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Abstract 

The SWI/SNF complex is an evolutionarily conserved ATP-dependent chromatin 

remodelling complex that has been implicated in the aetiology of intellectual disability (ID).  

Among the dominant ID genes, the SWI/SNF complex is the most highly enriched protein 

complex.  However, its role in the nervous system is not yet understood.  I  systematically 

investigated the role of this complex in the development of the Drosophila mushroom body 

(MB), a complex brain structure required for learning and memory.  Gross MB morphology 

was assessed using confocal microscopy to identify morphological defects following RNAi-

mediated knockdown of the 15 individual SWI/SNF genes in the MB.  Knockdown of 

several SWI/SNF genes resulted in morphological abnormalities that suggest a role for this 

protein complex in axon remodelling.  These findings reveal a novel role for the SWI/SNF 

complex in axon development and pave the way for understanding the underlying gene 

regulatory mechanisms.  

Keywords 

Drosophila melanogaster, SWI/SNF complex, mushroom body, epigenetics, chromatin 

remodelling, axon development, γ-neuron remodelling  
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Chapter 1 

1 INTRODUCTION 
In both vertebrates and invertebrates, nervous system development involves the 

establishment of precise connections between neurons and their target cells.  The ability of 

neurons to make these connections is mediated by several processes including axon 

guidance, pruning and synapse formation (Araújo & Tear, 2003; Luo & O’Leary, 2005; 

Munno & Syed, 2003).  The intricate neuronal connections formed by these interactions are 

essential for nervous system functioning, and the ability to remodel these connections 

throughout life represents one of the most important features of the nervous system.  

Neuronal remodelling occurs throughout development in order to establish the mature pattern 

of dendrites and axons in the adult brain.  However, the neurons of the adult brain continue to 

remodel their connections in response to changes in neuronal activity and the environment 

(Fuchs et al., 2014).  Proper nervous system development and function is reliant on the 

coordinated efforts of transcription factors and epigenetic regulatory complexes to direct a 

precisely regulated program of gene expression (Hsieh & Gage, 2005).  In this thesis, I 

investigate the role of the SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin 

remodelling complex in the axon development of the mushroom body (MB) in Drosophila 

melanogaster.  

1.1 Epigenetic regulation in the nervous system 
Broadly defined, “epigenetics” refers to changes in gene expression that are 

independent of the underlying DNA sequence (Berger et al., 2009).  The term epigenetics 

was coined by C.H. Waddington, a developmental biologist who sought the mechanisms that 

allow genetically identical cells to develop into a myriad of radically different cell types 

(Waddington, 2012).  In eukaryotes, DNA is tightly packaged into chromatin.  The basic 

structural unit of chromatin is the nucleosome, consisting of approximately 147 base pairs of 

DNA wrapped around a histone octamer (Luger et al., 1997).  In addition to packaging the 

DNA, nucleosomes play an important role in the regulation of gene expression.  

Nucleosomes are highly dynamic, and their state of compaction is critical in determining 

whether the transcriptional machinery is able to access the DNA for gene activation (Schones 
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et al., 2008).  Nucleosome positioning is directed by various biochemical modifications 

which promote the condensation or relaxation of the chromatin structure, leading to the 

repression or activation of gene expression.  These modifications include DNA methylation, 

post translational histone modifications and ATP-dependent chromatin remodelling 

(Goldberg et al., 2007).  Among these mechanisms, DNA methylation and histone 

modifications are two of the most well studied.  DNA methylation is typically associated 

with gene silencing (Medvedeva et al., 2014), whereas histone modifications both activate 

and repress gene transcription at various loci (Barski et al., 2007).  Although the role of 

nucleosome remodelling has not been extensively characterized, ATP-dependent chromatin 

remodelling complexes are thought to play a key role in the regulation of gene expression by 

altering the accessibility of DNA to the transcriptional machinery (Vignali et al., 2000). 

Epigenetic mechanisms were traditionally thought to be stable and heritable 

throughout meiosis and mitosis.  However, studies have now shown that chromatin 

modifications can be highly dynamic in post-mitotic neurons (Olave et al., 2002; Rudenko & 

Tsai, 2014).  The study of post-mitotic epigenetic regulatory mechanisms in neurons is 

termed neuroepigenetics (Sweatt, 2013).  Epigenetic mechanisms have been found to play a 

key role in a number of neurological processes, including stress response (Weaver et al., 

2004), adult neurogenesis (Lessard et al., 2007; Yoo et al., 2009) and memory formation 

(Gupta et al., 2010; Miller et al., 2008; Miller & Sweatt, 2007).  For example, epigenetic 

regulation mediated by the methyl-CpG-binding protein 2 (MeCP2) is required for normal 

human brain development.  The MeCP2 protein functions as a transcriptional repressor that 

mediates gene silencing through binding to regions of methylated DNA (Nan et al., 1997).  

Mice containing a null mutation in the Mecp2 gene exhibit decreased spine density and a 

reduction in the number of dendritic branches (Kishi & Macklis, 2004; Smrt et al., 2007).  A 

similar phenotype is observed following overexpression of the Mecp2 protein, indicating that 

neuronal maturation is dependent on the precise regulation of Mecp2 expression (Zhou et al., 

2006).  Furthermore, several studies suggest that histone modifications play an essential role 

in the nervous system.  A study in flies revealed that the histone methyltransferase, G9a, is 

involved in the regulation of type 4 multidendritic sensory neurons, non-associative learning 

and courtship memory (Kramer et al., 2011).  In addition, histone methyltransferase activity 

is required for the regulation of long term potentiation in the hippocampus (Gupta et al., 

2010).  Contextual fear conditioning experiments in rats revealed that the trimethylation of 
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histone 3 at lysine 4 (H3K4) was up regulated in the hippocampus during memory 

consolidation (Gupta et al., 2010).  Moreover, mice deficient in the H3K4-specific 

methyltransferase, mixed-lineage leukemia (Mll), had severe deficits in their ability to form 

long term memories (Gupta et al., 2010).  In addition to the examples provided here, 

numerous other studies have revealed a role for epigenetic mechanisms in the nervous system 

(Delgado-Morales et al., 2017; Jiang et al., 2008; Levine et al., 2005).  Together, these 

findings indicate that epigenetic mechanisms play an important role in the regulation of 

neuronal gene expression.  However, despite these studies, researchers are only beginning to 

uncover the complex mechanisms by which epigenetic regulatory complexes function in the 

nervous system.  

1.2 Epigenetics in intellectual disability 
Intellectual disability (ID) is a common neurodevelopmental disorder, characterized 

by early onset limitations in both cognitive functioning and adaptive behaviour (American 

Psychiatric Association, 2013).  Cognitive deficits are defined by an IQ of below 70, whereas 

limitations in adaptive behaviour correspond to deficits in an assortment of conceptual, social 

and practical skills (American Psychiatric Association, 2013).  ID can be further subdivided 

into syndromic and non-syndromic forms.  Patients diagnosed with syndromic forms of ID 

suffer from cognitive impairment, in addition to a wide variety of other clinical abnormalities 

(American Psychiatric Association, 2013).  To date, more than 700 genes have been 

implicated in genetic forms of ID (Kochinke et al., 2016; Vissers et al., 2016).  Studies in 

mice have revealed that many of these genes are required for neurogenesis, neuronal 

differentiation, neuronal migration and synaptogenesis in the developing brain (Vaillend et 

al., 2008).  However, studies have found that a significant proportion of the mutated genes 

associated with ID encode for proteins involved in chromatin regulation (Kleefstra et al., 

2014).  For example, mutations in the MECP2 gene have been implicated in Rett syndrome, 

an X-linked neurodevelopmental disorder characterized by ID and motor impairment (Amir 

et al., 1999).  In addition, mutations in the euchromatin histone methyltransferase 1 (EHMT1) 

have been shown to cause Kleefstra syndrome (Mitra et al., 2017; Schwaibold et al., 2014).  

Furthermore, several components of the SWI/SNF chromatin remodelling complex are 

implicated in ID-related disorders such as Nicolaides-Baraitser syndrome and Coffin-Siris 

syndrome (Santen et al., 2012; Van Houdt et al., 2012). 
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Recent advances in next generation sequencing technology suggest that dominant de 

novo mutations are the most common cause of ID, especially severe forms (Gilissen et al., 

2014; Vissers et al., 2010).  In a recent study investigating the genetic causes of severe ID, 

dominant de novo copy number variations and single nucleotide variants were suggested to 

cause 60% of all cases, while rare inherited forms of ID only account for 2% (Gilissen et al., 

2014).  Currently, there are about 250 known dominant ID genes (Kochinke et al., 2016).  

Gene Ontology enrichment analysis performed in our lab has shown that these genes encode 

proteins that are highly enriched for processes involving chromatin regulation and gene 

transcription.  In particular, the SWI/SNF chromatin remodelling complex is the most 

overrepresented protein complex among the known dominant ID genes (Figure 1).  Eleven of 

the 29 genes that encode components of the human SWI/SNF complex have been implicated 

in ID, suggesting that this complex plays an important role in neuronal development or 

function (Di Donato et al., 2014; Dias et al., 2016; Hoyer et al., 2012; Johnston et al., 2013; 

Rivière et al., 2012; Santen et al., 2012; Santen et al., 2013; Tsurusaki et al., 2012; Van 

Houdt et al., 2012; Wieczorek et al., 2013; Wolff et al., 2012) (Figure 2). 
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Figure 1. The SWI/SNF complex is the most highly enriched cellular component 

among the dominant ID genes. 

Gene Ontology enrichment analysis (cellular components) was performed for the 291 

dominant ID genes (http://sysid.cmbi.umcn.nl/).  Bar plot shows the fold enrichment 

values for the top 30 most highly enriched cellular components.  SWI/SNF related terms 

are highlighted in yellow.  

http://sysid.cmbi.umcn.nl/
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Figure 2. Eleven of the 29 genes encoding components of the SWI/SNF complex 

have been implicated in ID. 

Protein-protein interaction network of the 29 human SWI/SNF complex proteins.  The 

network was generated and visualized using the geneMANIA Cytoscape plug-in 

(v.3.5.0) (Franz et al., 2015).  Genetic interactions are shown in blue and protein-protein 

interactions are shown in pink.  Subunits highlighted in purple have been implicated in 

ID (Di Donato et al., 2014; Dias et al., 2016; Hoyer et al., 2012; Johnston et al., 2013; 

Rivière et al., 2012; Santen et al., 2012; Santen et al., 2013; Tsurusaki et al., 2012; Van 

Houdt et al., 2012; Wieczorek et al., 2013; Wolff et al., 2012).  
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1.3 SWI/SNF chromatin remodelling complex 
The SWI/SNF complex is an ATP-dependent chromatin remodelling complex 

originally discovered in the yeast, Saccharomyces cerevisiae, due to its role in mating type 

switching and sucrose fermentation (Neigeborn & Carlson, 1984; Stern et al., 1984).  The 

SWI/SNF complex is highly conserved, with homologous complexes identified in both 

mammals and Drosophila (Son & Crabtree, 2014) (Table 1).  The SWI/SNF complex utilizes 

energy generated from the hydrolysis of ATP to slide, eject or restructure nucleosomes 

(Whitehouse et al., 1999).  Studies have suggested a proposed mechanism through which the 

SWI/SNF complex remodels chromatin, often referred to as the DNA looping model.  This 

model suggests that the ATPase functions as a DNA translocase, using the energy from ATP 

hydrolysis to force DNA around the nucleosome in the form of DNA waves.  These 

movements disrupt the existing DNA-histone interactions, enabling movement of the 

nucleosome relative to the DNA (Havas et al., 2000; Zhang et al., 2006). 

The mammalian SWI/SNF complex is referred to as the BAF (BRG1- or hBRM-

associated factors) complex.  The BAF complex consists of 15 subunits that are encoded by 

29 genes from 15 gene families (Son & Crabtree, 2014).  Ten of the 15 BAF subunits are 

encoded by multiple different genes from the same family (Lessard et al., 2007).  Therefore, 

alternative subunits exist for multiple positions within the complex, enabling the BAF 

complex to undergo combinatorial assembly of its subunits (Kadoch & Crabtree, 2015).  

Each position within the BAF complex may be occupied by only one member of each protein 

family.  For example, the BAF complex may contain one of two distinct ATPase subunits, 

Brahma (BRM) or Brahma-related gene 1 (BRG1) (Son & Crabtree, 2014).  This feature has 

allowed for the assembly of highly specialized conformations that elicit cell-specific 

functions, including the embryonic stem cell (esBAF), neuronal progenitor (npBAF), and 

neuronal (nBAF) specific versions of the complex (Son & Crabtree, 2014). 

In Drosophila, the SWI/SNF complex exists in two different forms, referred to as 

BAP (Brahma-associated protein) and PBAP (Polybromo-associated BAP) (Mohrmann et al., 

2004).  Both the BAP and PBAP complex contain the following core subunits: Bap55, 

Bap111, Act5C, Snr1, Moira (Mor), Bap60 and Brm (Mohrmann et al., 2004).  However, 

each complex differs in the number and type of accessory protein subunits.  The core 

SWI/SNF subunits associate with Osa to form the BAP complex, whereas the PBAP complex 
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is characterized by the absence of Osa, and the presence of E(y)3, Polybromo, and Bap170 

(Chalkley et al., 2008; Mohrmann et al., 2004).  In comparison to the mammalian BAF 

complex, the BAP complex contains 11 protein subunits.  However, predictive software 

provided by the Drosophila RNAi Screening Center suggests that CG7154, CG10555, 

CG9650 and BCL7-like are orthologous to known members of the mammalian BAF complex 

(Hu et al., 2011).  Although these proteins have yet to be verified as members of the 

SWI/SNF complex in Drosophila, their role in axon development of the Drosophila MB was 

studied in this project.  

Genome-wide analysis of chromatin binding sites revealed that the BAP and PBAP 

versions of the complex target both distinct and overlapping regions of the genome, 

suggesting that certain genes may be solely regulated by either the BAP or PBAP version of 

the complex (Chalkley et al., 2008; Mohrmann et al., 2004).  Both versions of the complex 

were shown to preferentially associate with regions of transcriptionally active chromatin, 

indicating that both the BAP and PBAP complexes share similar functions in transcriptional 

control (Moshkin et al., 2007).  However, whole genome expression profiling revealed that 

only the BAP complex is involved in the regulation of cell cycle progression (Moshkin et al., 

2007). 
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Table 1. Evolutionary conservation of the SWI/SNF complex. 

SWI/SNF  
(S. cerevisiae) 

BAF/PBAF (M.musculus) BAP/PBAP (D. melanogaster) 
BAF PBAF BAP PBAP 

Swi1p Baf250a/Arid1a  Osa  
Baf250b/Arid1b   

  Baf200/Arid2  Bap170 

Swi2p/Snf2p Brm/Smarca2  Brm Brg1/Smarca4 
  Baf180/Pbrm1  Polybromo 

Swi3p Baf155/Smarcc1 Mor  Baf170/Smarcc2 
 Baf100a/Bcl11a CG9650  Baf100b/Bcl11b 

Swp73p 
Baf60a/Smarcd1 

Bap60 Baf60b/Smarcd2 
Baf60c/Smarcd3 

 Baf57/Smarce1 Bap111 
 Baf55a/Ss18 CG10555  Baf55b/Crest/Ss18L 
 Β-actin/Actb Act5C 

Arp7p Baf53a/Actl6a Bap55 Arp9p Baf53b/Actl6b 
Snf5p Baf47/Smarcb1 Snr1 

 Baf45a/Phf10 E(y)3/SAYP 
 Baf45b/Dpf1 

D4  Baf45c/Dpf2 
 Baf45d/Dpf3 

 
Baf40a/Bcl7a 

BCL7-like Baf40b/Bcl7b 
Baf40c/Bcl7c 

  Brd7 CG7154 Brd9 
Snf6p   

Swp82p   
Swp29p   

 

 

 

 

Adapted from Son & Crabtree (2014) and updated using the DIOPT ortholog prediction 

tool (v.6.0.1) (Hu et al., 2011).  Subunits are organized into families and presented in the 

order of decreasing BAF protein size.  Components of the mammalian SWI/SWI complex 

have been sorted into the BAF & PBAF specific subunits, whereas the components of the 

Drosophila complex have been sorted into BAP/PBAP specific subunits.  
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1.3.1 SWI/SNF complex in cellular differentiation and development 

Several studies have implicated the SWI/SNF complex in processes related to cellular 

differentiation and development.  Studies in Drosophila have identified several components 

of the SWI/SNF complex that are required for the specification of segmental identity along 

the anteroposterior axis of the fly.  In particular, researchers identified Brm, Osa, Mor, Snr1, 

and E(y)3 as members of the trithorax group, a group of transcriptional activator proteins.  In 

Drosophila, these proteins function to maintain the appropriate expression of homeotic genes 

(Chalkley et al., 2008; Dingwall et al., 1995; Kennison & Tamkun, 1988).  In addition to 

being required for the organization of the insect body plan, the SWI/SNF complex is also 

involved in Drosophila tissue development.  Studies have shown that Brm, Snr1, and the 

BAP-specific subunit, Osa, are required for proper Drosophila wing development (Collins & 

Treisman, 2000; Herr et al., 2010; Zraly et al., 2003).  The Brm ATPase has been shown to 

regulate Drosophila wing development through the EGFR-Ras-MAPK signalling pathway 

(Herr et al., 2010), and the BAP-specific subunit Osa was found to disrupt the Wnt signalling 

pathway via repression of the wingless target genes, decapentaplegic, Distal-less and nubbin 

(Collins & Treisman, 2000).  In addition, null mutations in Snr1 cause defects in wing vein 

development, including disruptions along the L2 vein and ectopic bristles on the L3 vein 

(Zraly et al., 2003). 

The SWI/SNF complex has been shown to play an equally important role in 

mammalian development.  Studies have implicated the BAF complex in the differentiation of 

many different cell types, including adipocytes, hepatocytes, and erythropoietic cells 

(Romero & Sanchez-Cespedes, 2014).  Unlike the BAP complex found in Drosophila, the 

composition of the BAF complex varies according to cell type.  A specific conformation of 

the BAF complex is found in embryonic stem cells, referred to as esBAF.  This complex is 

defined by the presence of Baf155 and the ATPase Brg1, both of which appear to be required 

for the self-renewal and differentiation of embryonic stem cells (Ho et al., 2009).  In mice, 

knockdown of Brg1 and Baf155 resulted in early embryonic lethality due to impaired 

proliferation of the inner cell mass (Bultman et al., 2000; Kim et al., 2001).  A similar 

complex exists in neural stem cells, referred to as npBAF (Son & Crabtree, 2014).  Similar to 

the role of the esBAF complex, the npBAF complex has been shown to play a critical role in 

stem cell proliferation.  Mice containing heterozygous mutations in Brg1 and Baf155 had 
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defects in neural tube closure (Bultman et al., 2000; Kim et al., 2001).  These findings 

demonstrate the importance of the SWI/SNF complex in development and exemplify the 

need to better understand the function of this conserved protein complex in the context of a 

whole organism.     

1.3.2 Role of the SWI/SNF complex in neural development 

The SWI/SNF complex is known to be important for cellular differentiation and 

tissue development (Romero & Sanchez-Cespedes, 2014).  However, little is known about 

the role of this complex in the nervous system.  Genetic screens in Drosophila have 

identified several components of the SWI/SNF complex that are important for the regulation 

of dendrite morphogenesis.  In particular, one study found that knockdown of brm, Bap55 

and Bap60 resulted in the misrouting of class I dendrite arborization (da) neurons (Parrish et 

al., 2006).  Knockdown of Bap55 also resulted in primary branch extension and a reduction 

in the dendritic arborization of class I da neurons, while knockdown of Snr1 caused a 

reduction in lateral branching (Parrish et al., 2006).  An additional screen in olfactory 

projection neurons revealed that Bap55 is also required for dendrite targeting (Tea & Luo, 

2011). 

More recently, studies in mice have shown that the specific subunit composition of 

the SWI/SNF complex determines whether neural stem cells continue to divide or proliferate 

(Lessard et al., 2007; Yoo et al., 2009).  As neural progenitors differentiate into post-mitotic 

neurons, the BAF complex undergoes subunit exchange.  The npBAF-specific subunits 

Baf45a and Baf53a are replaced by Baf53b, Baf45b and Baf45c, members of the nBAF 

complex (Lessard et al., 2007; Olave et al., 2002).  Notably, the SWI/SNF subunit, Baf53b, is 

exclusively expressed in post-mitotic neurons of the adult brain (Olave et al., 2002).  A study 

in mice found that subdomain 2 of the neuron-specific subunit, Baf53b, is required for proper 

dendritic arborization, branching and synapse formation (Wu et al., 2007).  Baf53b knockout 

mice had severe defects in activity-dependent dendritic outgrowth, synapse formation and 

axon myelination (Wu et al., 2007).  These phenotypes were not rescued by overexpression 

of Baf53a, the npBAF-specific subunit.  However, the observed defects in dendritic spine 

growth were successfully rescued upon replacement of the subdomain 2 region in Baf53a 

with the subdomain 2 region found in Baf53b (Wu et al., 2007).  In accordance with this, 

mice deficient in Baf53b subdomain 2 exhibited defects in long term potentiation and 
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memory consolidation due to the disruption of actin polymerization at the synapse (Vogel-

Ciernia et al., 2013).  These deficits were found to result from the impaired phosphorylation 

of coffilin, a key regulator of actin polymerization (Vogel-Ciernia et al., 2017).  Overall, 

these findings indicate that individual subunits of the SWI/SNF complex have important, yet 

distinct, functions in post-mitotic neurons. 

1.4 Drosophila as a model for studies on neural development 
Drosophila melanogaster is a species of fly belonging to the order Diptera and the 

family Drosophilidae.  Often referred to as the common fruit fly, Drosophila has been used 

as a model organism in genetic research for over a century.  The first documented use of 

Drosophila in the laboratory was by William Castle, a professor at Harvard University in 

1901 (Castle, 1906).  However, it was the unexpected discovery of the white-eyed mutation 

by T.H. Morgan in 1910 that initiated the widespread use of Drosophila in genetic research 

(Morgan, 1910).  Building upon the work of Gregor Mendel, the discovery of the white 

mutation led to the establishment of sex-linked inheritance, prompting a revolution in our 

understanding of the physical basis of heredity.  Prior to the 1950’s, Drosophila were mainly 

used as a model organism to study genetics and heredity (Stephenson & Metcalfe, 2013).  

However, scientific advances have led to the development of a wide variety of important 

genetic tools, enabling key discoveries in neuroscience.  

1.4.1 Advantages of Drosophila as a model organism 

Drosophila offer an attractive model system for studying a wide range of biological 

processes, including heredity, embryogenesis, learning, behaviour and aging.  As one of the 

first organisms to have its genome completely sequenced, Drosophila is one of the most well 

studied and understood eukaryotic model organisms.  In comparison to the human genome, 

the genome of the fruit fly is significantly smaller, comprised of four chromosomes that 

encode roughly 120 million base pairs of DNA (Adams et al., 2000).  Despite its small size, 

the Drosophila genome encodes approximately 17 000 protein coding genes (Gramates et al., 

2017).  Many of these genes have been conserved throughout evolution and are present in 

humans.  In fact, comparison of the Drosophila and human genomes has shown that 

approximately 75% of human disease genes are conserved in Drosophila (Reiter et al., 2001). 
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In addition to the relatively high degree of genetic similarity between mammals and 

the fruit fly, Drosophila offer a number of practical advantages.  Drosophila are relatively 

inexpensive and easy to maintain in large numbers.  In comparison to other vertebrate 

systems, Drosophila are favoured due to their short generation time that takes place over a 

period of approximately ten days.  In addition, female flies lay an average of 100 eggs per 

day (Jennings, 2011).  These features facilitate genetic studies by enabling researchers to 

analyze large numbers of progeny over several generations within a matter of weeks.  

Finally, and perhaps most importantly, a wide variety of genetic tools have become available 

for use in Drosophila research.  This has enabled researchers to study numerous different 

aspects of gene function at high resolution in specific cell populations.   

1.4.2 Genetic tools available in Drosophila 

The success of Drosophila as a model organism can largely be attributed to the 

development of a wide variety of sophisticated genetic tools and techniques.  In genetic 

research, many studies are facilitated by the generation of mutant or transgenic flies.  

Transgenesis refers to the process of introducing foreign DNA, termed a transgene, into the 

genome of the host organism (Venken & Bellen, 2005).  P-element mediated transformation 

was the first version of this technique to be developed, and remains one of the most common 

methods for transgene generation in Drosophila.  P-elements are a type of class II 

transposable element found in the Drosophila genome (Castro & Carareto, 2004).  The P-

element encodes for transposase, an enzyme responsible for catalyzing both the excision and 

subsequent reinsertion of the P-element in the genome (Castro & Carareto, 2004).  The 

natural P-element has been genetically modified to serve as a vector for germline 

transformation in Drosophila.  Unlike the natural P-element, P-element mediated germline 

transformation requires that the transposase enzyme be transferred to a secondary plasmid 

known as the helper plasmid (Bachmann & Knust, 2008).  In place of the transposase 

enzyme, a gene of interest is inserted into the plasmid containing the P-element.  Each 

plasmid is then injected into the embryo at the posterior pole, the location at which the 

germline will be formed (Bachmann & Knust, 2008).  Following cellularization, the 

transposase enzyme mediates transposition of the gene of interest into the DNA (Bachmann 

& Knust, 2008).  Although useful in some aspects, P-elements are limited by their random 

integration behaviour.  Moreover, P-elements are prone to position effects, as nearby 
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enhancers and silencers may affect the expression of the inserted transgene (Venken & 

Bellen, 2005).  More recently, researchers have taken advantage of the phiC31 integrase 

(φC31) to enable site directed recombination between attP and attB recognition sites 

(Venken & Bellen, 2005).  For use in Drosophila, P-element mediated transformation was 

used to generate a collection of lines with accurately mapped attP landing sites (Bischof et 

al., 2007).  To mediate recombination, a plasmid containing both the transgene of interest and 

an attB recognition site are injected into the embryo, together with mRNA coding for the 

φC31 integrase (Fish et al., 2007).  The attP site acts as a defined insertion site for plasmids 

containing the attB site, allowing for transgene insertion into known locations throughout the 

genome.  Since the location of the attP sites can be precisely mapped, this technique 

minimizes the position effects associated with random P-element insertion.  

The GAL4/UAS binary expression system is a powerful tool for the spatial and 

temporal control of gene expression in Drosophila.  In this system, GAL4 is a transcriptional 

activator derived from yeast that activates the expression of genes under the control of the 

upstream activating sequence (UAS) (Brand & Perrimon, 1993).  Each component of the 

UAS/GAL4 system is maintained in separate lines, commonly referred to as the driver and 

responder.  Genes placed under the control of the UAS enhancer are only transcribed in the 

presence of the GAL4 transcription factor (Duffy, 2002).  As a result, transcription of the 

target gene will only be activated when the driver and responder lines are crossed together 

(Figure 3).  Depending on the promoter used to drive GAL4 expression, the target gene may 

be expressed in a specific tissue, at a specific time point, or ubiquitously.  Thousands of 

GAL4 lines are currently available from public stock centers, each expressing GAL4 in a 

distinct pattern throughout development.  This has greatly facilitated studies in the field of 

Drosophila neurobiology by allowing researchers to follow and manipulate distinct neuronal 

subsets in the fly brain (Jenett et al., 2012). 
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Figure 3. The GAL4/UAS system allows for the tissue-specific manipulation of 

gene expression. 

Flies carrying the GAL4 transcription factor under the control of a tissue-specific 

promoter are mated with flies carrying a gene of interest under the control of the 

UAS.  Both elements will be present in the progeny of the cross, enabling for 

GAL4/UAS binding and expression of the gene of interest in a tissue-specific 

manner.  

UASGAL4

UASGAL4

F1 Progeny

X
Gene of InterestTissue Specific

    Promoter

Tissue Specific
    Promoter Gene of Interest



16 

 

Another beneficial way to study gene function is via the post transcriptional silencing 

of gene expression.  This can be accomplished through the use of inducible RNA interference 

(RNAi) technology.  RNAi is a biological process in which double stranded RNA (dsRNA) 

molecules are used to direct sequence-specific gene silencing (Giordano et al., 2002).  

Initially discovered in Caenorhabditis elegans (Fire et al., 1998), RNAi has become an 

extremely valuable research tool in Drosophila for the study of gene function.  The RNAi 

pathway is initiated by the enzyme, Dicer-2, which cleaves long dsRNA molecules into 

smaller fragments of short interfering RNA (siRNA).  Following cleavage, siRNA molecules 

are integrated into the RNA induced silencing complex (RISC) and used to direct sequence 

specific degradation of the target mRNA, resulting in reduced protein (Giordano et al., 2002) 

(Figure 4).  Thousands of RNAi stocks are currently available from public stock centers 

(Dietzl et al., 2007), allowing for researchers to carry out large genetic screens.  Furthermore, 

RNAi technology can be used in combination with the UAS/GAL4 system for targeted gene 

knockdown in a cell or tissue-specific manner. 
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Figure 4. RNAi is an effective method for the knockdown of gene expression 

in Drosophila. 

The RNAi pathway is initiated by the Dicer-2 enzyme, which cleaves long 

dsRNA molecules into siRNA.  The antisense strand of the siRNA molecule is 

loaded into the RISC complex to enable complementary binding of the siRNA to 

the target mRNA.   
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1.5 Development of the Drosophila mushroom body 
MB’s are symmetrically paired neuropil structures in the brain of Drosophila, each 

containing a dense network of axons, dendrites and glial cell processes (Heisenberg, 1998).  

MB’s receive olfactory information from the antennal lobe through MB projection neurons 

(Aso et al., 2014; Lee et al., 1999).  In accordance with this, behavioural studies have shown 

that the Drosophila MB’s are required for olfactory learning and memory (Davis, 1996; 

Heisenberg, 1998).  MB neurons are derived from Kenyon cells (Kurusu et al., 2002).  Each 

Kenyon cell projects dendrites into the calyx and axons into the central brain, where they 

form the α, β, α’, β’ and γ-lobes (Lee et al., 1999).  In the adult brain, each MB is composed 

of approximately 2000 neurons that arise from the division of four distinct neuroblast cells 

(Aso et al., 2014; Lee et al., 1999).  MB neuroblasts divide continuously throughout 

development, giving rise to three distinct classes of MB neurons (α/β, α’/β’ and γ) in a 

sequential fashion (Kurusu et al., 2002; Lee et al., 1999) (Figure 5).  The proper development 

of the MB is dependent on a neuronal remodelling process that involves axon guidance and 

pruning.  The γ neurons are the first to arise, projecting their axons into both the dorsal and 

medial lobes during the late embryonic and early larval stages of development (Lee et al., 

1999).  This is followed by the generation of the α′/β′ neurons during the late larval stage and 

the α/β neurons during the pupal stage of development (Lee et al., 1999).  Shortly after 

puparium formation, γ neurons undergo an extensive remodelling process in which axon 

pruning reduces the larval specific γ axons back to the peduncle (Lee et al., 1999).  During 

the pupal stage of development, adult γ neurons only re-extend their axons into the medial 

lobe (Lee et al., 1999).  The development of the Drosophila MB’s has been well described 

and the axonal projections are easily visualized.  Consequently, they are a useful model for 

studying various aspects of axon development including general axon guidance and neuronal 

remodelling. 
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Figure 3. Sequential development of the Drosophila mushroom body. 

The Drosophila MB is composed of three distinct classes of neurons (α/β, α’/β’ and γ) that 

are generated in a specific temporal order throughout development.  The γ neurons are the 

first to arise in newly hatched larvae (NHL), extending axons into both the dorsal and 

medial lobes of the MB.  During puparium formation, axon pruning reduces the larval 

specific γ axons back to the peduncle.  During pupal development, the γ neurons re-extend 

their axons into the medial lobe.  The generation of the different types of MB neurons has 

completed by approximately 9 days after larval hatching (ALH).  Adapted from (Lee et 

al., 1999). 
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Several studies have implicated the insect steroid hormone, ecdysone, and the 

ecdysone hormone receptor in the neuronal remodelling of the Drosophila MB (Lee et al., 

2000; Schubiger et al., 1998).  In Drosophila, the functional ecdysone receptor is formed by 

the interaction of the Ecdysone receptor protein (EcR) and the Ultraspiracle protein (USP) 

(Yao et al., 1993).  To induce neuronal remodelling, ecdysone must bind the EcR/USP 

nuclear receptor (Lee et al., 2000).  In accordance with this, MB γ neurons containing a 

homozygous loss of function mutation in usp failed to prune (Lee et al., 2000).  There are 

three different EcR isoforms, referred to as EcR-A, EcR-B1 and EcR-B2 (Schubiger et al., 

1998).  The expression of the various EcR isoforms is differentially regulated in different cell 

types of the Drosophila MB (Schubiger et al., 1998).  Notably, EcR-B1 is highly and 

specifically expressed in the MB γ neurons prior to puparium formation (Schubiger et al., 

1998).  Loss of function mutations in EcR-B1 also result in defective γ pruning, 

demonstrating the importance of the EcR/USP receptor in γ-neuron remodelling (Lee et al., 

2000).  The expression of the EcR-B1 isoform is tightly regulated by the TGF-β signalling 

pathway (Zheng et al., 2003).  TGF-β signalling is initiated by the binding of myoglianin to 

the TGF-β type I receptor, baboon, and either one of the TGF-β type II receptors; punt or 

wishful thinking (Awasaki & Lee, 2011; Zheng et al., 2003).  Binding of myoglianin to the 

baboon receptor leads to phosphorylation of Smad on X, a protein that acts downstream to 

regulate the expression of genes that in turn upregulate the expression of EcR-B1 (Zheng et 

al., 2003).  However, the target genes responsible for the upregulation of EcR-B1 expression 

have yet to be identified.  In a separate study, Boulanger and colleagues found that the Ftz-f1 

nuclear receptor is required for remodelling of the MB γ neurons.  Ftz-f1 activation leads to 

the upregulation of the EcR-B1 isoform and repression of Hr39, an ftz-f1 paralog known to 

inhibit axon pruning in the γ neurons (Boulanger et al., 2011).  This mechanism was found to 

act independently of TGF-β signalling, suggesting that multiple different pathways converge 

to regulate EcR-B1 expression and ensure proper neuronal remodelling.  A recent study has 

also suggested the involvement of the non-coding RNA molecule, microRNA-34 (miR-34).  

Ectopic over expression of miR-34 in differentiated MB γ neurons was found to impair γ 

axon pruning through downregulation of the EcR-B1 receptor (Lai et al., 2016).  This 

phenotype was rescued through overexpression of either the EcR-B1 isoform or the baboon 

receptor, suggesting that miR-34 may be involved in the regulation of EcR-B1 expression 

through the TGF-β signalling pathway (Lai et al., 2016).  Overall, these findings suggest that 



21 

 

axon pruning of the MB γ neurons may be dependent on the epigenetic regulation of multiple 

parallel pathways which converge to regulate the expression of the EcR-B1 receptor.  

1.6 Research hypothesis and rationale 
ID is a complex and highly heterogeneous disorder affecting 1-3% of the global 

population (Harris, 2006).  Affected individuals suffer lifelong impairments in cognitive 

function and adaptive behaviour, placing a significant burden on family members and the 

healthcare system.  Despite the large number of known ID genes, the specific mechanisms 

underlying the aetiology of ID are not fully known.  However, analysis of the known ID 

genes has revealed that defects in chromatin regulation represent one of the most common 

causes underlying ID (van Bokhoven & Kramer, 2010).  As previously mentioned, the 

SWI/SNF chromatin remodelling complex is one of the most statistically overrepresented 

protein complexes involved in the aetiology of ID (30.06-fold enrichment of the nBAF 

complex).  Studies have implicated several members of the SWI/SNF complex in a number 

of ID-related disorders, including Autism Spectrum disorder, Coffin-Siris syndrome and 

Kleefstra syndrome (Di Donato et al., 2014; Dias et al., 2016; Rivière et al., 2012; Santen et 

al., 2012; Santen et al., 2013; Tsurusaki et al., 2012; Van Houdt et al., 2012; Wolff et al., 

2012).  Despite the important role of the SWI/SNF complex in neurodevelopmental 

disorders, little is known about the function of this complex in the nervous system.  Studies 

have investigated the role of this complex in the regulation of dendrite morphology, but the 

mechanisms underlying the observed defects in dendrite morphology remain unknown (Tea 

& Luo, 2011; Wu et al., 2007).  Furthermore, the role of the SWI/SNF complex in axon 

development has yet to be explored.  Lastly, the role of this complex in the development of 

brain regions important for learning and memory is unknown.  The aim of this research is to 

systematically characterize the role of the SWI/SNF chromatin remodelling complex in the 

post-mitotic axonal development of the Drosophila MB.  I hypothesize that SWI/SNF 

mediated gene regulation plays an important role in post-mitotic neuronal development and I 

predict that MB-specific knockdown of the SWI/SNF components will result in 

morphological defects that result from altered axon guidance or neuronal remodelling.  To 

test this hypothesis, I have accomplished two key objectives:  
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1) Identify and classify gross morphological defects in MB development following RNAi-

mediated gene knockdown of all 15 individual SWI/SNF subunits. 

2) To determine whether the observed defects in gross MB morphology result from defects in 

axon guidance or neuronal remodelling. 

This study will lay the foundation for future studies aimed at understanding the molecular 

mechanisms disrupted in the MB upon SWI/SNF knockdown.  
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Chapter 2 

2 METHODS 

2.1 Fly stocks and culture 
All fly stocks were maintained at room temperature on standard cornmeal-agar media.  

All of the fly strains used in this study were obtained from either the Bloomington 

Drosophila Stock Center (BDSC) (Bloomington, USA) or the Vienna Drosophila Resource 

Center (VDRC) (Vienna, Austria), with the exception of MB607B-GAL4 which was obtained 

from the Janelia Fly light collection (Ashburn, USA) (Appendix A).  The inducible RNAi 

stocks obtained from the BDSC were generated by the Transgenic RNAi Project (TRiP) via 

φC31 mediated site-specific recombination (Perkins et al., 2015).  Transgenic RNAi stocks 

generated by the TRiP utilize five different vectors for hairpin insertion, namely the 

VALIUM1, VALIUM10, VALIUM20, VALIUM21, and VALIUM22 vectors.  Lines 

generated using the VALIUM20, VALIUM21, and VALIUM22 vectors utilize short hairpin 

RNA molecules (Ni et al., 2011), whereas lines generated using the VALIUM1 and 

VALIUM10 vectors use long hairpin RNA molecules (Ni et al., 2008; Ni et al., 2009).  The 

VDRC lines used in this study were obtained from two different genetic libraries, each of 

which uses a different method for hairpin insertion.  Similar to the lines generated by the 

TRiP, stocks obtained from the KK library of the VDRC were generated using φC31 

mediated site-directed recombination (Green et al., 2014).  Conversely, lines obtained from 

the GD library were generated using P-element mediated germ line transformation (Dietzl et 

al., 2007). 

For all knockdown experiments, controls were generated using the appropriate 

genetic background stocks (Appendix B).  All of the stocks obtained from the VALIUM1, 

VALIUM10, VALIUM21, and VALIUM22 collections of the TRiP contain a transgene on 

the third chromosome, whereas stocks obtained from the VALIUM20 collection include a 

combination of second and third chromosome transgenes.  To account for the third 

chromosome based transgenes, genetic control animals were generated using the attP2 (third 

chromosome) genetic background control strain (genotype: [y1v1; P{CaryP}attP2]) and a 

hairpin stock targeting mCherry (genotype: [y1sc*v1; P{VALIUM20-mCherry}attP2]).  Both 

the attP2 genetic background stock and the mCherry control have the same genetic 
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background as the third chromosome based transgenes obtained from the TRiP.  However, 

the mCherry control also contains an RNAi construct targeting the fluorophore mCherry, a 

protein that does not exist in the Drosophila genome (Perkins et al., 2015).  Due to the 

presence of the non targeting RNAi, the hairpin stock targeting mCherry is more similar to 

the RNAi lines used in this study than that of the attP2 background stock.  Therefore, 

statistical analyses were performed by comparing the third chromosome based transgenes to 

the mCherry-RNAi hairpin control instead of the attP2 genetic background stock.  

VALIUM20 stocks containing a transgene on the second chromosome were compared to the 

attP40 (second chromosome) genetic background control strain (genotype: [y1v1; 

P{CaryP}attP40]).  Finally, the isogenic host strain, [w1118], was used as a genetic 

background control for the GD library, whereas the genetic background stock, 

[yw1118;P{attP,y+,w3)], was used as a control for the KK library. 

2.2 Genetic crosses 
All crosses were performed at 29°C in 70% humidity on a 12h-12h light-dark cycle.  

Individual SWI/SNF subunits were knocked down in the MB using targeted RNAi in 

combination with the UAS-GAL4 binary expression system.  MB-specific knockdown was 

achieved using the R14H06-GAL4 transgene, which specifically expresses GAL4 in post-

mitotic MB cells (Jenett et al., 2012).  For visualization of the MB, R14H06-GAL4 was 

combined with UAS-mCD8::GFP using standard genetic techniques.  The RNAi constructs 

used in this study consist of both short and long hairpin RNA molecules.  Dicer-1 is 

endogenously expressed in the fly, and this expression has proven to be effective for the 

processing of short hairpin RNAs (Ni et al., 2011; Perkins et al., 2015) (TRiP’s VALIUM20, 

VALIUM21 & VALIUM22 collections).  However, it has been shown that long hairpins 

require the co-expression of Dicer-2 to achieve optimal knockdown (Dietzl et al., 2007) 

(TRiP’s VALIUM1 & VALIUM10 collections, VDRC’s GD & KK libraries).  Therefore, 

UAS-Dicer-2 was co-expressed in the MB when long hairpin RNA lines were used for 

knockdown.  For knockdown experiments, males from short hairpin RNA lines were crossed 

to females of the genotype [w1118; P{UAS-mCD8::GFP.L}LL5, P{UAS-

mCD8::GFP.L}2)/CyO; P{GMR14H06-GAL4}attP2)/TM6], whereas males from long 

hairpin RNAi lines were crossed to females of the genotype [w1118; P{UAS-Dcr-2.D}2/CyO; 

P{GMR14H06-GAL4}attP2), P{UAS-mCD8::GFP.L}LL6/TM6].  Parents were removed 
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prior to eclosion and adult males of the appropriate genotype were collected from the F1 

knockdown progeny for dissection (Table 2).  To account for potential off target effects, MB-

specific knockdown of the SWI/SNF genes was performed using at least two different RNAi 

constructs that target different regions of the endogenous mRNA. 

Defects in γ-neuron remodelling were investigated using the MB607B-GAL4 driver, 

which has been shown to specifically express GAL4 in a small subset of the MB γ neurons 

(Aso et al., 2014).  Remodelling defects were investigated for the SWI/SNF genes Bap60, 

Snr1 and e(y)3.  For visualization of the MB γ neurons, RNAi constructs were combined with 

UAS-mCD8::GFP using standard genetic techniques.  To visualize the adult specific 

projection patterns of the MB γ neurons, females of the genotype [w1118; P{UAS-

mCD8::GFP}/CyO; P{UAS-RNAi}/TM6] were crossed to males collected from the MB607B-

GAL4 driver (genotype: [R19B03-p65ADZp; R39A11-39A11_ZpGAL4DBD]).  Newly 

eclosed males of the genotype [w1118; P{UAS-mCD8::GFP}/R19B03-p65ADZp}; P{UAS-

RNAi}/{R39A11-39A11_ZpGAL4DBD}] were collected for dissection and compared to flies 

of the control genotype [w1118;P{UAS-mCD8::GFP}/R19B03-p65ADZp};P{VALIUM20-

mCherry}attP2}/ {R39A11-39A11_ZpGAL4DBD}]. 
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Table 2. Genotypes of the control and knockdown flies analyzed for defects in gross MB morphology. 

 
Adult males of the above genotypes were collected for dissection.  Third chromosome based transgenes obtained from the TRiP 

include a combination of short (VALIUM1, VALIUM10) and long hairpin RNA molecules (VALIUM20, VALIUM21, 

VALIUM22).  RNA stocks generated using the VALIUM1 and VALIUM10 vectors of the TRiP were co-expressed with UAS-

Dicer-2.  
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2.3 Adult brain dissection and confocal microscopy 
The brains of adult males were dissected in phosphate buffered saline (pH 7.2) and 

fixed with 4% paraformaldehyde for 45 minutes at room temperature.  Brains were mounted 

in Vectashield (Vector Laboratories) and imaged using a Zeiss LSM 510 duo vario confocal 

microscope.  Confocal stacks were generated using 100 µm slices and processed using Image 

J software (Fiji) (Schindelin et al., 2012) and Adobe Photoshop.  

2.4 Lethality assay 
To determine which of the RNAi lines used in this study resulted in lethality upon 

ubiquitous knockdown, Actin5C-GAL4 was used to induce ubiquitous SWI/SNF expression.  

Female flies heterozygous for Actin5C-GAL4 (genotype: [y1w*; P{Act5C-GAL4-w}E1/CyO]) 

were crossed with male responder flies containing a UAS-RNAi transgene specific to one of 

the 15 SWI/SNF subunits.  Three biological replicates were performed for each SWI/SNF 

subunit at 25ºC in 70% humidity on a 12h-12h light-dark cycle.  The Actin5C-GAL4 

transgene is balanced over the CyO balancer chromosome.  As a result, 50% of the progeny 

are expected to receive the Actin5C-GAL4 transgene, whereas the remaining 50% are 

expected to receive the CyO balancer chromosome which contains a dominant marker 

mutation for curly wings.  F1 progeny were scored for the presence or absence of the curly 

wing marker.  The proportion of straight winged flies indicated survival with Actin5C-GAL4 

driven expression of RNAi constructs.  Percent survival was calculated by comparing the 

number of flies with straight wings to the number of flies with curly wings (% 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁 ℎ𝑁𝑁𝑡𝑡𝑆𝑆𝑡𝑡𝑁𝑁𝑡𝑡𝑆𝑆𝑡𝑡𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑡𝑡𝑁𝑁𝑡𝑡𝑆𝑆𝑡𝑡𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡

 ).  Deviations from expected frequencies were calculated using a Chi-

square statistical test.  

2.5 Scoring and classification of mushroom body phenotypes 
Gross MB morphology was assessed by examining the individual slices (z= 1.0 µm) 

of brains with R14H06-directed GFP-expression.  Due to the high degree of natural variation 

in the size of the Drosophila MB, confocal stacks were qualitatively assessed for defects in 

MB morphology.  Four distinct phenotypes were observed, including the appearance of 

missing α and β lobes, β-lobe fibers crossing over the midline, extra dorsal projections and 
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stunted γ-lobes.  As previously mentioned, the adult MB is a symmetrically lobed structure in 

the brain of Drosophila.  In some cases, knockdown resulted in loss of both the right and left 

α/β lobes.  To simplify the analysis, the missing lobe phenotype was scored on a presence or 

absence basis, regardless of the number of lobes missing.  The remaining three phenotypes 

were quite variable in severity.  As a result, each brain was classified as ‘normal’, ‘mild’, 

‘moderate’, or ‘severe’.  The β-lobe crossing phenotype was scored based on the width and 

density of GFP labelled β-lobe fibers crossing the midline.  In most cases, this phenotype was 

bilaterally symmetric.  However, in some cases, the β-lobe fibers appeared to extend from 

only one side of the MB.  Regardless of whether the β-lobe crossing phenotype was bilateral 

or unilateral, phenotype severity was scored according to the same criteria stated above.  The 

extra dorsal projection phenotype was classified based on the number and thickness of dorsal 

projections adjacent to the α-lobe, whereas the stunted γ-lobe phenotype was classified based 

on the relative size of the γ-lobe. 

2.6 Quantification of fluorescent signal intensity 
Image J software (Fiji) (Schindelin et al., 2012) was used to quantify the difference in 

fluorescent signal intensity between the α and γ-lobes of the Drosophila MB.  The multipoint 

selection tool was used to sample four defined regions within each of the MB α and γ-lobes 

(Figure 6).  The average gray value within each selection was calculated in order to 

determine the intensity of GFP expression at each of the defined points within the α and γ-

lobes.  Fluorescent signal ratios were calculated for each side of the MB according to the 

following formula:  

𝐹𝐹𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑁𝑁 𝑆𝑆𝑆𝑆𝑁𝑁𝑡𝑡𝑆𝑆𝑆𝑆 𝐼𝐼𝑡𝑡𝑁𝑁𝑡𝑡𝑡𝑡𝑁𝑁𝑆𝑆𝑁𝑁𝑡𝑡 𝑅𝑅𝑆𝑆𝑁𝑁𝑆𝑆𝑡𝑡 =
∑γ(1−4)

∑𝛼𝛼(1−4) 

A global average ratio was calculated for each image by taking the average of the left 

and right MB ratios.  Brightness ratios were calculated for each individual image and an 

average was calculated for each genotype.  
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Figure 6. Representation of the locations in which the fluorescent signal of the 

mushroom body was measured. 

Fluorescent signal intensity was measured at four distinct points within each of the 

MB α and γ-lobes.  The approximate location in which each measurement was taken is 

marked by an X.  
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2.7 Statistical analysis of mushroom body phenotypes 
SWI/SNF knockdown resulted in an apparent increase in the frequency of extra dorsal 

projections, stunted γ-lobes and β-lobe fibers crossing the midline.  For each of these 

phenotypes, the proportion of MB’s exhibiting abnormal morphology (sum of mild, moderate 

and severe proportions) was compared to the proportion exhibiting normal morphology 

between each knockdown and the appropriate control using a two-tailed Fisher’s exact test.  

The Bonferroni-Dunn test was used as a follow up to correct for multiple comparisons. 

To determine whether there was a significant reduction in the relative γ-lobe intensity 

of SWI/SNF knockdown flies, the relative signal intensity of knockdown flies was compared 

to that of the mCherry-RNAi hairpin control using a one-way ANOVA with Dunnet’s test for 

multiple comparisons.  
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Chapter 3 

3 RESULTS 

3.1 Survival of Actin5C-GAL4 mediated SWI/SNF knockdown 
Null mutations in several components of the SWI/SNF complex have been shown to 

cause embryonic lethality (Bultman et al., 2000; Klochendler-Yeivin et al., 2000).  Therefore, 

it was expected that ubiquitous knockdown of the SWI/SNF subunits would result in 

lethality.  To determine which RNA lines caused lethality upon ubiquitous knockdown, we 

used Actin5C-GAL4 to induce RNAi expression in all cells.  

Ubiquitous knockdown caused a significant reduction in percent survival as compared 

to expected values for 26 of the 31 RNAi lines tested (Table 3).  A complete or almost 

complete reduction in survival was observed for 22 RNAi lines (% survival ≤ 5.00, P<1x10-

4), whereas a partial reduction in survival was observed following knockdown of UAS-

Snr112644 (% survival= 53.8 ± 18.8, P= 0.010), UAS-BCL7-like20410 (% survival= 43.6 ± 5.78, 

P<1x10-4), UAS-Act5C42651 (% survival= 31.4 ± 36.2, P= 5.8x10-3), and UAS-Bap6033954 (% 

survival= 17.8 ± 12.4, P<1x10-4).  Conversely, knockdown of UAS-BCL7-like35714 (% 

survival= 96.9 ± 13.2, P= 0.983), UAS-CG1055550606 (% survival= 98.0 ± 37.4, P= 0.998), 

UAS-Bap5531708 (% survival= 83.3 ± 23.3, P= 0.884), UAS-brm34520 (% survival= 77.8 ± 15.6, 

P= 0.137) and UAS-polybromo32840 (% survival= 102 ± 12.2, P= 0.482) caused no significant 

reduction in percent survival as compared to expected population frequencies.  However, 

Mohrmann and colleagues found that null mutations in polybromo do not result in lethality 

(Mohrmann et al., 2004), and therefore, this result was expected.  With the exception of 

polybromo32840, the RNAi lines that did not induce lethality were excluded from the study.  
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Table 3. Percent survival of Actin5C-GAL4 mediated knockdown of SWI/SNF subunits. 

Gene Stock # Total Survival 
(% ± SE) ntotal 

Male Survival 
(% ± SE) nmale 

Female Survival 
(% ± SE) nfemale χ2 P 

mCherry 35785 80.2 ± 8.40 245 73.1 ± 18.4 116 87.0 ± 6.50 129 3.42 0.331 

Act5C 
42651 31.4 ± 36.2 46 31.2 ± 30.9 21 31.6 ± 41.5 25 12.5 5.8 x 10-3 

101438 3.74 ± 1.75 46 4.17 ± 1.88 21 3.39 ± 1.70 25 191 <1.0 x 10-4 

Bap170 
26308 1.70 ± 3.70 120 1.56 ± 4.76 65 1.85 ± 3.03 55 112 <1.0 x 10-4 
34582 0.719 ± 1.15 140 0 61 1.28 ± 1.96 79 136 <1.0 x 10-4 

Bap55 
24703 5.00 ± 4.40 147 1.61 ±1.85 63 7.69 ± 7.80 84 121 <1.0 x 10-4 
31708 83.3 ± 23.3 77 85.2 ± 27.0 50 80.0 ± 29.3 27 0.653 0.884 

Bap60 
32503 0 122 0 65 0 57 122 <1.0 x 10-4 
33954 17.8 ± 12.4 185 23.1 ± 15.8 96 12.7 ± 8.04 89 91.0 <1.0 x 10-4 

BCL7-like 
35714 96.9 ± 13.2 128 90.3 ± 26.1 59 103 ± 34.5 69 0.167 0.983 
20410 43.6 ± 5.78 168 37.7 ± 14.7 73 48.4 ± 5.01 95 26.4 <1.0 x 10-4 

brm 
37720 0.962 ± 0.790 105 2.04 ± 1.96 50 0 55 101 <1.0 x 10-4 
34520 77.8 ± 15.6 208 61.7 ± 23.0 97 94.7 ± 21.3 111 5.54 0.137 
31712 0 61 0 27 0 34 42.0 <1.0 x 10-4 

CG10555 
50606 98.0 ± 37.4 196 100 ± 66.3 88 96.4 ± 23.4 108 0.037 0.998 

105802 0 96 0 42 0 54 96.0 <1.0 x 10-4 

CG7154 37670 1.23 ± 1.15 82 2.63 ± 2.56 39 0 43 78.1 <1.0 x 10-4 
107992 0.909 ± 0.850 111 1.82 ± 1.67 56 0 55 107 <1.0 x 10-4 

CG9650 
23170 0 49 0 24 0 25 22.0 <1.0 x 10-4 
40852 0 112 0 43 0 69 112 <1.0 x 10-4 

104402 4.80 ± 3.30 175 10.9 ± 8.60 71 1.00 ± 0.900 104 146 <1.0 x 10-4 

Bap111 26218 1.41 ± 1.96 72 0 41 3.33 ± 6.67 31 68.1 <1.0 x 10-4 
35242 3.55 ± 0.970 146 0 71 7.14 ± 2.61 75 127 <1.0 x 10-4 

e(y)3 
32346 0 30 0 13 0 17 30.0 <1.0 x 10-4 

105946 0 120 0 46 0 74 120 <1.0 x 10-4 

mor 
110712 1.20 ± 1.33 168 2.63 ± 4.17 78 0 90 160 <1.0 x 10-4 
6969 0.826 ± 0.930 122 0 58 1.59 ± 1.75 64 118 <1.0 x 10-4 

osa 
38285 2.47 ± 1.55 83 2.78 ± 3.03 37 2.22 ± 1.75 46 75.2 <1.0 x 10-4 

7810 2.13 ± 0.980 144 1.49 ± 2.08 68 2.70 ± 1.80 76 132 <1.0 x 10-4 
polybromo 32840 102 ± 12.2 198 81.5 ± 16.5 98 127 ± 7.79 100 2.46 0.482 

Snr1 
32372 4.04 ± 3.92 103 7.84 ± 9.52 55 0 48 88.2 <1.0 x 10-4 
12644 53.8 ± 18.8 120 45.2 ± 12.8 45 59.6 ± 22.3 75 11.2 0.010 
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3.2 MB-specific knockdown of the SWI/SNF subunits 
results in aberrant mushroom body morphology 

To investigate the role of the SWI/SNF complex in axon development, each of the 

15 SWI/SNF subunits were knocked down in the MB using a collection of transgenic 

UAS-RNAi lines.  Confocal stacks were examined to look for gross morphological 

phenotypes in the development of the Drosophila MB.  To account for genetic 

background effects, knockdowns were compared to their corresponding genetic 

background control line (Appendix B).  This analysis revealed four distinct phenotypic 

classes, including the appearance of missing α and β lobes, β-lobe fibers crossing the 

midline, extra dorsal projections and stunted γ-lobes (Appendix C).  

Missing α and β lobes were observed at a low penetrance in both knockdowns and 

controls (Figure 7), whereas the β-lobe crossing phenotype was observed in nearly all 

genotypes (Figure 8).  The appearance of missing α and β lobes appeared to be random, 

while the β-lobe crossing phenotype was highly penetrant in certain genotypes (UAS-

Bap6033954; P= 0.0140, UAS-osa38285; P= 0.0494, UAS-Bap17034582; P= 0.0297).  In total, 

these phenotypes were observed in 81% of the knockdowns and 70% of the controls.  The 

missing lobe and β-lobe crossing phenotypes were previously reported in a study looking 

at the genetic basis of natural variation in MB size, and it was suggested that they may be 

due to the random fixation of deleterious mutations affecting MB structure (Zwarts et al., 

2015).  Taken together, these findings suggest that the latter phenotypes are not the result 

of reduced SWI/SNF function.   

MB-specific knockdown of Bap60, Act5C, Snr1, CG9650, CG7154 and e(y)3 also 

resulted in the appearance of extra dorsal projections adjacent to the MB α-lobe (Figure 

9).  A mild form of the extra dorsal projection phenotype was observed in controls at a 

low frequency.  However, knockdown of several SWI/SNF genes caused a very severe 

and highly penetrant extra dorsal projection phenotype that was consistent between two 

RNAi lines for the same gene.  This suggests that the moderate and severe forms of the 

extra dorsal projection phenotype are likely the result of SWI/SNF knockdown.  

Knockdown of Bap60 resulted in a very strong and highly penetrant form of the extra 

dorsal projection phenotype using two different RNAi lines (UAS-Bap6032503; P= 0.0021, 
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UAS-Bap6033954; P= 0.0007).  Knockdown of Act5C using two independent RNAi 

constructs also resulted in the appearance of extra dorsal projections adjacent to the α 

lobe.  However, a significant phenotype was only observed for one of the two RNAi lines 

tested, with the other approaching significance (UAS-Act5C101438; P= 0.0007; UAS-

Act5C42651; P= 0.0560).  A significant increase in the frequency of the extra dorsal 

projection phenotype was also observed for one of two RNAi lines targeting Snr1 (UAS-

Snr132372; P= 0.0196).  Besides the core subunits, a significant increase in the frequency 

of the extra dorsal projection phenotype was observed following knockdown of three 

additional genes.  A strong phenotype was observed following knockdown of CG9650 

and CG7154 using a single RNAi construct (UAS-CG965040852; P= 0.0002, UAS-

CG7154107992 ; P= 0.0007), while knockdown of the PBAP-specific gene e(y)3 resulted in 

the appearance of a very severe and highly penetrant form of the extra dorsal projection 

phenotype (UAS-e(y)332346; P= 0.0042, UAS-e(y)3105946; P= 0.0007) that was consistent 

using two independent RNAi stocks.  Conversely, no phenotype was observed following 

knockdown of the BAP-specific gene, osa.  Knockdown of Act5C, Bap60 and Snr1 using 

a single RNAi construct also resulted in the formation of stunted γ-lobes in nearly all 

brains examined (Figure 10).  In comparison to the appropriate genetic background 

controls, a significant increase in the frequency of the stunted γ-lobe phenotype was 

observed following knockdown of Act5C using two independent RNAi constructs (UAS-

Act5C42651, UAS-Act5C101438; P= 0.0007).  A significant increase in the frequency of the 

stunted γ-lobe phenotype was also observed for knockdown of UAS-Bap6033954 (P= 

0.0007) and UAS-Snr132372 (P= 0.0007), whereas no significant phenotype was observed 

for UAS-Bap6032503 or UAS-Snr112644.  The discrepancy between the two Snr1 RNAi lines 

could be explained by the results of the lethality assay.  We observed a 53% survival rate 

for UAS-Snr112644, compared to 4% for UAS-Snr132372 (Table 3), suggesting that UAS-

Snr112644 may induce a weaker gene knockdown.  Overall, these findings suggest that the 

SWI/SNF complex is required for axon morphogenesis in the Drosophila MB.  

Furthermore, the presence of a strong and consistent phenotype between two RNAi lines 

for knockdown of e(y)3 suggests that the PBAP form of the Drosophila SWI/SNF 

complex may play a key role in the molecular mechanisms underlying the observed 

phenotypes.  
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Figure 7. Missing α and β lobes were observed at a low penetrance in both 

knockdowns and controls. 

Confocal projections show (A) normal MB morphology, (B) the missing α-lobe 

phenotype and (C) the missing β-lobe phenotype.  (D) Bar plots indicate the total 

percentage of brains exhibiting the missing α-lobe phenotype (above x-axis) and 

missing β-lobe phenotype (below x-axis).  The total number of flies analyzed for each 

genotype is indicated below the bar graph in the row labelled “n”. 
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Figure 8. The appearance of β-lobe fibers crossing the midline was observed at a 

variable penetrance in both knockdowns and controls. 

The β-lobe crossing phenotype was qualitatively classified into four categories to 

account for the observed variation in phenotype severity.  Confocal projections show 

(A) normal MB morphology, in addition to the (B) mild, (C) moderate and (D) severe 

forms of the β-lobe crossing phenotype.  (E) Bar plot shows the total percentage of 

brains exhibiting normal MB morphology (white), in addition to the mild (light gray), 

moderate (dark gray) and severe (black) forms of the β-lobe crossing phenotype.  The 

total number of flies analyzed for each genotype is indicated below the bar graph in the 

row labelled “n”.  The Fisher’s exact test (two-tailed) was used to compare the 

proportion of MBs exhibiting abnormal morphology (sum of mild, moderate and severe 

proportions) to the proportion exhibiting normal morphology between each knockdown 

and the appropriate control (Bonferroni-Dunn test for multiple comparisons).  Asterisks 

indicate significance (* P≤0.05). 
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Figure 9. MB-specific knockdown of the SWI/SNF subunits resulted in the 

formation of extra dorsal projections adjacent to the α-lobe. 

The extra dorsal projection phenotype was qualitatively classified into four categories 

to account for the observed variation in phenotype severity.  Confocal projections 

show (A) normal MB morphology, in addition to the (B) mild, (C) moderate and (D) 

severe forms of the extra dorsal projection phenotype.  (E) Bar plot shows the total 

percentage of brains exhibiting normal MB morphology (white), in addition to the 

mild (light gray), moderate (dark gray) and severe (black) forms of the extra dorsal 

projection phenotype.  The total number of flies analyzed for each genotype is 

indicated below the bar graph in the row labelled “n”.  The Fisher’s exact test (two-

tailed) was used to compare the proportion of MBs exhibiting abnormal morphology 

(sum of mild, moderate and severe proportions) to the proportion exhibiting normal 

morphology between each knockdown and the appropriate control (Bonferroni-Dunn 

test for multiple comparisons). Asterisks indicate significance (* P≤0.05, ** P≤0.01, 

*** P≤0.001).   
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Figure 10. MB-specific knockdown of the SWI/SNF subunits resulted in the 

appearance of stunted γ-lobes. 

The stunted γ-lobe phenotype was qualitatively classified into four categories to account 

for the observed variation in phenotype severity.  Confocal projections show (A) normal 

MB morphology, in addition to the (B) mild, (C) moderate and (D) severe forms of the 

stunted γ-lobe phenotype.  (E) Bar plot shows the total percentage of brains exhibiting 

normal MB morphology (white), in addition to the mild (light gray), moderate (dark 

gray) and severe (black) forms of the stunted γ-lobe phenotype.  The total number of 

flies analyzed for each genotype is indicated below the bar graph in the row labelled 

“n”.  The Fisher’s exact test (two-tailed) was used to compare the proportion of MBs 

exhibiting abnormal morphology (sum of mild, moderate and severe proportions) to the 

proportion exhibiting normal morphology between each knockdown and the appropriate 

control (Bonferroni-Dunn test for multiple comparisons).  Asterisks indicate 

significance (*** P ≤ 0.001). 
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3.2.1 The appearance of extra dorsal projections likely results 
from defects in γ-neuron remodelling 

Knockdown of several SWI/SNF subunits resulted in the appearance of extra 

dorsal projections adjacent to the MB α-lobe.  Several studies have reported the 

appearance of a similar phenotype arising from defects in γ pruning, raising the 

possibility that the extra dorsal projection phenotype observed in this study may be the 

result of defective γ-neuron remodelling (Boulanger et al., 2011; Lai et al., 2016).  To 

investigate this possibility, knockdown was induced using MB607B-GAL4.  Expression 

studies have revealed that the MB607B driver expresses GAL4 in approximately 75 cells 

located within the main MB calyx and the dorsal portion of the MB γ-lobe (Aso et al., 

2014).  MB607B-GAL4 induced knockdown of Bap60, Snr1 and e(y)3 resulted in the 

appearance of MB γ neurons projecting their axons into the dorsal direction of the adult 

brain (Figure 11).  This finding indicates that the extra dorsal projection phenotype is due 

to improper development of the MB γ neurons, ruling out a possible defect in axon 

guidance of the MB α/β neurons.  Overall, these results demonstrate that knockdown of 

Bap60, Snr1 and the PBAP-specific gene e(y)3 caused defects in either the axon pruning 

of the larval specific MB γ neurons or the inappropriate re-extension of the adult specific 

MB γ neurons.  
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Figure 11. Knockdown of e(y)3, Bap60 and Snr1 using MB607B-GAL4 revealed defects in 

γ-neuron remodelling. 

The MB607B-GAL4 driver was used to induce RNAi knockdown in the MB γ neurons.  

MB607B-GAL4 was also used to drive the expression of UAS-mCD8::GFP for visualization 

of the adult specific MB γ neurons.  Confocal projections show the axonal projection patterns 

of the MB γ neurons in A) control, B) UAS-e(y)332346, C) UAS-Bap6032503 and D) UAS-

Snr132372 genotypes. A) Dorsally projecting γ neurons were not observed in the mCherry 

RNAi hairpin control. (B-D) Knockdown of UAS-e(y)332346, UAS-Bap6032503and UAS-

Snr132372 resulted in the appearance of dorsally projecting γ neurons. 
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3.3 MB-specific knockdown of the SWI/SNF components 
resulted in the appearance of faint γ-lobes 

R14H06-GAL4 is specifically expressed in the α, β and γ neurons of the 

Drosophila MB (Jenett et al., 2012).  In controls, GFP expression is strongest within the 

γ-lobe and weakest within the α/β lobes (Refer to Figure 12A).  Several SWI/SNF 

knockdown genotypes showed the appearance of faint γ-lobes that were otherwise 

morphologically normal (Refer to Figure 12B).  This observation suggests that 

knockdown of certain SWI/SNF components may result in either loss of the MB γ 

neurons, or an increase in the number of α/β neurons.  In order to quantitatively assess the 

relative γ-lobe intensity across genotypes, pixel intensity sampling was performed at 

various different locations within the γ and α-lobes of the MB (Refer to Figure 6).  The 

ratio of the signal intensity of the MB γ-lobe to that of the α-lobe was calculated for each 

genotype and compared to the mCherry control. 

On average, the fluorescent signal within the γ-lobe of the controls is more than 2 

fold greater than that of the α-lobe (Refer to Figure 12C, control).  Due to the severe 

stunted γ-lobe phenotype observed following knockdown of Act5C, the γ-lobes could not 

be quantified.  Furthermore, signal intensity could not be quantified for knockdown of 

Bap6033954 due to the severely stunted γ-lobe phenotype mentioned above.  However, 

images were quantified for all other RNAi knockdown genotypes.  For the core SWI/SNF 

components, a significant decrease in the relative signal intensity of the γ-lobe was 

observed following knockdown of brm (UAS-brm37720; P= 0.0052, UAS-brm31712; P= 

0.0001) and Bap111 (UAS-Bap11126218, UAS-Bap11135242; P= 0.0001) using two 

independent RNAi lines.  Knockdown of UAS-Bap6032503 (P= 0.0001), UAS-Snr132372 

(P= 0.0041) and UAS-mor110712 (P= 0.0001) using a single RNAi construct also resulted 

in a significant reduction in relative γ-lobe intensity.  No significant difference was 

observed following knockdown of Bap55, but this could only be tested using a single 

RNAi line.  A significant reduction in relative γ-lobe intensity was also observed upon 

knockdown of the human ortholog CG9650 using two out of three RNAi lines tested.  

However, no phenotype was observed for any of the other human orthologs.  Notably, a 

very strong and consistent phenotype was observed following knockdown of the BAP-

specific gene osa using two independent RNAi lines (UAS-osa7810, UAS-osa38285; P= 
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0.0001).  Conversely, knockdown of the PBAP-specific genes caused a significant 

reduction in relative signal intensity for UAS-Bap17026308 (P= 0.0001), UAS-

polybromo32840 (P= 0.0001) and UAS-e(y)32346 (P= 0.0235) using one of two RNAi lines 

tested.  Due to the fact that knockdown of the BAP-specific gene resulted in the strongest 

and most consistent phenotype,  data suggests that the γ fade phenotype may be due to 

loss of the BAP complex.  
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Figure 12. MB-specific knockdown of the SWI/SNF subunits caused a reduction 

in relative γ-lobe intensity. 

R14H06-GAL4 is expressed in the adult α, β and γ neurons of the Drosophila MB.  (A) 

R14H06-driven GFP expression is strongest in the γ-lobe of controls. (B) Confocal 

projection showing an example of the γ fade phenotype.  (C) Box plot displays the 

distribution of relative signal intensity values for SWI/SNF knockdowns and the 

mCherry RNAi hairpin control.  The total number of flies analyzed for each genotype 

is indicated below the bar graph in the row labelled “n”.  Differences between 

knockdowns and the mCherry control were conducted using one way ANOVA with 

the Dunnet test for selected multiple comparisons (n=25).  Asterisks indicate 

significance (* P≤0.05, ** P≤0.01, *** P≤0.001, **** P≤0.0001). 

γ Fade
50 μm 50 μm
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Chapter 4 

4 DISCUSSION 
In this study, I have analyzed the role of the SWI/SNF chromatin remodelling 

complex in the axon development of the Drosophila MB.  The results of this study have 

revealed two distinct phenotypes resulting from loss of SWI/SNF function.  In particular, 

defects in γ-neuron remodelling were observed following MB-specific knockdown of 

Bap60, Snr1 and e(y)3, while a reduction in the relative signal intensity of the γ-lobe was 

observed following knockdown of several other SWI/SNF components.  Knockdown of 

the PBAP-specific gene, e(y)3, caused the strongest and most consistent defect in γ-

neuron remodelling amongst all of the genes analyzed in this study.  In contrast, 

knockdown of the BAP-specific gene, osa, resulted in the strongest reduction in relative 

signal intensity among the 15 SWI/SNF genes.  These findings suggest that the PBAP 

form of the Drosophila SWI/SNF complex may be required for γ-neuron remodelling, 

whereas the BAP form of the complex may play a more important role in the mechanisms 

underlying the observed reduction in γ-lobe intensity.  

4.1 The Drosophila SWI/SNF complex is required for the 
remodelling of the MB γ neurons 

During metamorphosis in Drosophila, the MB γ neurons undergo extensive 

remodelling as the nervous system transitions from its larval to adult form.  Prior to 

puparium formation, the γ neurons direct their axons into both the dorsal and medial 

directions (Lee et al., 1999).  Approximately 6 hours after the onset of puparium 

formation, axon fragmentation begins to reduce the axonal projections of the MB γ 

neurons back to the peduncle (Hakim et al., 2014).  Following the completion of axon 

pruning at approximately 18 hours APF, the γ neurons initiate re-extension of their axons 

into the medial lobe at 24 hours APF (Hakim et al., 2014).   

In this project, I have demonstrated that the appearance of extra dorsal projections 

following knockdown of e(y)3, Bap60 and Snr1 is likely the result of defects in γ 

remodelling (Figure 11).  However, the exact cause of the remodelling defect is unclear.  

Several studies have shown that defects in axon pruning during Drosophila 
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metamorphosis result in the appearance of extra dorsal projections adjacent to the α-lobe 

(Boulanger et al., 2011; Lai et al., 2016).  It is also possible that the remodelling defects 

observed in this study may have resulted from inappropriate axon re-extension of the 

adult specific MB γ neurons.  In order to differentiate between these two possibilities, 

future studies using the MB607B-GAL4 driver should assess MB morphology at the 

larval, pupal and adult stages of development.  An axon pruning defect could then be 

confirmed by examining MB morphology at 18 and 24 hours APF, when pruning is 

complete.  Conversely, the absence of pruning defects at this time point would indicate 

that the remodelling defect observed in this study was the result of improper axon re-

extension.  Future studies should investigate these possibilities in order to gain a further 

understanding of the mechanisms underlying the observed defects in neuronal 

remodelling.  

4.2 Regulation of γ-neuron remodelling by the PBAP form 
of the SWI/SNF complex 

The Drosophila SWI/SNF complex is known to exist in two different forms, each 

characterized by the presence of a specific set of accessory subunits.  The BAP complex 

is defined by the presence of the BAP-specific subunit Osa, whereas the PBAP complex 

is characterized by the presence of the PBAP-specific subunits, Polybromo, Bap170 and 

E(y)3 (Mohrmann et al., 2004).  In this study, MB-specific knockdown of e(y)3 resulted 

in the appearance of severe defects in γ-neuron remodelling.  Conversely, the BAP-

specific subunit, Osa, appeared to be unaffected.  These findings suggest that the PBAP 

form of the Drosophila SWI/SNF complex may play a more important role in the 

transcriptional regulation required for remodelling of the MB γ neurons.  

Several previous studies have shown that γ-neuron remodelling is dependent on 

ecdysone signalling (Lee et al., 2000; Schubiger et al., 1998).  The EcR-B1 isoform is 

specifically expressed in the γ neurons of the larval MB, and its expression has been 

shown to be required for the remodelling of the γ neurons during metamorphosis (Lee et 

al., 2000).  Several lines of evidence suggest that the defects in γ-neuron remodelling 

observed in this study may be caused by defects in ecdysone signalling.  First, 

transcriptome analysis revealed that mutations in Snr1 result in overexpression of the late 
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expressed ecdysone inducible genes (Zraly et al., 2006).  Second, the e(y)3 encoded 

protein, formerly known as SAYP, was shown to interact with the DHR3 nuclear receptor 

to activate gene transcription during the embryonic and pupal stages of development 

(Vorobyeva et al., 2011).  The expression of the DHR3 receptor is directly activated by a 

pulse of ecdysone at the onset of metamorphosis (Lam et al., 1997), and its activation has 

been suggested to play a key role in the regulation of several ecdysone response genes 

(Carney et al., 1997).  Following the ecdysone-induced activation of DHR3, ChIP 

experiments revealed that DHR3 and SAYP cooperatively bind to the promoters of 

several SAYP-dependent genes to activate their expression (Vorobyeva et al., 2011).  

One well characterized DHR3 target gene is the Ftz-f1 transcription factor which is 

required for the induction of EcR-B1 expression at the onset of metamorphosis (Lam et 

al., 1997).  A study investigating the role of SAYP in ftz-f1 transcription found that 

SAYP is required for the temporal regulation of ftz-f1 activation throughout 

metamorphosis (Vorobyeva et al., 2012).  Accordingly, loss of ftz-f1 has been shown to 

cause remodelling defects in the Drosophila MB (Boulanger et al., 2011; Lam et al., 

1997).  Taken together, it is possible that the PBAP-specific subunit, E(y)3, may be 

required for γ-neuron remodelling through the regulation of ftz-f1 transcription in 

cooperation with DHR3 (Figure 13).  The DHR3 receptor is known to play a key role in 

Drosophila metamorphosis, yet its role in neuronal remodelling has yet to be determined.  

It would be interesting to see if RNAi-mediated knockdown of the DHR3 receptor causes 

defects in neuronal remodelling, similar to that of e(y)3, ftz-f1 and EcR-B1 (Boulanger et 

al., 2011; Lee et al., 2000).  Overall, these findings suggest that the PBAP complex may 

interact with the ecdysone signalling pathway to induce γ neuronal remodelling.  
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Figure 13. Model of ftz-f1 gene activation mediated by the interaction 

between DHR3 and SAYP. 

During metamorphasis, the insect molting hormone, 20-hydroxyecdysone, binds 

to the EcR-B1/USP receptor to initiate ecdysone signalling.  Upon ecdysone 

induced activation, DHR3 binds to the promoter of the ftz-f1 gene and recruits 

the SAYP transcriptional co-activator.  The interaction of SAYP and DHR3 

initiates the transcriptional activation of ftz-f1, resulting in production of the Ftz-

f1 protein.  Activation of Ftz-F1 leads to the repression of the Hr39 nuclear 

receptor and upregulation of the EcR-B1 isoform.  Highlighted proteins have 

been shown to be implicated in γ-neuron remodelling as a result of loss of 

function (orange) or gain of function (green) mutations (Boulanger et al., 2011; 

Lee et al., 2000). 

ftz-f1

DHR3

SAYP

20 hydroxyecdysone

EcR-B1 USP

Ftz-f1 Hr39
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4.3 Regulation of mushroom body development by the BAP 
form of the SWI/SNF complex 

The R14H06 driver is most strongly expressed in the γ-lobe, represented by an 

approximate threefold increase in GFP signal intensity compared that that of the α-lobe 

(Refer to Figure 12C, control).  MB-specific knockdown of several SWI/SNF 

components caused a relative decrease in signal intensity of the γ-lobe in comparison to 

the α-lobe, such that the α-lobe appears brighter than the γ-lobe.  It is possible that the 

reduction in relative signal intensity may have resulted from loss of the MB γ neurons, or 

alternatively, an increase in the number of α/β neurons.  

SWI/SNF knockdown may have resulted in decreased cell viability of the MB γ 

neurons and the initiation of cell death, ultimately leading to loss of the MB γ neurons.  A 

previous study in Drosophila found that null mutations in brm result in decreased cell 

viability and cause defects in peripheral nervous system development (Elfring et al., 

1998).  In line with these findings, I observed a significant reduction in relative signal 

intensity of the γ-lobe following knockdown of brm using two independent RNAi lines.  

Future studies should investigate this possibility by immunostaining for the active form 

of caspase-9, an active marker of apoptosis (McIlwain et al., 2013).  In addition, it is also 

possible that the observed decrease in relative signal intensity may have resulted from 

defects in axon guidance or re-extension.  I have demonstrated that knockdown of several 

SWI/SNF components resulted in defects in axon morphogenesis and γ-neuron 

remodelling.  The remodelling of the MB γ neurons involves degeneration of the larval 

specific axons, followed by re-extension of the adult specific axonal projections.  Loss of 

SWI/SNF function in the MB may have caused defects in axon re-extension, such that a 

proportion of the MB γ neurons failed to re-extend their axons past the peduncle.  As a 

result, a reduced number of γ neurons would be present in the MB γ lobe of the adult.  

Notably, the results of my study found that knockdown of several SWI/SNF components 

resulted in the appearance of small and stunted γ-lobes.  Due to the severity of the stunted 

γ-lobe phenotype observed following knockdown of Act5C42651, Act5C101438 and 

Snr133954, I was unable to quantitatively measure the relative signal intensity of the γ-lobe 

for these genotypes.  However, knockdown of several other genes resulted in both the 

appearance of stunted γ-lobes and a decrease in the relative signal intensity of the γ-lobe.  
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These findings suggest that the stunted γ-lobe phenotype observed in this study may 

represent a more severe phenotype arising from loss of the MB γ neurons.   

An alternative explanation for the reduction in relative signal intensity of the γ-

lobe is that SWI/SNF knockdown caused an increase in the number of α/β neurons.  MB 

development involves the sequential generation of three different types of neurons, each 

of which arise from the division of a single neuroblast cell (Lee et al., 1999).  It is 

possible that the sequential generation of the MB neurons may be maintained by changes 

in gene expression mediated by the SWI/SNF complex.  Therefore, it is possible that 

SWI/SNF knockdown may have resulted in dysregulation of the signaling pathways 

required for maintaining cell fate throughout MB morphogenesis.  As a result, 

knockdown may have induced trans-differentiation in the post-mitotic neurons of the 

MB, such that the γ neurons undergo a change in cell fate to become α/β neurons.  

In this study, MB-specific knockdown of osa caused a very strong and consistent 

decrease in the relative signal intensity of the MB γ-lobe.  The results of a previous study 

demonstrated that the BAP-specific subunit Osa modulates the function of the BAP 

complex via interactions with Brm and Snr1 (Collins et al., 1999), both of which resulted 

in a significant reduction in relative signal intensity of the γ lobe following knockdown.  

The BAP form of the SWI/SNF complex has been shown to be involved in the regulation 

of cell cycle control.  However, the role of this complex in post-mitotic neurons is less 

clear (Moshkin et al., 2007).  It is possible that the BAP complex plays a widespread role 

in cellular viability and the maintenance of cellular identity.  To better understand the 

role of the BAP complex in post-mitotic neural development, future studies should be 

performed that specifically target the BAP-specific subunit, Osa. 

4.4 Research limitations 
RNAi is an effective method for studying gene function in Drosophila.  However, 

RNAi technology is limited by the potential for insufficient knockdown and off-target 

effects.  As an estimate of knockdown efficiency, I used a lethality assay to measure 

percent survival following ubiquitous RNAi knockdown.  The results of the lethality 

assay revealed five RNAi lines which showed no significant reduction in percent survival 

as compared to expected values.  As a result, those RNAi lines were deemed ineffective 
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and eliminated from the study.  However, the lethality assay does not provide any 

information regarding the overall expression level of the protein following knockdown.  

Therefore, it is possible that ubiquitous knockdown may have resulted in lethality due to 

false positives that arise from off target effects.  To better quantify RNAi-mediated 

knockdown efficiency in these lines, future studies should validate the RNAi lines used in 

this study via qPCR and immunohistochemical analyses. 

To control for potential off-target effects, I aimed to knockdown each SWI/SNF 

component using a minimum of two RNAi lines that target different regions of the 

endogenous mRNA.  In doing so, consistent results between multiple RNAi lines would 

act as a key method of validation for any phenotypes observed following gene 

knockdown.  However, I was only able to test one RNAi line for knockdown of Bap55, 

BCL7-like and CG10555.  Therefore, it is difficult to make any strong conclusions about 

the results obtained from knockdown of these genes.  Although the remaining SWI/SNF 

components were knocked down using multiple RNAi lines, some inconsistencies were 

observed between two RNAi lines for the same gene.  However, overall, consistent 

results were observed between two RNAi lines targeting the same gene in 85% of the 

comparisons made in this thesis.  Most of the inconsistencies came from the gamma fade 

analysis, which showed inconsistent results between RNAi lines at a rate of 50% (Section 

3.3).  In contrast, the analyses aimed at identifying gross defects in MB morphology 

resulted in an overall consistency rate of 92% (Section 3.2).  As a result, the data 

obtained from the gamma fade analysis will require additional validation before strong 

conclusions can be made.  Despite the limitations associated with RNAi, my results 

generally demonstrate a high rate of consistency in identifying developmental phenotypes 

in the Drosophila MB.  

4.5 Conclusions, research implications and future directions 
In this study, I have identified a number of phenotypes resulting from the loss of 

SWI/SNF function in the Drosophila MB.  These results demonstrate that the SWI/SNF 

complex is required for axon morphogenesis in Drosophila, providing novel insight into 

the role of this epigenetic regulatory complex in the nervous system.  Furthermore, the 

results of this study suggest that the BAP and PBAP forms of the Drosophila SWI/SNF 
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complex may play distinct roles in Drosophila neural development.  However, the 

mechanisms through which the SWI/SNF complex regulates axon morphogenesis in the 

Drosophila MB have yet to be discovered.  To better understand the molecular role of the 

SWI/SNF complex in neurodevelopment, future studies should aim to identify the neuron 

specific target genes affected by MB-specific knockdown of the SWI/SNF components.  

The SWI/SNF complex is highly conserved between humans and Drosophila 

(Son & Crabtree, 2014).  This suggests that the results attained in my study may provide 

evidence towards a potential role for the SWI/SNF complex in the human brain.  

Previous studies have identified a common role for the SWI/SNF complex in both 

Drosophila and mammalian neurons (Lessard et al., 2007; Wu et al., 2007).  In this 

project, I have identified defects in neuronal remodelling following knockdown of e(y)3, 

Bap60 and Snr1 in the Drosophila MB.  Notably, the mammalian ortholog of e(y)3 has 

been shown to be required for the transition of neural progenitors to post-mitotic neurons 

(Lessard et al., 2007).  In addition, mutations in the human orthologs of Bap60 and Snr1 

have been implicated in ID (SMARCB1, SMARCD1) (Santen et al., 2013; Tsurusaki et al., 

2012; Wieczorek et al., 2013).  Future studies in Drosophila should aim to uncover the 

cellular and molecular mechanisms underlying SWI/SNF induced defects in axon 

development.  Over the long term, this may enable hypothesis driven research using 

patient derived induced pluripotent stem cell models for ID.  Ultimately, a greater 

understanding of the molecular mechanisms underlying ID will provide the first step 

towards the development of therapies. 
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6 APPENDICES 
Appendix A: Fly stocks used in this M.Sc. thesis. 

Driver Lines and Controls 
Stock # Genotype Source Description 
48667 w1118; P{GMR14H06-GAL4}attP2 BDSC R14H06-GAL4: Expresses GAL4 at or near 

rutabaga (FGgn0003301)  
5137 y1w*; P{UAS-mCD8::GFP.L}LL5, P{UAS-

mCD8::GFP.L}2 
BDSC UAS-GFP: Expresses GFP under UAS control  

5130 y1 w*; PinYt/CyO; P{UAS-mCD8::GFP.L}LL6 BDSC UAS-GFP: Expresses GFP under UAS control 
24650 w1118; P{UAS-Dcr-2.D}2 BDSC UAS-Dicer-2: Expresses Dicer-2 under UAS 

control 
25374 y1 w*; P{Act5C-GAL4-w}E1/CyO BDSC Act5c-GAL4: Expresses GAL4 ubiquitously under 

control of the Act5C promoter 
MB607B {R19B03-p65ADZp}attP40; R39A11-

39A11_ZpGAL4DBD} attP2 
Janelia Fly Light Split-GAL4: Expresses GAL4 specifically in 75 

neurons within the dorsal portion of the MB γ lobe 
Control Stocks 
35785 y1sc*v1; P{VALIUM20-mCherry}attP2 BDSC mCherry-RNAi: RNA hairpin targeting mCherry 
36303 y1 v1; P{CaryP}attP2 BDSC attP2 genetic background control 
36304 y1 v1; P{CaryP}attP40 BDSC attP40 genetic background control 
60 000 w1118 BDSC Isogenic host strain for the GD genetic library 
60 100 y,w1118;P{attP,y[ +],w[3`]} BDSC Isogenic host strain for the KK genetic library 
Inducible RNAi Stocks 
Stock # Genotype Source Description 
42651 y1 sc* v1; P{TRiP.HMS02487}attP2 BDSC UAS-RNAi against Act5C 
101438 P{KK109161}VIE-260B VDRC UAS-RNAi against Act5C 
26308 y1 v1; P{TRiP.JF02080}attP2 BDSC UAS-RNAi against Bap170  
34582 w1118; P{GD10922}v34582/TM3 VDRC UAS-RNAi against Bap170 
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24703 w1118; P{GD11955}v24703/CyO VDRC UAS-RNAi against Bap55  
31708 y1 v1; P{TRiP.HM04015}attP2/TM3, Sb1 BDSC UAS-RNAi against Bap55 
32503 y1 sc* v1; P{TRiP.HMS00507}attP2 BDSC UAS-RNAi against Bap60 
33954 y1 sc* v1; P{TRiP.HMS00909}attP2 BDSC UAS-RNAi against Bap60  
35714 y1 sc* v1; P{TRiP.GLV21079}attP2 BDSC UAS-RNAi against BCL7-like  
20410 w1118; P{GD9322}v20410 VDRC UAS-RNAi against BCL7-like  
37720 w1118; P{GD4507}v37720 VDRC UAS-RNAi against brm 
34520 y1 sc* v1; P{TRiP.HMS00050}attP2 BDSC UAS-RNAi against brm 
31712 y1 v1; P{TRiP.HM04019}attP2 BDSC UAS-RNAi against brm 
50606 y1 sc* v1; P{TRiP.HMC02408}attP2 BDSC UAS-RNAi against CG10555  
105802 P{KK111183}VIE-260B VDRC UAS-RNAi against CG10555 
37670 w1118; P{GD4426}v37670 VDRC UAS-RNAi against CG7154  
107992 P{KK100498}VIE-260B VDRC UAS-RNAi against CG7154 
23170 w1118; P{GD13222}v23170 VDRC UAS-RNAi against CG9650  
40852 y1 v1; P{TRiP.HMS02019}attP40 BDSC  UAS-RNAi against CG9650  
104402 P{KK108364}VIE-260B VDRC UAS-RNAi against CG9650 
26218 y1 v1; P{TRiP.JF02116}attP2 BDSC UAS-RNAi against Bap111  
35242 y1 sc* v1; P{TRiP.GL00129}attP2 BDSC UAS-RNAi against Bap111  
32346 y1 sc* v1; P{TRiP.HMS00337}attP2 BDSC UAS-RNAi against e(y)3  
105946 P{KK112108}VIE-260B VDRC UAS-RNAi against e(y)3  
110712 P{KK102003}VIE-260B VDRC UAS-RNAi against mor 
6969 w1118; P{GD1257}v6969 VDRC UAS-RNAi against mor 
38285 y1 sc* v1; P{TRiP.HMS01738}attP40 BDSC UAS-RNAi against osa 
7810 w1118; P{GD1502}v7810 VDRC UAS-RNAi against osa 
32840 y1 sc* v1; P{TRiP.HMS00531}attP2 BDSC UAS-RNAi against polybromo 
108618 P{KK101808}VIE-260B VDRC UAS-RNAi against polybromo 
32372 y1 sc* v1; P{TRiP.HMS00363}attP2 BDSC UAS-RNAi against Snr1  
12644 w1118; P{GD4140}v12644 VDRC UAS-RNAi against Snr1 
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Appendix B: Genetic background controls for the RNAi lines used in this study. 

Gene Stock # Source Insertion Site Control 
CG9650 40852 VALIUM20 Chromosome 2 attP40 (36304) 
osa 38285 VALIUM20 Chromosome 2 attP40 (36304) 
Bap170 34582 GD Chromosome 3 GD (60 000) 
Bap55 24703 GD Chromosome 2 GD (60 000) 
BCL7-like 20410 GD Chromosome 3 GD (60 000) 
brm 37720 GD Chromosome 3 GD (60 000) 
CG7154 37670 GD Chromosome 2 GD (60 000) 
CG9650 23170 GD Chromosome 2 GD (60 000) 
mor 6969 GD Chromosome 3 GD (60 000) 
osa 7810 GD Chromosome 3 GD (60 000) 
Snr1 12644 GD Chromosome 2 GD (60 000) 
Act5C 101438 KK Chromosome 2 KK (60 100) 
CG10555 105802 KK Chromosome 2 KK (60 100) 
CG7154 107992 KK Chromosome 2 KK (60 100) 
CG9650 104402 KK Chromosome 2 KK (60 100) 
mor 110712 KK Chromosome 2 KK (60 100) 
e(y)3 105946 KK Chromosome 2 KK (60 100) 
polybromo 108618 KK Chromosome 2 KK (60 100) 
Snr1 32372 VALIUM20 Chromosome 3 mCherry (35785) 
polybromo 32840 VALIUM20 Chromosome 3 mCherry (35785) 
e(y)3 32346 VALIUM20 Chromosome 3 mCherry (35785) 
Bap60 33954 VALIUM20 Chromosome 3 mCherry (35785) 
Bap60 32503 VALIUM20 Chromosome 3 mCherry (35785) 
Act5C 42651 VALIUM20 Chromosome 3 mCherry (35785) 
brm 34520 VALIUM20 Chromosome 3 mCherry (35785) 
Bap111 35242 VALIUM22 Chromosome 3 mCherry (35785) 
CG10555 50606 VALIUM20 Chromosome 3 mCherry (35785) 
BCL7-like 35714 VALIUM21 Chromosome 3 mCherry (35785) 
Bap111 26218 VALIUM10 Chromosome 3 UAS-Dcr-2, mCherry, (35785) 
Bap55 31708 VALIUM1 Chromosome 3 UAS-Dcr-2, mCherry, (35785) 
brm 31712 VALIUM1 Chromosome 3 UAS-Dcr-2, mCherry, (35785) 
Bap170 26308 VALIUM10 Chromosome 3 UAS-Dcr-2, mCherry, (35785) 
  

SWI/SNF knockdowns were compared to their appropriate genetic background control 

using a two-tailed Fishers exact test.  
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Appendix C: Analysis of gross mushroom body morphology following SWI/SNF knockdown. 

Gene Stock # Brain 
# 

Missing 
α (%) 

Missing 
β (%) 

Β-lobe crossover 
(%) 

Extra dorsal 
projections (%) 

Stunted γ-lobes 
(%) 

Controls 36303 12 0 0 Normal 75 Normal 91.67 Normal 100 
Mild 8.33 Mild 8.33 Mild 0 
Moderate 16.67 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

Dcr-2, 
36303 

 

6 0 0 Normal 83.33 Normal 100 Normal 100 
Mild 16.67 Mild 0 Mild 0 
Moderate 0 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

35785 17 0 5.88 Normal 88.24 Normal 58.82 Normal 100 
Mild 11.76 Mild  41.18 Mild 0 
Moderate 0 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

Dcr-2, 
35785 

 

7 0 0 Normal 100 Normal 71.43 Normal 100 
Mild 0 Mild  28.57 Mild 0 
Moderate 0 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

36304 21 0 0 Normal 80.95 Normal 85.71 Normal 100 
Mild 9.52 Mild  14.29 Mild 0 
Moderate 9.52 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

60 000 23 0 0 Normal 95.65 Normal 100 Normal 100 
Mild 4.35 Mild  0 Mild 0 
Moderate 0 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

60 100 25 8 0 Normal 88 Normal 100 Normal 100 
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Mild 4 Mild  0 Mild 0 
Moderate 8 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

brm 37720 10 0 0 Normal 60 Normal 100 Normal 100 
Mild 10 Mild  0 Mild 0 
Moderate 30 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

31712 10 0 0 Normal 80 Normal 100 Normal 100 
Mild 10 Mild  0 Mild 0 
Moderate 10 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

Bap60 32503 16 0 6.25 Normal 93.75 Normal 0 Normal 68.7
5 

Mild 0 Mild  18.75 Mild 31.2
5 

Moderate 6.25 Moderate 56.25 Moderate 0 
Severe 0 Severe 25 Severe 0 

33954 20 0 0 Normal 35 Normal 0 Normal 0 
Mild 25 Mild  0 Mild 5 
Moderate 30 Moderate 40 Moderate 40 
Severe 10 Severe 60 Severe 55 

Act5C 42651 12 8.33 0 Normal 91.67 Normal 8.33 Normal 0 
Mild 0 Mild  66.67 Mild 50 
Moderate 8.33 Moderate 8.33 Moderate 25 
Severe 0 Severe 16.67 Severe 25 

101438 20 0 0 Normal 95 Normal 0 Normal 0 
Mild 0 Mild  10 Mild 20 
Moderate 5 Moderate 20 Moderate 65 
Severe 0 Severe 70 Severe 15 

Snr1 32372 15 0 0 Normal 93.33 Normal 6.67 Normal 6.67 



 

 

69
 

Mild 6.67 Mild  13.33 Mild 13.3
3 

Moderate 0 Moderate 66.67 Moderate 66.6
7 

Severe 0 Severe 13.33 Severe 13.3
3 

12644 14 0 7.14 Normal 85.71 Normal 100 Normal 100 
Mild 0 Mild  0 Mild 0 
Moderate 14.29 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

mor 6969 7 0 0 Normal 71.43 Normal 100 Normal 100 
Mild 14.29 Mild  0 Mild 0 
Moderate 14.29 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

110712 19 0 0 Normal 84.21 Normal 100 Normal 100 
Mild 15.79 Mild  0 Mild 0 
Moderate 0 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

Bap55 24703 18 0 5.56 Normal 94.44 Normal 83.33 Normal 100 
Mild 0 Mild  11.11 Mild 0 
Moderate 5.56 Moderate 5.56 Moderate 0 
Severe 0 Severe 0 Severe 0 

Bap111 26218 21 4.76 0 Normal 85.71 Normal 100 Normal 95.2
4 

Mild 9.52 Mild  0 Mild 4.76 
Moderate 4.76 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

35242 11 0 0 Normal 81.82 Normal 100 Normal 100 
Mild 9.09 Mild  0 Mild 0 
Moderate 9.09 Moderate 0 Moderate 0 
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Severe 0 Severe 0 Severe 0 
CG9650 40852 25 0 0 Normal 96 Normal 0 Normal 100 

Mild 0 Mild  0 Mild 0 
Moderate 4 Moderate 28 Moderate 0 
Severe 0 Severe 72 Severe 0 

23170 20 0 0 Normal 80 Normal 100 Normal 100 
Mild 5 Mild  0 Mild 0 
Moderate 15 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

104402 14 7.14 0 Normal 92.86 Normal 78.57 Normal 100 
Mild 0 Mild  14.29 Mild 0 
Moderate 7.14 Moderate 7.14 Moderate 0 
Severe 0 Severe 0 Severe 0 

CG7154 37670 22 4.55 0 Normal 72.73 Normal 77.27 Normal 100 
Mild 4.55 Mild  22.73 Mild 0 
Moderate 22.73 Moderate 0 Moderate 0 
Severe 0 Severe 0 Severe 0 

107992 16 6.25 6.25 Normal 87.50 Normal 6.25 Normal 100 
Mild 6.25 Mild  18.75 Mild 0 
Moderate 6.25 Moderate 25 Moderate 0 
Severe 0 Severe 50 Severe 0 

CG10555 105802 25 12 12 Normal 92 Normal 72 Normal 84 
Mild 0 Mild  16 Mild 12 
Moderate 8 Moderate 8 Moderate 4 
Severe 0 Severe 4 Severe 0 

BCL7-like 20410 16 6.25 6.25 Normal 100 Normal 93.75 Normal 93.7
5 

Mild 0 Mild  0 Mild 0 
Moderate 0 Moderate 6.25 Moderate 6.25 
Severe 0 Severe 0 Severe 0 
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osa 7810 15 0 6.67 Normal 93.33 Normal 100 Normal 93.3
3 

Mild 6.67 Mild  0 Mild 0 
Moderate 0 Moderate 0 Moderate 6.67 
Severe 0 Severe 0 Severe 0 

38285 20 0 0 Normal 45 Normal 90 Normal 85 
Mild 20 Mild  5 Mild 5 
Moderate 20 Moderate 5 Moderate 5 

Severe 15 Severe 0 Severe 5 

polybromo 32840 14 0 7.14 Normal 100 Normal 100 Normal 100 

Mild 0 Mild  0 Mild 0 

Moderate 0 Moderate 0 Moderate 0 

Severe 0 Severe 0 Severe 0 

108618 11 0 9.09 Normal 100 Normal 100 Normal 100 

Mild 0 Mild  0 Mild 0 

Moderate 0 Moderate 0 Moderate 0 

Severe 0 Severe 0 Severe 0 

e(y)3 32346 30 0 0 Normal 90 Normal 10 Normal 100 

Mild 0 Mild  13.33 Mild 0 

Moderate 10 Moderate 23.33 Moderate 0 

Severe 0 Severe 53.33 Severe 0 

105946 16 0 0 Normal 100 Normal 0 Normal 87.5
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0 

Mild 0 Mild  50 Mild 0 

Moderate 0 Moderate 43.75 Moderate 12.5

0 

Severe 0 Severe 6.25 Severe 0 

Bap170 26308 31 0 6.45 Normal 96.77 Normal 87.10 Normal 87.1

0 

Mild 3.23 Mild  6.45 Mild 6.45 

Moderate 0 Moderate 6.45 Moderate 6.45 

Severe 0 Severe 0 Severe 0 

34582 12 8.33 8.33 Normal 50 Normal 91.67 Normal 100 

Mild 25 Mild  0 Mild 0 

Moderate 25 Moderate 0 Moderate 0 

Severe 0 Severe 8.33 Severe 0 
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