigma).  Sodium 

heparin was included to prevent rapid internalization and degradation of CCN2 via LRP1 

as endogenous CCN2 is known to be rapidly degraded by mouse cells through this 

mechanism (Segarini, Nesbitt et al. 2001). 1mL conditioned culture media was collected 

for every treatment, and total protein were concentrated using methanol/chloroform 

precipitation as previously described  (Friedman, Hoving et al. 2009).  Periostin protein 

levels were assessed by extraction of total protein [using ice-cold TG lysis buffer (20 mM 

Tris- HCl [pH
 
8], 1% Triton X-100, 10% glycerol, 137 mM NaCl, 1.5 mM MgCl2,

 
1 mM 

EGTA, 50 mM NaF, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl
 
fluoride, 20 µM 

leupeptin, 10 µg of aprotinin ml
-1

)].  The concentration of protein was detected (Pierce) 

and equal amounts of protein (100 g) were subjected to SDS/PAGE on a 4-12% 

gradient gel (Invitrogen).  Gels were then blotted onto nitrocellulose (BioRad) and CCN2 

was detected using a goat anti-CCN2 antibody (1:200 dilution, Santa Cruz) followed by a 

HRP-conjugated anti-goat antibody (1:2000; Jackson), a chemiluminescent detection kit 

(Pierce) and X-Ray film (Kodak). Alternatively, Periostin was detected using a rabbit 

anti-POSTN (1:1000 dilution; Santa Cruz) followed by a HRP-conjugated anti-rabbit 

antibody (1:2000; Jackson), a chemiluminescent detection kit (Pierce) and X-Ray film 

(Kodak).  When indicated, cells were transfected with CTGF (CCN2) shRNA Lentiviral 

or control shRNA Lentiviral Particles (Santa Cruz) using polybrene and selected for 

using puromycin as described by the manufacturer (Santa Cruz), or with CTGF (CCN2) 

siRNA or control siRNA using Lipofectamine 2000 transfection kit (Thermo Fisher 

Scientific) as per manufacturer instructions. 
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2.2.2 Real Time RT-PCR 

B16(F10) murine melanoma cells were grown in high glucose DMEM containing 10% 

FBS until 75% confluence after which the media was replaced with low glucose DMEM 

containing 0.5% FBS and grown for 24 hours. RNA was harvested using Trizol 

(Invitrogen) and used for Real-Time RT-PCR. 25 ng of RNA was reverse transcribed and 

amplified using TaqMan Assays on Demand (Applied Biosystems) in a 15μl reaction 

containing primers for mouse CCN2 and POSTN (Assays on Demand; Applied 

Biosystems) and 6-carboxyfluroscein labelled TaqMan MGB probe. Reverse 

Transcriptase One-Step Mastermix was added to samples and the ABI Prism 7900 HT 

sequence detector (Applied Biosystems) was used according to manufacturer’s 

instructions to detect amplified sequences. Samples were run in triplicate, expression 

values were standardized to control values from EUK18S primers using the Ct 

method. Statistical analysis was done using one way ANOVA and Tukey’s post-hoc test 

on GraphPad. 

2.2.3 Expression Profiling 

Expression profiling was performed as described in prior publications (Guo, Carter et al. 

2011, Guo, Carter et al. 2011) All sample labeling and processing was handled at the 

London Regional Genomics Centre (Robarts Research Institute, London, Ontario, 

Canada; http://www.lrgc.ca). Briefly, RNA quality was assessed on an Agilent 2100 

Bioanalyzer (Agilent Technologies Inc.) and the RNA 6000 Nano kit (Caliper Life 

Sciences) before 5.5 μg of single-stranded cDNA was synthesized from 200 ng of total 

RNA, end-labeled, and hybridized, for 16 hours at 45 °C, to Human Gene 1.0 ST arrays. 

GeneChips were scanned with the GeneChip Scanner 3000 7G and probe level (.CEL 

file) data were generated using Affymetrix Command Console v3.2.4. Probes were 

summarized to gene level data in Partek Genomics Suite v6.6 (Partek) using the RMA 

algorithm. Experiments were performed twice, and fold changes and P-values were 

generated using analysis of variance in Partek. Genes that significantly changed (at least 

1.5 fold change, P-value <0.05) in response to CCN2 knockdown were compiled and 

exported into DAVID (http://david.abcc.ncifcrf.gov/) for further analysis. 

http://www.lrgc.ca/
http://david.abcc.ncifcrf.gov/
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2.2.4 Immunohistochemistry 

Tissue was stained for CCN2 and Periostin using the Vectastain ABC Kit (Vector 

Laboratories).  Briefly, sections (0.5 μm) were cut using a microtome (Leica), collected 

on Superfrost Plus slides (Fisher Scientific), de-waxed in xylene, and rehydrated by 

successive immersion in descending concentrations of alcohol.  Antigen retrieval was 

performed by immersing slides in Na-citrate solution (pH 6.0) for 30 minutes at 98°C.  

After cooling, slides were rinsed, and non-specific binding was blocked by incubation 

with diluted normal serum.  Sections were incubated with primary antibodies in diluted 

normal serum (1:100 goat anti-CCN2, or 1:100 rabbit anti-POSTN), followed by 

incubation with biotinylated secondary antibody solution and Vectastain ABC Reagent.  

After incubations, the sections were incubated in ImmPACT DAB peroxidise substrate 

(Vector Laboratories) and counterstained with hematoxylin. 

2.2.5 In vitro Invasion Assay 

10,000 Parental untreated, CCN2 shRNA, and Control shRNA B16(F10) cells were 

seeded in growth medium containing 0.5% FBS (and 5μg/mL puromycin hydrochloride 

for shRNA cells) onto a transwell filter insert with a pore size of 8 μm coated with 100μL 

of 10μg/mL purified bovine collagen (Advanced Biosystems) as previously described 

(Chen 2005).  The transwell filter insert was suspended in a plate filled with growth 

medium containing 10% FBS (to create a chemotactic incentive to invade) and allowed to 

incubate at 37°C for 24 hours.  After incubation all excess collagen and non-invasive 

cells were removed from the inside of the transwell filter insert.  The remaining cells 

were fixed in methanol, and stained with 1μg/mL DAPI to allow for counting with 

microscopy. 

2.2.6 Animals 

Mice possessing a tamoxifen-dependent Cre recombinase under the control of a 

fibroblast-specific regulatory sequence from the proα2(I) collagen gene (Zheng, Zhang et 

al. 2002) were crossed with mice homozygous for a conditional CCN2 allele to generate 

Cre/CCN2 heterozygote mice, which were mated to generate mice hemizygous for Cre 

and homozygous for CCN2. Animals used for experiments were genotyped by 
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polymerase chain reaction (PCR) as described previously (Zheng, Zhang et al. 2002, Liu, 

Shi-wen et al. 2011).  To delete CCN2 (CCN2
-/-

) in fibroblasts, 3-week-old mice were 

given intraperitoneal injections of tamoxifen suspension (0.1 ml of 10 mg/mL 4-

hydroxitamoxifen, Sigma) over 5 days. Littermate mice of identical genotype were 

injected with corn oil and were used as controls (CCN2
fl/fl

). All animal protocols were 

approved by the animal care committee at the University of Western Ontario. 

2.2.7 In vivo Tumour Growth and Metastasis 

Subconfluent melanoma cells in the exponential growth phase were harvested by 

exposure to 0.25% trypsin/0.02% EDTA solution, resuspended in serum-free DMEM at a 

concentration of 3300 cells/µL, and 330,000 cells were injected subcutaneously into the 

right flank of each mouse.  Upon appearance of a palpable tumour the volume of the 

tumour was measured daily using calipers and the following equation: Tumour Volume 

(mm
3
) = 1/2(Length of Longest Tumour Dimension) x (Length of Narrowest Tumour 

Dimension)
2
.  Tumour growth was evaluated over the course of 14 days, and mice were 

euthanized on the 14th day.  After euthanasia the lungs and tumour were collected from 

the mice and fixed in a 4% paraformaldehyde solution.  After fixation, tissues were 

processed, embedded in paraffin, and prepared for histological sectioning.  Lung sections 

were stained with hematoxylin and eosin (H&E; Fisher Scientific) to locate dense 

metastatic foci.  Three non-serial sections per lung were examined.  To examine 

macroscopic metastasis in the lungs, tumours were allowed to grow for 21 days, and 

collected lungs were stained with Bouin’s solution and rinsed with 70% ethanol to 

visualize the metastases. 

2.2.8 Datasets and Analysis of Patient Samples 

Level 3 TCGA RNAseqV2 gene expression data was obtained from the TCGA Data 

Portal in March 2015.  SKCM TCGA mutational data was obtained from the USCS Xena 

browser for calls generated at the Broad Institute Genome Sequencing Center using the 

MutDect method in April 2015 (genome 

cancer.ucsc.edu/download/public/xena/TCGA/TCGA.SKCM.sampleMap/mutation_broa

d).   
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Stromal and immune scores were defined for tumours by the ESTIMATE algorithm 

(Estimation of STromal and Immune cells in MAlignant Tumour tissues using 

Expression data) using tumour RNASeqV2 data and the ESTIMATE package in R 

(Yoshihara, Shahmoradgoli et al. 2013). Pearson’s correlation coefficient was used to 

calculate the association of specific genes to stromal signatures. 

We conducted all analyses and visualizations in the RStudio programming environment 

(v0.98.501). R/Bioconductor packages ggplot2, plyr, and ESTIMATE were used where 

appropriate. 

2.3 Results 

2.3.1 Loss of CCN2 expression by B16(F10) murine melanoma cells 
results in impaired invasion but not proliferation 

Initial experiments were conducted using B16(F10) melanoma cells which were stably 

transfected with either CCN2 shRNA or scrambled control shRNA. Extent of CCN2 

knockdown relative to GAPDH control was determined by real time PCR and Western 

blot analyses (Figure 1A).  To assess the invasive ability of the resultant melanoma cells, 

B16(F10) cells were subjected a transwell filter invasion assay. After incubation at 37°C 

for 24 hours, collagen and non-invasive cells were removed from the inside of the 

transwell insert, and the number of remaining cells was calculated.  B16(F10) melanoma 

cells deficient in CCN2 showed markedly reduced invasion of collagen type I compared 

with either wild type B16(F10) melanoma cells or control B16(F10) melanoma cells 

stably transfected with scrambled control shRNA (Figure 1B, C).  In order to ensure the 

loss of invasive ability with CCN2 deficiency was also present in human melanomas, the 

transwell filter invasion assay was also used to test C8161 and C81-61 cells.  Both C8161 

and its poorly aggressive counterpart were derived from metastases from the abdominal 

wall, and mRNA and protein analysis revealed that C81-61 expressed significantly less 

CCN2 (Seftor, Brown et al. 2005) (Figure 2A).  Using siRNA transfection the CCN2 

expression in C8161 cells was reduced (Figure 2A).  Both the C8161 CCN2 siRNA cells, 

and the C81-61 cells showed markedly reduced invasion as compared to control C8161 
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Figure 2-1 Loss of CCN2 impairs the invasive ability of melanoma cells in vitro.  

B16(F10) murine melanoma cells were transfected with either Ccn2 shRNA, to produce a 

knockdown in Ccn2 mRNA expression, or a scrambled shRNA, to act as a control. (a) 

Cells treated with the Ccn2 shRNA lentiviral particles showed a significant decrease in 

Ccn2 mRNA expression compared to both untreated B16(F10) cells, and cells treated 

with the scrambled control shRNA.  (n=3, ** = p < 0.005) and a decrease in CCN2 

protein present in growth media  (b) Each cell line was subjected to a Boyden chamber 

assay to assess their ability to invade through a collagen matrix.  After being given 24 

hours to invade through the collagen towards a chemotactic incentive the non-invasive 

cells and collagen were removed and the invasive cells were stained with DAPI.  (c) Cells 

deficient in CCN2 were significantly less invasive than both untreated B16(F10) cells, 

and cells treated with the scrambled control shRNA. (n = 3, *= p<0.05, **= p<0.01) 
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Figure 2-2 CCN2 deficiency impairs invasive ability in human C8161 cells  

C8161 cells were transfected with CCN2 siRNA, to produce a knockdown in CCN2 

expression, or scrambled siRNA, to act as a control.  (a, b)  CCN2 siRNA transfected 

C8161 cells, and poorly aggressive C81-61 show a significant decrease in CCN2 mRNA 

and protein expression when compared to cells treated with scrambled control siRNA.  

(c) Control siRNA transfected C8161 cells, CCN2 siRNA transfected C8161 cells, and 

C81-61 cells were subjected to a Boyden chamber assay to assess their invasive ability.  

After being given 24 hours to invade towards a chemotactic incentive, non-invasive cells 

were removed and invasive cells were stained with DAPI.   CCN2 siRNA transfected 

C8161 cells and C81-61 cells showed significantly decreased invasion compared to 

C8161 cells transfected with scrambled control siRNA (n = 4, ** = p<0.01, **** = 

p<0.0001) 
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cells (Figure 2 B, C).  Of note, the reduced invasion observed with the loss of CCN2 was 

not due to alterations in proliferation (Supplemental Figure 1A). 

2.3.2 Loss of CCN2 expression by tumour stroma results in impaired 
metastasis, but not tumour growth, in vivo 

To extend our in vitro data supporting a role for CCN2 in melanoma invasion, we next 

ascertained the in vivo effects of CCN2 loss on melanoma growth and invasion. To 

perform these analyses, we employed a syngeneic model using B16(F10) melanoma cells 

(which are derived from C57/BL6 mice) deleted or not for CCN2 and C57/BL6 mice 

deleted or not for CCN2 in fibroblasts. Three weeks post-deletion of CCN2, we 

subcutaneously injected mice with B16(F10) melanoma cells or B16(F10) melanoma 

cells deleted for CCN2.  Fourteen days later, tumour growth and metastasis were 

examined.  Growth of subcutaneous tumours over 14 days was unaffected by loss of 

CCN2 expression (Supplemental Figure 1B), consistent with our in vitro data suggesting 

that proliferation of melanoma cells was unaffected by loss of CCN2 (Supplemental 

Figure 1A). When melanoma cells were injected into wild-type mice, loss of CCN2 in 

melanoma cells did not significantly affect metastasis to the lung, measured using H&E 

stained sections.  Indeed, loss of CCN2 expression from stromal cells resulted in 

increased metastasis in wild-type mice, likely due to a compensatory effect of stromal 

CCN2 (Figure 3B).  However, loss of CCN2 expression by tumour stroma resulted in 

significant reduction in metastasis, regardless of whether CCN2 was knockdown in the 

melanoma cells (Figure 3A, B).  Loss of CCN2 from the tumour stroma of C57 BL6 mice 

deleted for CCN2 after 14 days of tumour growth was confirmed by 

immunohistochemical analysis using anti-CCN2 antibody (Figure 4A). Results indicating 

that loss of CCN2 by tumour stroma resulted in impaired metastasis were confirmed by 

gross examination of Bouin`s-fixed lungs of mice deleted or not for CCN2 after 21 days 

of tumour growth (Figure 3C, D).  Collectively, these results indicate that CCN2 

expression by the tumour stroma could compensate for loss of CCN2 by tumour cells and 

that CCN2 expression by the tumour stroma is required for metastasis in vivo. 
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Figure 2-3 Loss of CCN2 in tumour stroma fibroblasts impairs metastasis in vivo.   

(a) Representative images of lung sections from wild type or Ccn2 Knockout mice (mice 

deleted for CCN2 in fibroblasts) following subcutaneous implantation with Parental or 

CCN2 shRNA melanoma cells after 14 days of tumour growth.  H&E staining detects 

sites of pulmonary metastasis by staining the dense metastatic foci purple (indicated by 

arrow).  (b) The graph quantifies the total area of the lung section covered by metastases.  

Deletion of CCN2 in fibroblasts of the recipient mice results in a significant decrease in 

metastasis compared to cells implanted into wild type mice (N = 8, * = P < 0.05). (c) 

Images of lungs fixed with Bouin’s 21 days after tumour growth of parental melanoma 

cells into wild type or Ccn2 Knockout mice.  Note dark areas (indicated by an arrow), 

indicating metastasized tumours, in wild type but not in (d) Ccn2 Knockout mice (mice 

deleted for CCN2 in fibroblasts). N=3, representative images are shown. 
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Figure 2-4 Loss of CCN2 and periostin expression in tumour stroma in mice deleted 

for CCN2 in fibroblasts.   

Sections of tumour stroma from wild type or Ccn2 Knockout mice (mice deleted for 

CCN2 in fibroblasts) stained with (a) anti-CCN2 or (b) anti-periostin antibody (N=3, 

representative images are shown).  Mice were examined after 14 days of tumour growth 

of parental melanoma cells or melanoma cells deleted for CCN2. Note that CCN2 

appeared be localized to the cells (red arrow) whereas periostin appeared to be localized 

to the matrix. 
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2.3.3 Impaired invasive ability of CCN2-deficient B16(F10) melanoma 
cells is rescued by recombinant periostin 

To begin to address the underlying mechanism of CCN2-dependent action, we performed 

genome-wide expression profiling of B16(F10) melanoma cells stably transfected with 

CCN2 shRNA and scrambled control shRNA.  We found that expression of 115 mRNA 

were reduced greater than 1.5-fold in CCN2 shRNA-transfected B16(F10) melanoma 

cells (Supplemental file).  Of these, we noted that expression of perostin, a matricellular 

protein previously implicated in cell migration, depended on CCN2 (Hamilton 2008).  

Thus, we selected periostin for further analysis. Genome-wide expression profiling 

analysis showing that periostin expression depended on CCN2 was confirmed by real 

time PCR and Western blot analysis (Figure 5A). Addition of recombinant periostin 

rescued the invasive defect of CCN2-deficient cells (Figure 5B,C). Loss of periostin from 

the tumour stroma of C57/BL6 mice deleted for CCN2 after 14 days of tumour growth 

was confirmed by immunohistochemical analysis using anti-periostin antibody (Figure 

4B). These results suggest that the lack of invasive ability of CCN2-deficient melanoma 

cells is due to lack of periostin expression. 

2.3.4 In human melanoma patient samples, CCN2 and POSTN 
expression are correlated with stromal content, and each 
other 

To investigate the role of CCN2 and POSTN in human melanoma samples, we looked at 

the expression levels of both genes in 104 primary and 368 metastatic melanoma patient 

samples from The Cancer Genome Atlas (TCGA).  Stromal scores were calculated for 

each sample by use of the ESTIMATE algorithm and correlated with CCN2 and POSTN 

expression as determined by RNA sequencing.  We found that both CCN2 and POSTN 

correlated strongly with stromal scores (r=0.57 and 0.49, respectively), comparable to the 

strength of the correlation between stromal scores and expression of fibroblast activation 

protein (r=0.57), the quintessential tumour-associated stromal protein (Figure 6, 

Supplemental Figure 2). We also found that CCN2 and POSTN expression positively 

correlated with each other (r=0.33), providing support for a relationship between CCN2  
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Figure 2-5 Rescuing Periostin deficiency rescues impaired invasion phenotype. 

B16(F10) melanoma cells were transfected with either Ccn2 shRNA, to produce a 

knockdown in Ccn2 mRNA expression, or a scrambled shRNA, to act as a control.  (a) 

Cells treated with the Ccn2 shRNA showed a significant decrease in Postn mRNA and 

protein expression compared to cells treated with scrambled control shRNA. (b) Cells 

treated with Ccn2 shRNA were treated with 150ng/mL rPOSTN and subjected to a 

Boyden chamber assay to assess their ability to invade through a collagen matrix.  After 

being given 24 hours to invade through the collagen towards a chemotactic incentive the 

non-invasive cells and collagen were removed and the invasive cells were stained with 

DAPI.  (c) Cells treated with 150ng/mL rPOSTN showed a rescue of the impaired 

invasion phenotype displayed by Ccn2 shRNA treated cells (n = 3, **= p<0.01) 
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Figure 2-6 CCN2 and POSTN expression correlate with stromal content  

Stromal scores for primary (n=104) and metastatic (n=368) melanoma patient samples 

from The Cancer Genome Atlas (TCGA) were calculated by use of the ESTIMATE 

method. Stromal scores were analyzed for correlation with (a) CCN2 and (b) POSTN 

gene expression values (log10(RSEM normalized count)) as determined by RNA 

sequencing (Illumina HiSeq 2000 RNA Sequencing Version 2 analysis). Both CCN2 and 

POSTN were found to highly correlate with the stromal scores (r=0.57 and 0.49, 

respectively). (c) Scatterplot comparison of CCN2 and POSTN gene expression values 

(log10(RSEM normalized count)) revealed a correlation between the expression of those 

two genes in patient samples (r=0.33). Rug plots show the density of the data for given 

values. 
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and POSTN that extends to human melanoma patient samples (Figure 6).  Intriguingly, 

CCN2 (Supplemental Figure 3 A, B) and POSTN (Supplemental Figure 3 C, D) 

expression did not correlate with the presence of B-RAF mutations in melanoma patients. 

Conversely, CCN expression correlated with the activation state of protein kinase C in 

human melanomas, and protein kinase C inhibition reduced CCN2 mRNA expression in 

human and mouse melanoma cells (Supplemental Figure 4 A, B). 

Collectively, these data confirm our in vitro and animal studies, and suggest that CCN2 

and POSTN are highly stromally expressed and that these matricellular proteins are co-

regulated. 

2.4 Discussion 

Our results demonstrated that CCN2 expression by tumour stroma is required for 

melanoma metastasis. An emerging concept is that alterations in the tumour 

microenvironment promote invasion and metastasis and thus that targeting these 

alterations may result in effective anti-cancer therapies (Jewer, Findlay et al. 2012, Quail, 

Taylor et al. 2012).  Matricellular proteins such as CCN2 and periostin are secreted into 

the extracellular matrix (ECM) that are highly spatiotemporally regulated and, although 

they are not structural ECM components, alter adhesive signaling in response to ECM 

and growth factors and hence can have profound localized effects on cellular behavior. 

The CCN family of matricellular proteins, at least in part due to its ability to promote 

signaling via integrins, has recently been proposed to play significant roles in altering the 

tumour microenvironment hence contributing to tumour growth and metastasis. Previous 

studies have found that CCN2 is abundant in cancers such as pancreatic cancer, and that 

this overexpression is related to cancer progression (Aikawa, Gunn et al. 2006, 

Dornhofer, Spong et al. 2006, Kondo, Kubota et al. 2006, Bennewith, Huang et al. 2009, 

Sodek, Ringuette et al. 2009, Mao, Ma et al. 2011). Our results showing that fibroblast-

derived CCN2 contributes to melanoma metastasis suggest that CCN2 may be a good 

target for drug intervention in melanoma. Our data are consistent with and extend 

previous data showing that CCN2 is upregulated in cancer cells in response to hypoxia, 

oncogenic ras, and YAP/TAZ/hippo and that an antibody against CCN2 blocks 
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progression in animal models of pancreatic cancer and melanoma (Aikawa, Gunn et al. 

2006, Sha and Leask 2011, Finger, Cheng et al. 2014, Nallet-Staub, Marsaud et al. 2014)  

Periostin, like CCN2, is a matricellular protein upregulated in conditions wherein the 

ECM is being remodeled (Hamilton 2008).  Our data suggesting that periostin operates 

downstream of CCN2 to promote invasion is consistent with prior data using periodontal 

ligament cells that showed rCCN2 induced periostin expression (Asano, Kubota et al. 

2005); however, our data is the first to link CCN2 and periostin in terms of tumour 

metastasis. In this regard, it is interesting to note that CCN2 appeared to be largely 

localized to the cell, whereas periostin appeared to be present in the ECM.  Previous data 

has linked periostin expression with metastasis in some tumours including in invasive 

melanoma (Tilman, Mattiussi et al. 2007, Kotobuki, Yang et al. 2014).  Moreover, 

periostin has been shown to be upregulated in fibroblasts in the tumour 

microenvironment (Kikuchi, Kunita et al. 2014) and studies indicate that it promotes the 

invasiveness of pancreatic tumour cells (Baril, Gangeswaran et al. 2007).  However, this 

is the first report to link tumour invasion in melanoma with periostin expression, 

consistent with the notion that targeting periostin may prove to be a viable anti-cancer 

therapy. 

40–60% of all cutaneous melanoma patients possess position 600 mutations in BRAF; in 

these patients, tumours shrink in response to the BRAF inhibitors vemurafenib and 

dabrafenib (Fedorenko, Gibney et al. 2015). However, patients develop resistance to 

these drugs (Fedorenko, Gibney et al. 2015).  That neither periostin nor CCN2 expression 

correlate with BRAF mutations suggest that anti-periostin or anti-CCN2 therapies may 

represent novel therapeutic strategies with an entirely different mechanism of action.  As 

CCN2 expression appears to be downstream of PKC, possibly CCN2 elicits its effects by 

mediating combined protein kinase C/MAP kinase or protein kinase C/Akt pathways 

(Musi, Ambrosini et al. 2014). 

In summation, herein we have provided data that suggest that CCN2 present in the 

tumour stroma is required for melanoma metastasis. These data are consistent with the 
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hypothesis that blocking CCN2 action may be a novel approach to mitigate progression 

of melanoma. 
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Supplemental Figure 1:  Loss of CCN2 does not affect the proliferation of melanoma 

cells.  

(a) B16(F10) murine melanoma cells were transfected with either CCN2 shRNA, to 

produce a knockdown in Ccn2 mRNA expression, or a scrambled shRNA, to act as a 

control.  Proliferation of the cells was then determined by measuring the rate of BrdU 

incorporation into newly synthesized DNA after for 6 or 24 hours.  There was no 

significant difference in the rates of BrdU incorporation between cells, indicating that 

DNA was synthesized at the same rate, and thus cell proliferation was unaffected (n = 3).  

(b) Parental or CCN2 shRNA B16(F10) melanoma cells were implanted subcutaneously 

into mice whose fibroblasts were either CCN2 competent or deficient, and allowed to 

grow for 14 days.  Neither reduced CCN2 expression in the tumour cells nor the stroma 

altered tumour growth.  Kruskal-Wallis analysis shows no significant difference in 

growth at any time point. (N = 8) 
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Supplemental Figure 2. Correlation of HMGA2 and FAP to stromal content.  

Stromal scores for primary (n=104) and metastatic (n=368) melanoma patient samples 

from The Cancer Genome Atlas (TCGA) were calculated by use of the ESTIMATE 

method. Stromal scores were analyzed for correlation with (a) HMGA2 and (b) FAP gene 

expression values (log10(RSEM normalized count)) as determined by RNA sequencing 

(Illumina HiSeq 2000 RNA Sequencing Version 2 analysis). FAP was found to highly 

correlate with the stromal scores (r=0.57). Rug plots show the density of the data for 

given values.  
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Supplemental Figure 3. CCN2 and POSTN expression do not correlate with B-RAF 

mutation  

Barplots show no significant difference in the expression levels of (a, b) CCN2 and (c,d) 

POSTN in (a,c) BRAF mutated or (b,d) BRAF
V600

 mutated human melanoma tumour 

samples from The Cancer Genome Atlas. (mean+/-SEM, n=296, significance determined 

by t test) 
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Supplemental Figure 4.  CCN2 Expression is elevated in a PKC dependent fashion. 

a) Scatterplot displaying the positive correlation between CCN2 expression values 

(RNA-sequencing, log(RSEM normalized count)) and PKC alpha pS657 protein levels 

(RPPA) in TCGA melanoma patient samples. Rug plots show the density of the data for 

given values.  Pearson correlation coefficient = 0.29, p<0.01. (b) Treatment with 10µM 

Bisindolylmaleimide I (BIM) showed a significant reduction in CCN2 mRNA expression 

in both B16F10 and C8161 cells (n = 3, **** = p<0.001) 

  



67 

 

2.5 References 

Aikawa, T., J. Gunn, S. M. Spong, S. J. Klaus and M. Korc (2006). "Connective tissue 

growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in 

an orthotopic mouse model of pancreatic cancer." Mol Cancer Ther 5(5): 1108-1116. 

Asano, M., S. Kubota, T. Nakanishi, T. Nishida, T. Yamaai, G. Yosimichi, K. Ohyama, 

T. Sugimoto, Y. Murayama and M. Takigawa (2005). "Effect of connective tissue growth 

factor (CCN2/CTGF) on proliferation and differentiation of mouse periodontal ligament-

derived cells." Cell Commun Signal 3: 11. 

Baril, P., R. Gangeswaran, P. C. Mahon, K. Caulee, H. M. Kocher, T. Harada, M. Zhu, H. 

Kalthoff, T. Crnogorac-Jurcevic and N. R. Lemoine (2007). "Periostin promotes 

invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role 

of the beta4 integrin and the PI3k pathway." Oncogene 26(14): 2082-2094. 

Bennewith, K. L., X. Huang, C. M. Ham, E. E. Graves, J. T. Erler, N. Kambham, J. 

Feazell, G. P. Yang, A. Koong and A. J. Giaccia (2009). "The role of tumor cell-derived 

connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth." Cancer Res 

69(3): 775-784. 

Bleau, A. M., N. Planque and B. Perbal (2005). "CCN proteins and cancer: two to tango." 

Front Biosci 10: 998-1009. 

Chen, C. C. and L. F. Lau (2009). "Functions and mechanisms of action of CCN 

matricellular proteins." Int J Biochem Cell Biol 41(4): 771-783. 

Chen, H. C. (2005). "Boyden chamber assay." Methods Mol Biol 294: 15-22. 

Coussens, L. M. and Z. Werb (2002). "Inflammation and cancer." Nature 420(6917): 

860-867. 

Cummins, D. L., J. M. Cummins, H. Pantle, M. A. Silverman, A. L. Leonard and A. 

Chanmugam (2006). "Cutaneous malignant melanoma." Mayo Clin Proc 81(4): 500-507. 

Dornhofer, N., S. Spong, K. Bennewith, A. Salim, S. Klaus, N. Kambham, C. Wong, F. 

Kaper, P. Sutphin, R. Nacamuli, M. Hockel, Q. Le, M. Longaker, G. Yang, A. Koong and 

A. Giaccia (2006). "Connective tissue growth factor-specific monoclonal antibody 

therapy inhibits pancreatic tumor growth and metastasis." Cancer Res 66(11): 5816-5827. 

Fedorenko, I. V., G. T. Gibney, V. K. Sondak and K. S. Smalley (2015). "Beyond BRAF: 

where next for melanoma therapy?" Br J Cancer 112(2): 217-226. 

Finger, E. C., C. F. Cheng, T. R. Williams, E. B. Rankin, B. Bedogni, L. Tachiki, S. 

Spong, A. J. Giaccia and M. B. Powell (2014). "CTGF is a therapeutic target for 

metastatic melanoma." Oncogene 33(9): 1093-1100. 



68 

 

Friedman, D. B., S. Hoving and R. Westermeier (2009). "Isoelectric focusing and two-

dimensional gel electrophoresis." Methods Enzymol 463: 515-540. 

Gray-Schopfer, V., C. Wellbrock and R. Marais (2007). "Melanoma biology and new 

targeted therapy." Nature 445(7130): 851-857. 

Guo, F., D. E. Carter and A. Leask (2011). "Mechanical tension increases CCN2/CTGF 

expression and proliferation in gingival fibroblasts via a TGFbeta-dependent 

mechanism." PLoS One 6(5): e19756. 

Guo, F., D. E. Carter, A. Mukhopadhyay and A. Leask (2011). "Gingival fibroblasts 

display reduced adhesion and spreading on extracellular matrix: a possible basis for 

scarless tissue repair?" PLoS One 6(11): e27097. 

Hamilton, D. W. (2008). "Functional role of periostin in development and wound repair: 

implications for connective tissue disease." J Cell Commun Signal 2(1-2): 9-17. 

Jewer, M., S. D. Findlay and L. M. Postovit (2012). "Post-transcriptional regulation in 

cancer progression : Microenvironmental control of alternative splicing and translation." 

J Cell Commun Signal 6(4): 233-248. 

Kikuchi, Y., A. Kunita, C. Iwata, D. Komura, T. Nishiyama, K. Shimazu, K. Takeshita, J. 

Shibahara, I. Kii, Y. Morishita, M. Yashiro, K. Hirakawa, K. Miyazono, A. Kudo, M. 

Fukayama and T. G. Kashima (2014). "The niche component periostin is produced by 

cancer-associated fibroblasts, supporting growth of gastric cancer through ERK 

activation." Am J Pathol 184(3): 859-870. 

Kondo, S., S. Kubota, Y. Mukudai, N. Moritani, T. Nishida, H. Matsushita, S. 

Matsumoto, T. Sugahara and M. Takigawa (2006). "Hypoxic regulation of stability of 

connective tissue growth factor/CCN2 mRNA by 3'-untranslated region interacting with a 

cellular protein in human chondrosarcoma cells." Oncogene 25(7): 1099-1110. 

Kotobuki, Y., L. Yang, S. Serada, A. Tanemura, F. Yang, S. Nomura, A. Kudo, K. 

Izuhara, H. Murota, M. Fujimoto, I. Katayama and T. Naka (2014). "Periostin accelerates 

human malignant melanoma progression by modifying the melanoma 

microenvironment." Pigment Cell Melanoma Res 27(4): 630-639. 

Leask, A. and D. J. Abraham (2006). "All in the CCN family: essential matricellular 

signaling modulators emerge from the bunker." J Cell Sci 119(Pt 23): 4803-4810. 

Liu, S., X. Shi-wen, D. J. Abraham and A. Leask (2011). "CCN2 is required for 

bleomycin-induced skin fibrosis in mice." Arthritis Rheum 63(1): 239-246. 

Mao, Z., X. Ma, Y. Rong, L. Cui, X. Wang, W. Wu, J. Zhang and D. Jin (2011). 

"Connective tissue growth factor enhances the migration of gastric cancer through 

downregulation of E-cadherin via the NF-kappaB pathway." Cancer Sci 102(1): 104-110. 



69 

 

Musi, E., G. Ambrosini, E. de Stanchina and G. K. Schwartz (2014). "The 

phosphoinositide 3-kinase alpha selective inhibitor BYL719 enhances the effect of the 

protein kinase C inhibitor AEB071 in GNAQ/GNA11-mutant uveal melanoma cells." 

Mol Cancer Ther 13(5): 1044-1053. 

Nallet-Staub, F., V. Marsaud, L. Li, C. Gilbert, S. Dodier, V. Bataille, M. Sudol, M. 

Herlyn and A. Mauviel (2014). "Pro-invasive activity of the Hippo pathway effectors 

YAP and TAZ in cutaneous melanoma." J Invest Dermatol 134(1): 123-132. 

Perbal, B. (2013). "CCN proteins: A centralized communication network." J Cell 

Commun Signal 7(3): 169-177. 

Quail, D. F., M. J. Taylor and L. M. Postovit (2012). "Microenvironmental regulation of 

cancer stem cell phenotypes." Curr Stem Cell Res Ther 7(3): 197-216. 

Reed, K. B., J. D. Brewer, C. M. Lohse, K. E. Bringe, C. N. Pruitt and L. E. Gibson 

(2012). "Increasing incidence of melanoma among young adults: an epidemiological 

study in Olmsted County, Minnesota." Mayo Clin Proc 87(4): 328-334. 

Seftor, E. A., K. M. Brown, L. Chin, D. A. Kirschmann, W. W. Wheaton, A. Protopopov, 

B. Feng, Y. Balagurunathan, J. M. Trent, B. J. Nickoloff, R. E. Seftor and M. J. Hendrix 

(2005). "Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma 

microenvironment." Cancer Res 65(22): 10164-10169. 

Segarini, P. R., J. E. Nesbitt, D. Li, L. G. Hays, J. R. Yates, 3rd and D. F. Carmichael 

(2001). "The low density lipoprotein receptor-related protein/alpha2-macroglobulin 

receptor is a receptor for connective tissue growth factor." J Biol Chem 276(44): 40659-

40667. 

Sha, W. and A. Leask (2011). "CCN2 expression and localization in melanoma cells." J 

Cell Commun Signal 5(3): 219-226. 

Sodek, K. L., M. J. Ringuette and T. J. Brown (2009). "Compact spheroid formation by 

ovarian cancer cells is associated with contractile behavior and an invasive phenotype." 

Int J Cancer 124(9): 2060-2070. 

Soengas, M. S. and S. W. Lowe (2003). "Apoptosis and melanoma chemoresistance." 

Oncogene 22(20): 3138-3151. 

Steeg, P. S. (2006). "Tumor metastasis: mechanistic insights and clinical challenges." Nat 

Med 12(8): 895-904. 

Tilman, G., M. Mattiussi, F. Brasseur, N. van Baren and A. Decottignies (2007). "Human 

periostin gene expression in normal tissues, tumors and melanoma: evidences for 

periostin production by both stromal and melanoma cells." Mol Cancer 6: 80. 

Wack, C., A. Kirst, J. C. Becker, W. K. Lutz, E. B. Brocker and W. H. Fischer (2002). 

"Chemoimmunotherapy for melanoma with dacarbazine and 2,4-dinitrochlorobenzene 



70 

 

elicits a specific T cell-dependent immune response." Cancer Immunol Immunother 

51(8): 431-439. 

Wong, G. S. and A. K. Rustgi (2013). "Matricellular proteins: priming the tumour 

microenvironment for cancer development and metastasis." Br J Cancer 108(4): 755-761. 

Xie, D., K. Nakachi, H. Wang, R. Elashoff and H. P. Koeffler (2001). "Elevated levels of 

connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers 

associated with more advanced features." Cancer Res 61(24): 8917-8923. 

Yang, F., J. A. Tuxhorn, S. J. Ressler, S. J. McAlhany, T. D. Dang and D. R. Rowley 

(2005). "Stromal expression of connective tissue growth factor promotes angiogenesis 

and prostate cancer tumorigenesis." Cancer Res 65(19): 8887-8895. 

Yoshihara, K., M. Shahmoradgoli, E. Martinez, R. Vegesna, H. Kim, W. Torres-Garcia, 

V. Trevino, H. Shen, P. W. Laird, D. A. Levine, S. L. Carter, G. Getz, K. Stemke-Hale, 

G. B. Mills and R. G. Verhaak (2013). "Inferring tumour purity and stromal and immune 

cell admixture from expression data." Nat Commun 4: 2612. 

Zheng, B., Z. Zhang, C. M. Black, B. de Crombrugghe and C. P. Denton (2002). 

"Ligand-dependent genetic recombination in fibroblasts : a potentially powerful 

technique for investigating gene function in fibrosis." Am J Pathol 160(5): 1609-1617. 

 



71 

 

Chapter 3  

3 CCN2 expression in tumour stroma is required for 
tumour vascularization and formation of a contractile 
stroma 

3.1 Introduction 

Melanoma is an invasive cancer that is increasing in frequency, and due to its metastatic 

ability and resistance to therapies is highly fatal with only 5% of metastatic melanoma 

patients expected to survive for 5 years after diagnosis (Cummins, Cummins et al. 2006, 

Reed, Brewer et al. 2012).  There has been a large amount of effort directed towards 

finding therapies to improve patient outcomes in melanoma, but these efforts have 

yielded limited results so far.  Although initially regarded as promising breakthroughs, 

small molecule inhibitors targetting the BRAF mutation show limited windows of 

efficacy before the tumour rapidly adapts, with almost all patients  acquiring resistance to 

the therapy (Lim, Menzies et al. 2017).  One theory as to what causes this resistance and 

subsequent tumour resurgence is that inhibition of growth and survival signals by BRAF 

inhibitors can be overcome by activation of alternate signaling pathways driven by β1 

integrin-mediated pro-adhesive associations with the extracellular matrix (Hirata, Girotti 

et al. 2015). 

Another promising area of investigation is in disrupting the vascular networks feeding 

tumours, since avascular tumours are limited in size by the distance that oxygen can 

diffuse through tissue to reach the core of the tumour (Zaki, Basu et al. 2012, Maj, 

Papiernik et al. 2016).  In addition to allowing for the delivery of oxygen and the removal 

of metabolic waste products from proliferating cancer cells, the vasculature of a tumour 

provides easy access to the circulatory system of the body, and thus is a potential 

pathway for metastasis (van Zijl, Krupitza et al. 2011).  While there are many different 

strategies and specific targets, the majority of anti-angiogenic therapies developed to date 

have focused on disruption of the VEGF signaling pathway (Maj, Papiernik et al. 2016) 

Despite some promising preclinical results, these therapies have also been largely 

ineffective in melanoma due to the upregulation of non-VEGF derived vascularization 
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mechanisms within the tumour and associated stroma.  These can include activation of 

alternate pathways for inducing endothelial cell based angiogenesis, co-option of 

endogenous vascular networks, and a process called Vasculogenic Mimicry involving the 

acquisition of endothelial-like phenotypes by melanoma cells allowing them to form 

vascular networks independent of endothelial cell angiogenesis (Bergers and Hanahan 

2008, Pastushenko, Vermeulen et al. 2014, Felcht and Thomas 2015).  

While VEGF is the primary signaling pathway involved in sprouting angiogenesis, as 

seen in development and wound healing, there are many other molecules within the 

extracellular matrix that are integrally involved in the process of tumour vascularization 

as well:  Matrix metalloproteinases are involved in degrading extracellular matrix and 

liberating bound pro-angiogenic factors, Transforming Growth Factor β is involved in the 

recruitment of perivascular cells which stabilize newly formed vasculature, and several 

different collagens promote angiogenesis through integrin signaling (Pastushenko, 

Vermeulen et al. 2014, Felcht and Thomas 2015, Mongiat, Andreuzzi et al. 2016).  The 

CCN family of matricellular proteins serve as regulators and modulators of how cells 

interact with their environment by mediating signaling of growth factors, extracellular 

matrix components, and other cytokines to cell surface receptors (Leask and Abraham 

2006, Mongiat, Andreuzzi et al. 2016).  CCN2 (formerly known as CTGF) is expressed 

by activated fibroblasts like those found in the tumour stroma, and is involved in 

angiogenesis by promoting pericyte recruitment and basement membrane organization; in 

fact, CCN2 null mice exhibit severe vascular defects and die shortly after birth (Mongiat, 

Andreuzzi et al. 2016). 

In this report we use a syngeneic model of C57 BL6 mice with a conditional CCN2 

deletion in fibroblasts and B16F(10) murine melanoma cells to investigate the role of 

stromal CCN2 in the activation of a contractile, α-SMA expressing stroma and tumour 

vascularization. 
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3.2 Methods 

3.2.1 Cell Culture 

B16(F10) murine melanoma cells were purchased (ATCC) and cultured in high glucose 

Dulbecco's Modified Eagle's Medium (DMEM), 10% fetal bovine serum (FBS) and 1% 

antibiotic/antimycotic solution  (Invitrogen).  When indicated, cells were transfected with 

CTGF (CCN2) shRNA Lentiviral or control shRNA Lentiviral Particles (Santa Cruz) 

using polybrene and selected for using puromycin as described by the manufacturer 

(Santa Cruz). 

3.2.2 In vivo tubule formation assay 

50μL of Geltrex LDEV-free reduced growth factor basement membrane matrix (Thermo 

Fisher Scientific) was added to each well of a 96-well plate, and incubated at 37°C to 

allow polymerization.  10,000 cells were seeded in serum-free DMEM and incubated for 

8 hours.  Formed tubules were imaged on Carl Zeiss Imager M2m microscope (Carl 

Zeiss, Jena, Germany) using Zen Pro 2012 software.  Tubule area and number of tubules 

and nodes were quantified using ImageJ 1.48v (National Institutes of Health, Bethesda, 

MD, USA).   

3.2.3 Conditioned Media (CM) sample preparation 

To prepare CM for LC-MS/MS,  ~20 mL of CM was concentrated using a Amicon Ultra-

15 3kDa MWCO ultracentrifugal units spun at 3000x g at 4C for 1.5 hours in a swinging 

bucket rotor. CM was subsequent rinsed with PBS to remove excess dye. Concentrated 

CM was lyophilized overnight and then dissolved in 8M Urea, 50mM ammonium 

bicarbonate (ABC), 10mM dithiothreitol (DTT), 2% SDS lysis buffer the following day. 

CM was quantifed using a Pierce™ 660nm Protein Assay (ThermoFisher Scientific) with 

ionic detegent compatibility reagent (ThermoFisher Scientific) and ~25ug of CM proteins  

were reduced in 10mM DTT for 30 minutes and alkylated in 100mM iodoacetamide 

(IAA) for 30 minutes at room temperature in the dark. CM proteins were subsequently 

precipitated in chloroform/methanol in 1.5mL microfuge tubes according to Wessel and 

Flügge (Wessel and Flugge 1984). Briefly, CM samples were topped up to 150µL with 
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50mM ABC, mixed with 600μL of -20°C methanol followed by 150μL of -20°C 

chloroform and vortexed thoroughly.  An additional volume of 450μL of 4°C water was 

added before additional vortexing and centrifugation at 14, 000 xg for 5 min. The upper 

aqueous/methanol phase was carefully removed to avoid disturbing the precipitated 

protein interphase. A second 450μL volume of cold methanol was added to each sample 

followed by vigorous vortexing and centrifugation at 14, 000 xg for 5 min. The remaining 

chloroform/methanol was discarded and the precipitated protein pellet was left to air dry 

in a fume hood. 

3.2.4 CM protein digestion 

On-pellet protein digestion was performed similarly to Duan et al.(Duan, Young et al. 

2009). Briefly, 100µL of 50mM ABC (pH 8) plus LysC/Trypsin (Promega) (1:50 ratio) 

was added to precipitated CM proteins and vortexed vigorously.  CM samples were 

incubated at 37°C overnight (~18h) in a water bath shaker (Polyscience) at 190 rpm. An 

additional volume of trypsin (Promega)(1:100 ratio) was added the next day for ~4 hours 

before acidifying to pH 3-4 with 10% fumaric acid (FA). CM digests were centrifuged at 

14,000 xg to pellet insoluble material before SCX peptide fractionation. 

3.2.5 SCX peptide fractionation 

Tryptic peptides recovered from CM digests were fractionated using SCX StageTips 

similarly to Kulak et al.(Kulak, Pichler et al. 2014).  Briefly, peptides were acidified with 

1% trifluoroacetic acid (TFA) and loaded onto a pre-rinsed 12-plug SCX StageTips. In 

total total, 7 SCX fractions were collected by eluting in 50,75, 125, 200,  250, 300 mM 

ammonium acetate/20% ACN followed by a final elution in 5 mM ammonium 

hydroxide/80% acetonitrile (ACN). SCX fractions were dried in a SpeedVac (Thermo 

Fisher),  resuspended in ddH2O, and dried again to evaporate residual ammonium acetate. 

All samples were resuspended in 0.1% FA prior to LC-MS/MS analysis. 

3.2.6 LC-MS/MS 

SCX fractions were analyzed using an nanoAquity UPLC system (Waters) connected to a 

Orbitrap Elite mass spectrometer (Thermo Scientific). Buffer A consisted of water/0.1% 
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FA and Buffer B consisted of ACN/0.1%FA. Peptides (~1µg estimated by BCA) were 

initially loaded onto an ACQUITY UPLC C18 Trap Column, 5 µm, 180 µm x 20 mm 

and trapped for 5 minutes at a flow rate of 10 µl/min at 99% A/1% B. Peptides were 

separated on an ACQUITY UPLC Peptide BEH C18 Column, 130Å, 1.7µm, 75µm x 

250mm operating at a flow rate of 300 nL/min at 35°C using a non-linear gradient 

starting at 5% B then 7.5% B over 1 minute, 7-25% B over 179 minutes and 25-32.5% B 

over 30 minutes before increasing to 95% B and washing. MS precursor scans were 

acquired in the Orbitrap at a resolution of 60K (m/z window of 400-1450). MS/MS was 

performed on the top 20 most intense precursor ions in linear ion trap operating in rapid 

CID mode (isolation width of 2.0 m/z). A dynamic exclusion width of 30 seconds was 

used (dynamic exclusion mass width low and high were set  to 0.5 and 1.5  respectively). 

An AGC target of 10000 and maximum injection time of 50 ms was used for MS/MS in 

the ion trap. A minimum signal threshold of 1000 and normalized collision energy of 

35% was used for fragmentation. The lock mass was 445.120025 for ppm correction. 

3.2.7 Data Analysis 

All raw MS raw files were searched in MaxQuant (1.5.2.8) using the Mouse Uniprot 

database (reviewed only; updated Dec 2015). Missed cleavages were set to 3 and I=L. 

Cysteine carbamidomethylation was set as a fixed modification. Oxidation (M), N-

terminal Acetylation (protein), and Deamidation (NQ) were set as a variable 

modifications (max. number of modifications per peptide = 5) and all other setting were 

left as default. Precursor mass deviation was left at 20 ppm and 4.5 ppm for first and 

main search, respectively. Fragment mass deviation was left at 20 ppm. Protein and 

peptide FDR was set to 0.01 (1%) and the decoy database was set to revert. Datasets were 

loaded into Perseus (1.5.2.6) and proteins identified by site, reverse and potential 

contaminants were removed. LFQ intensities were log2 transformed and missing values 

were imputed using a width of 0.3 and down shift of 1.8. 

3.2.8 ELISA 

Secreted VEGFa and proCOL1a1 levels were determined in triplicate using a Quantikine 

Mouse VEGF ELISA kit (R&D Systems) and Mouse Pro-Collagen I alpha 1 ELISA kit 
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(Abcam).  Assays were performed according to the manufacturer's instructions, with 5 

times dilution of conditioned media for VEGF assay.  A standard curve  was constructed 

for each assay (linear between 31.3 and 2000 pg/mL for ProCOL1a1 and between 7.8 and 

500 pg/mL for VEGF). 

3.2.9 Animals 

Mice possessing a tamoxifen-dependent Cre recombinase under the control of a 

fibroblast-specific regulatory sequence from the proα2(I) collagen gene (Zheng, Zhang et 

al. 2002) were crossed with mice homozygous for a conditional CCN2 allele to generate 

Cre/CCN2 heterozygote mice, which were mated to generate mice hemizygous for Cre 

and homozygous for CCN2.  For immunohistochemistry experiments these mice were 

mated with Col1a2-Cre(ER)T;Rosa26mTmG mice, generated as previously described 

(Liu and Leask 2013), resulting in Cre/CCN2/mTmG heterozygote mice which were 

mated to generate mice hemizygous for Cre and homozygous for CCN2 and mTmG.  

Animals used for experiments were genotyped by polymerase chain reaction (PCR) as 

described previously (Zheng, Zhang et al. 2002, Liu, Shi-wen et al. 2011).  To delete 

CCN2 (CCN2-/-), excise tdTomato, and trigger expression of GFP in fibroblasts, 3-week-

old mice were given intraperitoneal injections of tamoxifen suspension (0.1 ml of 10 

mg/mL 4-hydroxitamoxifen, Sigma) over 5 days. Col1a2-Cre(ER)T;Rosa26mTmG were 

also injected with tamoxifen, and were used as controls (CCN2
fl/fl

). For micro-CT 

experiments 3-week-old Cre/CCN2 mice were given intraperitoneal injections of 

tamoxifen suspension over 5 days to delete CCN2 (CCN2
-/-

), and littermate contols 

injected with corn oil were used as controls (CCN2
fl/fl

).  All animal protocols were 

approved by the animal care committee at the University of Western Ontario. 

3.2.10 In vivo tumour implantation 

Subconfluent melanoma cells in the exponential growth phase were harvested by 

exposure to 0.25% trypsin/0.02% EDTA solution, resuspended in serum-free DMEM at a 

concentration of 3300 cells/µL, and 330,000 cells were injected subcutaneously into the 

right flank of each mouse.  After appearance of a palpable tumour mice were monitored 

for 14 days before being euthanized.  After euthanasia mice were either perfused with 
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micro-CT contrast agent as described below, or tumours were harvested, embedded in 

TissueTek O.C.T. compound (VWR), and frozen.   

3.2.11 Immunohistochemistry 

Frozen sections (20μm) were cut at -22°C using a refrigerated microtome Leica CM1900 

UV cryostat (Leica, Concord, ON, Canada) and collected on Superfrost Plus slides 

(Fisher Scientific, Ottawa, ON, Canada).  Excess O.C.T. compound was removed from 

sections by soaking in PBS for 30 minutes prior to blocking with 10% serum in 0.1% 

Triton X-100 in PBS for 1 hour and then in primary antibody in 10% serum in 0.1% 

Triton X-100 in PBS overnight in a humidified chamber at 4°C overnight.  The primary 

antibodies used in this study were:  anti-α-SMA (1:2000 dilution; Sigma), anti-vWF 

(1:200 dilution; Chemicon International), anti-SOX2 conjugated to Alexa Fluor 647 

(1:100 dilution; abcam).  After primary antibody incubation sections were rinsed and 

incubated in appropriate secondary antibodies (Jackson ImmunoResearch) at room 

temperature (~23°C) for 1 hour.  Sections were rinsed, mounted and imaged on a Zeiss 

fluorescence microscope and Northern Eclipse software.   

3.2.12 Vascular perfusion of micro-CT contrast agent 

Mice were injected intraperitoneally with sodium heparin solution to prevent coagulation.  

After 15 minutes the mice were euthanized by isofluorane asphyxiation to preserve 

vascular structure.  Each mouse had its chest opened to reveal the heart.  A small incision 

was made in the right atrium to allow for drainage of blood, and a butterfly needle was 

inserted into the left ventricle.  Heparinized saline was run through the butterfly needle at 

~120 mmHg to flush the vasculature of blood.  Once the vasculature was cleared of blood 

Microfil (Flow-Tech, Carver, MA) was run through the butterfly needle until vasculature 

was fully perfused.  Microfil was allowed to polymerize for approximately 30 minutes 

before the butterfly needle was removed and the mouse was immersed in 4% PFA until 

fixed (approximately 24 hours).  After preliminary CT scans to ensure full vascular 

perfusion of each mouse, tumours were removed and embedded in paraffin for high 

resolution X-ray micro-CT acquisition.  
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3.2.13 X-ray micro-CT acquisition 

Samples were scanned on a GE Locus MS-8 x-ray conebeam micro-CT imaging system 

(GE Medical Systems, London, ON) operating at a peak energy of 80 kVp and tube 

current of 80 μA. 900 X-ray projections were acquired at 0.4 degree angular increments 

during a full 360 degree rotation of the sample.  Each projection was the average of 4 

frames with an integration time of 3000 ms.  The data was reconstructed into a 3D data 

set with isotropic 11.473 μm voxel spacing using custom software employing a Feldkamp 

filtered-backprojection algorithm. Water-filled compartments and air regions were 

included in each scan as an internal reference in order to ensure that the final 

reconstructions were properly calibrated in Hounsfield Units (HU).  Visualization and 

analysis of the 3D μCT data was performed in MicroView (GE Healthcare, Parallax 

Innovations, London, ON). 

3.2.14 Datasets and Analysis of Patient Samples 

Level 3 TCGA RNAseqV2 gene expression data was obtained from the TCGA Data 

Portal in January 2016.  Enrichment for CCN2 associated gene sets was conducted using 

Generally Applicable Gene-set Enrichment (GAGE, v2.12.3). Hallmark gene sets were 

downloaded from the Molecular Signatures Database 

(http://software.broadinstitute.org/gsea/msigdb) v5.0 on 10 August 2015 (Subramanian, 

Tamayo et al. 2005). Enrichment was calculated against a formulated sample composed 

of the mean expression values for each gene and sample-specific test statistics were 

correlated to CCN2 expression values (log10[RSEM+1]) using Spearman’s rank 

correlation. The heatmap was constructed using genes from the Hallmark Angiogenesis 

gene set that correlated with CCN2 expression values (log10[RSEM+1]) with a rho>0.25.  

We conducted all analyses and visualizations in the RStudio programming environment 

(v0.98.501). R/Bioconductor packages ggplot2, plyr, gplots, and GAGE were used where 

appropriate.   
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3.3 Results 

3.3.1 CCN2 in fibroblasts is required for the activation of contractile 
stroma 

B16F(10) melanoma cells were injected subcutaneously into syngeneic C57 BL6 mice 

deleted for CCN2 or not in fibroblasts, and expressing GFP in fibroblasts.  Melanoma 

cells were injected 2 weeks after gene deletion, and were allowed to grow for 14 days 

after the detection of a palpable tumour.  Fresh tumour tissue was harvested and frozen in 

O.C.T. for sectioning.  Sections were stained for anti-αSMA to determine the extent to 

which the stroma had adopted a contractile phenotype, and anti-SOX2 as myofibroblasts 

in fibrotic environments have been shown to largely express SOX2 (Tsang and Leask 

2015) (Figure 1).  While there was no difference in the proportion of stromal cells 

derived from fibroblasts (GFP positive cells), there was a significant reduction in the 

proportion of cells expressing SOX2 and almost no cells expressing αSMA in mice 

deleted for CCN2 in the stroma compared to wild-type.  Additionally, the proportion of 

cells co-expressing GFP and SOX2 was also reduced.   

These results indicate that CCN2 is not required for the recruitment of fibroblasts to the 

tumour stroma, but it is required for those fibroblasts to acquire SOX2 and αSMA 

expression, and also for non-fibroblast derived cells to acquire their expression. 

3.3.2 Loss of CCN2 expression in the stroma resulted in impaired 
tumour vascularization in vivo 

As lack of CCN2 causes perinatal death due to inadequate basement membrane formation 

and lack of pericyte recruitment to vasculature we investigated the effects of CCN2 on 

tumour vascularization.  B16F(10) melanoma cells were injected subcutaneously into 

syngeneic C57 BL6 mice deleted for CCN2 in fibroblasts or not.  After growing for 14 

days after the appearance of a palpable tumour the mice were perfused with a micro-CT 

contrast agent, tumours were harvested and then scanned by x-ray micro-CT.  After being 

calibrated against an air-water capsule, total volume of tumour and total volume of  
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Figure 3-1 Loss of CCN2 prevents activation of αSMA and expression of plasticity 

marker SOX2 

Sections of tumour stroma from wild-type or Ccn2-knockout mice (mice deleted for 

CCN2 in fibroblasts) which contain a GFP reporter for cells expressing collagen 1α2 

(synthetic fibroblasts) at 3 weeks of age.  (a) Sections were stained for αSMA (blue), 

SOX2 (violet), and GFP (green).  Ccn2-knockout mice showed a significant reduction in 

(b) the number of cells of fibroblastic origin (GFP positive), (c) stromal SOX2 and (d) 

αSMA expression, as well as a significant reduction in the number of cells co-expressing 

GFP with (e) SOX2 and (f) αSMA (t-test, n = 3, * = p<0.05, *** = p<0.001, **** = 

p<0.0001) 
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tumour vasculature were calculated.  Tumours in mice with CCN2 deleted in fibroblasts 

had significantly less vascular volume than those in wild-type mice (Figure 2).  To see if 

this extended into human melanoma patients we looked at mRNA expression levels of 

470 melanoma patient samples from The Cancer Genome Atlas (TCGA).  CCN2 

expression was strongly correlated with expression of genes in the angiogenesis gene set 

(Figure 3).   

Taken together, this data indicates that stromal CCN2 expression is an important factor in 

the vascularization of tumours. 

3.3.3 Loss of CCN2 in melanoma cells reduces secreted pro-
angiogenic proteins and impairs vasculogenic mimicry in 
vitro and loss of CCN2 expression in the stroma impairs 
vasculogenic mimicry in vivo. 

In order to determine what aspects of tumour vascularization were being affected by the 

loss of CCN2 we performed a matrigel tubule formation assay on B16F(10) melanoma 

cells that have been stably transfected with CCN2 shRNA or scrambled control shRNA.  

The cells transfected with CCN2 shRNA formed fewer tubules, which covered less area 

and met at fewer nodes, indicating a less robust network (Figure 4).  This assay is 

typically used to determine the angiogenic potential of endothelial cells subjected to 

various treatments, and so is a reflection of the ability of the melanoma cells to mimic an 

endothelial cell phenotype by forming a tubule network.  We also assessed the production 

and secretion of pro-angiogenic proteins by these cells.  As a hypothesis-generating 

experiment we harvested conditioned media from the cells, concentrated the protein, and 

analyzed it by mass spectrometry.  Analysis of secreted proteins with altered expression 

for functional groups revealed that pro-angiogenic proteins were reduced in the absence 

of CCN2 (Figure 6A).  ELISAs were performed to confirm that secreted VEGFa (the 

major signaling ligand in angiogenesis) and proCOL1a1 (which increases angiogenic 

signaling through integrins and is required for capillary lumen formation) were reduced 

(Mongiat, Andreuzzi et al. 2016) (Figure 6B).   

In order to determine the aspects of tumour vascularization being affected by loss of 

stromal CCN2 we implanted B16F(10) cells into mice deleted for CCN2 or not in the  
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Figure 3-2 Deletion of Stromal CCN2 Reduces Tumour Vasculature 

Tumours in wild-type or Ccn2-knockout mice (mice deleted for CCN2 in fibroblasts) 

were perfused with a CT-contrast agent (Microfil, Flow Tech Inc.) by injection through 

left ventricle and imaged.  Percent volume of tumour occupied by vasculature was 

calculated.  Mice lacking CCN2 in their fibroblasts had significantly reduced vascular 

volume (t-test, n = 3, p < 0.05) 
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Figure 3-3 CCN2 expression correlates with angiogenesis in clinical samples 

Gene expression data for melanoma patient samples (n = 468) from The Cancer Genome 

Atlas (TCGA) were analyzed for enrichment using the Generally Applicable Gene-set 

Enrichment (Gage, v2.12.3).  Sample expression of CCN2 was strongly correlated with 

enrichment of genes in the Angiogenesis gene-set (Spearman’s p<2.2e-16).  Analysis was 

performed by Krista Vincent of the Postovit Lab at University of Alberta.  

 



87 

 

 

 

  



88 

 

 

  

Figure 3-4 Loss of CCN2 decreases the capacity of B16F10 cells to form tubules in 

vitro 

B16(F10) melanoma cells were transfected with either CCN2 short hairpin RNA 

(shRNA), to produce a knockdown in Ccn2 mRNA expression, or a scrambled shRNA, to 

act as a control. Cells were subjected to a tubule formation assay where 2000 cells/well 

were seeded in serum-free DMEM in a 96-well plate pre-coated in matrigel.  After 8 

hours incubation (a) images at the center of each well were taken.  Cells transfected with 

CCN2 shRNA showed a significantly decreased (b) number of tubules formed, (c) total 

area of tubules formed, and (d) number of nodes linking multiple tubules together (n = 7, 

* = p<0.05, **** = p<0.0001) 
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Figure 3-5 Loss of stromal CCN2 reduces tumour-derived vasculature in vivo 

a) Sections of tumour stroma from wild-type or Ccn2-knockout mice (mice deleted for 

CCN2 in fibroblasts) which contain a GFP reporter for cells expressing collagen 1α2 

(synthetic fibroblasts) at the time of deletion (3 weeks of age).  Sections were stained 

with DAPI(blue), anti-vWF (white), tdTomato (red), and GFP (green).  Ccn2-knockout 

mice have (b) reduced tumour vasculature, and (c) a reduced proportion of tumour 

vasculature derived from implanted tumour cells (n = 3, * = p<0.05, ** = p<0.01) 
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Figure 3-6 CCN2 knockdown reduces expression of secreted proteins associated 

with angiogenesis from B16(F10) cells 

B16(F10) melanoma cells were transfected with either CCN2 short hairpin RNA 

(shRNA), to produce a knockdown in Ccn2 mRNA expression, or a scrambled shRNA, to 

act as a control.  Cells were cultured in serum-free DMEM and conditioned media was 

collected.  a) Secreted protein was analyzed by mass spectrometry to determine 

functional clusters affected by CCN2 deficiency (n = 1), and (b) ELISA to confirm 

changes in secreted VEGF (R&D Systems, MMV00) and COL1A1 (abcam, ab210579) 

(n = 3, * = p<0.05, **** = p<0.0001).  Mass spectrometry performed by Dylan Dieters-

Castator of Lajoie lab at University of Western Ontario. 
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fibroblasts, and which express GFP in fibroblasts and TdTomato in other cell types.  

Tumours were allowed to grow for 14 days after the appearance of a palpable tumour 

before being stained for anti-vWF to detect active vasculature (Figure 5A).  The 

percentage of each section occupied by vasculature with blood flow at time of sacrifice 

was measured (Figure 5B), and then the percentage of that vascular area which was 

positive for either GFP or RFP, indicating that vessel was derived from host tissue, or 

was negative for both GFP and RFP, indicating that the vessel was derived from tumour 

cells, was calculated (Figure 5C).  Tumours from mice with CCN2 deleted in fibroblasts 

had significantly lower vascular area, and significantly less of their vasculature was 

tumour derived.   

3.4 Discussion 

CCN2 in the tumour stroma has been shown to increase melanoma metastasis, but the 

mechanism behind how it does so is unclear (Hutchenreuther, Vincent et al. 2015).  Our 

results in this report demonstrated that the loss of CCN2 from the fibroblasts of the 

tumour stroma resulted in a decrease of vascular volume of the tumour.  They also 

demonstrate a reduced capability for the tumour stroma to acquire an activated, αSMA 

expressing phenotype in response to tumour implantation. 

Tumours implanted into mice deleted for CCN2 or not in fibroblasts showed a significant 

reduction in stromal SOX2 expression (Fig. 3-1).  SOX2 is a transcription factor that is 

required for stem-cell maintenance, and two major cell types that express SOX2 in the 

stroma are mesenchymal stromal cells and specific subpopulations of cancer associated 

fibroblasts (Domenech 2017).  Cancer associated fibroblasts expressing higher levels of 

stem-markers like SOX2 belong to a subpopulation that exerts powerful promigratory 

effects on tumour cells through paracrine signaling (Herrera, Islam et al. 2013).  This 

phenotype is also significantly associated with activation of αSMA expression in the 

fibroblasts (Herrera, Islam et al. 2013). Multipotent mesenchymal stromal cells can 

promote tumour vascularization by secreting factors that promote endothelial cell tubule 

formation, or by providing cells to form perivascular muscular layers of blood vessels, 
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and mesenchymal stromal cells expressing higher levels of SOX2 displayed an increased 

ability to revascularize wounded tissues (Rustad, Wong et al. 2012, Domenech 2017) 

CCN2 has been implicated in angiogenesis, as CCN2 null mice die perinatally due in part 

to vascular defects such as poor basement membrane organization and lack of 

pericytes/smooth muscle cells (Mongiat, Andreuzzi et al. 2016).  Additionally, CCN2 can 

induce VEGF expression through HIF-1α-dependent activation of PI3K, ERK, NF-κB 

and recombinant CCN2 promotes angiogenesis in vivo when applied to corneas (Leask 

and Abraham 2006, Mongiat, Andreuzzi et al. 2016).  As such, we investigated the role 

of stromal CCN2 on the vascularization of melanoma. 

While there has been a great deal of interest in developing anti-angiogenic therapies, 

most focus on VEGF and alternate pathways that can promote angiogenesis, or even 

alternate methods of vascularization that do not require angiogenesis have led to therapy 

failure (Maj, Papiernik et al. 2016).  One of the mechanisms through which tumours can 

evade VEGF targeted therapies is through the expression of endothelial cell markers and 

the formation of vascular networks by the tumour cells themselves in a process called 

vasculogenic mimicry.  We demonstrated that in vitro B16F(10) murine melanoma cells 

deleted for CCN2 showed a decreased capacity to form vasculogenic mimicry tubule 

networks, and reduced secretion of pro-angiogenic proteins.  Among the secreted proteins 

reduced were VEGF, the major signaling ligand in sprouting angiogenesis, but also type I 

collagen α1 which induces survival signaling in endothelial cells and is required for 

proper capillary formation (Mongiat, Andreuzzi et al. 2016).  By implanting tumours into 

mice that endogenously express GFP or TdTomato reporters in host cells but not tumour 

cells, and staining for vasculature we were demonstrated that the impaired vasculogenic 

mimicry in vitro was also seen in vivo.   

In summation, this report demonstrates that loss of stromal CCN2 decreases vascular 

volume of tumours in vivo, that loss of CCN2 from melanoma cells decreases secretion of 

pro-angiogenic proteins in vitro, and that it decreases vasculogenic mimicry both in vitro 

and in vivo.    
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Chapter 4  

4 CCN1 Expression in tumour stroma is required for 
collagen organization and melanoma metastasis 

4.1 Introduction 

Melanoma is an invasive cancer that is disproportionately found in young adults, and 

with an increasing frequency (Reed, Brewer et al. 2012). The high metastatic rate of 

melanoma makes it the most likely skin cancer to be fatal (Society 2013). Melanocytes 

are routinely assaulted by ultraviolet radiation and are highly resistant to apoptosis.  

Accordingly, melanoma is remarkably resistant to conventional anti-cancer treatments, 

leaving surgical excision as the only viable treatment (Soengas and Lowe 2003). 

Unfortunately, once metastasis has occurred surgical excision is no longer an effective 

treatment option with 5 year survival rates dropping from 90% for patients with no 

metastases to 36% in the presence of even local metastasis and 5% in the case of distant 

metastases (Homsi, Kashani-Sabet et al. 2005, Cummins, Cummins et al. 2006).   

In order for cells to metastasize they have to leave the primary tumour and migrate 

through the activated stromal extracellular matrix.  Activated cancer associated 

fibroblasts (CAFs) produce, organize and remodel the extracellular matrix and 

accordingly have significant effects on the rate and method of invasion.  Stromal CAFs 

secrete a variety of cytokines, including transforming growth factor (TGF) β, that 

increase the adhesive and invasive abilities of cancer cells, and also remodel the 

extracellular matrix to increase stiffness and realign collagen fibres to facilitate cancer 

cell migration (Provenzano, Inman et al. 2008, Horimoto, Polanska et al. 2012, Kalluri 

2016).  Many of these pro-invasive processes are mediated by signaling and adhesion 

through integrins (Steeg 2006, Margadant and Sonnenberg 2010).   

Abnormal expression of the CCN (named for the three prototypical members Cyr61, 

CTGF, and NOV) family of matricellular proteins is highly associated with metastatic 

melanoma as well as progression of breast, prostate, pancreatic cancers (Xie, Nakachi et 

al. 2001, Yang, Tuxhorn et al. 2005, Dornhofer, Spong et al. 2006, Sun, Wang et al. 
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2008, Sha and Leask 2011).  Additionally, high levels of CCN1 and CCN2 can be 

stimulated in stromal tissues by tumourigenesis related inflammation (Coussens and 

Werb 2002, Leask and Abraham 2006, Wong and Rustgi 2013).  We have previously 

demonstrated the importance of CCN2 expression in the tumour stroma for facilitating 

the metastasis of melanoma (Hutchenreuther, Vincent et al. 2015). In vitro, CCN1 has 

similar functions to CCN2 and in vivo, CCN1 is also induced during tissue repair and 

fibrosis in a similar pattern to CCN2  (Chen, Mo et al. 2001, Leivonen, Hakkinen et al. 

2005, Liu, Thompson et al. 2014).  Additionally, CCN1 is  induced in response to 

hypoxia in early melanomas and is constitutively overexpressed in advanced melanomas; 

CCN1 knockdown in human melanoma cells reduces cell adhesion to the integrin Very 

Late Antigen 4 (Kunz, Moeller et al. 2003, Schmitz, Gerber et al. 2013).  While this 

suggests that CCN1 is active in melanoma progression it is unclear whether CCN1 is 

instrumental in metastasis, or what the mechanism behind its role may be.   

In this report, we use C57 BL6 mice with a conditional deletion of CCN1 in fibroblasts 

and a syngeneic B16F(10) murine melanoma model (Wack, Kirst et al. 2002) to 

investigate the effect of stromal CCN1 deficiency on melanoma invasion and metastasis.   

4.2 Methods 

4.2.1 Cell culture and Western Blotting 

B16(F10) murine melanoma cells were purchased (ATCC) and cultured in high glucose 

Dulbecco's Modified Eagle's Medium (DMEM), 10% fetal bovine serum (FBS) and 1% 

antibiotic/antimycotic solution  (Invitrogen).  Cells were cultured until confluence prior 

to harvesting for mRNA or protein extraction.  CCN1 levels were evaluated by co-

incubating cultures with 50µg/mL sodium heparin (Sigma).  Sodium heparin was 

included to prevent rapid internalization and degradation of CCN1 via low density 

lipoprotein receptor-related protein 1 (LRP1) as endogenous CCN1 interacts similarly 

with LRP1 as CCN2 , which can be rapidly degraded by mouse cells (Segarini, Nesbitt et 

al. 2001, Juric, Chen et al. 2012). 1mL conditioned culture media was collected for every 

treatment, and total protein were concentrated using methanol/chloroform precipitation as 

previously described  (Friedman, Hoving et al. 2009).  The concentration of protein was 
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detected (Pierce) and equal amounts of protein (50 g) were subjected to SDS/PAGE on 

a 10% TGX Stain-Free FastCast acrylamide gel (BioRad).  Gels were then exposed to 

UV to activate stain-free labelling of protein, and blotted onto nitrocellulose (BioRad) 

and CCN1 was detected using a goat anti-CCN1 antibody (1:200 dilution, Santa Cruz) 

followed by a HRP-conjugated anti-rabbit antibody (1:2000; Jackson), a 

chemiluminescent detection kit (Pierce) and X-Ray film (Kodak).  When indicated, cells 

were transfected with CYR61 (CCN1) shRNA, CTGF (CCN2) shRNA, or control 

shRNA Lentiviral Particles (Santa Cruz) using polybrene and selected for using 

puromycin as described by the manufacturer (Santa Cruz). 

4.2.2 Real Time RT-PCR 

B16(F10) murine melanoma cells were grown in high glucose DMEM containing 10% 

FBS until 75% confluence after which the media was replaced with low glucose DMEM 

containing 0.5% FBS and grown for 24 hours. RNA was harvested using Trizol 

(Invitrogen) and used for Real-Time RT-PCR. 25ng of RNA was reverse transcribed 

using qScript cDNA Supermix (Quanta Biosciences) and amplified using PerfeCTa 

SYBR Green FastMix and primers for genes of interest (Table 1) using the ABI Prism 

7900 HT sequence detector (Applied Biosystems) according to manufacturer's 

instructions.  Samples were run in triplicate, expression values were standardized to 

control values from β-actin primers using ΔΔCt method.  Statistical analysis was done 

using Student's T-test on GraphPad. 

4.2.3 Expression Profiling 

Expression profiling was performed as described in prior publications (Guo, Carter et al. 

2011, Guo, Carter et al. 2011, Hutchenreuther, Vincent et al. 2015) All sample labeling 

and processing was handled at the London Regional Genomics Centre (Robarts Research 

Institute, London, Ontario, Canada; http://www.lrgc.ca). Briefly, RNA quality was 

assessed on an Agilent 2100 Bioanalyzer (Agilent Technologies Inc.) and the RNA 6000 

Nano kit (Caliper Life Sciences) before 5.5 μg of single-stranded cDNA was synthesized  

 

http://www.lrgc.ca/
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Table 1: Probes/Primers used in real time PCR 

  

Target Forward Reverse 

Β-actin CACTGTCGAGTCGCGTCC TCATCCATGGCGAACTGGTG 

CCN1 TCTGCGCTAAACAACTCAACGA GCAGATCCCTTTCAGAGCGG 

P4Ha1 AAATGGGTATCCAACAAATGGC GTGCGTTAGAGGACAACAGGA 

LOX ACTTCCAGTACGGTCTCCCG GCAGCGCATCTCAGGTTGT 

PLOD2 CAGGAACATGGGCATGGATTTC GACGTGTCACAAGAGGAGCAA 

COL1a1 CGATGGATTCCCGTTCGAGT GAGGCCTCGGTGGACATTAG 

α-SMA CATCCGACACTGCTGACA AGGTCTCAAACATAATCTGGGTCA 
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from 200 ng of total RNA, end-labeled, and hybridized, for 16 hours at 45 °C, to Human 

Gene 1.0 ST arrays. GeneChips were scanned with the GeneChip Scanner 3000 7G and 

probe level (.CEL file) data were generated using Affymetrix Command Console v3.2.4.  

Probes were summarized to gene level data in Partek Genomics Suite v6.6 (Partek) using 

the RMA algorithm. Experiments were performed twice, and fold changes and P-values 

were generated using analysis of variance in Partek. Genes that significantly changed (at 

least 1.5 fold change, P-value <0.05) in response to CCN1 knockdown were compiled 

and exported into DAVID (http://david.abcc.ncifcrf.gov/) for further analysis. 

4.2.4 In vitro invasion assay 

10,000 CCN1 shRNA, and control shRNA B16(F10) cells were seeded in growth 

medium containing 0.5% FBS (and 5μg/mL puromycin hydrochloride for shRNA cells) 

onto a transwell filter insert with a pore size of 8 μm coated with 100μL of 10μg/mL 

purified bovine collagen (Advanced Biosystems) as previously described (Chen 2005).  

The transwell filter insert was suspended in a plate filled with growth medium containing 

10% FBS (to create a chemotactic incentive to invade) and allowed to incubate at 37°C 

for 24 hours.  After incubation all excess collagen and non-invasive cells were removed 

from the inside of the transwell filter insert.  The remaining cells were fixed in methanol, 

and stained with 1μg/mL DAPI to allow for counting with microscopy. 

4.2.5 Animals 

Mice possessing a tamoxifen-dependent Cre recombinase under the control of a 

fibroblast-specific regulatory sequence from the proα2(I) collagen gene (Zheng, Zhang et 

al. 2002) were crossed with mice homozygous for a conditional CCN1 allele or a 

conditional CCN2 allele (Liu, Thompson et al. 2014) to generate Cre/CCN1 or 

Cre/CCN2 heterozygote mice, which were mated to generate mice hemizygous for Cre 

and homozygous for CCN1 or mice hemizygous for Cre and homozygous for CCN2. 

Animals used for experiments were genotyped by polymerase chain reaction (PCR) as 

described previously (Zheng, Zhang et al. 2002, Liu, Shi-wen et al. 2011).  To delete 

CCN1 (CCN1
-/-

) or CCN2 (CCN2
-/-

) in fibroblasts, 3-week-old mice were given 

intraperitoneal injections of tamoxifen suspension (0.1 ml of 10 mg/mL 4-

http://david.abcc.ncifcrf.gov/
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hydroxitamoxifen, Sigma) over 5 days. Littermate mice of identical genotype were 

injected with corn oil and were used as controls (CCN1
fl/fl 

or CCN2
fl/fl

). All animal 

protocols were approved by the animal care committee at the University of Western 

Ontario. 

4.2.6 In vivo tumour growth and metastasis 

Subconfluent melanoma cells in the exponential growth phase were harvested by 

exposure to 0.25% trypsin/0.02% EDTA solution, resuspended in serum-free DMEM at a 

concentration of 3300 cells/µL, and 330,000 cells were injected subcutaneously into the 

right flank of each mouse.  Upon appearance of a palpable tumour the volume of the 

tumour was measured daily using calipers and the following equation: Tumour Volume 

(mm
3
) = 1/2(Length of Longest Tumour Dimension) x (Length of Narrowest Tumour 

Dimension)
2
.  Tumour growth was evaluated over the course of 14 days, and mice were 

euthanized on the 14th day.  After euthanasia the lungs and tumour were collected from 

the mice and fixed in a 4% paraformaldehyde solution.  After fixation, tissues were 

processed, embedded in paraffin, and prepared for histological sectioning.  Lung sections 

were stained with hematoxylin and eosin (H&E; Fisher Scientific) to locate dense 

metastatic foci.  Three non-serial sections per lung were examined.   

4.2.7 Immunohistochemistry 

Tumour tissue was stained for CCN1 using the Vectastain ABC Kit (Vector 

Laboratories).  Briefly, sections (0.5 μm) were cut using a microtome (Leica), collected 

on Superfrost Plus slides (Fisher Scientific), de-waxed in xylene, and rehydrated by 

successive immersion in descending concentrations of alcohol.  Antigen retrieval was 

performed by immersing slides in Na-citrate solution (pH 6.0) for 30 minutes at 98°C.  

After cooling, slides were rinsed, and non-specific binding was blocked by incubation 

with diluted normal serum.  Sections were incubated with primary antibodies in diluted 

normal serum (1:100 rabbit anti-CCN1; Santa Cruz), followed by incubation with 

biotinylated secondary antibody solution and Vectastain ABC Reagent.  After 

incubations, the sections were incubated in ImmPACT DAB peroxidise substrate (Vector 

Laboratories) and counterstained with hematoxylin.  Tumour tissue was stained for 
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CCN2 by immunofluorescent immunohistochemistry as previously described (Liu and 

Leask 2013).  Briefly, sections (0.5 μm) were cut using a microtome (Leica), collected on 

Superfrost Plus slides (Fisher Scientific), de-waxed in xylene, and rehydrated by 

successive immersion in descending concentrations of alcohol.  Antigen retrieval was 

performed by immersing slides in Na-citrate solution (pH 6.0) for 30 minutes at 98°C.  

After cooling, slides were rinsed, and non-specific binding was blocked by incubation 

with 10% serum in 0.1% Triton X-100 in PBS for 1 hour and then in primary antibody 

(1:100 goat anti-CCN2; Santa Cruz) in 10% serum in 0.1% Triton X-100 in PBS 

overnight in a humidified chamber at 4°C overnight.   

4.2.8 Proteomic analysis of skin 

Skin from CCN1
fl/fl

 and CCN1
-/-

 mice was harvested, minced, and protein was dissolved 

in 8M urea.  After eight-fold dilution with 50 mM NH4HCO3, pH 7.8, tryptic digestion 

was carried out for 18 h at 37°C, after the addition of 2% (w/w) sequencing-grade trypsin 

(Promega, Madison, WI, USA).    

Peptide separation and mass spectrometric analyses were carried out with a nano-HPLC 

Proxeon (Thermo Scientific, San Jose, CA, USA) which allows in-line liquid 

chromatography with the capillary column, 75 µm×10 cm (Pico Tip™ EMITTER, New 

Objective, Woburn, MA) packed in-house using Magic C18 resin of 3 µm diameter and 

200 Å pores size (Michrom BioResources, Auburn, CA) linked to mass spectrometer 

(LTQ-Velos, Thermo Scientific, San Jose, CA, USA) using an electrospray ionization in 

a survey scan in the range of m/z values 390–2000 tandem MS/MS. Equal amount of all 

samples were dried by rotary evaporator and re-suspended in 20 µl of 97.5 % H2O/2.4% 

acetonitrile/0.1% formic acid and then subjected to reversed-phase LC-ESI-MS/MS. The 

nano-flow reversed-phase HPLC was developed with linear 85 minutes gradient ranging 

from 5% to 55% of solvent B in 65 minutes (97.5% acetonitrile, 0.1% formic acid) at a 

flow rate of 200 nl/min with a maximum pressure of 280 bar. Electrospray voltage and 

the temperature of the ion transfer capillary were 1.8 kV and 250°C respectively. Each 

survey scan (MS) was followed by automated sequential selection of seven peptides for 

CID, with dynamic exclusion of the previously selected ions. 
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The obtained MS/MS spectra were searched against human protein databases (Swiss Prot 

and TrEMBL, Swiss Institute of Bioinformatics, Geneva, Switzerland, 

http://ca.expasy.org/sprot/) using SEQUEST algorithm in Proteome Discoverer 1.3 

software (Thermo Scientific, San Jose, CA, USA). Search results were filtered for a False 

Discovery rate of 1% employing a decoy search strategy utilizing a reverse database. An 

addition inclusion criterion for positive identification of proteins was that the same 

protein passing the filter score from at least in three different MS analyses from the same 

group in a total of four MS analyses per group. 

For quantitative proteome analysis, three MS raw files from each pooled group were 

analyzed using SIEVE software (Version 2.0 Thermo Scientific, San Jose, CA, USA). 

Signal processing was performed in a total of 12 MS raw files. The SIEVE experimental 

workflow was defined as “Control Compare Trend Analysis” where one class of samples 

are compared to one or more other class of samples. Here the control samples were 

compared to each of the samples that were treated with different percentages of NaF (1%, 

2% and 5%). For the alignment step, a single MS raw file belonging to the HA group was 

selected as the reference file and all of the other files were adjusted to generate the best 

correlation to this reference file. After alignment, the feature detection and integration (or 

framing) process was performed using the MS level data with a feature called “Frames 

From MS2 Scans” only. When using this type of framing only MS mass-to-charge ratio 

(m/z) values that were associated with MS2 scan are used. Any m/z measurements that 

do not have MS2 were ignored. The parameters used consisted of a frame m/z width of 

1500 ppm and a retention time width of 1.75 min. A total of 216,099 MS2 scans were 

present in all of the 12 RAW files that resulted in a total of 20,158 frames. Then peak 

integration was performed for each frame and these values were used for statistic 

analysis. Next, peptide sequences obtained from the database search using SEQUEST 

algorithm in Proteome Discoverer 1.3 were imported into SIEVE. A filter was applied to 

the peptide sequences during the import that eliminated all sequences with a Percolator q-

value greater than 1% (false discovery rate). Peptides were grouped into proteins and a 

protein ratio and p-value were calculated. SIEVE uses a weighted average of the peptide 

intensities for the protein calculation. By using the weighted average, peptides with lower 

variance in their intensity measurements have a higher weight on the overall protein ratio. 
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This is done to decrease variance in protein level quantities based on variance of the 

peptides that compose proteins 

4.2.9 Transmission Electron Microscopy of skin 

Skin from CCN1
fl/fl

 and CCN1
-/-

 mice was harvested and cut into 0.5-1.0mm wedges, 

then fixed in 2.5% gluteraldehyde in cacodylate buffer overnight.  Tissues were oriented 

and immobilized using mPREP system and workbench.  All subsequent steps were 

conducted in mPREM system.  Tissue was fixed/stained in 1% osmium tetroxide in 

cacodylate buffer (0.1M, pH 7.2) for 1 hour on ice, then rinsed 5 times in ddH2O.  Tissue 

was stained in 1% Tannic acid in cacodylate buffer for 2 hours on ice, then again in fresh 

1% Tannic acid in cacodylate buffer for 2 more hours on ice. Samples were rinsed 5 

times in ddH2O, then incubated in 1% uranyl acetate at 4°C overnight in the dark.  

Samples were rinsed 5 times in ddH2O before being dehydrated in successive baths of 

20%, 50%, 70%, 90%, 95%, and 3 times in 100% acetone. After dehydration, samples 

were infiltrated overnight by mixtures of 1 part Epon-Araldite resin:2 parts acetone 

followed by 1 part resin:1 part acetone, followed by 2 parts resin:1 part acetone, followed 

by 100% resin.  Samples were embedded in 100% resin, which was polymerized in 60°C 

oven for 5 days.  Embedded samples were sectioned to a thickness of 70-80nm on the 

Ultracut E (Reichert-Jung) and collected on nickel grids.  Grids were stained with 1% 

uranyl acetate for 15 minutes, rinsed 24 times before staining with Reynolds' lead citrate.  

Grids were rinsed 24 more times before being dried.  Images were obtained on a Philips 

CM10 transmission electron microscope at 60 Kv.    

4.3 Results 

4.3.1 CCN1 is not regulated by CCN2 expression in B16F(10) murine 
melanoma cells or tumour stroma, and its loss decreases 
expression of different genes 

Initial experiments were conducted in which B16F(10) melanoma cells were stably 

transfected with either CCN1 shRNA, CCN2 shRNA, or scrambled control shRNA.  

Extent of CCN1 knockdown relative to β-actin control was determined by real time PCR 

and Western Blot analyses (Figure 1A and 1B), and mRNA expression profiling was 
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performed using Human Gene 1.0 ST arrays.  Genes reduced by CCN1 knockdown were 

compared to previously generated expression data of B16F(10) cells transfected with 

CCN2 shRNA (Hutchenreuther, Vincent et al. 2015) (Figure 2A).  Additionally, CCN1 

expression of CCN2 shRNA transfected cells was assayed by real time PCR (Figure 2B), 

and stromal CCN1 expression of cells implanted in mice with or without CCN2 

expression in fibroblasts was detected by immunohistochemistry (Figure 2C).  

Expression profiling data revealed very little overlap (44/1117 genes downregulated 

total) in genes downregulated by both CCN1 and CCN2 loss in B16F(10) melanoma 

cells.  Additionally, there was no significant difference in CCN1 mRNA expression from 

cells transfected with CCN2 shRNA, and stromal expression of CCN1 in C57 BL6 mice 

implanted with B16F(10) melanoma cells was still detected in mice lacking CCN2 in 

their fibroblasts.   

4.3.2 Loss of CCN1 expression by B16F(10) murine melanoma cells 
results in impaired invasion 

To assess the invasive ability of CCN1 deficient melanoma cells, B16F(10) melanoma 

cells that were transfected with either CCN1 shRNA or scrambled control shRNA were 

subjected to a transwell filter invasion assay.  After incubation for 24 hours at 37°C, non-

invasive cells and collagen were removed from the transwell membrane before it was 

mounted and cells were counted.  Cells transfected with CCN1 shRNA showed 

significantly less invasion through type I collagen than cells transfected with scrambled 

control shRNA (Figure 1C).  
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Figure 4-1 CCN1 knockdown impairs invasion through collagen 

B16(F10) melanoma cells were transfected with CCN1 shRNA, to produce a knockdown 

in Ccn1 mRNA expression, or a scrambled shRNA, to act as a control. (a) Cells treated 

with CCN1 shRNA lentiviral particles showed a significant decrease in Ccn1 mRNA 

expression compared with cells treated with scrambled control shRNA (n = 3, p<0.001), 

and (b) reduced CCN1 protein present in growth media (Santa Cruz, sc-13100).  (c)  Both 

cell lines were subjected to a Boyden chamber assay to assess their ability to invade 

through a collagen matrix.  After being given 24 hours to invade through collagen 

towards a chemotactic incentive, the non-invasive cells and collagen were removed.  

Invasive cells were stained with DAPI (4’6-diamidino-2-phenylindole).  Cells deficient in 

CCN1 were significantly less invasive (n = 3, p<0.001). 
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Figure 4-2 CCN1 likely acts through a different mechanism than, and is not 

regulated by CCN2 expression 

B16(F10) melanoma cells were transfected with either CCN2 short hairpin RNA 

(shRNA), to produce a knockdown in Ccn2 mRNA expression, CCN1 shRNA, to 

produce a knockdown in Ccn1 mRNA expression, or a scrambled shRNA, to act as a 

control. (a)  mRNA collected from cells was analyzed by microarray on the Human Gene 

1.0 ST array (Affymetrix) to generate lists of genes with at least 1.5 fold decreased 

expression using Partek Genomics Suite v6.6 (Partek) when either CCN1 or CCN2 are 

knocked down.  The majority of genes decreased by either CCN1 or CCN2 knockdown 

were exclusive.  (b) Cells treated with CCN2 shRNA showed no significant reduction in 

Ccn1 mRNA expression, and (c) sections of tumour stroma from wild-type or Ccn2-

knockout mice both stain positively for CCN1 expression in tumour stroma (Santa Cruz, 

sc-13100; n = 3, representative sections shown). 

 



113 

 

4.3.3 Loss of CCN1 expression by tumour stroma resulted in 
impaired metastasis in vivo 

In order to determine if the invasive defect observed in vitro was seen in vivo as well we 

used a syngeneic model wherein we implanted B16F(10) melanoma cells (which are 

derived from C57 BL6 mice) subcutaneously into the right flank of C57 BL6 mice that 

had CCN1 deleted or not in their fibroblasts.  Cells were suspended in serum-free DMEM 

and injected subcutaneously two weeks post-deletion of CCN1 and allowed to form a 

palpable tumour.  Fourteen days later harvested lungs were sectioned, H&E stained, and 

assessed for extent of metastasis (Figure 3).  Loss of CCN1 from the tumour stroma 

resulted in a significant reduction in metastasis.  Loss of CCN1 from tumour stroma was 

confirmed by immunohistochemical analysis (Figure 5).  These results indicate that 

CCN1 in tissue surrounding a tumour is essential for the metastasis of melanoma.   

4.3.4 Loss of CCN1 expression by fibroblasts resulted in impaired 
collagen organization 

In unpublished data generated by Katherine Quesnel of the Leask lab at the University of 

Western Ontario, mRNA was extracted from skin samples of wild-type and CCN1-

deficient mice (mice deleted for CCN1 in the fibroblasts) and analyzed by real time PCR.  

Skin from CCN1-deficient mice showed a significantly reduced expression of mRNA 

encoding the collagen crosslinking enzymes prolyl 4-hydroxylase subunit alpha-1, lysyl 

oxidase, and lysyl hydroxylase 2 (translated from P4Ha1, LOX, and PLOD2 mRNA), but 

no reduction in the amount of type I collagen α1 being transcribed and no difference in 

transcription of α-smooth muscle actin, which is a major constituents of the contractile 

apparatus (Rockey, Weymouth et al. 2013).   To determine if this change in mRNA 

expression carried over to a change in translation of functional enzymes, skin protein was 

dissolved in urea to solublize collagens, trypsin digested, and analyzed by LC-MS.  

Detected fragments were analyzed for hydroxylation of target sites for crosslinking 

enzymes, and a significant decrease in the number of potential target sites for PLOD2 

modification that were oxidized was detected (Figure 4).   
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Figure 4-1 Loss of CCN1 in tumour stroma fibroblasts impairs metastasis in vivo 

(a) Representative images of lung sections from wild-type or Ccn1-knockout mice (mice 

deleted for CCN1 in fibroblasts) following subcutaneous implantation of B16(F10) 

melanoma cells after 14 days of tumour growth.  Hematoxylin and eosin (H&E) staining 

detects sites of pulmonary metastasis by staining dense metastatic foci purple.  (b) 

Tumours implanted in Ccn1-knockout mice show a significant decrease in pulmonary 

metastasis compared to wild-type (n = 6, p<0.001). 
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Figure 4-2 CCN1 Alters Collagen Processing and Stability 

Collagen from skin samples collected from wild-type and Ccn1-deficient mice was 

solublized in Urea, digested with trypsin, and analyzed by HPLC-Mass Spectrometry.  

Ccn1-deficient samples showed a significantly reduced proportion of hydroxylation at 

sites targeted by crosslinking enzyme PLOD2 (n = 4, p<0.05).  Mass Spectrometry 

performed by Yizhi Xiao of the Siqueira lab at University of Western Ontario. 
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Figure 4-3 Stromal CCN1 Thickens and Organizes Collagen 

Sections of tumour stroma from wild-type or Ccn1-knockout mice (mice deleted for 

CCN1 in fibroblasts) stained with anti-CCN1 (Santa Cruz, sc-13100) or Masson’s 

trichrome.  Ccn1-knockout stroma shows sparse blue staining, indicating a reduction in 

collagen, compared to wild-type stroma. 

 



120 

 

 To determine the effects of CCN1 deletion from fibroblasts on the collagen architecture 

of the skin samples from wild-type and CCN1-deficient mice were analyzed by 

transmission electron microscopy after fixation and staining with uranyl acetate, osmium 

tetroxide, tannic acid, and  Reynolds' lead citrate.  High magnification cross-sectional 

images were used to measure the diameter of collagen fibrils (Figure 6), and lower 

magnification images were used to assess collagen fibre organization (Figure 7).  Skin 

samples from CCN1-deficient mice had significantly reduced collagen fibril diameter 

compared to wild-type samples (Figure 6B), with the presence of abnormal interstitial 

spaces between fibrils making up a fiber (Figure 6A).  CCN1-deficient mice also had 

highly disorganized collagen that failed to form thick, directional, organized fibres 

(Figure 7).  To determine if these results were also seen in the stroma recruited by a 

primary melanoma tumour, sections of tumours harvested from wild-type and CCN1-

deficient mice were stained for CCN1 expression to verify stromal CCN1 deletion, and 

by Masson's Trichrome which stains collagen fibres blue (Figure 5).  Trichrome stains of 

CCN1-deficient mice showed a tumour stroma with more diffuse collagen than the thick, 

interwoven fibres formed by the stroma in the wild-type mouse.   

4.4 Discussion 

Our results demonstrate that CCN1 from the fibroblasts of the tumour stroma is required 

for the formation of an organized collagen matrix, and for melanoma metastasis.  This is 

consistent with the concept that the cancer associated fibroblasts reshape the tumour 

microenvironment to encourage tumour cell invasion.  This reinforces the idea that 

targeting the alterations to the stromal microenvironment induced by the tumour might be 

a viable strategy to develop widely effective anti-cancer therapies (Jewer, Findlay et al. 

2012).  

CCN1 is a member of the CCN family of matricellular proteins, and shows a high degree 

of spatiotemporal regulation due to its role as a regulatory molecule in the extracellular 

environment (Leask and Abraham 2006).  In normal skin CCN1 shows low expression, 

but during wound healing is highly upregulated, secreted to the extracellular matrix 

where it   
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Figure 4-4 Loss of CCN1 decreases collagen fibril diameter 

Sections of skin from wild-type or Ccn1-knockout mice (mice deleted for CCN1 in 

fibroblasts) were fixed and stained with gluteraldehyde, tannic acid, uranyl acetate, and 

Reynold’s lead citrate.  Samples were cut into ~70nm sections and imaged by 

transmission electron microscopy.  (a) Representative cross-sectional images of collagen 

fibrils from wild-type and Ccn1-knockout mice, with diameter distribution graphs.  Note 

the presence of interstitial spaces within each bundle of fibrils in Ccn1-knockout mice 

(indicated by arrows).  (b)  Average fibril diameter was significantly decreased in Ccn1-

knockout mice compared to wild-type (n = 3, p<0.01) 
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Figure 4-5 Loss of CCN1 decreases organization of collagen fibrils into fibers 

Sections of skin from wild-type or Ccn1-knockout mice (mice deleted for CCN1 in 

fibroblasts) were fixed and stained with gluteraldehyde, tannic acid, uranyl acetate, and 

Reynolds lead citrate.  Samples were cut into ~70nm sections and imaged by 

transmission electron microscopy.  Collagen fibrils from Ccn1-knockout mice do not 

form organized, directional fibers like those seen in wild-type samples. 
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remains tightly associated with the tissue that produced it, and through integrin signaling 

and potentiation of other cytokine signaling it increases adhesion and migration in 

fibroblasts, as well as increasing angiogenic activity in endothelial cells (Chaqour and 

Goppelt-Struebe 2006, Lau 2011).  In pathological conditions, CCN1 has been shown to 

play a role in inflammatory and fibrotic processes, as has been upregulated in fibrosis of 

several organs, and overexpression has been detected in a wide variety of cancers (Lai, 

Chen et al. 2013, Lai, Lin et al. 2014, Grazioli, Gil et al. 2015, Li, Ye et al. 2015).  While 

it has been shown to be upregulated few studies have be done to elucidate the specific 

mechanisms by which CCN1 acts in cancers, but in melanoma CCN1 has been implicated 

in activation of the integrin VLA-4 in melanoma cells to increase their ability to 

extravasate at the site of metastasis, and in osteosarcoma  CCN1 increases invasion and 

metastasis through integrin signaling (Schmitz, Gerber et al. 2013, Barreto, Ray et al. 

2016).  Our in vitro data showing that CCN1 deficient B16F(10) cells have impaired 

invasion through type I collagen are consistent with this, and suggesting that CCN1 might 

increase invasion through integrin signaling in melanoma as well.  While CCN2 is known 

to upregulate genes associated with the deposition of new extracellular matrix in fibrotic 

stroma, including stimulating increased production of collagen, CCN1 has not typically 

been associated with such processes (Quan, Xu et al. 2014).  This is understandable, 

given our data showing that loss of CCN1 does not affect the transcription of type I 

collagen, but the two proteins may act in concert by performing different functions to 

facilitate the accumulation of extracellular matrix proteins, with CCN2 increasing the 

production of collagen and CCN1 increasing the production of collagen cross-linking 

enzymes to stabilize and mature the collagen after production.  The process of 

crosslinking is integral to the formation of a thick, patterned extracellular matrix that uses 

mechanical transduction to induce invasive phenotypes in cancer cells (Levental, Yu et 

al. 2009).   

In summation, our in vitro invasion data are consistent with the hypothesis that CCN1 

stimulates melanoma invasion through integrin signaling, and also shows that CCN1 is 

required for proper collagen matrix formation and melanoma metastasis.  These data 

indicate that CCN1 is a potential target for disrupting the formation of a pro-metastatic 

tumour stroma, and is thus a novel approach to mitigate the progression of melanoma. 
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Chapter 5  

5 Discussion 

Melanoma is a highly invasive cancer with an increasing incidence that is responsible for 

a disproportionately large number of skin cancer fatalities for its incidence of diagnosis 

(Reed, Brewer et al. 2012).  The two major reasons for its high rate of fatalities are that it 

is highly metastatic, and its high resistance to conventional anti-cancer therapies like 

chemo- and radiotherapy due to its melanocytic origins (Soengas and Lowe 2003).  Even 

newly developed therapies targeting the mutations driving tumours, such as inhibition of 

mutant BRAF, show little efficacy as almost all tumours eventually acquire therapy 

resistance (Lim, Menzies et al. 2017).  One prominent theory as to the source of this 

resistance is that tumour cell interaction with stromal extracellular matrix components 

activates survival signaling through the extracellular matrix association with integrin β1, 

which activates phosphoinositide 3-kinase (PI3K) signaling which compensates for the 

loss of constitutive BRAF activation (Hirata, Girotti et al. 2015).   

Additionally, melanoma shows low susceptibility to anti-angiogenic therapies, with no 

studies showing a significant increase in overall survival in metastatic melanoma patients 

(Felcht and Thomas 2015).  The reasons for therapeutic failure  are multifactorial, but 

have been shown to include the infiltration of tumour stroma such as by endothelial 

progenitor cells, immature myeloid cells, and cancer associated fibroblasts all of which 

can promote the activation of alternate pro-angiogenic signaling pathways (Pastushenko, 

Vermeulen et al. 2014, Lupo, Caporarello et al. 2016).  In addition to renewed 

angiogenesis, tumours can resist anti-angiogenic therapy by vasculogenic mimicry, where 

tumour cells themselves form a vascular network that compensates for a lack of sprouting 

angiogenesis as well as providing an easy route into the circulatory system for metastasis 

(Hendrix, Seftor et al. 2003, Felcht and Thomas 2015).   

While these vasculogenic networks are formed from tumour cells, the extent of their 

composition and formation has been shown to depend on interactions with the tumour 

stroma.  Mesenchymal stem cells can be reprogrammed into an endothelial cell-like 
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phenotype by melanoma, and the degree of vasculogenic mimicry in melanoma in vitro 

and in vivo can be reduced by inhibition of matrix metalloproteinase (MMP) 2 (Bergers 

and Hanahan 2008, Vartanian, Karshieva et al. 2016, Liang, Sun et al. 2017, Wang, You 

et al. 2017).  Treatment of dermal fibroblasts with conditioned media from melanoma 

cells promotes myofibroblast differentiation, which among other things increases MMP2 

secretion, and the treatment of melanoma cells with conditioned media of cells with a  

secretory phenotype similar to the activated fibroblasts of the stroma results in increased 

MMP2 expression in melanoma cells (Albinet, Bats et al. 2014, Menicacci, Laurenzana et 

al. 2017).  These results indicate that the stroma is instrumental in vasculogenic mimicry, 

which is consistent with the emerging concept that alterations in the tumour 

microenvironment play a major role in the progression, survival, and metastasis of 

tumours (Jewer, Findlay et al. 2012, Quail, Taylor et al. 2012).    

The CCN proteins are a family of matricellular proteins that are highly spatiotemporally 

regulated, with CCN1 and CCN2 showing low basal expression in adult fibroblasts that is 

significantly increased during wound healing and fibrosis (Leask and Abraham 2006).  

Additionally, abnormal expression of CCN1 and CCN2 have been associated with 

progression of malignant melanoma, breast, prostate, and pancreatic cancers (Xie, 

Nakachi et al. 2001, Yang, Tuxhorn et al. 2005, Dornhofer, Spong et al. 2006, Sha and 

Leask 2011).  A large source of increased CCN protein expression is from activated 

cancer associated fibroblasts, which adopt a phenotype similar to the myofibroblasts seen 

in fibrosis (Albinet, Bats et al. 2014).  Given that CCN2 is required for the development 

of fibrosis, CCN1 has been shown to have similar functions to CCN2 in vitro and similar 

expression patterns in tissue repair and fibrosis in vivo we used both shRNA in vitro and 

genetic knockouts in vivo to investigate the roles of CCN1 and CCN2 in melanoma 

(Chen, Mo et al. 2001, Leivonen, Hakkinen et al. 2005, Liu, Parapuram et al. 2013, Liu, 

Thompson et al. 2014).   

In this thesis I found that knockdown of both CCN1 and CCN2 in B16F(10) melanoma 

cells each reduced the ability of  the cells to invade through type I collagen.  This is 

consistent with literature showing that CCN1 increases invasion in osteosarcoma, breast 

cancer, and pancreatic cancer, while CCN2 and invasion both increase in response to 
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increased YAP/TAZ signaling (Haque, Mehta et al. 2011, Jim Leu, Sung et al. 2013, 

Nallet-Staub, Marsaud et al. 2014, Nguyen, Song et al. 2016).  Additionally, since the 

time of initial publication of my results it has been shown that CCN2 derived from 

mesenchymal stem cells increases in vitro invasion of squamous cell carcinoma (Wu, Li 

et al. 2017).  Interestingly, while CCN1 has been shown to increase invasion in other 

cancers, it has previously been shown to decrease invasion in melanoma (Dobroff, Wang 

et al. 2009).  Dobroff et al. showed that overexpression of CCN1 in highly invasive 

melanoma cells decreased their ability to invade through Matrigel, and knockdown of 

CCN1 increased their invasive ability.  This is potentially explained by differences in 

methodologies used between their study and mine.  The composition of Matrigel is very 

similar to that of the basement membrane separating the epidermis and the dermis, with 

its primary collagen being type IV while my experiments measured the ability of cells to 

invade through type I collagen, which is the dominant form of collagen found in the 

dermis (Hughes, Postovit et al. 2010, Krieg and Aumailley 2011).  Thus, it is possible 

that CCN1 impedes the ability of melanoma cells to invade through the basement 

membrane, but once invasion has happened it enhances the ability of cells to invade 

rapidly through the dermis.   

Given the similar in vitro functions of CCN1 and CCN2 and their similar patterns of in 

vivo expression in wound repair and fibrosis it was speculated that the genes might have 

similar functions in melanoma progression as well, however when the gene expression 

alterations of B16F(10) melanoma cells transfected with CCN2 shRNA were compared 

to those of cells transfected with CCN1 shRNA I found that there was very little overlap 

in genes with reduced expression.  This suggests that while loss of CCN1 and CCN2 both 

reduced invasive capacity of cells in vitro, they are likely acting through a different 

mechanism.  Previous studies indicate that CCN1-induced increases in melanoma 

invasion are likely a result of integrin signaling, as shown by the blockade of αV integrin 

activation by CCN1 resulting in decrease in invasion in breast cancer and blockade of 

CCN1 associating with the integrin VLA-4 resulting in a decrease in invasion in 

melanoma (Jim Leu, Sung et al. 2013, Schmitz, Gerber et al. 2013), but the mechanisms 

through which CCN2 increases metastasis are less well established.  Our results showing 
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CCN2 induces invasion through increased expression of periostin (POSTN) are 

consistent with previous observations that POSTN expression correlates with metastasis 

in several cancers, promotes invasiveness in pancreatic cancer cells, and that recombinant 

CCN2 can induce POSTN expression in periodontal ligament cells (Asano, Kubota et al. 

2005, Baril, Gangeswaran et al. 2007, Tilman, Mattiussi et al. 2007, Kotobuki, Yang et 

al. 2014). 

When B16F(10) melanoma cells with CCN2 knockdown or not were implanted into 

syngeneic C57 BL6 mice with CCN2 deleted in fibroblasts or not I found that loss of 

CCN2 in the fibroblasts significantly impaired the metastasis of the tumour.  This is 

consistent with previous studies showing that not only are high levels of CCN2 a 

prognositic factor for aggressive pancreatic cancer, but also that antibodies blocking 

CCN2 block anchorage independent growth in vitro and significantly reduce metastasis 

of pancreatic cancer in vivo (Dornhofer, Spong et al. 2006, Bennewith, Huang et al. 

2009).  Additionally, high levels of stromal CCN2 expression are poor prognostic 

markers in glioma, pancreatic, and prostate cancers (Wells, Howlett et al. 2015).  

Interestingly, the co-culture of squamous cell carcinoma cells with mesenchymal stem 

cells induced increase expression of CCN2 in the mesenchymal stem cells that in turn 

enhanced the invasion of the cancer cells in vitro (Wu, Li et al. 2017).  In multiple 

cancers, including melanoma, CCN2 is upregulated by hypoxia and by YAP/TAZ/Hippo, 

and suppression of YAP-TEAD complex activity in ovarian cancer using verteporfin 

decreased CCN2 expression without significantly affecting expression of upstream Hippo 

components yielding a decreased volume of gross ascites in preclinical models 

(Minchenko, Kharkova et al. 2014, Nallet-Staub, Marsaud et al. 2014, Feng, Gou et al. 

2016).  These data support my findings that stromal CCN2 is essential for the metastasis 

of melanoma and suggest that depriving the tumour of stromal CCN2 is a viable therapy 

to reduce the metastasis of melanoma.  

Loss of CCN2 from the fibroblasts of the mouse did not significantly alter the recruitment 

of resident synthetic fibroblasts to the tumour stroma, but it did reduce the proportion of 

stromal cells expressing stemness marker SOX2, and also almost completely eliminated 

αSMA expression in the stroma which is indicative of the activation of myofibroblasts 
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(Hinz 2016). This is significant because activation of fibroblasts in the tumour stroma has 

been shown to cause increased matrix metalloproteinase secretion, increased expression 

of TGFβ, tenascin C, POSTN, and cytokines that recruit more cells to the activated 

stroma (Horimoto, Polanska et al. 2012, Kalluri 2016).  Loss of CCN2 preventing 

activation of the tumour stroma also serves to further link together the stromal 

microenvironment and fibrosis, as it establishes that in both pathologies fibroblasts are 

differentiated into myofibroblasts in a CCN2 dependent fashion that differs from that 

seen in normal wound repair (Liu, Shi-wen et al. 2011, Liu, Parapuram et al. 2013, Liu, 

Thompson et al. 2014).  The impaired induction of both αSMA and SOX2 as well as the 

reduced pulmonary metastasis in the absence of stromal CCN2 are consistent with the 

findings of Herrera et al that cancer associated fibroblasts expressing high levels of 

αSMA and stemness markers like SOX2 correlate with the induction of a strong pro-

migratory effect in cancer cells by the stroma (Herrera, Islam et al. 2013).   

Another finding of this study is that tumours lacking CCN2 in the fibroblasts of their 

stroma have significantly reduced vasculature.  This is consistent with prior studies 

showing that CCN2 is upregulated by hypoxia, promotes endothelial cell proliferation 

and tubule formation, and induces VEGF expression through hypoxia inducible factor 

(HIF)-1α-dependent pathways (Leask and Abraham 2006, Jun and Lau 2011, Mongiat, 

Andreuzzi et al. 2016).  Additionally, recombinant CCN2 applied to corneas promotes 

angiogenesis, and CCN2 null mice die shortly after birth and show vascular defects 

(Leask and Abraham 2006).  CCN2 expression is spatiotemporally correlated with the 

expansion of blood vessels seen in repair of ischemic, hyperoxic, and hyperglycemic 

injuries (Krupska, Bruford et al. 2015).  In agreement with the results of this study 

showing CCN2 is strongly correlated with pro-angiogenic gene expression in clinical 

patients CCN2 blocking antibodies have been shown to prevent angiogenesis and the 

formation of microvasculature in pancreatic and breast cancer models (Aikawa, Gunn et 

al. 2006, Shimo, Kubota et al. 2006).     

B16F(10) cells with CCN2 knockdown showed a reduction in secreted pro-angiogenic 

proteins.  Reduced VEGFa and type I collagen α1 secretion were confirmed by ELISA of 
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conditioned media. VEGFa is highly expressed in most cancers, and is one of the primary 

molecules involved in driving angiogenesis (Pastushenko, Vermeulen et al. 2014).  In 

addition, cells with higher expression of VEGF and its receptors have been shown to 

have a greater capacity for vasculogenic mimicry, and blockade of VEGF in vitro has 

been shown to inhibit tubule formation associated with vasculogenic mimicry in 

melanoma, ovarian carcinoma, and osteosarcoma (Vartanian, Burova et al. 2007, Mei, 

Gao et al. 2008, Wang, Sun et al. 2008).  Additionally, type I collagen has been shown to 

be required for the proper formation of capillaries, and has been seen focally in some 

intratumoural patterns formed through vasculogenic mimicry and has been shown to have 

97-fold increased expression in invasive vasculognic mimicry capable melanoma cells 

when compared to cells that are incapable of vasculogenic mimicry (Lin, Maniotis et al. 

2005).    

Consistent with these facts, this study showed that loss of CCN2 both in vitro and in vivo 

reduced vasculogenic mimicry.  B16F(10) cells transfected with CCN2 shRNA to 

produce a knockdown in CCN2 expression formed fewer tubules in a matrigel-based 

tubule formation assay than those transfected with a scrambled control shRNA did, 

indicating they have a reduced capacity to form vasculogenic networks.  Since 

vasculogenic mimicry is associated with poor prognosis in melanoma and is largely 

impervious to current anti-angiogenic therapies despite the loss of vasculogenic mimicry 

when VEGF is blocked in vitro, the ability to impede its development in vivo is of 

potential clinical signifigance (Wang, You et al. 2017).   

A novel finding of this study is that reduced vasculogenic mimicry was observed in vivo 

when CCN2 was deleted in fibroblasts.  C57 BL6 mice expressing either GFP or 

TdTomato in all endogenous tissues and with CCN2 deleted or not in fibroblasts had 

B16F(10) melanoma cells implanted subcutaneously.  Once a tumour had grown, it was 

harvested and stained for vWF, a marker expressed in both mouse and tumour derived 

vasculature (Dunleavey and Dudley 2012).  Not only did tumours with CCN2 deleted in 

fibroblasts show reduced vascular area, but they also showed a significantly reduced 

proportion of vasculature arising from vasculogenic mimicry.  While there has been little 

research has been done on the role of activated tumour stroma on inducing a vasculogenic 
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mimicry phenotype on tumour cells, with most studies focusing on either the activated 

stroma's impact on total vascularization or the tumour's ability to induce vasculogenic 

mimicry in non-endothelial stromal cells, these results are consistent with and build upon 

the few in vitro studies on cancer cell lines that have been performed.  Menicacci et al. 

have shown that melanoma cells grown in the conditioned media of fibroblasts with a 

similar secretory phenotype to cancer associated fibroblasts show an increase in their 

production of matrix metalloproteinase (MMP) 2 (Menicacci, Laurenzana et al. 2017), 

and two recent studies independently show that inhibition of MMP2 in vitro reduces 

vasculogenic mimicry (Liang, Sun et al. 2017, Wang, You et al. 2017).  Additionally, 

dermal fibroblasts grown in conditioned medium from melanoma cells differentiate into 

myofibroblasts and display increased MMP2 production, representing a potential 

additional source of MMP2 to induce vasculogenic mimicry (Albinet, Bats et al. 2014).  

The results of this study indicate that, similar to fibrosis, myofibroblast differentiation is 

dependent on CCN2, and thus the lack of myofibroblasts in the tumour stroma may be 

responsible for the decreased vasculogenic mimicry observed in tumours with CCN2 

deleted in their fibroblasts (Liu, Parapuram et al. 2013, Liu, Thompson et al. 2014). 

When B16F(10) melanoma cells were implanted into syngeneic mice with CCN1 deleted 

in fibroblasts or not I found that loss of CCN1 in the fibroblasts significantly impaired the 

pulmonary metastasis of the tumour.  This is consistent with literature showing that 

CCN1 expression is increased in aggressive or advanced prostate cancer, glioma, breast 

cancer, colorectal cancer, ovarian cancer, and osteosarcoma (Leask and Abraham 2006, 

Li, Ye et al. 2015, Barreto, Ray et al. 2016).  It is worth noting that while these 

correlations are well established, and tumour-cell derived CCN1 has been shown to 

increase cancer progression through association with αv integrin that to my knowledge no 

study has been done directly testing the effects of stromal CCN1 on tumour progression 

has been performed (Monnier, Farmer et al. 2008).  However, the results of this study are 

consistent with the observation that low molecular weight heparin administered to 

patients reduces their incidence of metastasis by preventing VLA-4/V-CAM1 binding, 

that CCN1 mediates this binding, and that heparin binds to CCN1 and prevents this 

mediation (Fritzsche, Simonis et al. 2008, Schmitz, Gerber et al. 2013). 
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To determine the mechanism by which the deletion or blockade of CCN1 might prevent 

the metastasis of melanoma, skin from mice with CCN1 deleted in their fibroblasts or not 

was analyzed.  In unpublished work from Katherine Quesnel in our lab, CCN1 deletion in 

fibroblasts was shown to reduce the transcription of genes encoding crosslinking 

enzymes P4Ha1, LOX, and PLOD2.  In order to determine if there was any functional 

difference in collagen crosslinking resultant from this decrease, protein from the skin was 

dissolved in Urea and analyzed by mass spectrometry.  When peptide sequences were 

analyzed I found that there was no difference in hydroxylation of sites associated with 

P4Ha1 crosslinking, which is consistent with the fact that collagen lacking P4Ha1 

crosslinking results in collagens that are not stable at physiological temperatures so any 

collagens not crosslinked due to reduced activity would rapidly degrade (Bella 2016), but 

there was a significant reduction in the hydroxylation of sites associated with PLOD2 

crosslinking.  The observed reduction in PLOD2 and its activity is consistent with the 

results of previous studies showing that PLOD2 is transcribed in response to SMAD3-

dependent TGFβ induction, and that CCN1 enhances profibrotic TGFβ/SMAD3 signaling 

in myofibroblasts, and that fibroblasts associated with melanoma show a significant 

increase in PLOD2 expression (Slany, Meshcheryakova et al. 2014, Kurundkar, 

Kurundkar et al. 2016, Du, Pang et al. 2017).   

To determine if the lack of PLOD2 activity translated into any defects in collagen 

architecture, tumours were stained with Masson's Trichrome.  The collagen surrounding 

the tumour was more sparse in mice with CCN1 deleted in their fibroblasts than in wild 

type.  Additionally, skin samples from both types of mice were imaged by transmission 

electron microscopy, and mice with CCN1 deleted in their fibroblasts displayed a 

significantly reduced collagen fibril diameter, and a lack of organized fibre structure like 

that seen in wild type.  These results are consistent with previous studies showing that 

cancer associated fibroblasts and myofibroblasts organize the collagen of the extracellular 

matrix into highly aligned fibers, that the stability of these fibers are primarily mediated 

by PLOD2-catalyzed crosslinking that occurs both intracellularly and extracellularly, and 

that depletion of PLOD2 from the stroma of melanoma reduces the proinvasive effects of 

cancer associated fibroblasts on the tumour (Chen, Guo et al. 2016, Du, Pang et al. 2017).  

In fibrotic tissues, excessive PLOD2-catalyzed crosslinking reduces degradation by 
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collagenases leading to the accumulation of a stiff matrix (Gjaltema, de Rond et al. 

2015).  The stiffness of this matrix then serves to stimulate myofibroblast differentiation, 

leading to more collagen production in both fibrotic conditions and in cancer associated 

fibroblasts (Gjaltema, de Rond et al. 2015, Zhang, Grither et al. 2016). In addition to 

further activating the fibroblasts of the stromal microenvironment this stiff matrix can 

exert mechanical stress on cancer cells and in doing so reprogram them into more pro-

invasive phenotypes in prostate cancer, breast cancer, and non-small cell lung cancer 

(Zaman, Trapani et al. 2006, Goetz, Minguet et al. 2011, Fenner, Stacer et al. 2014, 

Navab, Strumpf et al. 2016).  

While these results are consistent with and expand on other work in the literature, there 

are some limitations to the experiments used that might impact the translatability of the 

results.  These results were derived largely from experiments performed in vitro and in 

animal models, and as such they might not be directly representative of the processes 

occurring in patients due to both the differences between human and mouse physiology 

and the differences in genetic diversity between an inbred mouse line and the patients 

seen in clinic.  Additionally, while the promoter used to achieve knockout of CCN1 and 

CCN2 in fibroblasts is specific to fibroblasts in adult mice (Bou-Gharios, Garrett et al. 

1996), it is only effective in synthetic fibroblasts, and would not successfully delete 

CCN1 or CCN2 in non-synthetic, senescent fibroblast populations that might contribute 

to the formation of an activated tumour stroma.  While this is a limitation in the deletion 

given the results showing reduced pulmonary metastasis and tumour vascularization, the 

absence of deleted proteins from the stroma of tumours, and the efficacy with which 

knockout of CCN2 in synthetic fibroblasts using this promoter prevents the development 

of fibrosis it is unlikely that senescent fibroblasts contribute to the activated tumour 

stroma significantly.   It is also of note that the deletion occurs in every synthetic 

fibroblast in the body, not just those in the dermis that might be recruited to the stroma.  

Because of this, it is possible that the deletion of CCN1 and CCN2 from the fibroblasts in 

the lung is having some effect on the ability of cells to properly extravasate and survive 

during metastasis.  For example, it has been reported that increased periostin expression 

from pulmonary fibroblasts is required for the survival of cancer stem cells which 

extravasate into the lung to form pulmonary metastases (Malanchi, Santamaria-Martinez 
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et al. 2011).  Given that deletion of CCN2 prevented expression of periostin in the 

tumour stroma it is conceivable that it is having the same effect in pulmonary fibroblasts 

and this lack of pulmonary periostin is influencing the amount of detected metastasis.  

While I elected to use syngeneic implantation of tumour cells due to the effects of the 

primary tumour on the microenvironment making it a closer mimic of the conditions of 

metastasis in patients, the impact of primary tumour stroma CCN proteins and pulmonary 

metastatic site CCN proteins could be deconvoluted in future studies by tail vein injection 

of melanoma cells.  A limitation in the micro-CT scans that determined tumour 

vascularity is that the Microfil compound that was used to perfuse the tumours was 

injected at a pressure that replicates physiological conditions.  This means that any 

vessels temporarily occluded, as occurs during cycling hypoxia, would not have been 

detected (Muz, de la Puente et al. 2015).  While this might be overcome by increasing the 

injection pressure, that would likely result in the rupture of capillaries.  Since the vascular 

area of tumour sections showed the same reduction in mice with CCN2 deleted from their 

fibroblasts as the vascular volume in micro-CT scans it is unlikely this significantly 

altered the data collected.   

Despite these limitations, it is clear that CCN1 and CCN2 in the tumour stroma play 

important roles in the metastasis of melanoma.  Future work to build off of these 

discoveries should include tail vein injection of cells to determine the extent to which 

CCN2 in the pulmonary metastatic microenvironment is contributing to metastasis 

through periostin expression.  Additionally, implantation of tumours into mice which 

have been subjected to an experimental model of dermal fibrosis, such as bleomycin 

injection or deletion of PTEN from the fibroblasts, would serve to increase evidence that 

the fibrotic nature of the microenvironment is enhancing the metastasis of the tumour.  

Finally since CCN1 and CCN2 are both important for metastasis, but seem to have 

different functions it would be useful to find a therapy that targets both proteins at once.  

Since elevated YAP has been shown to induce expression of CCN1 and CCN2, and a 

widely clinically used drug (verteporfin) that prevents the activity of YAP has been 

shown to be effective at controlling the progression of other cancers in mouse models it 

would be an ideal first target for studies either administering verteporfin to mice 
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implanted with melanoma, or implanting the cells into mice which have had YAP deleted 

in their fibroblasts(Quan, Xu et al. 2014, Feng, Gou et al. 2016).    

In summation, I found that both CCN1 and CCN2 in the tumour stroma contribute to the 

metastasis of melanoma, but they do so in distinct ways.  CCN1 is required for the 

formation of organized collagen fibres which promote invasion and metastasis through 

the transduction of mechanical stress onto cancer cells, through the activation of pro-

invasive phenotypes by integrin signaling, and by forming directional channels through 

which the tumour cells can move.  CCN2 is required for the activation of the tumour 

stroma into a fibrotic environment containing myofibroblasts, and for the vascularization 

of the tumour which provides easy access to the circulatory system for metastasis.  Given 

the stroma's demonstrated role in promoting the progression and metastasis of melanoma, 

and its hypothesized role in contributing to therapy resistance by tumours, my findings 

indicate that the CCN family of proteins represent an exciting potential therapeutic target 

for the disruption of pro-tumourigenic stroma. 
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