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Abstract 

The onset of convection in the Rayleigh-Bénard problem for a monatomic rarefied gas at 

small Knudsen number has been investigated. Compressibility-induced density variations 

have been considered without imposing any restriction on the magnitude of temperature 

difference. A linear temporal stability analysis has been conducted for a compressible 

slip-flow model considering a Maxwellian gas and the dispersion relation is calculated 

using a Chebyshev collocation method. A neutral stability curve obtained in the Froude-

Knudsen number plane marks transition to convection from a pure conduction state. The 

critical wave number observed for the onset of convection is in good agreement with the 

existing literature. A comparison of two molecular interaction models: hard-sphere and 

Maxwellian gas, a more realistic model, for predicting the boundaries of the convection 

domain has been presented here which is expected to be useful for future studies on 

related topics using more realistic gas models.  
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Chapter 1  

1 Introduction  

Thermal convection represents one of the most common forms of fluid flow. Of the two 

types of convection, natural convection is driven by buoyancy caused by density 

variation due to a temperature gradient. When an external force drives the fluid flow, it is 

called forced convection. In many industrial applications forced convection is important 

for cooling purposes such as automobile radiators, condensers, jet impingement cooling 

in electronic devices and so on. On the other hand, natural convection is a major feature 

of the dynamics of the oceans, the atmosphere, and the interior of stars and planets 

(Busse 1978; Getling 1998) as well as convection in the earth’s mantle (Schubert, 

Turcotte & Olson 2001). The study of natural convection is also useful to understand the 

atmospheric phenomena like tornados and thunderstorms (Emanuel 1994). It is 

convenient to study natural convection because of its theoretical and experimental 

simplicity (Stranges, Khayat & Albaalbaki 2013). 

1.1 Rayleigh-Bénard Convection 

The most common natural convection configuration is known as Rayleigh-Bénard, shown 

in Figure 1.1. This configuration is defined by a thin layer of fluid confined between two 

plates infinite in the horizontal direction. The bottom plate is maintained at a higher 

temperature than the top plate. Fluid near the bottom plate becomes lighter because of 

thermal expansion and tries to rise due to buoyancy while denser fluid at the top plate 

falls, creating a bulk motion in the system. But the viscous dissipation and heat diffusion 

by conduction try to prevent the motion of the fluid. If the temperature difference 

between the plates, T , is low enough, viscous effects keep the fluid layer motionless 

and a steady conduction state prevails with a linear temperature profile develops between 

the two plates. If the temperature difference between the plates is increased through a 

critical limit, the buoyancy effects overcome the retarding forces and convection sets in. 
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Figure 1.1: Schematic representation of Rayleigh-Bénard convection (Image 

reproduced from Urban et al. 2007)  

The relative effects of buoyancy force, fluid viscosity, and heat conductivity is 

represented by a nondimensional parameter called the Rayleigh number defined as 

3Tg D
Ra

 



.         (1.1) 

Here g is the gravitational acceleration acting downwards,   is the coefficient of thermal 

expansion, D is the gap between the plates,  is the thermal diffusivity defined 

as pK C    where pC  is the specific heat of the fluid, and   is the kinematic viscosity 

which is the ratio of dynamic viscosity,   and density  . For an incompressible fluid as 

considered by Lord Rayleigh (1916), convection sets in when Ra becomes larger than a 

critical value. The value of critical Ra depends on the choice of the boundary conditions.  

1.2 Rayleigh-Bénard Convection in Incompressible Fluids  

One of the most popular approaches to model the Rayleigh-Bénard convection is to apply 

the Boussinesq approximation. It assumes that the variation in density is solely due to the 

temperature difference and the density is independent of pressure. The density is hence 

assumed to be constant since its variation has no effect on the flow field except in the 

buoyancy term in a buoyancy-driven flow such as the Rayleigh-Bénard convection. The 

Boussinesq approximation has been widely used in studying the Rayleigh-Bénard 

problem which simplifies the equations governing fluid motion in order to facilitate both 

D g

T +δT

T
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theoretical and numerical computations. It provides a very good approximation to the 

Navier-Stokes equations for nearly incompressible fluids such as water. 

Within the framework of the Boussinesq approximation, Rayleigh (1916) and Jeffreys 

(1926) have calculated the critical value of Ra for the onset of convection which, for the 

system shown in Figure 1.1, is 1708. However, their analysis neglects the effects of 

compressibility of the fluid.    

When the temperature and associated density changes are small, the Boussinesq 

approximation is an excellent approximation as in the case for the ocean where the 

density and temperature vary by about 1% and 10% respectively between the bottom and 

the surface (Spiegel & Veronis 1960). It can be a reasonable approximation for the 

Earth’s atmosphere and even in stellar interiors if the fluid layer is thinner than the local 

density and temperature scale heights. This approximation also provides satisfactory 

accuracy in modeling liquids around room temperature, natural ventilation in buildings, 

or dense gases dispersion in industrial set up. In a Rayleigh-Bénard configuration with a 

compressible fluid, the Boussinesq approximation is only valid for thin layers of fluid 

(Landau & Lifshitz 1959). But, compressibility effects cannot be neglected when the 

fluid layer is thick because the upper fluid then weighs heavily upon the lower fluid 

(Bormann 2001). 

1.3 Rayleigh-Bénard Convection in Compressible Fluids  

While the Boussinesq approximation provides a simpler way of modeling many fluid 

flow problems treating the fluid as incompressible, there has been an increased interest in 

compressible fluids, essentially stellar convection(Gauthier & Doolen 1987). The 

convection zones in stellar atmosphere are, in general, not thin and the Boussinesq 

approximation can no longer be used in such analysis (Steffen, Freytag & Ludwig 2005). 

The non-Boussinesq effects also need to be considered in rarefied gases commonly 

encountered in micro and nano-scale devices (Robinson & Chan 2004). The Boussinesq 

approximation is only valid when the temperature difference is small (Spiegel & Veronis 

1960), but in rarefied gases instabilities are excited when the temperature differences are 
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large (Golshtein and Elperin 1996). . Furthermore, the Boussinesq approximation is a 

little precarious from a thermodynamic point of view as well. Thermodynamic stability 

condition derived from the second law of thermodynamics is given by 

2 P
T

c

T


             (1.2) 

where T  is the compressibility (Muller 1985). According to (1.2), T  can only be zero 

if the thermal expansion coefficient is ignored. Indeed, real fluids never fully conform to 

the Boussinesq approximations and this departure has been studied in details by Busse 

(1967), Ahlers (1980) and Paolucci & Chenoweth (1987). 

In the presence of compressibility, the mechanical stability of the fluid is described by the 

“adiabatic temperature gradient” (ATG) criterion also known as the Schwarzschild 

criterion (Schwarzschild & Härm 1958). According to this criterion, for a fluid particle 

rising through the hydrostatic pressure field the applied temperature gradient must be 

larger than the adiabatic temperature gradient (Landau & Lifshitz 1959), 

 s
T

ATG T p g
y


    


        (1.3) 

where subscript s denotes constant entropy. Compressibility thus brings in a source of 

mechanical stability (1.3) in addition to dissipative mechanism characterized by the 

viscosity and thermal conductivity as in the case of an incompressible fluid. Therefore, in 

a Rayleigh-Bénard configuration with a compressible fluid, convection does not start 

until the temperature difference across the layer, T , becomes sufficiently larger than the 

critical value RT  calculated from the Rayleigh condition for incompressible fluids. The 

compressible Rayleigh-Bénard problem was analyzed by Gitterman & Steinberg (1970). 

Gitterman (1978) derived an expression for the onset condition 

onset R adT T T             (1.4) 

where adT  is the temperature difference from the adiabatic temperature gradient effect. 
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1.4 Approaches to Study the Compressible Rayleigh-

Bénard Problem  

Compressibility effects had been ignored in laboratory-scale experiments where it is 

usually too small to be observed (Kogan & Meyer 2001). But its understanding is 

important in many applications such as large-scale geophysical flows including earth’s 

atmosphere and mantle convection (Tritton 1988). A popular approach to investigate the 

compressible Rayleigh-Bénard convection in laboratory-scale is to perform experiments 

under high-pressure conditions near the gas-liquid critical point. Near-critical fluids have 

high compressibility which has attracted great attention (Anisimov 1991). Such an 

approach is demonstrated in a series of papers by Ashkenazi & Steinberg (1993), Kogan 

& Meyer (2001), and Zappoli, Beysens & Garrabos (2015).  

The other popular approach is to address the Rayleigh-Bénard problem for rarefied gases 

which offers the opportunity of studying different fundamental issues such as the 

mechanism of stability and self-organization at the molecular level and their relation to 

macroscopic phenomena (Cercignani 2000). Since one can investigate the microscopic 

origin of hydrodynamic instability with a rarefied gas system which is highly 

compressible, the Rayleigh-Bénard convection in rarefied gases has become a model 

problem. 

1.5 Rayleigh-Bénard Problem in Rarefied Gas  

The mechanics of rarefied gases differs from the usual gas-dynamics because the gas 

cannot be treated as a continuum and the effect of the random motion of each molecules 

must be considered. The relative importance of the microscopic molecular motion to the 

macroscopic mass motion of the gas is measured by a nondimensional parameter, 

Knudsen number which is the ratio of mean free path to the characteristics length of the 

system. Based on the Knudsen number, the flow regime can be classified as (Struchtrup 

2005) –  

1. The hydrodynamic regime: Kn 0.01    

2. The slip flow regime: 0.01 Kn 0.1   
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3. The transition regime: 0.1 Kn 10   

4. Free molecular flow: Kn 10  

In the hydrodynamic regime, the flow is very well described by Navier-Stokes-Fourier 

(NSF) equations (Struchtrup 2005). When the Kn number is larger than 0.01, the gas 

becomes rarefied and fewer collision between molecules take place in the flow. The lack 

of collision results in significant velocity-slip and temperature-jump near the wall. As a 

result, NSF equations become inappropriate in the rarefied regime. Typically, to study the 

rarefied gas problems, the direct simulation Monte Carlo (DSMC) technique is used. The 

DSMC method uses a finite set of model particles denoted by their positions and 

velocities. A direct simulation of the molecular gas dynamics is performed over small 

time steps as the particles move and collide in physical space. The intermolecular 

collisions are modeled using stochastic rules. The proof of convergence of the DSMC 

algorithm to the Boltzmann equation is given by Wagner (1992). This technique was used 

to successfully simulate the Bénard instability for the first time by Garcia & Penland 

(1991) and Stefanov & Cercignani (1992).  

Though the DSMC method provides detailed information about the molecular system 

including producing the physical fluctuations of the macroscopic quantities in a rarefied 

gas system, for small Kn number the onset of convection can be difficult to determine 

because of the presence of inherent noise (Stefanov, Roussinov & Cercignani 2002). In 

the slip flow regime, a popular alternative is to model the rarefied gas problem using NSF 

equation accompanied by proper boundary conditions that account for the velocity-slip 

and temperature-jump at the wall (Manela & Frankel 2005).       

One of the critical physical differences between rarefied gas flow and dense gas flow is 

the slip in gas velocity at the solid surface. For a rarefied gas flow problems, the 

boundary conditions are derived from gas-solid interaction models which describe how 

energy and momentum are transferred to/from a surface and how reflecting molecules are 

scattered following a surface impact. The most popular, and simplest, model for the 

boundary conditions in a rarefied gas flow problem is given by Maxwell (Chapman & 

Cowling 1970; Cercignani 1975). The gas-surface interaction model was first developed 

by Maxwell (1879) that considers two kinds of interactions, the specular and diffuse 



7 

 

 

interactions. In a specularly reflecting wall, the tangential velocity of a colliding gas 

particle remains unchanged while the normal component of its velocity only changes 

sign. The gas particle and the solid molecules are assumed to be rigid elastic spheres. The 

particle does not exchange energy with the wall but exerts only a normal force on the 

wall. A diffuse interaction, on the other hand, takes place when an incident molecule 

attains thermal equilibrium with the solid surface and then evaporates from the surface 

according to the Maxwellian velocity distribution determined by the wall temperature.  

However, both of the interaction models are too simple to describe realistic cases. 

Maxwell combined the two models together considering a fraction of particles reflected 

specularly after their collision with the wall while the other fraction thermalizes with the 

wall which he named the accommodation coefficient. The accommodation coefficient 

varies between zero to one depending upon the microscopic details of the wall and gas.  

The velocity-slip and temperature-jump boundary conditions are also affected by the 

transport coefficients which in turn depend on the choice of gas model. Two gas 

molecules attract when they are far apart and repel each other when they come close 

together (Hirschfelder, Curtiss & Bird 1954). The interaction between them is expressed 

in terms of their intermolecular potential rather than the force acting between the 

molecules. The first and the simplest molecular model to be employed in the simulation 

of rarefied gas flows is the hard sphere model which is developed based on the rigid-

sphere interaction potential. According to this model, the intermolecular potential is 

given by 

  0

0

r r
r

0 r r

  
 

 
        

where 0r  is the hard sphere diameter (Hirschfelder, Curtiss & Bird 1954). 
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Figure 1.2: Interaction potential for hard sphere model (Image reproduced from  

Hirschfelder, Curtiss & Bird 1954).  

Hard sphere model has been a popular gas model because of its simplicity in deriving 

analytical expressions for transport coefficients for rarefied gas flow problems. Stefanov 

et al. (1992) and Manela & Frankel (2005) worked with hard sphere model when 

addressing the Rayleigh-Bénard problem for rarefied gases. The hard sphere model only 

predicts an infinite repulsion when two gas molecules are in contact with each other 

(Figure. 1.2). It is the simplest model which is sufficient in some cases to account for 

some of the transport properties of gas accurately. However, it cannot provide any 

information of the repulsive force when the distance between the two molecules 

increases. Also, the hard sphere model does not consider the attractive forces between the 

molecules at large distances. One of the widely used models which accounts for both the 

repulsive and attractive potential is given by Lennard-Jones (Figure. 1.3).  
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Figure 1.3: Interaction potential for Lennard-Jones model (Image reproduced from 

Hirschfelder et al. 1954).  

The interaction potentials for repulsive forces and attractive forces are approximated 

using two different inverse power laws which are added together to represent the total 

Lennard-Jones potential and can be expressed as      
12 6

0 0r 4 r r r r    
  

, where   

is the maximum energy of attraction which occurs at 1 6
0r 2 r . Though this model 

represents a more realistic model for interaction potential of molecules, the attractive 

forces can be ignored when the temperature is well above the saturation point. The 

potential trough   in Figure. 1.3 is too small compared to the average kinetic energy of a 

collision in such a case and the interaction potential can be well represented by purely 

repulsive potential given by  r a r  , where   is called the index of repulsion. When 

4  , the molecules are known as Maxwellian molecules (Figure. 1.4).   
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Figure 1.4: Interaction potential for Maxwellian Molecular model (Image 

reproduced from Hirschfelder et al. 1954). 

Due to its simplicity, this model has played a fundamental role in the subsequent 

development of the kinetic theory. While being simple enough to express the transport 

coefficients analytically just like the hard sphere model, the Maxwellian molecules 

represent the interaction potential in the repulsive region in a more realistic way than the 

hard sphere model. The results obtained by Maxwell was also verified by Boltzmann 

(Struchtrup 2005) who repeated all the calculations using different models. 

1.6 Literature Review  

Rayleigh-Bénard convection is a classical problem in hydrodynamic stability theory and 

has been studied extensively because of its relevance to natural convection phenomena 

(Chandrasekhar 1961; Drazin & Reid 1981; Koschmieder 1993, Normand, Pomeau & 

Velarde 1977; Bergé & Dubois 1984; Bodenschatz, Pesh & Ahlers 2000). Most studies 

have been carried out within the framework of the Boussinesq approximation. This 

approximation is based on the assumptions that the temperature difference between two 
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plates and associated changes in density are small which are neglected everywhere except 

in the buoyancy term in the equation of motion. The density variation due to pressure is 

considered negligible and the fluid behaves as nearly incompressible. In spite of the 

justification for the Boussinesq approximation given in the textbook (Chandrashekhar 

1961; Drazin & Reid 1981; Charru 2011) and in many literature (Spiegel & Veronis 

1960; Mihaljan 1962; Hills & Roberts 1991; Rajagopal, Ruzicka & Srinivasa 1996), it 

has its restriction: it is only valid for a thin layer of fluid (Gray & Giorgini 1976; Frölich, 

Laure & Peyret 1992; Perez & Velerde 1975).  

Most of the studies which have hitherto addressed the compressible Rayleigh-Bénard 

convection have relaxed either one of the two assumptions of the Boussinesq 

approximation. The effect of compressibility on the onset of convection was first 

acknowledged by Jeffreys 1930. Later Giterman & Shteinberg (1970), and Bormann 

(2001) also studied compressibility effects on the onset of convection. He obtained 

critical Rayleigh number based on the stability criteria formulated by Jeffreys (1930) 

considering the compressibility effect. However, the Rayleigh number thus obtained does 

not consider the effects of viscosity. On the other hand, the critical Rayleigh number 

accounts for the viscosity but ignores the compressibility. This led Bormann to use both 

the Rayleigh numbers in an additive superposition to find the true critical Rayleigh 

number for a compressible system. Using a linear stability analysis, he also showed that 

the critical Rayleigh number actually depends on the thickness of the fluid layer. 

However, Jeffrey (1930), Giterman & Shteinberg (1970) and Bormann (2001) considered 

small temperature differences which enabled them to take viscosity and thermal 

conductivity as constants. The effects of large temperature differences were studied by 

Frolich et al. (1992) but their analysis failed to account for the compressibility-induced 

density variations. Ahlers et al. (2010) conducted an experiment with sulfur hexafluoride 

at temperatures close to the gas-liquid critical point where all fluid properties vary 

strongly with temperature. They have found the critical temperature for the onset of 

convection can be significantly higher when non-Boussinesq effects are considered. But 

they also used very thin layers of fluid which essentially made the compressibility effects 

negligible. According to these studies, the onset of convection is still governed by a 



12 

 

 

critical value of Rayleigh number corresponding to a critical temperature difference 

greater than that of the Boussinesq case.   

Unlike the two approaches to study the compressible Rayleigh-Bénard problem, Spiegel 

(1965) relaxed both of the assumptions of the Boussinesq approximation. Though his 

analysis was not restricted to small temperature differences nor to thin layers of fluid, he 

considered fluid viscosity and heat conductivity as constants which are not consistent 

with large temperature variations.  

A popular approach to study the high compressible Rayleigh-Bénard problem is to 

conduct experiments under higher-pressure conditions near the gas-liquid critical point. 

Kogan & Meyer (2001) and later Furukawa et al. (2003) studied the Rayleigh-Bénard 

convection with Helium gas near its critical point. A similar analysis was conducted for 

sulfur hexa-fluoride by Roy & Steinberg (2002).  

Another way to investigate the Rayleigh-Bénard problem without a priori restricting the 

temperature differences or the compressibility-induced density variation is to address the 

classic hydrodynamic stability problem for rarefied gases (Manela & Frankel 2005). The 

molecular description in a rarefied gas allows investigating the onset of convection from 

a kinetic viewpoint. The Rayleigh-Bénard problem for rarefied gases has become a model 

problem for studying fundamental issues at the molecular such as the mechanism of 

instability and self-organization and their relation to macroscopic phenomena (Cercignani 

2000; Nicolis & Prigogine 1977; Haken 1977). The Rayleigh-Bénard convection of a 

rarefied gas has been numerically studied by means of the direct simulation Monte Carlo 

method (Watanabe, Kaburaki & Yokokawa 1994; Robinson & Harvey 1997; Golshtein & 

Elperin 1996; Stefanov & Cercignani 1992; Stefanov et al. 2002). Their studies showed 

that the transition from the pure conduction state to convection takes place for 

sufficiently low Kn numbers only when the temperature gradient was larger than a 

critical value. However, Watanabe et al. (1994) and Robinson & Harvey (1996) assumed 

the material properties as constants except for the density in the gravity term which 

allowed them to apply the Boussinesq approximation. Consequently, the transition from 

pure conduction to convection was determined by the nondimensional parameter, the 
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Rayleigh number. Golshtein & Elperin (1996) pointed out that the onset of convection 

could not be completely characterized in terms of a single nondimensional parameter for 

a rarefied gas with arbitrary temperature differences and associated compressibility 

effects. For a rarefied gas, the effect of gas stratification must be taken into consideration. 

The density of the pure conduction state, in fact, increases when moving toward the top 

plate which is kept at a lower temperature in the presence of weak gravity and increases 

when moving toward the bottom-hot plate under strong gravity. For such conditions, the 

authors of papers (Stefanov & Cercignani 1992; Sugimoto et al. 1995; Sone, Aoki & 

Sugimoto 1997) also showed that the Rayleigh number independently is insufficient to 

determine the stability of a rarefied gas system. Sugimoto et al. (1995) studied the effects 

of the Knudsen (Kn) and Froude (Fr) number, the ratio of temperatures between the two 

plates, and the geometry of the gas domain. They solved the Bhatnagar-Gross-Krook 

equation for the Rayleigh-Bénard problem using a finite-difference scheme. The zone of 

instability obtained from these studies established the fact that the onset of convection 

occurs for small Knudsen numbers only. This fact encouraged Stefanov et al. (2002) to 

investigate the Rayleigh-Bénard problem on the basis of a continuum model of a 

compressible viscous heat-conducting gas. The state-dependent transport coefficients are 

easily derived from the Chapman-Enskog expansion for the Boltzman equation as shown 

in Chapman & Cowling (1970). Stefanov et al. (2002) solved the continuum slip model 

for the Rayleigh-Bénard problem for a rarefied gas using a finite difference method. They 

also investigated the problem by a molecular based approach using the DSMC method 

and compared both the results for a hard-sphere gas model. For a given aspect ratio of the 

gas domain, Stefanov et al. (2002) obtained a neutral curve in the (Fr, Kn) plane which 

delineates the zones of pure conduction and convection for specific values of temperature 

ratios. 

Numerical simulations by Stefanov et al. (2002) successfully determined the location of 

the neutral curve rather than merely imposing a necessary condition unlike the previous 

researchers. The DSMC method has been commonly used to investigate the flow and heat 

transfer behavior in microdevices (Bird 1194; Hadjiconstantinou et al. 2003; Vargas et al. 

2014). But due to the existence of a hysteresis loop for small Kn numbers, it is difficult to 

clearly identify the parameters combinations in the vicinity of transition to convection 
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(Stefanov et al. 2002). Also, these simulations are extremely time consuming in the 

continuum limit (Fan & Shen 2001; Vargas et al. 2014). To avoid the difficulties 

associated with the DSMC techniques used by Stefanov et al. (2002), Manela & Frankel 

(2005) addressed the Rayleigh-Bénard problem for rarefied gases using a continuum 

model consisting of the Navier-Stokes equations and state-dependent transport 

coefficients along with velocity-slip and temperature-jump boundary conditions for 

monatomic hard-sphere gas. The choice of a hard-sphere gas model was inspired by 

Stefanov et al. (2002) who used the model because of its simplicity in the context of 

Monte Carlo simulation. However, unlike Stefanov et al. (2002) who used finite 

difference method, Manela & Frankel (2005) used the spectral method. Using the 

Chebyshev collocation method they transformed the system of differential equations into 

an algebraic eigenvalue problem to find the dispersion relation. The neutral curve Manela 

& Frankel (2005) obtained in the plane of (Fr, Kn) for a specific value of temperature 

ratio which shows remarkable agreement with that obtained by Stefanov et al. (2002). 

This agreement suggests the linear analysis as a useful alternative for studying the 

Rayleigh-Bénard problem in a rarefied gas, particularly at arbitrary small Knudsen 

numbers.  

Since the macroscopic transport model offers reasonable accuracy along with significant 

computational advantages over the DSMC technique, it has been considered a suitable 

alternative to the Monte Carlo method (Struchtrup 2005). Higher order continuum models 

are derived from the Boltzmann equation based on either the Chapman-Enskog expansion 

(Chapman & Cowling 1970) or Grad’s moment expansion method (Grad 1949). But 

these methods lack a complete set of boundary conditions for higher order expansion 

(Bobylev 2008; Bobylev & Windfall 2012). This has been overcome by regularized- 13 

(R13) equations which are stable and equipped with a complete set of boundary 

conditions (Struchtrup & Torrilhon 2008) and are capable of providing an accurate 

description of rarefied gas flows (Taheri et al. 2009; Taheri, Torrilhon & Struchtrup 

2009; Struchtrup & Taheri 2011; Rana, Torrilhon & Struchtrup 2013). The R13 equations 

has been proven computationally efficient than the DSMC method; the computational 

times are several orders of magnitude less than that required for highly accurate DSMC 

simulations (Rana, Mohammadzadeh & Struchtrup 2015).   
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1.7 Linear Stability Analysis 

The stability of a hydrodynamic system can be determined by adding disturbances to its 

stationary state to see whether it retains its equilibrium state or progressively departs 

from the equilibrium state. The system is said to be stable if the perturbations decay 

gradually and is unstable if they grow with time. Stability analysis is of two types, 

namely, linear stability analysis and nonlinear stability analysis. In linear stability 

analysis, the stability of the system is examined with respect to infinitesimally small 

perturbations and all the terms involving second or higher order in the perturbation 

quantity and/or their derivatives are neglected from the governing perturbation equations. 

This limits the amplitude of perturbations to be very small for linear stability analysis as 

shown in Figure 1.5 using the “particle in a well” analogy.  

 

Figure 1.5: Stability of a system (Image reproduced from Fielding 2016)  
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A system which is linearly stable with respect to small perturbations might experience 

nonlinear effects that tend to destabilize it. A sufficiently large perturbation could 

activate the system out of the stationary state even though linear stability predicts the 

state to be stable. Conversely, an unstable system predicted by linear stability analysis 

might find a stable state when the nonlinear effects are considered. As a result, nothing 

can be said about the ultimate structure of the flow if the system is found to be unstable 

from the linear stability analysis. Yet, the linear instability analysis has been found to be 

useful in providing results in many stability problems which are almost in exact 

agreement with the experimental predictions. On the other hand, nonlinear analysis 

possesses the inherent difficulties involved with solving nonlinear partial differential 

equations.  

To perform a linear stability analysis following procedure is generally followed (Drazin 

& Reid 1981): 

1. Specifying the governing equations and boundary conditions 

2. Finding the base state 

3. Adding a small perturbation 

4. Linearizing the equations 

5. Solving the linearized equations 

The application of linear stability analysis to determine the onset of convection in 

Rayleigh-Bénard problem for an incompressible fluid has been discussed in textbooks by 

Chandrasekhar (1961) and Drazin & Reid (1981). The following formulation for an 

incompressible fluid along with equations (1.5) – (1.19) have been adapted from Drazin 

& Reid (1981). Consider the liquid layer placed between two flat plates with gap D. For 

an incompressible fluid, the governing equations involving mass, momentum and energy 

conservation are simplified using the Boussinesq approximation. This approximation is 

based on the fact that density variations are negligible when the change in temperature is 

small. Also, the thermophysical properties such as coefficients of viscosity, thermal 

expansion, heat conductivity and specific heat capacity are considered constant. 

Nevertheless, density variation cannot be neglected in the buoyancy term of the Navier-

Stokes equation. The density of fluid between two plates at temperature is given by 
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   0 0T 1 T T       ,        (1.5) 

where 0  is the density of the fluid at bottom-plate temperature, 0T  and   is the 

coefficient of thermal expansion. Typically the value of   is of order 310  for gases and 

410  for liquids. Density variation can be neglected when working with small 

temperature change since    0 0 0T T 1     . But when multiplied by gravity, 

its effect can no longer be ignored. 

We let  bT y  and  bp y  be the (base) temperature and pressure that correspond to 

steady state conduction. There are no base velocity. To nondimensionalize the 

perturbation equations, we use D for length scale, 2D /   for time scale and κ/D for 

velocity scale. We also let  bT T / D     and  2 2
b 0p D P p /     be the deviation 

for the temperature and pressure from the base values. 

where  0 1T T / D    is the thermal gradient at the base state. Here  is the thermal 

diffusivity defined as 0k / c   , where k is the thermal conductivity and c is the 

specific heat capacity of the fluid. 

The linearized non-dimensional perturbation equations finally become (asterisk to denote 

the dimensionless parameters has been omitted) 

u v
0

x y

 
 

 
,          (1.6) 

2 2

2 2

2 2

2 2

u u up
Pr ,

t x x y

v p v v
Ra Pr Pr ,

t y x y

   
     

       


     
             

    (1.7) 

2 2

2 2
v

t x y

    
  

  
,         (1.8) 
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where Ra is the Rayleigh number given by 4Ra g d /  and the Prandtl number 

by Pr /    and   being the kinematic viscosity. 

It is possible to eliminate all the dependent variables and obtain a single stability equation 

involving the vertical velocity of the perturbation, v: 

2

2

1 v
v Ra

t Pr t x

    
     

    
,       (1.10) 

where   is the Laplacian operator given by 2 2 2 2x y      . 

The boundary conditions can either be no-slip or free surface at both or one of the plates. 

For illustration purposes, free-free boundary conditions have been used. Free-free 

boundary condition implies that normal velocity as well as shear stress at the surface are 

zero: 

   v x, y 0, t v x, y 1, t 0    ,       (1.11) 

   
u u

x, y 0, t x, y 1, t 0
y y

 
   

 
,       (1.12) 

The temperature of the fluid at the boundary is same as the plate, hence 

   x, y 0, t x, y 1, t 0      .       (1.14) 

Also, using the continuity equation (1.6) we get 

   
2 2

2 2

v v
x, y 0, t x, y 1, t 0

y y

 
   

 
.      (1.13) 

Since the linearized governing equations and the boundary conditions are symmetric in x, 

normal mode of the form  

  st ikxv v y e   and   st ikxy e          (1.15) 

can be taken for the perturbations. Here s i    is the growth rate of the perturbation 

and k is the horizontal wave number. The equations then become an eigenvalue problem 

of the form  

   2 2 2 2 2 2 2D k D k s D k s / Pr v k Rav            (1.16) 

along with the boundary conditions  
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2 4v D v D v 0    at y=0, 1.        (1.17) 

The solution is the complete set of eigenfunctions given by  

v sin z            (1.18) 

where the eigenvalue relation is  

   2 2 2 2 2 2 2k k s k s / Pr k Ra         .     (1.19) 

For marginal stability, s must be zero and the critical Ra number for the onset of 

convection is given by (Chandrashekhar 1961) 

 
 

3
2 2

2

k
Ra k

k

 
          (1.20) 

In reality, the number of waves in a unit length cannot be imposed on the system. 

However, we can plot the values of Ra for different k for the onset of convection to see 

the wavelength of the disturbances that we anticipate at a particular Ra number. Figure 

1.6 shows the curve (1.5) for different k (curve A). The minimum value of Ra for free-

free boundary conditions is 657.5 and the corresponding wavenumber k 2.2 . When Ra 

is just a little greater than the minimum values, thermal instability ensues with horizontal 

wavelength of 2 d / 2.2 2.83d  .  

For no-slip boundary conditions, the minimum value of Ra is 1708 which corresponds to 

the wavenumber 3.1 (Figure 1.6). 
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Figure 1.6: Marginal stability curves of a Rayleigh-Bénard system for two boundary 

conditions (Image reproduced from Mutabazi, Wesfreid & Guyon 2006) 

1.8 Spectral Method  

In contrast to traditional methods like finite-element and finite-difference methods for 

solving differential equations, spectral methods can achieve a higher degree of accuracy. 

In spectral methods, a trial function is used to provide the approximate representation of 

the solution. The trial functions are basically linear combinations of suitable basis 

functions. The choice of basis functions in spectral methods distinguishes them from the 

other numerical approaches such as finite element and finite difference methods. Spectral 

methods use basis functions which are smooth and nonzero over the whole domain. In 

finite element method, basis functions are only nonzero in the subdomains. In practice, 

finite-element methods are particularly well suited to problems involving complex 

geometry, but spectral methods can provide superior accuracy when the computational 

domain is rather simple. 

k

k 

Ra 

Stress-free 

No-slip 
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The trial functions most commonly used are trigonometric functions or orthogonal 

polynomials. If the function under consideration is periodic, Fourier series approximation 

is used, but its convergence is not uniform near the boundaries when the function is not 

periodic because of the existence of Gibbs phenomenon at the boundaries. For non-

periodic problems, orthogonal polynomials like Chebyshev polynomials or Legendre 

polynomials are advisable. Since the Chebyshev polynomials can be written in terms of a 

cosine Fourier series, fast Fourier transform is possible with Chebyshev series expansion 

which provides a faster convergence. However, fast transform algorithm is not available 

in the Legendre polynomials.     

Along with the trial function, a suitable test function, also known as the weighting 

function, is applied so that the differential equation and the boundary conditions are 

satisfied as closely as possible by the truncated series expansion. Since the truncated 

expansion produces an error or residual, it is necessary to minimize the residual which is 

known as the method of weighted residuals. This also requires the residual to satisfy a 

suitable orthogonality condition with respect to the chosen test function. 

The choice of the test functions distinguishes between the three basic types of spectral 

schemes, namely, the Galerkin, tau, and collocation methods. In collocation method, the 

test functions are the translated Dirac delta functions centered at some fixed points 

known as the collocation points.  

In Chebyshev-collocation method, the trial function is approximated by a Chebyshev 

polynomial which satisfies the governing equation at the chosen collocation points. 

Unlike the equally spaced collocation points in a Fourier series approximation, the 

collocation points for a Chebyshev polynomials are defined by Gauss-Lobatto points,  

 i
i

x cos , i 0,..., k
k


  .        (1.6) 

Other sets of points can also be used as collocation points as shown by Canuto et al. 

(2006) and Gottlieb, Hussaini & Orszag (1984). For example, Gauss points are useful 

when the boundary points x 1   are not included in the set of collocation points. The 
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Gauss-Radau points are used when the boundary point x 1   needs to be excluded as in 

the case of cylindrical coordinates where x 1   corresponds to the axis. However, for 

the solution of the boundary value problem considered in this thesis, Gauss-Lobatto 

points must be used.   

The Chebyshev polynomial of degree k is defined for  x 1,1   is given by   

   1
kT x cos k cos x , k 0,1,2...        (1.7) 

which reaches its extremal values 1  at the collocation points (intro 1).  

The Chebyshev approximation of a function  u x  is given by the trial function  Nu x  

defined for  x 1,1  : 

   
N

N k k
k 0

ˆu x u T x



  .        (1.8) 

The coefficients of the approximating expansion kû , k 0,...., N , is found by setting the 

residual function zero at the collocation points. It is, however, possible to consider, as 

unknowns, either the coefficients of the expansion or the values of the approximating 

function itself,  N iu x  at the collocation points. The later approach is more commonly 

is used in the problems of fluid mechanics. 

To fully transform the differential equation into algebraic equations involving the grid 

values  N iu x  at the collocation points, the derivatives are also expressed in terms of 

 N iu x , for a pth order derivative: 

       
N

p p
i N jN i, j

j 0

u x d u x , i 0,...., N



   .     (1.9) 
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The numerical values of the differentiation coefficients 
 p

i, j
d depend on the number of the 

collocation points (Peyret, 2002).  

An example of how a system of differential equation can be transformed into a set of 

algebraic equations using the Chebyshev-collocation method is illustrated in Appendix 1. 

1.9 Motivation  

Understanding of heat transfer in microscales is important for performance enhancement 

of micro electromechanical systems (MEMS) (Beskok 2001). MEMS refer to devices 

which have a characteristic length of less than 1 mm and can be as small as a few microns 

(Stone, Stroock & Ajdari 2004; Duan & Muzychka 2007; Ghiaasiaan 2011). Most 

microelectromechanical system (MEMS) devices need to be packaged in vacuum before 

usage in order to obtain a stable performance (Liu et al. 2007; Yang, Wu & Fang 2005). 

Typically, such a package consists of a hot chip on one plate and several other plates 

maintained at a lower temperature. The gas inside the closed package transfers heat from 

the hot plate to the cold plates. Because of the size of the MEMS devices, the mean free 

path of the gas becomes comparable to the characteristic length of the device and the gas 

inside such devices are usually rarefied (Liu et al. 2007).    

The rarefied gas flow problems has been studied previously by the DSMC method which 

is very expensive in computational time. The alternative to this is to investigate the 

problem from a continuum approach derived from the expansion of the Boltzmann 

equation. The R13 equations provide the most accurate description of rarefied gas flow 

which has only been well established for Maxwell molecules for linear as well as 

nonlinear cases. However, the onset of convection in a Rayleigh-Bénard problem has 

only been addressed for hard-sphere molecules both with the DSMC technique and the 

continuum approach for Navier-Stokes-Fourier (NSF) equations which is the first order 

expansion of the Boltzmann equation. Since the Maxwell molecules represent a more 

realistic interaction between the gas molecule than the hard-sphere model, studying the 

Rayleigh-Bénard problem for a Maxwellian molecular model with the NSF equations 

would not only provide a clearer information on the onset of convection in such a system 
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but would also create the bridge so that higher order R13 equations can be employed to 

the classic stability problem.   

1.10 Objective  

The main objective of this thesis is to investigate the onset of thermal convection in a 

Rayeligh-Bénard configuration for rarefied gases. To avoid the difficulties in DSMC 

technique, the rarefied gas problem will be approached by a continuum slip model 

consisting of the Navier-Stokes equation along with the first-order velocity slip and 

temperature-jump conditions and the transport coefficients for a monatomic Maxwellian 

gas. The effects of gas rarefaction, slip, and gas stratification on the pure conduction state 

will be analyzed. The stability of the pure conduction studied via linear stability analysis 

to obtain the neutral curve marking transition to convection in the Froude-Knudsen plane. 

The results will also be compared with those obtained for a hard-sphere gas. 

1.11 Outline of the Dissertation  

The dissertation is divided into four chapters: Introduction, Steady Pure Conduction 

State, Linear Stability Analysis, and Conclusion.  

Chapter 2 analyzes the pure conduction state in a Rayleigh-Bénard configuration with a 

rarefied gas. The formulation of the governing equations consisting of the Navier-Stokes-

Fourier equations and the development of the boundary conditions according to 

Maxwell’s model is discussed. The motionless steady base state is explored for different 

combinations of parameters. A comparison between the pure conduction states for two 

different gas models, Maxwell and hard-sphere is presented at the end of the chapter. 

The third chapter investigates the stability of the pure conduction state explored in 

Chapter 2 via linear stability analysis which shows that a neutral curve in the Froude-

Knudsen plane delineates the zone of convection. The conditions for the onset of 

convection in a rarefied gas which is different than the onset condition for incompressible 

fluids is discussed in this chapter. Chapter 3 also analyzes the differences in the neutral 

curves obtained for a Maxwellian gas and that for a hard-sphere gas.  
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The last chapter provides a brief summary of the present work and discusses some its 

limitations. The scopes of further study on the Rayleigh-Benard convection are explored 

and some recommendations for future researches are also pointed out in Chapter 4.    
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Chapter 2  

2 The Base State 

The Rayleigh-Bénard configuration consists of a horizontal layer of fluid with its lower 

side hotter than the upper side. As temperature gradient develops across the layer which 

creates a density variation, an upward flow driven by buoyancy may start in the fluid. If 

the temperature gradient is not large enough, no flow is initiated due to the stabilizing 

effects of viscosity, thermal diffusivity, and compressibility. Due to thermal diffusion, 

heat is diffused through the gas which results in a lower temperature gradient across the 

fluid layer. When the compressibility effects are considered, density variation is no 

longer due to the temperature difference only and the density of the fluid may actually be 

larger at the bottom even with a higher temperature there as the fluid at the top weighs 

heavily down on the fluids near the bottom plate (Golshtein & Elperin 1996; Stefanov et 

al. 2002; Manela & Frankel 2005). In the absence of fluid flow, heat is transferred from 

the lower surface to the upper one through conduction only. Under such conditions the 

system is said to be in a pure conduction state. Before discussing the pure conduction 

state, a general formulation of the Rayleigh-Bénard problem for rarefied gases are 

developed in the next section.  

2.1 Problem Formulation 

A layer of a rarefied gas is assumed to be confined between two horizontal walls kept at a 

distance D. The lower and upper walls are maintained at temperatures of hT  and cT , 

respectively, where h cT T . The fluid layer is assumed to be of infinite horizontal 

extent. The problem is governed by the conservation of mass, linear momentum and 

energy equations written in Cartesian system of coordinates (x, y) whose origin lies on 

the lower wall with y axis pointing upwards (opposite to the direction of g, the 

gravitational acceleration): 

 k

k

v
0

t x

 
 

 
,         (2.1) 
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     

 
,       (2.2) 

 k k
kl kl
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p

D t x x

 
      

 
,       (2.3) 

along with the equations of state for an ideal monatomic gas: 

p    ,          (2.4) 

and, 
3

u
2

  .          (2.5) 

In the above equations, summation of repeated index is implied, D Dt  denotes the 

material derivative and ij  is the Kroncker delta. Here t is the time and kx  are position 

coordinates, while  , kv , p , ik , u , and kq  denote the mass density, velocity, 

pressure, stress tensor, internal energy density,  and heat flux. Here,   represents the 

temperature in energy units defined as RT  , where R is the gas constant and T is the 

thermodynamic temperature. The heat flux vector and stress tensor in (2.2) and (2.3) are 

defined through Fourier’s law for heat conduction and Newton’s law of viscosity, namely 

i
i

q k
x


 


,          (2.6) 

ji k
ij ij

j i k

vv v1 1
2

2 x x 3 x

   
        

      

      (2.7) 

where k is the thermal conductivity and   denotes dynamic viscosity which can be 

calculated with the formulas derived using the kinetic theory of gases. Since both of the 

coefficients depend on temperature, a relation between them can be established making 

use of the dimensionless parameter Prandtl number, Pr, which is defined as the ratio of 

momentum diffusivity to thermal diffusivity. The measured values for all monatomic 
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gases are very close to 2 3 . Thermal conductivity and viscosity is thus related by the 

following relation (Struchtrup 2005) 

 k 15 4  .          (2.8) 

In the continuum regime, the gas flow problem is specified by the boundary conditions 

which state that there is no relative normal or tangential velocity between the gas and the 

solid surface and the layer of gas is in thermal equilibrium condition at the solid-gas 

interface. In the slip region, there is significant nonequilibrium because of the molecular 

nature of the gas and the boundary conditions need to be modified (Ghiaasiaan 2011). 

While the condition of zero relative normal velocity still holds in the slip flow regime, the 

relative tangential or slip velocity is no longer zero but is a definite function of the 

velocity, temperature, and pressure gradients of the gas layer immediately adjacent to the 

wall (Sochi 2011; Shu, Teo & Chan 2017). Similarly, the gas temperature also differs 

from the wall temperature by a finite amount, referred to as the temperature jump (Shu et 

al. 2017). 

Figure 2.1 shows the velocity and temperature condition at a gas-solid interface. The 

solid boundary moves with a velocity Vw in the tangential direction and the temperature 

of the solid boundary is Tw. The two plots on the left (Figure 2.1) shows the no slip 

condition while the plots on the right depict a slip in the velocity and a jump in the 

temperature of the gas. Under the slip boundary conditions, the velocity and temperature 

of the gas are given by Vg and Tg, respectively. Here, velocity slip is given by Vg – Vw 

and the temperature-jump is Tg – Tw. 
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Figure 2.1: The velocity and temperature conditions at a gas–solid interface (Image 

reproduced from Ghiaasiaan 2011) 

It has been found by many researchers including Schaaf and Chambré (1961), Deissler 

(1964), Beskok, Karniadakis & Trimmer (1996), Struchtrup & Weiss (2000), along with 

von Smouluchowski’s experimental results (Kennard 1938) that the slip velocity and 

temperature jump are proportional to the velocity gradient and the temperature gradient 

normal to the wall which exists in the gas at the vicinity of the wall. The interaction 

between the gas molecules and solid walls which is manifested in the velocity slip and 

temperature jump have been expressed using Maxwell’s single accommodation 

coefficient because of its simplicity and due to the fact that the other best-known model 
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does not consider the thermal slip which limits its reliability (Pan et al. 2002; Shu et al. 

2017).  

According to Maxwell’s model, a certain fraction   of incident gas molecules are 

absorbed by the wall and are then reemitted diffusely in all directions, whereas the 

remaining 1   molecules reflect elastically from the wall like light rays from a plane 

mirror. Here   is called the accommodation coefficient. The boundary condition for slip 

velocity at the wall is derived by relating the distribution of incident particles to that of 

the reflected ones using the Maxwellian distribution function. The velocity slip and 

temperature jump are thus given by (Struchtrup 2005) 

xy
2 1

u
2

  
  

  
         (2.9) 

and W y
2 1

q
2 2

  
    

  
       (2.10) 

where u and v denote the tangential and normal component of velocity along x and y axes 

respectively and W  is the local temperature at the wall.  

So the boundary conditions at bottom and top walls read, including the no penetration 

condition along with the velocity slip and temperature jump (Struchtrup 2005), as 

 
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y W

v 0,

2
pu,

2

2
q 2p
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
 

   
   


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   

         (2.11) 

at the lower wall, y = 0 and  
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         (2.12) 

at the upper wall, y = D. 

Standard normalization in studies of the Rayleigh Bénard (RB) problem in rarefied gases 

is used to nondimensionalize the problem. Dimensionless variables are obtained through 

dividing the variables by their respective reference values such as x* x D  where D is 

the reference length and the superscript * is used to denote the dimensionless variable. 

For simplicity, the superscript * is discarded in later expressions. The reference time, 

velocity, density, temperature, stress and heat flux are, respectively, taken as 

h h h h h h h hD / V ,V , , T , V / D and / D     where hV  is the thermal speed defined as 

h h hV RT    (Stefanov et al. 2002; Manela & Frankel 2005) and h hRT   is the 

temperature in energy units evaluated at the lower (hot) wall temperature, hT . Here h  

and h  denote values of density, and stress at temperature hT . 

Thus, in dimensionless form the governing equations become:  

   u v
0,

t x y

   
  

  
        (2.13) 
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        
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,   (2.14) 
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            
, (2.16) 

and p   .          (2.17) 

The dimensionless parameters appearing in the equations are the Knudsen number, 

representing the ratio of  , the mean free path and gap between two walls, D, is defined 

as h h hKn D    . The Froude number, 
2
hFr V gD  describes the relative 

magnitudes of gas inertia and gravity.  

The governing equations are supplemented by the normalization condition derived from 

the conservation of mass  

1

0

dy 1  ,          (2.18) 

which represents mass flowing through a unit volume specifying the total amount of gas 

between the walls, and by the boundary conditions written in terms of dimensionless 

variables: 
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 at y = 0    (2.19) 

and  
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 at y = 1.    (2.20) 

2.2 Pure Conduction State 

The pure conduction state, when the velocity components are zero  u v 0   , is 

governed by the linear momentum equation and energy equation in y-direction given in 

(2.15) and (2.16) which translates to     

d( )
0

dy Fr

 
   and         (2.21) 

22

2

d d
0

dydy

  
   

 
         (2.22) 

the temperature jump boundary conditions (2.19 & 2.20) read: 

 y W
2 2

Knq p
2


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 at y = 0      (2.25) 
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and  y W
2 2

Knq p
2


   

  
 at y =1.      (2.26) 

System 2.21 – 2.22, together with the boundary conditions 2.25 – 2.26 needs to be solved 

numerically.  

2.3 Numerical Solution and Validation 

The solution method uses variable step-size, finite difference discretization based on the 

Simpson method with deferred corrections (Kierzenka & Shampine 2001, 2008). The 

resulting algebraic system has been solved using a simplified Newton (chord) method 

with residual control. Selection of the number and distribution of grid points is done 

automatically to meet the specified error bounds. The value of the residual set at 10-6 was 

found to be sufficient in most of the computation. Some of the critical points were tested 

with error bounds 10-10 and no significant changes in temperature and density field were 

observed.  

In order to check on the accuracy of the numerical technique employed for the solution of 

the problem considered, it is validated with Stefanov et al. (2002) for the temperature and 

density profiles, which are depicted in Figure 2.2 and 2.3. Both results are well matched 

and this provides confidence in the accuracy of the present work.   
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Figure 2.2: The temperature profiles for Kn = 0.005 & Fr=1 

 

Figure 2.3:  The density profiles for Kn = 0.005 & Fr=1 
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2.4 Discussion on Pure Conduction State 

In this section, we shall analyze the effect of rarefaction (Kn), gravity as an external force 

(Fr), and accommodation coefficient ( ) on the pure conduction state. In the present 

analysis, we focused on large temperature difference between the plates and took 

TR 0.1 .   

2.4.1 Temperature Distribution 

Figure 2.4 and 2.5 show the change in the temperature along the y-axis for different Kn at 

small and large values of Fr respectively. The verical arrows indicate the temperature-

jump at specified values of Kn. Both figures suggest that the jump in the temperature 

increases as Kn becomes larger.  

 

Figure 2.4: The temperature distribution for different Kn at Fr=0.5 

Kn = 0.01 

Kn = 0.01 

Kn = 0.01 
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Figure 2.5: The temperature distribution for different Kn at Fr=100 

At low level of rarefaction (very small Knudsen number, Kn→0), the temperature of the 

gas is exactly the same as that of the boundaries because of the absence of any 

temperature-jump. When the gas is moderately rarefied (i.e. Kn = 0.01), the effect of 

temperature jump is observed, and this jump increases with the increase in rarefaction 

(Kn). At high degree of rarefaction, (for large Kn, i.e. Kn = 0.1), the jump in the 

temperature becomes significantly high as shown in Figure 2.4 and 2.5. It is interesting to 

note that, the temperature-jump is noticably smaller at one boundary than the other. 

Under strong gravity, Fr = 0.5, the jump at the bottom plate (Figure 2.4) is less than the 

jump in the temperature under weak gravity, Fr = 100 (Fgure 2.5). When Fr is small, the 

gas particles are pulled downwards by storng gravity and tend to stagger near the bottom 

plate allowing more thermalization than at the upper plate. 

Kn = 0.01 

Kn = 0.1 

Kn = 0.1 
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Figure 2.6 & 2.7 show the effect of Fr on the temperature distribution at Kn = 0.01 and 

Kn = 0.1. When the gas is slightly rarefied, the effect of changing the thermal speed or 

gravity (Fr) on the temperature profiles is negligible (Figure 2.6). But, at higher degree of 

rarefaction (Kn = 0.1), the effect of Fr is significant on the temperature distribution of the 

gas (Figure 2.7). Considerable jump in the temperature is observed at both plates.   

 

 

Figure 2.6: Effect of Fr on the temperature distribution at Kn = 0.01 
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Figure 2.7: Effect of Fr on the temperature distribution at Kn = 0.1 

Figure 2.8 & 2.9 show the effect of accommodation coefficient on the temperature jump 

for Kn = 0.01 under strong (i.e. Fr = 0.5) and weak gravity (i.e. Fr = 100), respectively. 

For full accommodation, 1  , no jump in the temperature at the boundaries is observed. 

At partial accommodation, i.e. 0.8  , temperature-jump is observed. As   decreases, 

the temperature-jump increases significantly since a large fraction of gas molecules are 

specularly reflected allowing less gas particles to get thermalized with plates.  
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Figure 2.8: Effect of  on the temperature jump at Kn = 0.01 & Fr = 0.5 

At small Fr, due to strong gravitational effects, particles at the upper plate cannot 

thermalize with the plate and a higher temperature-jump is observed (Figure 2.8) than 

that in the case of a larger Fr (Figure 2.9). 

X = 0.8 

X = 0.2 

X = 0.2 
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Figure 2.9: Effect of  on the temperature jump at Kn = 0.01 & Fr=100 

2.4.2 Heat Flux 

Figure 2.10 & 2.11 present the heat flux across the gas domain at different degree of 

rarefaction for Fr = 0.5 and Fr = 100. A high value of heat flux is observe at the hot-

bottom plate which continuosly decreases as we go towards the cold-top plate. The rate 

of heat transfer also decreases as the gas becomes more rarefied.  

X = 0.8 

X = 0.2 

X = 0.2 
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Figure 2.10: The variation of heat flux for different Kn at Fr =0.5 

Since the heat flux depends on the temperature gradient and a large temperature-jump is 

observed near the top plate at higher degree of rarefaction (Figure 2.4), the heat transfer 

rate is higher for Kn = 0.1 (Figure 2.10). But, when the temperature-jump diminishes at 

large Fr (Figure 2.5), the heat flux becomes almost same for any degree of rarefaction in 

the gas at the top plate (Figure 2.11). 
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Figure 2.11: The variation of heat flux for different Kn at Fr=100 
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2.4.3 Density Distribution 

Figure 2.12 & 2.13 show the density distribution for different degree of rarefaction at Fr 

= 0.5 and Fr = 100. Density distribution is not much affected by gas rarefaction except 

for the regions near the plates.  In this region, variations in the density for different values 

of Kn are due to the fact that there exists a temperature-jump which depends on Kn. 

Since the jump in the temperature is higher for large Kn, the temperature of the gas near 

the hot-bottom plate is actually less than that of the plate. As a result, the density is 

slightly higher at large Kn near the bottom plate. Similarly, because of the existence of 

larger temperature-jump at large Kn, the temperature of the gas near the upper plate is 

higher than that of the plate which results in lower density of the gas. 

 

Figure 2.12: Density distribution for different Kn at Fr = 0.5 

It is interesting to note that, even though the temperature of the gas near the bottom plate 

is higher than the gas near the top plate, the density can be higher near the bottom plate 
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for small values of Fr (Figure 2.12). This is due to the effects of compressibility-induced 

density variation. 

 

Figure 2.13: Density distribution for different Kn at Fr = 100 

Figure 2.14 shows the effect of Fr on the density distribution for Kn = 0.01. At large Fr, 

the density follows a monotonically increasing trend with lighter fluid near the hot-

bottom plate and denser fluid near the cold-top plate. Since the gravitational effect is 

small at large values of Fr, the pressure distribution becomes nearly uniform across the 

fluid layer (Figure 2.15) and compressibility effects become negligible. But, at small Fr, 

when the gravitational effect is much prominent, compressibility effects associated with 

the hydrostatic pressure distribution become important. As a result, higher density is 

observed near the hot-bottom plate and the density profile follows a monotonically 

decreasing trend as we go toward the top plate. At some intermediate value of the Froude 

number (Fr = 1), a nonmonotonical density distribution is obtained where the density 

decreases up to a finite distance from the bottom plate and then starts increasing towards 

the top plate.    
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Figure 2.14: Effect of Fr on the density distribution at Kn=0.01 

 

Figure 2.15: Effect of Fr on the pressure distribution at Kn=0.01 
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2.5 Comparison with Hard Sphere Model  

The temperature of the steady pure conduction state as obtained by Stefanov et al. (2002) 

for hard sphere model does not depend on Fr, but from the present analysis using the 

Mawellian Molecules for predicting gas-solid interaction, it is evident that temperature 

distribution and temperature-jump at the both walls depend on Fr. At small Fr, when the 

thermal speed is less and the gravitational effect is stronger, the gas particles tend to 

stagger near the bottom plate and hence the temperature jump tends to be very small as 

compared that for a large Fr. On the other hand, the opposite phenomena are observed at 

the top plate.  

 

Figure 2.16: Temperature distribution for hard sphere and Maxwell models 
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2.6 Summary  

The effect of rarefaction on the temperature-jump in a steady conduction state has been 

presented. With the increase in Kn, the temperature of the gas shows larger deviation 

from that of the plates. However, the jump in the temperature can be sigficanlty higher at 

the upper plate than the temperature-jump at the bottom plate at small Fr. Since the gas 

near the top weighs heavily down on the gas at the bottom under strong gravitational 

effect at small Fr, the gas is stratified in such a way that the density is higher near the 

bottom even with a higher temperature of the bottom plate. At large Fr, in the case of 

weak gravity, the density increases when moving towards the cold top plate while for 

some intermediate values of Fr, the density of the gas actually shows a nonmonotonic 

trend. At the end of the chapter, comparison between the hard-sphere and the Maxwell 

molecule has been presentd. While the present study based on the Maxwell molecules 

acknowledges the compressibility induced density variation and its effects on the 

temperature-jump, the results obtained by Stefanov et al. (2002) and Manela & Frankel 

(2005) using the hard-sphere model do not ackonwledge the Fr dependence of the 

temperature distribution.  
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Chapter 3  

3 The Onset of Convection 

The basic state considered in chapter 2 consists of a rarefied gas confined between two 

plates kept at different temperatures. Since the temperature of the bottom plate is higher 

than the upper plate, the lighter gas particles near the bottom plate tend to move up 

because of buoyancy. The upward movement of the gas is opposed by the viscous 

dissipation, thermal diffusion by conduction, and the compressibility of the gas. The 

governing equations are given in (2.1) to (2.3) along with the boundary conditions (2.11) 

and (2.12). In the absence of convection, the gas is at rest and heat transfer takes place by 

pure conduction. The base state, the pure conduction in the present case, is governed by 

the linear momentum equation and energy equation in the vertical direction (2.21) and 

(2.22), and the boundary conditions are given by the temperature-jump condition at both 

plates (2.25) and (2.26).  

3.1 Problem Formulation 

Conditions leading to the onset of convection is determined by using linear stability 

analysis where small perturbations in the velocity, temperature, pressure, or density are 

added to the base state. If the perturbation grows in time, the system is said to be unstable 

and convection sets in. On the other hand, if the perturbation decays in time, pure 

conduction state prevails. To mathematically analyze the stability of the system, the 

perturbation is represented in terms of a Fourier series expansion as the perturbation is a 

superposition of normal modes. Rather than studying a perturbation of arbitrary form, all 

possible normal modes are checked to determine if the system is stable. If any mode is 

found to grow in time, the system is called unstable since in a perturbation of 

infinitesimal amplitude, every possible mode will always be present.  

To analyze the linear temporal stability of the pure-conduction state for our problem, the 

base state is perturbed by small spatially harmonic perturbations which are represented by  
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  (3.1) 

where superscript b denotes the base state and since there is no flow at the base state, 

b bu (y) v (y) 0  . Here k is the wave number in the direction of x and s is the 

frequency of the perturbation. In a temporal stability analysis problem, the spatial 

structure of the wavelike perturbation is unchanged and the amplitude of the wave grows 

or decays as time progresses. The wave number k is taken to be real whereas the 

frequency s i   is chosen as complex. The system remains stable if 0   and loses 

its stability if 0  . It is said to be neutrally stable if 0  . If 0  , the transition to 

instability takes place via ‘exchange of stabilities’ and exhibits stationary patterns of 

motion. But when 0  , the instability sets in exhibiting oscillatory motions with a 

definite characteristic frequency.    

To develop the governing equations in the perturbation problem, expressions in (3.1) 

were substituted in the nondimensional governing equations (2.10) – (2.12) and making 

use of the equation of state (2.13), pressure p was eliminated. After neglecting all the 

nonlinear terms, the perturbation problem consists of the following set of equations 
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along with the boundary conditions for the perturbation equations developed from (2.15) 

and (2.16) 
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at the bottom hot plate, and  
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at the upper cold plate. 

Together with the boundary conditions (3.6) and (3.7), the set of perturbation equations 

(3.2) – (3.5) forms an eigenvalue problem where only specific combinations of s, k, Kn, 
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Fr, and TR   give non-trivial solutions to the problem. To calculate the dispersion relation 

 Ts s k;Kn,Fr,R , the set of differential equations (3.2) – (3.5) were transformed into 

an algebraic eigenvalue problem using Chebyshev collocation method.  

The solution of (3.2) – (3.7) involves approximating each of the variables u, v,  , and   

in terms of Chebyshev polynomials which can be written in the form  

   
N

N k k
k 0

ˆu x u T x



           (3.8) 

where kû  is the coefficient associated with the expansion, and  kT x  are the Chebyshev 

polynomial of degree k defined by  

   1
kT x cos k cos x , k 0,1,2,...        (3.9) 

in the interval  x 1,1  .  According to the collocation method, solution of the 

differential equations is exactly satisfied by the approximating polynomial  Nu x  at the 

collocation points 

i
i

x cos , i 0,..., k
k


  .        (3.10) 

In the set of equations and the boundary conditions (3.2) – (3.7), the field variables and 

their derivatives are then expressed in terms of  N iu x . The 
thp  derivative is calculated 

by 

 
 

   
N

p p
i N jN i, j

j 0

u x d u x , i 0,...., N



       (3.11) 

where the coefficients 
 p

i, j
d  can be easily calculated making use of the fact that the 

Chebyshev polynomial defined above is basically a trigonometric function (Peyret 2002). 
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Before writing the governing equations of the perturbations in terms of the approximating 

polynomials and their derivatives using the (3.9) and (3.11), the domain in the y direction 

was transformed from [0, 1] to [-1, 1]. Also, to avoid handling the complex number i in 

the governing equations, we chose f iku . The transformed equations read as follow: 
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along with the boundary conditions 
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at the upper cold plate. 

The transformed problem then consists of a system of 4N linear equations satisfied by the 

perturbations at N discrete points across the gas domain. Since, we are interested to 

obtain the marginal stability curve, s was taken to be zero. For a particular wave number, 

k, to find the eigenvalues, a specific value of Kn was chosen and the determinant was 

calculated each time for different Fr until the determinant became zero. The combination 

of Kn and Fr which made the determinant zero was recorded. The calculations were 

repeated for different values of Kn to find the corresponding Fr to construct the marginal 
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stability curve. Similar to the study by Manela & Frankel (2005), the convergence of the 

calculation has been established for N = 70 (Figure 3.1). 

 

Figure 3.1: Convergence test 

The accuracy of the numerical technique employed for the solution of the eigenvalue 

problem was checked by solving the problem formulated by Manela and Frankel (2005). 

A marginal stability curve obtained using the method described above along with that 

obtained by Manela and Frankel (2005) are shown in Figure 3.2. Both results are in 

excellent agreement which confirms the accuracy of the present work. 
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Figure 3.2: The marginal stability curve for a hard-sphere model 

3.2 Results 

Throughout the entire domain of parameters, the present computation invariably yield 

real-valued s, its positive value indicates convection sets in and a negative value indicates 

pure conduction state prevails. The following results have been presented for a 

temperature ratio, TR 0.1  and k 3.12    to facilitate comparison with the results of 

Manela & Frankel (2005). The choice of k = 3.12 is inspired by the critical wave number 

found by Chandrasekhar (1961) for an incompressible fluid with Boussinesq 

approximation.  Later, Jeng & Hassard (1999) showed that the critical wave number for 

similar problem is unique. Recently, Barbera (2003) also found that the critical wave 

number for Rayleigh Bénard system with gases is also 3.12.  

Figure. 3.3 shows the neutral curve in the (Fr, Kn) plane for k    and TR 0.1 . The 

solid line in Figure 3.3 shows the separation of the (Fr, Kn) plane into the domains of 

unstable response, growth rate, s > 0, and stable response, s < 0. 
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Figure 3.3: The marginal stability curve (solid line) marked with stable and unstable 

zone, the necessary condition for the onset of convection (dashed line), and the 

initial appearance of nonmonotonic density distribution (dash-dotted line) 

The dash-dotted line marks the initial appearances of nonmonotonic density distribution 

in the pure conduction state (Figure 3.3). To the right of this line, the density of the gas 

increases monotonically which gives an unstable configuration where the heavier fluid 

rests on top of the lighter fluid. In such arrangements, convection may set in easily as the 

heavier fluid falls back allowing the lighter fluid to rise under a temperature gradient 

large enough to overcome the viscous effects. On the left side of the dash-dotted line 

(Figure 3.3), the density is stratified in such a way that the lighter fluid rests on top of 

heavier fluid because of the compressibility effect even though the temperature at the 

bottom plate is higher. Although it seems to be a stable configuration, convection still can 

set in provided that adiabatic expansion of a fluid element reduces its density below the 

ambient reference density as the fluid element rises through the hydrostatic pressure field. 
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So for convection to take place, the vertical temperature gradient is required to satisfy the 

condition  

P

dT Tg

dy c


              (3.8) 

where    is the thermal expansion coefficient and Pc  is the specific heat at constant 

pressure. Condition (3.8) basically states that the vertical temperature gradient must be 

smaller than the adiabatic gradient corresponding to the ambient hydrostatic pressure 

(Landau & Lifshitz, 1959) . In the present dimensionless notation, the condition reads  

  bdT 4
y 0

dy 5Fr
    .        (3.9) 

The condition (3.9) is satisfied on the right of the dash-dotted line where the density 

stratification is such that heavy fluid rests on top of light fluid giving rise to an unstable 

configuration, it is, however, interesting to note that the condition is also satisfied on the 

other side, between the neutral curve and the left of the dash-dotted line. For instance, for 

Kn = 0.01, the density changes its trend at Fr = 0.9. If we plot the condition (3.9) at two 

points just to the left and right of the dash-dotted line (Fr = 0.8 and Fr = 1) for Kn = 0.01, 

it is observed that (3.9) is satisfied near the upper cold plate in both cases (Figure 3.4). 

The hatched areas represent the region where convection sets in.   
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Figure 3.4: Onset of convection at small Fr  

In Figure 3.3, the dashed line represents the locus of conditions where (3.9) is initially 

satisfied. However, (3.9) does not consider the retarding effects of viscosity and heat 

conductivity which is why it is, in fact, a necessary condition for the onset of convection, 

not the sufficient condition. As such, it is not surprising that the corresponding line 

appears to the left of actual boundary delineated by the neutral curve. According to 

condition (3.9), for Kn = 0.01 critical Fr for the onset of convection appears to be 0.4. But 

from the neutral curve obtained in the present linear stability analysis, it is seen that 

convection sets in for a value of Fr larger than 0.6 at Kn = 0.01. The condition is only 

satisfied at the upper cold plate for Fr = 0.4 (Figure 3.3). If we move to Fr = 0.6, the 

condition is satisfied throughout a finite distance from the upper cold plate and 

convection is sustained. As we move to higher Fr, convection extends over a wider area 

owing to viscous momentum diffusion to lower fluid layers. At Fr = 5, convection 

occupies the entire gas domain between the walls. 

convection 
conduction 
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Figure 3.5: Necessary condition for the onset of convection  

The finite distance from the upper cold plate, through which (3.9) must be satisfied for 

convection to set in, varies for different Knudsen number as can be seen from Figure 3.6.  

As we move along the left boundary of the neutral curve to larger Fr and Kn, the interval 

adjacent to the upper cold plate where the necessary condition (3.9) is satisfied widens. 

At Fr = 0.5 and Kn = 0.005, the distance from the upper plate where convection sets in is 

less than one-tenth of the total domain height whereas, at Fr = 0.8 and Kn = 0.02, this 

distance extends up to twice as much as the former one. These results are in qualitatively 

agreement with the flow structure shown in Stefanov et al. (2002). Their observation 

shows that the convection vortices form throughout the whole gas domain for all Kn on 

the right boundary. But, on the right boundary, due to strong gas stratification near the 

bottom plate, convection rolls tend to shift upwards from the hot bottom plate. For the 

lowest Kn = 0.001 and Fr =0.8 that they were able to study using the DSMC and finite 

difference method, the rolls only occupied one-third of the gas domain starting from the 

cold upper plate.       

convection 

conduction 
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Figure 3.6: Span of convection zone at different points along the neutral curve  

I. (Fr, Kn) = (0.5, 0.005), II. (Fr, Kn) = (0.6, 0.01), III. (Fr, Kn) = (0.7, 0.015), IV. (Fr, Kn) = (0.8, 0.02)   

The neutral curve shown in Figure 3.3 indicates the stability of the Rayleigh-Bénard 

system for rarefied gases for k   . The governing parameter in the case of an 

incompressible fluid is the Rayleigh number which is expressed as  

  3
h h h T

h h

T g 1 R D
Ra

  


    .        (3.10) 

Using the expressions for transport coefficients for a Maxwellian gas, the expression for 

the Rayleigh number can be written in terms of TR , Fr and Kn as 

T
2

1 R3
Ra

2 FrKn


 .          (3.11) 

III 

IV 

I 

II 
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The critical Ra number is not constant for rarefied gas unlike in the case of an 

incompressible fluid or even compressible ones within the framework of the Boussinesq 

approximation. Rather, there exist an upper and lower bound of Ra for which convection 

sets in.   

The stability of a system can only be confirmed if it is stable under perturbations with all 

possible wave numbers. Even if the system is unstable for a single value of the wave 

number of the perturbation while being stable for all other wave numbers, the system 

cannot be called a stable system. Therefore, to determine the neutral stability of the 

Rayleigh-Bénard configuration in the present study, multiple neutral curves in (Fr, Kn) 

plane for different values of k have been obtained. Figure 3.7 shows the neutral curves 

for different values of wave number starting from k 0.5   to k 3  . The lowest neutral 

curve corresponding to k 3   denoted by the dashed line. This indicates that for any 

combination of Fr and Kn inside the curve, a disturbance with a wave number of k 3   

can make the conduction state unstable and convection can set in. For any points outside 

the neutral curve, such a disturbance cannot destabilize the conduction state. However, 

disturbances with a different wave number i. e. k 0.5  , k    or k 2   may cause 

instability as shown in Figure 3.7. The neutral curve for k    encompasses all the other 

curves which means that if the conduction state is stable for a disturbance of wave 

number k   , then the state is also stable for any other disturbances with different wave 

numbers. Therefore, k    is indeed the critical wave number for the onset of convection 

in a rarefied gas.  
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Figure 3.7: The neutral curves for different wave number  

The minimum Rayleigh numbers which are responsible for the onset of convection for 

different wave numbers are plotted in Figure 3.8. It is observed that there is a minimum 

point in the curve plotted in Figure 3.6 which actually confirms that k    is indeed the 

critical wave number for the compressible Rayleigh-Bénard problem and the lowest value 

of Ra (which is 860) that could induce convection corresponds to this value of k.   
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Figure 3.8: Critical Rayleigh number for different wave numbers  

In most of the previous studies on the thermal convection of rarefied gases (Stefanov et 

al., 2002; Manela & Frankel, 2005 ), hard-sphere model was used. In the present analysis, 

we considered Maxwell model for deriving the transport coefficients. Though hard-

sphere model has been popular because of its simplicity it fails to represent a realistic 

collision. In the hard-sphere model, interaction potential is assumed to be infinitely 

repelling only when the gas molecules are in contact with each other during a collision 

which is unrealistic because it is well known that the molecules tend to attract each other 

when they are apart for a finite distance. Though Maxwell model cannot address the 

attraction potential it predicts a diminishing repulsion potential as the molecules go apart 

from each other. The main advantage of Maxwell model lies in the fact that it can 

produce analytical expression just like the hard sphere model while addressing the 

molecular interaction more realistically.      
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Figure 3.9: The neutral curves for two different gas models 

The neutral curves over the (Fr, Kn) plane obtained using the Maxwell model and hard 

sphere model is shown in Figure 3.9. The results from Manela & Frankel (2005) have 

been used to reproduce the neutral curve for hard sphere model. When the system is fixed 

at a place, Fr is only affected by the temperature since the gap between two plates, D and 

gravitational constant, g are fixed. It is interesting to see that the curve obtained via 

Maxwell model shifts towards left; convection initiates at a lower temperature and the 

zone of convection is confined to lower temperature as well. This can be analyzed by 

looking at the transport coefficients for the two models. Both the models predict that the 

viscosity and thermal conductivity of the gas increase with temperature (Smirnov, 1982). 

Smirnov (1982) obtained the ratio of the transport coefficients for both hard sphere and 

Maxwell models. For a given temperature, hard sphere model predicts lower thermal 

conductivity and viscosity, approximately 94% of what Maxwell model predicts. On the 

right boundary of the neutral curves, it is not surprising that the unstable region is wider 

for hard sphere model than for the Maxwell model. This is because the viscosity which is 

K
n

 

Fr 
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one of the causes for convection to be inhibited is predicted to be lower in the case of a 

hard sphere gas. However, on the left boundary, even though the viscosity for Maxwell 

model is higher than the hard sphere model convection can initiate early. This is because 

due to the presence of high compressibility effects at low Fr, the density distribution is 

not monotonically increasing from hot-bottom to cold-top plate following the relationship 

for an incompressible gas  T   . Rather density is stratified in such a way that the gas 

is denser near the bottom plate. Under this circumstances, convection can still set in as 

discussed before but will initiate near the top cold plate. For such a localized convection 

to take place, the bottom surface still needs to be hot enough. Since the thermal 

conductivity of gases for Maxwell model is higher than the hard sphere model, heat from 

the bottom plate will conduct more effectively and will raise the temperature of the gas at 

an upper level higher. The critical temperature that is needed for a localized convection to 

set in near the top plate will be reached for the lower temperature of the bottom plate for 

Maxwell model. 

3.3 Summary 

The onset of convection in a rarefied gas cannot be determined by a single parameter like 

the Rayleigh number unlike the case of an incompressible fluid. The stability problem in 

a Rayleigh-Bénard configuration for rarefied gases is governed by the nondimensional 

temperature ratio, TR , the Knudsen number and the Froude number. For the present 

analysis, a marginal stability curve in Kn-Fr plane has been obtained for TR 0.1 . 

Convection sets in at any point inside the marginal stability curve while outside the curve 

there will always be pure conduction. The zone of convection is confined to Kn smaller 

than 0.026. The upper bound on Fr for the onset of convection is about 2000. Unlike the 

incompressible fluid, convection can start in a rarefied gas even when the density 

stratification is such that the fluid is denser near the bottom plate and lighter fluid rest 

upon them and the lower bound for Fr can be as low as 0.4 according to the present study. 

The comparison between the marginal stability curves obtained using two molecular 

interaction models, the hard-sphere and the Maxwell molecule, has been presented at the 

end of this chapter. 



67 

 

 

Chapter 4  

4 Conclusions 

Rayleigh-Bénard convection is one of the classical problems in hydrodynamic stability 

theory. A commonly accepted method to investigate this problem is to apply the 

Boussinesq approximation where the compressibility effects of are neglected. The 

transition to convection from a pure conduction state in a Raylegih-Bénard configuration 

is then determined by the Rayleigh number representing the relative effects of buoyancy, 

fluid viscosity, and heat conductivity. However, the necessary condition for the onset of 

convection is affected by the compressibility of the fluid which cannot be neglected in 

many cases including the large-scale convections in the atmosphere as well as the micro- 

nanoscale devices. In recent years, the investigation of the Rayleigh-Bénard problem in 

compressible fluids has attracted considerable attention. One of the popular approaches is 

to address this classical hydrodynamic stability problem for rarefied gases.  

4.1 Summary 

The onset of convection in rarefied gases in a Rayleigh-Bénard configuration has been 

analyzed. With the advancement of micro- nanoscale devices, rarefied gas phenomena 

have become important in many industrial applications such as electronic cooling, 

thermal actuators, vacuum packaging etc. One of the unique features of rarefied gas is 

that high-altitude conditions encountered in astrophysics including convection in stars 

and upper atmosphere of the Earth can be produced in a laboratory set-up with rarefied 

gas (Stefanov et al. 2002). Rayleigh-Bénard convection has been addressed for rarefied 

gases in recent years to model the compressible fluid problems. While DSMC has been a 

popular approach to solve the Rayleigh-Bénard problem for rarefied gases (Manela & 

Frankel 2005), continuum slip model has been used in this thesis. Unlike Manela who 

investigated the problem with a hard-sphere model, a more realistic Maxwellian model 

has been used to derive the state-dependent transport coefficients and the boundary 

conditions.  
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A linear stability analysis was conducted to mark the transition from conduction to 

convection in the Rayleigh-Bénard system with a rarefied gas. Before performing the 

linear stability analysis, a base state where pure conduction prevails was studied. The 

effects of Knudsen number, Froude number, and the accommodation coefficient have 

been shown in Chapter 2. As the Knudsen number increases, which is a measure of gas 

rarefaction, larger temperature-jump at the boundaries have been observed (Figure 2.1and 

2.4). Because of higher rarefaction, the heat transfer rate decreases as Kn is increased 

(Figure 2.2 and 2.5). However, the density is only affected by the choice of Fr as can be 

seen from Figure 2.9. For large Fr, in the case of weak gravity, the density of the pure 

conduction state increases from the bottom-hot plate to top-cold plate. When strong 

gravity effects are present, for small Fr, the gas is stratified in such a way that the gas 

near the bottom plate is denser than those near the top plate even though the temperature 

of the bottom plate is higher. The density distribution is nonmonotonic for some 

intermediate values of Fr. The accommodation coefficient,   affects the temperature-

jump at the boundaries. A large fraction of molecules incident on the plates are 

thermalized, less temperature-jump is observed at the boundaries.  

The stability of the pure conduction state has been examined by introducing small 

harmonic perturbations to the base state. After linearizing, the governing equations along 

with the boundary conditions for perturbations have been transformed into an algebraic 

eigenvalue problem using Chebyshev collocation method. A neutral curve has been 

obtained in the (Fr, Kn) plane for the critical wave number k    and temperature ratio 

TR 0.1  (Figure 3.1). Every point on the neutral curve marks the critical condition for 

the onset of convection while the zone outside the neutral curve represents the pure 

conduction state. Although a critical Rayleigh number indicates the onset of convection 

for incompressible fluids, the neutral curve in Figure 3.1 does not correspond to a single 

Rayleigh number since Ra depends on both Fr and Kn (3.11). For a given rarefaction 

(Kn), there can be two values of Fr that corresponds to the transition from the pure 

conduction to convection state. However, for each k there is a minimum Ra along the 

neutral curve which indicates the onset of convection. This minimum value of Ra has 

been recorded for different values of k (Figure 3.5). The lowest value of the minimum Ra 
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for different k corresponds to k    which has been found to be the critical wave number 

for compressible Rayleigh-Bénard convection by early authors, Jeng & Hassad, 1999 and 

Berbera, 2003. In the last section of Chapter 3, a comparison between the neutral curves 

obtained by the present study for a Maxwellian gas and by Manela for a hard-sphere gas 

has been presented. The shift of the neutral curve for a Maxwellian gas toward left, 

smaller Fr, can be understood from the different predictions transport coefficients in two 

models. 

4.2 Key Findings 

The onset of convection in a rarefied gas in a Rayleigh-Bénard configuration, unlike in 

the case for an incompressible fluid, cannot be determined by Rayleigh number only. In a 

rarefied gas problem, the density distribution does not follow a nonmonotonically 

increasing trend from the hot plate towards a cold plate. Due to compressibility effects, 

the density can be stratified in a way where the gas density is less at the cold plate than at 

the hot plate. As a result, the onset of convection must be determined using at least two 

non-dimensional parameters while keeping the third one constant. In the present analysis, 

the ratio of temperature differences between the plates were chosen as 0.1 and a netural 

curve was obtained which marks the transition to convection from a pure conduction state 

in terms of Froude and Knudsen numbers. Convection in rarefied gases can only be 

observed when the degree of rarefaction is less i.e. Kn is small. When the gas is highly 

rarefied (for Kn > 0.026), conduction state remains stable and no convection can set in. 

To account for the molecular interaction of gas particles, Maxwell’s molecule was used 

which is more realistic than the hard-sphere model employed by previous researchers in 

studying the Rayleigh- Bénard convection in rarefied gases. The most critical wave 

number of the disturbances for the onset of convection was also examined and it was 

found to be 3.14 which is the same as the critical wave number for the case of an 

incompressible fluid. 
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4.3 Future Recommendation 

The linear stability analysis can tell us whether the system is stable or unstable to 

infinitesimal disturbances but it cannot predict the ultimate flow that results from this 

instability. Linear stability analysis fails to determine the stability of the system for large 

disturbances which can be investigated using nonlinear stability analysis. While there 

have been a number of nonlinear stability analyses conducted by (Mareschal & 

Kestemont 1987; Given & Clementi 1989; Watanabe 2004) for within the framework of 

Boussinesq approximation, such an analysis needs to be done for rarefied gases. 

A Maxwellian gas has been considered in this thesis to model the molecular interactions 

because it predicts the molecular repulsion in a more realistic way than the hard-sphere 

model. Yet, it is one of the simplest models which cannot represent the actual molecular 

interactions. Other models of molecular interaction should be explored to study the 

Rayleigh-Bénard problem in rarefied gases.  

In this thesis, first order velocity-slip and temperature-jump boundary conditions have 

been applied. Boundary conditions with higher order slip discussed by Hadjiconstantinou 

(Manela & Frankel 2005) can be explored in the future. The neutral curve marking the 

onset of convection obtained in this thesis can also be reproduced for different boundary 

conditions such as constant and periodic heat flux applied to one or both plates. While the 

present study has focused only on a single value of temperature ratio, TR 0.1 , other 

values of TR  needs to be examined in the future as well. The stability analysis for a 

Rayleigh-Bénard problem studied here could also be extended for other configurations 

such as double-layer fluids, vertical slots in window-panes. 

Although the present study is not expected to predict the form and intensity of the final 

convection patterns which are governed by nonlinear interaction, this thesis successfully 

predicts the boundary of the convection domain. This offers the linear temporal stability 

analysis as a viable means of studying the how the various parameters affect the 

transition from the pure conduction state to convection in a rarefied gas.  
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Appendix 

Appendix A: Solving Boundary Value Problem by Chebyshev 

Collocation Method 

Let us consider the following differential equation  

         2 5x 2 2 2 2u xu u 24 5x e 2 2x cos x 4x 1 sin x ,           (A1) 

on 1 x 1    

which we wish to solve. 

The corresponding boundary conditions are 

   5u 1 e sin 1    

and    5u 1 e sin 1  . 

The solution to the problem stated above is approximated by a polynomial  Nu x  of 

degree at most equal to N. According to the collocation method, the differential equation 

(A1) is readily satisfied at the collocation points.    

Let us take the Gauss-Lobatto collocation points 

i
i

x cos , i 0,..., k
k


  . 

The differential equation in (A1) is forced to satisfy at the inner collocation points by an 

approximating polynomial  Nu x . The collocation equation along with the boundary 

conditions are- 
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       

   

   

N i N i N i i

5
N N

5
N 0

u x u x u x f x , i 1,...., N 1

u x e sin 1

u x e sin 1





     

 

 

    A2 

where            2 5x 2 2 2 2f x 24 5x e 2 2x cos x 4x 1 sin x      ,  5g e sin 1
   , 

and  5g e sin 1   .  

Since the derivatives at any collocation points also need to be expressed in terms of 

 Nu x , (A2) becomes-  

           

 

 

N N
2 1

N j N j N i ii, j i, j
j 0 j 0

N N

N 0

d u x d u x u x f x , i 1,...., N 1

u x g

u x g

 





    





 

 

which a set of linear algebraic equations of the form U F  . 

Here         
T

N 0 N 1 N N 1 N NU u x ,u x ,...,u x ,u x ,  
T

1 N 1F g ,f ,..., f ,g   , and 

A is the    N 1 x N 1   matrix consisting of the differentiation coefficients, 
 2

i, j
d  and 

 1

i, j
d .  

Figure A1.1. shows how the choice of number of collocation points affects the solution. 

The exact solution of the problem (A1) is hown by the solid line and two approximate 

solutions for N=5 and N=20 are indicated by dashed and dotted lines, respectively 

(Figure A1.1).  
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Figure A. 1: Effect of number of collocation points on a solution approximated with 

Chebyshev polynomial 
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