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Abstract 

Loading at the distal forearm has been previously examined under static loads, however 

there remains no consensus on how loading is affected by active wrist and forearm 

motion. This work examines load magnitudes and load sharing at the distal radius and 

ulna during of active wrist and forearm motion. Two instrumented implants were 

designed to measure in vitro loading in cadaveric specimen. The implants were evaluated 

and found reliable for use in further biomechanical studies. An in vitro study investigated 

the effect of joint angle and direction of joint motion on loads in the distal radius and ulna 

during active flexion-extension, radioulnar deviation and dart throw motion. Loads 

through the distal radius and ulna were significantly greater in extension and reverse dart 

throw motion than in flexion and forward dart throw motion. A subsequent study 

examined the effect of radial length changes, joint angle and direction of motion on distal 

radius and ulna loading during active forearm rotation. Load magnitudes through the 

distal radius were greater in supination than in pronation. Radial lengthening found to 

increase radial loading and decrease ulnar loading and radial shortening decreased distal 

radius loading and increased distal ulna loading throughout forearm rotation, in a 

quasilinear fashion. This work improves the understanding of forearm bone loading and 

will assist clinicians in the development of rehabilitation techniques, surgical protocols 

and implant designs.  

Keywords: distal radius, distal ulna, bone loading, wrist, forearm, biomechanics, 

dynamic wrist/forearm motion, Kienbock’s disease 
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Chapter 1  
1 Introduction 

Overview 

The purpose of this thesis is to examine load magnitude and sharing in the distal forearm. 

Forearm loading during active wrist and forearm motion and the effect of radial length 

change during active forearm pronation-supination motion. This introductory chapter 

provides an overview of anatomy, kinematics, forearm bone loading and existing 

experimental apparatuses and joint motion simulators.  In conclusion, rationale and 

outline will be presented and thesis objectives hypotheses will be clearly stated. 
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1.1 Anatomy of the Wrist and Forearm 

 Bony Anatomy 

Bone is a tough, elastic and dynamic tissue that gives mechanical structure to the human 

body (Figure 1.1). Different bones are made up of different combinations of the same two 

tissue types: cortical and cancellous bone. Cortical, or compact, bone is the stiff outer 

layer while cancellous, or trabecular, bone is the porous inner layer. There are distinctive 

types of bones that perform different structural and mechanical tasks. There are the long 

and short bones of the extremities, flat bones of the skull and pelvis and irregular bones 

like the mandible.  

Long bones make up most the skeletal structure of our upper extremities including the 

humerus, radius, ulna, metacarpals and phalanges. Long bones have a shaft, the 

diaphysis, and two distinct ends called the metaphyses.1 The diaphysis is roughly 

cylindrical and with a central medullary canal. It is made up of thick cortical bone that 

thins towards the metaphysis. The metaphysis, or ends, are expanded so as to provide 

space for muscle attachment and to increase the surface of joint articulations.1 They are 

primarily cancellous bone with a thin layer of encasing cortical bone.1 Short bones boast 

strength and compactness. They are composed predominantly of cancellous bone and 

covered by a thin layer of cortical bone.2 Examples of short bones in the upper extremity 

are the eight carpal bones of the wrist.  
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Figure 1.1: Anatomy of Long Bone. Long bones are comprised of two metaphyses at the distal and 

proximal ends and one central diaphysis. The metaphyses have a thin layer of cortical bone concealing 

cancellous bone. The diaphysis is comprised of a thick layer of cortical bone with a central medullary 

canal. 
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 Radius 

The forearm contains two long bones, the radius and the ulna (Figure 1.1). Of the two 

long bones of the forearm, the radius is longer and larger than the ulna found on the 

lateral side of the forearm (Figure 1.2).1 It is a long bone while a slight longitudinal 

curve. Like all long bones, it has two metaphyses at either end of a long body.  The 

proximal end is small and cylindrical to assist with elbow movement, while the distal end 

is large and the prime component of the wrist joint. The proximal metaphysis consists of 

a head, neck and tuberosity. The head is relatively cylindrical and with a fovea on the top 

to allow for articulation with both the proximal ulna and distal humerus during elbow 

flexion and forearm rotation.1 

The body of the radius is prism shaped and has three major surfaces. The volar surface is 

concave and is the site of pronator quadratus insertion. The dorsal surface is convex 

towards the metaphyses and concave through the diaphysis. The proximal dorsal surface 

is covered by the supinator. The distal dorsal surface features three prominent grooves 

that act to maintain the tendon lines of action. The lateral surface is convex throughout, 

with the pronator teres inserting along the rough centre ridge.1  

The distal radial metaphysis is quadrilateral in shape with two major articular surfaces. 

The distal articular surface articulates with the scaphoid and lunate carpal bones forming 

the radiocarpal joint. The medial articular surface, or the sigmoid notch, articulates with 

the ulnar head to form the distal radioulnar joint (DRUJ). There is a small ridge 

separating the radiocarpal joint and the DRUJ which doubles as the radial attachment of 

the triangular fibrocartilage (TFC).1  
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Figure 1.2: Bony Anatomy of the Radius. Bony anatomy of the left radius with important features and 

landmarks highlighted. (A) Lateral view, (B) anterior view, (C) distal articular surface, and (D) proximal 

articular surface. 

 

 

 

 

  

(A) 

(C) 

(B) 

(D) 
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 Ulna 

The ulna is a long bone located in the medial forearm, parallel to the radius (Figure 1.3). 

The proximal end is thick and strong and is the primary forearm bone of the elbow joint. 

It has two curved processes, the olecranon and coronoid process, and two concave 

articular notches, the greater sigmoid and the radial. The olecranon process articulates 

with the humerus and its medial border acts as the origin site for the flexor carpi ulnaris 

(FCU). The coronoid process is a triangular protrusion on the front of the ulna, it 

articulates with the radius laterally, and it the origin site of the anterior capsule and one of 

two pronator teres heads. The greater sigmoid notch is a curved depression formed by the 

olecranon and coronoid processes which articulates with the trochlea of the humerus to 

provide elbow flexion and extension. The radial notch is a narrow articular surface 

located on the lateral side of the coronoid process that articulates with the rotating radius 

during forearm pronation and supination.1 

The body of the ulna tapers in the proximal to distal direction, with three borders and 

three surfaces. The proximal body is slightly curved laterally; the central section is 

straight and the lower body curves laterally again.1 

The distal metaphysis has two important features, the ulnar head and the ulnar styloid 

process. The ulnar head is a rounded surface that articulates with the radius at the sigmoid 

notch and the triangular articular disc at its distal surface. The styloid process projects 

from the ulnar head on the medial-dorsal side of the ulna and extends distally past the 

head. The ulnar head and styloid are separated by the triangular fibrocartilage (TFC) 

attachment site and a shallow groove for the extensor carpi ulnaris tendon.1 
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Figure 1.3: Bony Anatomy of the Ulna. Bony anatomy of the left radius with important features and 

landmarks highlighted. (A) Lateral view, (B) anterior view, (C) distal articular surface, and (D) proximal 

articular surface. 
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 Carpal Bones 

The carpus consists of eight short bones located in the wrist joint (Figure 1.4). The shape 

of each carpal bone varies but the structure remains the same, cancellous bone enclosed 

by a thin layer of cortical bone.1 The carpal bones are arranged into two rows: a proximal 

carpal row and a distal carpal row. The proximal carpal row contains the scaphoid, lunate 

and triquetrum, while the distal carpal row contains the pisiform trapezium, trapezoid, 

capitate and hamate bones. Each of the carpal bones, with the exception of the pisiform, 

has six surfaces for articulation and soft tissue attachment.1  

 
Figure 1.4: Carpal Bones. Volar view of the bony anatomy of the left wrist showing the eight carpal 

bones, distal radius and distal ulna individually labeled. The proximal carpal row consists of the scaphoid 

(S), lunate (L), and triquetrum (TQ). The distal row consists of the pisiform (P), trapezium (TP), trapezoid 

(TZ), and hamate (H). 
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The scaphoid is the largest bone is the proximal carpal row and is the stabilizing link 

between the distal and proximal carpal rows (Figure 1.5).1 The scaphoid has four articular 

surfaces, accounting for 80 percent of its total surface area, including the medial facet and 

the lateroproximal, distal medial and distal surfaces. The medial articular facet is 

semilunar in shape and articulates with the lateral lunate. The lateroproximal articular 

surface is convex and articulates with scaphoid fossa on the distal radius. The distal 

medial articular surface is a concave oval facet and articulates with the lateral capitate. 

The distal articular surface is convex and articulates with the proximal trapezium and 

trapezoid.2 The scaphoid tuberosity is a non-articular surface located between the 

lateroproximal and the distal articular surfaces. The scaphoid tuberosity is the site of 

ligamentous attachment for the radioscaphocapitate and scaphotrapezial-trapezoid 

ligaments, further explained below (Section 1.13, Figures 1.10, 1.11). In neutral wrist 

position, the long axis of the scaphoid is oriented obliquely in the sagittal and coronal 

plates. 2 

 
Figure 1.5: Bony Anatomy of the Scaphoid. Bony anatomy of the left scaphoid with important landmarks 

and articulations labeled. (A) Medial view, (B) dorsolateral view, (C) distal articular surface, and (D) 

proximal articular surface. 
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The lunate is considered to be the keystone carpal bone (Figure 1.6).2 The lunate is moon 

shaped and larger volarly than it is dorsally. Like the scaphoid, the lunate also has four 

articular surfaces. The proximal articular surface is biconvex, with two thirds articulating 

with the distal radius and one third with the triangular fibrocartilage. The distal articular 

surface is biconcave and articulates with the head of the capitate and the proximal 

hamate. The lateral and medial articular surfaces are flat semilunar surfaces that articulate 

with the scaphoid and triquetrum, respectively.2 The lunate also has two non-articular 

surfaces on its volar and dorsal aspects. The palmar surface is the site of ligamentous 

attachment for the long radiolunate, short radiolunate, radioscapholunate and 

scapholunate ligaments, further explained below (Section 1.13, Figures 1.10, 1.11). The 

dorsal surface is the site of stabilizing ligament attachment and vascular supply.2 The 

anatomic characteristics of the lunate are important for the diagnosis and pathogenesis of 

Keinbock’s disease. 2 

 
Figure 1.6: Bony Anatomy of the Lunate. Bony anatomy of the left lunate with important landmarks and 

articulations labeled. (A) Distal articular surfaces, (B) proximal articular surfaces, (C) medial view, and 

(D) lateral view. 
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 Metacarpals 

There are five long cylindrical metacarpals that make up the structure of the palm, as seen 

in (Figure 1.7, 1.8).1 The naming convention of the metacarpals starts with the thumb as 

the first metacarpal medially towards the small finger as the fifth metacarpal. Like other 

long bones, metacarpals consist of a proximal metaphysis, a diaphysis and a distal 

metaphysis. The concave proximal metaphysis of each metacarpal articulates with a 

corresponding carpal(s) of the distal carpal row. The proximal metacarpal also articulates 

with the adjoining metacarpal bones via flat mediolateral surfaces. The body of the 

metacarpals have a medial, lateral and dorsal surface. The medial and lateral surfaces are 

concave and separated by a distinct anterior ridge.1 The dorsal surface is broad and flat 

and supports the insertion of the extensor tendons of the wrist, and the volar surface is 

grooved in the middle for the smooth passage of the flexor tendons.1 The distal portion 

articulates with individual corresponding phalanges (I-V).  
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Figure 1.7: Bony Anatomy of the Metacarpals. Volar view of the bony anatomy of the left wrist showing 

the distal radius, distal ulnar, carpal bones and five metacarpals individually labeled. The thumb, or most 

radial metacarpal, is termed the first metacarpal (I) and the most ulnar metacarpal is termed the fifth 

metacarpal (V). 
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Figure 1.8: Bony anatomy of the Third Metacarpal. Bony anatomy of the left third (III) metacarpal with 

important landmarks and articulations labeled. (A) Dorsal view, (B) lateral view, (C) distal articular 

surface, (D) proximal articular surface. 
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 Joints 

The wrist and forearm bones articulate with one another at distinct joints, each with 

individual biomechanical and kinematic characteristics.2 The three major synovial joints 

of the wrist are the distal radioulnar joint (DRUJ), the radiocarpal joint, and the midcarpal 

joint (Figure 1.9). The distal radius, ulna and eight carpal bones are covered in articular 

cartilage at their articular surfaces.  Articular cartilage provides flexibility, cushion, and 

smooth surfaces for joints to articulate and track efficiently. 1 

 Distal Radioulnar Joint 

The DRUJ is a complex pivot joint comprised of two separate articulations: vertically, 

between the ulnar head and the sigmoid notch of the distal radius and horizontally, 

between the ulnar dome and the proximal aspect of the TFC (Figure 1.9).2 The movement 

at these two articulations allow forearm pronation and supination to occur. During 

pronation and supination, the radius rotates around an axis originating at the centre of the 

radial head and extending to the foveal sulcus at the base of the ulnar styloid. 1 The 

radiocarpal unit rotates freely around the fixed ulna. Forward rotation of the radius or 

backwards rotation of the palm is termed pronation. The backwards rotation of the radius 

or forward rotation of the palm is termed supination. There are individual variations in 

the range of forearm motion from 150q-180q at the DRUJ, with 30q occurring at the 

radio- and mid-carpal joints.2 Bony articulations account for a small amount of joint 

constraint, however, the joint it primarily constrained by static constraints and dynamic 

muscle stabilizers. The static constraints of the DRUJ include the triangular fibrocartilage 

complex, dorsal and volar radioulnar ligament, and the ulnar collateral ligament. The 

dynamic muscle stabilizers of the DRUJ are the extensor carpi ulnaris and the pronator 

quadratus.2  
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 Radiocarpal (Wrist) Joint 

The radiocarpal joint is the condyloid articulation formed between the distal surfaces of 

the radius and TFC and the proximal carpal row, consisting of the scaphoid, lunate and 

triquetrum (Figure 1.9).2 The distal surface of the radius has two distinct facets for the 

articulation of the proximal scaphoid and lunate. The triquetrum does not articulate with a 

bone, but rather with the distal surface of the triangular fibrocartilage complex.2 The 

radiocarpal joint is surrounded by a joint capsule and strengthened by the dorsal and volar 

radiocarpal ligaments and the ulnar and radial collateral ligaments.2 The radiocarpal joint 

contributes primarily to flexion-extension motion and radioulnar deviation, or wrist 

abduction and adduction.2   

 Midcarpal Joint 

The midcarpal joint is the term used to describe the articulation between the proximal and 

distal carpal rows. The midcarpal joint is comprised of three distinct components (Figure 

1.9).2 Laterally, the convex surface of the scaphoid articulates with the concave surfaces 

of the trapezium and trapezoid. Centrally, the concave surfaces of the scaphoid and the 

lunate make a near ball and socket joint with the convex surfaces of the capitate and 

hamate. Medially, the hamate forms a gliding joint with the triquetrum.2 Stabilizing soft 

tissues include the dorsal and volar radioulnar ligaments and the ulnar and radial 

collateral ligaments.2 
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Figure 1.9: Joints of the Wrist. Volar view of the bony anatomy of the left wrist illustrating the three 

major articulations between the carpal bones, radius and ulna. The wrist is comprised of three major 

joints: (A) distal radioulnar joint, (B) radiocarpal joint, and (C) midcarpal joint.  
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 Ligamentous Anatomy 

Ligaments are fibrous bundles of connective tissue that connect bone to bone and provide 

joint stability. The wrist is constrained by ligaments on the dorsal and volar sides 

(Figures 1.10 & 1.11).2 The accepted naming convention followed has the bone of origin 

indicated as the prefix and the bone of insertion as the suffix. The ligaments of the wrist 

can be grouped by their location within the joint capsule of the wrist.2 The sub-categories 

of wrist ligaments include: radiocarpal, ulnocarpal, distal radioulnar, intercarpal and 

carpometacarpal.  

The radioscaphocapitate (RSC) ligament is the most radial of the palmar ligaments. The 

RSC ligament originates on the radius, proximal to the radial styloid and directly on the 

radio-volar aspect of the distal radial ridge (Figure 1.10). 2 The RSC ligament has 

multiple insertions, the first of which is located on the lateral waist of the scaphoid. The 

second scaphoid insertion of the RSC ligament is on the radial aspect of the waist and 

volarly on the proximal margin. 2 The remaining RSC ligament continues ulnarly and 

distally, crossing over the volar proximal aspect of the scaphocapitate joint and inserts on 

the capitate head.2 

The long radiolunate (LRL) ligament, sometimes referred to as the radioulnotriquetrial 

ligament, originates on the volar rim of the distal radius spanning the length of the 

scaphoid fossa (Figures 1.10, 1.11).2 The superficial ulnar fibers of the LRL overlap with 

the superficial radial fibers of the RSC. The LRL moves ulnarly past the volar surface 

and proximal pole of the scaphoid and inserts on the radial margin of the volar lunate 

surface.2 

The short radiolunate (SRL) ligament is thick and forms the floor of the radiolunate space 

(Figures 1.10, 1.11).2 The SRL originates on the volar rim of the radius, proximal to the 

lunate fossa. The SRL then directs distally and inserts on the proximal articular surface 

and volar ridge of the lunate 2 

The ulnocarpal ligaments, consisting of the ulnolunate, ulnotriquetrial and ulnocapitate 

ligaments, form the ulnar and volar walls of the ulnar half of the radiocarpal joint, 

providing medial support during joint extension (Figure 1.10, 1.11).2 The group of 
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ulnocarpal ligaments largely originate from the volar radioulnar ligament, not directly 

from the ulna, which allows for consistent tension.2 It is hard to distinguish the ulnocarpal 

ligaments from one another by anything other than their individual insertions. The 

ulnolunate ligament is directly continuous with the SRL and it also inserts on the radial 

margin of the volar lunate surface.2 The ulnotriquetrial inserts on the proximal volar 

aspect of the triquetrum.2 

The distal radioulnar ligaments act to stabilize the distal radioulnar joint throughout 

forearm rotation and maintain joint congruity between the ulnar head and the sigmoid 

notch of the radius (Figures 1.10, 1.11).2 The distal-volar radioulnar ligament forms the 

volar portion of the triangular fibrocartilage complex (TFCC). The distal-volar radioulnar 

ligament originates on the anterior surface of the sigmoid notch on the radius and inserts 

on the anterior head of the ulnar.2 The distal-dorsal radioulnar ligament originates on the 

dorsal surface of the ulnar notch and inserts on the dorsal margin of the ulnar head.2  
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Figure 1.10: Volar Ligaments of the Wrist. A schematic of the volar ligaments constraining the wrist 

joints of the right hand. Radiocarpal, ulnocarpal and distal radioulnar ligaments are individually labeled.  

 
Figure 1.11: Dorsal Ligaments of the Wrist. A schematic of the dorsal ligaments constraining the wrist 

joints of the right hand. Radiocarpal, ulnocarpal and distal radioulnar ligaments are individually labeled.  
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 Musculature 

There are three types of muscles in the human body: smooth, cardiac and skeletal. 

Skeletal muscles are fibrous bundles or bands of soft tissue whose essential function is to 

contract, or shorten, to stabilize joints and control joint motion.3 Muscles are connected to 

bones at both their origin and insertion through viscoelastic, collagenous tissues called 

tendons.4 Muscle contraction occurs through the sliding interactions of microfilaments, 

actin and myosin, and generates joint tension. This tension creates a moment with respect 

to the joint center by which muscles act to manipulate joint position.4 The force exerted 

by each muscle is dependent on size, type and the distance from the muscle insertion to 

the joint centre. During joint motion, the bone from which the muscle originates stays 

stationary and the insertion bone moves.4 Muscles rarely work alone; instead they work 

in synergistic groups with the muscle exerting the most force the most being dubbed the 

prime mover.4 The muscles acting in the direction of motion at any given time are termed 

the agonists. Each muscle group typically has an opposing muscle or muscles, called 

antagonist(s), acting to move the joint in the opposite direction.4  

Wrist motion is primarily controlled through six forearm muscles: the flexor carpi ulnaris 

(FCU), flexor carpi radialis (FCR), abductor pollicis longus (APL), extensor carpi ulnaris 

(ECU), extensor carpi radialis longus (ECRL), and extensor carpi radialis brevis (ECRB), 

(Figure 1.12).2 The flexor muscles are located in the volar compartment and extensors in 

the dorsal compartment. Forearm motion is primarily controlled through four separate 

muscles: the biceps brachii, supinator, pronator teres (PT), and pronator quadratus (PQ).4  
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Figure 1.12: Muscles of the Wrist and Forearm. Forearm muscles of the anterior or volar compartment 

(A) and posterior or dorsal compartment (B) of the right wrist and forearm. The muscles necessary for 

wrist flexion, extension, radioulnar deviation and forearm pronation and supination are individually 

labeled. 

 

 

 

 

  

(A) (B) 
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 Volar Compartment  

The volar compartment contains the FCU, FCR and APL muscles (Figure 1.12). These 

muscles act together to generate wrist flexion and radioulnar deviation. The muscles of 

the volar compartment are listed below. 

1.1.4.1.1 Flexor Carpi Ulnaris  

The FCU is the prime wrist flexor muscle and acts with the ECU to contribute to ulnar 

wrist deviation, or adduction. The FCU lies on the ulnar side of the forearm and ends in a 

tendon that occupies the lower half of the muscle. Its two heads originate on the medial 

epicondyle of the humerus and the medial olecranon of the ulna and insert on the hamate, 

dorsal pisiform and proximal 5th metacarpal.1   

1.1.4.1.2 Flexor Carpi Radials 

The FCR contributes to wrist flexion and acts with the ECRL and ECRB to generate 

radial wrist deviation, or abduction. The FCR originates on the medial epicondyle of the 

humerus and inserts into the base of the 2nd metacarpal.1  

1.1.4.1.1 Abductor Pollicis Longus  

The APL primarily acts to abduct the first metacarpal and it also assists in wrist flexion 

and radial deviation. The APL originates at the dorsolateral ulnar body, from the 

interosseous membrane, and the central portion of the dorsal radius and inserts lateral 

side of the 1st metacarpal.1   
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 Dorsal Compartment 

The dorsal component contains the ECRL, ECRB and ECU muscles (Figure 1.12). These 

muscles act together to generate wrist extension and contribute to radioulnar wrist 

movements. The muscles of the dorsal compartment are listed below 

1.1.4.2.1 Extensor Carpi Radialis Brevis 

The ECRB contributes to wrist extension and radial wrist deviation in addition to acting 

as a wrist stabilizer during finger flexion. The ECRB is shorter and thicker than the 

ECRL. The ECRB originates on the later epicondyle of the humerus and inserts on the 

dorsolateral surface of the 3rd metacarpal.1 The ECRB ends in a flat tendon and lies in a 

groove on the dorsal radius adjacent to the ERCL.  

1.1.4.2.2 Extensor Carpi Radialis Longus 

The ECRL contributes to both wrist extension and radial deviation, or abduction. The 

ECRL originates on the lower, lateral supracondylar ridge of the humerus and inserts on 

the dorsolateral side of the 2nd metacarpal.1 The ECRL ends in a flat tendon that lies in 

the grooves present on the dorsal radius along with the ECRB.  

1.1.4.2.3 Extensor Carpi Ulnaris 

The ECU is the primary wrist extensor and contributes to ulnar deviation. The ECU 

originates on the lateral epicondyle of the humerus and the dorsal border of the ulna and 

inserts on the dorsomedial side of the 5th metacarpal. 1 The ECU ends in a flat tendon that 

sits in the foveal sulcus created by the ulnar head and ulnar styloid process.  
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 Forearm Rotators 

Forearm rotation is generated and controlled by four major muscles: the biceps brachii, 

supinator, pronator teres (PT) and pronator quadratus (PQ) (Figure 1.12) 

1.1.4.3.1 Biceps Brachii 

The biceps brachii is the prime mover involved in forearm supination and contributes to 

elbow flexion. The biceps brachii is a long fusiform muscle that has two heads that 

originate from the coronoid process of the ulna and the supraglenoid tuberosity at the 

upper margin of the glenoid cavity. The biceps brachii inserts on the radial tuberosity.1  

1.1.4.3.2 Supinator 

The supinator assists the biceps brachii in forearm supination. The supinator is a broad 

muscle that originates on the lateral epicondyle of the humerus and the proximal ulna and 

inserts on the proximal, anterolateral radius.1  

1.1.4.3.3 Pronator Teres 

The PT passes obliquely across the forearm and acts as the primary forearm pronator. 

The PT has two heads of origin, the: humeral and ulnar head. The humeral head 

originates on the medial epicondyle, while the ulnar head originates on the medial side of 

the coronoid process. The PT inserts on the rough impression of the medial side of the 

radius halfway down the diaphysis.1  

1.1.4.3.4 Pronator Quadratus 

The PQ assists the PT in forearm pronation. The PQ is a small, flat muscle extending 

across the distal radius and ulna. The PQ originates on the distal anteromedial ulna and 

inserts on the distal anterolateral surface of the radius.1  
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1.2 Wrist Kinematics 

 Range of Motion 

 Flexion-Extension Motion 

Planar wrist flexion-extension motion (FEM) occurs at the radiocarpal and midcarpal 

joints in coronal plane around the sagittal plane (Figure 1.13).5 Ranges of FEM motion 

vary between individuals and average 60-90° of wrist flexion and 55-75° of wrist 

extension. The radiocarpal joint contributes more in wrist flexion (66%) and the 

midcarpal joint more in extension (66%).6 Wrist FEM occurs at the radiocarpal and 

midcarpal joints under the control of the FCR, FCU, ECRL, ECRB and ECRL muscles. 

Wrist FEM is constrained by the dorsal radiocarpal ligaments during wrist extension and 

the volar radiocarpal ligaments during wrist flexion.2  

 

 
Figure 1.13 Range of Wrist Motion: Flexion-Extension. Wrist joint motion in planar flexion  (A) and in 

planar extension (B).  

  

(A) (B) 
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 Radioulnar Deviation 

Planar wrist radioulnar deviation (RUD) refers to wrist abduction and adduction and 

occurs at the radiocarpal and midcarpal joints around the sagittal plane of the hand 

(Figure 1.14).5 There are individual differences in RUD range of motion with the average 

being 15-25° of radial deviation and 30-45° of ulnar deviation. Radial deviation occurs 

primarily at the midcarpal joint, while ulnar deviation occurs primarily at the radiocarpal 

joint.2,5  Radial deviation is controlled by the FCR, ECRB and ECRL muscles and ulnar 

deviation by the FCU and ECU muscles. RUD is constrained by the radial and ulnar 

collateral ligaments and limited by the prominent radial styloid.2  

 

 
Figure 1.14: Range of Wrist Motion: Radial-Ulnar Deviation. Wrist joint motion in planar radial 

deviation (A) and in planar ulnar deviation (B).  

 
  

(A) (B) 
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 Dart Throw Motion 

Dart throw motion (DTM) has been adapted experimentally to better represent the range 

of motion of daily activities (Figure 1.15).7,8,9 During extension the wrist radial deviates 

and during flexion the wrist ulnar deviates. Dart throw motion is a combination wrist 

flexion-extension motion (FEM) and wrist radioulnar deviation (RUD) and occurs at the 

radiocarpal and midcarpal joints around the sagittal plane of the hand. There are varying 

opinions on which range of motion best represents a dart throw motion. The maximum 

proposed FEM range of motion is 30° of extension to 50° of flexion and the minimum is 

20° of extension and 20° of flexion.9,10,1  While there is discrepancy as to how much FEM 

to include, 10° of radial and 10° of ulnar deviation has been widely agreed on. Wrist 

FEM occurs under the control of the FCR, FCU, ECRL, ECRB and ECRL muscles, 

radial deviation is controlled by the FCR, ECRB and ECRL muscles and ulnar deviation 

by the FCU and ECU muscles.2 For this study, the  forward DTM is defined as 30° of 

wrist extension with 10° of radial deviation to 30° of flexion with 10° of ulnar deviation 

and reverse DTM defined as to 30° of flexion with 10° of ulnar deviation and 30° of wrist 

extension with 10° of radial deviation. This range of motion is thought to best reflect the 

range of motion of daily activities.9 
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Figure 1.15: Range of Wrist Motion: Dart Throw. Wrist joint motion in combined wrist extension (A) 

and radial deviation (B) and wrist flexion (C) and ulnar deviation (D).  

  

(A) (C) 

(B) (D) 
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 Pronation-Supination Motion 

Forearm pronation-supination motion (PSM) occurs at the distal radioulnar joints (DRUJ) 

and the proximal radioulnar joint (PRUJ) around a forearm axis stemming from the 

center of the radial head and extending to the ulnar sulcus between the ulnar head and 

styloid (Figure 1.16).2 Average range-of-motion for forearm rotations is 60-80° of 

pronation and 60-85° or supination. PSM motion is controlled by the biceps brachii, 

supinator, PT and PQ.2 Wrist supination is constrained by the dorsal and volar radioulnar 

ligaments, while wrist pronation is constrained by the crossing of the radius over the 

ulna.12  
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Figure 1.16 Range of Wrist Motion: Pronation-Supination.  Forearm pronation (A) and supination (B) 

occurs the distal radioulnar joint in the wrist. Pronation motion results in a palm down forearm position 

while supination motion results in a palm up position.  

  

(A) (B) 
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1.3 Clinical Disorders of the Wrist and Forearm 

 Wrist Fractures 

Wrist fractures are the most commonly occurring injury of the skeletal system with a 

cumulative life time incidence of 15% in women and 3% in men (Figure 1.17).13,14 There 

are different types of wrist fractures determined by their fracture mechanism and 

associated malunions and misalignments. Distal radius fractures are the most common 

wrist fractures, and account for and one sixth of all skeletal fractures.15-20 The most 

common fracture mechanism is a fall on a dorsiflexed hand, often leading to a Colles’ 

fracture with dorsal angulation of the distal radius. The malunions and misalignments 

associated with distal radius fractures include changes in radial inclination, radial length 

or height, ulnar variance and dorsal-volar angulation.21 Malunions and misalignments that 

occur following wrist fractures frequently lead to ulnar sided wrist pain, weakness, 

stiffness and degenerative diseases such as arthritis.22-28 There is no single treatment for a 

wrist fracture; there is a range of treatments dependent on the type and severity of 

fracture, patient age and activity level. Common wrist fracture treatments include: 

splinting, casting, pin-fixation, external fixation and open reduction and internal fixation.2 
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Figure 1.17: Wrist Fracture. Corresponding radiographic images of a distal radial fracture before (A) 

and after (B) an open reduction and internal fixation procedure to reduce and realign the wrist joint. 
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 Kienbock’s Disease  

Kienbock’s disease is a wrist condition caused by the avascular necrosis and degradation 

of the lunate carpal bone with associated negative ulnar variance (Figure 1.18).2, 29 

Kienbock’s disables the wrists of young active individuals with the onset ages most 

commonly between 20-25 years old. Patients present with chronic wrist pain, dorsal 

swelling, and decreased range of motion and are usually unable to recall a distinct 

traumatic event as a cause. There is literature to suggest that Kienbock’s disease is caused 

by multiple minor traumatic events causing stress fractures of the lunate.2 However, there 

is no known cause for Kienbock’s disease; there is a list of risk factors that may be 

predicative, including: ulnar variance, lunate geometry, lunate vascularity, triangular 

fibrocartilage complex compliance and various congenital and developmental disorders.2, 

30-32  Many possible treatment options are prescribed to reduce wrist pain and delay 

inevitable joint degradation and arthritis, including: radial shortening, ulnar lengthening, 

wrist denervation, intercarpal fusions, proximal row carpectomy lunate revascularization, 

core decompression, or lunate excision with or without prosthetic replacement.2, 33-35  
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Figure 1.18: Keinbock’s Disease. Corresponding radiographic images of a patient presenting with 

negative ulnar variance due to Kienbock’s disease before (A) and after (B) a radial shortening osteotomy 

to theoretically reduce the loading on the lunate. 
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 Ulnar Impaction Syndrome 

Ulnar impaction syndrome, also known as ulnar carpal abutment, is the impaction of the 

distal ulnar head against the ulnar carpal bones and the triangular fibrocartilage (TFC) 

and is often associated with positive ulnar variance (Figure 1.20).2, 36, 37 Ulnar impaction 

causes increased loading through the ulna at the ulnocarpal joint. Ulnar impaction also 

causes increased wear of the TFC.36 Ulnar impaction syndrome can be acquired through 

traumatic wrist injury, overuse, or it may be congenital caused by Madelung’s 

syndrome.2, 38 Patients present with ulnar sided wrist pain, clicking at the wrist joint, and 

activity related swelling. Ulnar impaction syndrome can be treated either surgically or 

non-surgically. Examples of non-surgical intervention include altering daily activities, 

rest, splinting, therapy and/or non-steroidal anti-inflammatories.2 Surgical inventions 

used to treat severe cases and include: ulna shortening, DRUJ fusion, ulnar resection or 

Wafer’s procedure, and arthroscopic resection of the distal ulnar surface of the ulna 

beneath the triangular fibrocartilage.2, 39-42  
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Figure 1.19: Ulnar Impaction Syndrome. A patient radiographic depicting ulnar impaction syndrome 

and corresponding positive ulnar variance (A) and following surgical intervention with an ulnar shortening 

osteotomy  
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 Arthritis 

Arthritis is a degenerative joint disease characterized by the erosion of articular cartilage 

leading to painful bone on bone contact (Figure 1.20). Arthritis may be caused by a 

combination of aging, autoimmune disease, or previous traumatic skeletal or soft tissue 

injury. There are different types of arthritis depending on the mechanism of disease 

progression including: osteoarthritis, rheumatoid arthritis, and post-traumatic arthritis.2,43 

Osteoarthritis most frequently occurs in elderly populations due to age related cartilage 

deterioration resulting in joint degeneration, pain and stiffness. Rheumatoid arthritis is an 

autoimmune disease causing chronic joint inflammation, pain and stiffness in multiple 

joints at once.43 Post-traumatic arthritis is either an immediate or delayed result of a 

previous traumatic skeletal or soft tissue injury. In post-traumatic arthritis, joint damage 

may occur at the time of injury or may be due to cartilage degeneration caused by poor 

joint alignment or direct cartilage damage.43 While there is no cure for arthritis, there are 

many of non-surgical and surgical treatment options designed to reduce pain and delay 

disease progression. Non-surgical treatments include steroid injections in the joint 

capsule, splinting and oral anti-inflammatory medications. Surgical treatments for wrist 

arthritis include: proximal row carpectomy, carpal fusion, and partial to total wrist 

arthroplasty.2, 43  
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Figure 1.20: Distal Radioulnar Joint Arthritis. A radiographic of a patient presenting with osteoarthritis 

before (A) and after (B) a total wrist arthroplasty. 
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1.4 Load Measurement Techniques 

An understanding of load transfer through the distal forearm is an important 

biomechanical measurement. The aforementioned traumatic injuries and degenerative 

diseases (Section 1.3) may cause changes in axial load transfer through the distal radius 

and ulna. Improving the understanding of forearm load transfer in native wrists is critical 

for improving existing biomechanical models, optimizing rehabilitation protocols and 

influencing surgical techniques. Various load measurement techniques and electrical 

sensors have been used to measure the changes in load transfer through the distal 

forearm. Two different electrical devices frequently used in biomechanical studies to 

measure in vitro forces are briefly outlined below. 

 Strain Gauges 

Strain gauges are a type of electrical sensor that converts applied force, or strain, into 

electrical resistance. Strain is the displacement or deformation caused by either external 

or internal forces.  Strain gauges convert the changes in mechanical deformation to 

electrical resistance which can then be calibrated to measure applied force.  

 Load Cells 

Load cells are electrical transducers that generate electrical signal from applied force. 

There are a variety of load cell constructs including: hydraulic, piezoelectric, pneumatic, 

and strain gauge. Strain gauge load cells are the most common and are manufactured in 

different sizes with different load capacities. Load cells are stiff and have good 

resonance, making them excellent tools for measuring applied loads. The Subminiature 

Model 11 load cells from Honeywell were used for the entirety of this thesis (Figure 

1.21) (Morristown, NJ, USA).  The concept of a load cell implanted into bone is 

illustrated in the inset of Figure 1.21.  
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Figure 1.21: Subminiature Model 11 Load Cell (Honeywell Model 11, Golden Valley, MN, 2008). The 

body component of a uniaxial load cell used for biomechanical testing.  
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1.5 Distal Forearm Load Sharing 

The wrist is a complex joint with multiple articulations making it difficult to actively 

simulate motion and measure bone loads. Changes in axial bone loads may be due to 

degenerative diseases, traumatic skeletal injuries or compromised soft tissue integrity. 

Improving knowledge of bone and joint loading is imperative for improving existing 

biomechanical models, influencing implant design and optimizing rehabilitation 

protocols. Previous studies have examined forearm bone load sharing under static loading 

scenarios and have concluded that the radius carries a greater percentage of load than the 

ulna at the distal forearm. 

An early biomechanical study implanted uniaxial load cells mid-diaphysis in the radius 

and ulna and determined that load sharing between the radius and ulna occurs in an 82/18 

ratio.44 This study has led to the wide adoption of the 80/20 forearm load-sharing ratio by 

clinical communities. Additional studies have both confirmed and challenged the widely 

accepted 80/20 during static and dynamic loading.42, 44-48 The ulnar contribution in 

forearm load-sharing has been shown to decrease to 13-14% under dynamic loading 

scenarios.47, 48 Dynamic loading scenarios are of more clinical interest as they more 

realistically represent what is observed in vivo.  

Wrist and forearm position influence the forearm load-sharing ratio. The percentage of 

load supported by the ulna is thought to peak with wrist extension, ulnar deviation and 

forearm pronation.44, 45, 47, 49 This information is critical for planning rehabilitation 

protocols and postoperative recommendations. There is a lack of literature on the role 

direction of motion and active forearm pronation-supination has on forearm bone loading. 

Joint reaction forces can be measured via in vitro instrumented experimental implants, 

telemetrized orthopedic implants and finite element modeling. Instrumented implants 

have been employed extensively in the shoulder, hip and knee. Palmer et al. completed 

the first influential study to use in vitro experimental measurement devices at the wrist.44 

They implanted uniaxial load cells in cadaveric specimen and subjected them to static 

axial tendon loads. They reported an 80/20 forearm load-sharing relationship between the 

radius and ulna respectively. This ratio has been widely accepted clinically and is still 
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considered the gold standard today. Additional studies have employed both uniaxial load 

cells in the radius and ulna to examine the effects of soft tissue sectioning on forearm 

bone loading under static applied loads.45, 50-52 These implants vary from in-line with the 

axis of the bones to offset from the axis to the medial or lateral side of the bone. 

Harley et al. completed the first forearm load sharing study to employ an in vitro 

experimental measurement device during active motion wrist simulation.47 They used a 

basic device design with two six degree of freedom load cells offset from the long axis of 

the radius and ulna with external screw fixation. The bone between the two fixation 

points was sectioned to ensure that all loads were transmitted through the load cell. The 

loads recorded were not indicative of native loads transmitted axially through the bone 

because the load cells were not located in an anatomically correct position.47 Instead, 

loads had to be reported as percentages of total bone load or transformed to the estimated 

loads at the anatomically correct positions.  

Knowles et al. designed an instrumented experimental implant to examine axial loads 

through the proximal radius in-line with the bone at the radial head .53 They used 

intramedullary fixation to fix the implant in place at its distal and proximal junctions and 

a Model 11 Honeywell subminiature load cell to collect axial loads. Knowles et al. 

completed a validation study of their implant that demonstrated the Model 11 Honeywell 

load cell to be highly reliable and accurate in measuring axial bone loads.53 

The lengths of the radius and ulna also effect bone loading in the distal forearm. Ulnar 

load have been shown to significantly increase with as little as 2mm of radial shortening 

and ulnar lengthening.44 Research groups have suggested that this implies natural positive 

ulnar variance would therefore increase ulnar bone loads.52, 54 However, very little 

correlation has been found between natural ulnar variance and ulnar loads.46, 47 This is 

thought to be due to the inversely proportional relationship between TFCC thickness and 

ulnar variance.47 The biomechanical implications of ulnar bone length on ulnar loading 

have been translated to various clinical applications, including ulnar osteotomies as a 

treatment of ulnar impaction syndrome.42, 44, 46, 48, 51, 52, 54  
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Small changes in soft tissue integrity can contribute to significant changes in bone 

loading. The TFC plays an imperative role in distal forearm bone loads and changes in its 

thickness and integrity affect the loads transmitted through the distal radius and ulna.44,47 

Sectioning the TFC decreases distal ulna loading by decreasing the constraining effect at 

the DRUJ.44, 55, 56 
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1.6 In-Vitro Testing Simulators 

In vitro experimental measurement devices and active joint motion simulators are 

imperative to improve the understanding human biomechanics. These technologies are 

usually tested using in vitro cadaveric models. Previous studies have been conducted 

using implantable experimental measurement devices and active wrist motion simulators. 

Experimental simulators have been developed to recreate both active and passive joint 

motion. Active joint motion simulation aims to recreate in vivo loading scenarios. During 

active wrist motion simulation, forces are applied directly to the tendons of each muscle 

to achieve desired joint motion. Joint motion is controlled through force-position 

algorithms. Muscles that generate joint motion work under an agonist - antagonist 

relationship, where the agonist, or prime mover, muscles act in the direction of motion 

and the antagonists in the opposite direction. In joint motion simulation, the agonists 

control the angular velocity of the motion and the antagonists maintain only a basic tone 

load to maintain joint constraint. When the direction of motion is reversed the agonist 

muscles become the antagonists.  

Dunning et al. developed an active wrist and hand motion simulator that employed 

pneumatic actuators to generate joint motion. This simulator actuates nine muscles to 

recreate various finger and wrist movements in cadaveric specimens. 57 Motion is tracked 

using a passive electromagnetic tracking system; however no real-time positional 

feedback is provided. Specimens are mounted with the elbow in 90° of flexion and the 

humerus perpendicular to the ground, with finger tips directed forward. The Dunning 

simulator uses an open loop control system and required extensive tuning to achieve 

desired motions for each specimen. 57 The simulators inability to adjust for interspecimen 

variability made for poor repeatability. 

The first active, repeatable planar wrist motion simulator was developed by Werner et 

al.58 The six major muscles responsible for wrist flexion and extension are actuated 

through a multichannel servo hydraulic system. Electromagnetic trackers are fixed to the 

ulna, third metacarpal and lunate and real-time joint position feedback is used to control 

the motion path. 58 Specimen are amputated mid-humerus, mounted with the elbow in 90° 
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of flexion and the humerus parallel to the ground, with finger tips directed upwards. The 

major limitation of this simulator is that all surrounding soft tissues, excluding tendons 

and ligaments, must be sectioned and resected.  

Iglesias et al. have developed an in vitro active wrist motion simulator that performs in 

multiple, gravity loaded positions (Figure 1.22).59 Joint motion is simulated by a 

servomotor manifold that actuates the ECU, ECRL, ECRB, FCU, FCR, PT and biceps 

brachii. Each servomotor is instrumented with a strain gauge to allow real-time feedback 

of tendon loads throughout motion.59 Iglesias’ simulator effectively maintains target 

tendon loads and achieves repeatable active wrist motion. This simulator can achieve 

both active wrist flexion-extension and radioulnar deviation, similar to the simulators 

outlined above. It is also capable of performing multiplanar motions such as dart throw 

motion and wrist circumduction. By actuating the PT and biceps brachii the Iglesias 

simulator generated active forearm pronation-supination. Optical trackers are attached to 

the third metacarpal, radius and ulna and real-time joint position feedback is relayed to 

force-position algorithms allowing for precise simulator control.59 All muscles were 

loaded with a 8.9N tone load to maintain joint stability during active motion.  

 
Figure 1.22: Iglesias’ Active Motion Wrist Simulator. Active wrist motion simulator developed by 

Iglesias et al.  in three variable gravity load positions. 
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1.7 Thesis Rationale 

A comprehensive understanding of wrist loading is important for improving existing 

biomechanical models, influencing surgical techniques and optimizing rehabilitation 

protocols. In order to understand the consequences of distal radial fractures, ulnar 

impaction and DRUJ instability, clinicians must first have an extensive understanding of 

healthy joint biomechanics and native forearm bone loads. An improved knowledge of 

native and pathological forearm bone loads will assist clinicians in developing 

rehabilitation techniques, surgical procedures and implant designs.  

Measuring and recording in vivo bone loads is extremely invasive and infringes on ethical 

boundaries. Therefore, in vitro measurements from cadaveric specimen remain the gold 

standard for biomechanical researchers. While in vitro models address ethical conflicts, 

basic human anatomy and adjacent soft tissues continue to pose challenges to data 

collection. As discussed, instrumented experimental devices have long been used to 

measure and calculate joint reaction forces and axial bone loads. Simple implant designs 

containing both commercial and custom load cells have been employed to measure in 

vitro distal radius and ulna loads under applied static loads.45, 50, 52, 55 Existing 

experimental implants designs are invasive, anatomically inaccurate and disruptive to 

surrounding soft tissues. The limitations of existing experimental implants prevent them 

from reliably and accurately collecting forearm bones loads. Therefore, an implant to 

collect in vitro radial and ulnar load measurements with minimal soft tissue disruption 

and anatomic load cell placement is necessary for improved experimental data collection.  

Forearm load sharing, as documented above, has been extensively examined under static 

loading scenarios. The radius is known to be subjected to larger loads than the ulna at the 

distal forearm. Static forearm bone load sharing is widely accepted as an 80/20 ratio 

between the radius and ulna, respectively. 42, 44, 45, 46, 47, 48 While static distal forearm bone 

loading has been successfully defined and clinically accepted, radial and ulnar loads 

remain poorly understood during dynamic loading scenarios. Dynamic loading of the 

wrist joint implies actuating forearm tendons to produce the full range of wrist motions. 

Researchers have only recently begun to examine the effects of active joint motion on 

forearm bone loading. Preliminary work indicates that forearm bone loads change 
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significantly with changes in wrist flexion-extension and radioulnar deviation.47  The 

forearm bone load sharing ratio for dynamic loading differs from that of static loading 

scenarios with an 87/13 radius to ulna ratio reported at neutral wrist position.47 Triangular 

fibrocartilage (TFC) integrity plays an important role in forearm bone load sharing in 

static loading scenarios and should therefore be examined under dynamic tendon 

loading.44 The effects of active motion, wrist and forearm position and TFC integrity on 

forearm bone loading are still poorly understood. Further research is required to address 

the voids in the literature and improve existing biomechanical models.  

Native biomechanics of the wrist and forearm may be altered by wrist fractures, 

Kienbock’s disease, and ulnar impaction. Such traumatic injuries and degenerative 

diseases are often associated with joint malunions and malignments causing changes in 

bone length.21 Changes in radial and ulnar lengths effect bone loading in the distal 

forearm. Significant changes in ulnar loading occur with as little as 2mm of ulnar 

lengthening. 44 The biomechanical implications of forearm bone length on radius and ulna 

loads have been directly applied to clinical interventions, such as ulnar osteotomies for 

the treatment of ulnar impaction.42, 44, 46, 48, 50, 51, 52 Therefore, additional examination of 

radial and ulnar length changes and their effect on distal forearm loading should be 

conducted using active motion simulation. 
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1.8 Objectives and Hypotheses 

 Specific Objectives 

The objectives of this thesis are as follows: 

1.  To design and evaluate an experimental apparatus for examining in vitro axial 

distal forearm bone loads during active wrist flexion-extension, radial-ulnar 

deviation and dart throw motion; 

2.  To determine the effect of joint position and motion direction on forearm bone 

loading throughout active wrist flexion-extension, radial-ulnar deviation, and dart 

throw motion; 

3.  To determine the effect of radial length change, joint position and direction of 

motion on distal forearm load magnitude and forearm bone load sharing during 

active forearm pronation-supination.  

 Specific Hypotheses 
1. The experimental load measurement will be capable of measuring radial and ulnar 

loads with reliability greater than 95%. 

2. Distal radius and ulna loading loads will change with wrist and forearm motion 

and direction of motion. 

3. Radial length and forearm rotation angle will affect distal radius and ulna loading 

as well as load sharing between the bones. Increased radial length will increase 

axial loads through the radius and increase the percentage of total forearm bone 

load through the radius. 
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1.9 Thesis Overview 

Chapter 2: Describes the design and development of two instruments modular implants 

capable of measuring in vitro bone loads and simulating bone length changes. 

Additionally, investigates the repeatability of both the radial and ulnar sided implants. 

Chapter 3: Investigates in vitro axial bone loads in the distal radius and ulnar and the 

effect of joint angle and direction of motion during active simulated wrist motion. 

Chapter 4: Investigates the effect of radial length change, joint rotation angle and 

direction of motion during active simulated forearm rotation. 

Chapter 5: Gives a general summary, discussion and conclusion of the work presented 

and the potential areas of future work. 
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Chapter 2  
2 Design and Development of an Experimental Measurement 
System for Examining In Vitro Load Magnitudes and Sharing in 
the Distal Forearm 

 

Overview 

This chapter focuses on the design and development of two modular implants capable of 

simulating clinically relevant length change deformities of the distal radius and ulna 

bones. These implants will be employed in the biomechanical testing of common forearm 

deformities in a laboratory setting. An overview of the application of an active wrist 

motion testing simulator and optical tracking system for forearm motion are also 

discussed. 
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2.1 Distal Forearm Bone Implant Development 

As described in Chapter 1 (Section 1.5), understanding forearm bone loads is an integral 

part of optimizing rehabilitation protocols, surgical techniques, and improving 

biomechanical models. Biomechanical studies examining native and pathological forearm 

bone loads during active motion, with simulated changes in bone length and varied wrist 

and forearm joint angles have not been reported. A greater understanding of the forces 

through the distal radius and ulna will improve the diagnosis and treatment of common 

clinical presentations of altered forearm bone geometries including distal radial fractures, 

Kienbock’s disease, ulnar impaction syndrome, distal radius malunions, and wrist 

arthroplasty.1-5 Although previous studies have examined the effect of altered radial and 

ulnar lengths under static loading scenarios these studies have not quantified the 

associated distal forearm bone loads during active simulated wrist and forearm motion.6-9 

Previous studies have employed simple load cell implant designs to examine forearm 

bone loads and load sharing.6, 10-12 These designs have been invasive, geometrically 

inaccurate and disruptive of surrounding soft tissues thereby decreasing their ability to 

reliably and accurately quantify forearm bone loads. The majority of previous designs 

feature an offset load cell configuration producing a potential bending moment at the 

osteotomy. 6, 10-12 Therefore, an adjustable implant that allows for in vitro radial and ulnar 

load measurement with minimal soft tissue disruption and anatomic load cell placement 

is required for improved experimental load cell measurements. 

A modular implant described herein allowed for simple transition between clinically 

relevant changes in forearm bone length. These implants were developed to examine 

native load sharing with wrist joint angle, forearm rotation angle and forearm bone length 

being the independent variables. Simulating active wrist and forearm motions allowed 

common bone length deformities be accurately and reproducibly studied to determine 

their effect on distal forearm bone loading. Active wrist flexion/extension, radial/ulnar 

deviation, forward/reverse dart throw, and forearm pronation/supination were simulated 

and both radial and ulnar loads were simultaneously measured. Clinically relevant 
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forearm bone length changes were evaluated in the same specimen to allow for a repeated 

measures experimental design.  

The aim of the implants (Figures 2.1, 2.2) was to lengthen and shorten the radius and ulna 

with the incorporation of uniaxial load cells to quantify distal forearm load transmission. 

The radius implant utilized plate fixation distally and intramedullary fixation proximally 

while the ulna implant employed intramedullary fixation both distally and proximally. 

Both implants were inserted using alignment spacers, which were later removed and 

replaced with the modular implants containing the uniaxial load cells. 

 

 
Figure 2.1: Distal Radius Implant. A volar view of the surgically inserted radial implant is shown. The 

distal radius implant was designed and used for biomechanical testing and examination of distal axial 

radial bone loads. The central turnbuckle mechanism allows for modular bone length changes.  
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Figure 2.2: Distal Ulna Implant. A volar view of the surgically inserted ulnar implant is shown. The distal 

ulna implant was designed and used for biomechanical testing and examination of distal axial ulnar bone 

loads. The central turnbuckle mechanism allows for modular bone length changes. 

  



    

 

61 

 

One uniaxial load cell (Honeywell Model 11) was incorporated into both the modular 

radius and ulna implant appliances to measure axial loads through the each bone (Chapter 

1, Figure 1.21) (Honeywell, Golden Valley, MN, 2008). Honeywell’s Model 11 

subminiature load cell measures both tension and compression.  Load cell position was 

offset dorsally from the modular implant appliance axis to better align with the 

biomechanical axis of the radial bone. In the ulnar implant, the uniaxial load cell was 

threaded into the proximal junction and fixed with medium steel epoxy in the same 

fashion as the in the radial implant. The load cell was fit into pre-existing threads and 

held in place by a mating threaded cap, two perpendicular #2-56 screws and the 

associated compressive force. 

Two implantation spacers were designed and machined from stainless steel to aid in the 

implantation of the modular radius (Figure 2.3) and ulna implants (Figure 2.4). The 

implantation spacers were machined to be the exact length of the modular appliance 

component when set to its neutral length. During implantation, the spacers were used to 

allow fixation of the stems using bone cement (Simplex P ,75% Methylmethacrylate-

stryrene copolymer, 15% polymethylmethacrylate, 10% Barium Sulfate,Stryker Medical, 

Kalamazoo, MI, 2016) while maintaining a bone bridge to ensure optimal implant 

positioning while maintaining the anatomical alignment of the bones. The bone bridges 

were removed after the cement had set (Section 2.2.1.1, Figure 2.16 (B)). After the 

implantation was complete and the arm had been mounted on the active motion simulator 

the spacers were exchanged for the modular appliances. These spacers have the same 

mating interfaces as their respective modular appliances to assure a seamless transition 

between the spacers and the measurement devices. 
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Figure 2.3: Implantation Spacer for Modular Radial Device. An isometric view of the radial implant 

spacer (A) is shown along with a lateral view (B), and a volar view (C). The radial spacer was designed to 

replace the modular radius implant device to protect it from being damaged during surgical implantation. 

The mating interfaces are the same as those of the modular radial appliance. 

 
 
 

 
Figure 2.4:  Implantation Spacer for Modular Ulnar Device. An isometric view of the ulnar implant 

spacer (A) is shown along with a lateral view (B), and a volar view (C). The ulnar spacer was designed to 

replace the modular radius implant device to protect it from being damaged during surgical implantation. 

The mating interfaces are the same as those of the modular ulnar appliance. 
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 Distal Radius Implant Design and Function 

The experimental distal radius implant (Figure 2.5) was developed to examine the effect 

of common clinical conditions such as distal radial fractures, Keinbock’s disease and 

distal radial malunions on the axial loads experienced in the distal radius. Stainless steel 

was used for its strength and its compatibility with the material properties of the uniaxial 

load cells used to ensure that the steel threads of the load cell did not strip the mating 

threads of the implant, as would occur with a softer metal. Intramedullary measurements 

of the distal radius were taken on an in-house database of CT scans to ensure device 

would fit varying sizes of specimen (Appendix B). The distal plate was modeled from a 

commercial distal radial fixation plate (Volar Distal Radius Plate, Synthes North 

America, West Chester, PA). Similarly, a distal volar tilt of 22˚ was used for the distal 

radial plate geometry. 

 
Figure 2.5: Outline of the Modular Distal Radius Implant Components. An isometric view of the 

assembled radial implant hardware (A) is shown along with a lateral view (B), and a volar view (C). There 

are four main components - the distal fixation plate, the uniaxial load cell, the turnbuckle mechanism and 

the proximal fixation stem.  
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The distal radius implant is comprised of the distal fixation plate, the modular implant 

appliance, and the proximal intramedullary stem. The modular implant is comprised of 

removable a uniaxial load cell and turnbuckle mechanism. Radial bone length changes 

are achieved by the rotation of the hexagonal component of the turnbuckle mechanism 

(Figure 2.6). The hexagonal component has reverse threaded posts on either size, 

allowing its rotation to act as a turn-buckle, a common mechanical appliance. Clockwise 

rotation generates bone lengthening and counter clockwise rotation generates shortening. 

The posts were threaded with 1.5 mm pitch in the left and right directions. This ensured 

that one sixth of a turn would generate 0.25mm of lengthening at both the proximal and 

distal posts, 0.5mm overall. Radial loads were measured at radial lengths of -4mm to 

+3mm at 1mm length change increments.  

 
Figure 2.6:  Distal Radius Implant Length Change Adjustments. A medial view of the surgically 

inserted radial implant is shown. The distal radial implant allows for both radial lengthening and 

shortening. Length changes of 0.5mm where achieved through a sixth of a turn of the hexagonal 

component. Clock-wise motion results in bone lengthening, and counter clock-wise motion results in 

shortening.  
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The distal radial plate was designed with a 22o volar angulation as suggested by previous 

literature (Figure 2.7).13-16 This shape mimics average distal radius geometry of the volar 

distal radius allowing the best fit. 13-16 Three holes were included in the distal radial plate 

to allow for screw fixation. The holes were threaded to avoid pre-load induced by 

compressive bolt force and to increase fixation strength using locking screws. Screws 

were threaded through the implant and affixed in the underlying bone augmented with 

bone cement. A dove tail union was included on the proximal side of the radial plate to 

allow for the spacer and modular implant to be easily exchanged after implantation and 

before testing.  

 
Figure 2.7: Distal Radial Plate Implant Component. The three threaded screw holes allow for volar 

screw fixation without pre-loading due to compressive bolt force. Two through holes, on the medial and 

lateral aspects, allow for the y-axis of the dovetail union to be rigidly fixed to the spacer and modular 

implant appliance.  
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The proximal intramedullary stem (Figure 2.8) was designed to provide fixation of the 

implant to the proximal radius. A stem had a 5˚ angle to better accommodate the natural 

curve of the radius. The stem was roughened and fixation was achieved with bone 

cement. The stem was fixed to rest of the implant with two perpendicular #2-56 screws.  

 
Figure 2.8:  Proximal Intramedullary Stem. Proximal fixation was achieved with an intramedullary stem 

fixated with Simplex B Bone cement. The stem had a 5˚ angle to accommodate for the natural curvature of 

the central radius. 
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A flat stainless steel plate and commercial hose clamp were used to inhibit rotation of the 

turnbuckle mechanism (Figure 2.9). The plate lies adjacent to the hexagonal nut and the 

flat surfaces of both mating modular pieces throughout implantation and testing. The 

hose clamp was tightened to induce a compressive force between the plates the flat 

surfaces of the implants creating a rigid implant. The hose clamp was loosened and 

shifted from the hexagonal nut (Figure 2.6) when incremental length changes of the bone 

were required. 

 
Figures 2.9: Radial Implant with Plate and Hose Clamp. In order to constrain unwanted rotational 

movement of the experimental devices, stainless steel plates were placed against the flat surfaces of the 

radial and ulnar devices and held in place with compressive force provided by the tightened hose clamp. 
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 Overview of Radius Implant Components 

The modular appliance, uniaxial load cell, distal radial plate, and proximal intramedullary 

stem act together to simulate and measure the effect of common distal radial injuries and 

deformities. This device adjusts to produce -4mm and +4mm of radial length variance at 

1mm increments. The implant design allows for the easy exchange between the 

implantation spacer and the modular appliance. The modular appliance attaches with a 

dovetail union distally and two perpendicular screws proximally. Engineering drawings 

and specifications are included in Appendix D. 
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 Distal Ulna Implant Design and Function 

The modular distal ulnar implant (Figures 2.10, 2.11) was developed to examine the 

effect of common clinical conditions such as ulnar impaction syndrome and distal ulnar 

fractures. The features are similar to the radial device as described in the previous 

sections. Like the radial implant, the ulnar implant was machined from stainless steel. 

Intramedullary measurements of the distal ulna were taken to ensure device would fit 

varying sizes of specimen (Appendix B). The distal ulnar implant is comprised of the 

distal fixation stem, the removable uniaxial load cell and turnbuckle mechanism, and the 

proximal fixation stem. Ulnar bone length changes of -4mm to +4mm at 1mm increments 

were achieved using the same turnbuckle apparatus previously described for the radius. 

 
Figure 2.10: Outline of the Modular Distal Ulna Implant Components. An isometric view of the 

assembled ulna implant hardware (A) is shown along with a lateral view (B), and a volar view (C). There 

are four main components - the distal fixation stem, the uniaxial load cell, the turnbuckle mechanism and 

the proximal fixation stem.  
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Figure 2.11: Distal Ulna Implant Length Change Adjustments. A lateral view of the surgically inserted 

ulna implant is shown. The distal ulna implant allows for both ulna lengthening and shortening. Length 

changes of 0.5mm where achieved through a sixth of a turn of the hexagonal component. Clock-wise 

motion results in bone lengthening, and counter clock-wise motion results in shortening. 
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Bone fixation of the ulna implant was achieved with intramedullary stems at both the 

distal and proximal interfaces (Figures 2.12, 2.13). The distal ulna stem has a circular 

addition on the distal end to provide a press fit in the trabecular bone. Bone cement was 

used in the distal and proximal medullary spaces to ensure rigid implant fixation. Both 

intramedullary stems were connected to the modular implant appliance using two 

perpendicular #2-56 screws. The distal intramedullary stem received the distal pins of the 

uniaxial load cell which was held in place with medium weight epoxy and compressive 

force from the adjacent implant piece. 

 
Figure 2.12: Distal Ulna Implant Length Change Adjustments. Distal fixation was achieved with an 

intramedullary stem fixated with bone cement. The load cell was set into mating threads and held in place 

with medium weight epoxy and compressive force from the adjacent implant piece.  

 

 
Figure 2.13: Distal Ulna Implant Length Change Adjustments. Proximal fixation was achieved with an 

intramedullary stem fixated with bone cement.  
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 Overview of Ulna Implant Components 

The modular appliance, uniaxial load cell, and distal and proximal intramedullary stems 

act together to simulate and measure the effect of common distal ulna injuries and 

deformities. The modular implant appliance adjusts to simulate -4mm and +4mm of ulnar 

length variance at 1mm increments. The implant design allows for the easy exchange 

between the implantation spacer and the modular appliance. The modular appliance 

attaches with two perpendicular screws both the distal and proximal interfaces. 

Engineering drawings and specifications are included in Appendix D. 

  



    

 

73 

 

2.2 Biomechanical Testing 

An existing active motion wrist simulator was employed to generate wrist and forearm 

motion (Figure 2.14). The simulator actuates wrist and forearm motion through optical 

feedback and synchronized loading of tendons through using custom LabVIEW software 

(National Instruments Corporation, Austin, TX). Tone loads of 8.9 N were applied to 

seven tendons, biceps, pronator teres (PT), flexor carpi radialis (FCR), flexor carpi 

ulnaris (FCU), extensor carpi ulnaris (ECU), extensor carpi radialis brevis (ECRB) and 

extensor carpi radialis longus (ECRL) (Chapter 1, Section 1.1.4, Figure 1.12). Additional 

motion controlled loads were applied to the tendons and were used to achieve target joint 

angels. Optical trackers (Figure 2.15) were secured to the third metacarpal, radius and 

ulna to track wrist and forearm motion joint motion (Optotrak Certus; Northern Digital, 

Waterloo, ON, Canada).  
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Figure 2.14: Active Wrist Motion Simulator. The in vitro active motion simulator in capable of loading 

seven forearm muscles to generate wrist flexion-extension, radioulnar deviation and forearm pronation 

supination: (A) structural base of simulator (B) Biceps servomotor (C) servomotor manifold responsible for 

applying tendon loads which generate joint motion, (D) cable guide ensures an uninterrupted path for 

cabled from specimen to SmartMotor manifold, (E) suture cables connect muscles tendons to 

corresponding SmartMotor (F) ulnar support tower acts to maintain forearm in 90° of flexion (G) humeral 

clamp rigidly fixes humerus to simulator, (H) optical trackers  record motion and provide real-time 

feedback of joint position. 
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Figure 2.15: Optical Tracker Configuration.  Optical trackers were rigidly fixed to bones to record 

kinematics and give real-time feedback of joint position. A configuration of three tracker ridged bodies was 

used to track rotational movement of the radius. Optical trackers were fixed to the: (A) third metacarpal 

tracker, (D) distal radius, (E) distal ulna, (F) proximal radius, and (G) proximal ulna. Data from the (B) 

scaphoid, (C) lunate and (H) humerus was collected for use in an additional study. 
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 Implant Procedure 

 Radial Implantation Procedure 

A volar incision was made to access the radial bone surface with minimum soft tissue 

disruption (Figure 2.16). An oscillating saw was used to perform a 52mm volar radius 

osteotomy to prepare space for the implant. A dorsal bone bridge was left connecting the 

distal and proximal ends of the osteotomy to ensure anatomic alignment of the bone after 

implantation. A cutting guide was 3D printed from nylon to allow precise bone removal. 

The distal aspect of the cutting guide mimicked the volar angulation of the radius and had 

identical holes to the distal radial plate to allow for predrilling of holes for the plate 

fixation screws. The radial osteotomy was performed as distal as possible while still 

proximal to the DRUJ to avoid joint disruption. Cancellous bone in the intramedullary 

canal was cleared using a burr to make space for the proximal fixation stem. Bone 

cement, was injected into the distal radial metaphysis and proximal intramedullary canal. 

The proximal fixation stem was pressed into the bone canal and secured to the spacer 

with two #2-56 screws. The distal plate fixation screws were then inserted into wet bone 

cement filling the trabecular bone.  The plate was fixed to the spacer along the Y-axis 

with two perpendicular screws. The spacers were replaced with the modular implants 

after the specimen had been mounted on the simulator. 
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Figure 2.16: Radius Device Implantation Procedure.  (A) A volar incision was made to access the 

radius. (B) A radial osteotomy was performed to create space for the modular device. A bone bridge was 

left intact to ensure joint alignment after implantation. (C) The proximal stem and distal plate were fixed 

into place using bone cement. The implantation spacer was fixed in place with screws and the bone cement 

was left to set. (C) After the bone cement has set and the specimen has been mounted on the simulator, the 

implantation spacer was exchanged for the modular experimental device. 
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 Ulnar Implantation Procedure 

A similar procedure was followed for implantation of the modular ulnar device (Figure 

2.17). A medial incision was made to access the ulnar bone surface with minimal soft 

tissue disruption. An oscillating saw was used to perform a 50mm medial ulnar 

osteotomy. A lateral bone bridge was left connecting the distal and proximal ends of the 

osteotomy to ensure anatomic bone alignment after device implantation. A cutting guide 

was 3D printed from nylon to aid precise bone removal. The ulnar osteotomy was 

performed as distal as possible while avoiding DRUJ injury. The distal and proximal 

intramedullary canals were cleared with a motorized burr to make space for the fixation 

stems. Bone cement was injected into the distal and proximal bone canals and the fixation 

stems were pressed into place. Alignment of the two stems occurred when the spacer was 

secured to each stem with two #2-56 screws. The spacers were replaced with the modular 

implants after the specimen had been mounted on the simulator and prior to testing.  
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Figure 2.17:  Optical Tracker Configuration.  (A) A medial incision was made to access the ulna. (B) A 

dorsal view of the ulnar osteotomy was performed to create space for the modular device. A bone bridge 

was left intact to ensure joint alignment after implantation. (C) The distal and proximal stems were fixed 

into place using Simplex B bone cement. The implantation spacer was fixed in place with screws and the 

bone cement was left to set. (C) After the bone cement has set and the specimen has been mounted on the 

simulator, the implantation spacer was exchanged for the modular experimental device. 
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 Testing Protocol 

Following the implantation of the radial and ulnar devices, active wrist and forearm 

motion was simulated. Kinematic and load cell data was recorded for neutral and varying 

bone lengths. A repeated measures experimental design was employed to account for 

interspecimen variability in size and shape and to increase statistical power. The wrist 

simulator was used to generate reliable wrist and forearm motion. Optical trackers were 

used to quantify motion and provide position feedback to the simulator. A custom 

LabVIEW program was used for simulator control and data collection. Local coordinate 

systems were generated at the start of each testing day using anatomical skin markers. 

The joint angles calculated from these coordinate systems were used for kinematic 

reference.  

 Methods 

Trials were completed to examine the repeatability of the combined tendon simulated 

motion and implant load readings.  One fresh-frozen cadaveric upper limb was thawed 

for roughly 18 hours, and prepared for radial and ulnar device implantation. Osteotomies 

were performed on both the radius and ulna to make space for the modular implants. 

Bone bridges were left intact to maintain anatomical bone alignment after device 

implantation.  Implants were rigidly fixed to the bones with bone cement following the 

implantation procedures previously outlined. Nylon line was sutured into the tendons of 

seven prime movers of wrist and forearm. The specimen was then mounted on the 

simulator with a humeral clamp and two threaded pins placed into the ulna, ensuring the 

elbow remained at 90˚. After mounting the specimen, the spacers were exchanged for the 

modular instrumented implants. Tendon cables were connected to smart motors and 

active motion was controlled by manipulating tendon forces.  

Five cyclic flexion/extension, radioulnar deviation and dart throw motions were 

performed and compared separately. The intraclass correlation coefficient (ICC) was 

calculated for each set of five movements for statistical analysis. 
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 Results 

The modular experimental device produced reliable and repeatable bone load 

measurements. Repeatability was confirmed for the three wrist motions by conditioning 

the wrist tendons with five passive ranges of motion and five active wrist simulation trials 

for each individual motion pathway. Axial forearm bone loads were compared for each 

motion pathway. Repeatability trials for flexion motion (Figure 2.18) resulted in single 

measures ICC = 0.980 and ICC = 0.996 between the radial and ulnar axial load cells 

measurements respectively for the five consecutive motions. For ulnar deviation motion 

(Figure 2.19) the ICC for radial and ulnar load cell measurement were 0.978 and 0.999 

proving to be repeatable. Axial load cell measurements were also repeatable for dart 

throw motion (Figure 2.20) single measures ICC = 0.984 in the radius and ICC = 0.996 in 

the ulna. 
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Figure 2.18: Repeatability of Axial Load Cell Measurements during Flexion Motion. The repeatability 

of radial (A) and ulnar (B) axial load cell measurements of five trials of active flexion motion plotted 

against wrist angle in degrees of flexion-extension. Radial loads had an ICC=0.980 and ulnar loads an 

ICC=0.996for the five cyclic flexion motions. Standard deviations have been omitted for clarity. 

(A) 

(B) 
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Figure 2.19: Repeatability of Axial Load Cell Measurements during Ulnar Deviation Motion. The 

repeatability of radial (A) and ulnar (B) axial load cell measurements of five trials of active ulnar deviation 

motion plotted against wrist angle in degrees of radioulnar deviation. Radial loads had an ICC=0.978 and 

ulnar loads an ICC=0.999 for the five cyclic ulnar deviation motions. Standard deviations have been 

omitted for clarity. 

(A) 

(B) 
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Figure 2.20 – Repeatability of Axial Load Cell Measurements during Dart Throw Motion. The 

repeatability of radial (A) and ulnar (B) axial load cell measurements of five trials of active dart throw 

motion plotted against wrist angle in degrees of flexion-extension motion. Radial loads had an ICC=0.984 

and ulnar loads an ICC=0.996 for the five cyclic forward dart throw motions. Standard deviations have 

been omitted for clarity. 

(A) 

(B) 
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 Discussion and Conclusions 

Two instrumented modular implants were designed to simulate radial and ulnar length 

changes and measure axial bone loads in the distal forearm. The devices were surgically 

implanted with bone cement to allow for rigid bone fixation. Surgical cutting guides were 

designed and utilized to ensure the accurate bone removal and implant placement. The 

modular implants allow for reproducible changes in the lengths of the radius and ulna 

thereby simulating many common forearm injuries, disease and/or deformities.  

The reliability of the combined implant and active motion simulation system was 

excellent. The lowest ICC reported was 0.978 in the radius during ulnar deviation, 

indicating very little variation in load cell measurements between the five cyclic 

movements. The measurements from the radial load cell had slightly lower reliability 

than the measurements from the ulnar load cell. This is intuitive as the distal radial 

articulations are much more intricate than those of the distal ulna. Overall, the results 

from the measurement system demonstrated the combined reliability of the simulator 

applied tendon loads and the load cell measurements from the radial and ulnar implants.  

While other implants have been developed to examine loading in the distal forearm very 

little information about the reliability and repeatability of these devices is available. 

Obtaining accurate in vitro bone loads depends heavily on the instrument configuration 

used for measurement. A previous study conducted by Knowles et al. at the proximal 

radius has reported that the same load cell used herein, implanted along the radial axis 

using intramedullary fixation, to be highly reliable and accurate in measuring axial bone 

loads.17  Ferreira et al. developed a distal ulnar implanted instrumented with a strain 

gauge load cell. During forearm pronation and supination they found their implant to 

have a maximum coefficient of variance of 1.0% and to be reproducible up to 4.7% in the 

desired direction of measurement.18 They considered these values reliable and adequate 

for further experimental use, indicating that an ICC of 0.978 is excellent.  

The effect of radial and ulnar length changes and joint position on axial forearm bone 

loads can be examined with great accuracy using the modular radial and ulnar implants 

employed herein. A better understanding of native distal forearm loads during active 
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motion will help improve existing biomechanical models and influence surgical 

techniques and rehabilitation protocols. Simulating various forearm injuries, diseases and 

deformities will help clinicians improve the treatment of their patients. The following 

chapters outline how the implants were employed in in vitro biomechanical studies to 

quantify natural bone loading during simulated active wrist and forearm motion and the 

effect of radial length changes during forearm pronation-supination motion. 
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Chapter 3  
3 Loads in the Distal Radius and Ulna during Active 

Simulated Wrist Motion 

 

Overview 

An in-vitro biomechanical study was conducted to examine distal radial and ulnar axial 

bone loads during simulated active wrist motion. Loads were collected throughout 

motion and analyzed with respect to joint position and the direction of the motion path. 

Loads through the distal radius and ulna were reported as magnitudes and as 

proportions of total distal forearm bone loading.  
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3.1 Introduction 

As discussed in Chapter 1 (Section 1.5), a comprehensive understanding of load sharing 

at the wrist and distal forearm is critical for optimizing rehabilitation protocols, 

influencing surgical techniques, designing joint replacement systems and improving 

existing biomechanical models. The native biomechanics of the wrist and forearm are 

often altered by traumatic injuries and degenerative diseases such as wrist fractures, 

Keinbock’s disease and ulnar impaction, as previously reviewed in Chapter 1(Section 

1.3). These disorders often lead to ulnar sided wrist pain, weakness, stiffness and arthritis, 

due at least in part as a result of altered bone loading.1-9 Before the biomechanics of 

pathological states can be examined, we must first gain a better understanding of healthy 

forearm bone load magnitudes and sharing.  

Previous studies have examined forearm bone load sharing under static loading scenarios 

and have concluded that the radius carries a greater percentage of load than the ulna at the 

distal forearm. Currently the static forearm bone loading ratio is widely accepted as 80/20 

for the radius and ulna respectively.10-15 Only one other study has examined distal 

forearm load sharing during active range of wrist motion. They have a suggested an 

87/13 radial to ulnar forearm load sharing ratio with the wrist in neutral position.14 

Significant differences in bone loading were found based on joint position in wrist 

flexion-extension motion (FEM) and radioulnar deviation (RUD). However, the effect of 

active motion on native load sharing is not well defined and additional studies are hence 

needed. 

The objective of this current study was to examine the magnitude of bone loads and bone 

load sharing during active wrist motion to allow for a more complete understanding of 

loading at the distal forearm. Axial loads through the distal radius and ulna were 

examined during simulated active planar wrist FEM, RUD and multiplanar dart throw 

motion (DTM). Differences in forearm bone load were examined based on the direction 

and angle of wrist joint motion. It was hypothesized that direction and angle of motion 

will have significant effects on axial forearm bone loads, with the greatest changes 

occurring in RUD. 
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3.2 Materials and Methodsa 

 Specimen Preparation  

Nine fresh frozen cadaveric upper extremities, resected mid-humerus were used for 

biomechanical testing (74 r 7, 9 male, 9 right). Computed tomography (CT) scans, 

fluoroscopic images were performed and medical histories were reviewed for each 

specimen to rule out previous forearm injuries, deformities and/or osteoarthritis. The 

specimens were thawed for approximately 18 hours. Ulnar variance was quantified using 

fluoroscopy. The radial and ulnar load measurement devices were surgically implanted in 

the distal forearm bones, being careful to leave all soft tissues intact (Figures 3.1 & 3.2). 

A volar radial osteotomy was performed and a dorsal bone bridge was left intact to assure 

the alignment of the distal and proximal bone segments were maintained during insertion 

of the device. Polymethylmethacrylate, bone cement was injected into the distal 

trabecular bone and proximal intramedullary canal to improve fixation and the distal plate 

and proximal stem were secured in place (Figure 2.16).  A similar procedure was 

followed on the medial side of the ulna for device implantation. Ulnar device fixation 

was achieved with intramedullary stems both proximally and distally (Figure 2.17). The 

osteotomies were performed as distal as possible while still proximal to the DRUJ to 

avoid joint disruption. Nylon line (45kg test) was sutured into the tendons of the prime 

movers proximal to the extensor retinaculum and wrist: biceps, pronator teres (PT), flexor 

carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor carpi ulnaris (ECU), extensor 

carpi radialis brevis (ECRB), and extensor carpi radialis longus (ECRL) (Ethicon, 

Somerville, NJ).  Guides were secured to the medial and lateral humeral epicondyles and 

tendon lines were directed through them to maintain physiological lines of action. 

                                                 
a The methodology related to specimen preparation and some aspects of testing protocol are similar to 
those employed in Chapters 2 and 4. As this thesis is in manuscript format, the methods have been re-
written and included herein. 
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Figure 3.1: Computer Assisted Drawing of Implanted Experimental Devices. Two experimental 

devices were implanted in the distal radius and ulna to measure axial loads through the distal forearm 

during active simulated wrist motion.  
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Figure 3.2: X-Ray Image Experimental Devices Implanted in a Cadaveric Specimen. An X-Ray image 

was taken of the implanted experimental devices at neutral bone lengths to better depict plate and 

intramedullary stem fixation. Three dimensional printed nylon pacers were used in place of the load cells. 
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Specimens were mounted on the wrist simulator using a humeral clamp and two 

perpendicular ulnar pins with the elbow at 90q (Figure 2.14). Tendon sutures were 

connected to smart motors (SM2316D-PLS2, Arumatics Corp, CA) located at the base of 

the wrist simulator. Optical trackers (Optotrak Certus; Northern Digital, Waterloo, ON, 

Canada) were secured to the dorsal distal aspect of the third metacarpal, the radius 

proximal to the PT insertion, the proximal ulna, the distal radius and ulna distal to the 

osteotomies to track wrist and forearm motion and collect kinematic data throughout 

testing. Fingers were flexed and secured using Coban Self-Adherent Wrap (3M, Elyria, 

OH, USA) to ensure clear line of site for the optical trackers. 

 Testing Protocol  

Test-day coordinate systems were generated from skin markers for the radius, ulnar and 

third metacarpal. Neutral position was defined using the International Society of 

Biomechanics guidelines as 0° of wrist flexion, 0° of radioulnar deviation and 0° of 

forearm rotation. Joint motion was measured and recorded using the relative motion of 

the radial, ulnar and metacarpal coordinate systems. Two cyclic motions were completed 

at the rate of 5q of joint angulation per second for flexion-extension motion (-50q 

extension to 50q flexion) and forward and reverse dart throw motion (combined -30q 

extension and -10q radial deviation to 30q flexion and 10 ulnar deviation) and at 3q per 

second for radioulnar deviation (-10q radial deviation to 15q ulnar deviation) (Chapter 1, 

Figures 1.13 1.14, 1.15,). The first (pre-conditioning) cyclic movement was disregarded 

and the second cycle was analyzed. , . Individual motions were defined as a full range of 

motion in one direction, e.g. flexion was defined as -50q to 50q and extension as 50q to -

50q. The length of the forearm bones was maintained at neutral throughout testing. The 

outcome variable of axial bone load in both the radius and ulna was recorded throughout 

testing at a sampling rate of 1000 Hz. 
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 Outcome Variables and Data Analysis  

Axial bone loads were continuously collected from the load cells implanted in the distal 

radius and ulna during FEM, DTM and RUD. Absolute bone loads were measured and 

the percentage of total bone load was calculated for both forearm bones to examine their 

individual contributions. International Society of Biomechanics guidelines were used to 

develop individual coordinate systems using skin markers for the radius, ulna and third 

metacarpal.16 Wrist angle was calculated as the angle between the long axis of the radius 

and the long axis of the 3rd metacarpal with respect to the radial coordinate system. 

Individual motions pathways and the correlating radial and ulnar load cell measurements 

were discretized in 5q increments for data analysis and statistical purposes. Loads applied 

to the FCR, FCU, ECU, ECRB and ECRL tendons were also reported for the three wrist 

motions: FEM, RUD and DT. These were included for the purposes of interpretation of 

the bone loads, but not analyzed statistically as tendon loads were not a specific outcome 

variable. 

 Statistical Methods 

A two-way repeated measures analysis of variance (ANOVA) was completed in SPSS 

17.0 (SPSS Inc., Chicago IL, USA). The independent variables included: motion 

direction and wrist joint angle. The dependent variable was axial bone load. Individual 

analyses were completed for the radius and ulna during FEM, RUD and DTM. Additional 

pairwise comparisons were completed to examine the differences between individual 

joint angles. Statistical significance was considered p<0.05. 
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3.3 Results 

3.3.1 Radius and Ulna Loading during Flexion and Extension Motion 

The magnitudes of loads through the distal radius were significantly greater in planar 

extension compared to planar flexion (p<0.001) (Figure 3.3). Loads through the distal 

radius in planar extension were significantly greater than those in planar flexion at joint 

angles between -30° and 50° (p<0.033). Loads through the distal radius were 

significantly greater in planar extension than planar flexion at joint angles between 0° and 

40° (p<0.045).  

Axial loads at the distal radius showed a no significant change planar wrist flexion-

extension throughout motion in both directions (p=0.062). Axial loads through the ulna 

were significantly higher in wrist extension (p=0.005) (Figure 3.3). Throughout planar 

wrist flexion-extension the magnitude of load through the radius was significantly greater 

than that through the ulna (p<0.01). The radius accounted for the largest proportion of 

forearm bone load throughout both forward and reverse dart throw motion, peaking in 

extension and radial deviation (94%) and reaching its minimum in flexion and ulnar 

deviation (72%). During planar wrist flexion distal ulnar loads were 27.8+20.5 N at -50° 

of extension, 7.5+10.6 N at 0° of wrist flexion and  8.4+7.8 N at 50° of wrist flexion. 

During planar wrist extension load transmission through the distal ulna averaged 

26.8+19.9 N, 12.4+12.2 N, and 9.9+6.6 N at -50° of extension, 0° of flexion, and 50° of 

flexion, respectively. 

Load sharing between the radius and ulna was the same in both planar flexion and 

extension (p=0.912).Therefore load sharing ratios will be presented for planar flexion 

herein. Load sharing between the radius and ulna varied during planar wrist flexion, 

however these changes did not reach statistical significance (p=0.074) (Figure 3.4 & 3.5). 

The radius bore a significantly larger proportion of total forearm load than the ulna 

throughout planar wrist flexion (p<0.01). At 50° of wrist extension the distal radius bore 

80+9.1% of the total bone load and the distal ulna carried the remaining 20+9.1%. At 

0°of wrist flexion the distal radius bore 89.9+14.3% of the load and the distal ulna 

10.1+14.3% of the total bone load. At 50° of flexion the wrist experienced a similar bone 
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load proportion to the neutral wrist with 88.8+11.6 % of the total bone load through the 

radius and the remaining 11.2+11.6% through the ulna. 
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Figure 3.3: Axial Bone Loads through the Distal Radius and Ulna during Active Wrist Flexion and 

Extension Motions. The graph illustrates the axial loads through the distal radius and distal ulna 

throughout wrist flexion and extension motions. Loads through the distal radius and ulna were significantly 

greater in planar wrist extension than in flexion (p<0.001). Radial loads were significantly greater in 

planar extension than flexion from -30° to 50° (p<0.033). Ulnar loads were significantly greater in planar 

extension from 0° to 40°. Loads were significantly greater through the radius than the ulna throughout all 

flexion-extension motions (p<0.001). Wrist flexion angle had no effect on load magnitudes (p=0.142). 

Standard deviations have been excluded from chart for clarity (During flexion: radius range: +5.8N to 

+37.7N; ulna range: +7.1N to +23.6N. During extension: radius range: +8.9N to +39.5N; ulna range: 

+6.5N to +39.5N). 
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Figure 3.4: Proportion of Total Forearm Bone Load through the Distal Radius and Ulna during 

Active Wrist Flexion Motion. The graph illustrates the proportion of total forearm bone load through the 

distal radius and distal ulna throughout planar wrist flexion from -50°of extension to 50° of flexion. Load 

sharing was similar throughout flexion (p=0.074). Standard deviations have been omitted for clarity. 

(Radius range: +7.2% to +15.9%; ulna range: +7.2% to +15.9%). 
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Figure 3.5: Proportion of Total Forearm Bone Load through the Distal Radius and Ulna during 

Active Wrist Extension Motion. The graph illustrates the proportion of total forearm bone load through 

the distal radius and distal ulna throughout planar wrist flexion from 50° of flexion to -50°of extension. 

Standard deviations have been omitted for clarity. Standard deviations have been omitted for clarity. 

(Radius range: +6.0% to +10.6%; ulna range: +6.0% to +10.6%). 
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Although not a specific outcome variable of this study, the mean tendon loads are 

presented to assist in the interpretation of the axial loads measured through the distal 

radius and ulna (Figure 3.6). During planar wrist flexion from -50° to 50°, loads in the 

extensor carpi ulnaris (ECU) (50.1+21.4 N to 14.2+8.6 N) and flexor carpi ulnaris (FCU) 

(37.0+13.9 N to 17.4+6.1 N) loads decreased, while flexor carpi radialis (FCR) (8.5+1.2 

N to 42.5+26.6 N) and extensor carpi radialis longus (ECRL) (24.6+12.9 N to 40.2+21.3 

N) loads increased. Tendon loading was more complex in planar wrist extension t, from 

50° to -50°. As the wrist extended from 50° of flexion to roughly 30° of flexion loads in 

the extensor carpi radialis brevis (ECRB)(11.7+7.5 N to 32.8+6.6 N), ECRL (38.8+21.4 

N to 47.3+24.1 N) and ECU (14.3+7.5 N to 40.3+10.0 N) spiked, slowly declining again 

as the wrist moved into neutral wrist position. Flexor carpi radialis loads decreased 

steadily from 50° to 0°(40.2+26.5 N to 11.24+1.4 N) and remained static. As the wrist 

extended from neutral position to full extension, 0° to -50°, ECU (27.1+8.4 N to 

49.1+21.8 N) loads increased again.  
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Figure 3.6: Applied Wrist Tendon Loads during Active Wrist Flexion-Extension Motion.  The graph 

illustrates the applied tendon loads of the FCR, FCU, ECU, ECRB and ECRL throughout wrist flexion (A) 

extension (B) motions from -50°of extension to 50° of flexion. Standard deviation bars have been omitted 

for clarity (During flexion: FCR range: +1.2N to +26.6N; FCU range: +2.6N to +13.9N; ECU range: 

+2.1N to +25.1N; ECRB range: +0.5N to +13.5N; ECRL range: +1.8N to +23.0N. During extension: 

FCR range: +0.6N to +26.5N; FCU range: +4.0N to +11.0N; ECU range: +6.9N to +21.8N; ECRB 

range: +3.1N to +12.7N; ECRL range: +3.2N to +25.1N.).  

(A) 

(B) 
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3.3.2 Radius and Ulna Loading during Radial-Ulnar Deviation 

The direction of radial-ulnar deviation motion did not have a significant effect on axial 

load magnitude through the distal radius (p=0.546) and ulna (p=0.293). Therefore results 

for loads changes will be presented for solely for planar ulnar deviation herein (Figure 

3.7). 

During planar ulnar deviation the magnitude of load through the distal radius (p=0.043) 

and ulna (p=0.002) changed significantly during motion (Figure 3.7). The magnitude of 

load through the distal radius was significantly greater than the load in the distal ulna 

(p<0.001) throughout motion.  At 10° of radial wrist deviation the load through the distal 

radius was 104.6+48.0 N and 7.0+9.8 N through the distal ulna. At 0° of wrist deviation, 

or neutral wrist position, the distal radius measured 73.5+8.3 N and the distal ulna 

9.7+10.4 N. At 15° of ulnar deviation, the distal radius and ulna were under 82.8+28.1 N 

and 28.1+23.7 N of compressive load respectively.  

The direction of motion had no effect on distal forearm bone load sharing between the 

radius and ulna, therefore results for only planar ulnar deviation will be 

presented.(p=0.380). Load sharing between the forearm bones changed significantly with 

active planar ulnar deviation of the wrist (p=0.001) (Figure 3.8 & 3.9). The proportion of 

load through the radius was significantly greater than that though the ulna for the full 

range of motion (p<0.001). In 10° of radial deviation the radius accounted for 92.0+12.1 

% of total forearm bone load and the ulna the remaining 8.0+12.1 %. At 0° of wrist 

deviation, or neutral wrist position, 89.3+ 9.8 % and 10.7+9.8 % of the total forearm bone 

load was transmitted through the distal radius and ulna respectively. At 15° of ulnar 

deviation the proportion of total load transmission through the forearm bones in the 

radius lowered to 76.6+10.4 % and increased to 23.4+10.4 % in the ulna.  While the 

overall change in load sharing between the radius and ulna was significant during planar 

ulnar deviation there were no significant differences between the pairwise comparisons of 

joint angles (p>0.05).  
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Figure 3.7: Axial Bone Loads through the Distal Radius and Ulna during Active Radial and Ulnar 

Deviation. The graph illustrates the axial loads through the distal radius and distal ulna throughout active 

radial and ulnar deviation from -10°of radial deviation to 15° of ulnar deviation. The direction of motion 

did not have a significant effect (p=0.387). Loads through the radius were significantly greater than those 

through the ulna throughout radial and ulnar deviation (p<0.001). Wrist deviation angle had a significant 

effect on axial loads through the distal forearm (p=0.004). Standard deviations have been omitted for 

clarity (During ulnar deviation: radius range: +8.3N to +48.0N; ulna range: +9.8N to +18.6N. During 

radial deviation: radius range: +17.3N to +31.9N; ulna range: +10.7N to +25.0N). 
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Figure 3.8: Proportion of Total Forearm Bone Load through the Distal Radius and Ulna during 

Active Wrist Ulnar Deviation. The graph illustrates the proportion of total forearm bone load through the 

distal radius and distal ulna throughout ulnar deviation from -10°of radial deviation to 15° of ulnar 

deviation. Wrist deviation angle has a significant effect on forearm bone load sharing (p=0.001).Standard 

deviations have been omitted for clarity. (Radius range: +9.0% to +12.1%; ulna range: +9.0% to 

+12.1%). 
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Figure 3.9: Proportion of Total Forearm Bone Load through the Distal Radius and Ulna during 

Active Wrist Radial Deviation. The graph illustrates the proportion of total forearm bone load through 

the distal radius and distal ulna throughout radial deviation from 15° of ulnar deviation to -10°of radial 

deviation. Standard deviations have been omitted for clarity. (Radius range: +7.8% to +14.5%; ulna 

range: +7.8% to +14.5%). 

  



    

 

107 

 

Although not a specific outcome variable of this study, tendon loads have been presented 

to help with the interpretation of the distal radius and ulna load measurements (Figure 

3.10). Throughout planar ulnar deviation, -10° to 15°, ECU (15.9+5.6 N to 57.9+9.2 N) 

and FCU (13.4+5.7 N to 44.1+6.4 N) loads increased. Flexor carpi radialis loads 

decreased from -10° to 0° (20.4+16.2 N to 9.4+0.5 N) and remained static to 15°. During 

active planar radial deviation, ECU (47.6+26.7 N to 20.3+2.5 N) and FCU (33.5+17.8 N 

to 10.1+1.2 N) loads decreased from 15° to -10°, while FCU (9.0+0.7 N to 34.0+10.6 N) 

loads increased. Extensor carpi radialis longus loads increased from 5° to -10° (17.5+4.6 

N to 42.6+13.3 N). 
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Figure 3.10: Applied Wrist Tendon Loads during Active Ulnar and Radial Deviation.  The graph 

illustrates the applied tendon loads of the FCR, FCU, ECU, ECRB and ECRL throughout ulnar deviation 

(A) and radial deviation from -10°of radial deviation to 15°of ulnar deviation. Standard deviation bars 

have been excluded for clarity. (During ulnar dev.: FCR range: +0.5N to +16.2N; FCU range: +4.6N to 

+7.4N; ECU range: +5.6N to +10.4N; ECRB range: +2.1N to +4.9N; ECRL range: +2.6N to +21.9N. 

During radial dev.: FCR range: +0.7N to +10.6N; FCU range: +1.2N to +17.8N; ECU range: +2.5N to 

+26.7N; ECRB range: +2.6N to +9.7N; ECRL range: +4.9N to +13.3N.). 

(A) 

(B) 
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 Radius and Ulna Loading during Forward and Reverse Dart Throw 
Motion 

The direction of dart throw motion had a significant effect on load transmission through 

the distal radius (p=0.003) and ulna (p=0.02) (Figure 3.11). Loads through the distal 

radius were significantly greater in reverse DTM than those in forward DTM at -10° to 

30° of wrist flexion (p<0.032). Loads through the distal ulna were significantly greater in 

reverse DTM than in forward DTM at 15° to 30° of wrist flexion (p<0.047).  

The magnitude of load transmitted through the distal radius (p=0.016) and ulna (p=0.001) 

changed significantly throughout the forward and reverse DTM (Figure 3.11). The 

magnitude of distal radial loads was greater than distal ulnar loads throughout forward 

and reverse DTM (p<0.001). During forward DTM, axial loads through the distal radius 

were 109.6+55.2 N at -30° of wrist extension and -10° of radial deviation, 57.4+18.9 N at 

0° of wrist flexion and ulnar deviation, and 64.4+16.4 N at 30° of wrist flexion and 10° of 

ulnar deviation. During reverse DTM loads through the radius averaged 105.7+30.7 N, 

35.3+20.7 and 74.1+20.1 at -30° of wrist extension and -10° of radial deviation, 0° of 

wrist flexion and ulnar deviation and 30° of wrist flexion and 10° of ulnar deviation, 

respectively. Throughout forward DTM, axial loads through the distal ulna averaged 

5.4+9.74 N at -30° of wrist extension and -10° of radial deviation, 11.5+8.3 N at 0° of 

wrist flexion and ulnar deviation and 25.2+9.8 at 30° of wrist flexion and 10° of ulnar 

deviation. During reverse dart throw motion loads through the distal ulna were 8.7+8.7 N, 

19.2+7.7 and 34.1+15.9 at -30° of wrist extension and -10° of radial deviation, 0° of wrist 

flexion and ulnar deviation and 30° of wrist flexion and 10° of ulnar deviation, 

respectively. 

The direction of motion at no effect on distal forearm bone load sharing therefore load 

sharing will be presented for solely forward DTM herein (p=0.602). Load sharing 

between the distal radius and ulna changed significantly throughout the DTM (p<0.001) 

(Figure 3.12 & 3.13). The proportion of load through the distal radius was higher than 

that through the ulna throughout the DTM (p<0.001). At -30° of wrist extension and -10° 

of radial deviation the distal radius accounted for 94.8+9. 3 % of total forearm bone load 
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and the distal ulna the remaining 5.2+ 9.3%. At neutral wrist position, the distal radius 

and ulna transmitted 81.8+14.2 % and 18.2 +14.2 % of total forearm load respectively. At 

30° of wrist flexion and 10° of ulnar deviation the proportion of load sharing was 

72.2+8.7 % through the distal radius and 24.8+8.7 % through the distal ulna. 
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 Figure 3.11 Axial Bone Loads through the Distal Radius and Ulna during Active Forward and 

Reverse Dart Throw Motion. The graph illustrates the axial loads through the distal radius and distal 

ulna throughout forward and reverse dart throw motion from -30°of extension and 10° of radial deviation 

to 30° of flexion and 10° of ulnar deviation. Axial loads through the distal radius were significantly greater 

than those through the ulna throughout DTM (p<0.001). Loads through the distal radius and ulna were 

significantly greater in reverse DTM than in forward DTM (p=0.017). Radial loads were significantly 

higher in reverse than forward DTM from -10° to 30° (p<0.032) and ulnar loads were significantly greater 

from 15° to 30 ° (p<0.047). DTM angle had a significant effect on loads through the distal forearm bones 

(p=0.001). Standard deviations have been omitted for clarity (radius forward DTM. range: +10.5N to 

+55.3N; radius reverse DTM range: +20.2N to +43.1N; ulna forward DTM range: +6.7N to +6.7N; ulna 

reverse DTM range: +8.2N to +15.3N). 
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Figure 3.12: Proportion of Total Forearm Bone Load through the Distal Radius and Ulna during 

Active Forward Dart Throw Motion. The graph illustrates the proportion of total forearm bone load 

through the distal radius and distal ulna throughout forward dart throw motion from -30°of extension and 

10° of radial deviation to 30° of flexion and 10° of ulnar deviation. The proportion of load through the 

distal radius was greater than that through the ulna (p<0.001) and load sharing varied significantly with 

DTM angle (p<0.001). (Radius range: +7.9% to +14.2%; ulna range: +7.9% to +14.2%). 
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Figure 3.13: Proportion of Total Forearm Bone Load through the Distal Radius and Ulna during 

Active Reverse Dart Throw Motion. The graph illustrates the proportion of total forearm bone load 

through the distal radius and distal ulna throughout reverse dart throw motion from 30° of flexion and 10° 

of ulnar deviation to -30°of extension and 10° of radial deviation. (Radius range: +6.6% to +11.6%; ulna 

range: +6.6% to +11.6%). 
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Although tendon loading was not a specific outcome variable of the present study, mean 

tendon loads have been included to provide greater insight on axial load measurements 

through the distal radius and ulna (Figure 3.14). During forward DTM, -30° of wrist 

extension and -10° of radial deviation to 30° of wrist flexion and 10° of ulnar deviation, 

ECU (15.4+6.7 N to 40.6+18.3 N) and FCU (10.2+2.3 N to 35.73+14.6 N) loads steadily 

increased while FCR (26.6+18.4 N to 8.35+2.1 N) and ECRL (32.1+25.6 N to 15.1+5.1 

N) loads decreased. In reverse DTM, ECU (61.3+26.3 N to 22.5+5.2 N) and FCU 

(36.9+17.2 N to 11.4+1.6 N) loads decreased from 25° to -30° of wrist flexion while FCR 

(9.7+1.3 N to 27.5+14.1 N) loads steadily increased from 30° to -30°. 
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Figure 3.14: Applied Wrist Tendon Loads during Active Forward and Reverse Dart Throw Motion.  

The graph illustrates the applied tendon loads of the FCR, FCU, ECU, ECRB and ECRL throughout 

forward DTM (A) and reverse DTM (B) from -30°of extension and 10° of radial deviation to 30° of flexion 

and 10° of ulnar deviation. Standard deviation bars have been omitted for clarity (During forward DTM: 

FCR range: +1.9N to +18.9N; FCU range: +2.3N to +14.6N; ECU range: +3.4N to +18.3N; ECRB 

range: +1.5N to +6.4N; ECRL range: +2.8N to +25.6N. During reverse DTM: FCR range: +1.3N to 

+14.1N; FCU range: +1.1N to +17.5N; ECU range: +2.6N to +28.9N; ECRB range: +2.7N to +11.5N; 

ECRL range: +8.4N to +18.4N.). 

(A) 

(B) 
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3.4 Discussion 

Traumatic injuries and degenerative diseases such as wrist fractures, Kienbock’s disease 

and ulnar impaction cause changes in forearm bone length and angulation which can in 

turn lead to altered wrist joint loading and pain. Before we can diagnose and treat cases 

of altered wrist joint loading, we must first gain a better understanding of normal wrist 

biomechanics. Load magnitude and sharing through the distal forearm bones have been 

previously reported during static loading scenarios.10-13, 15 This form of biomechanical 

testing is problematic because it does not necessarily simulate the loading that occurs 

during in vivo activities. However, there has been very little investigation on the effects 

of active wrist motion on in vitro distal forearm bone loading.14 This study investigated 

the effect of simulated active wrist joint motion on load transfer through the distal radius 

and ulna. Loads were examined during planar wrist flexion-extension motion, planar 

radial and ulnar deviation, and multiplanar forward and reverse dart throw motion. In 

vitro axial loads through the distal radius and ulna were monitored continuously 

throughout wrist motion. 

Load magnitudes through the distal radius and ulna were greater during planar wrist 

extension than during planar wrist flexion, particularly at positive flexion angles. The 

differences observed with respect to direction of wrist flexion-extension motion are 

thought to be caused by the tendon loads applied to achieve each active motion. There is 

a steep increase in ECU, ECRB and ECRL loads as the wrist starts to extend out of 50° of 

flexion indicating that the wrist extensors work to both initiate and complete wrist 

extension. In flexion, the FCU acts to initiate flexion and the FCR acts to complete wrist 

flexion. While wrist extensors are recruited synergistically throughout planar wrist 

extension, wrist flexors seem to be recruited only moderately to initiate and complete 

wrist flexion. These differences in tendon loading are postulated to be responsible for the 

significantly greater loads through the distal radius and ulna seen in extension compared 

to flexion. The muscle moment arms of the wrist flexors greater than the extensors and 

both vary with wrist position.21, 22, 23, 24 Therefore less muscle activation is required by the 

flexors than the extensors to achieve the same amount of wrist flexion and extension 



    

 

117 

 

respectively. The increase in extensor muscle force may account for the increase in loads 

through the distal radius and ulna during extension seen in the current study.  

The magnitude of loads through the distal ulna varied significantly with wrist flexion and 

extension. Axial loads through the ulna also peaked in extension and decreased by a 

magnitude of four by the time the wrist reached neutral position. Ulnar loads remained 

similar to neutral position as the wrist moved into flexion. During wrist extension, axial 

loads through the ulna increased as the wrist moved out of full flexion and decreased 

again slightly as the wrist extended further to neutral position. Loads through the ulna 

increased steeply as the wrist extended from neutral position to full simulated wrist 

extension. In daily living tasks the wrist is thought to go through a natural range of 

radioulnar deviation as it performs FEM.18, 19, 20 In our simulation of planar FEM, the 

wrist was forcibly constrained in neutral radioulnar deviation via applied tendon loads. In 

extension the wrist tends to radially deviate, therefore in order to maintain neutral wrist 

radioulnar deviation the loads in the ECU must increase thereby increasing axial loads 

through the distal ulna. Our flexion and extension motion results, agree with those of 

Trumble et al. and af Ekenstam et al., who also reported distal ulna load magnitudes 

peaking in wrist extension angles and decreasing in wrist flexion angles under static 

loading.11, 17 The ECU moment arm is smaller than that of the ECRB, likely causing the  

ECU to exert more force than the ECRB to achieve the same degree of joint motion.25 

This may explain the why we obverse more significant changes in distal ulnar loading 

than radial loading throughout FEM. While tendon loading seems to have played a key 

role in distal forearm loading there may also have been changes due to radiocarpal joint 

contact.  

With regard to load transmission through the distal radius, the magnitude did not change 

significantly with respect to joint angle neither wrist flexion nor extension. There was a 

distinct trend to the loads transmitted through the distal radius during wrist flexion and 

extension. During wrist flexion, loads through the radius peaked in extension and then 

decreased as the wrist flexed towards neutral wrist position. Loads through the radius 

then increased slightly as the wrist reached full actuated flexion. During wrist extension, 

loads through the radius peaked in flexion and slowly decreased as the wrist moved to 



    

 

118 

 

neutral position, increasing again only slightly as the wrist moved into full simulated 

extension. As the wrist flexes and extends it naturally tends to ulnarly and radially 

deviate respectively as in a dart throw motion. Therefore, in our simulation, during 

flexion the applied ECRL force must increase to negate this and keep the wrist in neutral 

radioulnar deviation, thereby slightly increasing the load applied to the distal radius. 

Load sharing did not change significantly with direction of wrist flexion and extension 

motion and will therefore be discussed only for wrist flexion herein. Load sharing 

between the distal radius and ulna did not change with respect to wrist angle throughout 

active wrist flexion. The radius consistently bore the majority of the axial load at every 

flexion angle with the lowest contribution in extension where it accounted for 80% of 

total forearm bone load and the ulna the remaining 20%. As the wrist flexed, the distal 

radius accounted for more forearm bone transfer with maximum distal radius contribution 

occurring at neutral (90%). Harley et al. reported similar changes in load sharing between 

the radius and ulna, with the peak load borne by the ulna occurring in extension and 

reaching 15+7%, compared to the 20+9.1% reported in the current study. 14  Despite of 

the different testing techniques used by Harley et al. and the current study similar results 

were observed. The key findings of our study confirm their results while adding load 

magnitudes to the current literature. 

There was no difference in direction of motion between load magnitudes nor sharing 

during radial and ulnar deviation. Ulnar deviation has a much smaller motion arc and is 

therefore subjected to less gravity at extremes of motion. Radioulnar deviation was also 

simulated at a slower rate than FEM and DTM, 3°/sec as opposed to 5°/sec. It is 

speculated that a combination of these factors accounts for the similarity between radial 

and ulnar deviation motions. Due to their similar nature, only ulnar deviation will be 

discussed herein 

With respect to radial-ulnar deviation, as the wrist progressed ulnarly, the magnitude of 

load transfer through the distal radius peaked in radial deviation and decreased towards 

neutral. These loads also increased again slightly as the wrist moved into ulnar deviation. 

This is counter intuitive, however is thought to be caused by the large tendon loads 
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required to reach full ulnar deviation. In ulnar deviation, the applied tendon loads of both 

the ECRL and ECRB increase by roughly 15N above the applied tone load. This suggests 

that radial deviating tendons are activated for wrist stability even though the wrist is 

moving ulnarly under the primary control of the FCU and ECU.  Ulnar deviation motion 

of the wrist objectively produced the largest magnitude of loads in the distal ulna of any 

of the testing wrist motions. Load transfer through the distal ulna was the lowest in radial 

deviation and increased slightly as the wrist moved into neutral position. As the wrist 

continued from neutral position to full ulnar deviation the magnitude of the load through 

the ulna roughly tripled. This was likely due to a combination of tendon activation and 

the shifting of the carpus more towards the ulna. 

All existing literature on the effect of radioulnar deviation on distal forearm loading 

supports these findings.10, 11, 14, 17 The magnitudes of ulnar loads reported in the current 

study are similar to those reported by Harley et al. during active ulnar deviation.14 

Throughout ulnar deviation the radius accounted for the majority forearm bone transfer 

with the greatest proportion of radial load (92%) occurring in maximum simulated radial 

deviation. As the wrist ulnarly deviated the proportion of load through the radius steadily 

declined reaching a minimum of 76.5% of total forearm bone load. af Ekenstam et al. 

reported a similar load sharing ratio during radial deviation (91/9% radius to ulna) and 

ulnar deviation (76/24% radius to ulna) with static tendon loading.17 Harley et al. 

reported a similar trend during dynamic wrist motion however with a less dramatic 

increase in proportion through the ulna during ulnar deviation (18+9%).14  The increase 

in radial loading during radial deviation may be due in part to the compression of the 

scaphoid against the scaphoid facet on the distal radius. This compression is induced by 

the wrist flexors and extensors that span the radiocarpal joint. Similarly, the increase in 

ulnar loading during ulnar deviation motion is thought to be caused by the compression 

of the triquetrum on the TFC induced active tendon loading. Increased compression of 

the triquetrum against the TFC would also explain the pain induced clinically when 

performing an ulnar deviation test for TFC tears. 

Loads through the distal radius and ulna were significantly higher in reverse dart throw 

motion than in forward DTM. Similar to flexion-extension motion, the differences 
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between forward and reverse DTM were most significant in positive wrist flexion angles. 

As previously stated, muscles moment arms are known to be greater in flexion than 

extension. 21, 22, 23, 24 Therefore, the same phenomenon seen during FEM may be occurring 

during forward and reverse DTM, in which extensors must exert more force than flexors 

to achieve the same amount of joint motion in wrist extension and flexion, respectively. 

Therefore, the increased extensor muscle force may account for the increased loading 

through the distal radius and ulna during reverse DTM. 

During both forward and reverse DTM, the magnitude of loads through the radius peaked 

in the combined extension and radial deviation position. As the wrist flexed and ulnarly 

deviated loads through the radius roughly halved as the wrist reached neutral position. 

Radial load transfer increased again slightly as the wrist flexed and ulnarly deviated 

further to the final position of the forward DTM. The magnitude of loads through the ulna 

was the lowest in the extended and radially deviated position and roughly doubled as the 

wrist moved to neutral. Loads through the ulna doubled again as the wrist moved to the 

final flexed and ulnarly deviated position. Load magnitude changes were more like those 

of ulnar deviation than to those of flexion. Reverse DTM objectively produced the largest 

radial loads of any of the tested wrist motions. The differences in distal forearm loading 

during forward and reverse dart throw motion are again thought to be caused by the 

tendon loads required to initiate and achieve these motions. Similar to flexion-extension 

motion, there was an increase in ECU loads in order to initiate the reverse dart throw 

motion.  However, ECU loads then taper as the wrist extends further and ECRL loads 

increase to complete the combined extension-radial deviation motion, which is more 

similar to the tendon loading exhibited in radial deviation than in planar wrist extension. 

In forward dart throw motion, FCR loads peaked to initiate the motion and then quickly 

decreased to allow for ulnar deviation.  The ECU and FCU then increased in parallel to 

generate the flexion-ulnar deviation position that terminates forward dart throw. Overall, 

the tendon loads required to produce forward and reverse dart throw motion more 

similarly mimic those of radial and ulnar deviation than those of flexion and extension. 

The radius accounted for the largest proportion of forearm bone load throughout both 

forward and reverse dart throw motions, peaking in extension and radial deviation (94%) 
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and reaching a minimum in flexion and ulnar deviation (72%). These results are of 

interest because DTM is thought to be a more physiologically representative form of 

wrist flexion.18,19,20 In both forward and reverse DTM, load magnitudes and sharing 

between the two forearm bones followed the same trend as of radial and ulnar wrist 

deviation rather than flexion and extension.  

The increased loads and proportion of total forearm load through the ulna during DTM 

may explain ulnar sided wrist pain that often occurs during repetitive wrist flexion-

extension.27 High ECU involvement in dart throw motion may also explain the increased 

incidence of wrist tendonitis in workplaces that require repetitive wrist motions, such as 

factory work.27, 28 There have been no previous studies conducted to examine the effect of 

a multiplanar motion on loads through the distal radius and ulna. This aspect of our study 

is particularly novel and provides a better understanding of the effect of the combined 

extension-radial deviation and flexion-ulnar deviation generated by DTM. Our results 

suggest that repetitive physiologic flexion-extension motion, represented in this study by 

DTM, should be avoided to decrease the risk and incidence of ulnar sided wrist pain and 

wrist extensor tendonitis.  

The distal forearm load sharing at neutral wrist position was 90% through the radius and 

10% through the ulna during wrist flexion and ulnar deviation. A number of studies have 

examined load sharing in distal forearm at neutral wrist position and have reported the 

proportion of total forearm bone load through the ulna  to be roughly 18% of the total 

forearm bone load.10,11,12,13 Additional studies have examined load sharing at neutral wrist 

position during quasistatic and active wrist motion and have shown that the proportion of 

total forearm bone load through the ulna decreased to 13-14% under these 

circumstances.14,15 The further decrease in the proportion of total forearm bone load 

through the ulna in thought to have occurred due to soft tissue retention and variable 

tendon loading. Our study, unlike many previous studies, left almost all soft tissues 

intact. The loads measured through the load cells only accounted for roughly half of the 

applied tendon loads inferring that the remaining proportion of load was transferred 

through soft tissues or dissipated in the tendons themselves. Increased proportion of total 
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distal forearm bone load through the radius may also be explained by the tendon loading 

employed by the active motion simulator. 

This study provided new information about how load sharing in the distal forearm is 

affected by active wrist motion. Over the three wrist motions tested, distal radius load 

magnitudes objectively peaked in combined extension and radial deviation position from 

dart throw motion. Distal radius load magnitudes were the lowest during each motion 

when the wrist was in neutral joint position. Distal ulna loads were observed to peak in 

planar wrist extension. Total forearm load was divided between the distal radius and ulna 

and the proportion of load through each bone was calculated. The proportion of load 

through the radius was always greater than that of the ulna. Distal radial load proportions 

were observed to be lowest in the flexed ulnarly deviated position generated by the dart 

throw motion. These observations have important implications for rehabilitation 

protocols and post-surgical recommendations. Wrist bracing and rehabilitation positions 

can now be altered to minimize or maximize load magnitudes and proportions through 

the forearm bone of concern. In cases of ulnar impaction, wrist should be braced in 

neutral wrist flexion with slight radial deviation. For cases of wrist extensor tendonitis, 

our results suggest that range of motion should be limited to -20° to 20° of wrist flexion 

and extension to avoid the high tendon loads reported during initiation of flexion-

extension motions. 

This study has also improved our understanding of basic wrist biomechanics and can be 

used to improve biomechanical models in the future. Previously, an overall load sharing 

ratio of 80/20 between the distal radius and ulna was widely accepted and taught 

clinically. This study has shown that this is not always the case and that load sharing is 

dependent on wrist position. Hence, classic teaching that the 80:20 loading ratio 

predominates is not fully accurate. Instead, we observed a 90:10 load sharing ratio at 

neutral wrist position and variable load sharing ratios dependent on wrist position. 

The study presented in this chapter has limitations. Due to the nature of cadaveric 

research our sample size was small. However, statistical significance was achieved for 

most comparisons and therefore our study was sufficiently powered. Wrist flexion and 
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ulnar deviation were actuated as fully planar motions, not accounting for the more typical 

complex multiplanar motions during activities of daily living. Forearm bone loads were 

collected strictly through the long axis of the radius and ulna. Off axis loads were not 

measured. Physiologic loads occur in all directions of the wrist joint. The axial bone 

loads are more indicative of radiocarpal joint forces than they are of distal radioulnar 

joint loads. Wrist motions were performed actively through applied physiologic tendon 

loads.29 However, these loads are merely an estimation of in vivo loads generated during 

simple loading scenarios. Therefore, we do not know how closely the loads applied with 

the active wrist motion simulator represent in vivo tendon loads. No resisted joint motion 

or simulated object lifting was performed. 

This study has several strengths. The direction of motion was accounted for and load 

magnitudes were reported in both directions of wrist flexion-extension, radioulnar 

deviation and dart throw motions. Wrist flexion was simulated from 50° of extension to 

50° of flexion, whereas previous static and dynamic loading studies have only examined 

simulated wrist motion from 30° of extension to 50° of flexion.14, 30, 31, 32 Active wrist 

motion was simulated to more closely represent in vivo loading, which has only been 

reported by one other research group.14 Loads were collected continuously for all joint 

angles throughout the three simulated wrist motions. Load magnitudes were also reported 

for both forearm bones separately as well as proportions of total forearm bone load. All 

incisions were closed throughout testing to maintain tissue hydration and the viscoelastic 

behavior of in vivo soft tissues. The experimental devices used for collecting axial bone 

loads were critically designed and evaluated to ensure that measurements were reliable 

and repeatable, while being in-line (i.e. concentric) with the long axes of both the distal 

radius and the ulna. Unlike other studies, the experimental devices were discrete, located 

anatomically and allowed for retention of all soft tissues, excluding the distal 

interosseous membrane.10-15 Highly accurate optical motion tracking was employed, 

allowing for real time joint angle feedback. Lastly, a multiplanar dart throw motion was 

examined. The dart throw motion simulated a more physiologic form of wrist flexion and 

extension allowing for a better representation of daily living and working tasks.18, 19, 20 
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3.5 Conclusions 

The current study supports the hypotheses that axial loads through the distal radius and 

ulna fluctuate during flexion-extension motions and forward and reverse dart throw 

motions. The greatest load magnitudes through the radius occurred in the combined 

extension-flexion and radioulnar deviation positions simulated during dart throw motion, 

the most common wrist motion in daily activities. Axial loading through the distal ulna 

reached similar maximums in ulnar deviation and wrist extension. The forearm bone load 

magnitudes and proportions produced by the forward and reverse dart throw motions 

were more similar to the loading patterns during radial and ulnar deviation than those 

during wrist flexion and extension. This study provides a more detailed explanation of the 

loads occurring in the healthy wrist during active wrist motion and has implications for 

improved rehabilitation protocols and surgical recommendations. 
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Chapter 4  
 

4 Effect of Radial Length Changes on Axial Bone Loads 
through the Distal Radius and Ulna during Active Forearm 
Rotation 

 

Overview 

A biomechanical study was conducted to examine the effect of radial lengthening and 

shortening on axial loads through the distal radius and ulna throughout forearm 

rotation. Radial lengths were simulated between -4mm of radial shortening and +3mm of 

radial lengthening and loads were collected continuously throughout forearm rotation. 

Axial loads through the distal radius and ulna were analyzed with respect to radial 

length and forearm rotation angle.   
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4.1 Introduction 

As discussed in Chapter 1 (Section 1.3) common clinical wrist disorders often result 

deformities and malunions of the distal forearm bones. In most people the relative length 

of the radius and ulna at the wrist (often termed ulnar variance) are similar.1 Differences 

in radial and ulnar lengths are common complications and presentations of distal radial 

fractures, Kienbock’s disease and ulnar impaction syndrome.1 Distal radius fractures 

often heal with residual radial shortening.2,3 Kienbock’s disease, avascular necrosis of the 

lunate bone, is often associated with a long radius relative to the ulna.4,5 Ulnar impaction 

syndrome typically has a relatively long ulna with respect to the radius.4,6,7 Forearm 

position has also been shown to cause changes in ulnar variance; the radius migrates 

proximally as the arm pronates.8,9 It is important to understand the effect of changes in 

forearm bone length on distal radius and ulna loading in order to better diagnose and treat 

traumatic wrist injuries and degenerative diseases and to improve rehabilitation 

techniques and protocols. 

Previous biomechanical studies have shown that changes in radial length effects load 

transmission through the distal radius and ulna under static loading scenarios, as 

previously discussed in Chapter 1 (Section 1.5).1, 10, 13 These studies rigidly fixed the 

arms into position and applied static axial loads as radius lengths were altered. Bu et al. 

reported that as the radius was shortened with respect to the ulna the proportion of load 

through the radius decreased and that through the ulna increased.10 Palmer et al. 

quantified the magnitude of loads through the distal ulna with changes in radial length 

and found they increase significantly with only 2mm of radial shortening.12 Researchers 

have interpreted these studies to suggest that natural ulnar variance should therefore 

affect loads through the distal ulna and load sharing between the two forearm bones.13,14 

However, there has been very little correlation found between natural ulnar variance and 

the magnitude of load transmitted through the distal ulna.15, 16  

While the effect of radius length on axial load transmission under constrained static 

loading has been reported, the effect during simulated dynamic motion remains poorly 

understood. Simulated active motion likely better represents the loading environment that 

the wrist will see during normal activities of daily living. The biomechanical implications 
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of static loading studies on radius length and load transmission through the distal radius 

and ulna have already been applied directly to clinical applications. For example, the 

treatment of Kienbock’s disease with a radial shortening osteotomy or ulnar 

lengthening.17, 18 Therefore, an additional examination of the effect of radius length on 

axial load transmission during dynamic simulated forearm motion is important to 

optimize existing biomechanical models and improve surgical recommendations. 

Forearm pronation has been shown to increase loading through the distal ulna and 

proportion of total bone load that goes through the distal ulna. Trumble et al. and af 

Ekenstam et al. both reported increased loads through the distal ulna when the forearm 

was in pronation while under compressive static loading.8, 9 The increase in load 

transmission though the ulna during forearm pronation is thought to be due to a change in 

the ulna’s position with respect to the radius during forearm rotation. The ulna becomes 

longer relative to the radius in forearm pronation and shorter relative to the radius in 

forearm supination.13, 20 Therefore it is important to examine the combined effect of 

forearm rotation and radial length change to determine any compounding effects. 

In light of the above, the objective of the current study was to quantify the effect of 

forearm rotation angle, direction of motion and radial length changes on axial load 

transmission during simulated active forearm rotation. Axial loads through the distal 

radius and ulna were measured during active forearm rotation with the wrist in neutral 

position for varying radial lengths. Differences in loads through the radius and ulna were 

examined based on angle of forearm rotation, direction of motion and radial length 

changes between -4mm to +3mm in 1mm increments. It was hypothesized that increasing 

the radial length will increase radial loads and decrease ulnar loads and decreasing radial 

length will increase ulnar loads and decrease radial loads. It was also hypothesized that 

ulnar loads will increase as the forearm pronates and radial loads will increase in 

supination. 
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4.2 Materials and Methodsb 

 Specimen Preparation 

Six fresh frozen cadaveric upper extremities resected mid-humerus were used (73±8 

years, 6 males, 6 right arms). Computed tomography scans and specimen medical history 

were examined to exclude any specimen with previous wrist injuries and/or degenerative 

diseases such as osteoarthritis. Specimens were thawed for 18 hours before testing. The 

experimental devices were then implanted in the distal radius and ulna, as previously 

described in Chapters 2 and 3. A volar osteotomy was performed on the distal radius. The 

radial implant was fixed in place by a distal plate and a proximal intramedullary stem 

held in place by bone cement. A similar procedure was performed on the medial aspect of 

the distal ulna and the implant was fixed with bone cement utilizing intramedullary stems 

both distally and proximally. Implants were placed as distal was possible without distal 

radioulnar joint disruption to measure loads through the distal radius and ulna. Bone 

bridges were left intact to maintain anatomic alignment of the forearm bones during 

implantation. Tendons of the wrist and forearm were sutured distal to the 

musculotendinous junction using 45kg strength nylon line: flexor carpi radialis (FCR), 

flexor carpi ulnaris (FCU), extensor carpi ulnaris (ECU), extensor carpi radialis brevis 

(ECRB), extensor carpi radialis longus (ECRL), biceps brachii, and pronator teres (PT) 

(Ethicon, Somerville, NJ). Tendon guides were fixed to the medial and lateral 

epicondyles of the humerus and tendon sutures were passed through them to maintain the 

physiologic lines of action of each muscle.  

After the experimental devices were surgically implanted and the tendons lines were 

sutured, the specimens were mounted on the active wrist motion simulator (Chapter 2, 

Figure 2.14). The upper extremities were fixed to the simulator with a humeral clamp and 

two ulnar pins secured the elbow in 90° of flexion. The suture lines from the seven wrist 

and forearm prime movers were attached to servomotors at the base of the simulator 

                                                 
b The methodology related to specimen preparation and some aspects of testing protocol are similar to 
those employed in Chapters 2 and 3. As this thesis is in manuscript format, the methods have been re-
written and included herein. 
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(SM2316D-PLS2, Arumatics Corp, CA). Optical trackers were attached to the proximal 

radius, proximal ulna and 3rd metacarpal to measure wrist joint angle throughout testing 

(Optotrak Certus; Northern Digital, Waterloo, ON, Canada). Optical trackers were also 

attached to the distal radius in semicircle configuration to measure and record forearm 

position throughout forearm rotation. The fingers were flexed and secured with Coban 

wrap (3M, Elyria, OH, USA) to maintain a clear line of sight between the trackers and 

the camera.  

 Testing Protocol  

Test day joint coordinate systems were generated for the radius, ulna and 3rd metacarpal 

using anatomic skin markers per International Society of Biomechanics guidelines.19 

Forearm rotation angle was calculated as the rotation of the radius around the fixed ulna. 

Tone loads of 8.9N were applied to all forearm tendons, including: FCR, FCU, ECU, 

ECRB, ECRL, bicep brachii, and PT. Biceps brachii loads generated forearm supination 

and PT loads generated forearm pronation. Applied loads of the wrist flexor and extensor 

tendons were controlled by wrist joint angle and acted to maintain the wrist in neutral 

position throughout forearm rotation. This led to variable tendon loading dependent on 

radial lengths and forearm rotation. The upper extremities performed two cyclic motions 

of pronation-supination at a rate of 5q per second. The first cyclic motion was disregarded 

and the second was analyzed. Specimens were put through a range of motion from -35qof 

supination to 35q of pronation. Tendons of wrist flexors and extensors acted to keep the 

wrist in neutral position (i.e. 0° of wrist flexion and 0° of wrist deviation). Individual 

motions were defined as a full range of motion in one direction, i.e. pronation was from -

35q to 35q of forearm rotation and supination was 35q to -35q of forearm rotation. 

Forearm rotation was completed for each incremental radial length change from -4mm to 

+3mm; +4mm was not possible due to soft tissue constraints.  
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 Outcome Variables and Data Analysis 

Load magnitudes were collected continuously from the implanted load cells throughout 

forearm rotation Forearm bone load proportions were calculated from the direct load 

measurements. Test day coordinate systems were joint angles were used to determine the 

joint position throughout forearm rotation. Loads were then discretized in 5° increments 

of joint motion for data analysis and statistical purposes. 

 Statistical Methods 

A three-way repeated measures analysis of variance (ANOVA) was completed in SPSS 

17.0 (SPSS Inc., Chicago IL, USA). The independent variables were forearm rotation 

angle direction of motion and radial length, and. The dependent variable was axial bone 

load. Analysis was completed for pronation-supination motion from -30° of supination to 

30° of pronation in 5° increments. Additional pairwise comparisons were completed to 

examine the differences between individual joint angles and radial lengths. Statistical 

significance was considered p<0.05. 
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4.3 Results 

 Radius and Ulna Loading during Pronation-Supination Motion 

The direction of forearm rotation had no significant effect on load transmission through 

the distal ulna (p=0.949); load transmission through the distal radius was greater in 

supination (p=0.048) (Figure 4.1). Axial loads through the distal radius were significantly 

greater in supination (from -35° to 0°) than in pronation (0° to 35°) (p=0.022).  

The magnitude of load transmitted through the distal radius (p=0.132) and ulna (p=0.359) 

were similar throughout forearm rotation (Figure 4.1). The loads through the distal radius 

remained significantly higher than those through the distal ulna throughout rotation 

(p<0.001).  

The direction of rotation significantly altered load sharing between the distal radius and 

ulna (p=0.048) (Figure 2). The proportion of total forearm bone load through the radius 

was greater in forearm supination than in pronation. Load sharing between the distal 

radius and ulna remained consistent throughout forearm rotation (p=0.351)). The 

proportion of load through the distal radius was significantly higher than that through the 

distal ulna during forearm rotation (p=0.002).  
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Figure 4.1: Axial Bone Loads through the Distal Radius and Ulna during Active Forearm Pronation 

and Supination. The graph illustrates the axial loads through the distal radius and distal ulna from -35°of 

supination to 35° of pronation. Loads through the distal radius (p=0.132) and ulna (p=0.359) did not 

change significantly with forearm rotationLoads through the radius were significantly greater than those 

through the ulna throughout forearm rotation (p<0.001). Loads through the radius are significantly 

greater in supination than pronation from - 35° to 5° (p<0.022). Standard deviations have been omitted for 

clarity (During pronation: radius range: +8.8N to +21.9N; ulna range: +7.7N to +16.5N. During 

supination: radius range: +7.7N to +22.6N; ulna range: +8.9N to +14.4N). 
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Figure 4.2: Proportion of Total Forearm Bone Load through the Distal Radius and Ulna during 

Active Forearm Rotation. The graph illustrates the proportion of total forearm bone load through the 

distal radius and distal ulna from -35°of supination to 35° of pronation. The proportion of total forearm 

bone load through the radius is significantly greater in supination than in pronation. The proportion of 

total forearm bone load through the radius was significantly greater than that through the ulna throughout 

forearm rotation (p<0.001). Loads sharing did not change significantly throughout forearm pronation 

(p=0.820). Standard deviations have been omitted for clarity (radius range: +7.9% to +43.5%; ulna 

range: +7.9% to +43.5%).   
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 Effect of Radial Length Change on Axial Load Transmission through 
the Distal Radius Loading during Active Forearm Pronation 

The general trends for radial length changes were the same in pronation and supination, 

therefore the effect of radial length change will be presented for forearm pronation only. 

Changes in radial length had a significant effect on axial load transmission through the 

distal radius (p<0.001) (Figure 4.3). Loads through the distal radius remained constant 

throughout forearm rotation angle when length changes were present (p=0.360) (Figure 

4.4). As radial lengths increased incrementally, loads through the radius increased in a 

quasi-linear fashion. Radial loads were lowest with -4mm of radial shortening and the 

highest with +3mm of radial lengthening. Axial load transmission through the radius did 

not change significantly with forearm rotation at any radial length from -4mm of 

shortening to +3mm of lengthening (p>0.05)(Figure 4.3 and 4.4).Loads at -4mm of radial 

shortening were significantly lower than those at +1 (p=0.031), and +3mm (p=0.006) of 

radial lengthening, independent of forearm rotation at -35° of supination Loads through 

the radius were significantly less with -4mm of shortening than +1mm  of lengthening 

(p=0.024) at neutral forearm rotation and +3mm of lengthening at 35° of forearm 

rotation.  Axial loads through the distal radius with +3mm of radial lengthening were 

significantly greater than those through the distal radius with: -4mm (p=0.006) of radial 

shortening at -35° of supination, -2mm (p=0.033) and -3mm (p=0.039) of radial 

shortening at 0° of forearm rotation, and -1mm, (p=0.050) -3mm (p=0.023), and -4mm 

(p=0.048) of radial shortening at 35° of pronation. 
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Figure 4.3: Axial Bone Loads through the Distal Radius at Varying Radial Lengths throughout 

Active Forearm Pronation. The graph illustrates the axial loads through the distal radius at eight 

different increments of radial length from -35°of supination to 35° of pronation. Radial loads did not 

change throughout with forearm rotation (p=0.132). Radial length had a significant effect on the 

magnitude of load transmission through the distal radius (p<0.001). Standard deviation bars have been 

omitted for clarity (-4mm range: +12.2 to +18.1N; -3mm range: +9.7N to +13.2N; -2mm range: +8.4N to 

+12.9N; -1mm range: +7.8 to +13.5N; 0mm range: +0.4N to +18.5N; +1mm range: +7.3N to +19.0N; 

+2mm range: +12.1N to +17.8N; +3mm range: +10.3N to +20.7N). 
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Figure 4.4: Axial Bone Loads through the Distal Radius and Ulna with 8mm of Radial Length at -35° 

of supination, 0° of forearm rotation and 35° of pronation. The graph illustrates the axial loads through 

the distal radius and distal ulna at discrete angles of pronation-supination motion. The x-axis is the length 

of the radius and the y-axis is the load through the distal radius and ulna in Newtons. Figure 4.4 has been 

included to show a comparison of distal forearm load magnitudes and provide graphical depiction of + one 

standard deviation. Radial length change had a significant effect on distal radial (p<0.001) and ulnar 

(p=0.002) loads, however forearm rotation angle did not (p=0.360, p=0.142)  
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 Effect of Radial Length Change on Axial Load Transmission through 
the Distal Ulna during Active Forearm Pronation 

The direction of forearm rotation did not significantly affect the magnitudes of load 

through the ulna; therefore data for pronation will be presented herein (p=0.949). Radial 

bone length had a significant effect on load transmission through the distal ulna 

(p=0.002). Loads through the distal ulna did not change significantly with respect to 

forearm rotation angle (p=0.142) (Figure 4.5). As radial lengths increased incrementally 

load transmission through the distal ulna decreased  in a quasi-linear fashion (Figure 4.4). 

Axial loads through the ulna peaked with -4mm of radial shortening and reached a 

minimum with +3mm of radial lengthening. At -3mm of radial shortening the effect of 

radial length change was dependent on forearm rotation. In -35° supination, axial loads 

through the distal ulna were significantly greater at -3mm of radial shortening than +2mm 

(p=0. 35) and +3mm (p=0.025) of radial lengthening. In neutral forearm rotation and 35° 

of forearm pronation, radial shortening had no significant effect on load transmission 

through the distal ulna. Axial loads through the distal ulna at +3mm of radial lengthening 

were significantly lower than those at -2mm (p=0.022,) and -3mm (p=0.035) at -35° of 

supination and at -1mm (p=0.030) and -2mm (p=0.028) at neutral forearm rotation. 

Radial lengthening had no effect distal ulnar loading at 35° of forearm pronation. 
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Figure 4.5: Axial Bone Loads through the Distal Ulna at Varying Radial Lengths throughout Active 

Forearm Pronation. The graph illustrates the axial loads through the distal ulna at eight different 

increments of radial length change from -35°of supination to 35° of pronation. Radial length had a 

significant effect on magnitudes of load transmission at the distal ulna (p<0.001). At neutral forearm 

rotation, loads through the ulna were significantly lower with +3mm of lengthening than with -1mm 

(p=0.049), -2mm (p=0.027), -3mm (p=0.027) and -4mm of radial shortening. Standard deviations have 

been omitted for clarity (-4mm range: +9.5 to +18.5N; -3mm range: +7.5N to +17.0N; -2mm range: 

+7.3N to +12.3N;   -1mm range: +5.5N to +12.4N; 0mm range: +7.9N to +14.9N; +1mm range: +4.8N to 

+11.0N; +2mm range: +3.9N to +9.8N; +3mm range: +3.8N to +10.0N). 
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 Effect of Radial Length Change on Load Sharing between the Distal 
Radius and Ulna during Active Forearm Pronation-Supination 
Motion 

The direction of pronation-supination motion a significantly effected distal forearm load 

sharing, however the general trend remained the same and therefore only load sharing in 

pronation will be presented herein (p=0.048). Radial length change had a significant 

effect on load sharing between the distal radius and ulna (p<0.001) (Figure 4.6). The 

proportion of total forearm bone load through the distal radius was the least with -4mm of 

radial shortening and the greatest with +3mm of radial lengthening. The proportion of 

total forearm bone load decreased through the radius and increased through the ulna as 

the arm moved from supination to pronation, however this trend was not significant 

(p=0.155). Radial shortening had no effect on load sharing at any angle of forearm 

rotation. The proportion of load through the radius was significantly greater with +3mm 

of lengthening than with -2mm (p=0.001), radial shortening, at only neutral forearm 

rotation.  
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Figure 4.6: Proportion of Total Forearm Bone Load through the Distal Radius and Ulna at Varying 

Radial Lengths throughout Active Forearm Pronation. The graph illustrates the proportion of total 

forearm bone load through the distal radius and distal ulna at eight different radial lengths throughout 

active forearm pronation from -35°of supination to 35° of pronation. Radial length had a significant effect 

of load sharing at the distal forearm (p<0.001). (-4mm range: +13.5% to +22.5%; -3mm range: +9.7% to 

+14.1%; -2mm range: +9.3% to +17.3%; -1mm range: +5.9% to +22.4%; 0mm range: +7.9 to +43.5N; 

+1mm range: +5.0% to +27.0%; +2mm range: +5.0% to +22.7%; +3mm range: +4.4% to +32.6%). 
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4.4  Discussion 

The effect of radial length changes on load transmission through the distal radius and 

ulna has been previously investigated for constrained static loading. Static joint loading is 

a valuable form of biomechanical testing; however it is not a fully indicative of in vivo 

loads through the distal forearm during daily living. There is a void of literature on the 

effect of radial length changes on in vivo and in vitro loads through the distal forearm. As 

noted earlier, radial length changes frequently occur due to traumatic injuries and 

degenerative diseases such as distal radial fractures, Kienbock’s disease and ulnar 

impaction (Chapter 1, Section 1.3). The malalignment of the distal radioulnar joint may 

cause altered joint loading and further wrist pain.4-7 An improved understanding of the 

altered wrist biomechanics caused by radial length changes will improve the diagnosis 

and treatment of the disorders from which they resulted. This current study examined the 

effect of direction of motion, forearm rotation angle and radial length change on distal 

forearm loading under active forearm rotation. In vitro loads were collected at the distal 

radius and ulna continuously throughout forearm rotation.  

At native radial length, the magnitude of load through the distal radius (p=0.132) and 

ulna (p=0.359) remained similar throughout forearm rotation. Trumble et al. and af 

Ekenstam et al. reported increased loads through the ulna with forearm pronation and 

have attributed this phenomenon to the change in ulnar position as the forearm 

rotates.8,9,13,20 The lack of a significant change in forearm rotation on ulnar loads in the 

population tested is likely due a small sample size, variability in loads between specimens 

and the limited rotation achieved.  

There were no significant changes in forearm bone load sharing throughout rotation 

(p=0.351). In forearm supination the radius bore 91.0% the axial bone load and as the 

forearm pronated the ulna contributed more to forearm bone load and the proportion of 

bone load sharing through the radius decreased to 83.9% in end pronation.  These small 

differences may be due to the previously described phenomenon of ulnar lengthening in 

forearm pronation.13, 20  
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Not surprisingly, the magnitude of load through the distal radius changed with changes in 

radial length throughout forearm rotation. Axial loads through the radius were the highest 

with +3mm of radial lengthening and were the lowest with -4mm of radial shortening. As 

radial length increased from -4mm to +3mm load magnitudes through the distal radius 

increased at an average of 5.2 N/mm throughout active forearm rotation. The greatest 

change in axial loads between radial lengths occurred between -2mm and -1mm of radial 

shortening (+17.4% at -35°, +17.2% at 0°, +14.2% at 35°) and the smallest between 

+2mm and +3mm of radial lengthening (+4.7% at -35°, +1.5% at 0°, 1.8% at 35°). Our 

results agree with those of Markolf et al. who reported significant changes in axial bone 

loads with as little as -2mm of radial shortening.21 Our results are also consistent with 

those of Bu et al., who reported an increase in the proportion of distal radial load with 

relative radial lengthening.10 Load changes in the distal forearm caused by radial 

shortening have been linked to unfavorable clinical outcomes such as increased lunate 

contact, ulnar impingement, DRUJ pain and ulnar sided wrist pain.11, 22, 23   

Equal magnitudes of radial shortening and lengthening did not produce the same 

magnitude of load change through the distal radius. At neutral forearm rotation, -3mm of 

radial shortening decreased radial loads by 59.3%, while +3mm of radial lengthening 

only increased loads by 17.3%.  These results suggest that radial shortening has more of 

an effect on distal radius loading and should therefore be considered with caution. 

Forearm rotation angle had no effect at 0mm of radial length change.  As the radius was 

lengthened or shortened more than 2mm, the effect of forearm rotation angle on loads 

transmitted through the radius was more prominent. This is thought to have occurred in 

part due to the tendon loads applied to the wrist flexors and extensors to maintain the 

wrist in neutral position. Radial shortening caused an increase in the force required by the 

FCU and ECU to maintain neutral wrist position. Radial lengthening caused a lesser 

increase in FCR and ECRL loads than the increase in tendon loads induced by radial 

shortening.  

Axial load transmission through the distal ulna changed significantly with changes in 

radial length throughout active forearm rotation. Loads through the distal ulna were the 

highest with -4mm of radial shortening and were the lowest with +3mm of radial 
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lengthening. As the radial length increased from -4mm to +3mm the loads through the 

radius decreased an average of 3.0 N/mm throughout forearm rotation. Shepard et al. 

completed a similar study with static loading and concluded that each mm of radial 

lengthening increased ulnar loads by ~9%/mm.24 The current study found changes in 

ulnar loads to be closer to 28%/mm increase with respect to radial length change The 

largest decrease in axial loads through ulna occurred between +2mm and +3mm of radial 

lengthening (-141.5% at -35°, -45.0% at 0°, -31.9% at 35°) and the smallest change 

occurred between -3mm and -2mm of radial shortening (-16.8% at -35°, -17.9% at 0°, -

13.1% at 35°). These results suggest that radial lengthening has a greater effect on loads 

through the distal ulna than radial shortening. Pouge et al. reported that 6mm of radial 

shortening causes ulnar impingement.11 Markolf et al. and Palmer et al. both stated that 

as little as 2mm of radial shortening causes a significant increase in loads through the 

distal ulna in neutral wrist position and static loading.12,21 As the radius was shortened the 

FCU and ECU loads increased to keep maintain neutral wrist position during active 

forearm rotation. The change in tendon loading may account for the increase in axial 

loads through the ulna which occur with radial shortening. 

In general, bone loads through the distal radius and ulna appeared to have a quasi-linear 

relationship with changes in radial length (Figure 4.2). This is interesting from a 

biomechanical perspective as it allows for better estimates of the changes induced by 

disorders that causes changes in radial length such as wrist fractures and Kienbock’s 

disease as well as improves the understanding of native forearm mechanics.  

Load sharing between the radius and ulna were included to improve the comparison to 

current literature and to account for the possible effects of simulator differences. The 

proportion of load through the radius increased with radial lengthening and decreased 

with radial shortening. With -4mm of radial length change the load sharing ratio was 

62%/38% between the distal radius and ulna at neutral forearm rotation in the current 

study. Shepard et al. reported a 50%/50% ratio with -5mm of radial shortening and 

neutral forearm position.24 Markolf et al. reported similar findings, reporting equal load 

sharing between the radius and ulna with -4mm of radial shortening.25 The current study 

suggests that radial shortening may have a lesser effect under dynamic tendon loads that 
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it does under static compressive loads. The active loading employed in the current study 

more closely mimics in vivo joint loading than axial static loading. Therefore, it can be 

postulated that radial shortening has a lesser an effect on distal forearm loading sharing 

than previously thought from early static loading studies. With +3mm of radial 

lengthening, the radius accepted 97% of total compressive forearm bone load in neutral 

forearm rotation and 100% of forearm bone load in supination. Bu et al. reported 92-96% 

of load transmission through the radius with +3mm of radial lengthening at neutral wrist 

and forearm position.10 Markolf et al. stated that with +4mm of radial lengthening the 

radius accepted 94% and 97% of total forearm bone load in varus and valgus elbow 

position respectively.26 Again, our results suggest that dynamic loading produces a 

slightly higher proportion of radial loading than that during static loading (Chapter 3, 

Section 3.3).  

The study presented in this chapter has limitations, as previously noted in Chapter 3. 

Forearm bone loads were collected strictly along the long axis of the bones. In vivo 

loading occurs in all dimensions rather than uniaxially as measured in this study. The 

loading presented in this study is therefore more indicative of radiocarpal joint loads than 

it is of distal radioulnar joint loads. Forearm motion was performed actively through 

applied tendon loads. These loads were an estimation of in vivo tendon loads during 

simple, unloaded forearm motion. Additionally, the pronator quadratus was not activated 

to assist with forearm pronation. Gordon et al. have shown that the pronator quadratus 

plays an important role in distal radioulnar joint loading and should therefore be 

considered in biomechanical modeling of the wrist and forearm.27 However, the pronator 

quadratus acts perpendicular to the loads measured and in the current study and therefore 

would probably have very influence on the results presented. The cadaveric specimens 

were mounted on the simulator in a vertical position. Loading will likely differ with the 

arm in horizontal and dependent positions due to the effects of gravity. The range of 

forearm rotation achieved with the simulator was 70°, only a small portion of the motion 

available in patients’ 120-165°.30 The specimens used in this study were older and 

therefore had stiffer joints commonly associated with decreased joint ranges of motion. 

The specimens were also quite obese. This caused impingement of the optical trackers, 

which in turn decreased the range of forearm rotation we could study. 
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This study has several strengths. First, the effect of the direction of forearm rotation was 

examined and axial loads through the distal radius and ulna were reported separately. 

Loads through the distal radius and ulna were collected continuously throughout active 

simulated forearm rotation and the magnitudes of loads and load sharing were reported.  

The experimental devices used to collect distal radius and ulna loads were designed and 

evaluated to ensure measurements were reliable and device function was repeatable. 

Previous studies employing load measuring devices have suffered from large amounts of 

soft tissue resection and devices to change bone length often lacked structural rigidity 

such as the use of external fixators. The devices used were discrete and to allow for 

exceptional soft tissue retention with all soft tissues, excluding a portion of the distal 

interosseous membrane, left intact. Load measuring devices were implanted at the 

anatomic location of interest avoiding the need for mathematical transformations to 

determine bone loading. All incisions were closed for the duration of the testing day to 

retain soft tissues hydration and maintain their viscoelastic behavior. Lastly, the study of 

radial length change during active forearm rotation has not been previously examined 

making this study a novel contribution to existing biomechanical literature.   
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4.5 Conclusions 

The current study revokes the hypothesis that ulnar loads increase with forearm 

pronation. The current study supports the hypothesis that radial length changes will affect 

loads through the distal radius and ulna. Load transmission through the distal radius 

decreased with radius shortening and increased with radial lengthening. The inverse was 

true for loads through the distal ulna. Loads through the distal ulna increased with radial 

shortening and increased with radial lengthening. The direction of motion proved to 

significantly increase the magnitude of load transmission through the radius and forearm 

bone load sharing. The magnitude of load transmission through the radius and the 

proportion of total forearm bone load through the radius were greater in supination than 

in pronation. Direction of motion had no effect on load transmission through the ulna. To 

our knowledge this is the first study examining the effect of radial length changes on 

distal radius and ulna loading during active simulated forearm rotation. This study 

provides new insights to the effect of radial length change on distal forearm loading 

during active forearm rotation and has implications for improved diagnosis and treatment 

of common wrist injuries and conditions. 
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Chapter 5  
 

5 General Discussion and Conclusions 

 

Overview 

This chapter summarizes the objectives and hypotheses outlined in Chapter 1, along with 

the major conclusions of the biomechanical studies presented in Chapters 2, 3, and 4. 

The testing methodologies, strengths and limitations of each study are reviewed. Current 

and future directions of the work presented in this thesis are then discussed.   
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5.1 Summary  

This research was aimed to improve the understanding of native distal forearm bone 

loading during active simulated wrist and forearm motion and to examine the effect of 

radial length changes on distal radius and ulna load magnitude and sharing. This work 

advances literature on the effects of flexion-extension motion, radioulnar deviation and 

pronation-supination motion and the effect of radial length changes. Additionally, these 

findings provided new information on the effect of dart throwers motion on distal 

forearm bone loading, as well as new insights on the effect of radial lengths changes 

during active simulated forearm pronation-supination motion. The specific objectives 

stated at the beginning of this thesis have been fulfilled through the completion of the 

biomechanical studies presented in Chapters 2, 3, and 4. 

The objectives of this thesis as given in Chapter 1, Section 1.8, were: 

1. To design and evaluate an experimental apparatus for examining in vitro axial 

distal forearm bone loads during active wrist flexion-extension, radial-ulnar 

deviation and dart throw motion and forearm pronation-supination; 

2.  To determine the effect of joint position and motion direction on forearm bone 

loading throughout active wrist flexion-extension, radial-ulnar deviation, and dart 

throw motion; 

3.  To determine the effect of radial length change, joint position and direction of 

motion on distal forearm load magnitude and forearm bone load sharing during 

active forearm pronation-supination.  

The hypotheses and results of the individual studies performed in Chapter 2, 3 and 4 

are summarized in the following sections. 
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 Chapter 2: Design and Development of an Experimental 
Measurement System for Examining In Vitro Load Magnitudes and 
Sharing in the Distal Forearm 

The first objective of this thesis was to design and evaluate two experimental devices 

capable of measuring axial loads through the distal radius and ulna during active wrist 

and forearm motion. It was determined that these devices had to be capable of measuring 

loads through the distal radius and ulna with excellent reliability, ICC>0.95, to be 

considered reliable for use in further biomechanical studies. Two uniaxial loads were 

incorporated into the implant design to help achieve axial load measurement. The 

implants also allowed for simple incremental changes between common clinically 

occurring forearm bone lengths to simulate the effect of wrist fractures, Kienbock’s 

disease and ulnar impaction. Both devices were implanted using spacers and the bone 

bridge technique, both of which were later removed and replaced with the load sensing 

components. They were surgically implanted with bone cement to allow for rigid 

fixation. One cadaveric specimen was mounted on a custom active motion simulator to 

evaluate these devices. Testing consisted of five cyclic flexion-extension motions (FEM), 

radioulnar deviations (RUD) and dart throw motions (DTM).   

The repeatability of the combined implant and active motion simulation system was 

exceptional. The lowest intraclass correlation coefficient (ICC) reported for all three 

active wrist motions was 0.978. These results indicate very little variation in load cell 

measurements between the five cyclic trials. These findings represent the combined 

reliability of the applied tendon loads from the active motion simulator and the load cell 

measurements from the implants. Therefore, load measurements obtained from the 

experimental devices during future biomechanical studies can be considered reliable 

throughout different testing parameters. Additionally, the experimental devices allowed 

for reproducible changes in the lengths of the radius and ulna, thereby succeeding in 

simulating many common forearm injuries, diseases and/or malformities. 
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 Chapter 3: Loads in the Distal Radius and Ulna during Active 
Simulated Wrist Motion 

The second objective was to determine the effect of joint angle on forearm bone loading 

throughout active planar wrist flexion-extension (FEM), planar wrist radial-ulnar 

deviation (RUD), and multiplanar dart throw motion (DTM). It was hypothesized that 

axial loads would change with wrist and forearm motion with the greatest changes 

occurring in RUD. The experimental devices, evaluated in Chapter 2, were utilized for 

this biomechanical testing. The devices were implanted in the distal radius and ulna of 

nine cadaveric specimens using the bone bridge technique. Specimens were then mounted 

on the custom wrist motion simulator and tendon loads were applied to produce the 

aforementioned motions.  

The results from this study supported the hypothesis that axial loads through the distal 

radius and ulna change based on wrist joint angle and forearm rotation angle. However, 

the greatest changes in load did not occur during RUD but instead during the combined 

extension-radial deviation and flexion-ulnar deviation positions simulated during DTM. 

Axial loads through the distal radius peaked in combined extension-radial deviation. 

Loading through the distal ulna peaked during wrist extension and ulnar deviation. This 

study provides new insight on distal forearm bone loading during the physiologic dart 

throw motion. The load magnitudes and distal forearm bone load sharing proportions 

produced by the dart throw motion resembled the loading patterns during ulnar deviation 

rather than those during wrist flexion. These finding imply that the tendons producing 

radioulnar deviation have a greater effect than those generating flexion-extension motion 

on magnitude of load transfer and load sharing through the distal forearm bones. This 

provides a more complete explanation of the axial loading that occurs in the healthy distal 

radius and ulna during active wrist motion. This work has implications for both 

optimizing rehabilitation protocols and improving surgical recommendations.  
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 Chapter 4: Effect of Radial Length Changes on Axial Bone Loads 
through the Distal Radius and Ulna during Active Forearm Rotation 

The third objective of this thesis was to determine the effect of radial length, forearm 

rotation angle and direction of motion on distal forearm loading during active simulated 

pronation-supination motion. It was hypothesized that ulnar loads would be increased in 

pronation and radial loads in supination. It was also hypothesized that radial lengthening 

will increase the load magnitudes and proportion of total forearm bone load transmitted 

through the distal radius and decrease that through the distal ulna and radial shortening 

will decrease radial loads and increase ulnar loads throughout forearm pronation. The 

experimental devices evaluated in Chapter 2 were employed to measure in vitro axial 

loads through the distal radius and ulna continuously throughout active forearm pronation 

for radial lengths from -4mm to +3mm in 1mm increments. The devices were implanted 

in the distal radius and ulna of eight cadaveric specimens again using the bone bridge 

technique and bone cement for rigid fixation. The wrist was maintained in neutral 

flexion-extension and radioulnar deviation while the forearm rotated from -35° of 

supination to 35° of pronation. 

This biomechanical study supports the hypothesis that radial length change will affect 

loads through the distal radius and ulna during active forearm pronation. This study 

rejects the hypothesis that ulnar loads increase with pronation. Axial loads through the 

distal radius increased with radial lengthening and decreased with radial shortening, and 

loads through the distal ulna decreased with radial lengthening and increased with radial 

shortening. Radial shortening was proven to have a greater effect than radial lengthening 

on the magnitude of loads through both the distal radius and ulna in forearm supination. 

Radial lengthening had a greater effect on distal radius loads in forearm pronation.  It is 

speculated the change in loads through the distal radius and ulna with respect to change 

in radial length may be due to the flexor-extensor tendon loads applied to maintain 

neutral wrist position throughout forearm pronation. To our knowledge this study is the 

first of its kind to examine the effect of radial length changes on distal forearm loading 

during active forearm rotation. This study provides novel information about distal 

forearm biomechanics and has implications to improve the diagnosis and treatment of 
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common traumatic wrist injuries and degenerative diseases that affect radial length such 

as distal radial fractures and Kienbock’s disease.  
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5.2 Strengths and Limitations 

The biomechanical studies presented in this thesis have many strengths. This work 

provides new insight to the axial distal forearm bone loads produced for a variety of 

motions that occur during the activities of daily living. The study presented in Chapter 4 

provides a novel contribution to the literature on the effect of radial length changes on 

forearm bone loads during active forearm rotation. The sample sizes used were relatively 

small, however still large enough to allow for a repeated measure ANOVA for statistical 

analysis. Highly accurate optical tracking was utilized and allowed for the real-time 

measurement of joint angles throughout wrist and forearm motion. A previously 

established, repeatable active wrist motion simulator was used to perform all 

biomechanical testing. The experimental devices used to collect axial loads through the 

distal radius and ulna were evaluated to ensure their reliability for use in the additional 

biomechanical studies. These included uniaxial loads cells located along the anatomical 

axis of the radius and ulna, negating the requirement to accommodate eccentric loads. 

Both the magnitude of load and the proportion of total forearm bone load were reported 

separately, providing two distinct insights and contributions to biomechanical literature 

on distal forearm loading. Almost all soft tissues structures, excluding the distal 

interosseous membrane, were maintained in order to most accurately represent in vivo 

conditions. All incisions were closed throughout testing to maintain tissue hydration and 

retain the viscoelastic behaviours of in vivo soft tissues. Lastly, flexion-extension motion 

was simulated from 50° of wrist extension to 50° of flexion which is an increased range 

of motion previously reported for active wrist motion studies.  

Like all in vitro cadaveric biomechanical studies, the studies presented in this thesis have 

limitations. Mechanical tendon loads were applied to generate wrist and forearm motion. 

The applied loads were an estimation of in vivo loads generated during simple movement 

scenarios and may not fully represent the complex in vivo soft tissue loading. The 

pronator quadratus was not loaded to assist with forearm pronation. Although this muscle 

assists in DRUJ stability throughout forearm rotation, activation proved difficult to 

integrate into the existing active motion simulator system. Distal forearm bone loads 

were collected strictly along the long axis of the radius and ulna. However, physiologic 



    

 

161 

 

loading at the wrist occurs globally in the wrist and forearm joints. Therefore, the loads 

reported in this study are most representative of radio- and ulnocarpal loading and further 

examination would be necessary to determine loading at other aspects of the wrist such as 

the distal radioulnar joint. The cadaveric upper extremities were mounted on the 

simulator in a vertical position which is uncommon during tasks of daily living. Forearm 

bone loading may differ in a horizontal gravity loaded position. Lastly, the range of 

pronation-supination motion was 70°, roughly half of the physically available range of 

motion, 120-165°. This means that changes in loading reported for active forearm 

rotation may not be entirely indicative of loading in vivo.  
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5.3 Current and Future Directions 

The current studies presented in Chapters 2, 3 and 4 have successfully met the initial 

objectives presented at the start of this thesis. The results provide a better understanding 

of healthy forearm biomechanics during active wrist and forearm motion as well as an 

advanced understanding of the effect of radial length changes on distal radius and ulna 

loads during active PSM. Even with these contributions, there still exists opportunity to 

expand on this work and further examine forearm bone loading under normal and 

pathological conditions.  

Measuring multidirectional loads through the distal radius and ulna will provide an 

improved understanding of and joint reaction forces in the wrist and distal forearm. 

Forces in the medial-lateral direction are of particular interest as they provide information 

about loading at the DRUJ. The DRUJ is often disrupted with changes in radial and ulnar 

variance. Therefore, it is important to examine the effect of radius length changes on 

DRUJ loading.  

The residual effects of wrist fractures and degenerative diseases, such as Keinbock’s 

disease, cause more than solely length change of the distal radius. Instead, radial length 

changes are often accompanied with more complex angulations and translations of the 

distal radius and compromised soft tissue integrity, such as the TFC tears. Simulated 

multiplanar distal radial deformities and soft tissue sectioning will provide an advanced 

understanding of the changes in distal forearm biomechanics associated with traumatic 

injuries and degenerative diseases, such as distal radius fractures and Kienbock’s disease. 

Different gravity loaded forearm positions should also be examined. While the vertical 

forearm position allows for ease of testing, it is not indicative of tasks of daily living. The 

simulator used in the studies presented has the capability of two additional gravity loaded 

forearm positions. Distal forearm bone load magnitudes and load sharing may be altered 

in a horizontal gravity loaded position. Therefore, loads through the distal radius and ulna 

should be examined in a horizontal position and compared to the results in the vertical 

loading position presented in this thesis. 
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5.4 Significance 

Existing in vitro studies on the effect of active joint motion on distal forearm bone load 

magnitudes and sharing are limited. While static studies have examined the effect of 

radial length changes on distal forearm loading, there remains a void of literature on the 

combined effect of radial length changes and pronation-supination motion. The research 

completed in this thesis provides a more comprehensive understanding of wrist and distal 

forearm biomechanics in both normal and pathological states.  

An improved understanding of healthy and pathological distal forearm loading will lead 

to better diagnosis and treatment of altered forearm bone lengths. Distal forearm loading 

throughout wrist and forearm motion provides valuable information about which wrist 

positions cause increased and decreased loading through the distal radius and ulna. These 

findings can then be used to optimize rehabilitation protocols in order to either decrease 

bone loads to decrease pain or increase bone loading to strengthen them after traumatic 

injuries and surgical intervention. The results of our studies suggest that to decrease loads 

in the distal ulna, radial deviation, wrist flexion and supination are recommended. To 

decrease loading through the distal radius, ulnar deviation and neutral forearm rotation 

are recommended. Additionally, our results provide a novel insight to the changes in 

distal radius and ulna loading throughout the dart throw motion. While dart throw motion 

is proposed as a more physiologic form of wrist flexion-extension motion, the loads 

through the distal forearm suggest that dart throw motion is more similar to radioulnar 

deviation than flexion-extension motion. 

The results of the presented studies also have implications for surgical interventions 

prescribed at the presentation of altered radial bone length, such as radial osteotomies for 

the treatment of Kienbock’s disease. Our results suggest that more than 2mm of radial 

shortening significantly decreases loads through the distal radius and increases loads 

through the distal ulna. Radial shortening of 2mm or greater also caused a significant 

increase in loads between neutral forearm rotation and the greater amounts of pronation, a 

phenomenon not present at native radial length. Therefore, radial shortening beyond 2mm 

should be approached with caution as it may cause unfavorable changes in distal forearm 

biomechanics. 
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In conclusion, this work improves the understanding of forearm bone loading and will 

assist clinicians in the development of rehabilitation techniques, surgical protocols and 

implant designs. 
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Appendices 

Appendix A – Glossary of Terms 

Active Motion Muscle forces to move a joint, force applied directly to the muscle 
group of interest. 

Anterior Directed to the front; opposite of posterior. 

Articular Surface Connection made between two bones within the body. 

Axial load Load transmitted through the central long axis of the bone. 

Biomechanics The study of the control and effects of forces that are produced or 
applied to biological organisms. 

Dart Throw Multiplanar motion consisting of combined wrist extension-radial 
deviation and wrist flexion-ulnar deviation. 

Deviation Moving away from the midline of the body. 

Degree of Freedom The number of independent measurements or motions. 

Distal Located away from the origin or line of attachment. 

Dorsal Directed to the back; synonymous with posterior, opposite to volar 

Dynamic loading Variable amount of applied force exerted to produce motion 

Extension Motion moving two segments of the body apart.  

Fixation The act of holding, suturing, or fastening an extremity in a fixed 
position. 

Flexion Motion bringing two segments of the body closer together.  

Inferior Located below, or directed downwards. 

In vitro Latin; an experiment or process conducted outside of a living 
organism.  

In vivo Latin; an experiment or process conducted within a living organism. 

Lateral Directed away from the midline of the body.  
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Ligament Fibrous connective tissue that connects bone to bone; supports and 
strengthens joints. 

Medial Directed towards the midline of the body.  

Posterior Directed to the back, opposite anterior. 

Proximal Located towards the origin or line of attachment. 

Pronation At the forearm, hand and upper limb turned inwards.  

Servomotor An electronic actuator that allows for precise force outputs 

Static Loading Constant amount of force applied, generating no motion 

Superior Located above, or directed upwards. 

Supination At the forearm, hand and upper limb turned outwards. 

Volar  Directed to the front; synonymous with anterior, opposite to dorsal 
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Appendix B – Implant Design Measurements  

Table B.1: The widths of the distal radius and ulna in males and females at 20% and 25% of total forearm 

bone length based of a cadaveric specimen population. 

Bone Radius Ulna 

Gender Male Female Male Female 

Percentage of 
Total Bone 

Length from the 
Distal Terminus 

20% 25% 20% 25% 20% 25% 20% 25% 

1 12.2 8.9 10.6 9.0 7.8 7.3 5.4 4.9 

2 13.2 11.9 9.5 8.4 6.4 7.1 5.6 4.9 

3 16.7 11.7 10.9 9.7 8.5 6.5 7.2 7.2 

4 13.8 10.2 10.5 8.7 7.9 7.7 5.0 4.7 

5 13.6 12.6 13.2 12.5 8.4 8.6 7.6 7.9 

6 17.8 15.6 13.3 11.0 14.9 11.9 8.0 7.8 

7 11.5 10.7 14.5 12.3 7.6 7.7 6.9 7.2 

8 16.4 14.2 12.2 9.8 9.5 9.2 8.5 8.2 

9 19.1 16.1 10.2 7.4 13.7 13.7 6.6 6.8 

10 18.4 14.7 12.7 10.8 9.1 8.8 5.9 6.1 

11 10.9 9.5 7.7 6.3 6.8 6.7 7.4 6.7 

12 18.7 14.0 13.3 10.7 12.9 13.1 6.6 6.7 

13 16.9 13.6 11.9 9.2 9.6 11.0 7.9 6.9 

14 14.2 11.0 14.5 12.3 9.6 9.4 6.9 7.2 

15 17.7 14.6 12.6 11.4 8.7 9.3 10.8 9.8 

16 20.1 17.1 10.4 6.4 10.8 10.3 10.1 9.4 

17 10.2 8.0 7.9 8.7 7.1 6.9 11.8 8.4 

18 14.6 14.5 12.9 10.4 8.2 8.6 7.9 9.0 
Average 15.3 12.7 11.6 9.7 9.3 9.1 7.6 7.2 
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Appendix C – Load Cell Calibration Curves 

 
Figure C.1: Radial Load Cell Calibration Results. The measured output of the radial load cell (mV) with 

a known applied load (g). 

 
Figure C.2: Ulnar Load Cell Calibration Results. The measured output of the ulnar load cell (mV) with a 

known applied load (g). 
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Appendix D – Engineering Design Drawings 

Overview 

This section includes detailed engineering drawings for the individual components 

designed and evaluated in Chapter 2 and used for experimental use in Chapters 3 and 4. 

A detailed explanation of the design and use of the individual components can be found 

in Chapter 2. 
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Figure D.1: Radial Implantation Spacer. The radial implantation spacer is used to replace the modular 

radius device during implantation to protect the radial load cell from being damaged. 
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Figure D.2: Radius Implant Pt. 1.  The most distal component of the radius device is the distal radius 

plate which acts to fix the device distally with three bone screws and bone cement. The distal radius plate 

connects to the remainder of the radius device through a dovetail union and medial and lateral fixation 

screws. 
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Figure D.3: Radius Implant Pt. 2.  The second part of the distal radius device mates with the distal radius 

plate through a dovetail union and two perpendicular fixation screws. Its proximal face mates with the 

distal post of the radial load cell. 
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Figure D.4: Radius Implant Pt. 3.  The distal surface of the third part of the radius implant mates with the 

proximal post of the radial load cell. The proximal surface of part three connects to the right hand 

threaded aspect of radius implant part seven.   
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Figure D.5: Radius Implant Pt. 4.  The distal surface of the third part of the radius implant mates with the 

left hand threaded aspect of radius implant part seven. The proximal aspect is fixed to the proximal 

intramedullary stem with two perpendicular screws.  
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Figure D.6: Radius Implant Pt. 5.  The distal aspect of the proximal intramedullary stem is fixed to 

remainder of the radius device with two perpendicular screws. The proximal intramedullary stem acts to fix 

the radius implant proximally through the use of friction fit and bone cement.   
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Figure D.7: Radius Implant Pt. 6.  The hexagonal nut with reversely threaded aspects acts to achieve 

incremental bone length changes through rotation. The distal and proximal aspects thread into the 

proximal surface of part three and distal surface of part four respectively.  
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Figure D.8: Ulnar Implantation Spacer. The ulnar implantation spacer is used to replace the modular 

ulna device during implantation to protect the ulnar load cell from being damaged.  
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Figure D.9: Ulnar Implant Pt. 1.  The first part of the ulna implant mates to the distal post of the ulnar 

load cell. The ulnar load cell is held in place with two perpendicular screws which provide compression 

between it and the distal intramedullary stem.   
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Figure D.10: Ulnar Implant Pt. 2.  The distal intramedullary stem provides distal fixation of the ulna 

device through friction fit and bone cement. The proximal aspect of the distal intramedullary stem is fixed 

to the distal post of the ulnar load cell with two perpendicular screws and compression from ulnar implant 

part one.  
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Figure D.11: Ulnar Implant Pt. 3. The distal surface of the third part of the ulna implant mates with the 

proximal post of the ulnar load cell. The proximal surface of part three connects to the right hand threaded 

aspect of ulna implant part seven.   
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Figure D.12: Ulnar Implant Pt. 4. The distal surface of the fourth part of the ulna implant mates with the 

left hand threaded aspect of ulna implant part seven. The proximal aspect is fixed to the proximal 

intramedullary stem with two perpendicular screws.  



    

 

182 

 

 

Figure D.13: Ulnar Implant Pt. 5. The distal aspect of the proximal intramedullary stem is fixed to 

remainder of the ulna device with two perpendicular screws. The proximal intramedullary stem acts to fix 

the ulna implant proximally through friction fit and bone cement.   
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Figure D.7: Radius Implant Pt. 6.  The hexagonal nut with reversely threaded aspects acts to achieve 

incremental bone length changes through rotation. The distal and proximal aspects thread into the 

proximal surface of part three and distal surface of part four, respectively. 
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