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ABSTRACT 

 

Compartment syndrome (CS) is a surgical emergency caused by elevated pressure 

within a closed osseofascial compartment. It leads to microvascular dysfunction, limiting 

oxygen and nutrient delivery, gas exchange, resulting in cellular anoxia, muscle necrosis 

and cell death.  

Currently, the only effective treatment is surgical fasciotomy. Recently, carbon 

monoxide (CO) delivered via carbon monoxide releasing molecule-3 (CORM-3) has been 

shown to improve microvascular perfusion and convey anti-inflammatory benefits in 

animal models of CS.  

The contribution of elevated hydrostatic pressure (EHP) to the pathophysiology of 

CS was examined in an in vitro model of CS. We found that EHP led to increased 

oxidative stress, apoptosis and structural changes within the human vascular endothelial 

cells; application of CORM-3 diminished the magnitude of these detrimental responses. 

The data suggest that CORM-3 provides beneficial effects by preventing endothelial 

activation while preserving endothelial integrity, making CORM-3 an excellent potential 

adjunct pharmacological therapeutic in CS. 

 

 

Keywords: compartment syndrome, elevated hydrostatic pressure, human vascular 

endothelial cells, carbon monoxide, CORM-3, endothelial integrity, 

oxidative stress, apoptosis, inflammation. 
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CHAPTER 1.  INTRODUCTION AND HISTORICAL REVIEW 

 

 

1.1 COMPARTMENT SYNDROME 

Compartment syndrome (CS) is a true medical and surgical emergency, with 

potential devastating consequences, caused by an elevated pressure within a closed 

osseofascial compartment (Mubarak, Owen et al. 1978, Rorabeck and Clarke 1978, 

Matsen, Winquist et al. 1980, Hartsock, O'Farrell et al. 1998). The intercompartmental 

fascia is unyielding and as such, individual compartments have limited ability to expand; 

this makes them vulnerable to small increases in intracompartmental pressure (ICP) or 

decreases in volume.  

The increase in pressure within the compartment leads to microvascular 

dysfunction and compromise, thereby creating an ischemic environment within the 

compartment. This then limits oxygen and nutrient delivery, as well as gas exchange, 

resulting in cellular anoxia, muscle necrosis and eventual cell death (Sheridan and 

Matsen 1975, Whitesides, Haney et al. 1975, Mubarak, Owen et al. 1978, Rorabeck and 

Clarke 1978, Matsen, Winquist et al. 1980). Interestingly, the ischemic environment 

occurs in the presence of patent vasculature. Acute CS can result in severe functional 

impairment, permanent pain, disability, limb loss, and even death. CS may occur acutely, 

following both high- and low-energy trauma, but can also present as a chronic 

intermittent condition, such as exertional compartment syndrome, which is most 

commonly seen in the athletic or military populations.  
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Various types of injuries and medical conditions have been associated with the 

development of acute CS such as fractures, contusions, burns, tight casts & dressings, 

blast injuries, gunshot wounds, crush injuries, diabetes, bleeding disorders (Hope and 

McQueen 2004), statin medications (Chautems, Irmay et al. 1997, Jose, Viswanathan et 

al. 2004), various infections (Schnall, Holtom et al. 1994) and placing patients in 

prolonged lithotomy positions for surgical procedures (Goldsmith and McCallum 1996, 

Mathews, Perry et al. 2001). CS has been described in the arm, forearm, hand, buttock, 

thigh, lower leg, foot, abdomen, thorax and even the orbit (Greene and Louis 1983, 

Bonutti and Bell 1986, Brumback 1990, Kym and Worsing 1990, Frink, Hildebrand et al. 

2010).  

 

1.1.1 Brief Historical Review of CS 

 In 1881, the German surgeon Richard von Volkmann first described the clinical 

sequelae of CS following traumatic supracondylar distal humerus fractures. He attributed 

the devastating clinical outcome to the interruption of arterial blood supply but did not 

specify the cause (von Volkmann 1881). This observation by von Volkmann was further 

substantiated by Leser in 1884 who, by applying a tight bandage to the limbs of animals, 

noted time dependent necrotic changes in the muscle, as well as venous congestion and 

swelling (Leser 1884). In 1906, Hildebrand drew attention to the role of nerve 

involvement in the pathophysiology of ischemic contractures after replicating the 

experimental design of Leser, and coined the term ‘Volkmann’s contracture’ to refer to 

the clinical sequelae following supracondylar distal humerus fractures (Hildebrand 1906). 

In 1914, Murphy changed the narrative, and instead of speaking of arterial injuries and 
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nerve involvement as underlying causes of ischemic contractures, he drew attention to 

venous obstruction as the driving force behind CS. Although we now know that venous 

obstruction is not a major underlying contributor of CS, Murphy importantly drew 

attention to the idea that 1. elevated ICP was a main driving force in the pathophysiology, 

that 2. arterial pulses were maintained during the process and finally that 3. by splitting 

the underlying deep fascia, the “obstruction” could be relieved (Murphy 1914). Until this 

point, treatments had been aimed towards the complications of CS and ischemia, such as 

fibrosis and contractures (Rowlands and Lond 1905).  

In 1926, through a series of elegant ischemia-reperfusion experiments using the 

limbs of dogs, Jepson noted that elapsed time as well as increased pressure was a direct 

causal factor in the pathogenesis of ischemic contractures. More importantly, he also 

showed that by surgically decompressing the involved compartment, the function of the 

limb could be restored (Jepson 1926).  

The next significant contribution was likely from the work of Griffiths (1940), 

and although he mistakenly argued (for the better part of two decades) that arterial spasm 

was the root cause of the resulting ischemic contracture, his research contributed 

significantly to our understanding and recognition of early clinical signs and symptoms of 

CS, such as pain out of proportion, pain with passive extension and ‘puffiness’, which are 

still widely taught to this day (Griffiths 1940).  

The next main contribution to our understanding of CS came with the bombing 

raids known as the London Blitz in the early 1940s. Patients with crushed extremities 

would be taken to hospital, and a relatively stable clinical condition would quickly 

deteriorate into systemic decompensation, multi-organ failure and eventual death. The 
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condition became known as “crush syndrome” (Bywaters, Delory et al. 1941). This 

highlighted the importance of ischemia-reperfusion in the pathogenesis of CS, rather than 

strictly speaking of venous congestion and elevated ICP.  

In 1975, Matsen delivered his unified theory of CS by combining all the relevant 

data available to that point. The important aspects of his theory stated that CS was not 

restricted only to the upper extremity, that elevated pressure was a critical feature of the 

condition and finally that relieving the ICP via surgical fasciotomy was critical to avoid 

the devastating sequelae (Sheridan and Matsen 1975). The importance of Matsen’s 

contribution cannot be overstated, as he shifted the discourse from understanding the 

underlying pathophysiology to better ways of diagnosing and treating acute CS.  

 

1.1.2 Diagnosis of CS 

The early identification, diagnosis and treatment of CS are critical in order to 

relieve ICP, prevent ongoing tissue anoxia, necrosis and optimize patient outcome, as 

well as prevent long-term disability. The diagnosis of CS is primarily a clinical one, 

which, in certain circumstances may be supplemented by direct ICP measurements. 

Understanding patient risk factors and the early identification of patient clinical signs and 

symptoms are paramount in the diagnosis and appropriate management of CS. Risk 

factors include male gender, age under 35, tibia fracture, high energy forearm fractures, 

high energy long bone fracture and comminuted fractures. 
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1.1.2.1 Clinical Diagnosis 

There are several signs and symptoms that have traditionally been associated with 

acute CS. They appear in a stepwise fashion, although the timing can vary significantly 

from patient to patient and injury to injury (Myers 2000, Elliott and Johnstone 2003, 

Olson and Glasgow 2005, Shadgan, Menon et al. 2008). For this reason, the importance 

of serial and thorough clinical evaluations of all patients at risk of developing CS cannot 

be overstated; currently, this is considered the standard of care in the management of CS. 

The presence of symptoms should not only alert clinicians to the diagnosis of an acute 

CS, but also, unfortunately, likely suggests an advanced stage of disease.  

The first signs and symptoms associated with CS are usually pain out of 

proportion to the apparent injury, and pain with passive stretch of the involved muscle 

compartment (Whitesides and Heckman 1996). The sensitivity and specificity of these 

clinical findings has been found to be between 13-19% and 97% respectively (Whitesides 

and Heckman 1996, Ulmer 2002). Other symptoms associated with CS include tense and 

painful muscle compartments, a persistent deep ache or burning pain, paresthesia or 

increasing analgesia requirement, with the last of these being an especially important 

finding in the pre-verbal pediatric population (Bae, Kadiyala et al. 2001). 

 

1.1.2.2 Physical Examination 

The first description of the clinical criteria for the diagnosis of CS was provided 

by Griffiths in 1940. Griffiths established the original “four Ps”: pain out of proportion 

and pain on passive stretch, paraesthesia, paralysis and ‘puffiness’ (Griffiths 1940). 

Eventually, pallor and pulselessness were also added to the physical signs of CS (Cascio, 
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Wilckens et al. 2005). Unfortunately, some of these physical exam findings, such as 

paresthesia and paralysis, are considered late findings of established CS (McQueen, 

Christie et al. 1996), and often signify that irreversible vascular, muscular and 

neurological injury have likely already occurred (Matsen and Clawson 1975, Ulmer 

2002). Although pulselessness was traditionally taught as one of the “5 Ps” in the clinical 

diagnosis of CS, the absence of a pulse is no longer considered a feature of CS (Manjoo, 

Sanders et al. 2010) and the presence of a pulse certainly does not rule out a diagnosis of 

CS. Failing to identify CS and obtain a timely diagnosis is the greatest cause of adverse 

clinical outcomes (Matsen and Clawson 1975, Rorabeck 1984, McQueen, Christie et al. 

1996, Mars and Hadley 1998). In addition, missed CS is one of the most frequently 

argued cases in the field of medico-legal litigation, and is associated with frequent and 

significant judgements in the favour of the plaintiff (Bhattacharyya and Vrahas 2004). 

 

1.1.2.3 Objective Compartment Pressure Monitoring 

The direct measurement of ICP when attempting to diagnose CS, provided the 

proper technique is used, is a valuable tool in the clinician’s armamentarium (Hargens 

and Ballard 1995). Various measurement techniques have been described, such as needle 

manometer, wick catheter, slit catheter and electronic transducer-tipped catheters 

(Hargens and Ballard 1995). In order to capture the peak ICP value, measurements 

should be taken at the level of the fracture, as well as additional sites up to 5 cm proximal 

and distal to the injury (Heckman, Whitesides et al. 1994). In addition, pressures should 

also be measured in the other compartments of the affected limb, to ensure that a CS is 

not missed. The electronic transducer-tipped systems have been found to be the most 
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accurate, as they do not rely on limb position or the height of the transducer. All direct 

compartment pressure measurement devices have their own specific technical steps, are 

user dependent, have their own advantages and disadvantages, and are not immune to 

false negatives (Lawendy and Sanders 2010).  Although some authors have argued that 

all patients (especially young men) presenting with tibial diaphyseal fractures, high 

energy fractures of the tibial metaphysis, soft tissue injuries or in patients with an 

accompanied bleeding diathesis should undergo objective compartment pressure 

monitoring (McQueen, Gaston et al. 2000), this is currently not the usual practice.  There 

are, however, several indications for using ICP monitors. These include unconscious 

patients, pediatric patients, pre-verbal and non-verbal patients, patients with equivocal 

signs and symptoms, patients with associated neurological injuries, or in a polytrauma 

scenario (Whitesides, Haney et al. 1975, Gelberman, Garfin et al. 1981, Hargens, 

Schmidt et al. 1981, Hargens, Akeson et al. 1989). In these cases, continuous 

compartment pressure monitoring may help confirm clinical findings, decrease the delay 

to fasciotomy and may, as a result, decrease the long-term complications of the disorder 

(McQueen, Christie et al. 1996).  

 

1.1.3 Consequences of Missed CS 

The early identification and diagnosis of acute CS is critical to its successful 

management, and will maximize the chances of a positive clinical outcome. The inability 

to obtain a timely diagnosis is the most common cause of adverse clinical outcomes 

(Matsen and Clawson 1975, Rorabeck 1984, McQueen, Christie et al. 1996, Mars and 

Hadley 1998). A missed or late diagnosis of acute CS can lead to serious complications, 



	 8 

such as muscle infarction, muscle and joint contractures, secondary joint and soft tissue 

deformities, limb weakness and neurologic dysfunction (Whitesides and Heckman 1996). 

Less common, but nonetheless important complications of missed CS include infection, 

gram-negative sepsis, amputation and end-organ involvement (Whitesides and Heckman 

1996). The end result of missed CS is often irreversible myoneural ischemia leading to 

various degrees of permanent neuromuscular deficits and dysfunction. 

The severity of the clinical outcome and dysfunction depends on the amount of 

tissue affected, and can range from mild weakness and sensory changes to severe 

ischemic contractures and limb dysfunction. When a sufficiently large amount of muscle 

tissue is involved (often combined with a weakened and compromised immune system), 

CS can lead to severe systemic complications such as crush syndrome, rhabdomyolysis, 

renal failure (secondary to myoglobinuria) and systemic shock (Sanghavi, Aneman et al. 

2006, West 2007). 

A missed or late diagnosis can be the result of clinical inexperience, a lack of 

suspicion, or a confusing clinical presentation (McQueen, Christie et al. 1996). These 

situations can occur when patients present with altered pain perception, altered level of 

consciousness, regional anesthesia, patient-controlled analgesia and nerve injury; all are 

known risk factors for late diagnosis (Mubarak and Wilton 1997, Harrington, Bunola et 

al. 2000). 
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1.2 THERAPEUTIC APPROACHES TO CS 

The therapeutic goals of treating acute CS are to minimize chronic, long lasting 

injury and dysfunction of the involved limb, by accurately and efficiently diagnosing the 

condition and restoring the compartments microcirculatory environment. This is done in 

order to avoid the devastating consequences of myonecrosis, ischemic contracture and 

limb dysfunction. Non-operative techniques and adjuncts have been studied in various 

animal models and human case series with limited success. These nonoperative 

treatments remain unproven, making surgical decompression through fasciotomy of all 

involved compartments the only gold standard therapy for acute established CS, provided 

it is carried out within 6-8 hours of CS onset (Eaton and Green 1972, Matsen, Winquist et 

al. 1980, Rorabeck 1984, McQueen, Hajducka et al. 1996, Lawendy and Sanders 2010). 

 

1.2.1 Fasciotomy 

Fasciotomy, as a technique for the surgical treatment of patients with impeding 

Volkmann’s contracture, was first described in 1911 by Bardenheuer (Bardenheuer 1911) 

although at the time, he used the term ‘aponeurectomy’. Eventually, Murphy in 1914 

suggested early surgical fasciotomy for the treatment of increased pressure within a 

fascial-enclosed space due to hemorrhage and edema in order to prevent paralysis and 

contractures (Murphy 1914). The concept of surgical fasciotomy, as described by 

Murphy, is the mainstay for the treatment of CS today. The first detailed record of the 

actual operative technique was provided by Benjamin (Benjamin 1957), describing the 

surgical approach to the forearm. Fasciotomy is urgently performed to normalize 

compartment pressures, in the hope of restoring normal perfusion to the affected tissues, 
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halting the inflammatory process and ultimately preventing the devastating clinical 

sequelae. After 6-8 hours, the risk of permanent tissue damage increases exponentially. 

Once muscle and tissue necrosis has occurred, surgical fasciotomy is contraindicated as it 

increases the risk of infection significantly. Adding to the complexity of this clinical 

presentation, one often does not know the exact time of injury or the subsequent events 

that have led to the patient’s current state, making decision making difficult. Therefore, 

frequent serial clinical examinations and reassessment are extremely important. 

Fasciotomy releases the involved compartment(s), allowing soft tissues to swell 

and expand, thus allowing for an increased compartmental volume while decreasing the 

ICP. Following decompression, surgical wounds are usually left open for 48-72 hours 

prior to skin closure, which is often accompanied by split thickness skin grafting 

(Lawendy and Sanders 2010). 

 

1.2.1.1 Threshold for Decompression 

Considering the significant cost of missing a CS, some authors have expanded the 

indications of using ICP monitoring to include all traumas and fractures with a high risk 

of CS (McQueen, Gaston et al. 2000). To complicate matters further, various ICP 

thresholds have been proposed, at which fasciotomy should be performed, although there 

is currently no clear consensus. Protocols have included absolute values of 30 mmHg, 40 

mmHg and 45 mmHg (Mubarak, Owen et al. 1978, Matsen, Winquist et al. 1980, 

Schwartz, Brumback et al. 1989) while others, rather than considering the absolute ICP of 

a compartment, have used the difference between a compartment’s ICP and the patient’s 

diastolic pressure (∆P), with 20 to 30 mmHg being considered an indication for 
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fasciotomy (Whitesides, Haney et al. 1975). Most trauma surgeons prefer using this ∆P as 

a cut-off measure to perform fasciotomy rather than using an absolute ICP threshold, as 

this becomes more useful in hypotensive trauma patients leading to a lower overall 

fasciotomy rate when compared to an absolute pressure threshold (Matsen, Winquist et 

al. 1980, McQueen, Hajducka et al. 1996). A recent study by Whitney et al (2014) looked 

at false positive rates of CS diagnosis based on one-time ICP measurements alone. When 

using a ∆P threshold of 30 and 20 mmHg they reported a false positive rate of 35% and 

24% respectively (Whitney, O'Toole et al. 2014). 

 

1.2.1.2 Fasciotomy Techniques 

Surgical fasciotomy techniques have been well described for the upper and lower 

extremities as well as the trunk (McQueen, Gaston et al. 2000). Fasciotomies for CS of 

the lower leg (80% of all cases), forearm and hand are among the most commonly 

performed. 

 

1.2.1.2.1 Fasciotomy in the Lower Leg 

The lower leg is divided into 4 osseofascial compartments: anterior, lateral, 

posterior superficial and posterior deep (Gray 2000) (Figure 1.1). The anterior 

compartment is the most commonly affected in CS (Rorabeck and Macnab 1976). There 

are two commonly described techniques for the surgical decompression of the lower leg: 

the two-incision and single-incision, four-compartment fasciotomy.  
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Figure 1.1. Anatomy and compartments of the lower leg. The lower leg is 

comprised of the tibia and fibula, with interconnecting fascial 

planes separating the various muscles into anterior, lateral, 

superficial posterior and deep posterior compartments. 

 Reproduced with permission from Lawendy and Sanders (2010). 
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Some surgeons will routinely employ a two-incision (medial and anterolateral) 

technique, while others perform a single anterolateral approach in patients with CS in 

order to decompress both the anterior and lateral compartments, and then reassess the 

remaining compartments with ICP monitors before releasing the posterior superficial and 

posterior deep compartments (Tornetta, Puskas et al. 2016). Better visualization of tissue 

planes, neurovascular structures and ability to assess the conditions of soft tissues have 

been described as reasons to preferentially perform a two-incision approach (Lawendy 

and Sanders 2010). However, both single-incision and two-incision approaches have been 

shown to adequately decompress all 4 lower leg compartments (Neal, Henebry et al. 

2016).  

 

1.2.1.2.2 Fasciotomy in the Forearm 

The forearm is made up of the volar compartment, the extensor compartment and 

the mobile wad. The flexor compartment is divided into superficial, middle and deep 

muscle layers. The dorsal extensor compartment contains superficial and deep layers 

(Gray 2000).  

A curvilinear incision is made, extending from proximal and medial aspect to the 

elbow flexion crease, which then crosses the flexor surface of the elbow at an oblique 

angle. This is then followed by moving lateral to the midline, allowing for an extensile 

approach and the ability to release the carpal tunnel if needed. Medial and lateral flaps are 

elevated; the lateral antebrachial cutaneous nerve is found and protected. The lacertus 

fibrosis, the most proximal tether, is also released. The fascia overlying the superficial 

volar compartment is then incised, as well as the mobile wad laterally. The interval 
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between the flexor carpi ulnaris and the flexor digitorum superficialis is exploited to 

reveal the deep volar compartment which can then also be released (Gray 2000).  

 

1.2.1.2.3 Fasciotomy in the Hand 

The hand is divided into ten compartments; these include the thenar, hypothenar, 

adductor pollicis, four dorsal interossei and three volar interossei compartments (Gray 

2000). 

Two longitudinal incisions are centered over the index and ring fingers on the 

dorsum of the hand. Soft tissues are bluntly dissected on either side of the metacarpals, 

incising through the dorsal interossei muscle fascia. If the thenar and hypothenar 

compartments need to be released, two separate incisions are made on the volar radial 

aspect of the thumb and the volar ulnar aspect of the 5th digit, respectively. The carpal 

tunnel can be released through a 4cm longitudinal incision, in line with the ring finger, 

with the proximal extent being the flexor crease of the wrist. The transverse carpal 

ligament is then released under direct visualization (Kalyani, Fisher et al. 2011). 

 

1.2.1.3 Complications of Fasciotomy 

Surgical fasciotomy, although being the gold standard treatment of CS, it is not 

without its risks and complications. A high percentage of patients report postoperative 

neurologic symptoms and chronic pain associated with their surgical wounds (Fitzgerald, 

Gaston et al. 2000). Other complications include dry skin, pruritus, wound discolouration, 

swelling, tendon tethering, hypertrophic scarring, ulceration and muscle herniation 

(Johnson, Weaver et al. 1992, Heemskerk and Kitslaar 2003, Schmidt 2007). The risk of 
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infection is also not insignificant, and can create potentially devastating complications; 

this is directly related to the timing of the surgical intervention. 

Fasciotomies which are delayed for greater than 12 hours have a 28% rate of 

infection, while those performed early have an infection rate of 7.3% (Williams, Luchette 

et al. 1997). In a retrospective study looking at a trauma patient population, Dover et al 

(2011) found an early post-operative complication rate of 20%. Of these, 80% 

experienced clinical symptoms which they rated as severe. On long-term follow-up, 70% 

of patients experienced persistent symptoms, which severely limited them from either an 

occupational or social point of view (Dover, Marafi et al. 2011, Dover, Memon et al. 

2012). 

Fitzgerald et al (2000) retrospectively assessed complications of fasciotomy in 

both upper and lower extremities over an 8-year period (Fitzgerald, Gaston et al. 2000). 

They found that one in every ten patients had chronic pain associated with their 

fasciotomy wounds and more than 20% of patients covered their scars due to the aesthetic 

appearance of the wound. They also found complications to be detrimental both socially 

and occupationally, with 28% of patients changing their hobbies and 12% having to 

change their occupation, secondary to the complications of their fasciotomy (Fitzgerald, 

Gaston et al. 2000). Another post-operative complication of surgical fasciotomies is CS, 

which has been found to occur in 3 to 20% of cases (Barr 2008), and is believed to be 

caused by excessive post-operative scar tissue formation and/or inadequate release of 

compartmental fascia (Schmidt 2007). 
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1.2.2 Non-Surgical Interventions 

Currently, non-operative treatment modalities for CS are utilized in cases where 

surgical fasciotomy is contraindicated: when the affected limb is nonviable due to severe 

ischemia, or missed CS (Schmidt 2007). Before 1911, non-operative treatment options 

mainly consisted of limb mobilization and muscle stretching in order to prevent or treat 

ischemic contractures. Today, the most common non operative treatment is the removal 

of a cast or occlusive splints in a patient who presents with symptoms suggestive of CS. 

In these cases, if symptoms persist, fasciotomy is indicated. 

The consequences of a missed CS or of delaying fasciotomy are significant, as a 

result, non-operative treatments have been limited to an adjunctive role to fasciotomy. It 

would be beneficial to develop non-surgical modalities that could prolong the treatment 

window between the onset of CS and the time where irreversible neurological, vascular 

or muscular changes occur. Potential medical treatments have been described in both 

animal models and human case series. These include mannitol (Better, Zinman et al. 

1991), hyperbaric oxygen (Wattel, Mathieu et al. 1998), tissue ultrafiltration (Odland, 

Schmidt et al. 2005), anti-inflammatories (Manjoo, Sanders et al. 2010) and anti-oxidants 

(Kearns, Daly et al. 2004).  

 

1.2.2.1 Mannitol 

Mannitol is an osmotic diuretic, volume expander and free radical scavenger. It is 

commonly used to acutely reduce intracranial pressure, prevent or treat acute kidney 

failure secondary to crush injuries as well as treat raised intraorbital pressure. Crush 
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injuries associated with CS can lead to rhabdomyolysis, acidosis, acute renal failure 

(ARF) and even death (Bywaters, Delory et al. 1941, Better and Stein 1990).  

The severity of rhabdomyolysis can be confirmed and clinically followed by 

measuring serum creatine kinase (CK) levels. One of the most severe complications of 

rhabdomyolysis is ARF, which has a mortality rate of 3-50% (Slater and Mullins 1998, 

Malinoski, Slater et al. 2004). One of the tenets in the management of the crush syndrome 

and rhabdomyolysis is aggressive fluid resuscitation, in an attempt to prevent both 

systemic and renal complications (Odeh 1991, Malinoski, Slater et al. 2004).  

 Mannitol has been shown to decrease extracellular fluid volume by promoting 

water and sodium excretion. It has been shown to reduce ICP in a canine model of CS 

(Better, Zinman et al. 1991). Daniels et al. (1998) described the case of a healthy 19–

years old male presenting with heat stroke, who subsequently developed a lower leg CS, 

and who was treated only with mannitol. The patient was discharged 10 days after his 

admission to the hospital, with only “mild residual weakness” in the involved leg 

(Daniels, Reichman et al. 1998). 

 

1.2.2.2 Hyperbaric Oxygen Therapy 

Hyperbaric oxygen therapy involves the medical use of oxygen at levels higher 

than the atmospheric content of 21%. Hyperbaric oxygen therapy creates a 3-fold 

increase in the oxygen diffusion into the tissues (Wattel, Mathieu et al. 1998). This 

allows continued delivery of oxygen even in the presence of ischemia. Hyperbaric 

oxygen has been described as either the main treatment, or as an adjunct for various 

medical conditions, such as decompression sickness, arterial gas embolism, smoke 
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inhalation, severe carbon monoxide (CO) poisoning, osteoradionecrosis, skin flap 

healing, clostridial myonecrosis and CS (Leach, Rees et al. 1998). 

With respect to CS, hyperbaric oxygen treatment is believed to exert its beneficial 

effects on intracompartmental bleeding, swelling and edema by causing oxygen-induced 

vasoconstriction and allowing oxygen perfusion at lower perfusion pressures (as are seen 

in situations of CS) (Nylander, Nordstrom et al. 1987). As the interstitial edema is 

decreased, flow through the microcirculation is restored, or at least improved. The benefit 

of hyperbaric oxygen therapy has been reported in several ischemia-related clinical 

scenarios including traumatic ischemic lesions, ulcerations, infections and open fractures 

(Smith, Stevens et al. 1961, Hanson, Slack et al. 1966, Szekely, Szanto et al. 1973). 

Published case studies have reported success in averting fasciotomy in patients presenting 

with CS (Strauss, Hargens et al. 1983, Wattel, Mathieu et al. 1998, Gold, Barish et al. 

2003); a recent case report by Karam et al. (2010) described the case of an NCAA 

football player with acute paraspinal CS following weight-lifting: he was successfully 

treated with forced diuresis and hyperbaric oxygen chamber treatment (Karam, 

Amendola et al. 2010).  

However, due to the lack of definitive evidence and the need for costly and 

specialized equipment, hyperbaric oxygen is infrequently used and currently seen only as 

an adjunct to, and not a substitute for, surgical fasciotomy.  

 

1.2.2.3 Tissue Ultrafiltration 

Tissue ultrafiltration (TUF) was first described as a method of analyzing the 

contents of the interstitial space (Linhares and Kissinger 1992). TUF involves the 
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insertion of small-diameter semi-permeable hollow fibers into the tissue compartment of 

interest. The catheter is connected to suction, in order to filter interstitial fluid. This 

enables researchers to not only decompress the tissues, but also analyze the extracted 

fluid for biomarkers (Odland, Schmidt et al. 2005).  The use of ultrafiltration in CS has 

been shown to lower the intramuscular pressure while maintaining perfusion pressure 

(Odland, Schmidt et al. 2005). In their porcine model of CS, using bovine serum 

albumin-enriched saline infusion into the anterior compartment of the hind limb, Odland 

et al. (2005) measured serum and filtrate creatinine kinase (CK) and lactate 

dehydrogenase (LDH) levels over a 10 hour period. They found that the biomarker levels 

were 80 times higher in the ultrafiltrate compared to the serum (Odland, Schmidt et al. 

2005). Significantly lower pressures were recorded in experimental limbs connected to 

negative pressure, coupled with a markedly lessened cellular injury. The authors 

undertook a small human clinical trial, to test the safety and efficacy of ultrafiltration. 

They examined ten patients with tibial fractures treated with intramedullary nailing with 

and without tissue ultrafiltration, and found no difference in ICP between the two groups; 

however, 2 patients in the control group developed CS, while none in the ultrafiltration 

treatment group (Odland and Schmidt 2011). 

 

1.2.2.4 Anti-Inflammatories 

There is a significant body of evidence describing an increase in ICP as the 

underlying cause of microcirculatory dysfunction. However, the significant impact of 

inflammation and leukocyte activation in the pathophysiology of CS is increasingly being 

recognized (Lawendy, Sanders et al. 2011, Lawendy, Bihari et al. 2015). Activated 
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leukocytes directly impair perfusion, increase intravascular protein leakage, thus 

contributing to tissue edema, as well as causing direct parenchymal injury (Kurose, 

Anderson et al. 1994, Forbes, Carson et al. 1995, Forbes, Harris et al. 1996, Harris and 

Skalak 1996). 

Non-steroidal anti-inflammatory drugs (NSAIDs) are a class of medication that 

interfere with arachidonic acid metabolism, via inhibition of the cyclooxygenase (COX) 

enzyme. Two isoforms have been identified: the constitutively expressed COX-1, and 

inducible COX-2. COX-2 expression can be upregulated in response to inflammatory 

stimuli and pro-inflammatory cytokines (Jan and Lowry 2009). Manjoo (2010), looked at 

the effects of indomethacin, a selective COX-2 inhibitor, on capillary perfusion, cell 

damage and inflammatory activation in a rat model of CS. They found that indomethacin 

improved tissue perfusion and viability, decreased the number of non-perfused capillaries 

and significantly lowered tissue injury, lending support to the suggestion that anti-

inflammatory treatments have the potential to reduce the damage in the presence of 

elevated ICP (Manjoo, Sanders et al. 2010). 

 

1.2.2.5 Anti-Oxidants 

Ischemia-reperfusion is known to lead to a significant release of reactive oxygen 

species (ROS) – extremely damaging free radicals, both locally within the tissue, as well 

as from the release of activated neutrophils. Thus, the resulting tissue injury is not only 

seen at the local level in skeletal muscle, but also in distant organ systems, such as the 

lungs and kidneys (Xiao, Eppihimer et al. 1997, Kearns, Kelly et al. 1999). In a study by 

Perler et al. (1990), the authors concluded that the most important component of CS 
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appeared to be the free radical-mediated reperfusion injury: an increase in free radicals 

(such as H2O2) causes direct injury to the endothelium. Furthermore, by interacting with 

lymphocytes, ROS further stimulate a pro-inflammatory state by increasing cytokines 

levels (e.g. TNF-ɑ and IL-8) (Perler, Tohmeh et al. 1990). These, in turn, lead to the 

activation of neutrophils and these activated neutrophils then release ROS, which further 

contributes to the endothelial injury.   

Due to expanding knowledge regarding the contribution of oxidative damage in 

CS and ischemia-reperfusion injury, various anti-oxidant therapies have been attempted, 

to prevent both the local and systemic injuries. These include N-acetylcysteine (NAC), 

taurine and vitamin C. NAC is a free radical scavenger that also restores the host cellular 

anti-oxidant defenses by upregulating glutathione levels in the cell (Sjodin, Nilsson et al. 

1989). The primary clinical use of NAC is in acetaminophen overdose, to reduce injury to 

hepatocytes (Flanagan and Meredith 1991). It is also used for its nephroprotective effects 

in patients with kidney failure prior to administering IV contrast (Tepel, van der Giet et 

al. 2000), as well as to protect against oxidative injury in lung parenchyma (Bernard 

1991). A study by Kearns et al. (1999) examining the effects of NAC in a rat model of 

CS found that CS led to decreased muscle contractility and increased tissue 

myeloperoxidase activity and treatment with NAC attenuated neutrophil activation and 

preserved muscle contractility (Kearns, Kelly et al. 1999).  

Taurine (2-aminoethane sulfonic acid) is a sulphur-containing amino acid, derived 

from the metabolism of methionine. The major source of taurine is from a person’s diet. 

Taurine has been implicated in the inhibition of lipid peroxidation, cell membrane 

stabilization, osmoregulation, as well as modulation of calcium levels (Kingston, Kelly et 
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al. 2004). Studies have found that exogenous administration of taurine can have 

protective effects against ischemia-reperfusion tissue injury in the kidney, heart, liver and 

skeletal muscle (Oz, Erbas et al. 1999, Wettstein and Haussinger 2000, Michalk, 

Hoffmann et al. 2003, Wang, Li et al. 2005). Wang et al. (2005) found that the 

administration of taurine reduced anterior compartment pressure, muscle edema, lactate 

dehydrogenase and lipid peroxidation products in a rabbit model of CS (Wang, Li et al. 

2005).  

Vitamin C (ascorbate) is an antioxidant that has been shown to decrease or 

prevent reperfusion injury in the lung and skeletal muscle, as well as to reduce oxidant 

production in neutrophils (Herbaczynska-Cedro, Wartanowicz et al. 1994, Lehr, Frei et 

al. 1995, Kearns, Kelly et al. 1999, Armour, Tyml et al. 2001, Kearns, Moneley et al. 

2001). It has scavenging effects on hydrogen peroxide, which is an important component 

for neutrophils recruitment and adhesion (Armour, Tyml et al. 2001). Vitamin C also 

targets circulating neutrophils and lymphocytes (Levine, Daruwala et al. 1998). It is 

believed to exert its beneficial effects by reducing neutrophil recruitment and activation, 

as well as their extravasation into the tissues by altering the expression of adhesion 

molecules (e.g. ICAM-1). Vitamin C has also shown promising results in 

prophylactically treating complex regional pain syndrome (CRPS) or reflex sympathetic 

dystrophy (Zollinger, Tuinebreijer et al. 1999). While CRPS and CS are distinct 

pathological entities, they do share certain underlying physiological processes such as an 

exaggerated inflammatory response, peripheral nervous system dysfunction and an 

increase in circulating free radicals causing lipid membrane oxidation (Van der Laan 

1997). A study by Kearns et al., 2004 using a rat cremasteric muscle model of CS, found 
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that pre-treatment with Vitamin C reduced intercellular adhesion molecule-1 (ICAM-1) 

expression and myeloperoxidase (MPO) activity as well as muscle swelling, while 

preserving muscle contractile function (Kearns, Daly et al. 2004). Although there is a 

concern that vitamin C may have pro-oxidant properties when administered at high doses 

for a prolonged period of time (Podmore, Griffiths et al. 1998), it has been shown to have 

a potent antioxidant effect without associated toxicity at doses less than 500mg per day 

(Bendich and Langseth 1995). 

 

 

1. 3 PATHOPHYSIOLOGY OF CS 

The pathophysiology underlying the onset, progression and muscle necrosis 

associated with CS is only partially understood. A bony or soft tissue insult, combined 

with an inherently rigid and unyielding fascia which prevents volume expansion leads to 

increased ICP, which, in turn, leads to microcirculatory dysfunction. This is followed by 

the activation of an inflammatory cascade and tissue edema, eventually leading to 

impaired gas exchange, restricted oxygen and nutrient delivery. The final common 

pathway is cellular anoxia, cell death and myonecrosis.   

In 1881, Volkmann was the first to suggest that limb paralysis secondary to CS 

was due to the interruption in arterial blood supply, causing ischemia (von Volkmann 

1881). He described the devastating hand deformity seen in the paediatric population 

following a supracondylar fracture, complicated by CS. The deformity still bears his 

name today. However, Volkmann was unable to describe the cause of the ischemia. Leser 

in 1884 expanded on this principle and confirmed, through well-designed animal 
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experiments, that muscle necrosis was a crucial part of the condition (Leser 1884). 

Hildebrand in 1906 demonstrated that nerve involvement also occurred, in addition to 

muscle necrosis (Hildebrand 1906).  Over the last century, various theories have been 

offered and expanded upon to explain the pathophysiological basis of CS. These have 

included neurological injury (Thomas 1909), arterial injury and spasm (Griffiths 1940), 

venous obstruction (Murphy 1914, Brooks 1922), increased ICP and pressure-induced 

ischemia (Jepson 1926). 

In 1940, while trying to expand on Volkmann’s findings, Griffiths suggested that 

the paralysis and contractures seen were due to an underlying arterial injury with 

reflexive spasms (Griffiths 1940). The idea of arterial injury and spasm as a cause of 

ischemia and contractures was further supported by Watson-Jones in 1952 (Watson-Jones 

1952). Foisie in 1942 believed that autonomic dysfunction mediated the arterial spasm. 

As a result, he suggested that autonomic sympathetic blockade could treat CS and prevent 

the complications (Foisie 1942). We now know that this was incorrect, on both a 

pathophysiological and clinical basis.  

The connection between ICP and subsequent ischemia was first made by Hughes 

in 1948 (Hughes 1948) and in 1975, while considering the link between pressure, 

ischemia, muscle injury and the importance of compartmental decompression through 

fasciotomy, Matsen combined these relevant concepts into one unified theory of CS 

(Matsen 1975). Through his description, Matsen confirmed that CS could occur in any 

anatomical location, and was not a condition exclusive to the upper extremity. In 

addition, he suggested that the increase in tissue intracompartmental pressure was a 

critical underlying feature in the development of CS and furthermore, that surgical 
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fasciotomy was the only effective treatment (Matsen 1975). Whitesides (1975) then 

helped to define a methodology for directly measuring ICP (Whitesides, Haney et al. 

1975). Initially, a threshold ICP was believed to exist above which irreversible changes 

and injury would occur (Heckman, Whitesides et al. 1993). Subsequently, rather than an 

absolute pressure threshold, others suggested that it is the difference between ICP and 

diastolic blood pressure that was relevant, and should be considered in the assessment of 

patients (Har-Shai, Silbermann et al. 1992, Heckman, Whitesides et al. 1994, Bernot, 

Gupta et al. 1996).  

 

1.3.1 Ischemia 

1.3.1.1 Microvascular Dysfunction 

Three theories have attempted to describe the microcirculatory dysfunction and 

ischemia associated with increased tissue pressure seen in CS: microvascular occlusion 

theory, critical closing pressure theory and arterio-venous gradient theory.  

The microvascular occlusion theory states that CS results from capillary occlusion 

caused by increased ICP. The theory postulates that increased ICP above capillary 

pressure leads to a reduction in the patency of capillaries and thus subsequent blood flow. 

This then creates an ischemic state, impairing gas exchange and nutrient delivery, leading 

to cellular anoxia and cell death. However, a study by Hartsock et al (1998) found that 

while compartment pressures could be experimentally raised well beyond the level to 

cause complete cessation of capillary blood flow, collapse of capillary vessels was not 

seen, essentially discrediting the microvascular occlusion theory (Hartsock, O'Farrell et 

al. 1998).  
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The critical closing pressure theory describes an absolute ICP above which 

arteriole closure occurs, caused by an elevated differential between tissue pressure and 

intravascular pressure (Burton and Yamada 1951). This would then lead to arteriolar 

collapse and tissue ischemia. The validity of this theory however was put into question by 

an experiment by Vollmar et al (1999) who assessed the response of arterioles, capillaries 

and venules to pressure elevation and found no signs of arteriolar spasm or collapse 

(Vollmar, Westermann et al. 1999).  

Finally, the arterio-venous gradient theory states that CS is caused by increased 

tissue pressure, which reduces the pressure gradient from the high pressure seen in the 

arterial system to the low pressure on the venous side. As ICP rises, the gradient is 

reduced and blood flow decreases, causing cellular anoxia and tissue injury (Matsen, 

Winquist et al. 1980). This phenomenon also leads to pooling of venous blood, fluid 

extravasation, interstitial edema and swelling and causes a further rise in ICP (Matsen 

and Krugmire 1978). Although all three theories attempt to explain the link between 

raised ICP and microcirculatory dysfunction, the AV gradient theory provides the closest 

link, and is most easily reconciled with our current understanding of CS and 

microcirculatory dysfunction vis-à-vis pressure gradient changes. 

 

1.3.1.2 Low Flow Ischemia 

We now know that, rather than being due to a state of complete occlusive vascular 

ischemia and spasm, CS creates a microcirculatory “low flow” environment, occurring in 

the presence of patent arterial vessels. Under normal conditions, microvascular perfusion 

consists of predominantly continuously perfused capillaries (CPC). As the ICP rises, 
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there occurs a shift in perfusion toward intermittently perfused capillaries (IPC), and 

nonperfused capillaries (NPC) (Lawendy, Sanders et al. 2011, Lawendy, Bihari et al. 

2015). Lawendy (2011) used intravital video microscopy (IVVM) to directly observe the 

microvascular perfusion changes seen in early CS. After artificially raising ICP in a rat 

model of CS, a decrease in the number of CPC (representing healthy perfusion) and an 

increase in intermittent and non-perfused capillaries was found. These changes in 

microvascular perfusion were accompanied by significant leukocyte activation, as well as 

parenchymal injury (Lawendy, Sanders et al. 2011).  

Despite the presence of microvascular dysfunction, some degree of perfusion 

remains during CS, creating a “low flow” ischemic state, where CPCs are present in the 

same capillary bed as IPC and NPC. NPCs have no ability for nutrient or gas exchange, 

and represent a state of ischemia, unable to meet the metabolic demands of the tissue 

(Lawendy, Sanders et al. 2011). This creates a partial ischemic state, which triggers an 

early and significant inflammatory response (Gute, Ishida et al. 1998, Lum and Roebuck 

2001, Schlag, Harris et al. 2001). 

 Heppenstall (1986) considered the ischemic process in CS in a canine model. 

They found that the low flow ischemic state (specifically associated with CS) caused 

tissue injury that was significantly greater than what was seen in a state of complete 

ischemia. This finding was believed to be due to the intense inflammatory reaction 

(Heppenstall, Scott et al. 1986). The association between partial ischemia and intense 

inflammatory response has been substantiated by Conrad (2005), who compared partial 

and complete ischemia in a murine model. Conrad’s results indicated that a partial 
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ischemic state caused a significant early increase in pro-inflammatory mediators when 

compared to complete ischemia (Conrad, Stone et al. 2005).  

There are important distinctions which must be drawn between CS and complete 

ischemia-reperfusion (I/R) injury: CS causes tissue injury and necrosis despite a patent 

macrocirculatory system in the face of a palpable distal pulse (Seddon 1966). In addition, 

the injury occurring as a result of CS is of greater magnitude compared to a complete 

ischemic insult of the same duration (Heppenstall, Scott et al. 1986). While our 

understanding of the pathophysiological basis underlying CS is not complete, 

microcirculatory dysfunction caused by an ongoing ischemia-reperfusion type injury, 

early leukocyte activation and a pro-inflammatory state appear to be the driving forces 

behind the generation of CS, and its potentially devastating sequelae. 

 

1.3.2 Reperfusion and Inflammation 

The greatest paradigm shift with respect to our understanding of the 

pathophysiology underlying CS came in 1941 during World War II. Researchers noted 

the systemic clinical collapse which occurred in otherwise stable patients following the 

revascularization of injured limbs. They noted a decrease in urine output, clinical 

deterioration and multi-organ failure, followed by death in certain cases. Interestingly, 

this occurred even when the injured limbs had been amputated (Bywaters and Beall 1941, 

Bywaters, Delory et al. 1941). This led to the concept of ‘crush syndrome’, defining the 

clinical entity associated with what we know today as ‘reperfusion injury’.  

Reperfusion injury occurs when tissues are perfused after a period of ischemia. 

This is accompanied by an intense inflammatory response, with both local and systemic 



	 29 

effects. The return of oxygen during reperfusion causes the formation of reactive oxygen 

species (ROS), which, along with activated neutrophils, cause the local and systemic 

injury seen following reperfusion.  

It has been well documented, in complete ischemia-reperfusion (I/R), that 

increasing ischemia time leads to an increasing accumulation of activated leukocytes 

(particularly neutrophils) in the post-capillary venules.  Neutrophils contain intracellular 

granules made up of various proteases and myeloperoxidase, which are very damaging to 

cellular and extracellular targets. Upon activation, these granules are released into the 

affected tissues. Thus, leukocyte activation leads to increased vascular permeability to 

plasma protein leakage, tissue edema, and increased interstitial pressure. An increase in 

interstitial pressure is believed to physically compress capillaries altering the arterial 

venous gradient, leading to further failure of capillaries to reperfuse upon restoration of 

blood flow. Correlation has been noted between the number of leukocytes in the 

capillaries of post-ischemic tissue and the percentage of capillaries exhibiting no-reflow 

(Engler, Dahlgren et al. 1986, Barroso-Aranda, Schmid-Schonbein et al. 1988, Gute, 

Ishida et al. 1998). 

The I/R process also leads to the expression of cell surface ischemic antigens; this 

leads to complement activation cascade, which eventually results in the formation of the 

membrane attack complex (MAC). In addition, cytokines are also released, providing 

signals between the responding immunological cells, leading to adhesion, migration and 

extravasation (Ley 2008).  
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1.3.2.1 Reactive Oxygen Species (ROS) 

ROS are small chemically reactive substances containing oxygen. These include 

peroxides, superoxide and hydroxyl radical. ROS are formed as a normal byproduct of 

the mitochondrial electron transport chain, peroxisomal fatty acid metabolism and 

oxygen metabolism, and play an important role in cellular signalling as well as 

maintenance of homeostasis (Toyokuni 1999).  

During periods of ischemia, xanthine oxidase (XO) (an enzyme located in 

microvascular endothelial cells of skeletal muscle) is converted from its oxidized 

nicotinamide-adenone dinucleotide (NAD+)-dependent dehydrogenase (XDH) state into 

XO (Korthuis, Granger et al. 1985, Korthuis, Grisham et al. 1988, Carden, Smith et al. 

1990, Carden, Smith et al. 1991). Upon reperfusion (ie: the re-introduction of oxygen), 

molecular oxygen now acts as the substrate which XO converts to ROS, such as 

superoxide and hydroxyl radicals. The newly formed ROS will cause further tissue 

damage by attacking cell membrane lipids, proteins and glycosaminoglycans. 

Furthermore, the process will further stimulate the pro-inflammatory state, bringing 

leukocytes to the affected tissues. 

Under normal conditions, host cells are protected from the damaging effects of 

ROS by endogenous anti-oxidants, such as superoxide dismutase, catalase and 

glutathione peroxidase. During oxidative stress, when ROS overwhelm the anti-oxidant 

defense of the host, ROS will damage cellular membranes, and as a result, severe 

cellular/tissue damage ensues. 
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1.3.2.2 Endothelial Activation 

Under normal circumstances, resting endothelial cells do not interact with 

leukocytes; on the contrary, they actually play a role in maintaining leukocyte quiescence 

(Ley, Laudanna et al. 2007). Leukocyte quiescence is due, in part, to adhesion molecules 

not being expressed (like E-selectin or VCAM-1), expressed at very low levels (like 

ICAM-1), or sequestered internally (like P-selectin). In response to reperfusion injuries, 

the activation of endothelial cells consists of three time-dependent stages: immediate 

(within minutes), acute (within hours) and chronic (within days) (Ley and Reutershan 

2006). The immediate activation of endothelial cells is triggered by inflammatory 

chemokines, which leads to endothelial degranulation and contraction (Maier and Bulger 

1996). P-selectin, which is normally stored within the cytoplasmic Weibel-Palade bodies, 

is delivered to the cell surface and functions to facilitate leukocyte recruitment (Weibel 

and Palade 1964), by interacting with the P-selectin glycoprotein ligand-1 (PSGL-1) 

found on leukocytes. 

The acute endothelial activation is triggered by the release of pro-inflammatory 

cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β); 

this leads to an upregulation of gene transcription and production of E-selectin, as well as 

ICAM-1 (Kurose, Anderson et al. 1994, Gute, Ishida et al. 1998, Ley, Laudanna et al. 

2007). The process appears to be reversible once the source of inflammation is resolved 

(Ley, Laudanna et al. 2007).  
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1.3.2.3 Cytokines/Chemokines 

Cytokines and chemokines are a family of cell-derived secreted polypeptides that 

act as communication messengers between cells (Feghali and Wright 1997). They can 

communicate through autocrine, paracrine and/or endocrine mechanisms. Chemokines 

are a subset of cytokines possessing chemotactic properties. These messengers are 

responsible for cellular activation, communication, feedback loops and the initiation of 

the systemic response to inflammation. The majority of cytokines are multifunctional 

and, through their binding to cell surface receptors, can initiate a series of intracellular 

signal transduction pathways (Feghali and Wright 1997). 

Cytokines can alter the expression of various transcription factors and, therefore, 

regulate gene transcription, further altering and modifying the production of cytokines 

and cell surface receptors. Their effects are varied, and include synergistic and 

antagonistic action, as well as exerting both negative and positive feedback regulatory 

loops. They provide signals between leukocytes and endothelial cells eventually leading 

to adhesion and transmigration of leukocytes (Gillani, Cao et al. 2012). 

Acute inflammatory reactions, such as those seen in I/R injury and CS, are 

mediated by a number of pro-inflammatory cytokines, most notably IL-1β, TNF-ɑ, IL-6, 

IL-8, thromboxane A2; these are produced in the acute phase of inflammatory response. 

Their upregulation stimulates downstream leukocyte activation and recruitment to the 

involved tissues. The end result is the effects on leukocyte activation, increased reactive 

oxygen species, the production and upregulation of adhesion molecules, phagocytosis and 

apoptosis.  
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1.3.2.3.1 TNF-a 

TNA-a is a pro-inflammatory cytokine produced by macrophages following an 

appropriate stimulus such as trauma, inflammation or infection (Stein and Gordon 1991). 

It is one of the first cytokines released as the inflammatory process is initiated. It has 

multiple functions, including being a chemoattractant for surrounding neutrophils, and is 

involved in the upregulation of downstream cytokine production (Ascer, Gennaro et al. 

1992). It binds to and exerts its effects through two transmembrane receptors, TNFR1 

and TNFR2 (Banner, D'Arcy et al. 1993). Binding and subsequent activation leads to 

altered gene transcription and protein coupling, which has been shown to initiate 

programmed cell death pathways (Wallach 1997, Jiang, Wang et al. 2009). In a study by 

Jiang et al. looking at hind limb ischemia in TNFR1 knockout mice, by blocking the 

TNF-a/TNFR1 pathway, it was found that they could prevent the downstream actions of 

TNF-a and decrease programmed cell death (Jiang, Wang et al. 2009). In a rat model of 

CS, systemic levels of TNF-ɑ, along with other cytokines such as Il-1β, GRO/KC, MCP-

1, MIP-1a and IL-10 were found to increase in response to elevation of ICP (Donohoe 

2015); however, unlike in complete I/R (characterized by TNF-ɑ spike), TNF-ɑ levels 

continued to increase following fascial decompression (Lawendy, Bihari et al. 2014, 

Lawendy, Bihari et al. 2016). This second rise in TNF-a levels is described by the 

authors as a second hit (Lawendy, Bihari et al. 2016) and likely due to the liberation of 

cellular debris, pro-inflammatory mediators and cytokines into the systemic circulation 

(Lawendy, Bihari et al. 2016). The second hit and washout of debris is also significant in 

that it suggests that CS, rather than being purely an I/R phenomenon is more consistent 

with a pro-inflammatory state. Their research, along with previous work on the systemic 
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effects of I/R, has shown that the release of TNF-a and other inflammatory cytokines in 

response to a local ischemic event can cause significant systemic injury (Brock, Lawlor et 

al. 1999, Lawlor, Brock et al. 1999, Lawendy, Bihari et al. 2016). 

 

1.3.2.3.2 IL-1 β 

IL-1β, like TNF-a, is a pro-inflammatory cytokine produced by activated 

macrophages, and is involved in cell proliferation, differentiation and programmed cell 

death (Gao, Madi et al. 2014). IL-1β has been shown to play a significant role in the I/R 

literature and multiple studies have shown significant increases in IL-1β levels associated 

with I/R events (Rothwell, Allan et al. 1997, Touzani, Boutin et al. 1999, Pomerantz, 

Reznikov et al. 2001, Furuichi, Wada et al. 2006, Simi, Lerouet et al. 2007). Studies 

utilizing IL-1β knockout mice have shown significant reduction in ischemia-induced 

inflammatory responses (Furuichi, Wada et al. 2006). The same authors have further lent 

credence to the idea that IL-1β mediates the injury seen in I/R injury from improvements 

seen with IL-1-targeted therapy in these experimental models (Touzani, Boutin et al. 

1999, Pomerantz, Reznikov et al. 2001, Furuichi, Wada et al. 2006). A study by Kalns et 

al., looking at extremity CS in a pig model, in order to assess the impact of normobaric 

vs. hypobaric situations in relation to CS, found that levels of IL-1β, along with TNF-a, 

IL-6, FGF, IGF-1, IGF-BP4/BP5 and others were elevated in experimentally-induced CS 

(Kalns, Cox et al. 2011, Kalns, Cox et al. 2011). A study by de Franciscis (2016) assessed 

biomarker changes in patients with arterial occlusion and CS. All ischemic patients 

experienced a significant rise in levels of IL-1, IL-6, IL-8 and TNF-a, and patients 
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requiring a fasciotomy had higher levels of these pro-inflammatory mediators compared 

to the patients that did not require a fasciotomy (de Franciscis, De Caridi et al. 2016).  

 

1.3.2.4 Leukocyte Activation 

The increased ICP leads to a low flow ischemic state, which is associated with 

significant leukocyte activation that contributes to microcirculatory dysfunction and 

leukocyte accumulation in post-capillary venules (Lawendy, Bihari et al. 2015). The 

complex and regulated leukocyte activation cascade was first described in 1839 by 

Rudolph Wagner (Wagner 1839). The cascade is initialized by the release of 

inflammatory cytokines and chemokines, which then trigger the upregulation and 

differential expression of various classes of adhesion molecules such as selectins, 

integrins and Ig superfamily, on both the endothelium and leukocytes (Ley 2008).  

The activation cascade is comprised of several highly regulated stages (Figure 

1.2). The first step is the capture of the leukocyte by the activated endothelium. This 

process is mediated by selectins, such as L-selectin on leukocytes and P-selectin and E-

selectin expressed on endothelial cells. The next step is leukocyte “rolling”, whereby the 

leukocyte attaches itself to the surface of the endothelium. The process then progresses to 

the slow rolling stage, mediated by integrins. This is then followed by the firm adhesion 

of leukocytes to the endothelium. This adhesion is further strengthened and then followed 

by the clustering of integrins, which, under the appropriate stimuli, leads to leukocyte 

transmigration and extravasation into the interstitium  (Ley, Laudanna et al. 2007).  

The process of adhesion and extravasation is mediated by members of the Ig 

superfamily such as ICAM-1 and VCAM-1 on the endothelial surface, and PECAM-1 on 
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neutrophils (Albelda, Muller et al. 1991, Barreiro, Yanez-Mo et al. 2002, Yang, Froio et 

al. 2005). Following leukocyte extravasation into the sub-endothelial matrix and 

migration towards the site of injury, a positive feedback loop is created, increasing the 

permeability of the endothelium, leading to further intravascular protein extravasation. 

This manifests clinically as significant interstitial edema and swelling, which in itself will 

amplify the increase in ICP (Gute, Ishida et al. 1998).  

Several studies have examined CS using intravital video microscopy (IVVM), a 

modern technique which allows for the direct visualization of microvascular perfusion 

(Manjoo, Sanders et al. 2010, Lawendy, Sanders et al. 2011, Lawendy, Bihari et al. 

2014). They have demonstrated a significant increase in activated leukocytes in the post-

capillary venules of skeletal muscle. Furthermore, activated leukocytes also appear to 

contribute to the parenchymal injury directly, as demonstrated in neutropenic rats 

(Lawendy, Bihari et al. 2015). 

 

1.3.2.5 Complement 

The complement system forms part of the innate immunity which acts as a 

mediator between the innate and acquired immunity response pathways. The function of 

the complement system is to clear pathogens from the host organism (Ricklin, 

Hajishengallis et al. 2010). The complement cascade is made up of a series of proteins on 

cell surfaces and in plasma, many of which exist as precursors, and are activated at the 

site of inflammation. The complement system mediates a sequence of events that begins 

with inflammatory activation and ends with pathogen opsonisation and lysis.   
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Figure 1.2. Leukocyte activation cascade. Leukocyte activation is an orderly process 

comprised of leukocyte capture, rolling, adhesion and extravasation. The 

individual steps are mediated by differential expression of various 

adhesion molecules on both the leukocyte and the endothelium. 

 Adapted from Ley, Laudanna et al. 2007. 
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The complement cascade is activated by IgG and IgM antibodies. There are three 

known biochemical pathways that activate the complement system: the classical pathway, 

the alternative pathway and the lectin pathway (Zipfel and Skerka 2009). During I/R, the 

presence of ischemia antigens on cell surfaces triggers binding of circulating IgM which 

subsequently leads to complement activation and formation of C3a/C3b. This is then 

followed by the formation of the membrane attack complex (MAC), mediating the local 

cellular injury response (Gillani, Cao et al. 2012). MAC is also involved in the 

inflammatory amplification through stimulation of arachidonic acid metabolism, release 

of prostaglandin E2, leukotriene B4, thromboxane B2, prostanoids, IL-1 and ROS 

(Hansch, Seitz et al. 1984, Hansch, Seitz et al. 1987, Gillani, Cao et al. 2012). 

 

Inflammatory processes such as leukocyte activation, cytokine release and the 

complement cascade as well as ROS production serve a useful and protective function 

including cleanup of diseased/dead cells and initiate tissue repair mechanisms. 

Unfortunately, in overwhelming inflammation, as is seen in various states such as 

ischemia-reperfusion injury and CS, these pathways contribute to the extensive tissue and 

organ damage. 

 

 

1.4 HEME METABOLISM AND OXIDATIVE STRESS 

Oxygen is inherently toxic but living organisms have evolved the ability to utilize 

this gas, as well as coping mechanisms to deal with oxidative stress. Most notable of 

these strategies, is the presence of the heme oxygenase (HO) enzyme.  
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HO degrades heme, forming equimolar amounts of biliverdin, free iron and 

carbon monoxide (CO) (Ryter, Alam et al. 2006) (Figure 1.3). There are three separate 

HO isoforms: the constitutively expressed HO-2 and HO-3, and the inducible HO-1 

(Maines, Trakshel et al. 1986, McCoubrey, Huang et al. 1997).  

The importance of CO and the HO enzyme has been shown in case reports which 

detailed the death of individuals who lacked the enzyme (Yachie, Niida et al. 1999). 

Several studies have demonstrated that the inhibition of HO (by pharmacological or gene 

knockout means) was found to be a lethal mutation and detrimental to the host due to 

heightened sensitivity to cellular stress (Poss and Tonegawa 1997, Dungey, Badhwar et 

al. 2006). Conversely, the upregulation of HO (pharmacologically or through transfection 

with adenovirus containing HO gene construct) has been found to be protective against 

ischemia-reperfusion injury (Otterbein, Kolls et al. 1999, Otterbein, Lee et al. 1999, 

McCarter, Akyea et al. 2004, McCarter, Badhwar et al. 2004) Badhwar et al. 2004). 

There are case reports which have suggested that individuals with higher 

expression of HO enzyme are less likely to develop diabetes, atherosclerosis, chronic 

obstructive pulmonary disease and arthritis (Yamada, Yamaya et al. 2000, Brydun, 

Watari et al. 2007, Wagener, Toonen et al. 2008, Song, Bergstrasser et al. 2009, 

Motterlini and Otterbein 2010). As upregulation of HO is not clinically feasible, further 

research has looked at the downstream byproducts of the heme degradation pathway, 

particularly CO, to examine its contribution to the observed protective effects.  
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Figure 1.3. Heme degradation pathway. Heme, derived from hemoglobin, is broken 

down into biliverdin by heme oxygenase (HO). Biliverdin is then 

converted into bilirubin by biliverdin reductase (BVR). In this process, 

carbon monoxide (CO) and free iron (Fe2+) are generated. 
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1.4.1 Carbon Monoxide 

Carbon monoxide (CO) is a freely diffusible gas that traverses all cell membranes. 

Although considered a ubiquitous pollutant and a dangerous inhalation hazard, it is 

present in every mammalian cell (Coburn 1967).  Small and regulated amounts of 

intracellular CO are continuously produced: the rate of endogenous CO production is 

approximately 0.42ml/hr (Coburn, Williams et al. 1967); approximately 86% of 

endogenous CO production comes from the metabolism of heme, while the remaining 

14% is derived from lipid oxidation, xenobiotic metabolism and other metabolic 

processes (Vreman, Wong et al. 2000, Archakov, Karuzina et al. 2002). The endogenous 

production of CO has been found to increase under cellular stress arising from certain 

toxicological and pathological conditions (Zayasu, Sekizawa et al. 1997).  

Claude Bernard, in 1857, was the first to describe the binding of CO to heme 

within the hemoglobin molecule, leading to the formation of carboxyhemoglobin (COHb) 

(Bernard 1857). This was then followed in 1912 by Douglas, demonstrating that the 

binding of CO to heme was reversible (Douglas, Haldane et al. 1912). Importantly, the 

affinity of CO for heme is approximately 240 times that of oxygen (Weaver 1999). One 

molecule of hemoglobin has four oxygen binding sites. When two of the binding sites are 

occupied by CO molecules (i.e. half saturation), the release of oxygen from the remaining 

binding sites is inhibited, leading to a reduction in the oxygen-carrying capacity of 

hemoglobin and subsequent hypoxia (Weaver 1999). By exposing the body to supra-

physiologic oxygen levels, such as is seen with hyperbaric oxygen therapy, oxygen can 

outcompete CO for the hemoglobin binding sites, and thus reverse the hypoxia seen with 

CO poisoning (Weaver 1999, Gorman, Drewry et al. 2003).  
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Under normal conditions, the majority of blood COHb comes from endogenous 

production, and corresponds to blood CO levels of 0.4-1% (Vreman, Wong et al. 2000).  

Symptoms of CO poisoning begin to manifest at around 20% COHb levels and include 

dizziness, drowsiness, headache, vomiting and loss of motor coordination. Prolonged 

exposure, and COHb levels of 50-80% will lead to respiratory difficulty, disorientation, 

chest pain, loss of consciousness, coma and even death (Weaver 1999). 

 

1.4.2 Biological Effects of Carbon Monoxide 

While history has focused mostly on the negative impact of CO, namely CO 

poisoning, CO plays an important and positive role in cellular communication. CO is an 

important mediator of cell signalling, and appears to possess anti-ischemic, anti-oxidant, 

anti-inflammatory, anti-apoptotic and vasodilatory properties (Kim, Ryter et al. 2006). 

 

1.4.2.1 Cellular Signalling 

There are currently a few known cellular mechanisms over which CO has 

particular influence. The modulation of soluble guanylate cyclase (sGC) by CO and the 

subsequent production of cGMP is currently the most commonly described mode of 

action (Ryter and Otterbein 2004). The binding of CO to the heme domain within sGC 

stimulates its activity and this leads to a significant increase in cGMP. Studies have 

shown that directly subjecting vascular smooth muscle cells to CO or hypoxia (via an 

increase in HO-1 and subsequently increased CO) leads to an increase in cGMP levels 

(Morita, Perrella et al. 1995). 
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In addition to the direct CO binding sGC signaling pathway, other indirect 

pathways have been identified such as modulation of mitogen-activated protein kinases 

(MAPK) and upregulation of calcium-dependent potassium channel activity (Ryter, 

Otterbein et al. 2002). We do know that there is a significant interaction and cross talk 

between CO and other endogenously produced gases (e.g. nitric oxide, hydrogen sulfide) 

in the biologic systems (Kajimura, Fukuda et al. 2010), although the intricacies of the 

underlying mechanism and signalling pathways have yet to be elucidated. 

 
 

1.4.2.2 Vasodilation 

Several cellular mechanisms are believed to be involved in the vasodilatory effect 

of CO. CO has both “direct” (i.e. endothelial independent) effects on vascular smooth 

muscles cells, as seen with the modulation of sGC and subsequent increase in cGMP, as 

well as endothelial-dependent changes in the expression of vasoconstrictor factors 

(Motterlini and Otterbein 2010). CO has been shown to target vascular smooth muscle 

cells and is, therefore, able to have a significant vasodilatory impact, which has been 

reported in the cardiac, renal, pulmonic and cerebral vasculature (Sylvester and 

McGowan 1978, McFaul and McGrath 1987, Abraham and Kappas 2008). In addition to 

the role played by sGC and the subsequent increase in cGMP in vasodilatory role of CO, 

CO has also been shown to directly activate calcium-dependent potassium channels in the 

peripheral vasculature, causing vasodilatation (Wang, Wang et al. 1997). Studies which 

attempted to block the pathway using ryanodine, a known calcium channel blocker, were 

able to inhibit CO-induced vasodilatation (Jaggar, Leffler et al. 2002). In addition to the 

direct peripheral role of CO, there is some evidence that neural CO plays an indirect role 
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in vasodilatation via signalling through the autonomic nervous system (Verma, Hirsch et 

al. 1993). 

 

 1.4.2.3 Anti-Inflammatory Effects 

CO has been shown to be associated with significant anti-inflammatory effects 

which have been demonstrated in both in vitro and in vivo studies. For example, in an in 

vitro model of sepsis, Otterbein (2000) stimulated macrophages with LPS which induced 

an increase in TNF-α and other pro-inflammatory cytokines (Otterbein, Bach et al. 2000). 

The exogenous administration of low-dose CO inhibited this pro-inflammatory response. 

Furthermore, CO also inhibited the expression of other pro-inflammatory cytokines, such 

as IL-1β and MIP-1β, while increasing the expression of IL-10, an anti-inflammatory 

cytokine.  

Beneficial effects of CO in relation to systemic inflammation have also been 

demonstrated in in vivo experiments. When examining the impact of I/R-induced 

systemic inflammatory response syndrome (SIRS), the exogenous administration of low-

dose CO was able to prevent liver and small intestine microvascular dysfunction (Ott, 

Scott et al. 2005, Scott, Cukiernik et al. 2009). In another study, Song et al. (2003) 

performed orthotopic lung transplant in rats, which showed severe intra-alveolar 

hemorrhage, a significant increase in inflammatory cellular infiltration and intravascular 

coagulation. The response, however, was significantly attenuated with the exposure to 

500ppm of CO; in these experiments, CO also downregulated pro-inflammatory genes 

such as MIP-1α and MIF (Song, Kubo et al. 2003). 
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1.4.2.4 Anti-Apoptotic Effects 

To date, there have been multiple in vivo and in vitro studies demonstrating the 

anti-apoptotic effects of CO. In an in vitro mouse model, TNF-α-induced apoptosis of 

endothelial cells and fibroblasts was reduced following exposure to CO (Petrache, 

Otterbein et al. 2000). As HO-1 protects endothelial cells (EC) from apoptosis, Brouard 

(2000) were able to demonstrate that blocking the enzyme activity of HO-1 with tin 

protoporphyrin (SnPPIX) leads to EC apoptosis. By exposing EC to exogenous CO, they 

were able to once again prevent apoptosis in the face of HO-1 inhibition. The findings 

demonstrated that the anti-apoptotic effects of HO-1 were mediated by CO and more 

specifically, by the activation of the p38 MAPK pathway (Brouard, Otterbein et al. 

2000).  

In vivo research, examining tissue injury following I/R, found that pre-treatment 

with low-dose exogenously administered CO also had anti-apoptotic effects (Ryter, Alam 

et al. 2006). In a study by Abe et al. (2017), the exposure of rat kidney grafts to oxidative 

stress in the presence and absence of high pressure CO found that CO significantly 

improved graft function and inhibited tubular apoptosis (Abe, Yazawa et al. 2017).  

 

1.4.3 Carbon Monoxide-Releasing Molecules (CO-RMs) 

CO gas is known to be non-reactive, not expensive and easily produced. Due to 

these properties, it became desirable to develop a set of compounds that could safely 

carry and deliver CO to biological systems and tissues, bypassing inhalation-associated 

COHb formation. Considering the known beneficial effects of HO and exogenous CO 

administration, and knowing that CO binds strongly to transition metals in organic 



	 46 

solvents, Motterlini et al. (2002), synthesized a novel class of transition metal carbonyls, 

capable of releasing CO on demand (Motterlini, Clark et al. 2002). These carbon 

monoxide-releasing molecules (CO-RMs) form carbonyl complexes, such as manganese 

decarbonyl and tricarbonyl-dichloro-ruthenium dimer, which can release CO upon 

activation. CO-RMs are, therefore, capable of delivering CO to the tissues in a controlled 

manner, without causing a dangerous increase in COHb formation (Motterlini, Clark et 

al. 2002). CO-RMs can thus be considered chemical delivery vehicles for CO.  

The first CO-RM to be synthesised was CORM-1 (formula [Mn2(CO)10]). It 

contains manganese at its centre, and is a rapid CO releaser (Motterlini 2007), but 

requires photo-activation, thereby limiting its use to in vitro protocols. The second CO-

RM synthesized was CORM-2 (formula [Ru(CO3Cl2)], containing a ruthenium metal 

dimer at its core. CORM-2 requires organic solvent (e.g. DMSO) for CO release also 

limiting its clinical use (Motterlini 2007). CORM-3 (formula [Ru(CO)3Cl(glycinate)]) 

was the first water-soluble ruthenium-based carbonyl that readily and rapidly releases CO 

under physiological conditions (Motterlini 2007), making it an attractive compound for 

clinical applications. The release of CO by CO-RMs has been validated 

spectroscopically, utilising the myoglobin-binding assay (conversion of myoglobin into 

carboxymyoglobin) and the biological and physiological effects of CO-RMs have been 

confirmed by numerous experiments (Motterlini 2007). 

 

1.4.4 Carbon Monoxide-Releasing Molecule-3 (CORM-3) 

CORM-3 is an equimolar CO releaser under physiological conditions. CORM-3 

has been shown to have beneficial vasodilatory properties in aortas (Foresti 2004), 
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positive ionotropic and anti-ischemic effect in cardiac and renal tissues (Musameh 2006; 

Sandouka, 2006), and to cause mesenteric vasodilatation in cirrhotic rats (Bolognesi 

2007). Furthermore, CORM-3 has been shown to have therapeutic potential in various 

inflammatory conditions, such as acute liver failure induced by lipopolysaccharide (LPS) 

(Yan, Yang et al. 2016), postmenopausal arthritis (Ibanez, Alcaraz et al. 2012) and also 

reduced tissue injury, inflammatory response and TNF-α levels in a rat model of 

hemorrhagic stroke (Yabluchanskiy, Sawle et al. 2012). The mechanism of action of 

CORM-3 is unclear, but it appears to regulate the production of TNF-α, fibrinogen/fibrin, 

cellular infiltration, ICAM-1 expression and the activation of transcription factors (NF-

κB, MAPK) (Kramkowski, Leszczynska et al. 2012). CORM-3 has also been shown to 

have direct bactericidal properties against bacteria such as Pseudomonas aeruginosa 

(Desmard, Davidge et al. 2009).  

CO-RMs and CORM-3 have been shown to have various positive therapeutic 

effects. In a rodent model of CS, the administration of CORM-3 at the time of fasciotomy 

was associated with a decrease in leukocyte activation, systemic TNF-α release, and 

diminished tissue injury, while improving microvascular perfusion (Lawendy et al, 

2014). In a rat model of I/R injury following kidney transplantation, pre-treatment of 

donor grafts with CORM-3 was shown to improve recipient survival, graft survival and 

decrease serum creatinine levels compared to control (Caumartin, Stephen et al. 2011). A 

study by Bihari et al., (2017), looking at I/R injury in a hind limb rat model, found that 

treatment with CORM-3 improved tissue perfusion while decreasing tissue injury and 

inflammatory activation (Bihari, Cepinskas et al. 2017).   
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1.4.5  CORM-3 in Human CS 

CORM-3 has never been tested in human patients. While the results of animal 

studies employing CORM-3 as a therapeutic/interventional agent in various inflammatory 

conditions look promising, CORM-3 would have to be thoroughly examined before 

applying it towards human clinical pathology. The first step would be testing CORM-3 in 

a relevant, reliable and reproducible in vitro model, such as that employing human 

vascular endothelial cells (HUVECs). 

Jaffe et al. (1973) described the process of isolating HUVECs from umbilical 

cords by collagenase digestion, and used electron microscopy to demonstrate their 

monolayered growth (Jaffe, Nachman et al. 1973).  Since then, HUVECs have been used 

extensively to study various pathological developments, such as the inflammatory 

processes underlying diabetes and atherosclerosis (Onat, Brillon et al. 2011). In a study 

by Caumartin et al. (2011), investigators pre-treated cultured human umbilical vein 

endothelial cells with CORM-2 and found altered inflammatory state, coupled with 

reduced levels of cytokines, ROS, and pro-inflammatory transcription factors (Caumartin, 

Stephen et al. 2011). In addition, in an in vitro model of CS, incubating HUVECs with 

serum isolated from CS patients, Bihari et al (2017) found that application of CORM-3 

significantly diminished the CS-induced HUVECs monolayer breakdown, ROS 

production, apoptosis, leukocyte adhesion and transmigration (Bihari, Cepinskas et al. 

2017). 
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1.5 AIM OF THE THESIS 

Significant gains have been made towards understanding the pathophysiology of 

CS, yet much remains to be determined. Currently, surgical fascial decompression is the 

only definitive treatment for CS, with current pharmacological therapies limited as 

adjuncts to surgery. In order to deliver effective surgical and medical therapies, the 

pathophysiological basis for the underlying condition and treatments needs to be better 

understood. 

The purpose of this thesis is to further expand upon the human in vitro model of 

CS, developed by Bihari et al (2017), using elevation of hydrostatic pressure (EHP). 

Previous experiments have demonstrated that a significant level of microvascular injury 

and dysfunction develops in response to CS, as demonstrated by the loss of continuously 

perfused capillaries, elevated tissue injury and a significant degree of tissue 

inflammation.	Unlike complete ischemia, however, CS appears to cause myonecrosis in 

the face of patent vessels, implicating leukocytes as playing a primary role in both 

microvascular and parenchymal injury during CS.	 Activated leukocytes are a major 

source of inflammatory cytokines; as such, systemic neutralization of these was able to 

diminish the severity of observed tissue injury, however it was unable to restore the 

proper microvascular perfusion (Donohoe 2015). This would suggest that the elevated 

tissue pressure itself contributes a significant amount of damage to the muscle 

microcirculation (i.e. inflammation is not the only driving force behind the CS 

pathophysiology), creating physical changes within the endothelial monolayer of muscle 

blood vessels that lead to microvascular compromise.  
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In vitro modelling of CS allows us not only to explore the underlying 

pathophysiology in a mechanistic manner, but also permits interventions that are 

currently not possible (or unethical) in humans. Thus, the ultimate goal of this thesis is to 

further our understanding of CS pathophysiology, and to develop a safe medical adjunct 

(or standalone therapy) for patients presenting with CS, avoiding (or at the least, 

minimizing) the potential devastating complications of this complex condition. 

This thesis is organized into four chapters. The general introduction and historical 

review of CS, highlighting the advances in our understanding of diagnosis (both clinical 

and through objective monitoring), therapeutic approaches and pathophysiology 

(describing the microvascular dysfunction, inflammation, as well as important differences 

between CS and ischemia-reperfusion injury), which have been made over the past 140 

years, are summarized in Chapter 1. We introduce CO and its potential beneficial role by 

underlining its biological effects, and the recent development of carbon monoxide-

releasing molecules. 

The response of human vascular endothelial cells (HUVECs) to elevated 

hydrostatic pressure, as an in vitro model of CS, is described in Chapter 2. Outcome 

measures included changes to monolayer structure, endothelial activation (measured by 

assessing leukocyte adhesion to the endothelium), production of ROS and apoptosis. 

The effects of CORM-3 on the magnitude of response of HUVECs to EHP are 

described in Chapter 3. Relative contribution of EHP versus inflammatory mediators 

(cytokines) was also assessed. 

Finally, conclusions, study limitations and future directions are addressed in 

Chapter 4 (General Discussion). 
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CHAPTER 2. ELEVATED HYDROSTATIC PRESSURE ALTERS 

ENDOTHELIAL CELLS IN AN IN VITRO MODEL OF COMPARTMENT 

SYNDROME  

 

2.1 INTRODUCTION 

Compartment syndrome (CS) is a true medical and surgical emergency, with 

potential devastating consequences, caused by an elevation in pressure within a closed 

osseofascial compartment (Matsen, Winquist et al. 1980). The intercompartmental fascia 

is unyielding (Gratz 1931) and as such, individual compartments have limited ability to 

expand; this makes them vulnerable to small increases in intracompartmental pressure 

(ICP) or decreases in volume. The increase in pressure within the closed compartment 

leads to microvascular dysfunction and compromise, thereby creating an ischemic 

environment within the compartment. This limits oxygen and nutrient delivery, as well as 

gas exchange, resulting in cellular anoxia, muscle necrosis and eventual cell death 

(Sheridan and Matsen 1975, Whitesides, Haney et al. 1975, Mubarak, Owen et al. 1978, 

Rorabeck and Clarke 1978, Matsen 1980, Hartsock, O'Farrell et al. 1998).  

The importance of various inflammatory processes is increasingly being 

recognized as contributing to the pathophysiology of CS (Lawendy, Sanders et al. 2011, 

Lawendy, Bihari et al. 2015). The role of activated leukocytes and the direct negative 

impact they may have on capillary perfusion, including intravascular protein leakage, 

leading to tissue edema and parenchymal injury is progressively being documented in the 

pathophysiology of CS (Kurose, Anderson et al. 1994, Forbes, Carson et al. 1995, Forbes, 

Harris et al. 1996, Harris and Skalak 1996).  
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Currently, the only effective treatment for CS is surgical fasciotomy (Olson and 

Glasgow 2005), with few other treatment modalities or adjuncts. Although fasciotomy is 

effective, it is associated with significant (and not infrequent) complications. Some 

adjunctive therapies have shown limited but promising potential in animal models 

(Manjoo, Sanders et al. 2010, Lawendy, Bihari et al. 2014), but their use is hindered by 

both the lack of a thorough understanding of the pathophysiological basis of CS injury, 

and the lack of human models on which to develop research protocols and treatments. 

The purpose of this study was to attempt to translate the recent progress which has been 

made in animal studies to human subjects. To accomplish this, we developed an in vitro 

model of CS using human vascular endothelial cells and elevated hydrostatic pressure.  

We hypothesised that elevation of hydrostatic pressure to 30mmHg would have a 

detrimental effect on the HUVECs, producing significant changes in the endothelial 

monolayer, thus contributing to the breakdown of endothelial barrier. The ultimate and 

hopefully eventual goal of the study is the development of a safe pharmacologic 

adjunctive treatment for CS, which would reduce the morbidity and disability in patients. 

 

 

2.2 MATERIALS AND METHODS 

2.2.1 Reagents 

Medium-199 (M199), fetal bovine serum, penicillin, streptomycin and Dulbecco’s 

PBS (DPBS) (pH 7.4) were purchased from Invitrogen Canada (Life Technologies Inc., 

Burlington, ON). Dihydrorhodamine (DHR)-123 was obtained from Molecular Probes 

Inc. (Eugene, OR). 



	 71 

 

2.2.2 Cells 

2.2.2.1 HUVECs 

Human vascular endothelial cells (HUVECs) were isolated from human umbilical 

veins by collagenase treatment, as previously described (Yoshida, Granger et al. 1992, 

Cepinskas, Sandig et al. 1999, Cepinskas, Savickiene et al. 2003). Briefly, under sterile 

conditions, an umbilical cord was washed with PBS; a three-way stopcock was inserted 

into the umbilical vein and secured into position.  Culture medium was then flushed 

through the cord to remove soft tissue and blood clots, followed by an injection of 

collagenase and incubation at room temperature for 30 minutes.  The collected fluid and 

medium was centrifuged, discarding the supernatant while resuspending the pellet in the 

fresh medium.  

The HUVECs were plated on parallel-flow multichannel slides (ibidi µ-Slides VI 

0.4) in M199 supplemented with 10% heat-inactivated fetal bovine serum, antibiotics 

(100i.u./ml penicillin, 100µg/ml streptomycin and 0.125µg/ml amphotericin B), and 

incubated at 37°C in a humidified atmosphere with 5% CO2. Cell were grown to 

confluence. HUVECs at passages 1-3 were used for all of the experiments. 

 

2.2.2.2 Neutrophils 

Human neutrophils, i.e. polymorphonuclear cells (PMNs), were isolated from the 

venous blood of healthy adults by 1% Dextran (Sigma, Mississauga, ON) sedimentation 

and gradient separation on Histopaque-1077 (Sigma, Mississauga, ON), followed by the 

lysing of red blood cells with ammonium chloride solution, as previously described 
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(Yoshida, Granger et al. 1992, Kuhns, Long Priel et al. 2015). Isolated leukocytes were 

reconstituted in 0.1M phosphate buffered saline (PBS), pH 7.4, adjusting the buffer 

volume to achieve the concentration of 1x109 leukocytes/ml. PMN viability was 

confirmed by Trypan blue dye exclusion test. This procedure yielded a PMN population 

that was 95–98% viable.  

 

2.2.3 In vitro Pressure Model of CS 

HUVECs were subjected to varied hydrostatic pressures (0mmHg and 30mmHg) 

for 4 hours via a gravity-fed system, closed off with 3-way stopcocks. The system was 

connected to a compartment pressure monitor (Synthes, Westchester, PA) to ensure 

constant and uniform pressures (Figure 2.1). Both pressure groups were compared to a 

control which was exposed to normal room pressure. The 0mmHg (i.e. sham group) was 

included, to control for the experimental pressure set-up. All experimentation was 

performed in an incubator, at 37°C. All experiments were repeated five times, on 

different days, to account for any variability in ambient conditions. 

 

2.2.4 Cellular Morphology 

Morphological changes in the cell shape and integrity, as well as the integrity of 

intercellular junctions were qualitatively assessed through F-actin and VE-Cadherin 

immunostaining, respectively. Confluent cells were exposed to elevated hydrostatic 

pressure (EHP) for 4 hours, followed by fixation in 3.7% formalin, washing three times 

in 0.1M PBS, pH7.4, and solubilisation with 0.1% Triton X-100 in PBS for 15min. Cells 

were then subjected to a standard immunostaining protocol for either F-actin (phalloidin 
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staining) or VE-cadherin. Both Alexa Fluor 594 and Texas Red fluorochromes were 

visualized with Zeiss Axiophot epifluorescence microscope using excitation/emission 

wavelengths of 590/617nm, while bisbenzimide was visualized with wavelengths of 

343/383nm. 

 

2.2.4.1 F-actin Staining 

Slides were incubated with 1% bovine serum albumin for 30min, followed by 

6.6µM Alexa Fluor 598-labelled falloidin (F-actin stain) (Thermo Fisher Scientific, 

Mississauga, ON) for 1 hour. After washing with PBS three times, slides were 

coverslipped with fluorescence mounting medium (Vectashield, Vector Labs, 

Mississauga, ON). 

 

2.2.4.2 VE-cadherin Staining 

  Slides were incubated in 10% normal goat serum for 1 hour. After washing with 

0.1M PBS, they were incubated with a polyclonal VE-cadherin antibody (Santa Cruz 

Biotechnology Inc., Mississauga, ON) at 1:100 dilution for 2 hours. Slides were then 

washed three times in PBS and incubated with goat-anti-mouse IgG, conjugated with 

Texas Red, at 1:1000 dilution for 1 hour. Slides were then washed with PBS three times. 

To visualize cell nuclei, slides were counterstained with Hoechst 33342 dye 

(bisbenzimide) for 5 minutes.  Following three PBS washes, cells were then coverslipped 

with Vectashield and visualized by fluorescence illumination.  
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Figure 2.1 The experimental setup for the elevation of hydrostatic pressure 

(EHP) in the endothelial cells as an in vitro model of CS. HUVECs 

were plated on multichannel slides and exposed to culture medium of 

varied hydrostatic pressures via a gravity-fed system, with the system 

connected to a pressure monitor. 
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2.2.5 Reactive Oxygen Species (ROS) Production 

The production of ROS in HUVECs was measured by intracellular oxidation of 

dihydrorhodamine-123 (DHR-123), a pan-oxidant-sensitive fluorochrome, as previously 

described (Mizuguchi, Stephen et al. 2009, Bihari, Cepinskas et al. 2017). DHR-123 is an 

uncharged and nonfluorescent reactive oxygen species (ROS) indicator that can passively 

diffuse across membranes, where it is oxidized to cationic rhodamine-123 localizing in 

the mitochondria and exhibiting green fluorescence. Briefly, HUVECs (2.5x105 cells), 

grown to confluence, were loaded with DHR-123 (10µM) for 45min. Following a wash 

with normal M199, the cells were then subjected to elevation of hydrostatic pressure 

(EHP) for 4 hours, with either 0 mmHg or 30 mmHg. Following this, the cells were 

washed with PBS, lysed in 0.5% CHAPS buffer and analysed spectrofluorometrically 

(FR-1501 spectrofluorometer, Shimadzu) at excitation/emission wavelengths of 

495/523nm. Protein concentration in the cell lysate was assessed by DC protein assay 

(BioRad, Mississauga, ON). ROS production was expressed as DHR-123 fluorescence 

intensity (FI) per mg protein.  

 

2.2.6 Quantification of Apoptosis 

HUVECs were subjected to EHP of 30mmHg or 0mmHg for 4 hours, and the 

level of the activation of active caspases was assessed by FAM-FLICA poly caspase 

apoptosis kit (Immunochemistry Technologies, LLC), as per manufacturer’s instructions. 

Briefly, cells were incubated with FAM-FLICA poly caspase reagent for one hour at 

37°C, washed, detached from the slides (0.025% Trypsin in M199), plated on Lumitrac 

96-well black plates Greiner Bio-One) and immediately assessed for fluorescence using 
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Victor-3 plate reader (Perkin-Elmer), at excitation/emission wavelengths of 

480nm/530nm. Levels of apoptosis were expressed as relative fluorescence units (RFU) 

(i.e. fluorescence intensity/104). 

 

2.2.7 Leukocyte (PMN) Activation – Adhesion 

HUVECs grown on the parallel-flow perfusion microslides (µ-slide VI 0.4; ibidi, 

Madison, WI) were subjected to EHP of 30mmHg or 0mmHg for 4 hours. Microslides 

with HUVECs were then placed into an air-heated chamber (37°C) attached to an 

inverted phase-contrast microscope (Diaphot 300, Nikon). Following the 10min wash 

with M199 at a shear stress of 1dyn/cm2 using syringe pump (Harvard Apparatus, St. 

Laurent, QC), PMNs (1x106/ml) isolated from healthy adults were added to the perfusion 

medium and the perfusion was continued for 15 minutes at the same shear stress. PMN-

HUVECs adhesive interactions were captured in six random fields of view (10s/field) 

with a digital CCD camera (Sony Corp., Japan) connected to a computer, and analyzed 

offline. Adhesion was defined as PMNs that remained stationary for at least 10s. PMN 

adhesion was expressed as a number of PMN/mm2. 

 

2.2.8 Statistical Analysis 

All parameters were expressed as means ± standard error of the mean (SEM), and 

analyzed using one-way analysis of variance (ANOVA) (GraphPad Prism, v. 7.0, San 

Diego, CA), with Bonferroni post-hoc test as needed. p<0.05 was considered statistically 

significant. 
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2.3 RESULTS 

2.3.1 Structural Changes to Endothelium Due to EHP 

 Exposure of HUVECs to EHP of 30mmHg produced marked changes in F-actin 

and VE-cadherin staining (Figure 2.2). Sustained EHP of 30mmHg led to prominent 

stress fiber formation, as indicated by the significant increase in phalloidin labelling (a 

specific marker of F-actin). Junctional VE-cadherin staining pattern was also 

significantly altered, indicating gap formation within the endothelial monolayer. EHP 

maintained at 0mmHg, however, did not result in any changes to F-actin or VE-cadherin 

staining, both of which remained virtually identical to those seen in control cells. 

 

2.3.2 ROS Production 

Exposure of HUVECs to EHP of 30mmHg for 4 hours induced a significant 

increase in the production of ROS within the endothelial cells, as shown in Figure 2.3. 

DHR-123 fluorescence intensity increased from 325.0±20.1 FI/mg protein in control and 

340.1±38.0 FI/mg protein in 0mmHg to 556.9±71.4 FI/mg protein in 30mmHg group 

(p<0.05).  

 

2.3.3 Apoptosis 

Elevation of hydrostatic pressure to 30mmHg led to a significant increase in the 

activation of caspases, as shown in Figure 2.4. The caspases activation increased from 

1.7±0.5 RFI in control and 1.6±0.4 RFI in the 0mmHg groups to 4.0±0.7 RFI in 30mmHg 

group (p<0.05). 
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Figure 2.2 The effect of EHP on the expression of F-actin and VE-cadherin in an 

in vitro model of CS. CS stimulus, in the form of a sustained EHP at 

30mmHg, led to an increase in stress fiber formation and changes to 

junctional staining pattern of HUVECs. 
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Figure 2.3 The effect of EHP on the level of oxidative stress within the 

endothelial cells in an in vitro model of CS. CS stimulus, in the form of 

sustained EHP at 30mmHg for 4 hours, led to a significant increase in 

reactive oxygen species formation within HUVECs. (One-way ANOVA, 

*p<0.05; N=5 per group). 
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Figure 2.4 The effect of EHP on level of apoptosis within the endothelial cells in 

an in vitro model of CS. CS stimulus, in the form of sustained EHP at 

30mmHg for 4 hours, led to a significant increase in the activity of 

caspases within HUVECs. (One-way ANOVA, *p<0.05; N=5 per group). 
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2.3.4 PMN Adhesion 

Elevation of hydrostatic pressure to 30mmHg resulted in a marked increase in 

PMN activation, as demonstrated by an increase in PMN adhesion to HUVECs 

monolayer under the conditions of flow. Adhesion increased from 4.0±1.5 PMNs/0.1mm2 

in the control and 3.8±1.2 PMNs/0.1mm2 in the 0mmHg groups to 12.2±1.7 

PMNs//0.1mm2 in the EHP of 30mmHg group (p<0.05) (Figure 2.5). 

 

 

2.4 DISCUSSION 

CS is associated with a complex and often times confusing diagnostic picture, 

limited therapeutic options, significant complications and, unfortunately, significant 

patient disability (Giannoudis, Nicolopoulos et al. 2002). While certain non-operative 

adjuncts such as NSAIDs, tissue ultrafiltration and hyperbaric oxygen therapy have 

shown therapeutic potential in certain animal models and small human case series 

(Manjoo, Sanders et al. 2010, Lawendy, Bihari et al. 2014), their clinical use has been 

limited by a lack of understanding of the pathophysiology underlying both CS and the 

individual therapies as well as the lack of an effective human model on which to test 

therapeutic treatments. 

In the present study, we attempted to mimic the CS conditions in vitro by 

subjecting human vascular endothelial cells to elevated hydrostatic pressure (the CS-

relevant stimulus), directly assessing cellular response, while attempting to clarify the 

role in which EHP contributes to the endothelial activation and pro-inflammatory 

potential of CS. To our knowledge, this is the first study to model CS in cell culture using  
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Figure 2.5. The effect of EHP on the endothelial cell activation in an in vitro 

model of CS. CS stimulus, in the form of sustained EHP at 30mmHg for 4 

hours, led to a significant endothelial activation, as measured by an 

increase in PMN leukocyte adhesion to HUVECs. (One-way ANOVA, 

*p<0.05; N=5 per group). 
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EHP as a CS-relevant stimulus. The primary goal of these studies is to further our 

understanding of the pathophysiology leading to CS, as well as to allow for the 

development and testing of potential interventions currently not possible (or even 

unethical) in human subjects. 

 CS is comprised of a complex cascade of intracellular and extracellular events, 

eventually creating a pro-inflammatory milieu, with the subsequent activation of vascular 

endothelial cells and leukocytes. This leads to impaired cell-to-cell integrity, increased 

vascular permeability, leukocyte extravasation and the formation of interstitial edema 

(Sabido, Milazzo et al. 1994). The cellular and molecular basis underlying the 

parenchymal injury/organ dysfunction associated with CS are also poorly understood. In 

addition, there are no studies using human material to assess the health of vascular 

endothelial cells in response to stimulation with a CS-like stimulus. 

In the current study, exposure of HUVECs to EHP led to a rearrangement of 

stress fibers and a breakdown of endothelial barrier, as evidenced by changes in F-actin 

and VE-cadherin expression (Figure 2.2).  This is in keeping with previous research 

which found that EHP led to changes in endothelial cell morphology (Acevedo, Bowser 

et al. 1993). Furthermore, alterations in cellular structure in response to EHP are not seen 

to occur only in endothelial cells. In chondrocytes, EHP leads to F-actin thinning and 

disorganization, as well as a decrease in cell stiffness (Cao, Xia et al. 2015). Furthermore, 

Tokuda (2009) were able to show that the exposure of epithelial cells to EHP induced 

dynamic changes in cell height, actin structure and intercellular junctions (Tokuda, 

Miyazaki et al. 2009). Finally, Ohashi et al. (2007) found lower levels of VE-cadherin 
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and changes to cell structure, as well as loss of contact inhibition in bovine aortic 

endothelial cells exposed to EHP (Ohashi, Sugaya et al. 2007).  

Under normal circumstances, the intact endothelium provides a semi-selective 

barrier between the vessel lumen and the interstitial tissue, controlling the passage of 

fluid, proteins, leukocytes and other material between the blood and the interstitium. 

When the endothelium is subjected to cellular stress and inflammation, it experiences an 

increase in permeability, eventually leading to tissue edema. This also creates non-

perfused segments within the capillary system, further contributing to ischemia and 

microvascular dysfunction (Sabido, Milazzo et al. 1994). A study by Kataoka et al. 

(1998) found that subconfluent bovine aortic endothelial cells responded differently to 

shear stress than confluent cells, suggesting that cell shape change is dependent on cell to 

cell contact with neighbouring cells (Kataoka, Ujita et al. 1998). It has been postulated 

that changes in hydrostatic pressure may enhance the synthesis of VEGF by the 

endothelial cells, leading to dephosphorylation of catenins and a decrease in the 

formation of adherens junctions dependent on VE-cadherin (Ohashi, Sugaya et al. 2007). 

A study by Martin (2005) in renal cell lines subjected to pathological hydrostatic 

pressures found that EHP leads to shortening of actin fiber length (Martin, Brown et al. 

2005). Previously, Ingber proposed the “tensegrity” model, which stipulates that different 

mechanical forces applied to a cell will be transmitted by actin filaments to proteins, like 

integrins, which anchor the cell to the extracellular matrix; these forces can cause 

reorganization of integrins into a different pattern, in order to resist those forces (Ingber 

1993). In the context of CS, it is plausible to assume that the elevation of 

intracompartmental pressure results in EHP, directly producing changes in the endothelial 
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cell cytoskeleton (e.g. F-actin assembly) and associated adherens junction protein 

function (e.g. VE-cadherin, β-catenin) (Corada, Liao et al. 2001, Giannotta, Trani et al. 

2013), thus further contributing to the breakdown of endothelial barrier. 

When endothelial cells were subjected to sustained EHP, a significant increase in 

intracellular production of ROS was observed (Figure 2.3). Increased ROS production is 

most likely due, at least in part, to changes in the mitochondrial respiratory chain. This is 

in agreement with previous research in deep dive physiology, suggesting that elevated 

hydrostatic pressure has direct impact on the mitochondrial respiratory chain or the inner 

mitochondrial membrane (Wang, Guerrero et al. 2015). Furthermore, it can also be 

surmised that an increase in ROS, as a result of EHP, will trigger downstream signalling, 

stimulating inflammation (Toyokuni 1999). Acute inflammatory reactions, such as those 

seen in ischemia-reperfusion and CS, are mediated by a number of pro-inflammatory 

cytokines (Donohoe 2015). Cytokines are known to induce oxidative stress, leading to 

cellular membrane compromise, changes in internal protein structure and downstream 

effects on enzymes (Sprague and Khalil 2009). Interestingly, previous research has 

shown that EHP leads to an upregulation of cytokine levels in various cell types, such as 

periodontal ligament cells (Yamamoto, Kita et al. 2006), bladder smooth muscle cells 

(Liang, Xin et al. 2016), mesenchymal stem cells (Becquart, Cruel et al. 2016), human 

tumour cells (Fucikova, Moserova et al. 2014) and human chondrocytes (Fioravanti, 

Moretti et al. 2007). It has been demonstrated, using vascular endothelial cells, that an 

increase in intraluminal pressure leads to an induction of nuclear factor кB (NF- кB) 

(Lemarie, Esposito et al. 2003), a transcription factor controlling the expression of 

various cytokines, chemokines and adhesion molecules (De Martin, Hoeth et al. 2000). In 
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addition, application of cyclic hydrostatic pressure to HUVECs found an increase in 

CD95, a member of the TNF receptor family that is known to induce apoptosis, as well as 

elicit cytokine release (Hasel, Durr et al. 2005). 

In addition to activation of the pro-inflammatory pathways, ROS also play a 

critical role in activation of various caspases (e.g. caspase-3), cytosolic enzymes 

responsible for the induction of cell apoptosis (Elmore 2007). In the current study, EHP 

resulted in an increase in endothelial apoptosis (Figure 2.4). This is consistent with the 

observations of Ju et al. (2009), who found that an exposure of cultured retinal ganglion 

cells to EHP of 30mmHg led to mitochondrial fissuring and increased release of 

cytochrome c into the cytoplasm, thus activating caspase-3 (Ju, Kim et al. 2009). 

Additionally, Lee et al. (2010) also found an increase in intracellular calcium elevation 

followed by elevated caspase-3/7 activation, suggesting that calcium, through its impact 

on ion channel activity and water efflux, is responsible for signalling the onset of the 

apoptotic cell changes  (Lee, Lu et al. 2010). Given that CS produces a strong pro-oxidant 

and pro-inflammatory environment (characterized by the presence of ROS and 

inflammatory cytokines, particularly TNF-α (Lawendy, Bihari et al. 2014, Lawendy, 

Bihari et al. 2015)) it is plausible to assume that, in response to EHP, both intrinsic 

(mitochondria/cytochrome c-mediated) and extrinsic (TNF-α receptor-mediated) 

apoptotic pathways would be activated (Elmore 2007).   

One of the essential features of CS appears to be the production of pro-

inflammatory mediators, and subsequent infiltration of activated leukocytes, particularly, 

neutrophils, into the affected tissue (Sadasivan, Carden et al. 1997, Lawendy, Sanders et 

al. 2011). Leukocyte activation, recruitment and accumulation at the site of injury are 
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normal host responses intended to assist with pathogen and dead cell removal. However, 

in pathological situations, response to cellular stress, the accumulation of PMNs and 

subsequent production of cytotoxic ROS, coupled with a release of proteolytic enzymes 

can overwhelm the system, thus contribute to the parenchymal damage. Activated 

leukocytes, and the pro-inflammatory state they create will impair the viability of 

surrounding cells (Toyokuni 1999), further contributing to tissue injury and organ 

dysfunction. 

 Recent research indicates that the pathophysiology underlying CS is, at least in 

part, driven by ischemia-reperfusion injury. The cellular and clinical effects of complete 

ischemia on the skeletal muscle are well documented (Harman 1948, Strock and Majno 

1969, Labbe, Lindsay et al. 1987, Belkin, Brown et al. 1988, Lindsay, Liauw et al. 1990, 

Hickey, Hurley et al. 1992, Sabido, Milazzo et al. 1994): ischemia  creates a shift in 

cellular metabolism towards a mainly oxidative mode, while restoration of previously 

ischemic tissue will produce a pro-inflammatory state (Gute, Ishida et al. 1998, Gillani, 

Cao et al. 2012), characterized by an influx of activated leukocytes from the circulation 

into the surrounding tissues (Hernandez, Grisham et al. 1987, Kubes, Suzuki et al. 1990, 

Schlag, Harris et al. 2001). PMN recruitment involves a series of complex and well-

coordinated cell-to-cell interactions by differential expression of various adhesion 

molecules on both the endothelium and the leukocyte; these include selectin-mediated 

PMN rolling, integrin-mediated firm adhesion, followed by PECAM-1-, CD99- and 

JAM-mediated transmigration across the endothelial barrier into the interstitial space 

(Ley, Laudanna et al. 2007). Furthermore, activated leukocytes themselves are also a 

significant source of ROS and proteolytic enzymes, contributing to interstitial edema 
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(Sexton, Korthuis et al. 1990, Forbes, Carson et al. 1995, Rubin, Romaschin et al. 1996, 

Kurose, Argenbright et al. 1997, Gute, Ishida et al. 1998). In the context of CS, the fluid 

accumulation leads to a significant increase in the interstitial pressure, further  

compressing the neighbouring capillaries and exacerbating the perfusion deficit 

(Lawendy, Sanders et al. 2011).  

In the current study, EHP applied to endothelial cells led to a significant increase 

in leukocyte adhesion (Figure 2.5), a key feature of leukocyte and/or vascular endothelial 

cell inflammatory activation (Butcher 1991, Ley, Laudanna et al. 2007). These results 

suggest that EHP not only induces ROS production, apoptosis and cytokine release, but it 

also has the potential to induce endothelial cell activation directly. It is plausible to 

assume that changes in hydrostatic pressure will cause changes in the expression of 

adhesion molecules on the vascular endothelium (e.g. P-selectin, E-selectin, ICAM-1, 

VCAM-1), allowing them to interact with their ligands on the PMNs (e.g. L-selectin, 

sialyl-LewisX, β2 integrins). 

 In summary, this is the first study demonstrating the impact of increased 

hydrostatic pressure on the human vascular endothelial cells in an in vitro model of CS. It 

represents the first step in an attempt to further elaborate to mechanisms driving the 

pathophysiology of CS.	
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CHAPTER 3.    CARBON MONOXIDE-RELEASING MOLECULE-3 (CORM-3) 

IMPROVES ENDOTHELIAL CELL DYSFUNCTION IN AN IN VITRO MODEL 

OF COMPARTMENT SYNDROME 

 

 

3.1 INTRODUCTION 

Compartment syndrome (CS) is a devastating complication of musculoskeletal 

trauma. CS occurs following a rise in intra-compartmental pressure within a closed 

osseofascial compartment. If unrecognized, and/or untreated, the condition will lead to a 

muscle-threatening and limb-threatening ischemia (Whitesides, Haney et al. 1975, 

Matsen, Winquist et al. 1980, Mubarak and Hargens 1983). Currently, the only definitive 

treatment is surgical fasciotomy, with the goal of fully decompressing all of the affected 

compartments (Eaton and Green 1972, Rorabeck 1984). Fasciotomy must be carried out 

within 6-8 hours of CS onset, or the resulting tissue damage, neurovascular injury and 

limb ischemia become permanent. 

The increase in compartmental pressure seen in CS leads to microcirculatory 

compromise restricting oxygen and nutrient delivery to the tissues,  thus leading to 

cellular anoxia, tissue necrosis and limb dysfunction (Whitesides, Haney et al. 1975, 

Hargens, Schmidt et al. 1981). However, unlike situations of complete ischemia, CS 

causes tissue necrosis in the presence of patent vessels. Although the full 

pathophysiology of CS has not been fully elucidated, the contribution of inflammation is 

increasingly being recognized as one of the important driving forces (Lawendy, Sanders 

et al. 2011, Bihari, Cepinskas et al. 2015). Lawendy et al (2011) and others (Sadasivan, 
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Carden et al. 1997, Kalns, Cox et al. 2011) have shown that leukocytes appear to play an 

important role in producing both the microvascular and the parenchymal injury seen in 

CS. 

Unfortunately, there are currently a limited number of effective therapeutic 

options when it comes to treating CS. Recently, carbon monoxide (CO), a byproduct of 

heme oxygenase (HO) activity, has been shown to improve microvascular perfusion, and 

to convey anti-inflammatory benefits during systemic inflammation. The exogenous 

administration of CO via inhalation leads to increased carboxyhemoglobin (COHb) 

levels, toxic to the host in the form of CO poisoning. However, transitional metal 

carbonyls, such as CO-releasing molecules (CO-RMs), have been synthesized and can be 

used experimentally, to deliver CO to the tissues in a controlled manner without 

significantly raising COHb levels (Motterlini, Clark et al. 2002, Clark, Naughton et al. 

2003). While most CO-RMs are soluble in organic solvents, carbon monoxide-releasing 

molecule-3 (CORM-3) is water soluble (Motterlini and Otterbein 2010), making it an 

ideal choice for clinical applications. In a rodent and porcine models of CS, the 

application of CORM-3 at the time of surgical fasciotomy was shown to diminish tissue 

injury, leukocyte activation and block the systemic release of TNF-α, a very potent pro-

inflammatory cytokine (Lawendy, Bihari et al. 2014, Bihari, Cepinskas et al. 2015). 

While these results are promising, more experimental testing is required before CORM-3 

could be used as a therapeutic agent in human patients. Furthermore, the underlying 

mechanism and the actual beneficial effects of CORM-3 protection, as well as its 

potential side effects still remain to be elucidated. 
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The primary purpose of this study was to provide a transition between the 

previous animal studies and future testing of CO on human subjects. We attempted to 

evaluate the relative contribution of both elevated tissue pressure and inflammation to the 

pathophysiology of CS, as well as to examine the beneficial effect of CORM-3-derived 

CO. To this end, we used two clinically relevant in vitro models of CS: elevation of 

hydrostatic pressure (EHP) and the exposure of human vascular endothelial cells 

(HUVECs) to a cytokine/chemokine cocktail (representing the serum levels of 

inflammatory mediators previously detected in our experimental animal models of CS) 

(“CS cocktail”) (Donohoe 2015). We hypothesized that the exposure of endothelial 

monolayer to inflammatory cytokines/chemokines will result in similar response to that 

obtained by the application of EHP, characterized by the activation of the endothelium, 

endothelial barrier breakdown and dysfunction. In addition, given that CORM-3 appears 

to provide beneficial effects in various animal models (Bihari 2017), we surmised that we 

could replicate these results in vitro, and also explore some of the mechanisms through 

which CORM-3 protects the endothelium.  The ultimate goal of this research is the 

development of a safe pharmacologic adjunct therapy aimed at human patients with CS, 

in order to reduce the morbidity and disability resulting from this devastating condition. 

 

 

3.2 MATERIALS AND METHODS 

3.2.1 Reagents 

Medium-199 (M199), fetal bovine serum, penicillin, streptomycin and Dulbecco’s 

PBS (DPBS) (pH 7.4) were purchased from Invitrogen Canada (Life Technologies Inc., 
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Burlington, ON). Dihydrorhodamine (DHR)-123 was obtained from Molecular Probes 

Inc. (Eugene, OR). Human recombinant TNF-α, IL-1β and GRO were purchased from 

Invitrogen Canada (Life Technologies Inc., Burlington, ON). A water-soluble CORM-3 

(tricarbonylchloro-glycinate-ruthenium(II), [Ru(CO)3Cl-glycinate]; molecular weight 295 

gmol-1) was synthesized by this laboratory (Mizuguchi, Stephen et al. 2009), in 

accordance with the previously-published method (Motterlini, Clark et al. 2002).  

CORM-3 (100µM stock solution) was always prepared fresh by dissolving CORM-3 in 

M199 just prior to use. Inactive CORM-3 (iCORM-3) was generated by leaving CORM-

3 solution for 72hrs at room temperature, to liberate all CO from the molecule, as 

previously described (Clark, Naughton et al. 2003). 

 

3.2.2 Cells 

Human vascular endothelial cells (HUVECs), isolated from human umbilical 

veins by collagenase treatment (Cepinskas, Savickiene et al. 2003), were grown to 

confluence on fibronectin-coated cellware (12-well plates, transwell inserts with 1µm 

diameter pores, 96-well plates and parallel-flow perfusion microslides). HUVECs at 

passages 1-3 were used for all of the experiments. 

Human neutrophils (PMNs) were isolated from the venous blood of healthy adults 

by 1% Dextran (Sigma, Mississauga, ON) sedimentation and gradient separation on 

Histopaque-1077 (Sigma, Mississauga, ON), as previously described (Kuhns, Long Priel 

et al. 2015). PMN viability was confirmed by Trypan blue dye exclusion test. 
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3.2.3 In vitro Models of CS 

To assess the relative contribution of physical tissue pressure elevation versus 

pro-inflammatory conditions to the severity of tissue injury seen in CS, two different 

models were employed: elevation of hydrostatic pressure (EHP), and cytokine/chemokine 

cocktail stimulation. 

 

3.2.3.1 Elevation of Hydrostatic Pressure 

Confluent HUVECs were exposed to EHP of 30mmHg, obtained via a gravity-fed 

system, for 6 hours, as previously described (Chapter 2, Figure 2.1). The system was 

connected to a compartment pressure monitor (Synthes, Westchester, PA) to ensure that 

constant and uniform pressures were obtained for the duration of the experiment.  

Cells exposed to the same environmental conditions (i.e. 37°C, 5%CO2) but 

normal pressure (0mmHg), served as a control for all experimentation. 

 

3.2.3.2 Cytokine Cocktail Stimulation 

Confluent HUVECs were stimulated with a cytokine/chemokine cocktail 

representing the serum levels of inflammatory mediators previously detected in our 

experimental model of CS (“CS cocktail”) (Donohoe 2015) (Table 3.1) for 6 hours. The 

CS cocktail contained human recombinant TNF-α (1ng/ml), IL-1β (100pg/ml) and GRO 

(1ng/ml). 
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3.2.4 Reactive Oxygen Species (ROS) Production 

The production of ROS in HUVECs was measured by intracellular oxidation of 

DHR-123, a pan-oxidant-sensitive fluorochrome, as previously described (Mizuguchi, 

Stephen et al. 2009). HUVECs (1x106 cells), grown to confluence in 12-well fibronectin-

coated plates, were loaded with DHR-123 (10µM) for 45min, and then subjected to either 

EHP of 30mmHg or stimulation with CS cytokine cocktail, for 6 hours, in the presence of 

CORM-3, or its inactive counterpart, iCORM-3. After stimulation, cells were washed 

with PBS, lysed in 0.5% CHAPS buffer and analysed spectrofluorometrically (FR-1501 

spectrofluorometer, Shimadzu) at excitation/emission wavelengths of 495/523nm. Protein 

concentration in the cell lysate was assessed by DC protein assay (BioRad, Mississauga, 

ON). ROS production was expressed as DHR-123 fluorescence intensity (FI) per mg 

protein. 

 

3.2.5 Measurement of the Endothelial Monolayer Integrity 

HUVECs were grown to confluence on fibronectin-coated transwell inserts (1µm 

diameter pores) (BD Falcon). Cells were subjected to 6 hours of either EHP of 30mmHg, 

or stimulation with CS cytokine cocktail, in the presence of CORM-3 (or iCORM-3). The 

integrity of the endothelial layer was assessed by measuring the transendothelial 

electrical resistance (TEER) using EndOhm chamber method (EndOhm-6, World 

Precision Instruments) following 1hr, 3hr and 6hr EHP or CS cytokine cocktail exposure, 

and expressed as Ωcm2. Changes in TEER from the baseline were evaluated at each time 

point. 
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Table 3.1 Serum levels of cytokines/chemokines detected in a rat model of CS. 

Twenty-four different cytokines and chemokines were tested; those with 

detectable values are shown here. Cytokines showing significant 

upregulation in response to CS were utilized to model CS in vitro. 

*p<0.05. 

 

Cytokine/Chemokine Baseline 

(pg/ml) 

CS 

(pg/ml) 

Fold 
change 

p-value 

Eotaxin 228.0±161.3 175.7±144.3 -0.2 0.4431 

TNF-a 33.7±6.8 1223.1±483.0* 36 0.0002 

IL-1a 473.9±291.7 434.7±179.3 -0.1 0.8887 

IL-1b 47.9±35.7 141.3±18.6* 3 0.0481 

MIP-1a 69.8 ±66.4 84.8±41.0 0.2 0.7012 

MCP-1 313.4±35.1 399.6±42.4 0.3 0.8737 

GRO/KC 990.2±213.3 2984±1310* 3 0.0194 

IFN-¡ 326.6±98.6 360.4±159.3 0.1 0.8463 

Leptin 9596±1038 8606±1353 -0.1 0.5344 

IL-6 2566±1758 2351±1494 -0.1 0.9084 

IL-13 225.3±60.0 254.9±106.9 0.1 0.7161 

IL-12p70 196.1±68.1 199.2±83.5 0 0.9718 

IL-18 86.6±7.3 76.4±6.1 -0.1 0.1621 

IP-10 145.4±108.6 155.7±108.9 0.1 0.9424 

RANTES 1673±250 1680±193 0 0.3560 
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3.2.6 Quantification of Apoptosis 

HUVECs grown on black fibronectin-coated 96-well plates with clear bottom 

(Greiner Bio-One) were subjected to either EHP of 30mmHg or stimulation with CS 

cytokine cocktail, for 6 hours, in the presence of CORM-3 (or iCORM-3). Levels of the 

activation of active caspases were assessed by FAM-FLICA poly caspase apoptosis kit 

(Immunochemistry Technologies, LLC), as per manufacturer’s instructions. Briefly, cells 

were incubated with FAM-FLICA poly caspase reagent for one hour at 37°C, washed and 

immediately assessed for fluorescence using Victor-3 plate reader (Perkin-Elmer), at 

excitation/emission wavelengths of 480nm/530nm. Levels of apoptosis were expressed as 

relative fluorescence units (RFU) (i.e. fluorescence intensity/104). 

 

3.2.7 PMN Rolling/Adhesion Assay 

HUVECs grown on the parallel-flow perfusion microslides (µ-slide VI0.4; ibidi, 

Madison, WI) were subjected to either EHP of 30mmHg or stimulation of with CS 

cytokine cocktail, for 6 hours, in the presence of CORM-3 (or iCORM-3). Following this, 

microslides with HUVECs were placed into an air-heated chamber (37°C) attached to an 

inverted phase-contrast microscope (Diaphot 300, Nikon). After 10min wash with M199 

in the presence of CORM-3 or iCORM-3 at a shear stress of 1dyn/cm2 obtained by 

syringe pump (Harvard Apparatus, St. Laurent, QC), PMNs (1x106/ml) isolated from 

healthy adult volunteers were added to the perfusion medium, and the perfusion was 

continued for 15 minutes at the same shear stress. PMN-HUVECs adhesive interactions 

(i.e. rolling, adhesion) were captured in six random fields of view (10s/field) with a 

digital CCD camera (Sony Corp., Japan) connected to a computer, and analyzed offline. 
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PMNs with velocity less than 100µm/s were considered “rolling”. Adhesion was defined 

as PMNs that remained stationary for at least 10s. PMN rolling/adhesion were expressed 

as a number of PMN/mm2. 

 

3.2.8 Statistical Analysis 

All parameters were expressed as means ± standard error of the mean (SEM), and 

analyzed using two-way analysis of variance (ANOVA) (GraphPad Prism, v. 5.0, San 

Diego, CA), with Bonferroni post-hoc test as needed. p<0.05 was considered statistically 

significant. All experiments were repeated four times (on 4 different days), to account for 

variability in ambient environmental factors. 

 

 

3.3 RESULTS 

3.3.1 ROS Production 

Exposure of HUVECs to EHP, or their incubation with CS cytokine cocktail 

induced a significant increase in the production of ROS, as shown in Figure 3.1. DHR-

123 fluorescence intensity increased from 578.0±43.4.5 FI/mg protein in unstimulated 

control cells to 791.5±64.4 and 1169.1±155.8 Fl/mg protein in cells exposed to EHP or 

CS cytokine cocktail, respectively (p<0.05). CORM-3 treatment significantly decreased 

ROS production in both the EHP and the CS cytokine cocktail groups, to 516.8±48.0 and 

468.3±37.8 Fl/mg protein, respectively (p<0.05), while it had no effect on the 

unstimulated control endothelial cells (Figure 3.1).  
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Figure 3.1 The effect of CORM-3 on the oxidative stress response in human 

vascular endothelial cells in an in vitro model of CS. HUVECs were 

subjected to 6 hours of sustained 30mmHg EHP or cytokine cocktail 

stimulation in the presence of CORM-3 (or iCORM-3), and the levels of 

ROS production were assessed by DHR-123 assay (two-way ANOVA, 

p<0.05, *p<0.05 from Control, †p<0.05 from EHP+iCORM-3 and 

Cytokine Cocktail+iCORM-3, N=4 per group).  
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3.3.2 Transendothelial Electrical Resistance (TEER) 

Exposure of HUVECs to EHP led to a gradual decrease in the integrity of the 

endothelial monolayer, as indicated by a decrease of TEER from the baseline of 

63.4±3.3Ωcm2 to 48.6.5±4.3Ωcm2, 38.7±3.2Ωcm2 and 35.3±3.5Ωcm2 at 1hr, 3hr and 6hr 

EHP, respectively (p<0.05). Incubation of HUVECs with cytokine cocktail produced a 

gradual decrease in TEER to 24.5±7.0Ωcm2, 16.1±7.1Ωcm2 and 13.6±6.2Ωcm2 at 1hr, 

3hr and 6hr exposure, respectively (p<0.05 from control) (Figure 3.2). 

CORM-3 treatment of cells exposed to EHP significantly diminished the 

magnitude of changes in TEER to 52.0±5.0Ωcm2, 52.1±2.3Ωcm2 and 47.0±3.2Ωcm2 at 

1hr, 3hr and 6hr, respectively (p<0.05 from EHP+iCORM-3). In parallel, CORM-3 

treatment of cells stimulated with CS cytokine cocktail significantly diminished the 

magnitude of changes in TEER to 44.4±3.0Ωcm2, 44.2±4.4Ωcm2 and 39.5±8.7Ωcm2 at 

1hr, 3hr and 6hr, respectively (p<0.05 from CS cytokine cocktail+iCORM-3) (Figure 

3.2). 

	

3.3.3 Apoptosis 

Exposure of HUVECs to EHP, or incubation with the CS cytokine cocktail led to 

a significant increase in the activation of caspases, as shown in Figure 3.3. Apoptosis 

increased from 2.4±0.1 RFU in control to 8.8±0.4 RFU in EHP and 10.3±1.0 RFU in 

cytokine cocktail groups (p<0.05). CORM-3 treatment significantly decreased the 

activation of caspases to 4.0±0.4 RFU in cytokine cocktail group (p<0.05), while having 

no effect on caspases activity in EHP group (8.6±0.3 RFU, n.s.) (Figure 3.3). CORM-3 or 

iCORM-3 had no effect on the activity of caspases in control cells.   
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Figure 3.2 The effect of CORM-3 on the integrity of human vascular endothelial 

cell monolayer in an in vitro model of CS. HUVECs were subjected to 6 

hours of sustained 30mmHg EHP, or cytokine cocktail stimulation, in the 

presence of CORM-3 (or iCORM-3), and the integrity of monolayer was 

assessed by measuring the transendothelial electrical resistance (TEER) 

(two-way repeated measures ANOVA, p<0.05, *p<0.05 from Control, 

†p<0.05 from Cytokine Cocktail+iCORM-3, #p<0.05 from EHP+iCORM-

3, N=3 per group).  
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Figure 3.3. The effect of CORM-3 on the level of apoptosis in human vascular 

endothelial cells in an in vitro model of CS. HUVECs were subjected to 

6 hours of sustained 30mmHg EHP or cytokine cocktail stimulation in the 

presence of CORM-3 (or iCORM-3), and the levels of active caspases 

were assessed by FAM-FLICA (two-way ANOVA, p<0.05, *p<0.05 from 

Control, †p<0.05 from Cytokine Cocktail+iCORM-3, N=4 per group). 
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3.3.4 Leukocyte Activation 

Exposure of HUVECs to EHP resulted in a marked increase in PMN activation, 

from 0.4±0.3 rolling PMNs/0.1mm2 and 4.0±1.5 adherent PMNs/0.1mm2 in control to 

2.2±0.6 rolling PMNs/0.1mm2 and 12.8±1.8 adherent PMNs/0.1mm2 in EHP group 

(p<0.05) (Figure 3.4). Incubation of HUVECs with the CS cytokine cocktail resulted in a 

significant increase in PMN activation to 2.1±0.3 rolling PMNs/0.1mm2 and 21.0±4.5 

adherent PMNs/0.1mm2 (p<0.05) (Figure 3.4).  

CORM-3 treatment of HUVECs exposed to EHP did not have significant effect . 

with 1.5±0.5 rolling PMN/0.1mm2 and 8.0±1.5 adherent PMN/0.1mm2. CORM-3 

treatment of HUVECs exposed to CS cytokine cocktail resulted in a significant decrease 

in PMN activation to 0.5±0.1 rolling PMN/0.1mm2 and 4.4±0.7 adherent PMN/0.1mm2 

(p<0.05) (Figure 4.4). There was no difference in PMN rolling or adhesion in 

unstimulated control HUVECs between the CORM-3 and iCORM-3 groups. 

 

 

3.4 DISCUSSION 

CS is associated with significant morbidity and patient disability (Giannoudis, 

Nicolopoulos et al. 2002) and often poses a significant clinical challenge for the 

physician and surgical team. Currently, the gold standard for definitive management of 

CS is surgical fasciotomy, with few other proven adjuncts (Olson and Glasgow 2005). 

While some supportive therapies have shown limited success in animal models (Manjoo, 

Sanders et al. 2010, Lawendy, Bihari et al. 2014), their use is hindered by the lack of 

understanding the full underlying pathophysiological basis of CS.  
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Figure 3.4 The effect of CORM-3 on leukocyte (A) rolling and (B) adhesion in 

response to EHP, or cytokine cocktail stimulation of human vascular 

endothelial cells in an in vitro model of CS. HUVECs were subjected to 

6 hours of sustained 30mmHg EHP, or cytokine cocktail stimulation, in 

the presence of CORM-3 (or iCORM-3), followed by application of naïve 

PMNs, while being superfused at a constant rate of 1dyn/cm2 (two-way 

ANOVA, p<0.05, *p<0.05 from Control, †p<0.05 from Cytokine 

Cocktail+iCORM-3, N=4 per group).  
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CS is a complex pathophysiological process, leading to upregulation pro-

inflammatory phenotype, followed by subsequent interactions between vascular 

endothelial cells and activated leukocytes. This leads to impaired vascular cell integrity, 

increased vascular permeability and leukocyte extravasation, followed by the clinical 

appearance of edema (Sabido, Milazzo et al. 1994). The production of pro-inflammatory 

mediators, coupled with leukocyte accumulation within the affected organ, is one of the 

key features of CS. While leukocyte recruitment at the site of injury is a normal 

physiological response, the overwhelming recruitment of PMNs, with the subsequent 

release of cytotoxic ROS and proteolytic enzymes, further exacerbates the parenchymal 

damage already seen in CS. Activated leukocytes are known to impair surrounding cell 

viability (Toyokuni 1999), further contributing to the already existing tissue injury and 

dysfunction. 

 Recent findings indicate that exogenous application of CO has potent anti-

inflammatory effects (Motterlini and Otterbein 2010). However, inhalation of CO may 

lead to the formation of toxic levels of COHb (i.e. >10%), thus limiting its clinical use 

(Ryter, Alam et al. 2006, De Backer, Elinck et al. 2009). In order to address this, CO-

releasing molecules (CO-RMs) - transitional metal carbonyls that can release CO on 

demand - have been synthesized. CO-RMs allow for CO delivery to the tissues without 

the associated rise in COHb and offer various routes of administration (IV, IP, SC or 

tissue superfusion) (Motterlini, Mann et al. 2005). Multiple studies have shown beneficial 

anti-inflammatory effects of CO-RMs: ischemia/reperfusion injury (Katada, Bihari et al. 

2010), pulmonary hypertension (Zuckerbraun, Chin et al. 2006), organ transplant (Song, 

Kubo et al. 2003) and sepsis (Cepinskas, Katada et al. 2008). 
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Currently, there is a dearth of knowledge when it comes to understanding the role 

of CO-RMs on modulation of the response seen in CS, as well as the changes 

experienced at the cellular and molecular levels. Recently, we developed and tested a 

relevant experimental animal models of CS (Lawendy, Sanders et al. 2011, Bihari 2017). 

The studies found that CORM-3 had a significant therapeutic impact by reducing the 

inflammatory response and the resulting tissue injury, while preserving microvascular 

perfusion (Lawendy, Bihari et al. 2014, Bihari 2017). However, there are currently no 

human patient studies which have evaluated the role of elevated hydrostatic pressure, or 

the response to CORM-3 in CS. 

In the present study, we attempted to mimic the CS conditions in vitro, by 

utilizing human vascular endothelial cells and two clinically-relevant CS stimuli, in order 

to examine the relative contribution of physical changes associated with EHP or 

cytokine-induced inflammation to the pathophysiology of CS, as well as to determine 

how CORM-3 offers protection upon exposure to these stimuli. To our knowledge, this is 

the first studies to model CS in such manner in humans. 

Exposure of HUVECs to EHP resulted in a significant increase in intracellular 

production of ROS (Figure 3.1). This can most likely be linked to changes in the 

mitochondrial respiratory chain (Wang, Guerrero et al. 2015), and upregulation of 

downstream signalling molecules, which in turn, triggers inflammation (Toyokuni 1999). 

In addition, incubation of HUVECs with CS cytokine cocktail also resulted in a similar 

response; the data is consistent with prior research findings in CS and ischemia-

reperfusion injury (Zhang, Hu et al. 2005, Cavaillon and Annane 2006, Lawendy, Bihari 

et al. 2014, Lawendy, Bihari et al. 2016). Cell stimulation by cytokines is known to 
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induce oxidative stress, leading to compromise of the cellular membrane, intercellular 

junctions and internal protein structures (Sprague and Khalil 2009). Our previous 

findings indicate that EHP also leads to significant stress fiber formation, changes in in F-

actin and VE-cadherin expression, leading to a breakdown of endothelial barrier 

(Acevedo, Bowser et al. 1993, Tokuda, Miyazaki et al. 2009, Cao, Xia et al. 2015).  

Increased oxidative stress, through ROS-based signalling, also leads to alterations 

in endothelial cell cytoskeleton and adherence junctions (Corada, Liao et al. 2001). In 

addition, previous reports found that EHP leads to an upregulation of cytokine levels in 

various cell types, such as periodontal ligament cells, bladder smooth muscles cells, 

mesenchymal stem cells, human tumour cells and human chondrocytes (Yamamoto, Kita 

et al. 2006, Fioravanti, Moretti et al. 2007, Fucikova, Moserova et al. 2014, Becquart, 

Cruel et al. 2016, Liang, Xin et al. 2016). The effect occurs through the upregulation of 

various downstream transcription factors, resulting in increased expression of various 

chemokines and cytokines (De Martin, Hoeth et al. 2000). 

 In our experiments, application of CORM-3 (but not iCORM-3) was able to 

diminish ROS release in both the EHP and cytokine cocktail stimulation groups. It has 

been demonstrated that there is a significant cross-talk between ROS and various 

enzymes, such as matrix metalloproteinases (MMP) and cell surface membrane proteins 

(various integrins) (Svineng, Ravuri et al. 2008).  In addition, it has been shown that EHP 

is able to modulate various cellular pathways, including the induction of MMP (Inoue, 

Arai et al. 2015). Interestingly, previous studies found that exogenous application of CO, 

in the form of CORM-2, was able to diminish the induction of MMP expression and its 

downstream effects (Tsai, Lee et al. 2017). These reports further support the notion that 
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the protective effect of CORM-3 is likely mediated through its effects on downstream 

transcription factors, upregulated by both the direct effect of EHP and the presence of 

various inflammatory cytokines. 

Exposure of human endothelial cells to EHP or CS cytokine cocktail led to a 

significant breakdown of the endothelial barrier, evidenced by a decrease in trans-

endothelial electrical resistance (Figure 3.2). Previously, EHP has been found to lead to 

changes in endothelial cell morphology and diffusion barrier characteristics in multiple 

cell types (Acevedo, Bowser et al. 1993, Ohashi, Sugaya et al. 2007, Tokuda, Miyazaki et 

al. 2009, Cao, Xia et al. 2015). Cellular permeability and leukocyte extravasation are 

controlled by adhesive interactions between various endothelial cell surface proteins 

(Ley, Laudanna et al. 2007). EHP appears to not only have an effect on cell-cell 

junctions, but it also affects the upregulation of adhesion molecules that are involved in 

microvessel integrity, as demonstrated by a rapid decrease in TEER, correlated with a 

transient loss and/or redistribution of PECAM-1 (Sharma, Templin et al. 2013, 

Souvannakitti, Peerapen et al. 2016). CORM-3 treatment preserved endothelial 

monolayer integrity; a plausible explanation being that CORM-3 can modulate F-actin 

expression/distribution and various transcription pathways (particulary MAPK) (Inoue, 

Patterson et al. 2017). Another possibility is that CORM-3 may modulate  mitochondria-

based pathways. Previous reports have found EHP leads to mitochondrial fission and a 

reduction in cellular ATP (Ju, Liu et al. 2007); CORM-3 has been shown to uncouple 

mitochondrial respiration and activate phosphate carriers, enhancing mitochondrial 

phosphate uptake (Long, Salouage et al. 2014). Additionally, CORM-3 also appears to 

have a significant impact on membrane potential and permeability, through its effects on 
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the transmembrane movement of K+ and Na+, causing changes in cellular respiration and 

H+ pumping (Wilson, Jesse et al. 2013). 

Treatment of endothelial cells with EHP or CS cytokine cocktail resulted in a 

significant increase in caspase activation. Surprisingly, while CORM-3 treatment 

prevented apoptosis in the CS cytokine cocktail group, it had no effect on apoptosis 

levels in the cells exposed to EHP. Increased oxidative stress, through ROS-based 

signalling (Toyokuni 1999), plays an important role in caspase activation and eventual 

apoptosis (Elmore 2007). Multiple studies, both in vivo and in vitro, have demonstrated 

the anti-apoptotic effects of CO (Brouard, Otterbein et al. 2000, Petrache, Otterbein et al. 

2000, Bihari, Cepinskas et al. 2014, Lawendy, Bihari et al. 2014). In the clinical and 

experimental scenario, elevated intracompartmental pressure leads to a significant rise in 

the inflammatory cytokine TNF- α (Lawendy, Bihari et al. 2015, Lawendy, Bihari et al. 

2016, Bihari 2017) which is an important mediator of apoptosis via modulation of the 

expression of various proteolytic caspases (Seekamp, Warren et al. 1993, Roebuck, 

Carpenter et al. 1999, Ley 2008). Previously, treatment with CORM-3 has been shown to 

lead to a significant decrease in circulating TNF-α levels (Cepinskas, Katada et al. 2008, 

Lawendy, Bihari et al. 2014, Donohoe 2015, Bihari 2017). Heme oxygenase inhibitors 

have also been shown to lead to a significant decrease in TNF-α-induced apoptosis in an 

in vitro model of both mouse fibroblasts and endothelial cells (Petrache, Otterbein et al. 

2000). In our study, the lack of CORM-3 effect upon exposure of HUVECs to EHP could 

be due to a relatively high dose of CORM-3 delivered to the HUVECs, changing its 

relative effect. In several experimental models of disease and/or tissue injury such as 

ischemia-reperfusion and  lung transplantation, pre-treatment with low dose CO led to a 
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net anti-apoptotic effect (Ryter, Alam et al. 2006), although higher concentrations of CO 

produced pro-apoptotic effects (Piantadosi, Zhang et al. 1997). In addition, apoptotic 

effects of EHP have been shown to be time dependent (Hasel, Durr et al. 2005); it is 

plausible to assume that the lack of response to CORM-3 could have been due to time 

dependent changes in activated caspase levels. 

The exposure of endothelial cells to EHP or CS cytokine cocktail led to a 

significant increase in leukocyte adhesive interactions (Figure 3.4), which remains a key 

feature of leukocyte and/or vascular endothelial cell inflammatory activation (Butcher 

1991, Ley, Laudanna et al. 2007). The process is mediated by various cytokines, 

chemokines and cell surface proteins on the activated endothelial cells (Albelda, Muller 

et al. 1991). Changes in hydrostatic pressure are likely to directly cause alterations in the 

expression of adhesion molecules on the vascular endothelium (e.g. P-selectin, E-selectin, 

ICAM-1, VCAM-1), allowing them to interact with their ligands on the PMNs (e.g. L-

selectin, sialyl-LewisX, β2 integrins).  

CORM-3 treatment was able to inhibit both leukocyte adhesion and rolling 

(Figure 3.4) in the cytokine cocktail group, but the beneficial effects were not reproduced 

in the EHP group. Previously, the application of CORM-2 significantly reduced levels of 

vascular endothelial adhesion molecules such as E-selectin and ICAM-1 (Nizamutdinova, 

Kim et al. 2009, Katada, Bihari et al. 2010). A decrease in E-selectin and VCAM-1 

expression has also been shown by pre-treatment with CORM-3 in HUVECs (Song, 

Bergstrasser et al. 2009). These results however, have not been universally found, as 

other studies have failed to show the ability of CORM-3 to suppress vascular endothelial 

cell adhesion protein expression (Urquhart, Rosignoli et al. 2007). Perhaps the lack of 
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statistically significant response in the EHP group following exposure to CORM-3 may 

be explained by its relative abilities to modulate adhesion on the endothelium when 

compared to the activated leukocytes. Although the effects of CORM-3 have been shown 

to modulate adhesive interactions on both activated leukocytes and the endothelium, its 

effect may be more significant on the former (Urquhart, Rosignoli et al. 2007). 

To our knowledge, this is the first study demonstrating the beneficial effects of 

carbon monoxide, delivered in the form of CORM-3, in two clinically relevant human in 

vitro models of CS. While the exact mechanisms of CORM-3 protective action remain to 

be determined, the obtained data helps translate previous animal model research to 

human trials, and suggests a potential therapeutic application of CORM-3 in CS. 
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CHAPTER 4. GENERAL DISCUSSION AND CONCLUSIONS 

 

 

4.1 OVERVIEW OF RESULTS 

CS is a true medical and surgical emergency associated with potentially 

devastating complications. Currently, the only proven treatment is surgical fasciotomy, to 

decompress all involved osseofascial compartments. The procedure, however, is 

associated with relatively frequent and significant complications leading to patient 

morbidity and dysfunction (Whitesides, Hirada et al. 1977). Certain adjunct and 

supportive therapies have shown limited therapeutic potential in various animal models 

(Manjoo, Sanders et al. 2010, Lawendy, Bihari et al. 2014, Bihari 2017), but their use in a 

clinical setting is hindered by our current lack of understanding of the underlying 

pathophysiology of CS, as well as their method of action. Recent reports utilizing animal 

models of CS have shown that unlike complete ischemia, CS creates a microcirculatory 

“low flow” environment, occurring in the presence of patent arterial vessels. This leads to 

early significant leukocyte activation, which in turn further contributes to parenchymal 

injury, cellular ischemia and limb dysfunction (Lawendy, Sanders et al. 2011). 

CO has emerged as an important mediator of cell signalling while also possessing 

anti-ischemic, anti-oxidant, anti-inflammatory, anti-apoptotic and vasodilatory properties 

(Kim, Ryter et al. 2006). In order to clinically utilize the beneficial attributes of this gas, a 

novel class of transition metal carbonyls capable of releasing CO on demand, the carbon 

monoxide-releasing molecules (CO-RMs), was experimentally synthesized (Motterlini, 

Clark et al. 2002). CO-RMs are capable of delivering safe levels of CO to the tissues in a 
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controlled manner, without causing a corresponding dangerous rise in COHb (Motterlini, 

Clark et al. 2002).  

Recent studies using animal models of CS (rat and pig) found that the 

administration of CORM-3 at the time of fasciotomy was associated with a decrease in 

leukocyte activation, systemic TNF-α release and diminished tissue injury, while 

improving microvascular perfusion (Lawendy, Bihari et al. 2014, Bihari 2017), but it has 

never been tested in human patients. In vitro modelling of CS allows to not only explore 

the underlying pathophysiology in a mechanistic manner, but also permits the 

development and testing of interventions (e.g. CO-RMs) that are currently not possible 

(or unethical) in humans. The goal of this thesis was to develop and test a relevant in 

vitro model of CS, using human cells, in order to expand our understanding of CS 

pathophysiology, as well as the development a safe medical adjunct (or standalone 

therapy) for patients presenting with CS. 

 

4.1.1 EHP As an In Vitro Model Of CS  

In Chapter 2, an attempt was made to mimic the CS conditions in vitro by 

subjecting human vascular endothelial cells (HUVECs) to the CS-relevant stimulus, in 

the form of elevated hydrostatic pressure (EHP), directly assessing cellular response, 

while attempting to clarify the role that EHP contributes to the endothelial activation and 

pro-inflammatory potential of CS. We found that exposure of HUVECs to EHP led to a 

rearrangement of endothelial monolayer, characterized by  significant stress fiber 

formation, as evidenced by changes in F-actin and VE-cadherin expression. Cells 

exposed to EHP also experienced a significant increase in intracellular production of 
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ROS, most likely due, at least in part, to changes in the mitochondrial respiratory chain 

and the inner mitochondrial membrane. It can also be surmised that this increase in ROS 

would then go on to trigger downstream signalling molecules, further stimulating 

inflammation (Toyokuni 1999). 

EHP applied to endothelial cells also led to a significant increase in leukocyte 

adhesion, a key feature of leukocyte and/or vascular endothelial cell inflammatory 

activation (Butcher 1991, Ley, Laudanna et al. 2007). These results suggest that EHP not 

only induces ROS production and apoptosis, but it also directly promotes endothelial cell 

activation. Changes in hydrostatic pressure most likely influence the transcription and 

expression of adhesion molecules on the vascular endothelium (e.g. P-selectin, E-selectin, 

ICAM-1, VCAM-1), which then allows the endothelium to interact with their ligands on 

the PMNs (e.g. L-selectin, sialyl-LewisX, β2 integrins), leading to increased endothelial 

permeability, extravasation, and in vivo, tissue edema and parenchymal injury. Thus, our 

study demonstrated that direct physical effects caused by elevated hydrostatic pressure 

within the injured limb also significantly contribute to the pathophysiology of CS. 

 

4.1.2 Effect of CORM-3  

In Chapter 3, we attempted to build on our results, by testing the effect of CORM-

3 on HUVECs exposed to elevated hydrostatic pressure, and compare the findings to the 

results obtained by CS cytokine cocktail stimulation. We studied the effects of CORM-3 

on ROS production, endothelial monolayer integrity, apoptosis and endothelial activation 

(leukocyte adhesion/rolling).  
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Application of CORM-3 was able to decrease intracellular ROS production in 

both the EHP and cytokine cocktail groups. In addition, CORM-3 also prevented the 

hydrostatic pressure-induced decrease in endothelial monolayer integrity, most likely by 

modifying EHP-induced cytoskeletal changes in F-actin or VE-cadherin. Surprisingly, 

while CORM-3 prevented apoptosis in the CS cytokine cocktail group, it had no effect on 

the level of apoptosis in the cells exposed to EHP, despite multiple studies previously 

demonstrating the anti-apoptotic effects of CO (Brouard, Otterbein et al. 2000, Petrache, 

Otterbein et al. 2000, Bihari, Cepinskas et al. 2014, Lawendy, Bihari et al. 2014). 

Both EHP and CS cytokine cocktail stimulation led to a significant endothelial 

activation, as demonstrated by an increase in leukocyte rolling and adhesion to the 

endothelial monolayer. CORM-3 treatment was able to inhibit this response in the CS 

cytokine cocktail group but did not have a similar effect in the hydrostatic pressure 

group. The difference in magnitude could be explained by the ability of CORM-3 to 

modulate the expression of various adhesion molecules on both activated leukocytes and 

the endothelium, with the effect being more significant on the former (Urquhart, 

Rosignoli et al. 2007). 

 

 

4.2 LIMITATIONS AND FUTURE DIRECTIONS  

Although we were able to demonstrate detrimental consequences of elevated 

hydrostatic pressure on endothelial cells, and the beneficial effects of CORM-3 in this 

novel in vitro human CS model, there were several limitations to these studies. We 

arbitrarily chose to expose HUVECs to a hydrostatic pressure of 30mmHg, as this level is 
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clinically relevant and feasible in the laboratory setting using a gravity-fed system. 

However, the ideal pressure to which HUVECs should be exposed to in order to mimic 

CS most effectively, has yet to be discerned. In addition, we did not expose endothelial 

cells to different pressure changes, which (presumably) could have led to a graded 

cellular response. Furthermore, we chose 4 to 6 hours of EHP based on previous reports 

and clinical relevancy; in the future, comparing longer or shorter periods of exposure may 

reveal interesting results in terms of cellular response and the effects of CORM-3.  

Another limitation is the fact that we used only one concentration of CORM-3, 

which we based on previous related reports. However, different concentrations may 

prove to be more effective, without compromising cell survival.  Although the goal of 

this specific model was to test the effect of elevated hydrostatic pressure on HUVEC and 

the potentially protective effect of CORM-3, other compounds with anti-oxidant and anti-

inflammatory properties, such as taurine, N-acetyl cysteine and vitamin C could 

potentially be utilized, individually or in combination.  

CORM-3 is in the early experimental stage, yet its effect on CS in various animal 

models has been significant. Although the purpose of our experimental design was to 

examine the effect of CORM-3 on CS specifically, in the future, CORM-3 could be tested 

in other conditions, such as Charcot changes in the diabetic foot. Charcot changes and 

ulceration have been associated with ischemia/reperfusion, elevated cytokine levels, 

reactive oxygen species, apoptosis and significant inflammatory changes (Folestad, 

Alund et al. 2015, Petrova, Petrov et al. 2015); A condition which appears to share many 

similarities with ischemia reperfusion and CS models and which may also respond 

favourably to CORM-3 treatment. 



	 128 

4.3 CONCLUSIONS 

The data in this thesis indicates that the effects of elevated hydrostatic pressure on 

endothelial cells is not inconsequential, and changes in hydrostatic pressure itself 

significantly contribute to the pathophysiology of CS. We demonstrated the beneficial 

effects of CORM-3 in an in vitro model of CS. Although certain outcomes were 

unexpected, such as the lack of the effect on caspase activation in response to CORM-3 

in EHP, our results suggest CORM-3 may be of benefit to patients suffering with CS. 

While the exact mechanisms of CORM-3 action remain to be elucidated, CORM-3 may 

have a significant potential as a pharmacological treatment to supplement and/or replace 

fasciotomy, thus avoid the devastating complications associated with CS. 
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