October 2017

The Drosophila melanogaster model of human uric acid nephrolithiasis as a novel in vivo drug screening platform

Aymon N. Ali
The University of Western Ontario

Supervisor
Leong, Hon S.
The University of Western Ontario

Joint Supervisor
Razvi, Hassan
The University of Western Ontario

Graduate Program in Surgery

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Aymon N. Ali 2017

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Translational Medical Research Commons

Recommended Citation
https://ir.lib.uwo.ca/etd/4905
Abstract

Nephrolithiasis involves the supersaturation of a stone-forming solute in urine leading to the formation of a calculus. The development of novel therapeutic agents for this multifactorial urological disorder has been hindered by lack of a practical pre-clinical model. Currently established medical treatments can possess unfavorable side effect profiles and inconsistent efficacies in certain metabolic milieus. Here, Drosophila melanogaster—an emerging model for calcium oxalate nephrolithiasis—was investigated as a potential disease model and high throughput drug discovery platform for human uric acid nephrolithiasis. Through disruption of the Uro gene and purine-rich dietary manipulation, we successfully demonstrate the formation of uric acid calculi in fly malpighian tubules as confirmed by ex vivo confocal microscopy, qRT-PCR and scanning electron microscopy. Flies treated with standardized concentrations of drug candidates through a novel assay identified several compounds with potential anti-lithogenic effects underscoring the power of D. melanogaster as a high throughput tool in drug screening for nephrolithiasis.

Keywords

Nephrolithiasis, hyperuricemia, Drosophila melanogaster, GAL4/UAS system, kidney stone disease, confocal microscopy, insect model, microdissection, drug screening, uric acid, malpighian tubule, urate oxidase
Acknowledgments

I would like to thank the University of Western Ontario and the Department of Surgery for their fantastic MSc in Surgery graduate program. Over the past year, this program is has armed me with all the tools necessary to be an excellent academic clinician. It will be a great pleasure to see this unique program grow and evolve in the future.

None of the work I have accomplished would have been possible without the continuous support of my graduate supervisors Dr. Hon Leong and Dr. Hassan Razvi. Hon, thank you for accepting me into the Leong Lab family. Your advice has provided me with true guidance on this long and arduous journey. I could not have done this without you. Dr. Razvi, thank you for your inspiration, mentorship, and having your door open whenever I needed your support. It has been a great experience working with you and the Division of Urology.

I would like to thank the faculty members of the Department of Surgery, especially Dr. Abdel-Rahman Lawendy and Dr. Nicholas Power for their words of encouragement, and Janice Sutherland for always being there to help with my administrative questions.

Lastly, I would like to thank all the members of the Leong Lab for their support, especially Richard Berish, Thamara Dayarathna, Ranjit Padda (assisted with and performed qRT-PCR), Yohan Kim and Janice Gomes. I will always cherish the memory of working with you all.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>AFO</td>
<td>Autofluorescent object</td>
</tr>
<tr>
<td>BQ</td>
<td>Birefringence quotient</td>
</tr>
<tr>
<td>BM</td>
<td>Basement membrane</td>
</tr>
<tr>
<td>CCAC</td>
<td>Canadian council on animal care</td>
</tr>
<tr>
<td>CKD</td>
<td>Chronic kidney disease</td>
</tr>
<tr>
<td>CT</td>
<td>Computerized tomography</td>
</tr>
<tr>
<td>CaOx</td>
<td>Calcium oxalate</td>
</tr>
<tr>
<td>DM</td>
<td>Drosophila melanogaster</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>EGFP</td>
<td>Enhanced green fluorescent protein</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy-dispersive X-ray spectroscopy</td>
</tr>
<tr>
<td>EG</td>
<td>Ethylene glycol</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>GAL4</td>
<td>Galactose-responsive transcription factor 4</td>
</tr>
<tr>
<td>HGPRT</td>
<td>Hypoxanthine guanine phosphoribosyl transferase</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-performance liquid chromatography</td>
</tr>
<tr>
<td>HG</td>
<td>Hindgut</td>
</tr>
<tr>
<td>MT</td>
<td>Malpighian tubule</td>
</tr>
<tr>
<td>MIF</td>
<td>Migration inhibitory factor</td>
</tr>
<tr>
<td>MG</td>
<td>Midgut</td>
</tr>
<tr>
<td>OC</td>
<td>Optical configurations</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>TD</td>
<td>Transmitted detector</td>
</tr>
<tr>
<td>TS</td>
<td>Tubule segment</td>
</tr>
<tr>
<td>UA</td>
<td>Uric acid</td>
</tr>
<tr>
<td>UAN</td>
<td>Uric acid nephrolithiasis</td>
</tr>
<tr>
<td>UAS</td>
<td>Upstream activation sequence</td>
</tr>
<tr>
<td>UAD</td>
<td>Uric acid dihydrate</td>
</tr>
<tr>
<td>UTI</td>
<td>Urinary tract infection</td>
</tr>
<tr>
<td>URAT1</td>
<td>Urate transporter 1</td>
</tr>
<tr>
<td>WT</td>
<td>Wild-type</td>
</tr>
</tbody>
</table>
Table of Contents

Abstract .. i
Acknowledgments .. ii
Abbreviations... iii
Table of Contents .. iv
List of Tables .. vii
List of Figures ... viii
List of Appendices .. xi

Chapter 1 ... 1

1 Introduction .. 1
 1.1 Classification of nephrolithiasis ... 1
 1.2 Physicochemical mechanisms of nephrolithiasis .. 3
 1.3 Uric acid nephrolithiasis .. 4
 1.3.1 Uric acid metabolism ... 5
 1.3.2 Risk factors .. 6
 1.3.3 Symptoms and diagnosis .. 8
 1.3.4 Non-surgical management .. 9
 1.4 Current models of uric acid nephrolithiasis .. 10
 1.5 Drosophila melanogaster as a translational model of human disease 11
 1.5.1 Comparative functional anatomy of Drosophila melanogaster and human renal systems ... 13
 1.5.2 Role as a model of human nephrolithiasis and renal disease 15
 1.5.3 Advantages of D. melanogaster as a model of human renal disease ... 16
 1.5.4 Limitations of D. melanogaster based renal modelling 18
1.6 Objectives and Hypothesis ... 20

Chapter 2 .. 22

2 Materials and Methods .. 22

2.1 Rearing and maintenance of D. melanogaster 22

2.2 Preparation of standard and lithogenic fly media 24

2.2.1 Standard media ... 24

2.2.2 Lithogenic media ... 26

2.3 Gene disruption and knockdown .. 26

2.4 Malpighian tubule dissection and extraction .. 27

2.5 Quantitative real-time PCR (qRT-PCR) ... 28

2.6 Determination of the presence of birefringent concretions in fly malpighian tubules and fecal matter ... 30

2.6.1 Ex vivo imaging of fly malpighian tubules and fecal matter 30

2.7 Stone isolation and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) .. 32

2.8 Development of high throughput drug screening platform 33

2.8.1 Quantification of birefringence in fly fecal matter 34

2.8.2 Determination of fecal birefringence under varying purine loads .. 36

2.8.3 Determination of effect of DMSO on fecal birefringence 36

2.8.4 Effect of xanthine oxidase inhibitors on malpighian tubule and fecal birefringence ... 37

2.8.5 Drug library screening ... 37

Chapter 3 .. 39

3 Results .. 39

3.1 Ex vivo imaging of DM malpighian tubules .. 39

3.1.1 Effect of varying purine loads on birefringent concretion formation ... 41
3.2 Quantitative real-time PCR ... 42
3.3 Scanning electron microscopy and energy-dispersive spectroscopy 43
3.4 High throughput drug screening.. 44
 3.4.1 Ex vivo imaging of fly fecal matter ... 44
 3.4.2 Effect of DMSO on fecal birefringence.. 45
 3.4.3 Fecal birefringence under varying purine loads 46
 3.4.4 Effect of xanthine oxidase inhibitors on formation of birefringent concretions in fly fecal matter and malpighian tubules 47
 3.4.5 Drug library screening ... 48
Chapter 4 ... 50
4 Discussion and conclusions .. 50
 4.1 Ex vivo imaging of DM malpighian tubules 50
 4.2 Quantitative real time PCR and Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy .. 52
 4.3 Ex vivo imaging of DM fecal matter .. 53
 4.4 Ex vivo imaging of DM malpighian tubules following Allopurinol treatment .. 55
 4.5 High throughput drug screening .. 56
 4.6 Future directions .. 57
References or Bibliography ... 61
Appendices .. 73
Curriculum Vitae .. 76
List of Tables

Table 1: Classification of nephrolithiasis by composition, incidence and etiology 3

Table 2 Risk factors and etiologies for uric acid nephrolithiasis (* indicates factor contributing to two or more risk factors)................................. 8

Table 3 Selected examples of human pathophysiological insights gained from the experimental use of Drosophila melanogaster.. 13

Table 4 Ingredients used in the preparation of standard media............................. 25
List of Figures

Figure 1: Schematic representation of the proposed physicochemical mechanisms of nephrolithiasis.. 4

Figure 2: Purine degradation pathway in human and non-human species........ 6

Figure 3 Schematic representation of (A) Fly malpighian tubule and tubule segments (B) Principal and stellate cells .. 14

Figure 4 Functional and structural comparison of: (A) mammalian nephron and (C) insect malpighian tubule; podocyte (B) and nephrocyte (D). 15

Figure 5 The GAL4/UAS system .. 17

Figure 6 Fly vials maintained in Drosophila incubator at 27°C 23

Figure 7 Malpighian tubule dissection technique.. 28

Figure 8 Fly fecal matter collection and microscopy.. 31

Figure 9 Summary of model validation experiments performed 33

Figure 10 Flowchart depicting in silico particle analysis for birefringent area (%) quantification ... 35

Figure 11 Macro-based automation of birefringence quantification 35

Figure 12 Polarized light micrograph of UroK04888 and WT flies fed either standard or purine rich medium. .. 39
Figure 13 Malpighian tubule crystal formation in under varying dietary conditions. ... 40

Figure 14 Polarized light micrograph of Uro04888 fly malpighian tubules following incubation in purine rich medium (1\% w/v RNA) showing segmental distribution of birefringent concretions ... 41

Figure 15 Polarized light micrograph demonstrating Uro04888 fly malpighian tubule birefringent concretions under varying purine loads .. 42

Figure 16 Relative Uro gene expression between wild-type Canton S and Uro04888 ... 43

Figure 17 Scanning electron microscopy of (A) concretion isolated from Uro04888 malpighian tubules and (B) Pulverized human uric acid stone with respective EDX spectra.. 44

Figure 19 Fecal birefringence quotient: DMSO vs. controls 46

Figure 20 Fecal birefringence quotient under varying purine loads 46

Figure 21 Fecal birefringence quotient: varying concentrations of allopurinol treated media vs. controls .. 47

Figure 22 Allopurinol-treated media showing reduced birefringent material in fly malpighian tubules (A) 0.36mM (B) 0.72mM (C) 1.06mM media 48
Figure 23 Representative examples: "Yen" algorithm auto-thresholded raw polarized light microscopy images demonstrating fecal birefringence: (A) 2% RNA control (B) Allopurinol (C) test compound "hit".

Figure 24 In vitro grown uric acid dihydrate (UAD) crystals viewed under polarized light microscopy.

Figure 25 In vitro grown L-cystine dihydrochloride crystal admixed with methylene blue under polarized light.

Figure 26 X-ray crystallography of L-cystine based crystal demonstrating characteristic disulfide bond.
List of Appendices

Appendix A1: Permissions, Nature Publishing Group .. 73

Appendix A2: Permissions, John Wiley and Sons... 74

Appendix A3: Permissions, Company of Biologists... 75
Chapter 1

1 Introduction

Nephrolithiasis is a common urological disorder with a lifetime risk of approximately 7-13% in North America, a figure expected to increase to 30% by 2050.1–3 In the United States, the prevalence of stone disease has demonstrated a steady increase from 5.2% (1994) to 8.4% (2012).4 Globally, a similar upward trend is observed agnostic of age, sex or ethnic background.5 The economic burden of nephrolithiasis is substantial with annual direct costs reported as $5.3 billion in the United States alone.6 Acute nephrolithiasis related complaints generated 1.3 million ER visits in the US (2009), with 20% requiring hospitalization.7 In addition to these acute complications, kidney stone disease is also reported to be a source of chronic morbidity associated with chronic kidney disease (CKD).8–10 Following the development of an initial kidney stone, the risk of stone recurrence approaches greater than 50% over a period of five years.11

1.1 Classification of nephrolithiasis

Nephrolithiasis is most commonly classified by calculus composition (\textbf{Table 1}). Epidemiological data in relation to stone disease is highly variable, reflecting the complex and multifactorial etiologies of this disorder. In industrialized regions, calcium-based calculi are by far the most prevalent, accounting for 80% of all kidney stones.12–14 Calcium stones are predominantly composed of calcium oxalate (\textasciitilde 70%) in either the monohydrate or dihydrate forms, often in combination with calcium phosphate. Calcium phosphate is the primary constituent of \textasciitilde 10% of
calcium stones. Uric acid (UA) calculi are the second most common, responsible for ~7-10% of kidney stones although significant variations exist geographically, particularly in warmer climates. Struvite calculi, also referred to as “infection-related stones” due to their association with urease-positive organism urinary tract infections (UTIs), comprise ~10% of kidney calculi. The autosomal recessive disorder cystinuria occurs due to defective cystine transport secondary to mutations in the solute carrier genes SLC3A1 or SLC7A9 and is responsible for only ~1% of stones. Much rarer stone compositions include silicon, xanthine, protein and drug related stones (triamterene, sulfonamides, indinavir).

<table>
<thead>
<tr>
<th>Stone</th>
<th>Potential constituents</th>
<th>Incidence</th>
<th>Common etiologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium oxalate</td>
<td>Monohydrate (Whewellite)</td>
<td>55-61%</td>
<td>Idiopathic, Low urine volume, Hypercalciuria, Hyperoxaluria, Hypocitraturia</td>
</tr>
<tr>
<td></td>
<td>Dihydrate (Weddellite)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium phosphate</td>
<td>Brushite PO4/CO3 apatite</td>
<td>12-13%</td>
<td>Ca2+/PO4 metabolic disturbances, renal tubular acidosis, UTI</td>
</tr>
<tr>
<td></td>
<td>3/8-calcium phosphate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uric Acid</td>
<td>Uric acid Monosodium urate</td>
<td>8-14%</td>
<td>Low urine pH/volume, Idiopathic, Diabetes,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Struvite</td>
<td>Ammonium-magnesium phosphate</td>
<td>2-6%</td>
<td>Urease-positive UTIs(^{17})</td>
</tr>
<tr>
<td>Cystine</td>
<td>Cystine</td>
<td>1-6%</td>
<td>(SLC3A1/SLC7A9) mutation(^{18})</td>
</tr>
<tr>
<td>Other</td>
<td>Drugs (e.g. Triamterene, Silicon, Xanthine)</td>
<td><1%</td>
<td>Iatrogenic, Xanthinuria(^{24})</td>
</tr>
</tbody>
</table>

Table 1: Classification of nephrolithiasis by composition, incidence and etiology (North America)

1.2 Physicochemical mechanisms of nephrolithiasis

Despite sizeable nephrolithiasis related costs and morbidity, a complete understanding of nephrolithiasis on the molecular level remains tenuous.\(^{25,26}\) Whilst several recent advancements have been made to elucidate the underlying processes involved in stone formation, particularly in relation to calcium and uric acid nephrolithiasis (UAN), the complete cascade of events is yet to be unequivocally defined.\(^{27}\) Several theories exist to describe the journey from solute to calculus, most agreeing with the key starting point of supersaturation of a stone-forming solute in urine promoting crystal formation or crystallization.\(^{28}\) Supersaturation itself is initiated by several etiological factors influencing the
increased production or reduced excretion of the solute in question. This concept, first proposed by Robertson et al. in 1966 has persisted as one integral to stone research.29–31 This is closely followed by crystal nucleation, growth, and aggregation (Figure 1).32 Low-molecular weight compounds such as citrate, stone matrix proteins, pyrophosphate and magnesium can alter the biochemical environment of urine and calculi, modulating stone growth and morphology as a promoter or inhibitor.33,34 Urinary pH plays a particularly important role in modifying the solubility of stone forming solutes in urine.35

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Schematic representation of the proposed physicochemical mechanisms of nephrolithiasis}
\end{figure}

\section{1.3 Uric acid nephrolithiasis}

Epidemiological data for uric acid stones varies significantly based on geographical location.36 Regions within the “stone belt” referring to an area spanning from Egypt,
across the Middle East ending at the Philippines appear to be more commonly affected.37,38 Prevalence ranges from 4\% (Sweden) and 15\% (Germany) to as high as 22\% and 28.1\% in Israel and Pakistan respectively.39–42 It is important to note that this data is timeworn (30 years old or more) and new insights into the rapidly evolving epidemiology of uric acid nephrolithiasis are warranted.

1.3.1 Uric acid metabolism

Purines play an important role in human physiology. They are building blocks of the nucleic acids DNA and RNA, are core components of co-enzymes and play a role in neurological and muscular function.43 Uric acid is the end-product of purine metabolism in humans. In lower order mammals and other organisms, uric acid is further metabolized to form the soluble compound allantoin by the enzyme urate oxidase (Figure 2).44,45 In humans, the gene encoding for urate oxidase production is rendered non-functional due to the presence of two nonsense mutations preventing further metabolism to allantoin.46 As a result, humans are hyperuricemic relative to other organisms (10-fold increase).47 Uric acid has been shown to possess neuroprotective, anti-oxidant and cardioprotective functions which may explain the evolutionary advantage conferred by the loss of the urate oxidase enzyme and relative hyperuricemia.48–51 Following the generation of uric acid, it is freely filtered at the glomerulus and undergoes reabsorption and secretion at the site of the proximal tubule via the URAT1 transporter52, ultimately being excreted through the renal and gastrointestinal systems.43,53–55
1.3.2 Risk factors

Several risk factors for uric acid nephrolithiasis have been identified (Table 2) however low urinary pH or volume, hyperuricosuria and hyperuricemia are the most strongly associated.\(^{16,56}\). With regards to the most important risk factor of low urinary pH\(^{23,56}\), uric acid stone formers have been shown to have a consistently lower urinary pH relative to calcium stone and non-stone formers, despite excreting normal or even lower amounts of uric acid relative to these populations.\(^{57,58}\) This phenomenon can be explained by exploring the physicochemical interactions of
uric acid within acidic and basic environments. Uric acid, a weak organic acid (pKₐ 5.3 at 37°C), predominantly exists in the ionic form urate within the plasma (physiological pH 7.35-7.45). Uric acid itself however is poorly soluble in aqueous solutions (~100mg/L) and pH is the single most important determinant of solubility. In contrast, urate is 20 times more soluble. The risk of uric acid crystallization and thus stone formation is therefore inversely related to urinary pH.

Hyperuricosuria (24-hour urinary uric acid excretion >600mg/day) can be associated with a wide range of causative factors such as a purine-rich diet (e.g. consumption of large quantities of red meat), hyperuricemia secondary to primary gout and medications. Rarer causes include the congenital causes of hyperuricemia such as hypoxanthine guanine phosphoribosyl transferase (HGPRT) deficiency. Factors contributing to low urine volume such as hypovolemia secondary to sweating and chronic diarrhea increases uric acid supersaturation and thus the risk of uric acid stone formation. Neoplastic disorders and other disorders responsible for a high cell turnover have also been identified as potential etiologies. More recent advancements in the pathophysiology of uric acid nephrolithiasis have identified obesity, type II diabetes and the metabolic syndrome to be associated with an increased risk of stones. This is thought to be due to the association of these disorders with low urinary pH as a result of the renal manifestations of insulin resistance.
<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Etiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low urine volume</td>
<td>Chronic diarrhea</td>
</tr>
<tr>
<td></td>
<td>Low fluid intake</td>
</tr>
<tr>
<td></td>
<td>Diaphoresis</td>
</tr>
<tr>
<td>Low urinary pH</td>
<td>Idiopathic</td>
</tr>
<tr>
<td></td>
<td>Gouty diathesis</td>
</tr>
<tr>
<td></td>
<td>Diabetes/Metabolic Syndrome</td>
</tr>
<tr>
<td></td>
<td>Obesity</td>
</tr>
<tr>
<td></td>
<td>Chronic diarrhea*</td>
</tr>
<tr>
<td></td>
<td>Primary gout*</td>
</tr>
<tr>
<td>Hyperuricosuria</td>
<td>High-purine diet</td>
</tr>
<tr>
<td></td>
<td>Primary gout*</td>
</tr>
<tr>
<td></td>
<td>Congenital disorders</td>
</tr>
<tr>
<td></td>
<td>Medications</td>
</tr>
<tr>
<td></td>
<td>High cell turnover disorders</td>
</tr>
</tbody>
</table>

Table 2 Risk factors and etiologies for uric acid nephrolithiasis (* indicates factor contributing to two or more risk factors)

1.3.3 Symptoms and diagnosis

The signs and symptoms of uric acid nephrolithiasis are identical to those encountered in nephrolithiasis in general which include acute onset colicky abdominal pain, renal angle tenderness, nausea and hematuria (presence of blood in urine). As mentioned previously, a low urinary pH (<5.5) may be seen in uric acid nephrolithiasis. Uric acid calculi are radiolucent on plain radiographs, therefore non-contrast helical computerized tomography (CT) scanning is the diagnostic tool of choice. Stone analysis can be utilized to confirm the composition of a uric acid based calculus which can be determined by “wet” chemical analysis, FTIR (Fourier Transform Infrared Spectroscopy) and X-ray diffraction.
1.3.4 Non-surgical management

The non-surgical management of uric acid nephrolithiasis includes urinary alkalinization, lifestyle modification and pharmacological therapy to reduce net uric acid excretion. Urinary alkalinization with potassium or sodium citrate/bicarbonate and thus the medical dissolution of uric acid calculi is the first-line treatment in most cases. It is often successful (~70% of cases) and relatively simple to establish. For this approach, the urinary pH is maintained between 6.5-7.0, taking care to avoid overalkalinization of the urine as this is associated with an increased risk of developing calcium phosphate calculi. For this reason, carbonic anhydrase inhibitors such as acetazolamide which are also highly capable of urinary alkalinization are generally reserved for patients intolerant to the previously mentioned agents. Lifestyle modification in the context of uric acid nephrolithiasis generally refers to nutritional changes such as increasing daily fluid intake and a low purine diet. Other dietary factors, such as the consumption of sports drinks and grapefruit and other citrus juices could also play a secondary role in the management of uric acid calculi through their alkalinizing and citraturic effects. More recently, theobromine, a methylxanthine found in cocoa and chocolate, has been identified as an inhibitor of uric acid crystallization. No other urinary inhibitors of uric acid crystallization are currently known apart from some saponins and glycosaminoglycans. Pharmacological therapy is considered in individuals who continue to develop uric acid calculi despite urinary alkalinization and lifestyle modification. Pharmacological agents primarily include the xanthine oxidase inhibitors allopurinol and febuxostat. Since the discovery of
febuxostat by the Japanese pharmaceutical company Teijin in 1998, limited advancements have made in the pharmacological management of uric acid nephrolithiasis. Thus, significant efforts have been directed towards the development of novel drug and drug delivery alternatives due to the potential serious adverse effects associated with the use of these agents. These adverse effects include life-threatening hypersensitivity reactions, hepatotoxicity, bone marrow depression and nephrotoxicity.85–87

1.4 Current models of uric acid nephrolithiasis

Several models of hyperuricemia and associated uric acid nephropathy have been described in the literature. The most prominent amongst these are the canine and murine models of UAN. The canine model involves the propensity of a specific breed of dog, the Dalmatian, to ubiquitously excrete high amounts of uric acid in the urine and as a consequence develop uric acid calculi.88–90 This is thought to occur due to a missense mutation in the SLC2A9 gene, responsible for UA transport at the proximal tubules although other mechanisms such as defective hepatic transport of UA have also been proposed.91,92 Whilst there are several advantages to the use of the Dalmatian model such as the similarities between the human and canine genome/pathophysiology, the utility of this model is limited as only ~25% of dogs with hyperuricemia will develop calculi.93,94 In addition, higher costs, ethical considerations and the technical difficulties associated with larger mammals apply. A mouse model of hyperuricemia has also been previously described. The mouse model of hyperuricemia involves vector mediated disruption of the urate oxidase gene.95 Whilst this process is highly capable of generating
hyperuricemia (10-fold serum uric acid increase), hyperuricosuria and uric acid calculi, undesirable features such as mouse lethality, renal scarring and morphological changes consistent with florid renal failure are also seen. A further rodent model is the rat model of UAN which involves the dietary or intraperitoneal administration of the urate oxidase inhibitor oxonic acid.96–98 The administration of oxonate along with dietary uric acid supplementation results in renal calculus formation, hyperuricemia and hyperuricosuria.99–104 In addition, renal architectural changes, renal fibrosis, glomerular hypertrophy and cyst formation have been noted.98,105 Hyperuricemia can also be induced by adenine and ethambutol administration via gavage.106 More recently, hyperuricemia has been induced in the tree shrew, a non-rodent mammal of rising research importance, by intraperitoneal oxonic acid administration, however it is unclear whether this approach results in nephrolithiasis.107

1.5 \textit{Drosophila melanogaster} as a translational model of human disease

\textit{Drosophila melanogaster} (DM), the common fruit fly, has long been known to be a powerful tool for modeling human disease (\textbf{Table 3}). The mapping of the full genome sequence of \textit{Drosophila melanogaster} by Celera Genomics and the \textit{Drosophila} Genome Consortium in March 2000 has resulted in the rapid acceleration of research investigating human disease processes.108,109 There is a high degree of genetic conservation between humans and \textit{D. melanogaster}. In fact, 75\% percent of human disease-related genes have corresponding items in \textit{D. melanogaster}. Out of 2,309 previously described human disease genes, 700 direct
homologs are present in *D. melanogaster* which also reproduce the human pathology when disrupted. In addition, the organ systems of DM, whilst rudimentary, have a remarkable degree of functional and structural similarity to those of humans and retain many of the underlying features. The application of DM as an investigative tool in this capacity can be seen throughout the literature, especially over the past thirty years.

<table>
<thead>
<tr>
<th>Field of investigation</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurology</td>
<td>Learning and memory, Frontotemporal dementia, Alzheimer's, Epilepsy, Stroke, Brain tumours</td>
</tr>
<tr>
<td>Cardiology</td>
<td>Heart development, Congenital heart disease, Cardiomyopathy, Heart Failure</td>
</tr>
<tr>
<td>Endocrinology</td>
<td>Thyroid cancer, Thyroid physiology, Diabetes</td>
</tr>
<tr>
<td>Gastroenterology</td>
<td>Lipid disorders, Liver Disease, Intestinal dysbiosis/gut microbiome</td>
</tr>
<tr>
<td>Nephrology</td>
<td>Calcium oxalate nephrolithiasis, Diabetic nephropathy, Kidney injury and repair, Xanthinuria</td>
</tr>
</tbody>
</table>
Table 3 Selected examples of human pathophysiological insights gained from the experimental use of *Drosophila melanogaster*

1.5.1 Comparative functional anatomy of *Drosophila melanogaster* and human renal systems

Specialized excretory systems are a fundamental feature encountered in most multicellular organisms. Simplified, these systems aim to maintain biochemical homeostasis by performing the basic functions of filtration, tubular reabsorption and secretion. In *Drosophila melanogaster*, the renal system is composed of two components: Nephrocytes and malpighian tubules (MTs). Nephrocytes are collections of cells located around the heart (pericardial nephrocytes) and esophagus (garland nephrocytes) that filter fly hemolymph in a manner similar to the human glomerulus. Nephrocytes perform this function by virtue of the nephrocyte diaphragm; a filtration structure formed by the nephrocyte plasma membrane invaginations (foot processes) forming small 30nm slit pores in tandem with the nephrocyte basement membrane. Together, the diaphragm and basement membrane form a barrier discriminatory to size and charge analogous to the human glomerulus. The four malpighian tubules consist of three segments...
(initial, transitional and main segments) and two types of cells (principal and stellate cells). (Figure 3)

![Figure 3 Schematic representation of (A) Fly malpighian tubule and tubule segments (B) Principal and stellate cells, responsible for the bulk of solute and ion transport (Reproduced with permission: Denholm, Barry et al. “The tiptop/teashirt Genes Regulate Cell Differentiation and Renal Physiology in Drosophila.” Development (Cambridge, England) 140.5 (2013): 1100–1110. PMC. Web. 29 June 2017.) — HG, hindgut; MG, midgut; BM, basement membrane; LK, leucokinin; LKR, leucokinin receptor; SJ, septate junction; DH, Diuretic hormone; capa, Capability peptide.](image)

Each pair of MTs further modify the urine via solute and ion transport in a manner similar to the human nephron ultimately excreting waste via a common ureter connected to the fly hindgut.¹³⁰,¹³¹,¹³⁷ (Figure 4).
1.5.2 Role as a model of human nephrolithiasis and renal disease

The emergence of *Drosophila melanogaster* as a model for human nephrolithiasis is a relatively recent innovation. The calcium oxalate nephrolithiasis model was first described by Chen *et al.* in 2011. This model relies on the generation of calcium oxalate (CaOx) crystals in fly malpighian tubules by dietary administration of the lithogenic agents ethylene glycol (EG), hydroxyl-L-proline and sodium oxalate. Birefringent CaOx concretions were visualized *ex vivo* by polarized light.
microscopy and chemical composition as CaOx was confirmed by scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX). It was noted that oral administration of potassium citrate ameliorated crystal formation and decreased crystal size. Several further advancements have been made since the initial description of this model. The effect of commercial citrate containing juices was investigated by utilizing the D. melanogaster model of calcium oxalate nephrolithiasis and was found to be ineffective in reducing stone burden in comparison to potassium citrate.138 In 2015, Chi et al. demonstrated that RNAi mediated inhibition of the Xdh gene encoding for xanthine dehydrogenase resulted in the formation of concretions in fly malpighian tubules. Through the use of this model, the importance of zinc in the mineralization of stones was discovered.139 In addition, the D. melanogaster CaOx model has been utilized to identify the role of dPrestin (SLC26A6) in luminal oxalate transport by RNAi-mediated silencing of dPrestin.140 Drosophila models have also been used to investigate other renal diseases, such as the role of podocyte mutations in the development of the nephrotic syndrome.141

1.5.3 Advantages of D. melanogaster as a model of human renal disease

Drosophila melanogaster has occupied a central role in health research over the past century.142 The genetic tractability of D. melanogaster in tandem with the high degree of genetic conservation between fly and human allows for unparalleled investigative ability, manipulation and control through relatively simple techniques.143,144 Examples of such techniques include the widely employed
GAL4/UAS system which allows for tissue specific gene regulation e.g. RNAi-mediated gene silencing.145,146 This system is composed of two components: the yeast derived \textit{GAL4} gene encoding for the yeast galactose-responsive transcription activating factor protein GAL4 and a responding upstream activation sequence (UAS). A cross between GAL4 and UAS fly results in tissue specific gene regulation.147 (Figure 5)

![Figure 5 The GAL4/UAS system](Reproduced with permission from Duffy, J. B. (2002), GAL4 system in drosophila: A fly geneticist's swiss army knife. Genesis, 34: 1–15. doi:10.1002/gene.10150)

Other methods include transposon (small, mobile DNA segment)-mediated mutagenesis. Such transposons include \textit{P-elements}, \textit{piggyBacs} and \textit{Minos}, which insert into the genome resulting in disruption/misexpression of adjacent genes.148 In addition, \textit{Drosophila melanogaster} is amongst the few organisms with a fully mapped genome sequence and several online resources are available which continuously update genetic and genomic knowledge of the \textit{Drosophilidae} family
of flies. The most prominent amongst these groups is the Flybase Consortium which also maintains an active and vibrant community of Drosophila researchers.149 Furthermore, online tools such as Homologene (NCBI), DRSC/DIOPT (Harvard Medical School) and FlyAtlas (Chintapalli, Wang, Dow [University of Glasgow]) are also available to identify tissue specific gene expression and human gene homologs. \textit{Drosophila melanogaster} allows for high throughput study owing to the rapid holometabolous reproductive cycle of DM, which lasts approximately 11 days at 22°C. Rearing and maintenance is inexpensive and requires rudimentary equipment. Fly lines, including transgenic flies, are readily available through major \textit{Drosophila melanogaster} stock centers (Bloomington Stock Center, Indiana, USA., Vienna [Vienna Drosophila Research Centre] and National Institute of Genetics, Kyoto, Japan). In relation to the investigation of nephrolithiasis, DM malpighian tubules are transparent and allow for excellent observation of stone disease.111

1.5.4 Limitations of \textit{D. melanogaster} renal modelling

The principal apparent limitation of \textit{D. melanogaster} in modelling human renal disease concerns the structural and anatomical arrangement of the renal functional elements in comparison to the human kidney. The \textit{D. melanogaster} renal system has been previously described as an agglomerular system which may have limited the use of DM in this role.131,135 The podocyte-like filtration function of \textit{D. melanogaster} nephrocytes has however only recently been described which demonstrates a striking resemblance to the human glomerulus.131,134–136 In contrast, unlike the human kidney, these filtration elements (nephrocytes) are not
intimately linked with the modifying tubules (malpighian tubules) and are located at two anatomically distinct sites. This introduces a potential drawback, as a co-mingling of waste products occurs between the filtered hemolymph and the contents of the fly gut along with modified fluid from the renal tubules prior to their ultimate excretion.150 This could affect the interpretation of data collected qualitatively or quantitatively from the observation of intact malpighian tubules \textit{in vivo} although methods have been devised to isolate the malpighian tubules \textit{ex vivo} to counter this issue.131 In addition, the circulatory system of \textit{D. melanogaster} is an open, low-hydrostatic pressure system driven by a single tube-like heart and lacks vascular network.151,152 The delivery of fluid to the renal structures is therefore markedly dissimilar to the high-pressure, intravascular system encountered in humans. The complexity of the human diet and associated metabolic processes are difficult to replicate in a rudimentary invertebrate model and as a result, the biochemical milieu encountered in the hemolymph may potentially be markedly different in comparison to human plasma and urine. This limitation is particularly apparent when considering calcium homeostasis in \textit{D. melanogaster} as due to the lack of a skeletal system, approximately one third of the calcium stores of DM are stored within calcium concretions in the anterior malpighian tubules.153 Whilst these limitations result in a loss of translational potential and must be considered in any human renal modelling involving \textit{D. melanogaster}, a multitude of human processes are either wholly or partly conserved in \textit{D. melanogaster} and the study of these components could provide novel insights into the human disease equivalent and further management.110
1.6 Objectives and Hypothesis

1) **Generation of uric acid calculi in *D. melanogaster* malpighian tubules:**

We hypothesize that knockdown or disruption of the *Uro* gene encoding for the enzyme urate oxidase via RNAi-mediated silencing or utilization of a mutagenic strain will result in uric acid crystal formation in the malpighian tubules when fed a purine rich diet. This will allow for the observation of uric acid crystals in the malpighian tubules and fly fecal matter due to their negative birefringence under polarized light microscopy.

2) **Confirmation of intervention efficiency:**

We hypothesize that the *Uro* gene expression will be decreased in our knockdown line versus a wild-type fly and will be detectable by qRT-PCR and biochemical methods.

3) **Composition analysis of malpighian tubule concretions versus human uric acid calculi:**

We hypothesize that broad-spectrum protease dissolution of the malpighian tubules will liberate MT crystals, which can be further analyzed by scanning electron microscopy and energy dispersive spectroscopy (EDX) against pulverized human uric acid calculi.

4) **Development of a novel *in vivo* high throughput drug screening assay:**

We hypothesize that a suspended cover slip in fly housing will allow for the collection of fly fecal matter. *In silico* analysis of birefringent area versus
fecal area will allow us to perform a semi-quantitative analysis of stone burden. We hypothesize that treatment with the xanthine oxidase inhibitor allopurinol will reduce stone burden and that the treatment of flies from a nutraceutical drug library of 120 compounds will identify drug candidates for future study.
Chapter 2

2 Materials and Methods

Studies involving the use of the invertebrate *D. melanogaster* are currently exempt from requiring prior approval by an animal ethics board. All animals were handled humanely in accordance with the Canadian Council on Animal Care (CCAC) guidelines ("Guide to the care and use of experimental animals", 1993).

All fly stocks were sourced from the Bloomington Stock Center, Indiana, USA (http://fly.bio.indiana.edu). Canton S flies (Stock #64349) were utilized the wild-type control. Experiments involving the generation of uric calculi utilized the fly line PBac[WH]Uro^{104888} (Stock #18814) from the Exelixis Collection of transposon insertions. The RNAi fly line UAS-Uro (Stock #67300) along with the GAL4 driver GAL4-Uro (Stock #44416) was used to obtain pilot data. Statistical analysis was performed with GraphPad Prism 6 Software (GraphPad).

2.1 Rearing and maintenance of *D. melanogaster*

All fly stocks were housed in pre-divided trays within wide fly vials (Genesee Scientific Corporation, CA). Stocks were maintained in a temperature controlled environment (27° C) in a dedicated *Drosophila* incubator (DigiTherm® Drosophila Incubator, Tritech Research Inc.) ([Figure 6](#)). A 12-12-hour light-dark cycle and humidity of ~30% was maintained. A supplementary stock of flies was maintained at room temperature. Daily checks were performed to assess for bacterial growth and for the presence of mold or mites in fly housing. Fly media was changed weekly by mass transfer of flies into fresh media. New fly stocks were maintained
in quarantine physically separated from fly lines already in use for at least two generations to prevent mite infestation. Smaller numbers of unwanted flies were disposed of in a fly morgue containing 70% ethanol. For the disposal of larger numbers of flies, flies were culled by freezing at -20° C prior to disposal.

Figure 6 Fly vials maintained in Drosophila incubator at 27° C
2.2 Preparation of standard and lithogenic fly media

One-liter volumes of standard fly media were prepared per week. Ingredients were weighed into plastic weigh boats using a digital scale (BL 1500S, Sartorius AG, Germany) and cooked using a laboratory hotplate in a commercial non-stick cooking pot. Following preparation, media was decanted into wide polypropylene vials (GEN32-121, Genesee Scientific, California, USA) using a disposable pipette and covered with grade 50 cheesecloth (GEN53-100, Genesee Scientific, California, USA) whilst cooling. Vials were plugged with cellulose acetate closures (Flugs® GEN49-101, Diamed Inc., Ontario, Canada) and rested at room temperature overnight to prevent water separation. Vials were then stored at 4°C for a maximum duration of 28 days until further use.

2.2.1 Standard media

Standard media was prepared according to the Bloomington #1 formulation described by the Bloomington Stock Center, Indiana, USA (Table 4). This formulation results in a firm media which resists liquefaction secondary to larval burrowing.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled Water</td>
<td>1000ml (total)</td>
</tr>
<tr>
<td>Agar (66-103, Diamed Inc.)</td>
<td>5.76g</td>
</tr>
<tr>
<td>Yeast Powder (51475-2.5KG, Sigma Inc.)</td>
<td>17.3g</td>
</tr>
<tr>
<td>Ingredient</td>
<td>Quantity</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Soy, powder (62-115, Genesee Scientific)</td>
<td>10g</td>
</tr>
<tr>
<td>Cornmeal, yellow (62-100, Genesee Scientific)</td>
<td>73g</td>
</tr>
<tr>
<td>Corn syrup, solid (62-109, Genesee Scientific)</td>
<td>76.9g</td>
</tr>
<tr>
<td>Propionic acid (1368, Sigma Inc.)</td>
<td>5ml</td>
</tr>
<tr>
<td>Tegosept (20-258 Diamed Inc.) 30% solution (optional)</td>
<td>5ml</td>
</tr>
</tbody>
</table>

Table 4 Ingredients used in the preparation of standard media

To prepare standard media, 500ml of distilled water was poured into a non-stick cooking pot and left on high heat to a rolling boil. Cornmeal and agar were combined in a 500ml beaker containing 250ml of distilled water and stirred until a slurry was formed. Yeast and powdered soy were stirred in a separate beaker containing 250ml of distilled water. The cornmeal/agar mixture was added to the boiling water and continuously stirred until a gel-like consistency was achieved. Following this, the yeast/soy mixture was added followed by corn syrup solids. The media mixture was left under high heat until viscous and allowed to cool. Finally, propionic acid was added to the media and mixed thoroughly prior to decanting into fly vials (10ml final volume per vial).
2.2.2 Lithogenic media

For the preparation of lithogenic media, standard media was supplemented with 10g yeast-derived RNA (Sigma-Aldrich, Stock. 10109223001 [Roche]) to yield one liter of 1% w/v RNA media. RNA was added to the media mixture following the addition of the yeast and soy and mixed thoroughly until dissolved. The quantity of RNA added to the media mixture was altered as required to prepare 1%, 2% and 3% w/v RNA media.

2.3 Gene disruption and knockdown

Disruption of the Uro gene was achieved by use of the PBac{WH}Uro^{04888} fly line from the Exelixis Insertion Collection (Bloomington Stock #18814). This fly line contains an amorphic allele for the Uro gene due to the mutagenic activity of the transposon piggyBac^{154} and was generated in an effort towards developing a complete gene knockdown collection through targeted gene disruption^{155,156}. It has previously been shown that this line possesses a strong loss of function Uro mutation^{157}. This fly line was utilized for all experiments involving the generation of uric acid calculi unless stated otherwise. Additionally, a GAL4/UAS system RNAi-mediated gene knockdown was investigated by crossing newly eclosed flies from the fly lines UAS-Uro (Stock #63700 – expressing RNAi for Uro under UAS control) and GAL4-Uro (Stock #44416 – donated by J. Dow, expressing GAL4 in the principal cells of the malpighian tubules corresponding to the pattern of urate oxidase). To knockdown the Uro gene, vials containing larger numbers of dark pupae were selected from each fly line and flies collected between 8-12 hours after eclosion in a fresh tube containing no media. The flies were then anaesthetized by
CO$_2$ narcotization (Flystuff Flowbuddy Flow Regulator with Ultimate Flypad, 59-122BCU) and sorted by sex under a dissecting microscope (Amscope Inc., Irvine, United States). Separated flies were added to holding tubes and kept separated for 3 days prior to establishing a cross. The resultant F1 progeny of this cross is expected to have decreased Uro expression relative to wild-type flies.

2.4 Malpighian tubule dissection and extraction

Flies were euthanized by CO$_2$ narcotization (Flystuff Flowbuddy Flow Regulator with Ultimate Flypad, 59-122BCU) and transferred to an empty petri dish in preparation for dissection. Approximately 10ml of phosphate-buffered saline (PBS) was added to an additional Pyrex petri dish (3160100, Sigma-Aldrich Inc.) lined with Sylgard (Dow Corning Inc., Michigan, United States) for dissection. This Petri dish was centered under a dissecting microscope (Amscope Inc., Irvine, United States) with a ringed light source (Amscope Inc., Irvine, United States, LED 144S) to ensure minimal surface glare. Fine Inox steel forceps (Dumont #5, Fine Science Tools Inc., Vancouver, Canada) were utilized to transfer each individual fly to the dissecting petri dish by gently grasping the thorax in a ventral orientation. Using the dominant hand, the anal region was gently grasped and retracted resulting in the emergence of the hindgut followed by the malpighian tubules. (Figure 7) The hindgut was severed above the ureters. For experiments requiring the recovery of only the malpighian tubules, the tubules were severed at the ureteric junction. Dissected flies were placed onto a wet sponge. The dissecting forceps were cleaned and dried prior to repeating this process.
2.5 Quantitative real-time PCR (qRT-PCR)

Samples were prepared for qRT-PCR by the dissection and extraction of 30 malpighian tubules from the fly lines Uro04888 and wild-type Canton S in triplicate for each group (n=90/group). Six 1.5ml snap top Eppendorf tubes containing 400ul of RNALater (Sigma Inc., R0901-100ML) were prepared and stored on ice into which malpighian tubules were suspended. If RNA extraction could not be performed the same working day, samples were stored at -80°C and thawed on ice as necessary. PBS was added to each tube in a 1:1 ratio with RNALater and centrifuged at 15,000 x g for 5 minutes (Eppendorf Minicentrifuge 5548). The supernatant was removed leaving the malpighian tubule pellet at the base of the tube undisturbed. The pellet was disrupted and homogenized using a disposable
micropestle. RNA was extracted by using the RNAeasy Plus Mini Kit (Qiagen, United States) as per the manufacturer's instructions. Total RNA was quantified using a Nanodrop spectrophotometer (Thermofisher Scientific, United States). One microgram of RNA was reverse transcribed to cDNA with qScript™ cDNA Synthesis Kit (Quanta BioSciences, United States). Real time amplification of 10ng cDNA was performed by the QuantStudio 5 Real-Time PCR system (ThermoFisher Scientific, United States). Each well was loaded with 5μl of SYBR-green master mix (PowerUp SYBR green, Thermo Fisher Scientific), 1μl of each forward and reverse primers (10μM, Thermo Fisher Scientific), 2μl of nuclease free water and 1μl of cDNA. PCR program and conditions consist of 1 cycle of hold stage (50°C for 2 minutes, 95°C for 2 minutes), 40 cycles of PCR stage (denaturation at 95°C for 15 seconds, annealing at 60°C for 1 min) and 1 cycle of melt curve stage (95°C for 15 seconds, 60°C for 1 minute and 95°C for 1 second). Sequence specific primers were used for amplifying the Uro gene and are as follows, Forward primer: 5’-GATTCGCAGAAGAACACCGTC-3’; Reverse primer: 5’-TACGCCTCCACATGAACGTG-3’). β-Actin acted as the housekeeping gene (Forward primer: 5’-CTCTGCGGACGCACAATTTC-3’; Reverse primer: 5’-TGCAACCAGTCTGCATCTGC-3’). Relative gene expression was calculated from cycle threshold values by ΔΔCT method. Data for relative gene expression Uro between Uro^104888 and wild-type Canton S was collected through the results of three independent experiments.
2.6 Determination of the presence of birefringent concretions in fly malpighian tubules and fecal matter

To assess the presence or absence of birefringent concretions in fly malpighian tubules and fecal matter, 20 Uro104888 flies were anaesthetized and placed in vials containing 1, 2 and 3% w/v RNA and standard medium in triplicate. Wild-type Canton S was used as a negative control. The cellulose acetate vial closures were scored centrally with a disposable blade to a depth of ~2cm. A clear cover slip was inserted into the scored area and suspended in each fly vial to provide a vertical surface for the collection of fly fecal matter. Each group of flies was allowed to incubate for a period of 10 days after which the malpighian tubules and cover slips were harvested from each group and mounted on to charged glass slides (Superfrost® Plus Microscope Slides, VWR). Each glass slide was prepared for the mounting MTs by pipetting five small droplets (~20ul) of PBS on to the slide to prevent dehydration and degradation of the tubules. Individual droplets were used to mount MTs from a single fly to prevent the MTs from bunching together, improving visualization during microscopy. Tubules were considered crystal positive if birefringence coverage extended over one or more tubule segments to account for any naturally occurring calcium concretions in fly MTs. Suspended cover slips were harvested from each fly vial and dry mounted directly on to glass slides in pairs in preparation for microscopy (Figure 8).

2.6.1 Ex vivo imaging of fly malpighian tubules and fecal matter

Prepared slides were centered under a confocal microscope (Nikon A1 Confocal Microscope System, Nikon Corp., Japan) at 4X magnification with the transmitted
detector (TD) imaging mode enabled for polarized light microscopy. In addition, fluorescence data was obtained at a single wavelength (EGFP 488nm) to provide contrast. The 4X setting was enabled via the optical configurations (OC panel) and the pinhole was set to 5.3 AU. For the EGFP channel, the gain was set at 105 with an offset -13 and a power of 7.00. For the TD channel, the gain was set at 110 with an offset of -30. The slide was scanned in the resonant mode to bring objects into focus after which the Galvano mode was selected at 2048 pixels and a pixel dwell of 1.2. In the resonant mode, these settings may generate an image which is excessively bright which is corrected in the Galvano mode at the correct pixel dwell. Focus and image plane were finely adjusted using the mouse scroll wheel until the optimal image was obtained.

Figure 8 Fly fecal matter collection and microscopy
2.7 Stone isolation and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX)

To isolate stones in preparation for scanning electron microscopy (SEM) and analysis of composition, a large quantity of Urofo488 flies (n=150) were dissected following incubation in 1% w/v RNA media for a period of 10 days. The malpighian tubules were suspended in 400ul PBS in a single 1.5ml Eppendorf tube. This sample was centrifuged at 15,000 x g for 5 minutes to form a malpighian tubule pellet at the base of the Eppendorf tube. The supernatant was removed taking care not to disturb the pellet. Following this, 500ul of Proteinase K solution (Proteinase K from Tritirachium album, Sigma-Aldrich, P5568-5X1ML) was added to the pellet along with 200ul 0.1% Triton-X solution to dissolve organic tubule material. The pellet was disrupted with a pipette tip and placed capped in a tube hotplate set at 37°C for 24 hours. The sample was re-centrifuged at 15,000 x g for 5 minutes following which the supernatant was removed. The sample was washed with PBS and re-centrifuged two more times to remove any remaining organic material finally being suspended in 500ul UltraPure DNase/RNase free water (Invitrogen). The sample was then submitted for scanning electron microscopy/energy dispersive x-ray spectroscopy along with a pulverized human uric acid stone (confirmed by FTIR) as a positive control at Surface Sciences, Western University, London, Ontario utilizing a Hitachi S4500 Field Emission Scanning Electron Microscope (Hitachi Inc, Tokyo, Japan) and Quartz X One EDX system (Quartz Imaging Corporation).
2.8 Development of high throughput drug screening platform

To assess the effect of bioactive compounds on calculus development within the malpighian tubules, a semi-quantitative fecal birefringence assay was developed. As the malpighian tubules ultimately exit into the hindgut via a common ureter, we observed that flies with birefringent concretions in the malpighian tubules also demonstrated birefringent areas in fecal matter. We hypothesized this
birefringence could be used to qualitatively and quantitatively estimate stone burden. To collect fly fecal matter cover slips were suspended from a central score carved into the cellulose acetate closures of fly vials.

2.8.1 Quantification of birefringence in fly fecal matter

To quantify the area of birefringence normalized to total fecal droplet area, an *in silico* image analysis assay was utilized. Initially, the cover slip under investigation was imaged under confocal microscopy. At a 4X magnification, the entire area of the cover slip with fecal matter present could not be imaged in a single visual field. To counter this, the standard process of capturing serial images (~20 images/cover slip) was used followed by software-based stitching in NIS-Elements (File > Stitch Large Image) for further analysis (Figure 8). As a motorized stage was not available for use, this process was conducted manually for each cover slip. Each individual image was saved as TIFF file, allowing for the preservation of channel data. Separate montages were generated for the transmitted detector (polarized light) channel and EGFP (488nm wavelength fluorescent data) channels (Figure 10). For quantification, ImageJ (NIH – FIJI package) software was utilized by using the particle analysis function, providing numerical output for the area occupied by a particle of interest selected via thresholding. For the transmitted detector channel, a macro was programmed to allow for efficient “single-click” processing (Figure 11). This macro automates the processes of changing the image mode to 8-bit grayscale, auto-thresholding via the “Yen” algorithm (eliminating user-bias during thresholding), followed by the “Analyze particles” function, displaying a numerical output.
To analyze the EGFP channel (colored) images, the color thresholding function was used (Image > Adjust > Color Threshold with the “Dark background” option
enabled). The brightness sliders on the thresholding interface were manually adjusted to capture the total fecal area, taking care to exclude very bright green areas representing larvae. This was followed by the executing the “Analyze particles” function. The birefringence quotient (BQ) was calculated by dividing the birefringent area by the total fecal area, providing a value of birefringence per fecal droplet. An empirical qualitative determination of fecal birefringence was also made through direct observation to assess the utility of operator-based judgement to determine relative birefringence.

2.8.2 Determination of fecal birefringence under varying purine loads
To establish controls for future experiments utilizing the fecal birefringence assay, 20 Uro04888 flies were incubated in 1%, 2% and 3% v/w RNA media in triplicate with cover slips suspended from vial closures for the collection of fecal matter for a period of 7 days. Cover slips were collected and imaged as mentioned previously.

2.8.3 Determination of effect of DMSO on fecal birefringence
As future experiments involved the use of dimethyl sulfoxide (DMSO) as a drug solvent, the effect of DMSO on birefringence quotient against a negative control (distilled water) was determined. 1% w/v RNA was prepared and allowed to cool after which 100\textmu l (0.1% v/v) and 200\textmu l (0.2% v/v) of DMSO or distilled water were added and mixed using a pipette tip. These volumes were chosen to match the final volume of drug added during drug screening to ensure any variations in birefringence did not occur as a result of the drug vehicle. 20 Uro04888 flies were
incubated for 7 days in each group of media in duplicate following which the birefringence quotient was determined as previously described.

2.8.4 Effect of xanthine oxidase inhibitors on malpighian tubule and fecal birefringence

The effect of the xanthine oxidase inhibitor allopurinol on the formation of birefringent concretions in fly malpighian tubules and fecal matter was determined by preparing 10ml 2% w/v RNA media as previously described, allowing the media to cool and adding allopurinol (Sigma-Aldrich, A8003-5G) from a stock suspension of 5mM allopurinol after vigorous vortexing to final concentrations of 0.36, 0.72 and 1.06mM. 20 Uro^04888 flies were incubated in Allopurinol treated media in duplicate for 7 days after which the malpighian tubules were dissected and cover slips recovered for processing.

2.8.5 Drug library screening

A drug library of 120 nutraceutical compounds was procured through collaboration with Dr. Paul Spagnuolo, Associate Professor, Department of Food Science, University of Guelph. The drug library was received as five 96-well plates loaded with plant-based extracts dissolved in DMSO (24 drugs per plate). Each plate was stored at -80°C until further use. Each drug was labelled via a numbering system to allow for the blinding of prospective researchers, with a master list available upon request. To prepare drug treated media, the entire volume of drug provided (200ul) was added to 5ml 2% RNA media after cooling and homogenized using a pipette tip. Fresh batches of media were prepared for each drug screen and were used immediately after preparation. Twenty-four drugs were tested per week by
oral administration. This was performed by adding 20 Uro 04888 flies to each drug vial, incubating for a period of 7 days. Following this, the birefringence quotient was quantified via the previously described fecal birefringence assay (\textbf{Figure 10}). A drug candidate was considered a “hit” if the reduction in birefringence seen was similar in magnitude to that encountered following Allopurinol treatment (little to no birefringent material).
Chapter 3

3 Results

3.1 Ex vivo imaging of DM malpighian tubules

Uro04888 flies fed 1% RNA medium demonstrated brilliant birefringence in the malpighian tubules and fly gut (arrow) (Figure 12 – A, E & Figure 13A) with crystal coverage extending over one or more tubule segments. In contrast, a paucity of birefringence was noted in Uro04888 MTs fed standard medium (Figure 12 - B, F & Figure 13A) with a significant difference noted between groups. Smaller to no areas of birefringence were visualized in wild-type (WT) Canton S fly malpighian tubules fed 1% RNA (Figure 12 - C, G & Figure 13B). No birefringence was seen in WT fly malpighian tubules when fed standard medium (Figure 12 - D, H & Figure 13B).

Figure 12 Polarized light micrograph of Uro04888 and WT flies fed either standard or purine rich medium. Fluorescent channel represents malpighian tubule autofluorescence. Arrow indicates fly gut. Scale – 50um
Figure 13 Malpighian tubule crystal formation in under varying dietary conditions (A) Uro^{04888} flies fed either a standard or purine rich medium (n=60/group), p < 0.05, Fisher’s Exact Test (B) Wild-type Canton S flies fed either a standard or purine rich medium (n=60/group), p < 0.05, Fisher’s Exact test. TS – Tubule segment.
Uro^4888 fly tubules showed birefringent concretions in all malpighian tubule segments although the initial (Figure 14 – A, C) and transitional (Figure 14 – B, D) segments appeared to be particularly affected.

3.1.1 Effect of varying purine loads on birefringent concretion formation

Similar distributions of birefringence were seen across all concentrations of purine rich media (1%, 2% and 3% w/v RNA) in Uro^4888 fly tubules (Figure 15 – A, G).
is worth recalling that standard medium, being a yeast-based medium, produced relatively smaller or fewer areas of birefringence extending across one or more tubule segments in Uro04888 fly tubules.

<table>
<thead>
<tr>
<th>1% RNA</th>
<th>2% RNA</th>
<th>3% RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image](1% RNA)</td>
<td>![Image](2% RNA)</td>
<td>![Image](3% RNA)</td>
</tr>
</tbody>
</table>

Figure 15 Polarized light micrograph demonstrating Uro04888 fly malpighian tubule birefringent concretions under varying purine loads, 1% RNA (A, D), 2% RNA (B, E) and 3% RNA (C, F) scale bars – 50uM

3.2 Quantitative real-time PCR

Quantitative real-time PCR revealed a significant difference in Uro gene expression between wild-type Canton S and Uro04888 flies (Student’s t-test, 2-tailed, p <0.05) with β-actin as the housekeeping gene, accounting for a 74% downregulation of Uro gene expression between groups (Figure 16).
3.3 Scanning electron microscopy and energy-dispersive spectroscopy

Birefringent concretions were isolated from Uro⁰⁴⁸⁸⁸ fly malpighian tubules as previously described and subjected to scanning electron microscopy and energy dispersive spectroscopy (Figure 17, A). A pulverized human stone sample previously confirmed as being predominantly composed of uric acid by Fourier transform infrared spectroscopy (FTIR) was used as a positive control (Figure 17 - B). Scanning electron microscopy and energy dispersive X-ray spectroscopy of isolated MT concretions against a pulverized human uric acid calculus both demonstrated similar elemental compositions consisting of carbon (C), nitrogen (N) and oxygen (O), consistent with uric acid. Silicon (Si) and Gold (Au) peaks seen are a result of noise generated through the mounting process for scanning electron microscopy.
3.4 High throughput drug screening

3.4.1 Ex vivo imaging of fly fecal matter

Fly fecal matter collected from Uro feder RNA media for a period of 7 days demonstrated diffuse brilliant birefringence throughout the entirety of the fecal volume (Figure 18, D-E). In flies fed standard medium, small foci of birefringence were seen, correlating with findings encountered during malpighian tubule dissection. (Figure 18, A-C).
3.4.2 Effect of DMSO on fecal birefringence

No significant difference in fecal birefringence quotient was seen between 0.1% and 0.2% v/v DMSO media groups vs. controls (One-way ANOVA, Tukey’s multiple comparisons, p >0.05.) (Figure 19).

Figure 18 Confocal micrograph of Urofo04888 fly fecal matter when fed (A-C) standard medium, (D-F) 1% w/v RNA medium – scale bars 50um
3.4.3 Fecal birefringence under varying purine loads

No significant difference was seen in fecal birefringence between flies fed 1%, 2% and 3% w/v RNA media (One-way ANOVA, Tukey’s multiple comparisons p > 0.05) (Figure 20).

Figure 19 Fecal birefringence quotient: DMSO vs. controls

Figure 20 Fecal birefringence quotient under varying purine loads
3.4.4 Effect of xanthine oxidase inhibitors on formation of birefringent concretions in fly fecal matter and malpighian tubules

Birefringence quotient was significantly reduced in Allopurinol treated media (0.36mM and 0.72mM Allopurinol) against controls. (One-way ANOVA, Dunnett’s multiple comparisons, p <0.05) (Figure 21).

Figure 21 Fecal birefringence quotient: varying concentrations of allopurinol treated media vs. controls (Scale split at 0.003-0.01 on y-axis)
To correlate findings with the quantity of birefringent material in fly malpighian tubules, ex vivo polarized microscopy was performed after harvesting malpighian tubules from each group. A qualitatively lower quantity of birefringent material was noted at 0.36mM (Fig 22 – A), 0.72mM (Fig 22 – B) and 1.06mM (Fig 22 – C) allopurinol treated media. Surprisingly, autofluorescent objects (AFOs) were observed within the malpighian tubules (arrows) and were more prominently featured in 0.72mM allopurinol media along with structural distortions in the malpighian tubules.

3.4.5 Drug library screening

A pilot high throughput drug screen of 120 plant-derived nutraceutical compounds was conducted and revealed several compounds which appeared to exhibit a reduction in overall fecal birefringence and thus ameliorated crystal formation.
Three compounds appeared to reduce fecal birefringence in a similar manner to allopurinol versus controls. (Figure 23)

Figure 23 Representative examples: "Yen" algorithm auto-thresholded raw polarized light microscopy images demonstrating fecal birefringence: (A) 2% RNA control (B) Allopurinol (C) test compound “hit”. Compressed composite images, whole image brightness increased by 30% to compensate for downscaling.
4 Discussion and conclusions

This study broadens the role of *Drosophila melanogaster* in the investigation of human nephrolithiasis. Through relatively simple interventions, we demonstrate the formation of uric acid crystals in the malpighian tubules which are readily observed using polarized light microscopy. We also describe a non-invasive semi-quantitative assay involving the imaging of fly fecal matter to determine the effect of bioactive compounds and delineate the role of this model in the high throughput screening of compounds of interest. This was not previously possible due to the constraints of current models of uric acid nephropathy and serves a unique role in narrowing focus for further investigation *in vitro* and in mammalian systems.

4.1 *Ex vivo* imaging of DM malpighian tubules

Confocal microscopy under polarized light showed diffuse brilliantly birefringent crystals in PBac(WH)Uro04888 fly malpighian tubules when fed a high purine diet. As mentioned previously, this fly line contains an amorphic allele for the *Uro* gene (encoding for the enzyme urate oxidase) as a consequence of the mutagenic activity of the transposon *piggyBac*.154 This fly line has previously been observed to have a strong loss of function *Uro* mutation.157 The phenomenon of crystal formation can therefore be explained by the disruption of normal purine metabolism. When fed an RNA (or nucleic acid) rich medium, purine nucleotides are liberated by enzymatic degradation in the fly gut; a complex and highly active digestive system.158 Whilst purines would typically be further metabolized into the more soluble compound allantoin, with significantly reduced urate oxidase activity
this does not occur, resulting in uric acid crystal formation. As *Uro* is almost exclusively expressed in the malpighian tubules159,160, this is effect appears to be particularly pronounced in MTs. Importantly, these crystals also appear to either form in or travel between the MTs and the fly gut via the ureteric openings, allowing for detection of birefringent concretions downstream. The initial and transitional segments of the malpighian tubules appear to be more commonly affected, however, this observation may be simply related to the proximity of the main segment to the ureteric orifices and result in crystal migration into the hindgut. In addition, significantly less birefringent material was seen in *Uro*04888 fly MTs fed standard medium. Although no additional yeast-derived RNA was added to this medium, inactivated yeast is a major component of the formulation, which in itself introduces a purine load due to the purine rich nature of yeast.161 No significant differences in crystal formation in fly MTs were qualitatively observed when purine burden was increased suggesting the metabolism of nucleic acids into uric acid may be inhibited beyond a certain threshold. This could potentially occur via end-product non-competitive inhibition. Uric acid, the end-product of purine metabolism in humans, has previously been shown to demonstrate dead-end product inhibition of xanthine oxidase via steady state kinetic analysis.162 Thus, purine degradation may be reduced or delayed as a result of increased uric acid production and inefficient elimination. Shunting of the intermediate products of purine degradation through an alternative metabolic pathway may also explain these findings however apart from the salvage pathway which recycles the products of purine degradation for *de novo* nucleotide synthesis163, such a pathway is yet to be described.
Interestingly, trials involving healthy human participants consuming yeast rich diets have demonstrated a similar effect wherein hyperuricemia and uric acid excretion increase proportionally up to a certain threshold beyond which increasing purine burden does not have a significant effect.164 It is worth noting that when fed 3% w/v RNA media, fly survival appeared to be significantly impacted. While formal lifespan studies are warranted to confirm this effect, on average at end-point, significantly fewer (n=3) flies survived in the 3% w/v RNA media in comparison to 2% w/v (n=18) and 1% w/v RNA media (n=18). Little to no birefringent concretions were noted in the malpighian tubules of wild-type flies fed standard or purine rich medium reflecting that the disruption of normal purine metabolism appears to be responsible for the formation of birefringent crystal formation in the malpighian tubules. In addition, pilot data was obtained for RNAi-mediated knockdown of the Uro gene. Whilst this method of gene silencing did result in birefringent crystal formation, this method required an additional step involving crossing flies prior to investigation, decreasing throughput. Therefore, the Urofo4888 line was used for future experiments to maximize throughput.

4.2 Quantitative real time PCR and Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy

Quantitative real-time PCR showed reduced relative Uro gene expression in Urofo4888 flies relative to wild-type Canton S corresponding to a 74% downregulation in gene expression. This result is consistent with expected results as Urofo4888 has previously been shown to possess a strong loss of function mutation.157 Uro is almost exclusively expressed in the malpighian tubules and
therefore loss of function corresponds with uric acid crystal accumulation at this site.159 Broad-spectrum protease mediated dissolution of malpighian tubule tissue in combination with serial washing and centrifugation yielded a clear sample with minimal organic debris appropriate for analysis by SEM. Scanning electron microscopy and energy dispersive X-ray spectroscopy of isolated MT concretions against a pulverized human uric acid calculus both demonstrated similar elemental compositions consisting of carbon (C), nitrogen (N) and oxygen (O), consistent with uric acid. Morphologically, crystalline structures isolated from the malpighian tubules were distinctly smaller in size (~10um) in comparison to the sizes achieved by pulverizing the human uric acid stone sample (~60um). Additional validation experiments such as biochemical probe assays and high-performance liquid chromatography (HPLC) based detection of uric acid versus controls are warranted to further validate these findings.

4.3 \textit{Ex vivo} imaging of DM fecal matter

Through pilot experiments and our previous work using the calcium oxalate nephrolithiasis model in DM, it was determined that birefringent concretions in fly MTs migrate into the hindgut, the terminal site of fly excretion, via the common ureters. The fly mid and hindgut serve as optimal environments for the continued propagation of uric acid crystallization owing to their acidic pH (<4 and 5, respectively)158. Thus, we hypothesized fly fecal matter could be utilized to observe variations in stone burden by microscopy under polarized light. Diffuse birefringent concretions were confirmed to be present in Uro604888 fly fecal matter when fed a purine-rich diet. Much smaller areas of birefringence were seen in flies
fed standard medium. No significant differences in fecal birefringence were seen in flies fed 0.1% and 0.2% v/v DMSO medium versus controls. In addition, no significant differences were noted between groups when fed 1%, 2% and 3% w/v RNA media, correlating with observations made during malpighian tubule dissection. To further corroborate these findings, reassessment of these groups with much larger sample sizes would be useful in addition to lifespan studies. To test the effect of a positive control drug on fecal birefringence, the xanthine oxidase inhibitor allopurinol was orally administered to assess if a significant decrease in fecal birefringence could be observed. Oxipurinol, the active form of allopurinol, forms covalent bonds with the active molybdenum site of the enzyme xanthine oxidase forming a oxipurinol-molybdenum complex. This results in the inhibition of enzyme function.165,166 Xanthine oxidase is responsible for the conversion of hypoxanthine to xanthine and uric acid. The birefringence per total fecal area was significantly reduced at concentrations of 0.36 and 0.72mM allopurinol in keeping with expected results. Whilst fluorescence confocal microscopy of fly fecal matter allows for higher resolution images with improved contrast along with the capturing of fluorescence data some disadvantages also exist in comparison to traditional light microscopy.167 Images may be limited by the optical penetration of the sample and some scattered light may not be detected. However, traditional microscopy would render determination of total fecal area difficult and the thickness of fecal matter is not likely to be an issue in the majority of cases. Direct comparisons of both imaging techniques over large sample sizes would therefore be useful to assess consistency between methods.
4.4 *Ex vivo* imaging of DM malpighian tubules following Allopurinol treatment

Polarized light confocal microscopy of fly malpighian tubules harvested from Uro^{104888} flies fed purine rich media containing allopurinol at 0.36mM and 0.72mM concentrations showed significantly reduced birefringent material in MTs. In addition, multiple large autofluorescent objects (AFOs) were noted in the malpighian tubules indiscriminate of tubule segment. In flies fed 0.72mM allopurinol media, large numbers of these bodies were noted along with sections of the MTs where tubule lumen was grossly widened. It has previously been noted that the dietary administration of allopurinol in *Drosophila melanogaster* phenocopies the *ry* (rosy) mutation.\(^\text{168}\) The rosy locus encodes for the enzyme xanthine dehydrogenase (XDH) which is responsible for the catalyzing the reaction converting xanthine to uric acid.\(^\text{169,170}\) XDH is interconvertible to xanthine oxidase and both enzymes utilize the same substrates (xanthine, hypoxanthine) but utilize different co-factors.\(^\text{170}\) *Ry* mutants have previously been shown to accumulate hypoxanthine and xanthine due to the deficient functioning of XDH.\(^\text{171,172}\) Interestingly, in plant studies investigating point mutations in the xanthine dehydrogenase gene, autofluorescent objects were similarly seen in the mesophyll cells which were found to be rich in xanthine.\(^\text{173}\) It is therefore plausible that the objects visualized in fly malpighian tubules represent xanthine/hypoxanthine particles with the resultant distortions in MT morphology as a result of oxidative stress due to the lack of uric acid production (an anti-oxidant).
4.5 High throughput drug screening

The advantages to the use of *D. melanogaster* as a high throughput drug discovery system have long been known and this process has been described extensively in the literature.174–177 Several compounds currently used clinically in a therapeutic role have analogous mechanisms of action in DM and underscores the power of the use of DM in this role.176 The use of DM however introduces some technical issues as it may only allow for the modelling of a certain facets of human pathology and the interpretation of such assays can be challenging.178 With these limitations in mind, we have developed a semi-quantitative assay which allows for high throughput screening of bioactive compounds to identify compounds with potential anti-lithogenic effects. These compounds could then be further investigated in mammalian or *in vitro* systems, a process which has not been readily possible through the use of traditional models of uric acid nephropathy.

The method described above involving the *in silico* quantification of birefringence per unit area of fecal matter provides a numerical estimate of relative birefringence. In addition, relative birefringence can be estimated qualitatively, but this process is operator dependent and some training and experience with visualizing raw images is required to make accurate deductions. An aggressive threshold for identifying candidate compounds is therefore warranted as only very large or small relative changes can be determined with accuracy. Through the use of this assay, we have identified three such compounds which appear to reduce fecal birefringence to a level similar to following treatment with the xanthine oxidase inhibitor allopurinol belonging to the bioflavonoid and furanolactone classes of
compounds. At this time, these compounds have not been formally identified for proprietary rights reasons. In addition, due to the nature of the screening process in which each individual drug was screened on a single occasion to assess the utility of this model as a high throughput drug screening system, further investigation of these compounds is warranted to assess if these results can be replicated in this and other mammalian in vivo systems.

4.6 Future directions

The genetic tractability, economic efficiency and general ease of use of D. melanogaster helps to bridge a fundamental gap in therapeutic drug discovery in nephrolithiasis. The role of DM, however, must be clearly delineated due to the limitations encountered in recapitulating a mammalian system. To strengthen evidence garnered through the use of DM, further investigation in an in vitro or mammalian system can be considered. With reference to nephrolithiasis, interest in the direct inhibitors of crystallization is growing. Apart from the recently discovered theobromine and some saponins and glycosaminoglycans, no direct crystallization inhibitors of uric acid nephrolithiasis are known.82 During the course of this study, the utility of utilizing in vitro grown crystals to perform medium to high throughput drug screens was briefly investigated. We found that large quantities of crystals could be rapidly grown simply in vitro through slow evaporation, slow cooling or vapor diffusion. These crystals could also be admixed with fluorescent dyes to allow for direct visualization of crystal morphology (Figure 24, 25, 26). In addition, techniques such as turbidimetric assays and visualization under atomic force microscopy (AFM) could be used to investigate morphological changes in
crystal structure under the action of test compounds. These modalities could be utilized as a “pre” or “post” validation screen, further increasing throughput.

Figure 24 *In vitro* grown uric acid dihydrate (UAD) crystals viewed under polarized light microscopy

Figure 25 *In vitro* grown L-cystine dihydrochloride crystal admixed with methylene blue under polarized light [DAPI (blue) and Alexa594 (red) channels enabled]
The use of *in vitro* grown crystals in a similar manner have been previously described in the literature. For example, the role of L-cystine diamides as crystallization inhibitors of cystine crystals was discovered through *in vitro* methods. To improve the robustness of the uric acid model nephrolithiasis and future drug screening, biochemical determination of total uric acid content could be considered through the use of enzymatic assays (Uric Acid Assay Kit, MAK077, Sigma) or high-performance liquid chromatography (HPLC). This would allow for rapid, directly quantifiable result and allow for further validation of the fecal excreta assay described above. In addition, lifespan and survival studies under varying purine loads with and without drug treatments would be beneficial to determine whether any adverse outcomes are observed secondary to crystal formation in MTs. Despite significant efforts, only 45% of the genes significantly enriched in *D.*
melanogaster malpighian tubules have estimates of function. Recent advancements towards expanding our knowledge of the *D. melanogaster* transcriptome in relation to the malpighian tubules have identified several genes which appear to contribute to functionally specific domains such as amino acid transport. Further work in this regard could allow for the development of a *D. melanogaster* model of cystinuria by recapitulating defective cystine transport in the malpighian tubules by the knockdown of these genes; expanding the repertoire of *D. melanogaster* based models of nephrolithiasis. In conclusion, *Drosophila melanogaster* is a promising *in vivo* platform for the modelling of human nephrolithiasis which is not restricted to a single stone subtype. These models also offer an *in vivo* platform for drug screening which is amenable to the application of much larger chemical libraries. The use of birefringent signals to quantitate calculi present in fecal excreta is a key innovation that is cost effective and does not require additional staining or additional processing. This also holds implications in the future, as other birefringent calculi such as cystine calculi would also be amenable to this type of chemical library screen. This screening platform provides several avenues of opportunity to identify additional novel compounds of anti-lithogenic activity, or provide a set of compounds for further evaluation in mammalian pre-clinical models. We are confident the translational potential of these models will hold future promise in the clinic, changing the face of practice in the treatment of nephrolithiasis.
References or Bibliography

64. Tsimberidou, A.-M. & Keating, M. J. Hyperuricemic syndromes in cancer

72. Usman, K. D. MP20-11 URINARY STONE CHEMICAL ANALYSIS VS. INFRARED SPECTROSCOPY: A MICRO-CT ASSISTED COMPARATIVE BI-CENTER STUDY. **191**

115. Hong, Y. K. Inhibition of JNK/dFOXO pathway and caspases rescues neurological impairments in Drosophila Alzheimer’s disease model. 419,

117. Kim, J. Y. Neurodegeneration of Drosophila drop-dead mutants is associated with hypoxia in the brain. 11,

127. Lee, K.-A. Drosophila as a model for intestinal dysbiosis and chronic inflammatory diseases. 42,

129. Na, J. Diet-Induced Podocyte Dysfunction in Drosophila and Mammals. **12**,

133. Levine, B. D. Drosophila Lung Cancer Models Identify Trametinib plus Statin as Candidate Therapeutic. **14**,

138. Ho, C.-Y. Effects of commercial citrate-containing juices on urolithiasis in a Drosophila model. **29**,

Appendices

Nature Publishing Group License Terms and Conditions

This Agreement between Aymon N Ali ("You") and Nature Publishing Group ("Nature Publishing Group") consists of your license details and the terms and conditions provided by Nature Publishing Group and Copyright Clearance Center.

<table>
<thead>
<tr>
<th>License Number</th>
<th>4137920677122</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Jun 28, 2017</td>
</tr>
<tr>
<td>Licensed Content Publisher</td>
<td>Nature Publishing Group</td>
</tr>
<tr>
<td>Licensed Content Publication</td>
<td>Nature</td>
</tr>
<tr>
<td>Licensed Content Title</td>
<td>The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm</td>
</tr>
<tr>
<td>Licensed Content Author</td>
<td>Helen Weavers, Silvia Prieto-Sanchez, Ferdinand Graue, Amparo Garcia-Lopez, Ruben Arteo et al.</td>
</tr>
<tr>
<td>Licensed Content Date</td>
<td>Oct 29, 2008</td>
</tr>
<tr>
<td>Licensed Content Volume</td>
<td>457</td>
</tr>
<tr>
<td>Licensed Content Issue</td>
<td>7227</td>
</tr>
<tr>
<td>Type of Use</td>
<td>reuse in a dissertation/thesis</td>
</tr>
<tr>
<td>Requestor type</td>
<td>academic/educational</td>
</tr>
<tr>
<td>Format</td>
<td>print and electronic</td>
</tr>
<tr>
<td>Portion</td>
<td>figures/tables/illustrations</td>
</tr>
<tr>
<td>Number of figures/tables/illustrations</td>
<td>1</td>
</tr>
<tr>
<td>High-res required</td>
<td>no</td>
</tr>
<tr>
<td>Figures</td>
<td>Figure 1, panels (a) to (d)</td>
</tr>
<tr>
<td>Author of this NPG article</td>
<td>no</td>
</tr>
<tr>
<td>Your reference number</td>
<td></td>
</tr>
<tr>
<td>Title of your thesis / dissertation</td>
<td>The Drosophila melanogaster model of human uric acid nephrolithiasis as a high throughput drug screening tool</td>
</tr>
<tr>
<td>Expected completion date</td>
<td>Jul 2017</td>
</tr>
<tr>
<td>Estimated size (number of pages)</td>
<td>110</td>
</tr>
<tr>
<td>Requestor Location</td>
<td>Aymon N Ali</td>
</tr>
</tbody>
</table>

Appendix A 1
Appendix A 2

This Agreement between Aymon N Ali ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

<table>
<thead>
<tr>
<th>License Number</th>
<th>4137990182631</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Jun 28, 2017</td>
</tr>
<tr>
<td>Licensed Content Publisher</td>
<td>John Wiley and Sons</td>
</tr>
<tr>
<td>Licensed Content Publication</td>
<td>genesis</td>
</tr>
<tr>
<td>Licensed Content Title</td>
<td>GAL4 system in drosophila: A fly geneticist's swiss army knife</td>
</tr>
<tr>
<td>Licensed Content Author</td>
<td>Joseph B. Duffy</td>
</tr>
<tr>
<td>Licensed Content Date</td>
<td>Sep 12, 2002</td>
</tr>
<tr>
<td>Licensed Content Pages</td>
<td>15</td>
</tr>
<tr>
<td>Type of use</td>
<td>Dissertation/Thesis</td>
</tr>
<tr>
<td>Requestor type</td>
<td>University/Academic</td>
</tr>
<tr>
<td>Format</td>
<td>Print and electronic</td>
</tr>
<tr>
<td>Portion</td>
<td>Figure/table</td>
</tr>
<tr>
<td>Number of figures/tables</td>
<td>1</td>
</tr>
<tr>
<td>Original Wiley figure/table number(s)</td>
<td>Figure 1</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>No</td>
</tr>
<tr>
<td>Title of your thesis / dissertation</td>
<td>The Drosophila melanogaster model of human uric acid nephrolithiasis as a high throughput drug screening tool</td>
</tr>
<tr>
<td>Expected completion date</td>
<td>Jul 2017</td>
</tr>
<tr>
<td>Expected size (number of pages)</td>
<td>110</td>
</tr>
<tr>
<td>Requestor Location</td>
<td>Aymon N Ali</td>
</tr>
<tr>
<td>Publisher Tax ID</td>
<td>EU026007151</td>
</tr>
<tr>
<td>Billing Type</td>
<td>Invoice</td>
</tr>
<tr>
<td>Billing Address</td>
<td>Aymon N Ali</td>
</tr>
<tr>
<td>Total</td>
<td>0.00 USD</td>
</tr>
</tbody>
</table>
Permission granted via e-mail by Andy Spooner, Communications Assistant, Company of Biologists (Marked as confidential). Fair use allowed under CC BY Attribution 4.0 International. "The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila", Denholm et al. Development 2013 140: 1100-1110; doi: 10.1242/dev.088989

Appendix A 3
Curriculum Vitae

Name: Aymon Ali

Post-secondary Education and Degrees:

Khyber Medical University
Peshawar, Pakistan
2007-2013
MBBS (Bachelor of Medicine, Bachelor of Surgery)

The Foundation Programme
Lincoln, United Kingdom
Nottingham, United Kingdom
2013-2016
Postgraduate Clinical Training

Honours and Awards:

Western Graduate Research Scholarship (WGRS)
2016-2017

Research Award for Best Poster Presentation (Robert Zhong Research Day)
2017

Related Work Experience:

MSc in Surgery Candidate
University of Western Ontario
London, ON, Canada
2016-2017

Foundation Clinical Trainee
Lincoln/Nottingham, United Kingdom
2013-2016

Publications:

1. Thamara K Dayarathna, Sohrab N Ali, Aymon N Ali, Paul Spagnuolo, Hassan Razvi, Hon S Leong, BRPRS4-7 Arbutin as a novel prevention and therapy for calcium oxalate nephrolithiasis – Accepted at 35th World Congress of Endourology, Vancouver

2. Aymon N Ali, Thamara K Dayarathna, Mike Pignanelli, Jihye Kim, Ranjit S Padda, Paul Spagnuolo, Hassan Razvi, Hon S Leong, BRPRS2-6: The Drosophila melanogaster model of human uric acid nephrolithiasis as a

Audits and Quality Improvement Projects:

1. 5th National Audit Project (NAP-5) on accidental awareness during general anaesthesia (AAGA), Lincoln County Hospital, County Hospital Louth – Sep 2013, Role: Data collection

2. Clinical Variation in Practice of Laparoscopic Cholecystectomy and Surgical Outcomes: a multi-centre, prospective, population-based cohort study (CholeS Study), Role: Data collection

Poster Presentations:

Invited Lectures:

1. JK Wyatt, Urology Residents Research Day
 London Convention Centre, London, ON

2. Surgeon’s Travel Club
 University Hospital, London, ON