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Abstract

My thesis consists of three chapters relating to topics in International Eco-

nomics.

In the first essay, I use bilateral trade data from Canada, Germany, Japan,

Mexico, the U.S. and the U.K. to decompose the patterns of trade growth across

various goods classifications during episodes of rapid growth in bilateral trade.

I find that bilateral trade growth during these episodes is granular — less

than 5% of goods classifications account for over 65% of overall bilateral trade

growth. I quantitatively assess whether “Melitz-style” trade models, with het-

erogeneous productivity firms, CES demand and fixed and variable costs of

exporting, can match the observed granularity of bilateral trade growth. I find

the standard model generates only 10% of the observed granularity in the data,

as measured by the share of total trade growth accounted for by various quan-

tiles of goods classifications. However, by incorporating heterogeneous pro-

ductivity changes and tariff reductions imputed from the U.S. production and

export data, I find that the model generates roughly 70% as much granularity

of trade growth across goods as in the data.

When firms export their goods to foreign markets, they often choose be-

tween multiple distribution technologies in transporting their goods to their

final destination. The second essay extends the standard trade model by incor-

porating a choice among two distribution technologies in the exporting process
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— one low-fixed, high-variable cost method, and one high-fixed, low-variable

cost method — and assessing the implications for trade growth across goods.

In this model, I find that heterogeneous productivity or tariff changes may

lead firms to “switch” their optimal distribution method — from not-traded to

traded, or from the low-fixed cost to the high-fixed cost technology. This re-

sults in disproportionately larger trade growth for these types of firms, since

they benefit from a double reduction in the variable costs of exporting — the

direct effect of the fall in trade costs, and the indirect effect of switching to

a lower variable cost distribution method. Calibrating this model to bilateral

trade flows, I find that model simulations with multiple distribution technolo-

gies generate up to 90–95% of the granularity in trade growth observed in the

data.

The third essay examines the role of variation in transportation options —

what I denote the “supply network” — on observed price differences between

locations for a specific good, retail gasoline. I use a unique data set of weekly

gasoline prices across 44 Canadian cities to analyze how the existence of vari-

ation in the available modes of transportation for gasoline between cities (via

pipeline, marine tanker, rail or truck) accounts for observed price differences

across locations. I find that the supply network is significant — cities connected

by lower per-unit cost methods like pipelines or seaports exhibit smaller mean-

and weekly-price differences than those connected only by road or rail, after

controlling for variables such as distance, regional effects and market size.
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Chapter 1

Introduction

My thesis consists of three essays in the field of international economics. The

first two essays examine trade growth during periods of large growth in inter-

national trade over the past 60 years. I use bilateral trade data to decompose

trade growth across goods classifications during rapid growth episodes and find

that trade growth is granular — the majority of overall trade growth between

given country-pairs is accounted for by a small number of goods classifications

exhibiting large growth in trade, while most goods exhibit small or negligible

growth. In the first essay (Chapter 2), I ask whether standard “Melitz-style”

international trade models, when supplemented with productivity and tariff

changes imputed from trade data, can generate the observed level of granu-

larity in bilateral trade data. In the second essay (Chapter 3), I add a choice

among multiple distribution technologies for exporting firms, with differing

fixed and variable costs, to quantify the model’s ability to match the observed

granularity of trade growth. The third essay (Chapter 4) examines how varia-

tion in transportation methods, which I denote “the supply network”, impacts

price dispersion across locations. I use a unique data set on weekly gasoline

1
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prices across 44 Canadian cities to quantify how differences the available meth-

ods of transporting gasoline between locations (by pipeline, marine tanker, rail

or truck) account for observed mean and weekly price differences across cities.

International trade has grown nearly twice as fast as world GDP over the

past 60 years. For most countries, this growth in trade has occurred in a small

number of rapid growth episodes. Standard international trade models have

significantly under-predicted this large growth in international trade during

these periods of rapid growth. As such, recent Melitz-style trade models have

investigated the role of heterogeneity in trade growth across various industries

and goods. Chapter 2 analyzes bilateral trade data, at the 5-digit SITC classi-

fication level for Canada, Germany, Mexico, Japan, U.S., and U.K. (accounting

for 20–25% of global trade) between 1989 and 1999, in order to to decompose

the patterns of trade growth across various goods classifications. I find that

bilateral trade growth during these rapid growth episodes is granular — less

than 5% of goods classifications account for over 65% of overall bilateral trade

growth while the majority of goods exhibit little to no growth in trade.

Trade theory suggests that disproportionately large growth in this small

number of goods categories may be accounted for by the goods experiencing

the largest reductions in tariff rates. However, I find that tariff reductions

cannot account for the granularity of bilateral trade growth. Further, I find

that production growth and increases in trade intensity (defined as the share

of domestic production that is exported) are both significant factors in these

large-growth goods classifications.

I use a Melitz-style trade model, featuring heterogeneous productivity firms
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facing CES demand under monopolistic competition, calibrated to match bilat-

eral trade flows, to quantify the predictions for trade growth across goods clas-

sifications during growth episodes. I find that for reasonable parameter values,

the model predicts less granular trade growth, generating only about 10% of

the granularity in the data, as measured by the share of total trade growth

accounted for by various quantiles of goods classifications. To better match

the observed granularity, I augment this standard model by incorporating het-

erogeneous productivity changes and tariff reductions imputed from the U.S.

production and export data. Doing so, I find that the model predicts roughly

70% of the granularity across goods observed in the trade data.

To account for the remaining heterogeneity of trade growth in the bilat-

eral trade data, I examine the role of heterogeneity in exporting methods in

accounting for differences in observed levels of trade and trade growth across

goods. Firms often choose between alternate methods of exporting their goods

to foreign countries. Generally, these can be grouped into two broad categories

— methods with high fixed costs and low variable costs, and those with low

fixed costs and high variable costs.

In Chapter 3, I use the standard Melitz-style model from Chapter 2, and

add a choice among multiple distribution technologies for exporting firms —

one low-fixed, high-variable cost option, and one high-fixed, low-variable cost

option. Solving the model, I find that, following productivity or tariff changes,

firms that switch from not-traded to traded, or from the low-fixed to high-fixed

cost method exhibit disproportionately larger growth than non-switching firms,

generating higher granularity in trade growth in the model. To quantify the

effect of this mechanism on trade growth granularity, I calibrate and simu-

late the model, incorporating heterogeneous productivity and tariff changes
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imputed from trade data, to match data on bilateral trade flows and trade

growth. I find that the model with multiple distribution technologies increases

the predicted granularity of trade growth across goods to 90–95% of the level

observed in the data, as opposed to the 70% generated by a model with a single

distribution technology in Chapter 2.

Chapter 4 investigates how variation in available transportation methods

impacts observed price differences across locations in the Canadian gasoline

market. Price dispersion is often attributed to transportation costs — the

larger the costs of transporting goods between locations, the larger the price

gaps that can be sustained over time. Many studies use geographic distance

as a proxy for transportation costs.1 However, little is known about the quan-

titative impact of variation in the methods used to transport goods between

locations on these relative price differences.

I use a unique data set on weekly average gasoline prices in 44 Canadian

cities between 2001 and 2017, as well as differences in the four main modes of

transporting gasoline — via pipeline, marine tanker, rail or truck — to quan-

tify the impact of the supply network on relative price differences between

locations. Controlling for distance, regional and market effects, I find that the

supply network has a significant impact on price dispersion in the Canadian

gasoline market. City-pairs connected via pipeline — a faster, lower cost-per-

unit method — exhibit 3.5% less mean-price dispersion than those connected

by higher cost-per-unit methods like rail or truck. Further, the existence of

pipelines connecting cities has the effect of reducing weekly price differences

by the equivalent of a 53% reduction in geographical distance, while a seaport

connection between cities reduces the effective distance by 38%, compared to

1See, for example, Burdett and Judd (1983), Crucini, Telmer and Zachariadis (2003), or
Engel and Rogers (1996).
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land-route alternatives.

A brief case study of supply disruptions at the refinery level indicates that

unplanned refinery shut-downs result in price spikes that are higher in regions

closest to these supply disruptions, and that retail price shocks have lower

variation in cities that share a pipeline connection than in those that do not.

These results reinforce the finding that the structure of the supply network is

significant in accounting for observed price dispersion across locations.

1.1 References

BURDETT, K. AND K.L. JUDD (1983). “Equilibrium Price Dispersion”, Econo-
metrica , Vol. 51, No. 4, pp. 955-–969

CHANEY, T. (2008). “Distorted Gravity: The Intensive and Extensive Margins
of International Trade”. American Economic Review, 98:4, 1707–1721.

CRUCINI, M., C. TELMER AND M. ZACHARIADIS (2003). “Price Dispersion:
The Role of Borders, Distance and Location”, Tepper School of Business, Paper
490

ENGEL, C. AND J. ROGERS (1996). “How Wide Is the Border?”, American Eco-
nomics Review, Vol 86 No 5, pp. 1112–1125

MELITZ, M.J. (2003). “The Impact of Trade on Intraindustry Re-allocations
and Aggregate Industry Productivity.” Econometrica, Vol. 71.6 (2003): 1695–1725.



Chapter 2

Decomposing Episodes of Large
Growth in International Trade

2.1 Introduction

Over the past 50 years, international trade has grown nearly twice as fast as

world GDP.1 For most countries, this growth has not been smooth and constant

over time, but rather occurred over a small number of rapid growth episodes.2

For some countries, episodes of large growth follow implementations of trade

liberalization, such as the North American Free Trade Agreement (NAFTA)

in the early 1990s. However, episodes of large trade growth also occur in the

absence of formal trade liberalizations.3

It is well-documented that in many instances, trade models significantly

1Source: IMF WEO 2012
available at: http://www.imf.org/external/pubs/ft/weo/2012/02/weodata/index.aspx.

2Figure A.1 shows bilateral trade for several countries over the past 30-–60 years, where
an average of roughly 70-–90% of overall growth over this period is accounted for by periods
spanning only 10% of the time span (i.e. 5 years).

3For example, between 1990 and 1999, Mexican exports to Canada quintupled, from $0.4
billion to $2.1 billion. By contrast, Mexico’s GDP grew by only 70% during this same period.
Over the same period, German exports to the U.S. grew from $25 billion to $49 billion while
German GDP grew by only 50%.

6
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under-predicted the magnitude of trade growth during these episodes.4 More

recently, papers like Melitz (2003) and Chaney (2008) have focused on the role

of heterogeneity in accounting for trade growth across industries and goods. As

a result, trade literature has examined responses to trade liberalization across

various types of goods and industries: previously-traded goods that become

traded in larger values — the intensive margin — and previously not-traded

goods that become traded — the extensive margin.5

Several questions remain to account for the large growth during these rapid

growth episodes:

1. What is the distribution of growth across goods during growth

episodes? What proportion of overall trade growth is attributable to

intensive margin growth as opposed to extensive margin growth? Kehoe

and Ruhl (2013) find evidence that the extensive margin is in fact large

and significant in accounting for overall trade growth. Further, within

these margins, is trade growth widely dispersed across a large number

of different goods, or is trade growth granular — i.e. is trade growth

concentrated in a small number of goods accounting for the majority of

overall trade growth?6

4For example, see Kehoe(2005) for a detailed examination of the erroneous predictions of
trade models following NAFTA.

5Although the terms “goods” and “industries” may have different connotations in other eco-
nomic literature, for brevity I will hereafter use the term “goods” to refer to various industries
and the goods they produce and trade.

6The use of the term “granular” in the literature is relatively recent and sparse — papers
like Gabaix (2011), DiGiovanni and Levchenko (2014) and DiGiovanni, Levchenko and Mejean
(2017) use granularity to refer to the “incompressible grains of economic activity” that result
from the idiosycratic shocks to the upper end of the fat-tailed distribution of firms within an in-
dustry, that pervade to aggregate economy-level shocks. For the purposes of this dissertation, I
extend my connotation of granularity to include two main properties: (1) the level of disaggre-
gation in cross-sectional trade that identifies idiosyncratic behavior across industries in a given
period, similar to Gabaix and others (as opposed to homogeneous behaviors across industries or
focusing on aggregate values, and (2) idiosyncratic behavior in trade growth across industries
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2. What accounts for heterogeneity of growth across different goods?

Do tariff reductions account for overall trade growth for each good? Is

trade growth a function of production growth or increases in trade in-

tensity (or both)? That is, does trade growth for each good coincide with

increases in domestic production, with a constant share of output being

traded, or does the share of domestic output being traded increase?

3. Are the predictions of Melitz-style models consistent with the level

of granularity observed in international trade data? Do the mech-

anisms for tariff reductions and productivity changes in these models de-

liver similar patterns of trade growth across goods as observed in the

data?

In this paper, I document new data facts on bilateral trade growth across

goods during rapid growth episodes. I analyze 5-digit Standard International

Trade Classification (SITC) bilateral trade data, between 1989 and 1999, for

6 countries (Canada, Germany, Japan, Mexico, USA and UK) accounting for

20–25% of global trade during this period. Although data limitations restrict

the sample to this 10-year period, it does include the implementation of the

North American Free Trade Agreement (NAFTA) and the Canada-US Free

Trade Agreement (CUSFTA) in the early-to-mid 1990s, thus allowing a com-

parison of growth for trade-liberalization and non-liberalization country-pairs.7

I supplement this data with 8-digit Harmonized Tariff Schedule (HTS) data

— industries react differently across the distribution of trade, even from similar previous levels
of trade. The latter property contrasts with the connotation of terms like “lumpiness” of trade
(as in Armenter and Koren (2014), among others) which denotes the concentration of trade and
trade growth at the upper end of the distribution, where the majority of trade growth would
similarly be accounted for by those industries accounting for the majority of previous trade.

7Numerous papers, such as Caliendo and Parra (2014), Gould (1998), Romalis (2007), etc.,
examine the overall impact of NAFTA and CUSFTA, providing a large, diverse literature.
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on U.S. tariff rates and 6-digit North American Industry Classification Sys-

tem (NAICS) data on U.S. manufacturing production. The U.S. tariff data is

matched to U.S. import data to analyze the impact of changes in tariff rates

on the growth in trade across goods classifications. U.S. manufacturing data

is matched to U.S. export data to decompose trade growth into changes in pro-

duction and changes in trade intensity.

I document four key facts during these rapid trade growth episodes:

1. Bilateral trade growth is granular across time and across goods — over

70% of total trade growth over time is accounted for by 10% of the total

time period (i.e. 5 of 50 years), and less than 5% of goods classifications

account for 65–110% of total bilateral growth across country-pairs8

2. Changes in tariffs do not account for episodes of large trade growth

3. Increases in trade intensity and domestic production each account for

large growth in trade across goods

4. The extensive margin is significant for overall bilateral trade, but is driven

by a relatively small number of extensive margin goods (<20%) that ac-

count for the majority of overall extensive margin growth

Across all bilateral country-pairs, trade growth is granular across time and

goods. Over the past 50 years, most of the total growth in bilateral trade is

accounted for by a small number of rapid growth episodes. Examining growth

for each year, the 5 largest-growth years (i.e 10% of the total time span) ac-

count for over 70% of the total growth in bilateral trade over the past 50 years.

8These goods can account for over 100% of trade growth due to negative growth in some
goods classifications.
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Cross-sectionally, the majority of total bilateral trade growth is accounted for

by a small number of goods classifications exhibiting disproportionately large

growth.9 Nearly all these large-growth goods had non-zero levels of trade prior

to rapid growth. Large growth from goods categories with zero previous trade

is rarely observed. Further, among this set of large-growth goods, there is large

variation in their level of trade prior to rapid growth.

Reductions in trade barriers alone are unable to account for these large-

growth goods categories which comprise the majority of trade growth across

country-pairs. Many episodes of trade growth occur in goods whose tariff rates

do not change, while most changes in tariff rates do not result in large trade

growth for those goods. As a result, there is no statistically significant corre-

lation between reductions in U.S. tariffs rates and U.S. bilateral trade growth

across goods categories. Of the 100 goods contributing the largest shares of bi-

lateral trade growth, over half exhibit no reduction in their ad valorem equiva-

lent (AVE) tariff rate. Further, of the goods with the largest reductions in tariff

rates, few (10-–20%) exhibit substantial growth in trade.

Examining U.S. manufacturing data, I find that episodes of large growth in

bilateral trade coincide with increases in both trade intensity and production.10

Controlling for changes in domestic production, observed increases in trade

9On average, across country-pairs, roughly 1% of goods classifications account for approxi-
mately 60% of total trade growth.

10To clarify this distinction, global growth of new technologies like smart-phones and laptop
computers, employed on a global scale, necessitates increased production of semi-conductors,
the key foundation of internal circuitry for modern electronics. A large increase in exports
for goods like semi-conductors may therefore be proportional to increases in their overall pro-
duction, with trade intensity (the share of domestic production that is exported) remaining
relatively constant. Alternatively, episodes of trade liberalization resulting in decreased bar-
riers to trade may lead to a larger share of domestic production being exported to a given
destination, representing an increase in trade intensity, even in the absence of large increases
in gross production.
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intensity account for 35–90% of total bilateral trade growth across country-

pairs.11 Conversely, holding trade intensity constant, production growth ac-

counts for 30–40% of observed trade growth for some country-pairs, while for

others it accounts for virtually none of the overall bilateral trade growth.

Extensive margin growth is measured as changes in trade accounted for

by the goods classifications representing the bottom 10% of initial trade.12 I

find extensive margin growth is significant to overall bilateral growth for all

country-pairs. Additionally, within the extensive margin, large growth in a

small number of goods accounts for the majority of overall extensive margin

growth, mirroring the granularity of trade growth across goods in the intensive

margin, for trade-liberalizing and non-liberalizing countries alike.

I quantitatively compare these empirical findings on trade growth across

goods to the predictions of Melitz-style trade models. As in Melitz(2003), Help-

man, Melitz and Yeaple (2004) or Chaney (2008), these models typically feature

heterogeneous productivity firms, monopolistic competition pricing, and CES

demand, as well as fixed and variable costs of exporting. Since I am interested

in the quantitative results, I use reasonable parameter values and calibrate

this “standard model” to match observed trade flows and quantitatively assess

the model’s ability to match the observed granularity in bilateral trade data for

two main cases:

11Due to the data limitations of only having U.S. production data, I only consider 5 country
pairs — U.S. exports to Canada, Mexico, Japan, Germany and the U.K.

12This paper adopts the Kehoe and Ruhl (2013) definition of the extensive margin—the set
of goods that account for the bottom 10% of initial trade. This is due to reporting issues in
international trade—shipments with sufficiently low values need not be declared on Customs
reports for many countries, so distinguishing true zero-trade goods from small trade goods can
cause issues. For similar reasons, I follow the Kehoe and Ruhl approach of using the bottom
decile of goods, according to initial trade value to represent the extensive margin.
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1. Standard model with uniform tariff reductions. A standard Melitz-

style model featuring firms with fixed productivities drawn from a Pareto

distribution, where trade liberalization takes the form of a uniform reduc-

tion in tariffs across all goods, a common approach in the trade literature.

2. Standard model with heterogeneous productivity changes and

tariff reductions. A standard Melitz-style which I augment by incorpo-

rating heterogeneous changes in productivity across goods imputed from

U.S. production data, as well as heterogeneous tariff reductions across

goods matched from U.S. import data.

I find that the predictions of the standard model with uniform tariff reduc-

tions do not match the stylized facts observed in the data. With a Pareto distri-

bution of productivities, and a fixed and variable cost of exporting, this model

produces much less granularity of trade growth than found in the data. In equi-

librium, goods are stratified into traded goods (those with sufficiently high pro-

ductivity to cover the fixed cost of exporting) and goods that are not-traded (i.e.

those where the fixed cost exceeds the potential profits from exporting). Fol-

lowing a uniform reduction in trade costs for all goods, the increase in exports

of previously traded is proportional to their productivities. As a result, growth

in the intensive margin of trade is smooth across previously-traded goods, not

granular. Extensive margin growth arises from a shift in the productivity cut-

off, resulting in some goods that were previously not-traded becoming traded,

as the reduction in variable cost makes it profitable to pay the fixed cost of

exporting.

The key result delivered by this standard mechanism is the smoothness

of trade growth — exports grow proportionally to the uniform reduction in
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trade costs and proportionally to their productivity. The only disproportion-

ate growth in the standard model comes from extensive margin goods, jumping

from zero trade to non-zero levels. However, these goods become traded in such

small values (as a result of their relatively low productivities), that they ac-

count for a small proportion (<20%) of overall trade growth. This implies that

across goods, goods with similar initial levels of trade are predicted to grow

in similar magnitudes, and trade growth is only slightly more granular than

cross-sectional trade in any given period. Conversely, in the data trade growth

is highly granular and trade growth is substantially more granular than cross-

sectional trade.

Matching both the levels of cross sectional bilateral trade and the observed

level of granularity from the data is important for several reasons. For policy

analysis, it is necessary to identify the disparity in trade growth across indus-

tries so as to assess the welfare impact of trade policy across income distribu-

tions. It is important that the model capture the granularity of observed trade

to provide insight into heterogeneous responses across industries to policy pro-

posals such as trade liberalization. Matching the granularity of trade across

goods may also be important for quantifying the impact of shocks (both cyclical

and secular) on trade flows, sectoral output dynamics and the reallocations of

inputs across industries.

To attempt to better match the level of granularity observed in the data, I in-

troduce into the model heterogeneous tariff and productivity changes imputed

from U.S. manufacturing and export data. Heterogeneous productivity changes

across goods allow for large jumps in productivity for some goods classifications

that generates disproportionately large trade growth for these goods. Hetero-

geneous tariff reductions similarly allow for disproportionately large growth
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in the goods exhibiting the largest tariff reductions, while goods experiencing

smaller reductions in trade costs exhibit much smaller growth.

To quantify this mechanism, I calibrate the standard model including het-

erogeneous productivity and tariff changes to match U.S. export data and com-

pare the granularity of trade growth across goods in the model to that in the

data. I find that incorporating these productivity and tariff changes signifi-

cantly increases the granularity of trade growth predicted in the model. Mea-

suring the proportion of overall bilateral trade growth accounted for by various

quantiles of large-growth goods, I find that this augmented model generates

roughly 70% of the granularity observed in the trade data, a marked improve-

ment from the 10% generated by the standard model with uniform tariff reduc-

tions.

2.2 Related Literature

Several empirical papers document the “lumpiness” of trade — a majority of

international trade in a given period is accounted for by a relatively small num-

ber of goods traded in large volumes, while a large proportion of domestically-

produced goods are not exported. Armenter and Koren (2010) suggest that

the concentration of large amounts of total bilateral trade in a small number of

goods categories may be systematic of the sparseness of trade data — in a given

period, the fact that there are relatively few international shipments (balls)

compared to the large number of potential goods classifications (bins) necessar-

ily results in this inherent “lumpiness” of trade across goods categories, with a

large number of goods being not-traded or traded in very small amounts, while

the majority of bilateral trade is concentrated in a small number of large-trade
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goods. However, Blum, Claro and Horstmann (2016) argue that a key underly-

ing assumption driving the balls and bins model — that export shipment size

is randomly allocated across good categories, and is independent of firm size

— is inconsistent with shipment data and invalidates the Armenter and Koren

model’s findings. Alternatively, Fernandes et al (2015) argue that the granu-

larity of trade growth, particularly on the intensive margin, may arise from

a log-normal productivity distribution, as opposed to the Pareto distribution

commonly assumed in Melitz-style trade models, which causes firms to react

disproportionately in response to trade liberalization that lowers variable costs

of exporting. Alessandria, Kaboski and Midriggan (2010) attribute the lumpi-

ness of trade to economies of scale in transportation and delivery lags. They

find that large costs associated with international transportation of goods leads

firms “stock up” with larger and less frequent shipments, accounting for the

lumpiness of trade across goods and time.

While these papers focus on the patterns of cross-sectional trade, a cen-

tral contribution of this chapter is to document the fact that trade growth is

granular. Further, I find that the set of large-growth goods accounting for the

majority of trade growth is uncorrelated with the set of goods in which per-

period trade is concentrated. Finally, I find that trade growth is more granular

than cross-sectional trade, and that the level of trade growth across goods is

uncorrelated with initial levels of trade.

A large literature (e.g. Krugman (1979), Lancaster (1980), Deardorff (1984),

etc) documents recent growth in international trade. Most germane to this

chapter is the documented fact that the ratio of trade to GDP has increased

over the past 50 years. Bergoeing and Kehoe (2001) document key trade growth
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facts and investigate the ability of standard trade models to quantitatively cap-

ture the patterns observed in international trade data. This chapter documents

that this trade growth is highly concentrated in a small number of rapid growth

episodes over this period.

This chapter is also related to empirical work identifying the effects of trade

liberalizations on bilateral trade flows. Romalis (2007) uses a difference-in-

difference approach to exploit variation between trade liberalizing and non-

trade liberalizing countries to estimate elasticities of traded goods. He reports

that trade liberalization has a significant impact on volume, but small impact

on prices and welfare. This chapter extends these data facts by investigating

trade growth variation across individual goods, and develops a model that can

deliver the patterns of trade observed in the data, which standard models do

not produce.

Kehoe and Ruhl (2013) find that the extensive margin plays a significant

role in accounting for bilateral trade growth, with a 10% increase in trade

between country-pairs being accompanied by a 36% increase in the extensive

margin, on average.13 While I find similar results on the impact of the overall

extensive margin, this chapter adds to Kehoe and Ruhl by decomposing exten-

sive margin growth between goods that were previously not traded and those

that were traded in very small amounts. I document that extensive margin

growth is quite granular, with less than 5% of extensive margin goods account-

ing for over 25% of growth in the extensive margin.

Many papers have used standard international trade models to examine the

impact of trade liberalizations (and other structural change) on trade volumes
13Kehoe and Ruhl’s interpretation of the extensive margin varies from the theoretical defini-

tion identified in Chaney (2008) — Kehoe and Ruhl classify the extensive margin as the growth
in trade among the set of least-traded goods, classified as the bottom decile of goods sorted by
initial trade value.
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and the patterns of trade growth. However, these models do not produce the

high level of granularity of trade growth observed in the data. Melitz (2003)

introduces heterogeneous productivity across firms with a fixed cost of entry to

a model with monopolistic competition, which predicts that intensive margin

growth is smooth across goods. Chaney (2008) builds on the Melitz framework

to isolate the role of the extensive margin in trade growth, identifying the set

of goods that enter the exporting market following reductions in trade barriers.

However, in this framework, extensive margin growth is smooth across exten-

sive margin goods. Arkolakis (2010) builds a model of market penetration, in

which firms essentially choose their fixed cost in order to penetrate a market

and then face increasing marginal costs to reach additional consumers. How-

ever these models, whether employing a single fixed-cost export technology (as

in Melitz, Chaney), or a continuum of fixed cost options (as in Arkolakis), do not

produce the non-convexity of trade growth across goods observed in the data.

This chapter extends the literature by adding heterogeneous productivity and

tariff changes to investigate whether this standard framework can generate

the level of granularity of trade growth observed in the data across both the

intensive and extensive margins.

2.3 Data

2.3.1 Stylized Facts

I use data on bilateral trade values, ad valorem tariff rates, and manufacturing

data to decompose trade growth between the intensive and extensive margins

across goods classifications. Four key facts emerge from the data:

1. Trade growth is highly granular across time and across goods
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classifications.

a. Across countries, bilateral trade growth over time occurs in short

periods of rapid growth. Rather than smooth, consistent growth

over time, growth is concentrated in a small number of rapid growth

episodes. Over the past 50 years, the 5 largest-growth years account

for roughly 75% of overall trade growth.

b. Across goods classifications, trade growth is concentrated in a small

number of goods classifications, with 5% of classifications accounting

for roughly 65–110% of total bilateral trade growth by country-pair.

In all bilateral pairs, there are many goods classifications that begin

with zero trade, and remain so over time.14 Goods that switch from

zero reported trade to positive trade remain at low values. The ma-

jority of goods that are initially traded grow very little — it is only

a small number of goods, growing from low levels of initial trade to

high levels of final trade, or from high levels of initial trade to very

high levels of final trade, that account for the majority of the growth

in bilateral trade.

2. Reductions in tariffs coincide with only 10–20% of the large-growth

goods.

Tariff reductions do not account for the granularity in trade growth. Among

the subset of large-growth goods which account for the majority of trade,

large decreases in tariff rates accompany only a small number (10–20%)

of these goods, while the remaining goods exhibit no change or small in-

creases in their ad valorem equivalent tariff rate.

14While this property is consistent across country-pairs, it is not true that it is the same set
of goods with zero trade across all country pairs. One good with zero trade for one country-pair
may be highly traded across other country-pairs, and vice-versa.
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3. Trade intensity and production growth both account for large

growth in bilateral trade

Controlling for growth in production across goods classifications, increases

in trade intensity account for 35–90% of total observed trade growth across

various U.S. bilateral pairs. Conversely, fixing trade intensity at initial

levels, growth in domestic production accounts for 30–40% of U.S. export

growth to certain countries (such as Canada and Japan), whereas pro-

duction growth accounts for virtually none of the observed bilateral trade

growth in others (Germany, Mexico, U.K.).

4. Extensive margin growth is granular and a significant factor in

total bilateral trade growth The rise in trade growth of the least-

traded goods accounting for the bottom decile of initial bilateral trade is

significant in accounting for overall trade growth. A 10% increase in bilat-

eral trade is accompanied by a 24% increase in the extensive margin, on

average across country-pairs. Extensive margin growth is granular, with

a small number of extensive margin goods (<5%) accounting for roughly

25% of total extensive margin growth, but less granular than total bilat-

eral growth.

2.3.2 Data Sources

To study and decompose bilateral trade growth, I use annual UN Comtrade

data on bilateral trade from 1989–1999, at the 5-digit Standard International

Trade Classification (SITC) level, for 6 countries — Canada, Germany, Japan,

Mexico, U.S.A, and U.K. Trade between these country-pairs accounts for roughly

20–25% of global trade during this period. At the 5-digit SITC code level there
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are 1836 different goods classifications.15 Since the 1989–1999 period includes

the implementation of NAFTA and CUSFTA — episodes of trade liberalization

for some country-pairs (Canada, Mexico, U.S.A.) but not for others (Germany,

Japan, U.K.) — I am able to examine the differential effects of trade liberaliza-

tion on trade growth across country-pairs.16

I use data on U.S. tariff rates and U.S. imports from Canada, Germany,

Japan, Mexico, and the U.K. to investigate the impact of trade liberalization,

and heterogeneous changes in tariff on trade growth across goods. The U.S. tar-

iff rate data is from the NBER database on international trade and reports the

ad valorem equivalent (AVE) tariff rates on U.S. imports between 1989–1999 at

the Harmonized Tariff Schedule (HTS) 8-digit level.17 This includes estimates

of AVE rates for all Most-Favored-Nation-status (MFN) trading partners, such

as Germany, Japan and U.K., as well as the tariff schedules for Canada and

Mexico following the implementation of NAFTA. I match this tariff data, with

data on U.S. imports, resulting in approximately 8000–10000 different goods

categories, depending on the import source country.18

15The UN uses a lexicographic ordering of SITC codes, with a parent category divided into up
to 10 subcategories at each stage of disaggregation — thus a 3 digit code 782 may be subdivided
into 7821 and 7822, and 7822 may be subdivided into 78221, 78223, 78225, 78227 and 78229,
etc. This may invokes concerns of endogeneity in the classifications — goods with larger trade
values may enable or necessitate more subdivisions, while goods with less trade may be lumped
into one broader parent category. However, the SITC codes underwent their most recent rounds
of revisions in 1986 and 2006 respectively — since the data in this work focuses on the time
periods 1989–1999, this concern should be reasonably mitigated. This is similarly true for the
NAICS and HTS classification systems. For a more detailed methodology, consult the United
Nations Statistic Divisions reports, available at http://unstats.un.org/unsd/family/default.asp.

16This trade data is particularly appropriate as it represents a subset of the Kehoe and Ruhl
(2013) data set, allowing for a comparison of the results on trade liberalizations and extensive
margin growth found in that paper.

17This data set is compiled by Feenstra, Romalis and Schott (NBER working paper), avail-
able at http://www.johnromalis.com/publications/.

18U.S. import data comes from a dataset on U.S imports and exports compiled by Pe-
ter Schott, containing data on U.S. imports at the 10-digit HTS level, which is then ag-
gregated up to the 8-digit level over the same time period, 1989–1999, available at http :
//faculty.som.yale.edu/peterschott/subinternational.htm.
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To identify the relationship between trade and gross domestic production, I

include matched data on U.S. manufacturing and U.S. exports. I compile pro-

duction data from the NBER-CES Manufacturing Industry database to provide

data on 473 goods classifications at the 6-digit North American Industry Classi-

fication System (NAICS) level between 1989 and 1999. I match the production

data to U.S. export data at the 6-digit NAICS level for the same destination

countries as the tariff and bilateral trade data.19

Since international trade data often suffers from issues of sparseness and

lumpiness in shipments, I use a 3-yr average to control for reporting errors

in the timing of shipments, or instances of shipment and Customs reports be-

ing dispersed over multiple years. I classify the initial level of trade as the

1989–1991 average and the final level of trade as the 1997–1999 average for

each good classification. The difference in these 3-yr averages therefore repre-

sents the growth in trade over this period.

Descriptive Statistics

Tables 2.1 and 2.2 present summary statistics, for NAFTA country-pairs and

non-NAFTA country-pairs respectively, of the 5-digit SITC bilateral trade data.

There are three key facts to note. First, on average, the initial level of trade

for NAFTA and non-NAFTA pairs is approximately the same (roughly $36B),

in total shipment value in $US, while the average final level of trade is higher

in NAFTA country-pairs ($75B) than in non-NAFTA pairs ($57B). This reflects

the larger average growth in total trade for NAFTA country-pairs of 148%,

while non-NAFTA pairs average 63% growth over the same period. Second, the

bottom decile of goods, ordered by initial trade value, grow to account for 18%

19The NBER data comes from a database compiled by Becker, Gray and Marvakov, available
at http://www.nber.org/nberces/, while the export data comes from the Schott database (Ibid.).
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of final trade in NAFTA country-pairs, while accounting for 13% of final trade

in non-NAFTA pairs. This implies a slightly larger role for the extensive mar-

gin in trade-liberalizing countries. Third, the 10 largest-growth goods in each

country pair (out of 1836 total good classifications) accounts for approximately

50% of total trade growth in NAFTA and non-NAFTA country-pairs alike. Sim-

ilarly, the 100 largest-growth goods account for 101% of total trade growth in

non-NAFTA countries, and 90% of total trade growth in NAFTA country-pairs.

Together, these three facts suggest that trade growth is highly concentrated

in a small number of goods classifications. This pattern is consistent across

all country-pairs, although it is slightly more prominent in trade-liberalization

country-pairs.

Table 2.1: Summary Statistics: NAFTA country-pairs
Bilateral Trade Statistics: 5-digit SITC codes

Variable Can-Mex Mex-Can Can-Usa Usa-Can Mex-Usa Usa-Mex NAFTA Avg
Initial trade 452451 1711096 83278894 71313846 28298716 25796112 35141852
Final trade 880883 5537384 160144152 123700777 93734628 70447948 75740962
Total trade growth 428432 3826288 76865257 52386931 65435912 44651836 40599109
%∆ in trade 94.7% 223.7% 92.3% 73.5% 231.2% 173.1% 148%
Share of trade growth 94.7% 61.3% 41.1% 29.4% 42.5% 29.6 51.9%
from 10 largest growers
Share of trade growth 136.5% 95.0% 77.6% 68.5% 85.2% 71.2% 91.8%
from 100 largest growers
Extensive margin 25.7% 26.4% 15.6% 11.5% 17.5% 13.3% 18.3%
share of final trade
Number of goods 1836
(All trade values in thousands of $US)

Table 2.2: Summary Statistics: Non-NAFTA country-pairs
Bilateral Trade Statistics: 5-digit SITC codes

Variable Ger-Usa Usa-Ger Jpn-Usa Usa-Jpn UK-Usa Usa-UK Non-NAFTA Avg
Initial trade 25828198 21430441 93940987 48749684 18021847 19532210 37917228
Final trade 47977038 34737504 124383525 67346115 33471956 34286200 57033723
Total trade growth 22148840 13307063 30442537 18596431 15450108 14753990 19116495
%∆ trade growth 85.7% 62.1% 32.4% 38.1% 85.7% 75.5% 63.3%
Share of trade growth 52.0% 56.1% 57.8% 58.1% 41.1 38.7% 50.6%
from 10 largest growers
Share of trade growth 85.3 107.9% 121.1% 118.7% 87.2% 85.9% 101.1%
from 100 largest growers
Extensive margin 13.0% 12.9% 12.3% 12.4% 11.9% 14.5% 12.8%
share of final trade
Number of goods 1836
(All trade values in thousands of $US)
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2.3.3 Granularity of Trade Growth

Granularity Across Time

Over the past 50–60 years, trade growth across NAFTA and non-NAFTA country-

pairs exhibit similar patterns.20 All country-pairs show large overall growth

over this period, but exhibit large variation in the rate of growth between pe-

riods. In most cases, the majority of the overall trade growth over time is

accounted for by a small number of episodes of rapid growth.

To quantify the granularity in trade growth over time, I calculate the share

of total trade growth accounted for by each year, and calculate the proportion

of overall trade growth accounted for by the top 5, 10 and 15 years of growth.

Table 2.3 reports that the top 5 years of growth (representing only 10% of the

total time frame) account for roughly 75% of overall trade growth across time.21

The top 10 and 15 years of growth account for roughly 150% and 200%, re-

spectively, of total bilateral trade over this period, suggesting that most of the

overall growth over time is concentrated in a small number of rapid growth

episodes.

Table 2.3: Proportion of total bilateral trade from “X” top-growth years
Proportion of trade growth from top X% years

(5-digit SITC codes)
1-yr intervals 2-yr intervals 3-yr intervals

Country-Pair 5 yrs (10%) 10 yrs (20%) 15 yrs (30%) 3 yrs (10%) 6yrs (20%) 9yrs (30%) 2 yrs (10%) 4 yrs (20%) 6 yrs (30%)
Mex-Can 0.6856 0.9931 1.1836 0.7257 1.0360 1.1356 0.7146 0.9552 1.0612
Usa-Jpn 0.6781 1.0553 1.3400 0.6000 0.9775 1.2586 0.5747 0.8556 1.0261
Jpn-Usa 0.9172 1.5070 1.9293 0.8442 1.2970 1.5322 0.6426 0.9776 1.2874
Mean 0.7603 1.1852 1.4843 0.7233 1.1035 1.3088 0.6440 0.9295 1.1249

20Figure A.1 plots total bilateral trade values for exports over the past 50 years for Mexican
exports to the U.S. and Canada, as well as U.S. exports to Japan and Japanese exports to the
U.K. For some countries in the data set, such as Mexico, the data only extends back to 1980. For
brevity, only 4 countries are plotted here, but other the country-pairs exhibit similar growth
patterns over time.

21It should be noted that these need not be concurrent years, but rather the 5 individual
years demonstrating the largest growth across the entire time period.
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Due to the inherent lumpiness and variability in reporting of international

shipments, using single year intervals to measure growth may potentially over-

estimate trade growth in any given year. I therefore repeat the exercise by

using 2-year and 3-year intervals for the length of each period in calculating

trade growth. I find similar results to those using 1-year intervals, with a high

degree of granularity across time periods, with the top 10% of time periods

accounting for 70–75% of total trade growth. This reinforces the finding that

trade growth is not smooth and uniform across time, but highly concentrated

in a small number of episodes of rapid growth.

Granularity across goods

To identify the properties of trade growth, I examine the share of total trade

growth accounted for by each good for each country pair. I arrange goods, in

ascending order, by initial value of exports for each bilateral pair and calcu-

late each good’s corresponding share of the total growth in bilateral trade. For

ease of exposition, I separate goods into 3 groupings — the least-traded goods

(comprising the bottom decile of total initial exports, by 5-digit SITC code); the

mid-traded goods (comprising the second through fifth deciles); and the most-

traded goods (comprising the top 50% of initial exports).. Across the various

bilateral country-pairs, the least-traded goods make up 75–90% of the goods

classifications. Roughly half of these categories are goods with zero reported

trade.22 The set of most-traded goods comprises a small number (5–40 of 1836)

of good classifications. This reflects the “lumpiness” in cross-sectional trade

data — many goods are not-traded or traded in small quantities, while a small

number of highly-traded goods accounts for a large portion of total bilateral
22Due to the fact that most countries exclude very small shipments (i.e. less than $2000)

from customs duties and reports, the term “not-traded” is used in this paper to refer to goods
with no recorded trade value in these customs reports.
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trade in any given period.

Figure 2.1: Growth by Good: 5-digit SITC bilateral trade

(b) NAFTA county-pairs

To decompose trade growth across goods, I plot the trade growth accounted

for by each good as a share of total bilateral trade growth in Figures 2.1–2.2.23

The height of each bar represents that good’s contribution to the total growth

23Formally, the y-axis of Fig. A.2–2.2 is measured, for each good i, as: ∆Exports(i)∑
j ∆Exports(j) .
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Figure 2.2: Growth by Good: 5-digit SITC bilateral trade

(b) Non-NAFTA county-pairs
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in trade for that country-pair.24

Bilateral trade growth is highly granular, with a small number of goods

exhibiting large increases in trade values accounting for the vast majority of

total trade growth. Most of these goods originate from the mid- or most-traded

categories, and almost never from the least-traded category. The remaining

goods (90–95% of all goods classifications) exhibit small (<0.05% of total trade),

zero, or negative growth.

This finding can be summarized as follows: many goods begin and remain

not-traded; some not-traded goods become traded in small amounts, but al-

most never go from zero to large amounts of trade; most traded goods grow

very little; a small number of goods grow from small amounts of trade to large

amounts, or from large amounts to even larger amounts, the two cases that

account for the majority of trade growth between country-pairs.

The goods exhibiting large growth that account for the majority of trade

growth come from varying levels of initial trade across bilateral pairs. That

is, large growth goods (“growers”) do not all begin with similar levels of initial

trade, and goods with similar initial levels of trade do not necessarily grow in

similar proportions.25 Further, goods that begin with zero trade do not typically

become traded in large values, if they become traded at all.

To quantify this relationship, I calculate the share of total bilateral trade

growth accounted for by these high-growth goods. Table 2.4 lists the proportion

of overall trade growth accounted for by the top 1% of large-growth goods, as

24To more clearly illustrate the patterns of trade growth, I also plot groupings of goods indi-
vidually, as seen in Figures A.2–A.4. These figures represent the case for Canadian exports to
Mexico; Figures 2.1–2.2 show similar results for all country-pairs.

25One possible exception to this might be the U.S.-Canada pairing, which seems to exhibit
less concentration of trade growth and smoother growth in trade, according to initial value of
trade by good.
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well as the top 2%, 5% and 10% of goods.26 The mean values, across all country-

pairs, identify the granularity in trade growth, with the top 1% of goods ac-

counting for 62% of total trade growth, while the top 2%, 5% and 10% of goods

accounting for 76%, 93% and 105% of total bilateral trade growth, respectively.

There is variability in the degree of granularity across country-pairs — the top

1% of Canadian exports to the U.S. account for 108% of total growth in trade,

while the top 1% of U.S. exports to Mexico account for only 39% of total trade

growth. However, all country-pairs exhibit granularity of trade growth across

goods, with a disproportionately high concentration of trade growth in a small

number of goods.

Table 2.4: Proportion of total bilateral trade concentrated in top “X ′′% of goods
Proportion of growth from top X% of goods

(5-digit SITC codes)
Country-Pair 1% (18 goods) 2% (36 goods) 5% (91 goods) 10% (183 goods)
Can-Usa 1.081 1.223 1.355 1.410
Can-Mex 0.491 0.606 0.760 0.884
Ger-Usa 0.589 0.692 0.837 0.955
Jpn-Usa 0.722 0.940 1.189 1.313
Mex-Can 0.718 0.818 0.940 1.004
Mex-Usa 0.551 0.681 0.836 0.935
Usa-Can 0.373 0.478 0.665 0.815
Usa-Ger 0.710 0.882 1.062 1.167
Usa-Jpn 0.753 0.928 1.165 1.311
Usa-Mex 0.396 0.518 0.692 0.834
Usa-UK 0.492 0.647 0.841 0.972
UK-Usa 0.516 0.653 0.853 0.974
Mean 0.616 0.756 0.933 1.048

While this pattern of granularity of trade growth is pervasive across all

country-pairs, it is not the same goods categories that account for the major-

ity of trade growth across different country-pairs. Rather, there is significant
26As there are 1836 goods classifications, the top 1% of goods consists of the top 18 goods

classifications, the top 2% consisting of 36 goods, etc.
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Table 2.5: Common large-growth goods across all countries
Number of Goods with X% of Trade Growth

5-digit SITC codes (1836 goods)
Countries >3% >1% >0.5% >0.1%
All 0 1 2 9

Pass. Autos Switches/Fuses Unhardened rubber
Other auto parts Pipe valves

Metal mountings
Peripheral units
TV transmitters
Static converters

Elec. microcircuits
Gas instruments
Polarizing lenses

heterogeneity in which goods account for the majority of trade growth across

country-pairs. Table 2.5 shows that of the 1836 SITC 5-digit classifications,

none account for at least 3% of total trade growth in every country-pairs. Only

one category, passenger automobiles (excluding buses), accounts for at least 1%

of trade growth in every country-pair. Further, only a dozen of the 1836 goods

classifications account for at least 0.1% of total trade growth in every country-

pair. Examining bilateral pairs, of the small number of goods categories ac-

counting for the majority of trade growth, only a small proportion (roughly

5–20%) are common to both countries’ trade growth. Table 2.6 demonstrates

that for each bilateral pair, of the 1–6 goods categories accounting for at least

5% of bilateral trade growth for each country, none or only 1 of them is common

to both countries. Similarly, of the roughly 20–30 goods each accounting for at

least 1% of total bilateral trade growth, only 4–8 of these goods are common to

both countries.
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Table 2.6: Common large-growth goods across country-pairs
Number of Goods with X% of Trade Growth

5-digit SITC codes (1836 goods)
Country >5% >3% >1% >0.5% >0.1%

Same Same Same Same Same
Canada 6 9 21 40 103
Mexico 4 1 17 1 18 4 26 6 107 27
Canada 1 4 14 34 176
USA 1 0 12 1 15 5 32 15 202 108
Mexico 2 6 21 35 138
USA 1 0 16 1 18 8 36 15 190 76
Germany 2 3 12 31 165
USA 4 1 21 1 26 8 44 17 139 72
Japan 3 5 31 57 146
USA 3 1 21 3 25 8 53 19 178 62
UK 3 6 19 47 159
USA 3 0 14 2 22 6 42 18 182 91

2.3.4 Tariff Rates

Trade theory suggests that reductions in import tariffs should lower barriers to

trade and increase trade for those goods. To examine the relationship between

changes in tariff rates and corresponding trade growth across goods, I match

data on U.S. tariff rates to U.S. import data at the 8-digit HTS code level.27 I

calculate the change in the tariff rate for each good as the difference between

the initial and final ad valorem equivalent (AVE) tariff values calculated by

Romalis (2007). For each bilateral U.S. trade partner, I match the AVE tariff

change to the corresponding growth share in U.S. imports for each good. Across

all goods, the tariff changes show a wide range of values, from large increases

27To examine tariff data at the most disaggregated level available, I use 8-digit HTS data,
which has significantly more goods classifications than the 5-digit SITC data (>8000 vs. 1836)
— however, I find the pattern of trade growth granularity, while slightly more pronounced in
the HTS classifications, displays similar patterns of the concentration of trade growth as the
5-digit SITC code data. As in the 5-digit SITC data, trade growth is also slightly more granular
in NAFTA countries (Canada and Mexico) than it is in non-liberalizing countries (U.K.).
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to no change to large decreases. Tariff changes are generally larger and more

negative in the trade liberalizing countries of Canada and Mexico than those

for Most Favored Nation (MFN) status countries like the U.K. However, for

each country-pair, the correlation between import growth and the change in

tariff rates across all goods is not significantly different from zero. Isolating

each set of least-, mid- and most-traded goods, this lack of correlation holds.28

Due to the granularity of trade growth across goods, I isolate the subset of

largest-growth goods contributing the majority of total trade growth and ex-

amine their corresponding tariff changes. Figure 2.3 plots the 100 goods clas-

sifications that contribute the most to import growth (accounting for ≈80% of

total growth). These large-growth goods display a wide range of tariff changes

— depending on the country-pair. Only 10 to 30 of these 100 largest “growers”

exhibit notable decreases in the AVE tariff rate. The remaining goods reflect no

change or an increase in the AVE rate, suggesting that tariff decreases alone

cannot account for the granularity in trade growth across goods.

Alternatively, in Figure 2.4, I isolate the subset of goods that exhibit the

largest decreases in tariff rates to examine their corresponding share of trade

growth. Roughly one-third of the goods experiencing the largest tariff reduc-

tions exhibit positive growth in trade. However, few of these goods (<10–15%)

contribute significant shares to the overall increase in imports. The majority of

goods with the largest tariff reductions exhibit no growth or slight decreases in

imports from initial to final trade levels, coinciding with the lack of statistically

significant correlation between tariff changes and import growth.

28Refer to Figures A.5–A.7.
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Figure 2.3: Large-growth goods: Imports vs. Tariff changes
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Figure 2.4: Large tariff decrease goods: Imports vs. Tariff changes
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2.3.5 Production Growth and Trade Intensity

Trade theory predicts that increases in trade across goods may be related to

increases in overall domestic production, with the share of domestic production

being exported staying constant. Alternatively, increases in exports may be

driven by an increase in trade intensity — exporting a proportionally larger

share of domestic production, independent of the level of domestic production.

To examine the relationship between bilateral trade growth and domestic

production, I focus on U.S. data, due to the availability of U.S. production data

from the NBER manufacturing database at the 6-digit NAICS code level. The

trade data is therefore confined to U.S. exports to Canada, Germany, Japan,

Mexico, and U.K. I concord the U.S. export data from the 5-digit SITC codes to

the 6-digit NAICS classifications and match it to the corresponding production

data. This less disaggregated 6-digit NAICS code level results in less classifi-

cations (473 goods) than the 5-digit SITC level (1836 goods).29

One possibility is that these large-growth goods that account for the major-

ity of trade are simply due to large increases in domestic production, with a

constant share of domestic production being exported. To determine whether

these goods exhibit similar granularity in their domestic production, I calcu-

late the share of domestic production growth accounted for by each good. To be

consistent, I group the production data into the same categories of least-, mid-

and most-traded goods, that are arranged in the same fashion as the export

data. Specifically, the goods are grouped according to their initial trade levels,

and then analyzed for their growth in production. Thus, the “bottom decile”

29As seen in Figures A.9(a)–2.2 and 2.5. U.S. export data exhibits similar granularity at
the less disaggregated 6-digit NAICS code level as at the 5-digit SITC code level. Extensive
margin growth, represented by the set of least-traded goods, is still significant; however, due
to the less disaggregated data, the extensive margin accounts for a smaller fraction of final
bilateral trade (≈ 14%) than it does in the SITC data.
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of production goods account for the bottom 10% of initial trade, and may not

account for the bottom 10% of initial domestic production.

Production growth is concentrated in a small number of goods for each

country-pair, but is less granular in the production data than in the export

data, particularly among the mid- and most-traded goods sets.30 Examining

the deciles of U.S. production, each decile primarily remains at its initial levels

in the final production data. In Figure 2.5, the value of final production appears

as the height of each bar, with the initial value plotted as the “+” in each decile.

Most deciles, across all country-pairs, demonstrate small to no change in their

fraction of total production from initial to final levels. Also, the bottom decile in

each country-pair accounts for a large share of overall production, both in ini-

tial and final levels, reflecting the fact that many domestically-produced goods

are not traded between each country-pair.

The production data suggests that the granularity in trade growth is not

merely a function of domestic production. To examine the effect of changes in

total production and changes in trade intensity in accounting for bilateral trade

growth, I construct the exports-to-production ratio for each good, for both ini-

tial and final levels of trade. I then create two separate measures to decompose

the effects of changes in trade intensity and production growth in contributing

to trade growth:

1. Holding production constant at initial levels, and multiplying by the final

level of trade intensity, I calculate the share of trade growth that can be

attributed to growth in trade intensity

2. Holding the trade intensity fixed at the initial level, and multiplying by

the final level of production, I calculate the share of trade growth that can
30See Figures A.9(a)–A.9(b).
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Figure 2.5: Decile Growth (6-digit NAICS) bilateral trade

(a) NAFTA country-pairs

(b) Non-NAFTA country-pairs
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be attributed to production growth

To illustrate this decomposition, Figure 2.6 plots the share of total trade growth

(in the top row of each figure) along with the corresponding trade intensity

share for each of the 473 6-digit NAICS goods classifications. Across all goods,

increases in trade intensity account for, on average, 30% to 72% of the observed

trade growth across country-pairs. However, there is little correlation between

the share of trade growth accounted for by each good and the corresponding

trade intensity share, as reported in Table 2.7. There is similarly no signifi-

cant correlations between initial trade values and the resultant trade intensity

share across goods.

Similarly, increases in production account for, on average, -5% to 33% of the

observed trade growth across country-pairs. For some destination countries

(Canada and Japan), production growth accounts for large portions of total

trade growth (30–40%), while for others (Germany, Mexico, U.K.) production

growth accounts for virtually none of the overall growth in trade, on average,

as seen in Figure 2.7. Across goods there is little correlation between the share

of trade growth and the corresponding production growth share for each good,

as reported in Table 2.7. However, unlike the trade intensity shares, goods with

higher initial trade values generally have higher production growth shares.

On average, increases in trade intensity are significant factors in account-

ing for episodes of large growth in bilateral trade across all country-pairs. Pro-

duction growth shares vary more widely across destination countries in their

significance in accounting for trade growth. There is no discernible difference

between trade-liberalizing destination countries and non-liberalizing destina-

tion countries for both the mean trade intensity and production growth shares.
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Figure 2.6: Trade Intensity Share vs. Share of Trade Growth

(a) U.S.-Canada

(b) U.S.-U.K.
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Figure 2.7: Production Growth Share vs. Share of Trade Growth

(a) U.S.-Canada

(b) U.S.-U.K.
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Table 2.7: Correlations: Trade Intensity & Production Growth Shares vs.
Share of Trade Growth

Correlation US-Can US-Ger US-Jpn US-Mex US-UK
Trade Intensity Share vs
Share of Trade Growth -0.007 -0.052 -0.010 -0.015 -0.006
Production Growth Share vs
Share of Trade Growth 0.023 0.053 0.015 0.032 0.023

2.3.6 Extensive Margin Growth

Kehoe and Ruhl (2013) find that the extensive margin is significant in account-

ing for overall bilateral trade growth. Due to inconsistencies in the reporting

of small shipment values in international trade data, Kehoe and Ruhl examine

the set of least-traded goods in each bilateral country pair, represented by the

subset of goods accounting for the bottom decile of initial trade. Examining the

growth in the share of final trade accounted for by this set of least-traded goods

then gives a proxy for extensive margin growth in bilateral trade data.

To quantify the contribution of new or previously not-traded goods to over-

all trade growth, I calculate extensive margin growth in bilateral trade data

following the methodology of Kehoe and Ruhl (2013). Due to the large number

of goods that are not traded (30–50% of the 1836 classifications for most coun-

tries) between any given country-pair, it takes 75–90% of all goods classifica-

tions to account for 10% of initial trade. Mirroring Kehoe and Ruhl’s findings, I

find the extensive margin is significant in accounting for bilateral trade growth

across country-pairs in the 5-digit SITC trade data. Across all country-pairs,

the set of least-traded goods accounts for an average of approximately 16% of
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final trade. A 10% growth in total trade between country-pairs is accompa-

nied by a 24% increase in the share of final trade accounted for by these goods.

However, there is also significant growth in other deciles by country-pair. For

example, the 6th decile of Canadian exports to Mexico grows to account for

over 20% of final trade, and the 5th decile of U.S. exports to Germany grows to

account for 18% of final trade, as seen in Figure 2.8.

Kehoe and Ruhl (2013) examine the overall role of the extensive margin in

contributing to total bilateral trade growth. I extend their findings by identi-

fying that within the set of least-traded goods, the majority of extensive mar-

gin growth comes from a small number of goods growing from small values to

slightly larger values of trade, not from not-traded goods becoming traded in

large amounts. Nearly half of the goods classifications contained within this

set of least-traded goods begin as not-traded.31 The majority of these remain

not-traded, while those that become traded only do so in small amounts. A

small number of goods (<10% of all extensive margin goods classifications) in

each bilateral pair exhibit relatively large growth, from a small value of initial

trade to large values of final trade. This result shows the granularity of trade

growth within the extensive margin that mirrors that in the intensive margin.

However, due to the exceedingly large number of goods classifications exhibit-

ing small growth, these large-growth extensive margin goods only contribute

5–25% of total extensive margin growth.

2.4 Model

I now ask whether the predictions of standard Melitz-style trade models are

consistent with the empirical findings in the data. The term “standard” here

31Refer to Figure A.2.
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Figure 2.8: Decile Growth: 5-digit SITC bilateral trade

(a) NAFTA country-pairs

(b) Non-NAFTA country-pairs
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refers to recently used models where firms differ in productivity, face fixed

and variable costs of exporting (as in Melitz (2003), Chaney (2008), etc.) and

CES demand under monopolistic competition. Specifically, I ask whether these

models, for reasonable parameter values, generate the high level of granularity

of trade growth across goods classifications observed in the data, in response

to both uniform and heterogeneous tariff reductions, and when incorporating

heterogeneous productivity changes imputed from the data.

I analyze a two-country model with firms indexed by heterogeneous produc-

tivities, facing CES demand under monopolistic competition, with fixed and

variable costs of exporting. I characterize the equilibrium objects for profit-

maximizing firms in their export decisions, and identify the stratification of

goods as exported or not-traded. I then introduce trade liberalization, repre-

sented as a reduction in the variable costs of exporting, for two main cases,

in order to determine the implications for bilateral trade growth across goods

classifications, to compare to the empirical findings. First, I follow an approach

common to many trade models, with firms exhibiting heterogeneous productiv-

ities that are fixed across periods, where trade growth is generated by trade

liberalization that takes the form of a uniform proportional reduction in tariff

rates across goods. Second, I augment this standard approach by incorporat-

ing heterogeneous tariff reductions, matched from global tariff data, as well as

heterogeneous productivity changes, imputed from U.S. production data, across

goods.

I find that the standard model with uniform tariff reductions does not cap-

ture the granularity of trade growth — the model predicts trade growth is

widely dispersed across a large number of goods classifications. Additionally,

growth in the extensive margin, as represented by the set of least-traded goods,
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does not match the pattern of growth in previously not-traded goods or the

small subset of goods growing from small values of trade to much larger val-

ues. Adding heterogeneous productivity changes and tariff reductions allows

the model to to better match the lumpiness of initial trade values across goods

seen in the trade data, as well as predicting significantly more granularity in

trade growth across goods. This version of the model also better captures the

granularity of growth within the extensive margin, as well as better capturing

the contribution of the extensive margin to overall trade growth.

2.4.1 Model Set-up

The model builds on the standard trade model framework, with 2 symmetric

countries, Home(H) and Foreign(F).32 Firms are heterogeneous in their labor

productivity, with each firm producing a differentiated good using only labor as

an input. Firms are indexed by their productivity, 1
a
, where a is the amount of

labor required to produce one unit of output. Pricing follows the Dixon-Stiglitz

(1977) model of monopolistic pricing with firms facing CES demand in both a

home and foreign country. Firms may sell in the domestic market only, or may

choose to also export to the foreign market via a common distribution technol-

ogy that requires a fixed cost of exporting, and an iceberg variable cost per unit

shipped to the destination market. Following the literature, episodes of trade

liberalizations can be represented by a uniform reduction in the variable cost

of exporting in the second period.

32For brevity, I will consider the problem of Home’s exports to Foreign — by symmetry, the
Foreign country faces the same problem as the Home country in its exporting decisions.
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Consumers

Preferences of consumers in country i ∈ {H,F} can be represented by the CES

utility function

U i =

(∫
a∈A

c(a)
ε−1
ε da

) ε
ε−1

(2.1)

where c(a) is consumption of good variety a, ε is the elasticity of substitution

across goods (ε > 1) and A is the set of available goods.

Firms

I assume firms maximize profits under monopolistic competition pricing, as

in Dixon-Stiglitz (1977) while facing this CES demand. Firms first draw their

labor requirement from a Pareto distribution, G(a), which they hire at domestic

wage rate, ωi in country i. Firms then choose whether or not to service the

foreign market by paying a fixed cost of exporting, f , and a variable cost of

exporting, τ in the form of an iceberg transportation cost.

2.4.2 Characterizing Equilibrium

Demand

Due to the symmetry of the two-country model, I consider only the demand

from Foreign for product varieties produced in Home, and set aside the de-

mand from the domestic market. For utility-maximizing consumers with this

common CES utility specification, the demand in Foreign for Home variety a

is:

cF (a) = EF p(a)−ε

PF
1−ε (2.2)

where EF is national income in Foreign and PF is the Foreign aggregate price

level.
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Firm’s Decision

Under monoplistic competition, firms price at a constant mark-up over marginal

cost. In the Home market, the marginal cost of production is ωHa, while the

marginal cost for firm a to service the foreign market is ωHτa, as each exporting

firm must pay the additional variable export cost τ per unit. This results in a

price in Foreign for variety a produced in Home of

pF (a) =

(
ε

ε− 1

)
ωHτa (2.3)

For a firm with labour requirement a, domestic profits for profit maximizing

firms are:33

πD(a) = (ωHa)1−εDH (2.4)

Under CES demand and monopolistic competition pricing, these profits are

proportional to the firm’s productivity.

For a firm with labour requirement a, the additional profits from exporting

are:

πX(a) = (ωHτa)1−εDF − ωHf (2.5)

That is, firms generate sales that are proportional to their productivity and

the variable transportation costs τ , but must pay the fixed cost, f , in order to

access the foreign market. 34

Productivity thresholds

These profit functions result in productivity thresholds dictating which firms

will choose to export and which will only be produced domestically. With no

33DH = EHε−ε

[PH(ε−1)]1−ε
and is a constant w.r.t. a.

34DF = EF ε−ε

[PF (ε−1)]1−ε
.
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fixed cost of entry, domestic profits are always non-negative, so all firms choose

to produce domestically.35 To export, additional profits must be non-negative:

πX(a) ≥ 0. This leads to productivity cut-off, 1
ā
, that satisfies:

1

ā
=

[
ωH

ε
fτ ε−1

DF

] 1
ε−1

(2.6)

The productivity cut-off for exporting is increasing in both f and τ .

The top panel of Figure 2.9 shows the stratification of goods according to

the exporting choice. Arranging goods by increasing productivity 1
a
, the least

productive goods will only be produced for domestic consumption. Firms pro-

ducing good a with productivity higher than 1
ā

will choose to export.

2.4.3 Trade Liberalization

In order to examine whether the standard model can match observed patterns

of trade growth in the data, I characterize equilibrium in the static standard

model in two cases: an “initial” period and a “final” period. I categorize the

difference in the equilibrium trade values for each good across periods as the

corresponding growth in trade for each good. Following the trade growth lit-

erature, I consider the counter-factual of an episode of trade liberalization be-

tween periods, represented as a reduction in the variable cost of exporting, to

determine the patterns of trade growth across goods.36

A fall in iceberg transportation costs lower the marginal cost of servicing

the foreign market. This results in a lower price offered to the foreign market.
35πD(a) = (ωHa)1−εDH ≥ 0 implies productivity cut-off

(
1
a

)
= 0.

36The work here addresses a period of trade liberalization in the standard context of reducing
τ . However, it is noted that τ , the variable cost of exporting, can be decomposed into τ = MC+
tar, where MC represents the distribution costs of production and transportation to reach the
foreign market, and tar is the tariff rate. Thus examining a decrease in τ provides insight
into cases of pure trade liberalization, captured by a decrease in tar or cases like technological
improvements in the distribution network, MC.
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Figure 2.9: Standard model with uniform tariff reductions

(a) Initial export sales

(b) Final export sales
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With an elasticity of substitution greater than 1, this generates an increase

in export sales for all exported goods that is proportional to the fall in tariffs

and the firm’s productivity — this is growth in the intensive margin. Addition-

ally, the decrease in variable costs lowers the productivity threshold, as the

increase in variable profits resulting from the lower marginal costs of reaching

the foreign market allow a subset of goods that were previously not-traded to

overcome the fixed cost of exporting and enter the foreign market — this is

growth in the extensive margin.

The bottom panel of Figure 2.9 demonstrates the change in export sales re-

sulting from a decrease in trade costs for the standard model with uniform tar-

iff reductions. First, all previously exported goods increase their export sales

due to the direct decrease in variable costs, proportional to their productivity.

The model predicts that the largest intensive margin growth will occur among

goods with the largest initial level of trade, with goods traded at lower lev-

els exhibiting smaller growth in trade. Second, as the productivity threshold

shifts to the left, lower productivity firms enter the export market, represent-

ing the extensive margin. As these were the marginally excluded firms before

the trade liberalization, the model predicts the final level of trade for these

goods to be similar to that of the goods previously least-traded. As these goods

all previously accounted for zero export sales, the model predicts the growth in

trade for the extensive margin goods to be relatively larger than that of other

previously traded goods with similar productivities, i.e. those previously just

above the cut-off.
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Implications for trade growth

The standard model predictions for growth in bilateral trade are inconsistent

with the empirical findings. Growth is smooth across all previously traded

goods, and neither the intensive nor extensive margins display the high level

of granularity of a small number of goods accounting for the majority of trade

observed in the data.

First, the standard model delivers much less granularity of trade growth

than observed in the data. The model predicts that trade growth for previously

traded goods will be much less concentrated, as the growth in trade is pro-

portional to the initial level of trade, reflecting each good’s productivity. With

a common fixed and variable cost of exporting, goods with similar productiv-

ities, and thus similar initial levels of trade, will have similar levels of trade

following homogeneous reductions in trade costs, and thus contribute similar

shares of total trade growth. Additionally, no goods with low levels of initial

trade exhibit disproportionately large growth, as seen in the data. Further, all

goods with high initial levels of trade grow similarly, with none of these goods

exhibiting zero or negligible trade growth as seen in the data.

Second, growth in the extensive margin does not match the stylized facts

from the data. The model predicts that most extensive margin growth, in terms

of the Kehoe-Ruhl representation of the set of least-traded goods, comes from

large increases in previously not-traded goods becoming traded in relatively

high values. All previously-traded goods within the extensive margin grow

proportionally to their productivity and the reduction in tariffs, similar to in-

tensive margin goods. The standard model predicts that due to the relatively

large growth in the intensive margin, the extensive margin accounts for a small

portion of overall total trade growth.



51

Finally, standard models often use the simplifying assumption that trade

liberalization takes the form of a decrease in the marginal cost of exporting

that is constant and proportional across all goods. The tariff data shows that

periods of trade liberalization tend to exhibit high levels of heterogeneity in the

magnitude of AVE tariff reductions across goods, which will not be captured by

a homogeneous reduction of the marginal costs of exporting across all goods in

the model.

2.5 Numerical Exercises: Trade Growth

Characterizing equilibrium in the standard model generates smooth growth

across goods, which is proportional to each firm’s productivity and the reduc-

tion in variable costs from trade liberalization. The standard model does not

generate the granularity of trade growth observed in the data. To quantify the

level of granularity generated by the standard model, I use reasonable param-

eters from trade literature to calibrate the standard model. I compare both the

level of granularity in trade growth and the correlations of trade growth with

production growth and trade intensity predicted in the model against those

observed in the data.

I simulate the model for two main cases:

1. The standard model with uniform tariff reductions.

Firms in the model exhibit productivities drawn from a Pareto distribu-

tion, which are fixed for each good category across the initial and final

periods. As is common in may standard trade models, trade growth is

driven by trade liberalization between the initial and final periods that

takes the form of a uniform proportional reduction in tariffs across all
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goods.

2. The standard model with heterogeneous productivity changes and

tariff reductions.

Firms again take Pareto productivities in the initial period. However, fi-

nal period productivities are calculated by incorporating heterogeneous

productivity changes to the Pareto distribution as calculated by the im-

puted changes in productivity backed out from the U.S. production data.

This simulation also introduces trade liberalization between periods by

incorporating heterogeneous tariff reductions across goods, imputed from

tariff data.

2.5.1 Parameterization and Calibration

The numerical strategy is to select reasonable parameter values for the elas-

ticity of substitution across goods classifications, productivity parameters, and

fixed and variable costs of exporting, within the estimated ranges of the leading

trade literature.

The model predictions are compared to those of the 5-digit SITC bilateral

trade data with 1836 goods classifications, as well as the 6-digit NAICS data,

with 473 classifications, in order to match production data. To represent these

goods in the model, I draw each firm’s productivity from a Pareto distribution,

and map each firm to the production of one good.37 I arrange firms according

37The Pareto distribution is commonly used in a vast literature on international, (i.e. Melitz
(2003), Chaney(2008), Gabaix (2008), Helpman, Melitz and Rubenstein (2008), among many
others), both for its computational expediency and its ability to match certain stylized facts,
such as the upper-right tail of the firm distribution, which motivates the choice of a Pareto
distribution employed here. However, although not employed in this chapter, recent work has
begun to explore alternate distributions, such as log-normal (Eeckhout (2004), Fernandes et
al(2014), etc) or a mixed distribution of the two (Nigai (2017) that match other salient proper-
ties of firm-level productivity distributions.
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to their heterogeneous productivity levels, in ascending order.38 The iceberg

cost, representing the variable cost of exporting, is set at 2.0. The elasticity of

substitution across goods in the CES demand function is set toward the high

end of estimated values in the literature, at 6.0, in order to give the model a

better chance to match the granularity of growth across traded goods observed

in the data.39

The fixed cost in the model determines the productivity threshold beyond

which firms will enter into the exporting market. As such, the fixed cost is

calibrated to match the number of non-exported goods classifications in each

bilateral trade pair. Finally, DF , the constant which contains foreign income

and price levels as well as other constants in the model set-up, is calibrated to

match the total level of initial bilateral trade for each country-pair.

For the standard model with uniform tariff reductions, I calibrate the pro-

portional reduction in tariffs (as represented by a reduction in the variable

costs of exporting) necessary to match the total growth in exports for each coun-

try.40

For the standard model with heterogeneous productivity and tariff changes,

I first determine the distribution of productivity changes across goods classifi-

cations imputed from U.S. production data. I use the 6-digit NAICS data to
38Thus “good 1” will be least productive firm, “good 2” will be the next least-productive firm,

etc.
39See, for example, Imbs and Mejean(2010), who estimate elasticities for more than 30 coun-

tires between 1 and 7.5, and supported by McDaniel and Balistreri (2003) who summarize
the literature’s findings that estimated elasticities are higher with more highly disaggregated
data.

40Specifically, I take the observed change in AVE tariff rates from the data, and scale them
by the factor necessary to match the observed change in exports for each bilateral country
pair. This method implicitly assumes that DF is constant across periods, thus all growth is
generated via the uniform tariff reduction. However, since I am concerned with the share of
trade growth accounted for by each good category, this method is computationally equivalent
to choosing a set reduction in tariffs (i.e. 10%) and calibrating DF to match the overall level of
trade growth.
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back out the implied productivities for each good in the U.S. production data,

in both the initial and final periods. I then calculate the growth in productivity,

and apply the imputed productivity change onto the initial Pareto distribution

of firms in the model, in order to calculate the new productivities for the final

period. I then determine the distribution of tariff changes across goods im-

puted from tariff data from U.S. export destinations (e.g. Canada, Germany,

Mexico, Japan and the U.K.). I normalize this distribution of tariff changes

and calibrate it to match the overall level of bilateral trade growth for each

country-pair, as in the case of the uniform tariff distribution, given the produc-

tivity changes already imposed.41

2.5.2 Standard Model with Uniform Tariff Reductions

Figure 2.10 presents the results of the model simulation for Canadian exports

to Mexico using the 5-digit SITC data.42 In the bottom row of each column, the

standard model specification is unable to match the patterns of trade observed

in the actual bilateral trade data presented in the top row. The overall gran-

ularity of trade growth, with the majority of growth concentrated in a small

number of goods is not produced in the standard model with uniform tariff re-

ductions. The model delivers smooth growth across goods, with each previously

traded goods experiencing trade growth proportional to its initial level of trade,

reflective of its productivity. Further, growth in the extensive margin, repre-

sented by the bottom decile of initial trade, occurs solely in previously traded

goods (represented in blue), with virtually none of the overall trade growth

41Similar to the case of uniform tariff reductions, for the sake of calculating the share of trade
growth across goods, this method is computationally equivalent to calibrating DF to match the
overall level of trade growth, or scaling the productivity changes proportionally to match the
observed trade growth.

42All other country-pairs present similar results, and are omitted here for brevity.
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attributable to previously not-traded goods becoming traded.

Figure 2.10: Standard Model with uniform tariff reductions (Can-Mex)

To quantify the degree of granularity of trade growth, Table 2.8 reports

the proportion of overall trade growth accounted for by various quantiles of

goods classifications. On average, across country-pairs, the top 1% of goods

classifications accounts for 32% of overall trade growth in the data, but only 3%

of overall trade growth in this model simulation.43 The standard model with

uniform tariff reductions delivers only roughly 10% of the granularity observed

in the data, as measured by the fraction of overall trade growth accounted for

by the various quantiles of largest-growth goods.

This lack of granularity is not surprising — by construction, with all firms

exhibiting fixed productivities and a uniform reduction in tariffs across goods,

the majority of trade growth is evenly dispersed across previously traded goods.
43It should be noted that this level of concentration is less than the 65% of trade growth

accounted for by the top 1% of goods in the 5-digit SITC data. This is mainly due to the
necessity of switching to the less disaggregated NAICS data (with only 473 goods) in order to
impute productivities from U.S. production data, where 1% of goods is only 5 goods, as opposed
to 18 goods in the SITC classification data.
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Table 2.8: Standard Model with Uniform Tariff Reductions
Proportion of growth from top X% of goods

(6-digit NAICS codes)
Model 1% (5 goods) 2% (10 goods) 5% (24 goods) 10% (47 goods) 20% (94 goods)
Data 0.318 0.473 0.696 0.852 0.988
Standard 0.032 0.062 0.143 0.259 0.4490

The only disproportionate growth comes from the extensive margin — firms

which cross the productivity threshold switch from not-traded to trade, but

become traded only in relatively small volumes. Trade growth from these ex-

tensive margin goods is outweighed in the share of total trade growth by the

increases in goods at the upper ends of the productivity distribution. In all

cases, growth is smooth and proportional to productivity, and fails to produce

the granularity of trade growth observed in the data.

2.5.3 Standard Model with Heterogeneous Productivity
Changes and Tariff Reductions

The standard model with uniform tariff reductions fails to generate the granu-

larity in trade growth found in the trade data due to the smoothness in the pro-

ductivity distribution, and the uniformity of tariff reductions with are common

across all goods. A possible solution is adding heterogeneity in the productivity

distribution and in the reductions in tariff rates across goods. If some goods

categories experience large increases in productivity, it may lead to dispropor-

tionately larger growth in production and trade for those goods. Similarly, large

decreases in tariff rates for some goods may lead to disproportionately larger

growth in those categories. Combining these effects may be able to generate

the level of granularity observed in the data, due to the large growth in a small

subset of goods experiencing the complementarity of these effects. I re-simulate
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the standard model incorporating heterogeneous productivity changes and tar-

iff reductions imputed from U.S. production and export data, to determine if

this augmented standard model can produce the documented patterns of trade

growth.

Figure 2.11 demonstrates the distribution of productivity changes imputed

from U.S. production data. There is a great deal of heterogeneity across the

final distribution (in blue), once applied to the initial Pareto distribution (in

red). This suggests there may be some ability for the model to capture a higher

degree of granularity of trade growth as in the data, due to the relatively small

number of goods exhibiting disproportionately large productivity shocks, aris-

ing from varying levels of initial trade.

Figure 2.11: Productivity Distributions: Productivity Shocks

Once applied to the standard model, the heterogeneous productivity changes

and tariff reductions generate a larger degree of granularity in trade growth,

similar to that in the data. As can be seen in the bottom row of Figures

2.12(a)–2.12(b), the standard model with productivity shocks generates much
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more heterogeneity across goods in the level of trade growth than the standard

model, due primarily to the large degree of heterogeneity in the productivity

shocks. Contrasting with the observed patterns of trade growth in the bilat-

eral trade data in the top row, there are typically a larger number of large

growth goods in the most-traded goods, and fewer large spikes among the mid-

traded goods in the model than what is observed in the data. This model sim-

ulation does appear to generate similar patterns of trade growth among the

least-traded goods, although there is a larger role of the traditional extensive

margin goods — those switching from not-traded to traded — in the model

than is observed in the data. Overall, there appear to be a larger number of

goods exhibiting relatively large growth in the model, such that the degree of

concentration of a large proportion of overall trade growth in a small number

of goods is slightly less than in the data, and thus the magnitude of growth

concentrated in each large-growth good is less in this model simulation.

Table 2.9 quantifies the degree of granularity generated in this model sim-

ulation. Across various country-pairs, including heterogeneous productivity

changes and tariff reductions greatly improves the standard model’s ability to

generate the granularity observed in the data. Analyzing the share of trade

growth accounted for by various quantiles of large-growth goods, the model

now generates roughly 70% as much granularity as in the data, a marked im-

provement from the 10% generated in the standard model with uniform tariff

reductions. In many cases, this improves to 80–90% of the granularity ob-

served in the data as more goods are included (i.e. the top 10% or 20% of

largest-growth goods).
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Figure 2.12: Standard Model with Heterogeneous Productivity Changes and
Tariff Reduction

(a) U.S.-Canada

(b) U.S.-Japan
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Table 2.9: Heterogeneous Productivity Changes and Tariff Reductions
Share of growth from top X% of goods

(6-digit NAICS codes)
US Exports to Mexico

Model 1% 2% 5% 10% 20%
Data 25% 36% 57% 74% 89%
Productivity &
Tariff Changes 18% 26% 39% 53% 71%

US Exports to Canada
Model 1% 2% 5% 10% 20%
Data 26% 38% 56% 71% 86%
Productivity &
Tariff Changes 14% 22% 39% 58% 80%

US Exports to Japan
Model 1% 2% 5% 10% 20%
Data 37% 56% 86% 101% 114%
Productivity &
Tariff Changes 25% 37% 60% 82% 105%

2.5.4 Quantitative Analysis

To further illustrate the granularity generated by the standard model, I plot

the histograms of the share of total trade growth accounted for by each good, for

each of the various iterations of the model, in Figure 2.13. For all country-pairs,

the high level of granularity in the trade data results in a bimodal distribution,

with large spikes at small positive values, and at the top end of the distribution.

This reflects the empirical findings that most goods grow very little, and the

majority of trade growth is concentrated in a small subset of goods exhibiting

large growth.

The standard model with uniform tariff reductions produces a flatter, smoother

distribution of trade growth shares, reflecting much less granular growth across
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Figure 2.13: Histograms of Trade Growth by Goods

goods, and much less growth at the top end of the distribution. The stan-

dard model with heterogeneous productivity changes and tariff reductions pro-

duces comparable growth at the top end of the distribution, reflecting the large

growth among the small subset of goods accounting for the majority of trade

growth. However, the remainder of the distribution is less granular than in

the data, with growth more evenly dispersed across the remaining goods.

To quantify this dispersion of growth across goods, Table 2.10 provides sum-

mary statistics of trade growth across goods classifications for the various it-

erations of the model. The standard deviation gives an idea of the dispersion

across goods in the share of trade growth accounted for by each good, while the

kurtosis provides insight into the steepness of the distribution, both of which

reflect the granularity of trade growth. Notably, the variation across goods in

their share of total trade growth is higher in the data than in any of the model

iterations, and the kurtosis is significantly higher. The standard model with

heterogeneous productivity changes and tariff reductions performs best, with

a standard deviation 65% as large and a kurtosis 45% of that of the data. The
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Table 2.10: Summary Statistics: Growth by Goods — Data vs. Models

Standard Deviation and Kurtosis
Model US/Can US/Ger US/Jpn US/Mex US/UK
Data Std 0.0072 0.0094 0.0107 0.0065 0.0092

Kurt 142.2410 34.0410 89.1526 62.6012 127.3663
Standard Std 0.0016 0.0015 0.0015 0.0017 0.0016

Kur 3.0950 3.0340 3.0825 3.0545 3.1281
Prod. shock Std 0.0043 0.0077 0.0072 0.0037 0.0052

Kur 39.9845 42.2558 42.2955 37.3227 41.5337

standard model with uniform tariff reductions generates standard deviations

and kurtosis that are much lower than those observed in the data.

Table 2.11 reports correlation coefficients between the initial level of trade

for each good and the resultant share of total trade growth accounted for by

each good. In the data, this correlation is statistically insignificant, ranging

from -0.02 to 0.05 across country-pairs, signifying that the high degree of con-

centration of growth in a small subset of goods is independent of those goods’

initial trade values. In the standard model with uniform tariff reductions, in

which goods have fixed productivities, this correlation is very high, greater

than 0.85 for all country-pairs. This characterizes the “smooth” productivity

distribution in the model, which results in all goods growing proportionally to

the tariff decrease and their initial productivity. The model with heterogeneous

productivity changes perform better, though the correlation coefficients are still

statistically non-zero, and in some countries much higher than observed in the

data. Again, the inherent smoothness in the initial productivity distribution

passes through in at least some degree to the levels of initial and final trade,

even when including heterogeneous productivity changes, generating stronger

correlation between initial trade levels and trade growth across goods.
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Table 2.11: Correlations: Initial Trade vs Share of Total Trade Growth

Model US/Can US/Ger US/Jpn US/Mex US/UK
Data -0.0113 -0.0063 -0.0193 0.0453 -0.0155
Standard 0.9795 0.9114 0.9255 0.9869 0.9674
Prod. shock 0.3620 0.1715 0.1886 0.4405 0.2903

2.6 Conclusions

This chapter identifies key facts of trade growth during episodes of large growth

in bilateral trade. Bilateral trade growth is granular across goods classifica-

tions, with less than 5% of goods categories accounting for over 65% of total

trade growth during these periods. Tariff changes do not account for the large

growth in this subset of large growth goods, and many goods experiencing large

drops in their AVE tariff rates exhibit little to no growth. For all U.S. exporting

partners, increases in trade intensity, on average, account for a large share of

total trade growth, while production growth, on average, accounts for signifi-

cant portions of trade growth for some country-pairs, but virtually none of the

overall trade growth for others.

Characterizing the predictions of the a Melitz-style model with uniform tar-

iff reductions shows that it does not generate the granularity observed in the

data. Trade growth is much less granular in this model, generating only 10%

as much granularity as in the data, as measured by the share of total trade

growth accounted for by various quantiles of goods classifications. Adding het-

erogeneous productivity changes and tariff reductions to the model generates

a higher degree of granularity in trade growth in the model, capturing approx-

imately 70% of the granularity observed in the data.

Further research is needed to match the model to the level of granularity
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generated by the data. More detailed data on tariff and production levels, for

a larger collection of countries, at this level of disaggregation across goods may

improve the model’s ability to match the observed level of granularity. Simi-

larly, examining non-tariff trade barriers may help to account for the remaining

25–30% of trade growth concentrated in a small subset of large-growth goods.

Finally, examining variation in the methods of transportation and distribution

of exported goods may help account for the granularity of trade growth, as

goods exported via different distribution methods may respond differently to

trade liberalization, leading to a larger degree of granularity generated when

these factors are considered in a Melitz-style model environment.

2.7 References

ABEL-KOCH, J. (2013) “Who Uses Intermediaries in International Trade? Ev-
idence from Firm-level Survey Data,” The World Economy. 36(8),1041–1064.

AHN, J., A. KHANDELWAL, AND S. WEI (2011). “The Role of Intermediaries in
Facilitating Trade,” Journal of International Economics, 84(1), 73–85.

ALESSANDRIA, G., J. KABOSKI AND V. MIDRIGAN (2010). “Inventories, Lumpy
Trade, and Large Devaluations”. American Economic Review, 58(Dec), 2304–39.

ANDERSON, J.E. AND E. VAN WINCOOP (2003). “Gravity with Gravitas: A
Solution to the Border Puzzle”. American Economic Review. 93(1). 170–192

ARKOLAKIS, C. (2010). “Market Penetration Costs and the New Consumers
Margin in International Trade”. Journal of Political Economy, 118(Dec), 1151–99.

ARMENTER, R., AND M. KOREN (2010). “A Balls-and-Bins Model of Trade”.
American Economics Review (forthcoming).

BERGOEING, R., AND T. KEHOE (2001). “Trade Theory and Trade Facts”. Fed-
eral Reserve Bank of Minneapolis, Research Department.

CALIENDO, L. AND F. PARRA (2014). “Estimates of the Trade and Welfare
Effects of NAFTA”. The Review of Economics Studies. rdu035.

CHANEY, T. (2008). “Distorted Gravity: The Intensive and Extensive Margins
of International Trade”. American Economic Review, 98:4, 1707–1721.



65

DORNBUSCH, R., S. FISCHER, AND P. SAMUELSON (1977). “Comparative
Advantage, Trade, and Payments in a Ricardian Model with a Continuum of
Goods”. American Economic Review, 67(5)823–39.

FEENSTRA, R., J. ROMALIS, AND P. SCHOTT “U.S. Imports, Exports and Tariff
Data, 1989–2001”, NBER Working Paper 9387.

FERNANDES, A.M., P. KLENOW, S. MELESHCHUK, M.D. PIEROLA, AND A.
RODRGUEZ-CLARE (2015) “The Intensive Margin in Trade: Moving Beyond
Pareto”, Working Paper.

GABAIX, X. (2011) “The Granular Origins of Aggregate fluctuations.” Econo-
metrica 79(3): 733–772.

GOULD, D.M. (1998). “Has NAFTA Changed North American Trade?” Eco-
nomic Review- Federal Reserve Bank of Dallas 12–23.

HELPMAN, E., M.J. MELITZ, AND Y. RUBINSTEIN (2008). “Estimating Trade
Flows: Trading Partners and Trading Volumes.” The Quarterly Journal of Eco-
nomics 123(2): 441–487.

HELPMAN, E., M.J. MELITZ AND S. YEAPLE (2004). “Export Versus FDI with
Heterogeneous Firms”. American Economic Review, 94(1), 300–316.

HORNOK, C., AND M. KOREN (2015). “Per-shipment Costs and the Lumpiness
of International Trade.” Review of Economics and Statistics. 97(2), 525–530.

IMBS, J., AND I. MJEAN (2010) “Trade Elasticities” Paris School of Economics,
unpublished mimeo.

KEHOE, T. (2005). “An Evaluation of the Performance of Applied General Equi-
librium Modes on the Impact of NAFTA”, in Frontiers in Applied General Equi-
librium Modeling: Essays in Honor of Herbert Scarf, edited by Kehoe, Srini-
vasan and Whalley, 341–77. New York: Cambridge University Press.

KEHOE, T. AND K. RUHL (2013). “How Important is the New Goods Margin in
International Trade?”. Journal of Political Economy, 121 (2013), 358–92.

KRUGMAN, P. (1980). “Scale economies, product differentiation, and the pat-
tern of trade.” The American Economic Review, 950–959.

MCDANIEL, C., AND E. BALISTRERI (2003) “A Review of Armington Trade
Substitution Elasticities.” Economie internationale (2) 301–313.

MELITZ, M.J. (2003). “The Impact of Trade on Intraindustry Reallocations and
Aggregate Industry Productivity.” Econometrica, Vol. 71.6 (2003): 1695–1725.

NAGURNEY, A. (2010). “Optimal Supply Chain Network Design and Redesign
at Minimal Total Cost and with Demand Satisfaction”. International Journal



66

of Production Economics. 128, 200–208.

NIGAI, S. (2017). “A Tale of Two Tails: Productivity Distribution and the Gains
from Trade.” Journal of International Economics (104): 44–62.

PIERCE, J. AND P. SCHOTT (2012). “A Concordance Between Ten-Digit U.S.
Harmonized System Codes and SIC/NAICS Product Classes and Industries”.
Journal of Economic and Social Measurement, 37(1–2), 61–96.

ROMALIS, J. (2007). NAFTAs and CUSFTAs Impact on International Trade,
Review of Economics and Statistics, 89(3), pp.416–435.

SANTOSO, T., S. AHMED, M. GOETSCHALCKX, AND A. SHAPIRO (2005). “A
Stochastic Programming Approach for Supply Chain Design Under Uncertainty”.
European Journal of Operation Research, 167, 95–115.

SCHOTT, P. (2008). “The Relative Sophistication of Chinese Exports ”. Eco-
nomic Policy, 53, 5–49.



Chapter 3

The Role of Multiple Distribution
Technologies in Accounting for
Trade Growth

3.1 Introduction

Fixed and variable costs of exporting have been found to play a significant

role in accounting for international trade flows.1 A wide literature establishes

the role of geographic barriers, international borders, and tariffs and quotas

in accounting for variation in bilateral trade growth across countries.2 It is

well-documented, in papers like Anderson (1979), or Parsley and Wei (1996),

that trade flows generally decrease with distance — the larger the geographic

distance, the higher the presumed transportation costs of shipping goods to

foreign locations, resulting in smaller trade flows, ceteris paribus.

While a large literature examines the impact of transportation costs in ac-

counting for bilateral trade flows across countries, many studies assume a

1See, for example Melitz (2003), Chaney (2008), or Bernard et al (2007) for prominent
examples.

2See Eaton, Kortum (2002), Engel, Rogers (1996), among others.

67
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singular exporting technology, with a common fixed and variable cost. How-

ever, when exporters ship their goods internationally, they typically compare

the costs of multiple available technologies to choose their optimal distribution

networks.3 In many cases, these can be divided into two broad categories: (1)

methods with low-fixed and high-variable costs, and (2) methods with high-

fixed and low-variable costs. For example, firms exporting large volumes may

opt to build their own infrastructure, complete with marine or air transport and

offices at home and abroad to handle shipments, incurring large fixed costs, but

relatively low per-unit costs. Conversely firms with relatively small or infre-

quent shipments may choose to export using an intermediary like FedEx, with

minimal fixed costs, but higher per-unit costs incurred.

One of the main findings of Chapter 2 is that trade growth is granular —

that the majority of bilateral trade growth is accounted for by a small number

of large-growth goods classifications. I find that using a standard Melitz-style

trade model, and including heterogeneous productivity and tariff changes im-

puted from U.S. production and tariff data, generates roughly 70% as much

granularity as in bilateral trade data. Can incorporating heterogeneity in

available exporting technologies help account for the remainder of this gran-

ularity? How do the differences in available transportation options, and their

associated costs, affect suppliers exporting decisions and account for increased

granularity in trade growth across goods?

To answer these questions, I build a model of bilateral trade with standard

features such as heterogeneous productivities across firms, CES preferences

and monopolistic competition pricing similar to Chapter 2. In this chapter, I

3For a general overview of recent developments in the strategic supply network formation
literature, see Mills, Schmitz and Frizelle (2004), or work on optimal supply network design,
such as Nagurney, Dong and Zhang (2004).
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add a choice for exporters among multiple distribution technologies — one low-

fixed, high variable cost method, and one high-fixed, low-variable cost method

— to examine how variation in the available distribution technologies impacts

bilateral trade flows and trade growth across goods classifications. This model

framework generates three main channels for generating large trade growth

across goods:

1. Large increases in productivity that lower the marginal costs of produc-

tion

2. Large reductions in tariff rates that lower the marginal costs of servicing

the foreign market

3. The ability for firms to switch distribution technologies, from a high vari-

able cost method to a lower variable cost method

The contribution of this chapter is to examine the impact of this third chan-

nel. In Chapter 2, I find that a Melitz-style generates only 70% as much gran-

ularity in trade growth as bilateral trade data. Including this “switching”

mechanism may allow the model to bridge this gap, which requires a higher

concentration of overall trade growth in a smaller number of goods exhibiting

disproportionately larger growth.

With CES demand and monopolistic competition pricing, the fixed costs of

exporting generate productivity thresholds — the least productive firms do

not export, firms with sufficiently high productivities export via the low-fixed

cost method, and the most productive firms find it profitable to export via the

higher-fixed cost method. As trade barriers fall (commonly represented by re-

ductions in the variable costs of exporting), the productivity thresholds shift —

some previously not-traded goods now become exported, and some previously
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traded goods switch from the low-fixed/high-variable cost method, to the high-

fixed/low-variable cost method. These “switchers” may exhibit disproportion-

ately larger trade growth, due to double effect of the original reduction in trade

costs, combined with the switch to a lower variable cost exporting method.

To quantitatively assess the ability of this channel to generate granularity

in trade growth, I calibrate the model to match observed trade shares across

goods in bilateral trade data. As in Chapter 2, I use 6-digit North American In-

dustry Classification System (NAICS) data on U.S. exports to Canada, Japan,

and Mexico between 1989 and 1999, to determine the share of cross-sectional

trade and trade growth accounted for by each good category.4 I target the level

of granularity in trade growth, which I quantify by calculating the share of

bilateral trade growth accounted for by each of the 473 NAICS goods classifica-

tions. I find that trade growth is highly granular in the data, with the top 5% of

large-growth goods accounting for, on average, 66% of bilateral trade growth.5

Most goods account for very little of the overall growth in trade — it is only a

small number of goods, growing from small initial levels of trade to large levels

of trade, or from large initial levels to much larger levels, that account for the

majority of growth.

4The analysis in this chapter is confined to these three destination countries due to data
limitations — in order to include heterogeneous productivity changes at this disaggregated
level of goods classifications, I use 6-digit NAICS production data for the United States, mak-
ing the U.S. the only source country for bilateral trade; in order to include heterogeneous tariff
reductions at this level of disaggregation, I use 8-digit Harmonized Tariff Schedule (HTS) im-
port tariff data, corcorded to 6-digit NAICS classifications, that is only available during this
period for Canada, Japan and Mexico.

5Further, I find that trade growth is more granular than cross-sectional trade — that is, the
top 5% of large-trade goods categories accounts for 52% of trade in a given period, but the top
5% of large-growth categories accounts for, on average, 66% of trade growth across countries.
Note: these top 5% categories need not be the same — the top 5% of traded goods in one period
are not necessarily the largest growth goods in the next period.
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I quantitatively assess whether this model with multiple distribution tech-

nologies can generate the high degree of granularity observed in the data. As

in Chapter 2, each firm produces a single, unique good using labour as the

sole input, indexed by its productivity, 1
a
, where a is the per-unit labor require-

ment, facing CES demand with monopolistically competitive markets. In this

chapter, I add a discrete choice among multiple distribution technologies for

exporting firms — X1: a low-fixed, high-variable cost method (f1, τ1), and X2: a

high-fixed, low-variable cost method (f2, τ2). Given a productivity drawn from a

Pareto distribution, firms profit maximize by deciding whether to export, and

if so, choosing their optimal distribution technology.

Characterizing equilibrium, I find that with CES preferences, foreign de-

mand for each good produced in the home country is inversely proportional

to that good’s price offered in the foreign market. Monopolistic competition be-

tween firms implies that each good is priced in the foreign market at a constant

mark-up over marginal cost. This marginal cost has multiple components —

the marginal cost of domestic production, a, which is a function of each firm’s

productivity; and the marginal cost of reaching the foreign market, which itself

has two components — the variable costs of the distribution method employed,

τ , and any tariffs imposed by the destination country, which is treated similar

to a change in the variable transportation cost. However, with multiple dis-

tribution technologies, the variable distribution cost can take two values — τ1

or τ2, allowing for greater heterogeneity across goods in the growth in trade

generated by productivity changes or trade liberalization.

Exporting profits are thus a function of the firm’s productivity and the fixed

and variable costs of the chosen distribution method. The existence of fixed
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costs of exporting generates productivity thresholds — only goods with suffi-

ciently high productivities will find it profitable to export, and only goods with

productivities high enough to cover the higher fixed cost will find it profitable

to export via method X2, while all other exported goods will be exported via

the lower-fixed cost method X1. Goods are stratified in the model according to

their optimal distribution choice, and trade flows are a function of the relative

productivities and export costs across goods.

To quantify the granularity of trade growth generated by this model, I first

solve the model for given values of fixed and variable costs, productivities and

tariff rates, to determine export sales and optimal distribution choices across

goods. To analyze growth in this static model, I follow a common approach

of representing trade liberalization as a fall in trade costs which reduce the

variable costs of exporting, and then re-solve the model to determine changes

in the model’s predictions for export sales and distribution choice.

With CES demand, monopolistic competition pricing, and a single distri-

bution technology, a fall in trade costs results in a proportional increase in

exports for each previously-traded good. However, with multiple distribution

technologies, the fall in variable costs also shifts the productivity thresholds for

the high- and low-fixed cost distribution methods. Some previously not-traded

goods become traded, as the reduction in variable costs makes paying the fixed

cost to export profitable. This is extensive margin growth, and leads to dispro-

portionately larger growth than the size of the tariff reduction for these goods,

as they grow from zero to larger share of total trade by crossing the exporting

threshold. Further, some goods previously traded via the low-fixed cost method

now profitably switch to the higher-fixed cost method, accessing the lower vari-

able cost. These “switchers” exhibit disproportionately larger export growth
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due to a double effect — the direct effect of a reduction in the variable costs

due to tariff decreases, and the indirect effect of switching to a distribution

method with a lower variable cost.

To compare the predictions of the multiple distribution technologies model

to the data, I calibrate and simulate the model and calculate the share of to-

tal trade growth accounted for by each good. I first simulate the model with

each good classification drawing a heterogeneous productivity from a Pareto

distribution, and determine the share of trade accounted for by each good. I re-

simulate the model, adding heterogeneous productivity changes for each good

that I impute from U.S. production data, and heterogeneous tariff reductions

concorded from destination-country tariff data. The changes in the model’s pre-

dictions for each good’s level of exports between the two simulations are then

compared to the changes in trade for each good in the data.

A key issue is how to calibrate the fixed and variable costs, f1, f2 and τ1, τ2.

Since data on direct measures of shipping and distribution costs is limited at

this level of disaggregation, I calibrate the fixed and variable costs in the initial

simulation to match the granularity of cross-sectional trade in the data for

the 1989–1991 average for each country-pair. For a given τ1, the lower fixed

costs, f1 is calibrated to match the number of not-traded goods categories.6 The

higher fixed cost, f2 and lower variable cost τ2 are calibrated to best match the

granularity in cross-sectional trade, as measured by the share of total trade

accounted for by top quantiles of goods categories (i.e. the top 2, 5, and 10%)

in a given period. I retain these values for the fixed and variable costs in the

second simulation.

Simulating the model, I find the multiple distribution technologies model

6This is determined by the equation for the lower productivity cut-off, Eq.(5).
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closely matches the degree of granularity in cross-sectional trade. On average

across country-pairs, the top 2, 5 and 10% of goods categories, respectively,

account for 33, 56 and 64% of cross-sectional trade, as compared to 35, 52 and

67% of cross-sectional trade in the data. Achieving this granularity requires

a relatively high ratio of fixed costs, with f2
f1

calibrated anywhere from 670

for U.S. exports to Mexico, up to 1840 for U.S. exports to Japan. The ratio of

variable costs for the two methods is fairly consistent, calibrated near τ2
τ1

=0.60

for all country-pairs.

I find that the two-method model generates a higher degree of granularity,

with the top quantiles of goods categories accounting for roughly 90–95% of the

share of total trade growth as in the corresponding trade data. Specifically, the

top 2, 5 and 10% of goods categories account for 43, 57 and 81%, respectively,

of total trade growth in the two-method model, compared to 43, 66 and 82% in

the data. Conversely, performing similar model simulations with only a single

distribution technology, as in Chapter 2, accounts for only 23, 46 and 64% of

total trade growth, roughly 60–70% of the granularity observed in the data.

Examining the choices of distribution methods in the simulations, I find

that switching behaviour generates increased granularity in trade growth in

the model. Goods that begin and remain traded via method X1 account for an

average of less than 0.01% of total trade growth. Goods that begin and remain

traded via method X2 contribute a larger share of total trade growth, on aver-

age 0.40% of total trade growth for each good in this group. However, goods

that switch from not-traded to traded via either method contribute an average

of 0.39% of total trade growth, while goods that switch distribution methods

from X1 to X2 contribute an average of 0.60% of total trade growth. This sup-

ports the theory that the ability for firms to choose among multiple distribution
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technologies in the exporting process increases the granularity predicted by

the model, more closely matching the level of granularity observed in bilateral

trade data.

3.2 Related Literature

As in Chapter 2, this chapter contributes to the “trade lumpiness” literature, in

multiple ways.7 First, this chapter provides a novel mechanism of incorporat-

ing multiple exporting technologies into a standard Melitz-style trade model,

that is capable of matching a high degree (roughly 90–95%) of the granularity

of cross-sectional trade observed in the data. Second, a central contribution

of Chapter 2 was to document the fact that trade growth is more granular

than cross-sectional trade, and that the set of large-growth goods is uncorre-

lated with the set of goods that were previously most highly traded. Including

multiple exporting technologies in the model generates a mechanism whereby

firms may switch distribution technologies, leading to disproportionately larger

trade-growth than non-switching firms, and helping to account for the granu-

larity of both cross-sectional trade and trade growth over time.

This chapter builds a framework similar to that of Helpman, Melitz and

Yeaple (2004), in which firms face a choice of exporting versus foreign direct in-

vestment (FDI). In their model, firms face different fixed costs of exporting and

FDI, and become stratified: domestic-only producers, firms productive enough

to pay the relatively lower fixed costs of exporting, and firms that are most

productive and can pay the relatively higher fixed costs of FDI to profit from

the lower marginal costs of production in FDI rather than exporting. However,

7See Armenter, Koren (2010), Hornok, Koren (2015) or Alessandria, Kaboski and Midraggan
(2010), for example.
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since FDI is not observed in trade data as exports, this mechanism would not

be present in accounting for the granularity of export growth. This chapter

introduces a similar mechanism, with goods stratified according to their opti-

mal distribution technology, but which allows for the model to account for the

granularity of trade growth observed in export data.

A wide literature investigates optimal supply network design, to identify

how firms choose their distribution networks when confronted with options

across multiple distribution technologies. Nagurney (2010), and subsequent

papers related to this work, investigate the formation, and potential re-optimization,

of firms’ optimal supply networks. This work focuses on channels such as the

role of excess capacity — firms strategically choose distribution network capac-

ity and usage, to dynamically optimize around potential changes in the econ-

omy. Similarly, Santoso et al (2005) propose an algorithmic approach, similar

to Nagurney, for solving optimal supply network design across firms. While

this chapter abstracts from innovation in new supply network design or ca-

pacity constraints, it contributes to the supply network literature by quantita-

tively assessing the impact of distribution options in accounting for observed

patterns of trade growth.

Another literature related to optimal distribution networks focuses on the

role of wholesalers as intermediaries in international trade. Abel-Koch (2013)

uses firm-level data to empirically examine the relationship of firm size and

production to the use of trade intermediaries in Turkish exporting firms, and

find that intermediary use is decreasing in firm size, and that newly traded

goods are more likely to use trade intermediaries to export their products. Ahn,

Khandlwal and Wei (2011) incorporate an intermediary sector into a model

with heterogeneous firms, and find that firms are stratified into non-traded,
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use of trade intermediary, and direct exporting firms, according to productivity.

This chapter finds a similar result of the stratification across the multiple tech-

nologies in firms’ distribution choice; however, these previous works largely

seek to match data on cross-sectional trade, not on trade growth. Further, they

primarily focus on matching which firms employ each method of trade, and do

not examine the possible change in these optimal choices following a reduc-

tions in trade barriers and the resultant impact on trade growth across firms.

This chapter extends this literature by allowing for possible changes in distri-

bution choice across multiple exporting technologies as trade barriers fall or

other structural changes may take place.

A large literature highlights the role of heterogeneity in accounting for

trade growth in international trade models. However, the focus of these models

is typically in matching overall trade flows and growth in trade. This chapter

focuses not only on matching overall bilateral trade growth, but also the distri-

bution of growth across goods, in matching the observed granularity of bilateral

trade data. Melitz (2003) and Chaney (2008), both pre-eminent works in this

literature, document the role of heterogeneous productivities across firms, as

well as fixed and variable costs of exporting, to identify the roles of the inten-

sive and extensive margins in accounting for overall trade growth. Freund and

Pierola (2015) empirically determine that the majority of cross-sectional trade

can be attributed to a small number of the largest firms in a given sector, which

can account for variation in the sectoral distribution of exports relative to in-

come across countries. Arkolakis (2010) focuses on market penetration, build-

ing a model in which firms essentially choose their fixed cost in order to access

a foreign market. Depending on this choice of fixed costs, they then face vary-

ing options of increasing marginal costs to reach additional consumers and in-

crease sales. However, as documented in Chapter 1, even adding heterogeneous
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productivity and tariff changes to these types of models does not generate suf-

ficient granularity of trade growth. By adding a discrete choice across multi-

ple distribution technologies in the exporting process, allowing some firms to

switch technologies and leading to disproportionately larger growth for these

goods, the model in this chapter is better able to match the granularity of trade

growth across goods observed in the data.

3.3 Data

To decompose trade growth across goods, I use 6-digit North American Indus-

try Classification System (NAICS) data for U.S. exports to Canada, Mexico and

Japan, from 1989 to 1999. Unlike Chapter 2, the bilateral trade data is con-

fined to this subset of country-pairs by data limitations. In order to include het-

erogeneous productivity changes imputed from production data, I confine the

analysis to U.S. exports, as data at this level of disaggregation is only avail-

able for U.S. production. Similarly, in order to include heterogeneous tariff

changes across goods, I confine the analysis to U.S. exports to Canada, Mexico

and Japan, as tariff data at this level of disaggregation is only available for

this subset of the countries used in Chapter 2 for this time period.

To combine these disparate data sources, I map all data to the 6-digit NAICS

classification system. While these limitations restrict the analysis to a smaller

set of countries, I am still able to analyze trade growth across goods at a rel-

atively high level of disaggregation, and for countries that experience formal

trade liberalization (U.S.-Canada, U.S.-Mexico) as well as those that do not

(U.S.-Japan).

In Chapter 2, I used 5-digit Standard International Trade Classification
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(SITC) data to document the granularity of trade growth across goods. One

key distinction between the two goods classification systems is the level of dis-

aggregation — there are 1836 goods categories in the 5-digit SITC data, while

the NAICS data is less disaggregated, with only 473 goods classifications. Since

the level of disaggregation has a potential impact on the level of granularity, I

re-calculate the shares of total trade growth accounted for by top quantiles of

goods categories for each country-pair in the 6-digit NAICS data.

As in Chapter 2, I use a 3-year average for measuring trade flows, to account

for issues such as shipping delays and customs reporting irregularities. For

each 6-digit NAICS good, I calculate the average export value from 1989–1991,

which I label as the “initial” trade value, and similarly calculate the average

export value from 1997–1999, which I label as the “final” trade value. Trade

growth is thus measured as the difference in these three-year averages for each

good.

3.3.1 Bilateral Trade Data

Descriptive Statistics

Table 3.1 presents summary statistics for U.S. exports to Canada, Mexico and

Japan, between 1989 and 1999. Countries experiencing formal trade liberal-

ization (U.S./Canada, U.S./Mexico around NAFTA) exhibit larger total growth

in trade than those non-liberalizing countries (U.S./Japan). Additionally, this

trade growth represents a larger percentage increase in trade over initial lev-

els, with U.S. exports to Canada and Mexico growing by 115% and 189% re-

spectively, while U.S. exports to Japan grew by 44% over this period.



80

Table 3.1: Summary Statistics: Bilateral Trade Data
(6-digit NAICS codes)

Variable USA-CAN USA-MEX USA-JPN
Initial Trade 65196.99 24536.51 34976.65
Final Trade 139880.12 70818.53 50320.17
Trade Growth 74683.13 46282.01 15343.51
%∆ in Trade 115% 189% 44%

Share of initial trade from top X% of goods
2% 37% 27% 41%
5% 53% 45% 59%
10% 66% 62% 74%

Share of trade growth from top X% of goods
2% 38% 36% 56%
5% 56% 57% 86%
10% 72% 74% 102%
Median share of 0.05% 0.03% 0.03%
trade growth
Number of goods: 473
(All trade values in thousands of $US)
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Trade Growth Granularity

I re-calculate the share of total trade growth between country-pairs that is ac-

counted for by each 6-digit NAICS classification. Table 3.1 reports the share of

total trade growth accounted for by the top 2, 5 and 10% of goods. At this lower

level of disaggregation, trade growth remains granular, with a small number

of goods (roughly 10, 25 and 50 goods) accounting for 43%, 66% and 82% of

total trade growth, respectively, but is not as pronounced as in the 5-digit SITC

data from Chapter 2.8 However, trade growth is still highly concentrated in

a small number of goods, while the majority of goods account for very little of

the overall growth in trade. Further, for each country-pair, the median share

of trade growth per good (0.03–0.05%) is well below the mean share of trade

growth (2.1% for each of the 473 goods categories), signifying a highly skewed

distribution of trade growth across goods. Finally, trade growth remains more

granular than cross-sectional trade — the top 2, 5 and 10% of goods categories

account for 43%, 66%, and 82% of trade growth, but only 35%, 52% and 67% of

trade in the initial period.9

Figure 3.1 illustrates the granularity of trade growth across goods at this

lower level of disaggregation. As in Chapter 2, this is shown by the small num-

ber of spikes representing goods exhibiting large growth shares, while most

goods exhibit little negligible growth shares.10 Further, trade growth shares

remain uncorrelated with initial levels of trade — the small number of goods

8For example, in the SITC data, the top 1% of goods categories accounted for roughly 60%
of total trade growth, on average across country-pairs — accounting for 60% of trade growth in
the NAICS data would require 2–5% of largest-growth goods categories.

9These 2,5 and 10% of goods categories need not be the same in accounting for trade growth
versus cross-sectional trade — that is, the most-traded goods in the initial period are not nec-
essarily the same goods that exhibit the largest growth in trade.

10Figure 3.1 illustrates this case for U.S. exports to Canada — similar examples for U.S.
exports to Mexico and Japan can be found in Appendix B.
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accounting for the majority of overall trade are not necessarily just the largest,

or smallest, initially traded-goods, but rather arise from varying levels of ini-

tial trade.

Figure 3.1: Growth by Goods Category: US Exports to Canada

3.3.2 Production Data

To quantitatively assess the the model’s predictions for the trade growth across

goods, I include heterogeneous productivity changes, imputed from U.S. pro-

duction data, and compare the granularity of trade growth predicted by the

model to that observed in the bilateral trade data. I use 6-digit NAICS data

on U.S. production from the NBER-CES Manufacturing Industry Database,

for the initial period (1989–1991 average) and the final period (1997–1999 av-

erage), to calculate the changes in imputed productivity between periods. I

match the changes in productivity to the data on bilateral trade growth for

each 6-digit NAICS good category.
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Figure 3.2: Productivity Distributions: Implied Productivities

Figure 3.2 demonstrates the changes in the imputed productivities for U.S.

production. For each good category, I use the observed level of domestic produc-

tion to back out the implied productivity from the production function for the

initial period and arrange goods in order of ascending productivity. I repeat

the process for the final period and map the change in imputed productivity

to each corresponding good from the initial period productivity distribution.11

There is a large degree of heterogeneity of productivity changes across goods.

Further, the changes in productivity are uncorrelated with the initial produc-

tivities — that is, it is not just the most productive firms that become even

more productive, or vice-versa.

11I also normalize the changes in productivity to mean zero to highlight the heterogeneity in
productivity changes across goods, rather than merely an increase in mean productivity.



84

3.3.3 Tariff Data

As in Chapter 2, I analyze the role of heterogeneous tariff changes in account-

ing for trade growth granularity in a standard trade model. To do so, I map

changes in the ad valorem equivalent (AVE) tariff rates for U.S. export desti-

nations to each good category in the model. I use 8-digit Harmonized Tariff

Schedule data from the World Bank’s World Integrated Trade Solution (WITS)

database on AVE import tariff rates on U.S. exports for Canada, Mexico and

Japan, from 1989–1991 and 1997–1999 to match the initial and final periods

in the bilateral trade data. I use concordances provided by Pierce and Schott

(2012) to map the 8-digit HTS tariff rates to the 6-digit NAICS classifications.

Figure 3.3: Heterogeneous Tariff Changes: Canada

Figure 3.3 shows the changes in the AVE tariff rates between the initial

and final periods for each concorded 6-digit NAICS good category for Canada.12

12Similar tariff changes for Mexico and Japan are shown in Figures B.4–B.6.



85

There is a large degree of heterogeneity across goods in the AVE tariff changes,

with most goods falling somewhere in the range between zero change and a

25% reduction tariffs.13 The mean reduction in tariffs are largest in Canada,

followed by Mexico and finally Japan, reinforcing that countries engaged in for-

mal trade liberalization policy over this period (U.S./Canada, U.S./Mexico) have

larger overall reductions in tariffs than those countries that lack a formal trade

liberalization agreement (U.S./Japan). Further, there are a larger proportion

of goods categories exhibiting large decreases in tariffs for Canada and Mexico,

and relatively more goods with small or zero reductions in tariffs for Japan.

3.4 Model

To account for the granularity of trade growth in the data, I extend the Melitz-

style model framework from Chapter 2 by including a choice among two ex-

porting technologies — one low-fixed, high-variable cost method, and one high-

fixed, low-variable cost method. The model includes heterogeneous produc-

tivities across firms, monopolistic competition, and CES preferences for con-

sumers. I characterize consumer demand and firms’ profit maximization in

equilibrium, including firms’ export decisions and distribution method choice.

As in Chapter 2, I use a static two-country model, and characterize par-

tial equilibrium to predict export sales of home-produced goods in the foreign

market. To analyze growth in this static environment, I solve the model for

two cases: first, I solve the model with a Pareto distribution of firms facing

CES demand, under monopolistic competition, given a choice among the two

13There is a notable exception, with an outlier of Mexican tariffs on U.S. exports of NAICS
311213 — “Malt Manufacturing, from barley, rye or other grains” rising by over 130%.
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distribution technologies— this will serve to represent the “Initial period”; sec-

ond, I re-solve the model, incorporating heterogeneous productivity and tariff

changes across goods, under the same choice of distribution methods for export-

ing firms — this will serve as the “Final period”. Trade growth for each good

is calculated as the changes in the model’s predictions for exports between the

two cases.

In the Initial period, I find that the model generates productivity thresh-

olds for exporting, and goods are stratified according to their initial produc-

tivities. The least productive goods are not exported, as the fixed costs of ex-

porting make exporting unprofitable regardless of distribution method. Goods

with sufficiently high productivity find it profitable to export via the low-fixed,

high variable cost method. The most productive goods exhibit the largest ex-

port sales, finding it more profitable to export the high-fixed, low-variable cost

method.

In the Final period, I find that adding productivity and tariff changes across

goods generates a large degree of heterogeneity in trade growth across goods.

The model produces three channels for disproportionately larger growth in cer-

tain goods, generating the granularity of trade growth:

1. Goods with large increases in productivity

2. Goods with large decreases in tariffs, represented by a reduction in the

variable costs of exporting

3. The ability for firms to switch distribution technologies, from a high-

variable to a low-variable cost method

With productivity increases or tariff reductions (or a combination of the two),

some goods that were previously not-traded now find exporting profitable, via
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the low-fixed cost method, or via the high-fixed cost method if these shocks

are sufficiently large. Similarly, some goods that were previously exported via

the low-fixed cost method now find it profitable to switch to the high-fixed cost

method, with a corresponding reduction in variable costs. These “switching”

goods exhibit disproportionately larger growth, as they benefit directly from

the productivity increase or tariff reduction, but also indirectly from the choice

of switching to a lower-variable cost method, leading to larger export sales.

This “switching” mechanism generates more granularity than the standard

model with a single distribution technology, as a larger share of total trade

growth is concentrated in these disproportionately larger-growth goods.

3.4.1 Model Set-up

The model builds on the standard Melitz-style framework, adding a discrete

choice among multiple exporting technologies. I use a static, two-country model

with symmetric countries, Home (H) and Foreign (F). As in Chapter 2, firms are

heterogeneous in their productivities, 1
a

where a is the per-unit labour require-

ment. Firms engage in monopolistic competition pricing, facing CES prefer-

ences generating consumer demand from each country. Firms choose whether

to sell to the foreign market by utilizing one of two distribution methods — one

with a lower fixed and higher variable (iceberg) cost of exporting, and the other

with a higher fixed and lower variable cost of exporting.

Firms

I assume each firm produces a differentiated good, so that each good category

in the model is synonymous with one firm, indexed by its per-unit labour re-

quirement, a. Firms use labour as the single input, paying the domestic wage



88

rate ωi to produce in country i ∈ {H,F}. For simplicity, I consider the case of

Home exports to Foreign, though the symmetric problem is equivalent. Firms

draw their productivity, 1
a
, from a Pareto distribution, G( 1

a
). Firms engage in

monopolistic competition pricing, as in Dixit-Stiglitz (1977), facing CES de-

mand from each country. Given foreign demand for their product, cF (a), firms

choose whether or not to service the foreign market. If they choose to export,

firms must choose their optimal distribution technology among:

1. Method X1(f1, τ1): a low-fixed, high-variable cost option

2. Method X2(f2, τ2): a high-fixed, low-variable cost option

For a firm with labour requirement a, given foreign demand cF (a), the firm’s

profit maximization problem is:

max
Xj ,j∈{1,2}

{max
p(a)

{p(a)cF (a)− h(a,Xj)c
F (a)}} (3.1)

where h(a,Xj) is the cost function, depending on the choice of distribution

method Xj, j ∈ {1, 2}. These costs include the fixed cost of exporting, fj, as well

as the marginal cost of exporting, which embeds the marginal cost of produc-

tion, ωHa, and the variable cost of exporting, τj. The variable cost can be further

decomposed into two components: the shipping costs of physically transporting

goods between locations, and trade barrier costs, such as tariffs. By assump-

tion, there is no fixed cost for domestic production.

Consumers

Preferences of consumers in country i ∈ {H,F} are represented by the CES

utility function,

U i =

(∫
a∈A

ci(a)
ε−1
ε da

) ε
ε−1

(3.2)
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where ci(a) is consumption of good variety a, ε is the elasticity of substitution

across goods (ε > 1) and A is the set of available goods. Since the two countries

are symmetric, I solve the case of Home exports to Foreign, and therefore only

consider the utility function UF to derive demand for Home-produced goods in

the Foreign market, cF (a).

3.4.2 Characterizing Equilibrium

I solve the model to characterize equilibrium export flows for all goods vari-

eties, a ∈ A. With no fixed cost of production, all goods are produced in Home,

and consumers in Foreign have demand for these varieties that is given by the

well-known demand function for CES preferences:

cF (a) = EF p(a)−ε

PF
1−ε (3.3)

where EF is national income in Foreign and PF is the aggregate price level

in Foreign. With ε > 1, demand in the Foreign market, cF (a), is inversely

proportional to the price offered in the Foreign market for each Home-produced

good.

Monopolistic competition implies that firms price at a constant mark-up

over marginal cost. The marginal cost of servicing the foreign market has mul-

tiple components. The marginal cost of domestic production is ωHa — how-

ever, in order to have a full unit reach the foreign market, the firm must ship

τ > 1 units (where τ is commonly referred to as the iceberg transportation cost).

Thus the marginal cost of exporting is ωHτja, where j ∈ {1, 2} depending on the

distribution method employed by the firm. This results in a price in Foreign

for Home-produced variety a of:

pF (a,Xj) =

(
ε

ε− 1

)
ωHτja (3.4)
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Export sales, pF (a,Xj)c
F (a), are proportional to productivity and inversely

proportional to the variable cost of exporting:

ExSales(a,Xj) =

(
ε

ε− 1

)
EF

P 1−ε
F

[ωHτja]1−ε (3.5)

The exporting profits for a firm with labour requirement a using distribution

technology Xj, j ∈ {1, 2} with associated fixed cost fj and variable cost τj are:

π(a,Xj) =

[
1

ε− 1

]
EF

P 1−ε
F

[ωHτja]1−ε − ωHfj (3.6)

Productivity thresholds

To export via either distribution method, exporting profits must be non-negative:

π(a,Xj) ≥ 0. Re-arranging the profit function yields a productivity threshold
1
ā1

, that satisfies: (
1

ā1

)
=

[
(ωH)εf1τ

ε−1
1

DF

] 1
ε−1

(3.7)

where DF is a constant with respect to a.14 This implies that firms must be

sufficiently productive to cover at least the lower fixed cost of exporting, f1, to

make exporting profitable.15

There is also a threshold that determines which firms will choose to export

via method X2 rather than method X1, where π(a,X2) > π(a,X1). Solving this

inequality yields the productivity threshold 1
ā2

, that satisfies:

(
1

ā2

)
=

[
ωH

DF

(f2 − f1)

(ωHτ2)1−ε − (ωHτ1)1−ε

] 1
ε−1

(3.8)

14DF =
[

1
ε−1

]
EF

P 1−ε
F

15It is assumed that (f1, τ1) and (f2, τ2) are such that 1
ā1

is lower for method X1 than method

X2. Thus, by assumption, f1f2 <
(
τ2
τ1

)ε−1

.
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Firms with sufficiently high productivity will choose to export via the higher-

fixed cost method, X2, while firms with lower productivity will choose to export

via method X1, as long as their productivity is such that paying the lower-fixed

cost of exporting still yields positive exporting profits.16

Figure 3.4: Initial level of export sales

Figure 3.4 demonstrates the stratification of export sales across goods, by

productivity. Firms with low productivity draws do not export. Firms with suf-

ficiently high productivity find exporting profitable after paying the fixed cost,

with sales increasing in productivity. The less productive of these firms will ex-

port via method X1, while the more productive firms will export via method X2.

There is a discontinuous jump in export sales at the upper productivity thresh-

old 1
ā2

, with the more productive firms benefiting from the lower variable cost,

leading to higher export sales.

16It is assumed that 1
ā2

> 1
ā1

, which further disciplines the relationship of the fixed and

variable costs: f2 > f1

[
1−

(
τ1
ωH

)ε−1 (
τ1−ε
2 − τ1−ε

1

)]
.
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3.4.3 Comparative Statics: Tariff and Productivity Changes

To analyze trade growth in the static model, I solve the model twice — for

an “Initial” period and for a “Final” period. I calculate the difference in pre-

dicted export sales across the two cases to represent trade growth for each

good. To determine the Initial period’s export sales, I solve the model with a

random productivity draw from a Pareto distribution for each firm producing

good variety a and solve for each firm’s profit maximization export decision and

distribution method choice. To determine the Final period’s export sales, I re-

solve the model while incorporating heterogeneous changes in productivity and

tariffs across goods, imputed from bilateral trade data. I impute the changes

in productivity from U.S. production data between 1989–1991 and 1997–1999,

and apply the corresponding change directly to the productivity of each good,
1
a

from the Initial period. Similarly, I impute changes in AVE tariff rates for

each good from U.S. export destination tariff rates, which takes the form of a

proportional reduction in the variable costs of exporting, τ1 or τ2, relative to the

Initial period’s values.

Across goods, an increase in productivity or a decrease in tariffs lowers the

price offered in the foreign market, as given in Equation 3.4. The direct ef-

fect is a proportional increase in exports, as given by Equation 3.5 due to the

heterogeneous changes in productivity and tariff rates across goods.

Changes in productivity and tariff rates also have an indirect effect on ex-

port sales by altering the productivity thresholds that dictate the optimal dis-

tribution choice for each good. Equations 3.7 and 3.8 show that a reduction

in tariffs which decreases the variable costs of exporting, τ1 and τ2, lowers the

productivity thresholds, 1
ā1

and 1
ā2

. This allows some goods that were below the

exporting threshold, 1
ā1

, to become exported, and some goods that were below
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the upper threshold, 1
ā2

, to switch from exporting via method X1 to X2. The for-

mer is categorized as extensive margin growth— previously not-traded goods

become exported. For the latter, firms that switch from X1 to X2 also benefit

from the reduction in variable costs by moving from τ1 to τ2, bringing a sec-

ondary increase in export sales, as in Equation 3.5.17

Figure 3.5: Final level of export sales

With three distribution possibilities, {0, X1, X2} in each period, there are 9

potential combinations for distribution method choice across the two periods.

Figure 3.5 shows the stratification of these possibilities. With a reduction in

the variable costs of exporting from a decrease in tariffs, export sales will in-

crease proportionally across the productivity distribution for each method. Ad-

ditionally, the productivity thresholds will shift, as represented by the shaded

regions in Figure 3.5. Trade growth can be decomposed as follows: Goods that
17It should be noted that if productivity decreases or tariffs increase, the converse is true—

the productivity thresholds increase and sales decrease, with firms potentially “switching
down” in their distribution choices.
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begin with and retain the lowest productivities will remain not-traded. Some

previously traded goods will increase export sales proportionally to the reduc-

tion in tariffs, while continuing to use the same distribution method, either X1

or X2. However, some previously not-traded goods may now cross the lower

productivity threshold and become exported via method X1.18 Similarly, with

the reduction in variable costs of exporting, some goods that were previously

traded via method X1 now find it profitable to switch to method X2 (as shown

in the blue shaded region). This increase in export sales is disproportionately

larger than it would be at similar productivity levels where the choice of distri-

bution method does not change (as in the white shaded regions to the left and

right).

Adding changes in productivity moves firms across the productivity distri-

bution, which potentially generates more granularity in trade growth. Firms

with a sufficiently large increase in productivity may “jump” across a produc-

tivity threshold in Figure 3.5. For example, a firm with low productivity may

choose not to export in the initial period, but an increase in productivity may

move them into a region of the distribution where exporting becomes profitable

via X1, or via X2 if the increase in productivity is sufficiently large. Similarly,

goods initially exported via X1 may receive a sufficient increase in productiv-

ity to move to a portion of the distribution where switching to X2 is profitable,

bringing a disproportionately larger growth in trade than the direct effect of

the productivity increase.19

The model now provides three channels for generating heterogeneity in

18While not shown explicitly in 3.5, it is theoretically possible for goods to jump from not-
traded to exported via method X2 if the tariff reductions are sufficiently large.

19Again, it should be noted that although the cases presented here deals with tariff decreases
and productivity increases, the converse holds for cases of tariff increases and productivity
decreases and the resultant decreases in export sales across goods.
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trade growth across goods. First, heterogeneous tariff changes, represented

as changes in the variable cost of exporting for both distribution technologies,

changes the price offered in the foreign market and results in proportionally

larger export sales for the goods exhibiting the largest tariff reductions. Sec-

ond, heterogeneous productivity changes, represented as changes to the vari-

able cost of domestic production, similarly result in heterogeneous changes in

the price offered in the foreign market and proportionally larger export sales

for the goods exhibiting the largest productivity increases. Third, these first

two channels may lead to certain goods crossing the productivity thresholds,

resulting in disproportionately larger growth for these “switchers” — goods

that switch from not-traded to traded via either technology, or switching from

method X1 to X2. This occurs due to the combined effect of these goods ex-

hibiting increases in export sales proportional to the growth in the first two

channels being magnified by a switch to a lower-variable cost method, ampli-

fying the growth in trade. The larger growth exhibited by this subset of goods

increases the granularity of trade growth predicted by the model, compared to

the model with a singular distribution technology.

3.5 Quantitative Analysis

To quantitatively assess the model’s ability to match the granularity in the

data, I calibrate and simulate the model with multiple distribution technolo-

gies to match bilateral trade flows. I first simulate the model and calibrate the

fixed and variable costs of exporting to match U.S. exports to Canada, Mex-

ico and Japan, for the 3-year average from 1989–1991, representing the “Ini-

tial period”. I re-simulate the model, adding heterogeneous productivity and

tariff changes imputed from U.S. data, to match bilateral trade data for each
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country-pair over a three-year average from 1997–1999, representing the “Fi-

nal period”. I calibrate the distribution of tariff reductions for the Final period

to match the overall growth in trade for each country-pair between 1989–1991

and 1997–1999 averages.

One key issue in simulating the model is how to implement the fixed and

variable costs (f1, τ1; f2, τ2) associated with the different distribution methods

available to exporters. Since direct data on variations in shipping rates across

goods is highly limited at this level of disaggregation, I calibrate these pa-

rameters to match the granularity of cross-sectional trade flows. Specifically,

I calibrate the relative fixed and variable costs for the two methods, X1 and

X2, to match the shares of total trade accounted for by the top 2, 5 and 10%

of goods categories in the Initial period. I then take these costs as given when

re-simulating the model for the Final period.

In Chapter 2 I found that including heterogeneous productivity and tar-

iff changes in the Melitz-style model accounted for roughly 70% of the ob-

served granularity of trade growth in bilateral trade data. Adding a choice

among multiple distribution technologies to this model framework, I find that

the model now captures roughly 90–95% of the granularity in the data. Fur-

ther, I find evidence of switching behaviour in the model simulations, which

increases the level of granularity in predicted trade growth. Although a rel-

atively small number firms choose to switch technologies, with the majority

of overall trade growth occurring from goods retaining their distribution choice

across periods, I find evidence that on average, each switching firm accounts for

a greater share of trade growth (0.5–1.0% per good) than each non-switching

firm (0–0.5% per good), increasing the granularity of trade growth across goods.
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3.5.1 Parameterization and Calibration

The calibration strategy in this chapter is similar to that of Chapter 2, with one

notable exception — I now have two additional free parameters to calibrate: f2

and τ2, the costs associated with the second distribution option X2. As in Chap-

ter 2, I first parameterize and calibrate the model to match bilateral trade

data on U.S. exports to Canada, Mexico and Japan for the 3-year average from

1989–1991, which I classify as the Initial period. To analyze changes in trade

flows across goods, I re-simulate the model, adding heterogeneous productivity

and tariff changes imputed from U.S. data, and calibrating the model to match

bilateral flows for U.S. exports to Canada, Mexico and Japan for 1997–1999,

which I classify as the Final period. To incorporate these heterogeneous pro-

ductivity and tariff changes, I calibrate the model to match data at the 6-digit

North American Industry Classification System (NAICS) level, resulting in 473

distinct goods classifications.

For the Initial period, I draw each firm’s initial productivity from a Pareto

distribution, G( 1
a
), mapping each firm to a single good category, and set the

elasticity of substitution, ε, at 6.0.20 Since my variable of interest is the share

of growth accounted for by each good category (not the absolute level of trade

flows for each category), I begin with τ1, the higher variable cost, as a free

parameter, as in Chapter 2. For a given τ1, the lower fixed cost, f1, which de-

termines the lower productivity threshold for exporting, is calibrated to match

the number of not-traded goods in the data. I then simultaneously calibrate

the higher fixed cost f2, and lower variable cost, τ2, to match the cross-sectional

trade flows accounted for by the top 2, 5 and 10% of goods in the Initial period

20Refer to Chapter 2, Section 5.2.1 for a discussion on these parameter choices and
implications.



98

(1989-1991 average for each destination country in the data).21

Similar to Chapter 2, I use U.S. manufacturing data to impute changes

in productivity across goods between the Initial and Final periods, and apply

these changes to the productivity distribution from the Initial period simu-

lation.22 I use 8-digit Harmonized Tariff Schedule (HTS) data, which I con-

cord to 6-digit NAICS classifications, to determine the changes in ad valorem

equivalent (AVE) tariff changes for Canada, Mexico and Japan between the

1989–1991 and 1997–1999 periods.23 I scale the distribution of tariff changes

to match total trade growth for each U.S. export destination for the Final pe-

riod, 1997–1999, retaining the same set of fixed and variable cost options cali-

brated in the Initial period, to determine exports, distribution choice, and share

of total trade growth accounted for by each good category.24

3.5.2 Initial Period

Table 3.2 presents the results of the model calibration for each destination

country. For the top 2, 5, and 10% of goods categories, the model captures

93–95% of the overall granularity in cross-sectional trade, on average across

21Specifically I grid search over a range of all plausible values of f2 and τ2 consistent with
the literature, to determine the parameter values that minimize the loss function over various
quantiles of trade, ‖~rdata − ~rmodel‖, where the ~r’s are vectors of the proportion of total trade ac-
counted for by the top 2, 5 and 10% of goods. Therefore, in keeping with the focus on matching
the share of trade growth accounted for across goods in the data, the calibration determines
the ratio of fixed and variable costs between methods X1 and X2.

22Figure B.3 shows the distribution of Initial productivities along with the applied produc-
tivity changes.

23Figures B.4–B.6 show the distribution of tariff changes across goods classifications. Of
note, the mean tariff decreases are larger in Canada and Mexico, due to the formal trade
liberalization of NAFTA, as opposed to Japan. However, while there are many more goods
exhibiting large AVE decreases for Canada and Mexico, there are still large AVE reductions
for some goods categories in Japan, in the absence of formal trade liberalization agreements.

24As in Chapter 2, this is computationally equivalent to calibrating DF to match the overall
level of trade growth.
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country-pairs. For all country-pairs, the ratio of the two calibrated variable

costs, τ2
τ1

, is consistently between 0.55–0.65.25 There is more variation in the

ratio of calibrated fixed costs, f2
f1

, across country-pairs. For U.S. exports to Mex-

ico, where the top quantiles of goods account for lower shares of Initial trade,

the ratio is lower, at 670. For U.S. exports to Canada and Japan, where the

trade shares accounted for by the upper quantiles of goods is higher, the ratio

of fixed costs is higher, at 1430 and 1840, respectively.26 These results suggest

that a higher fixed cost ratio creates a higher productivity threshold for firms

using method X2, which, combined with a lower variable cost τ2, concentrates

a larger share of Initial trade in a smaller proportion of goods categories at the

top end of the distribution.

3.5.3 Final Period

Table 3.3 reports the share of trade growth accounted for by quantiles of largest-

growth goods categories for each U.S. export destination. The share of trade

growth accounted for by the top 2, 5 and 10% of goods is roughly 90–95% as

high as that observed in the data, on average across country-pairs. This marks

an improvement from the roughly 70% of granularity generated by the model

with a single distribution technology, as in Chapter 2.

25With the higher variable cost, τ1, set as a free parameter at 2.0, this results in values for τ2
across countries of 1.12–1.32, consistent with the interpretation in the literature of the iceberg
costs shipping, where τ represents the number of units necessary to ship to result in 1 unit
arriving at the destination country.

26Due to the scarcity of direct measures of the fixed costs of exporting, it is difficult to as-
sess the appropriateness of these fixed cost ratios — the vast majority of the relatively small
literature that seeks to directly measure distribution and transportation costs in international
trade goes no deeper than identifying total costs, without decomposing the shares of fixed vs.
variable costs, and virtually all assume a common distribution technology. However, Kropf
and Saure (2014) estimate variation across Swiss firms in fixed costs per shipment, and find
logged values that range from -3 to 9 — thus the fixed cost ratios I calibrate between 670 and
1840 correspond to logged differences of 6.5 to 7.5, which arguably fall within realistic ranges
of those imputed by Kropf and Saure.
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Table 3.2: Cross-Sectional Granularity: Initial Period

Share of trade from top X% of goods
(6-digit NAICS codes)

USA-CAN USA-JPN USA-MEX
Model Data Model Data Model Data

2% 37 37 41 41 21 27
5% 57 53 63 59 49 45
10% 62 66 68 74 62 62
20% 71 81 75 88 71 79
40% 84 94 87 97 84 94
f2
f1

1430 1840 670
τ2
τ1

0.59 0.56 0.66

Additionally, I track the distribution choice for each good across the two sim-

ulations to quantitatively assess the ability of the model’s “switching” mecha-

nism to account for trade growth granularity. Figure 3.6 plots the distribution

choice across goods, arranged by ascending initial productivity. Firms are ini-

tially stratified according to productivity, with the least productive firms not

exporting, the most productive firms exporting via method X2, and those in

between the productivity thresholds exporting via method X1, represented by

the starred levels. After including the productivity and tariff changes from the

data, and simulating the model, the bars represent the new distribution choice

for each good. Many previously not-traded goods remain not-traded, but some

now become traded via X1 or X2 (as reflected by the bars ascending to 1 or 2).

Similarly, a large proportion of goods previously traded via method X1 remain

traded via X1; however, some now switch to method X2 (as reflected by the bar

ascending above the starred line) while others no longer export (as reflected by

a blank space for that good). The same is true for goods initially traded via X2,

where the majority remain traded via X2, but some goods switch to either X1
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Table 3.3: Trade Growth Granularity: Second Period

Share of growth from top X% of goods
(6-digit NAICS codes)

CAN-USA JPN-USA MEX-USA
Model Data Model Data Model Data

2% 33 38 59 56 37 36
5% 48 56 74 86 50 57
10% 75 71 97 102 70 74
20% 92 86 116 114 87 89
40% 111 99 138 123 104 101
f2
f1

1430 1840 670
τ2
τ1

0.59 0.56 0.66

(a space down to level 1) or not-traded (a space down to 0).

Comparing across the two simulations, I find that firms switching from dis-

tribution technology 1 to 2 account for a larger shares of total trade growth

than the traditional extensive margin of firms switching from non-traded to

traded. Table 3.4 reports the shares of trade growth accounted for by each of

the 9 possible combinations of distribution choices across the two simulations.

While there are a smaller total number of firms switching from not-traded to

traded, or from method X1 to X2 than there are firms that retain the same

distribution choice, these switching firms account for relatively larger shares

of trade growth, on average. Firms switching from not-traded to traded ac-

count for an average of roughly 0.3–0.7% of total trade growth per good, while

firms switching from X1 to X2 account for an average of 0.5–1.0% of total trade

growth per good, across the various country pairs. Conversely, firms that re-

tain X1 in both simulations account for virtually none of the total trade growth,

and while firms that retain X2 account for 50–60% of the total trade growth,

the fact that there are relatively so many of these firms (140–150 per country)
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Figure 3.6: Model Simulation: Optimal Distribution Choice

means that on average, they account for only 0.3–0.5% of total trade growth

per good.

Table 3.4: Optimal Distribution Method Choice

Proportion of total trade growth
U.S.-Canada U.S.-Japan U.S.-Mexico

Methods Tot. Share # goods Avg. Share Tot. Share # goods Avg. Share Tot. Share # goods Avg. Share
0→0 0% 74 0% 0% 78 0% 0% 74 0%
0→ X1 0.03% 6 0.00% 0.03% 6 0.01% 0.05% 6 0.01%
0→ X2 6.14% 10 0.61% 8.98% 7 1.28% 4.60% 10 0.46%
X1 →0 -0.27% 77 0.00% -0.50% 81 -0.01% -0.36% 78 0.00%
X1 → X1 0.08% 74 0.00% -0.08% 67 0.00% 0.32% 71 0.00%
X1 → X2 39.61% 66 0.60% 61.41% 62 0.99% 32.22% 69 0.47%
X2 →0 -3.31% 7 -0.47% -6.34% 5 -1.27% -1.99% 7 -0.28%
X2 → X1 -7.06% 17 -0.42% -15.88% 15 -1.06% -3.95% 16 -0.25%
X2 → X2 64.78% 142 0.46% 52.39% 152 0.34% 69.11% 142 0.49%

It is also important to note that in Table 3.4 it is possible for firms to “switch

down” in the model — firms with decreases in productivity or increases in tar-

iffs may choose to switch from X2 to X1 following the inverse rationale of firms
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that “switch up”, or may even decide to stop exporting altogether. While there

are a smaller number of these types of down-switching firms than up-switching

firms, their presence in the model serves to amplify the granularity of trade

growth, as the up-switching firms account for an even larger share of total

trade growth when these decreases in exports from down-switching firms are

taken into consideration.

3.6 Conclusions

This chapter extends the literature by identifying a novel mechanism that

helps account for the high degree of granularity of trade growth observed in

bilateral trade data. I use data U.S. exports to Canada, Mexico and Japan,

between 1989 and 1999, at the 6-digit NAICS level, to determine the distribu-

tion of trade growth shares across goods. I find that trade growth is granular

— a small number of goods categories accounts for a majority of total bilateral

trade growth- specifically, the top 5% of goods accounts for roughly 66% of over-

all trade growth, on average across country-pairs. Further, I find that trade

growth is more granular than cross-sectional trade, and that trade growth is

uncorrelated with previous levels of trade.

To match this level of granularity in the data, I use a standard trade model

framework, and add a discrete choice among multiple distribution technologies

for firms in the exporting process. I introduce a low-fixed, high-variable cost

exporting technology, and a high-fixed, low-variable cost exporting technology,

and include heterogeneous productivity and tariff changes, imputed from trade

data, to analyze the predictions for trade growth across goods in the model. I

calibrate the fixed and variable costs, and the distribution of productivity and

tariff changes, to match overall bilateral trade flows, and simulate the model
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to determine the distribution of growth in export sales predicted by the model.

I find that the model simulation generates roughly 90–95% of the observed

granularity of trade growth in the bilateral trade data, as measured by the

share of total trade growth accounted for by the top quantiles of goods cate-

gories. The model with multiple distribution technologies increases the gran-

ularity of trade growth in the model, as compared to a standard model with a

single distribution technology, which generates only 60–70% as much granu-

larity as the data. In the model, I find evidence that goods that switch their

distribution technology in response to heterogeneous productivity changes and

tariff reductions account for a relatively larger share of total trade growth than

non-switching goods. This occurs as a result of the double effect of a direct re-

duction in variable costs of exporting from tariff reductions and productivity

increases, combined with an indirect effect of switching to a lower variable cost

method of exporting, resulting in disproportionately higher growth, accounting

for the observed granularity of trade growth.
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Chapter 4

The Supply Network and Price
Dispersion in the Canadian
Gasoline Market

4.1 Introduction

Policymakers and consumers have long sought to understand why prices for

identical goods differ across locations. Many studies use geographic distance,

as a proxy for transportation costs, to account for large price differences of ho-

mogeneous goods across locations.1 However, little is known about the impact

of variation in the methods used to transport goods between locations on these

relative price differences. In this chapter, the term “supply network” refers

to the different modes of transporting products between locations. For sup-

pliers servicing various locations, the associated transportation costs will be a

function of not just the geographical distance covered, but also of the costs as-

sociated with the various methods of transportation for reaching each potential

destination. The structure of the supply network therefore plays a key role in

1See Burdett and Judd (1983), Crucini, Telmer and Zachariadis (2003), or Engel and Rogers
(1996) among others.
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limiting arbitrage opportunities and determining what level of price dispersion

can be sustained across locations over time.

This chapter quantifies the impact of the supply network on relative price

dispersion in the Canadian gasoline market. The Canadian gasoline indus-

try is large — the average Canadian household spends over $2000 per year

on gasoline for transportation, accounting for over 3% of household spending.2

Gasoline is a homogeneous good for which consumers make purchasing deci-

sions based largely on price and accessibility, with varying brands being ar-

guably indistinguishable in their physical composition.3 Further, there is sub-

stantial data on gasoline prices, at various levels of aggregation, provided by

various data sources, allowing for a more thorough breakdown of demand-side

and supply-side effects that are common to, and differ across, locations.

There are four methods of transportation for gasoline products employed

across Canada: pipeline, marine tanker, rail and transport truck. Pipelines

are generally the safest and most cost-effective means of transporting large

volumes. Marine tankers similarly offer large capacity, but are limited to lo-

cations with access to seaports, while rail and truck offer access to a greater

number of locations, but at much smaller scales.

While most studies use geographic distance as a proxy for transportation

costs, few studies have quantified the impact of the structure of the supply

network on price dispersion. Locations that are linked by fast, low-cost and

large-scale methods may exhibit lower price dispersion than locations that are

linked by more costly or smaller-scale technologies that can sustain larger price

gaps. As such, the existence of pipelines or seaports between locations may be
2Statistics Canada, Survey of Household Spending, 2015.
3While there is an extensive literature examining the role of distance, location and compe-

tition on price dispersion witin cities, this paper focuses on differences in city-wide average
prices across cities. See Marvel (1976), Chandra, Tappata (2011), Lewis (2011), among others.
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expected to decrease arbitrage opportunities for suppliers and result in smaller

relative price dispersion than locations with only road or rail connections.

To quantify the impact of the supply network on price dispersion in the

Canadian gasoline market, I use a unique data set, compiled from Kent Mar-

keting Services, on weekly average gasoline prices from 44 Canadian cities,

between 2001 and 2017. One source of price dispersion arises from differences

in provincial and municipal gasoline taxes that may distort retail prices faced

by consumers across Canada, even after controlling for transportation costs. I

therefore use pre-tax prices for gasoline in each location, to control for varia-

tion in taxes and isolate the true prices received by suppliers that discipline

the arbitrage conditions when price gaps arise between locations.

Examining the data provides several key facts about gasoline prices across

locations over time. Price levels are highly correlated across locations, while

changes in price are less highly correlated. Intra-regional prices are more

highly correlated and exhibit smaller mean differences than inter-regional prices.4

The coefficient of variation for weekly prices is small and stable, both nationally

and at the regional level. Finally, the location of the minimum and maximum

weekly prices rarely changes within Canada.

Regressing measures of price dispersion on distance, region, market size

and supply network variables, I find that that the supply network is signifi-

cant in explaining observed price dispersion across Canadian cities. I find that

cities connected by pipeline exhibit 3.5% less mean-price dispersion than cities

only connected by road or train. Using weekly relative prices, I find that the ex-

istence of a pipeline connection between cities reduces weekly-price dispersion

by 2.2%, while a maritime connection reduces weekly-price dispersion by 1.6%.

4Regions are broken down according to the natural supply orbits of the Canadian gasoline
market: West, Ontario, Quebec and Atlantic.
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A pipeline connection has the equivalent effect on weekly price dispersion as a

53% reduction in the geographical distance separating the two locations. Sim-

ilarly, a seaport connection has the equivalent effect as a 38% reduction in

geographic distance.

To put these findings into context, consider two cities such as London, ON

and Halifax, NS, of roughly similar total population and density. These two

cities are roughly 1850km apart, and at present share no pipeline or maritime

connection, with a mean-price difference of approximately 1 ¢/L, with standard

deviation of 3.5 ¢/L and a range of weekly-price differences between 0 and 14

¢/L. The regression analysis suggests that a pipeline built between these two

cities would effectively “move” Halifax to Quebec City — that is, the effect on

weekly price differences between these two cities would be the equivalent of

having the city of Halifax moved 50% closer in geographic distance to London.

Ignoring this impact of the supply network would bias the evaluations of sup-

pliers or policymakers considering potential infrastructure projects or policy

assessments, if they considered only geographic distance as a proxy for trans-

portation costs.

To check the robustness of these results, I consider two alternative cases

— omitting city-pairs subject to price regulation, and omitting geographically

remote cities. Some locations, like Quebec and the Atlantic provinces, impose

regulations on weekly gasoline prices. Omitting all city-pairs containing a Que-

bec or Atlantic city, I find the supply network variables remain significant and

become slightly larger in magnitude. Similarly, omitting Whitehorse and Yel-

lowknife, which may be outliers due to their extreme geographic remoteness,
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I find little change in the regression coefficients, with the supply network re-

maining significant in accounting for mean and weekly relative price disper-

sion across locations.

To further isolate the role of the supply network in accounting for observed

price dispersion, I consider “supply shocks”, in the form of disruptions to the

gasoline production and distribution process. I analyze several instances of

refinery shut-downs to examine the effects on production volumes and retail

prices across locations. I find that retail prices increase relatively more in re-

gions closest to refinery shut-downs than in those further away, indicating that

prices are most significantly impacted within the supply orbit of the affected re-

finery. Further, I find that price dispersion is lower across locations that share

pipeline connections than those that do not, suggesting that arbitrage oppor-

tunities arising from supply disruptions are more constrained when locations

are connected by faster, cheaper methods of transportation. Both of these find-

ings reinforce the result that the structure of the supply network, not solely

geographical distance between locations, is significant in determining the level

of price dispersion that can be supported between locations.

4.2 Related Literature

A large and diverse literature examines violations of the Law-of-One-Price

(LOP) to determine the causes of price dispersion across locations over time.

Papers like Stahl (1982), Crucini, Telmer and Zachariadas (2003), and Crucini,

Shintani and Tsurugu (2012) all examine various sources of price dispersion,
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such as distance between locations (typically serving as a proxy for transporta-

tion costs), market effects and border effects.5 Recent work such as Crucini and

Yilmazkuday (2014) integrates the role of productivity and wage differences,

along with distance and border effects, in accounting for LOP violations. Kano,

Kano and Takechi (2013) estimate a model of iceberg-type transportation costs

to determine that geographic barriers are a significant contributor to failures

of the LOP in Japanese wholesale agricultural markets. This chapter extends

this literature by quantifying these types of effects on a particular market, re-

tail gasoline, across Canadian cities. Further, this chapter considers not just

geographic distance as a proxy for transportation costs, but also examines vari-

ation in transportation methods to account for observed price dispersion across

locations in the Canadian gasoline market.

A separate literature examines supply networks formation and equilibrium

structures.6 Shen (2006) investigates how firms strategically construct their

supply networks, by choosing which groups of customers to serve in a profit-

maximizing competitive environment. Nagurney, Dong and Zhang (2004) in-

troduce a more general model of supply network equilibrium which is adapt-

able to different implementations of decision-makers and their independent

behaviours. Although this chapter abstracts from strategic decisions regarding

the formation of the gasoline supply network, it contributes to this literature by

examining the effects of the existing supply network on retail price behaviour.

This chapter is unique in its quantitative measure of the impact of the existing

5This literature ultimately branches back to the seminal work of Stigler (1961), which iden-
tifies the role of incomplete information and search in accounting for price dispersion across re-
tailers, followed by works like Burdett and Judd’s (1983) work on multiple equilibria in models
with imperfect information, many of which can support long-run price dispersion, and provide
a basis for the role of distance, as it relates to acquiring costly information, in accounting for
relative price differences across locations.

6For a general overview of the strategic supply network formation literature, see Mills,
Schmitz and Frizelle (2004).
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supply network on retail price dispersion across locations.

A large literature has examined the oil and gasoline industry, at various

levels of disaggregation, across a large number of locations, and across vari-

ous shipping and retailing methods. Marvel’s (1976) empirical analysis of the

gasoline market examines the role of consumer responses to costly, imperfect

information in explaining price dispersion across locations and price variabil-

ity over time. Adams (1997) argues that, compared to other less homogeneous

goods purchased in convenience stores, the relatively low search and informa-

tion costs of gasoline explain a large degree of price dispersion in highly local-

ized markets. Similarly, Pennerstorger et al (2015) use gas station-level data

to test a model of costly information acquisition in the localized retail gasoline

market and find that allowing for spatial variation in the share of informed con-

sumers sampling gasoline prices along their commuting routes helps account

for observed price dispersion across locations.

This chapter expands on the gasoline literature in multiple ways. First,

these papers largely focus on demand-side effects, like consumer search costs,

in accounting for price dispersion. While this chapter also considers demand-

side market and regional effects, it extends the existing literature by adding a

quantitative analysis of the impacts of supply-side effects in explaining price

dispersion across locations. Second, this literature predominantly examines

price dispersion within local markets, on a station-to-station basis. This chap-

ter quantifies the effects of transportation costs and supply network variables

on price dispersion on a larger geographic scale, accounting for city-level mean

prices across more geographically diverse locations.

Eckert (2011) surveys the literature on gasoline retailing, including supply

side effects related to gasoline pricing. Among these are numerous studies on
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the relationship of crude oil prices to retail prices, and the asymmetries of price

movements to increases and decreases in crude oil prices. Feyrer, Mansur and

Sacerdote (2016) investigate the transmission of income shocks generated by

the fracking revolution in the crude gasoline industry and find that wage and

income shocks are most strongly transmitted to areas that are most closely

connected, both geographically and along the supply network, to the fracking

sites. One of the most closely related studies in the recent literature comes

from Yilmazkuday and Yilmazkuday (2012), who attempt to attribute relative

price differences between locations to difference stages of the production pro-

cess. They determine that price dispersion across locations within a city can

be decomposed as attributable to 50% from crude oil prices, 33% from refinery

costs, 12% from taxes, 10% from mark-ups, and only 4% from spatial factors.

While this chapter does not decompose the contributing factors of price disper-

sion in a manner similar to these papers, it does extend the price dispersion

literature by quantifying the relationship of the supply network structure to

observed price dispersion across locations.

4.3 Supply Network

A common approach in price dispersion literature is to use a measure of geo-

graphic distance as a proxy for the associated transportation costs that govern

the arbitrage conditions sustaining price gaps between locations. However, if

transportation costs differ across locations, or vary depending on factors like

the method of transportation employed, geographic distance alone may be a

biased measure. The potential profits for suppliers seeking to buy product at

lower price locations and transport to higher price locations for resale depend
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on the per-unit costs associated with the transportation methods available be-

tween those locations. Observed price dispersion will therefore be a function

not only of geographic distance, but also of the characteristics of the trans-

portation options that suppliers can employ between retail locations.

In this chapter the term “supply network” refers to the various methods

available for transporting oil products, such as refined gasoline, between loca-

tions across Canada. There are four primary modes of transportation: pipeline,

marine tanker, rail, and truck. Pipelines are the most prominently used method

of transporting bulk quantities, with approximately 750 million barrels of re-

fined oil products being shipped annually via pipeline. Alternatively, approxi-

mately 95 million barrels of refined products are transported by marine tanker,

both domestically and via import, into Canadian ports annually. Put into

perspective, the amount of oil products transported daily across Canada via

pipeline would necessitate the equivalent of 4200 rail cars, or 15,000 trucks.

Pipelines are the most cost-effective means of transporting large quanti-

ties of gasoline products, followed in order by tanker, rail and truck.7 How-

ever, pipeline and sea transport face obvious limitations of geography and pre-

existing infrastructure, as pipelines and sea routes are less prevalent than the

extensive rail and highway networks throughout Canada. Therefore, locations

that share existing pipeline or sea route connections may reflect different rel-

ative pricing patterns than locations that do not have access to these shipping

options.

The Canadian gasoline supply network begins with crude oil reserves and

imports. The vast majority of domestic crude production occurs in Western and

7For a detailed breakdown of the crude oil and petroleum products infras-
tructure in Canada, refer to Natural Resources Canada report, available at:
http://www.nrcan.gc.ca/energy/sources/infrastructure/1490.
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Northern Canada, with the remainder mainly occurring in offshore reserves

in the North Atlantic Ocean.8 Crude oil is transported to refineries to be pro-

cessed into finished petroleum products via two primary methods: in Western

and Central Canada, where crude comes mainly from domestic production, this

occurs via pipeline; in the East and Quebec, where most crude comes from off-

shore reserves or imports, this occurs primarily via marine tanker.9 This leads

to a natural division of Canadian cities into distinct supply regions: Western

Canada, Ontario, Quebec, and Atlantic Canada — in this chapter, I use the

term “regions” to refer to these 4 distinct supply regions of the Canadian gaso-

line market.

Once the crude oil is transported from the source, it is converted into fin-

ished oil products at one of 19 Canadian refineries, 16 of which produce finished

gasoline products, that are located in all Canadian provinces with the excep-

tions of PEI, Manitoba and the northern territories. The locations of these

refineries are shown in Figure 4.1.

Figure 4.1: North American Oil Pipeline Infrastructure

(a) Western Canada (b) Eastern Canada

8Energy Information Administration, United States Department of Energy, report in Oil
and Gas Journal, December 2011, available at: www.eia.doe.gov/oiaf/ieo/index.html.

9There are an estimated 250,000km of liquids pipeline infrastructure across Canada.
Source: Canadian Energy Pipeline Association.
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Once refined, gasoline is shipped to regional terminals for distribution to

retail outlets. Shipping from refineries to terminals can occur by pipeline, ma-

rine tanker, rail or truck. Once delivered to terminals, the refined gasoline may

first receive additives to create unique blends that are specific to retail brands,

or be shipped directly to retail outlets, which is always done by truck. To take

advantage of economies of scale, retail brands often use the same terminals for

distribution to retail outlets, through reciprocal purchase agreements.10 This

minimizes total transportation costs for refined products, resulting in a rela-

tively small number of terminals supplying large geographic regions for any

number of distinct retail brands.

The supply network figures most prominently between the refinery and ter-

minal stages, where methods of transportation are most varied. Pipelines, fol-

lowed by ports, are more cost-effective than rail and truck, but are more limited

by geography and terrain. Although pipelines have the lowest per-unit ship-

ping cost, their construction is also the most expensive. Industry rule-of-thumb

suggests that it requires approximately 15–20 years of pipeline operation to re-

coup the fixed costs of building a pipeline.11

Since the methods of transportation and their associated costs are common

to all locations for most links in the supply network (crude to refinery, ter-

minal to final outlet), any variation in transportation costs between locations

10Source: Natural Resource Canada, Ibid.
11Source: Canadian Energy Pipeline Association.
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can be assumed to be a function of the methods employed between refinery-

to-terminal across locations.12 Therefore in quantifying the impact of the sup-

ply network on price dispersion across locations, I use variation in the supply

network at the terminal-to-refinery stage, in conjunction with geographic dis-

tance, as a proxy for the transportation costs associated with supplying various

locations.

The Impact of the Supply Network on Price Dispersion

For some intuition as to why the supply network may impact price dispersion in

the gasoline market, consider two cities located X km apart that exhibit differ-

ent pre-tax gasoline prices. Any observed price difference theoretically reflects

the cost of arbitraging this price gap for potential suppliers. Suppliers would

need to find it profitable to purchase gasoline at the lower price location and

transport it to the higher price location for resale. However, the arbitrage op-

portunity depends on the existing supply network — the costs of transporting

bulk quantities will depend not just on the distance between the two locations,

but also on the available methods of transportation and their associated costs.

In my quantitative analysis, I supplement data on traditional measures of ge-

ographic distance between locations with data on supply network variables to

get an unbiased estimate of the quantitative impact of both distance and sup-

ply network variation on price dispersion across locations.

Pipelines are widely agreed to be the safest, quickest, and cheapest means of

transporting large quantities of gasoline products between locations. Although

12Due to the mostly partitioned aspect of the crude-to-refinery stage of the production pro-
cess, any difference between pipeline and seaport supply methods could be assumed to be
captured by regional effects between the West, Ontario and Quebec/Atlantic regions — these
divisions concur with the assertions made in the Natural Resources Canada report on gasoline
supply infrastructure that define these regions as natural “supply orbits”.
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cost may vary depending on location, transporting oil products by pipeline

generally costs between $3–6 per barrel, and move at speeds between 5 and

20km/hr. Since pipelines are generally laid underground, they tend to follow

direct routes between locations and are largely indifferent to terrain. Once

pipelines are constructed connecting locations, they can be used with relatively

little cost of coordination, for large volumes of product — analogous to “flipping

a switch” and sending the products to their desired location. However, one

drawback of pipeline use is that the large capital and fixed costs associated

with their construction mean the limited number of existing pipelines are typ-

ically run at or near capacity and accommodating large increases in demand is

often difficult.

Conversely, consider the alternative of transportation by land, typically

done by rail for large volumes of product. Although freight train shipping is

typically faster once set in motion (roughly 30–35km/hr), the per-unit costs are

higher, typically between $10–15/barrel, and shipping routes may not be as

direct, historically following roadways, and are often impeded by the surround-

ing terrain. Additionally, it is estimated that the amount of oil product shipped

through pipelines on a daily basis in Canadian pipeline infrastructure would

require approximately 4200 rail cars to transport. Thus, setting up large ship-

ments by rail would be much more costly to arrange and would require a longer

time frame to organize than with pipelines, potentially missing opportunities

for arbitraging price differences. Similarly, shipping by marine tanker imposes

geographical limitations, requiring ports for both locations, and faces higher

variable costs and coordination time than shipping by pipeline.

Observed price gaps between two locations may therefore reflect differences

in the supply network: locations connected via pipeline may exhibit smaller
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ceteris paribus price differences than those that are not, with similar effects

expected for locations connected by seaport, as opposed to land. For these rea-

sons, the supply network may be significant in determining what price gaps

can be sustained over short periods of time, reflected by weekly relative price

differences. However, over time, using mean price differences, the supply net-

work may not play as large a role as arbitrage opportunities may be reduced or

eliminated over time.

4.4 Data

Gasoline Price Data This paper uses a unique data set compiled from gaso-

line price data collected by the Kent Group, a downstream data collection and

marketing services firm.13 The Kent group performs weekly random surveys

of gas stations to produce a snapshot of city-level average retail prices across

Canada. The relevant data is compiled from weekly average price data for reg-

ular unleaded gasoline across a city-wide sampling of independent gas stations

located in 44 Canadian cities between January 2001 and May 2017. Together

they comprise 905 weeks of observations for a total of 39,820 independent city-

average retail price observations.

Since this paper investigates the role of the supply network on price disper-

sion across locations, I examine pre-tax price data, controlling for variation in

provincial and municipal gasoline taxes, to identify the price that would actu-

ally be received by suppliers, which governs the arbitrage condition. Summary

statistics for the pre-tax price data at the national, as well as regional levels

can be found in Table 4.1. The four regions correspond to the natural divisions

suggested by the structure of the supply network. There is large variation at

13Available at http://www.kentmarketingservices.com/dnn/PetroleumPriceData.aspx.
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the national level, with weekly pre-tax prices ranging from 14 ¢/L up to 128.5

¢/L between 2001 and 2015, with a mean price of 67 ¢/L. The mean and stan-

dard deviation are consistent across the various regions, with the West typ-

ically exhibiting the highest mean prices and largest min-max spread, while

the Atlantic region exhibits the smallest min-max spread.

Table 4.1: Pre-tax Weekly Unleaded Gasoline prices

Summary Statistics
(¢/L)

Region Mean Std. Dev. Min Max Median
Canada 67.4 19.2 14.1 128.5 67.4
West 70.0 19.7 14.1 128.5 70.2
Ontario 65.8 19.2 20.9 113.5 66.4
Quebec 65.6 18.8 23.5 112.3 65.8
Atlantic 66.2 18.3 27.2 108.7 66.2

This retail price data is consistent with data collected by Statistics Canada,

with the added benefit of more frequent observations (weekly rather than monthly)

which allows for a more accurate accounting of responses to price gaps that

arise (and may disappear) between locations across shorter periods of time.

Further the 44 cities in this data set (as opposed to the 18 in the StatsCan

data) cover a more geographically diverse set of locations across Canada, and

include more variation in the available supply network between locations, al-

lowing for a stronger analysis of the impact of the supply network on price

dispersion in the Canadian gasoline market.

4.4.1 Descriptive Statistics from Pre-Tax Data

The data provides several key insights into pricing behaviour. Pre-tax prices

are highly correlated across cities, both in price levels and, to a lesser extent,
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changes in price. These correlations are strongest between cities within supply

regions, which also exhibit smaller mean-price differences than inter-regional

city-pairs. Relative prices change little across cities and variation across loca-

tions is small and stable.

1a. Pre-tax prices are highly correlated across locations

Over the 17 year period spanned by the data, pre-tax gasoline prices are highly

correlated for all city-pairs. Figure 4.2 shows that most correlation coefficients

for city-pairs are above 0.95, and all are above 0.90, indicating a high level

of correlation in weekly prices over time. These prices are even more highly

correlated across city-pairs than they are with crude oil prices, both with Brent

crude, which is typically used as a price gauge in Eastern and Central Canada,

as well as with West Texas Intermediate (WTI), which is used more in the

United States and Western Canada.

Figure 4.2: Weekly Price Correlations: Levels
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1b. Pre-tax price changes are less highly correlated across locations

Though the pre-tax prices exhibit high correlations across locations, the changes

in weekly pre-tax prices are less highly correlated. Figure 4.3 plots the corre-

lation coefficients for all city-pairs for the change in the pre-tax price from the

previous week’s value. These correlations, most of which are in the range of

0.15–0.60, are smaller than those of the price levels (0.90–0.99). This discrep-

ancy between the high level of correlations between price levels and the lower

level of correlation between price changes raises questions about the responses

of retail prices to shocks across locations. Differences in market size, location-

specific demand shocks, or variation in the available supply network may be

significant in accounting for these retail price movements.

Figure 4.3: Weekly Price Correlations: Weekly Changes



125

2a. Intraregional pre-tax prices are more highly correlated

Pre-tax prices are more highly correlated for city-pairs within the same region

than for interregional pairs. In Figure 4.4, all city-pairs display high correla-

tion coefficients, above 0.90; however, while most intraregional city-pairs, seen

in red, have coefficients between 0.96 and 0.99, the majority of interregional

correlation coefficients, seen in blue, are generally lower, falling between 0.94

and 0.98. This property holds within each of the four regions across Canada,

with intraregional city-pairs displaying higher correlations than interregional

pairs.

Figure 4.4: Retail Price Correlations vs. Mean Price Differences: National

2b. Intraregional pre-tax prices exhibit smaller mean-price differences

Intraregional city-pairs also exhibit a smaller mean price difference than in-

terregional pairs, regardless of the Canadian region in which they occur. With

the notable exception of a grouping of points from city-pairs involving White-

horse or Yellowknife (which may potentially be outliers due to their northern
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isolation), most intraregional city-pairs exhibit lower mean-price differences,

in the range of 0–5 ¢/L differences. Although many interregional city-pairs

also exhibit low mean-price differences in this range, a larger proportion of in-

terregional pairings display differences in the range of 5–10 ¢/L. This property

is true within each region as well. These findings reinforce the relevance of

regional effects in accounting for retail price dispersion.

3. Coefficient of variation for pre-tax prices is small and stable

Pre-tax prices display a level of variation across Canada that remains small

and stable over time. The coefficient of variation for weekly pre-tax prices lies

in the range from 0.04 to 0.20 over the span of January 2001 to May 2017, the

majority of which occur below 0.10, and exhibits few large changes. Figure 4.5

shows that as the mean national price changes and trends higher over time,

the coefficient of variation remains small, reflecting a fairly stable relationship

of prices across the country over time. Notable is the increase in mean prices

during the crisis of 2008 (around week 400), with correspondingly low varia-

tion, and the ensuing spike in the coefficient of variation as the mean prices

finally decreased in late 2008, indicative of national prices rising symmetri-

cally, but declining at different rates in the ensuing periods. Across regions,

the coefficient of variation is consistently low and stable.

4. Minimum and maximum prices’ location rarely changes

Although weekly gasoline prices across Canada change frequently for each city,

the location of the minimum and maximum weekly prices across Canada rarely

changes. Over the 905 week period spanned by the data, only 3 of the 44 differ-

ent cities assume the place of maximum pre-tax price, with the vast majority
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Figure 4.5: Coefficient of Variation: National

of these occurrences being split between the two most geographically isolated

cities, Yellowknife, NWT., and Whitehorse, YK.14 The location of the minimum

pre-tax price changes more frequently than the maximum, but a small number

of cities, such as Windsor, Quebec City, Montreal, Ottawa, Edmonton and Van-

couver, account for the majority of minimum weekly prices. The histogram in

Figure 4.6 plots the frequency of these occurrences.

The minimum and maximum weekly pre-tax prices also follow a stable re-

lationship with the mean weekly price. The maximum price typically falls in

a range of 120–150% of that of the mean national price, while the minimum

price falls in the range of 75–90% of the mean national price, as seen in the top

panel of Figure 4.7. This leads to a steady min-max spread that resides mainly

between 30–70% of the mean price, as shown in the bottom panel of Figure 4.7.

14Corner Brook, NL accounts for the maximum price in only a few weeks.
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Figure 4.6: Max/Min histogram

Figure 4.7: Min/Max spread and Mean Price
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4.5 Empirical Analysis

I use regression analysis to quantify the impact of the structure of the sup-

ply network, as well as other explanatory variables, on price dispersion across

Canadian cities. I regress measures of mean and weekly relative prices across

Canadian cities on explanatory variables such as distance, region and market

size, and also include supply network variables — specifically, I use dummy

variables for the existence of a pipeline or seaport connection linking locations,

as well as distances from each city to the closest supply terminal.15

Testing for Stationarity

To determine how the supply network and other explanatory variables impact

price dispersion across locations over time, I follow the literature on Law-of-

One-Price (LOP) deviations and test for stationarity in the weekly price data

for each city, as well as relative prices between city-pairs, to rule out long-run

convergence to parity of prices across locations.16 I use a standard Dickey-

Fuller test of the AR(1) process with constant and time trend, of the form

∆Pjt = α0 + α1t+ δPjt−1 + ut (4.1)

Table 4.2 shows that the null hypothesis of a unit root (δ = 0) can be rejected

at the 95% confidence level for 19 of the 44 Canadian cities. I find that the more

geographically isolated a city, the more likely is its weekly price data to be non-

stationary — for example, northern cities such as Yellowknife, Whitehorse,

many prairie cities and all of the Atlantic cities appear to be non-stationary,

15Source for terminal distance data: http://www.essomaps.ca/terminals.
16For example, see Ceglowski (2003) or Parsley and Wei(1996).
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while most of Ontario and Quebec, as well as large Western cities like Vancou-

ver and Victoria, appear to be stationary.

However, since the arbitrage opportunity is a function of the relative price

between cities, I also test the time series of weekly relative prices across all

city-pairs for stationarity. For each city-pair, ij, I test the AR(1) process of the

form

∆|log(Pit)− log(Pjt)| = α0 + α1t+ δ|log(Pit−1)− log(Pjt−1)|+ ut (4.2)

With 44 Canadian city-pairs, I find that all 946 possible relative price se-

ries can reject the null hypothesis of a unit root at the 99% confidence level.

This indicates that while each individual city’s price series may or may not be

stationary over time, the high degree of correlation between city-pair prices

generates a stationary time series for each potential weekly relative price se-

ries. This result suggests that OLS regression, using weekly relative prices

as the dependent variable is suitable for quantifying the impact of the supply

network on price dispersion across locations.



131

Table 4.2: Testing for Stationarity of Time-Series Data

Stationary at the X% confidence level?
99% 95% 99% 95%

WEST Region
Whitehorse No No Red Deer No No
Vancouver Yes Yes Edmonton No Yes
Victoria Yes Yes Lethbridge No Yes
Prince George No No Regina No No
Kamloops No Yes Saskatoon No No
Kelowna No No Prince George No No
Yellowknife No No Winnipeg No No
Calgary No Yes Brandon No No
ONTARIO Region
Toronto Yes Yes Thunder Bay No Yes
Ottawa No Yes North Bay Yes Yes
Windsor Yes Yes Timmons No No
London No Yes Hamilton No Yes
Sudbury Yes Yes St. Catherines No Yes
Sault Ste. Marie No Yes
QUEBEC Region
Montreal Yes Yes Gaspe No No
Quebec City No Yes Chicoutimi No Yes
Sherbrooke No No
ATLANTIC Region
Saint John No No Yarmouth No No
Fredericton No No Truro No No
Moncton No No Charlottetown No No
Bathurst No No St. Johns No No
Halifax No No Gander No No
Sydney No No Cornerbrook No No
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Empirical Approach

To quantify the impact of the supply network on pre-tax gasoline price disper-

sion across Canadian cities, I use OLS regressions with two different measures

of price dispersion between city i and city j as the dependent variable:

1. The absolute mean-price difference between city-pairs, |log(P̄i)− log(P̄j)|.

2. The weekly relative price between cities, |log(Pit)− log(Pjt)|.

These measures capture different aspects of price dispersion across locations:

mean city-pair differences examine systemic price variation across cities, while

weekly relative prices examine how prices move and react to shocks differently

across locations.

The explanatory variables include measures of distance, market size, and

supply network variables. For each city-pair, distance is measured as the

shortest driving route (in thousands of kilometres) between the two cities,

distij.17 This measure highlights the distinction between transporting prod-

ucts by pipeline and sea versus the default alternative of land routes used by

train and truck, which may impose geographical limitations. Market size vari-

ables include a regional dummy, Regij, which takes the value of 1 if both cities

are in the same region (as defined by the supply network regions) and zero oth-

erwise, and two population measures, popij. The first measure is the difference

in population between city-pairs, |totpopi−totpopj|.18 The second measure is the

difference in population density between city-pairs, |densi − densj|, measured

as population per square kilometer, in order to control for rural and urban

17See Appendix C.1 for a detailed discussion of data measures.
18The population measured used here is the population within city limits, as measured by

Statistics Canada.
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differences such as land prices that may be passed-through to pre-tax gasoline

prices. The supply network variables include two dummy variables for pipeline

connection, Pipeij, and seaport connection, Seaij , which are set to 1 if the two

cities share a pipeline connection or traversable seaports, respectively, and zero

otherwise. 19 Finally, the variable termij represents the difference between the

distance to the closest supply terminal for the two cities.20

With y representing one of the two dependent variables, the regression spec-

ification is then:

y = α+βlog (distij)+γRegij+δP ipeij+λSeaij+θlog (popij)+ψlog(termij)+εij (4.3)

All non-dummy variables are log-transformed to compensate for potential

heteroskedasticity issues with prices, distance and population differences be-

tween pair-wise locations. For both mean- and weekly-prices, clustered stan-

dard errors are used to control for correlation between observations of relative

prices that share at least one city in common.21

4.5.1 Mean Price differences

The coefficient estimates with city-pair mean price differences as the depen-

dent variable can be found in Table C.1. The supply network has a significant

impact on pre-tax mean-price differences across locations. The coefficients for

19Potential problems with endogeneity may arise with the pipeline variable, as it may be
argued that the choice of locations for pipeline construction may be influenced by relative prices
across those locations. However, since the pipelines employed in this study were constructed
well before the time span of the retail price data, it is assumed in this chapter that these
pipeline connections are predetermined as explanatory variables for pre-tax price dispersion.

20For example, if city i is 100km from its nearest terminal and city j is 75km from its nearest
terminal, termij would be 25km.

21Specifically, errors are clustered in groups g = 1, ..., G, where all elements of group g contain
a relative price that includes city i in |log(P̄i) − log(P̄j)| for mean-price differences, or city i in
period t in |log(Pit)− log(Pjt)| for weekly-price differences.
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the dummy variables on pipeline and seaport connections both have the ex-

pected negative sign, implying that retail prices are less dispersed across lo-

cations sharing these connections. However, the estimates for seaport are not

significantly different from zero at a 90% confidence interval, as opposed to

a 99% confidence level for the pipeline dummy. The coefficient on pipeline

(δ = −0.0353) in the preferred specification in regression 1, indicates that,

ceteris paribus, cities connected by a pipeline exhibit 3.5% less dispersion in

their mean prices. I also find that while statistically significant, doubling the

difference in distances from the nearest terminal would increase mean-price

dispersion by only 0.3%.

Distance and region have statistically significant coefficients. Interpreting

these coefficients, with (β = 0.0374), two cities that are 100% further apart (in

km) exhibit 3.7% more price dispersion in their mean prices. Intuitively, this

means that if City X and City Y are identical in every way, but City X happens

to be twice as far away from City Z as is City Y, then we would expect the

difference in mean prices between City X and City Z to be 3.7% larger than

that between City Y and City Z, ceteris paribus.22 The region coefficient is

positive, predicting that prices are 6.3% more dispersed for city-pairs that are

within the same region than for those that are not. This may potentially be

due in part to demand side effects, indicating that demand shocks are highly

localized over time, and not necessarily dispersed across entire regions.

Finally, the population coefficients are both found to be significant, but

small. City-pairs with 100% larger population differences exhibit 0.5% more

22While this result may seem small in magnitude relative to the percentage increase in dis-
tance between locations, a country as geographically scattered as Canada suggests such large
variations in distance, with a coefficient of variation for the distance variable of 0.6817, com-
pared to coefficient of variations for pre-tax prices Canada-wide with a mean value of 0.0943.
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mean-price dispersion, while cities with 100% larger differences in popula-

tion density also exhibit 0.5% more mean-price dispersion. While distance,

region and pipeline are significant factors in predicting mean price differences,

the value of the estimated coefficients changes very little across regressions

as other explanatory variables such as seaports and population measures are

added.

4.5.2 Weekly relative prices

The supply network also impacts relative weekly-price differences. Table C.2

presents the results of the regression analysis with weekly relative prices as

the dependent variable. Controlling for distance and market effects, the supply

network variables for pipeline and seaport connects are statistically significant

and negative. In the baseline specification in Reg. 1, the existence of a pipeline

connecting two cities (δ = −0.0221) amounts to a 2.2% lower weekly relative

price difference, while locations that share a seaport connection (λ = −0.0160)

display to a 1.6% reduction in relative weekly price dispersion. Distance, re-

gion and market size variables are also all significant explanatory variables

in this specification. A 100% increase in distance between two locations in-

creases the weekly relative price gap by 4.2%, while a 100% increase in ei-

ther total population differences or population density differences amounts to

a 0.5% greater spread in relative prices. Again, intraregional relative prices

are more dispersed than interregional prices, by approximately 5.6%. Using

these parameter estimates, the existence of a pipeline between two locations

produces an analogous effect on relative prices as would a 53% reduction in

distance between them, while the existence of a maritime shipping link pro-

duces the effect of a 38% reduction in land route distance.
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The distance coefficient estimates are stable across most regression specifi-

cations, although the coefficients suggest that omitting supply network charac-

teristics from any regression analysis of these weekly relative prices may bias

the predicted results. The omitted supply network variables may bias the dis-

tance coefficients upwards by roughly 5% across specifications, and ignoring re-

gional effects (where region boundaries are defined with supply network arcs)

can bias distance coefficients by upwards of 35%. Taken in conjunction with the

results obtained from the mean-price difference specifications in Section 4.5.1,

this suggests that arbitrage opportunities that may arise in any given period

by the presence of a pre-tax price gap across locations are not merely limited

by the geographical distance between locations. Rather, they are a function

of the effective distance between locations, which takes into account both the

geographical distance and the available supply network linking the two. The

regression coefficients support the intuition that pipelines are potentially able

to curtail arbitrage opportunities to a greater extent due to the speed and ease

of coordination of shipping via pipeline, while larger price variations may be

sustainable across locations connected by truck or rail, due to the larger time

and monetary costs of coordinating the resources necessary to ship large quan-

tities via these modes of transportation.

4.5.3 Robustness

To check the robustness of these results, I consider two alternative cases of the

regression analysis: (1) omitting Quebec and Atlantic Canada cities from the

data, and (2) omitting Whitehorse and Yellowknife from the data.

Case (1): While the Federal government does not regulate gasoline prices

in Canada, several provinces do enforce some form of price regulation. Quebec
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sets a minimum weekly price, dependent on estimated acquisition and trans-

portation costs, while New Brunswick sets a maximum weekly price, indexed

to crude prices and retail margins. Nova Scotia, Price Edward Island and New-

foundland and Labrador all set the weekly price of gasoline in their province

following similar standards based on spot crude prices and relative to esti-

mated transportation costs.23 This raises the possibility that the estimates in

Tables C.1–C.2 are biased. I therefore perform the regression analysis while

omitting all city-pairs that include at least one of the cities in the Quebec and

Atlantic regions, effectively leaving only the Ontario and West regions.

Case (2): Due to their relatively extreme geographic remoteness, Yellowknife,

NWT. and Whitehorse, YK may be outliers in the Canadian gasoline market.

While theoretically possible, it may not be practical to consider that suppliers

explore arbitrage opportunities between Yellowknife and St. John’s, NFLD,

in the same light as they would explore potential arbitrage opportunities be-

tween Edmonton and Calgary, AB, for example. I therefore repeat the regres-

sion analysis while omitting all city-pairs that include either Whitehorse or

Yellowknife.

Omitting Quebec and Atlantic

In Table C.3, omitting Quebec and the Atlantic provinces produces relatively

little change on the impact of the supply network on mean-price differences.

The coefficient on pipeline remains significant and negative, while its value

increases slightly — the existence of a pipeline connecting cities now results

in a 4.1% reduction in price dispersion. The seaport coefficient is still statisti-

cally insignificant at the 90% confidence level, and the coefficient on terminal

23A more detailed description can be found at the Consumer Council of Canada:
http://www.consumerscouncil.com/index.cfm?id=13904.
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distance becomes statistically insignificant as well once these cities have been

omitted. The coefficient on distance remains significant, and rises slightly, with

a 50% increase in distance between cities resulting in a 2.6% larger difference

in mean-prices.

In Table C.4, the impact of the supply network on weekly price dispersion

increases when omitting Quebec and Atlantic cities. A pipeline connection

reduces weekly price dispersion by 3.0%, and a seaport connection reduces

price dispersion by 4.3%. This change may be a function of the fact that for

the remaining cities, in the West and Ontario regions, there are a larger va-

riety of employed transportation methods, with pipelines in particular being

more prominent. Contrarily, the omitted Quebec and Atlantic cities tend to be

mainly connected by seaports and lack much pipeline infrastructure. The coef-

ficient on distance increases, with a 50% increase in distance resulting in 2.7%

less weekly price dispersion across locations.

Omitting Whitehorse and Yellowknife

In Table C.5, the supply network remains significant in impacting mean-price

dispersion when omitting Whitehorse and Yellowknife. A pipeline connection

between locations reduces mean-price dispersion by 1.6%, and a seaport con-

nection between locations reduces mean-price dispersion by 1.0%, and the sea-

port variable now becomes significant at a 95% confidence level. Perhaps not

surprisingly, removing the two cities that are the most extremely geographi-

cally located reduces the magnitude of the distance and region coefficients. A

50% increase in distance between cities results in only 0.2% less mean-price

dispersion, and locations in the same region exhibit only 0.7% less price dis-

persion than city-pairs that span multiple regions.
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In Table C.6, omitting Yellowknife and Whitehorse decreases the impact of

the supply network on weekly price dispersion. The pipeline and seaport coef-

ficients are still statistically significant, but smaller, with a pipeline connection

reducing weekly relative price dispersion by only 0.4% while a maritime con-

nection reduces weekly price dispersion by 1.3%. The distance coefficient, while

still statistically significant, also decreases, with a 50% increase in distance re-

sulting in a 0.6% increase in price dispersion between cities.

4.5.4 Summary: Impact of Supply Network on Price Dis-
persion

I find that mean price differences are functions of distance, as a proxy for trans-

portation costs, and market-specific factors that limit arbitrage opportunities

and allow price gaps to be sustained in mean prices over time. I also find that

the supply network, both in regional supply effects and the existing pipeline

infrastructure, significantly impact mean price differences. Weekly price dif-

ferences are also significantly impacted by the structure of the supply network

for both pipeline and marine transportation. Pipeline connections between lo-

cations limit weekly-price dispersion by the equivalent of a 53% reduction in

distance, while seaport connections are akin to a 38% reduction in distance

across locations. This suggests that the costs of arbitraging price gaps are sig-

nificantly affected by the differences in the supply network’s structure, with

lower variable-cost methods (like pipelines) reducing the effective distance be-

tween locations more than alternative methods with higher per-unit shipping

costs.



140

4.6 Case Studies of Supply Shocks

An alternative approach to identify how the supply network impacts retail

prices in the Canadian gasoline market is how “supply shocks” affect retail

price dispersion across locations. This paper specifically considers disruptions

in production at the refinery level. This aspect of the supply chain is chosen for

several reasons:

1. There are a relatively small number (16) of refineries that operate across

Canada, and therefore occurrences of refinery shutdowns can be more

easily identified via newspaper and petroleum industry reports;

2. Products are moved from refineries to terminals for distribution via all

four modes of transportation, and therefore the variation in the trans-

portation availability across geographic locations is larger than for the

retail level, where all transportation is done by truck;

3. It allows for consideration of reactions in price to supply disruptions that

may be felt by a group of cities within a geographic proximity to a par-

ticular refinery, but not necessarily at either the national level, or the

extremely localized level.

Intuitively, one might expect that a shortage in supply caused by a tempo-

rary shutdown of a refinery in a particular region may impact relative prices

for nearby cities, but not necessarily all cities nationwide. Further, one might

expect that the ability of suppliers in a certain location to respond to supply

shortages to depend on the available modes of transportation in their regions.

Therefore, one way to investigate this conjecture is to examine cases of ob-

served refinery shutdowns, to determine responses in production levels, net
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imports and retail price changes that occur as a result. However, since refiner-

ies are such vital links in the supply chain, there are large incentives to keep

them operating and resolve any disruptions as quickly as possible, regardless

of repair costs. Thus it is difficult to find a large number of instances of re-

fineries remaining closed for any prolonged period of time, in order to perform

a thorough quantitative analysis.

The small number of shutdowns can be classified in one of two ways: planned

shutdowns, defined as a scheduled, forecast shutdown of refinery operations,

typically for maintenance purposes, performed during seasons when gasoline

demand is lowest; and unplanned shutdowns, defined as an unexpected disrup-

tion caused by accidents or acts of nature. Examples of planned and unplanned

shutdowns are listed in Table 4.3.

Table 4.3: Refinery Shutdowns

Refinery Date Reason Capacity % of Reg.
(bpd) capacity

Planned shutdowns
Calgary Jun/Jul 2006 Maintenance 110,000 18.7
Saint John Nov/Dec 2008 Maintenance 300,000 59.5
Edmonton Aug 2009 Maintenance 135,000 23.0
Unplanned shutdowns
Nanticoke (ON) Feb 2007 Fire 112,000 29.2
Edmonton Aug 2008 Cat. Conv. 135,000 23.0
Scotsford (AB) Sept 2009 Unplanned maint. 100,000 17.0
Dartmouth (NS) Sept 2010 Hurricane 89,000 17.6

In order to examine the effects of these shutdowns on refinery production

volumes, data from Statistics Canada is employed for the period January 2001

to May 2017. This data is categorized by Statistics Canada into provincial

aggregate levels, as well as regional levels, which can then be matched into the
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regions suggested by the supply network infrastructure. Specifically, refinery

data is grouped into the Atlantic provinces, Quebec and Ontario — the only

notable exception is that the Western provinces are not aggregated together

into one region, but rather by individual province. The one shortcoming of this

data is that figures are withheld for refinery production in Saskatchewan and

British Columbia, in accordance with confidentiality requirements.24 However,

as there are no refineries in Manitoba or the territories, and by capacity, the

B.C. and Saskatchewan refineries make up relatively small portions of the total

capacity of the region (less than 15%), the Alberta refinery data can serve as a

reasonable approximation for the Western region. Summary statistics for the

refinery data can be found in Table 4.4.

Table 4.4: Refinery Production

Summary Statistics
(cubic metres per month)

Region Mean Std. Dev. Min Max Median
Canada 824670 116810 443136 1131445 829380
West 793820 107930 443136 970013 808240
Ontario 894240 128600 528807 1131445 872330
Quebec 796200 84740 513483 976323 807000
Atlantic 814410 112890 443624 995657 838090

4.6.1 Stylized Facts from the data

Production Planned shutdowns have minimal effect on refinery production

volumes at the regional level. Planned shutdowns at the Saint John and Ed-

monton refineries coincided with 2% and 1% decreases in production levels

24Refer to the Canadian Statistics Act, available for viewing at:
http://www.statcan.gc.ca/about-apercu/act-loi-eng.htm.
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from their seasonal (monthly) averages in their respective regions, while the

Calgary shutdown coincides with a 4% increase in the regional production lev-

els relative to the season average. The size of these deviations, in terms of

standard deviations from the mean, are -0.26, -0.10 and +0.19 for Saint John,

Edmonton and Calgary, respectively. Refinery production for the Alberta re-

gion can be seen in Figure 4.8 with the period 1 week prior to 6 weeks after the

beginning of the shutdown highlighted. At the time of the planned shutdown,

production in the Alberta region actually increases, and remains slightly above

its seasonal average.

Conversely, unplanned shutdowns appear to have larger negative effects on

regional production volumes. Unplanned shutdowns at the Nanticoke, Edmon-

ton and Scotsford refineries coincide with 23.9%, 27.7% and 21.7% decreases in

regional production relative to seasonal averages, which are analogous to -1.64,

-2.80 and -1.85 standard deviations from their respective means. Refinery pro-

duction for the Ontario region can be seen in Figure 4.9 with the period 1 week

prior to 6 weeks after the beginning of the shutdown due to the Nanticoke fire

highlighted. In this case, at the time of the fire, the region experience a notable

decline in production and remains below its seasonal average in the following

weeks.

Inventories Planned shutdowns typically correspond with increases in in-

ventories in the month prior to the shutdown and little to no change in inven-

tories during the shutdown period, relative to their seasonal averages. Con-

versely, unplanned shutdowns display no discernible pattern in inventories for

the preceding month, with large decreases in inventories during the time of

the shutdown, relative to seasonal averages. This suggests that suppliers may

ramp up production near the end of the month preceding a scheduled closure
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Figure 4.8: Calgary Planned shutdown

(a) Refinery Production

(b) Retail Prices
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Figure 4.9: Nanticoke Unplanned shutdown

(a) Refinery Production

(b) Retail Prices
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in order to utilize some of the additional inventories to cover production short-

ages, while this strategy is simply not available for suppliers who cannot pre-

dict the unplanned shutdowns, thus inventories must decrease to accommodate

these unplanned decreases in production. Figure 4.10 shows the changes in net

inventories during both planned and unplanned shutdowns.

Net Imports Planned shutdowns do not noticeably impact net imports in

a region, relative to the seasonal average, while unplanned shutdowns tend

to coincide with increases in regional net imports during periods of decreased

production. This suggests that suppliers may be able to compensate for re-

gional production shortages by increasing net imports into the region when

unplanned shutdowns occur, while net imports may not be affected during pe-

riods of planned shutdowns, as prior planning may be able to adequately com-

pensate for these production shortages and not necessitate additional net im-

ports over seasonal averages. Figure 4.11 shows changes in net imports during

both planned and unplanned shutdowns.

Taken together, these facts from the data suggest a narrative in which the

scenarios of planned vs. unplanned shutdowns induce different responses from

suppliers. Since planned shutdowns are generally scheduled for periods when

demand is at its lowest, suppliers may be able to mitigate any decreases in cur-

rent production by using previously increased inventories to account for any

shortages. Further, as these planned shutdowns are scheduled and known, net

imports can be pre-arranged to compensate for any further shortages in net

production, so that net imports during planned shutdowns do not vary from

seasonal averages. However, when unplanned disruptions occur, suppliers may

resort to covering supply shortages by increasing net imports above seasonal

averages. Suppliers’ ability to adjust quickly to these unplanned shortages
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Figure 4.10: Refinery Inventories

(a) Planned Shutdowns

(b) Unplanned Shutdowns
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Figure 4.11: Refinery Net Imports

(a) Planned Shutdowns

(b) Unplanned Shutdowns
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will therefore be constrained by the existing supply network available to move

product across and within each region. Therefore the structure of the supply

network may have a large influence on the capability and speed at which sup-

ply shocks can be dissipated in the retail market.

4.6.2 Retail prices

As there are so few instances of prolonged refinery-level shutdowns, this paper

focuses on two specific example: a planned maintenance shutdown in Calgary

in late June/early July 2006 and an unplanned shutdown due to a fire at the

Nanticoke, ON refinery in February 2007. These two cases studies were cho-

sen for closer examination due to each refinery’s relatively similar share of re-

gional production capabilities, ranging from 20–30% of their respective region’s

typical gasoline production and the relatively central location of each refinery

within their regional supply hub.

A preliminary look at retail prices following these supply shocks indicates

that retail prices spike slightly more in locations in closer proximity to the

refinery that is shutdown than in other regions following an unplanned shut-

down. However, following unplanned shutdowns, prices generally move in sim-

ilar fashions across all regions, and these supply shocks do not appear isolated

to local prices. Further, locations close to the shutdown refinery that share

pipeline connections tend to exhibit less variation in price changes than those

locations with no pipeline access. Once again, this suggests that the supply in-

frastructure impacts retail price dispersion, as locations connected via pipeline

are separated by a smaller effective distance, ceteris paribus, and can therefore

disseminate supply shocks more quickly, resulting in less variation in retail

price.
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In the case of the Nanticoke fire, over the three week period following the

refinery shutdown, the Ontario average retail price spiked by 15.3% while the

Canadian average price increased by 12.6% and Western and Atlantic prices

grew by only 6.4% and 6.3% respectively.25 Additionally, the standard deviation

of price spikes for Ontario cities that share a common pipeline connection is

0.0263, whereas that of cities without pipeline access was 0.0384. Conversely,

in the case of a planned shutdown in Calgary, in the three week period following

the shutdown, the Western average retail price decreased by 0.01% while the

Canadian average price decreased by 0.03% and the Quebec and Ontario aver-

ages changed by -0.02% and +0.03% respectively, all of which reflect almost no

change in prices and minimal differences across regions.26 Contrasting these

two case studies provides preliminary evidence to reinforce the significance of

the supply network in impacting the way in which supply shocks are transmit-

ted into retail price changes across locations.

4.7 Conclusions

The supply network has a significant impact on relative price dispersion in the

Canadian gasoline market, limiting arbitrage opportunities that arise from

price gaps across locations. Like previous studies on price dispersion, geo-

graphic distance and market size are found to be significant factors in account-

ing for price gaps and violations of the law of one price for a homogeneous

good like gasoline. However, the contribution of this chapter is to determine

that variation in the available methods of transportation of gasoline products,

via pipeline or seaport connections, also significantly impacts price differences

25These results can be seen in the bottom panel of Figure 4.10(b).
26These results can be seen in the bottom panel of Figure 4.9(b).
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across locations. Pipelines decrease weekly price dispersion by the equivalent

of a 53% reduction in distance, while seaport connections reduce price disper-

sion by the equivalent of a 38% reduction in geographical distance.

This result is reinforced by a case study of supply shocks in the supply chain

for gasoline during refinery shutdowns. Examining these incidents suggests

that unplanned refinery shutdowns coincide with decreased regional produc-

tion levels that are accompanied by spikes in retail prices. These price spikes

are larger (in percentage terms) in areas closer to the shutdown, and also ex-

hibit less variation across locations that are connected by pipelines than across

those that are not. Planned shutdowns, however, exhibit minimal changes to

production levels and no clear price spikes, regardless of geographic location or

proximity to the refinery shutdown.

While this chapter offers some initial insight into the role of the supply

network on price dispersion in the Canadian gasoline market, more extensive

data on pre-tax and retail price dispersion across a larger number of locations,

of varying market size, would allow a more precise examination. As more cities

are included in the Kent dataset, further work may be able to exploit variation

in more remote and smaller cities, as opposed to the larger and more centrally

located cities that are currently available. Future potential work may also

focus on the role of the supply network on an international scale, by incorpo-

rating multiple countries and investigating retail price dispersion on a larger

geographic scale, including the impact of border effects. Data from American

retail gasoline markets at a level of detail comparable to the Canadian data

set could offer a first step in understanding what price differences arise when

policy and trade barriers potentially affect supply distribution and price dis-

persion across countries.
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Chapter 5

Conclusion

My thesis consists of three essays in international economics. The first two

chapters provide a quantitative analysis of bilateral trade growth during rapid

growth episodes over the past 60 years. I use bilateral trade data to determine

stylized facts of trade growth across goods classifications. I build a standard

trade model to assess the role of various sources of heterogeneity in matching

these stylized facts — in Chapter 2, I use heterogeneous productivity and tariff

changes imputed from trade data, while in Chapter 3, I include a choice for

exporters among multiple distribution technologies. Chapter 4 investigates

the role of variation in transportation options for gasoline in accounting for

observed price dispersion across Canadian cities.

In Chapter 2, I use bilateral trade data to decompose trade growth across

goods classifications during episodes of rapid growth in trade. I find that trade

growth is granular — a small number of goods account for a the majority of to-

tal trade between country-pairs, while most goods exhibit little to no growth in

trade. I calibrate a standard Melitz-style trade model, and find that the model

predicts less granularity in trade growth — only 10% of that found in the data,
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as measured by the share of total trade growth accounted for by various quan-

tiles of goods classifications. To quantitatively assess the model’s ability to

match the observed granularity in the data, I include heterogeneous produc-

tivity and tariff changes imputed from production and trade data and find the

model predicts roughly 70% of the observed granularity in the data.

To account for the higher level of granularity in the data, Chapter 3 in-

cludes a choice for exporters among multiple distribution technologies. When

firms export, they choose among multiple distribution options, which can be

broadly grouped into two categories — those with high-fixed and low-variable

costs, and those with low-fixed and high-variable costs. Characterizing equilib-

rium, I find a new channel that generates added granularity in trade growth.

Following productivity increases or tariff reductions during periods of trade

liberalization, some firms may find it profitable to switch distribution methods

— either from not-traded to the low-fixed cost method, or from the low-fixed

to high-fixed cost method. These “switchers” exhibit disproportionately larger

growth than firms that retain their prior distribution methods, as they experi-

ence a compound effect — a direct increase in exports due to the productivity

increase or tariff reduction, and the indirect effect of switching to a lower vari-

able cost method. Calibrating the model, I find it now generates roughly 90%

of the observed granularity in bilateral trade data, compared to the 70% gen-

erated by the model with a single distribution technology.

Chapter 4 examines how variation in transportation methods impacts re-

tail price dispersion across locations. Economic theory suggests that the trans-

portation costs of shipping goods between locations bounds the arbitrage condi-

tion that allows for sustained price gaps over time. Many studies use distance
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as a proxy for these transportation costs. In Chapter 4, I also consider how vari-

ation in transportation methods impacts observed price dispersion for a specific

good, gasoline, across Canadian cities. I use a unique data set on weekly av-

erage prices in 44 Canadian cities between 2001 and 2017 to quantify the im-

pact of variation in the availability of the four main modes of transportation

for gasoline — pipeline, marine tanker, rail and truck — on mean-price and

weekly-price differences between locations. Regression analysis finds that the

supply network has a significant effect on price dispersion in the Canadian

gasoline market. City-pairs connected via pipeline exhibit 3.5% less mean-

price dispersion than those connected by rail or truck. Further, the existence

of pipelines connecting cities has the effect of reducing weekly city-pair price

dispersion by the equivalent of a 53% reduction in geographical distance, while

a seaport connection between cities reduces the effective distance by 38%, in

terms of weekly price differences, compared to land-route alternatives. These

quantitative results suggest that the structure of the supply network is signif-

icant in accounting for observed price dispersion across locations.
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Appendix A

Chapter 2 Appendix

Figure A.1: Worldwide Trade: 1960-2015
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Figure A.2: Growth by Good: Least-Traded Goods (Canada-Mexico)

Figure A.3: Growth by Good: Mid-Traded Goods (Canada-Mexico)
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Figure A.4: Growth by Good: Most-Traded Goods (Canada-Mexico)

Figure A.5: Correlation: Imports vs. Tariff changes (U.S.-Canada)
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Figure A.6: Correlation: Imports vs. Tariff changes (U.S.-Mexico)

Figure A.7: Correlation: Imports vs. Tariff changes (U.S.-U.K.)
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Figure A.8: Growth by Good: 6-digit NAICS bilateral trade

(a) U.S.-Canada

(b) U.S.-U.K.
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Chapter 3 Appendix

Figure B.1: Growth by Goods Category: US Exports to Mexico
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Figure B.2: Growth by Goods Category: US Exports to Japan

Figure B.3: Productivity Distributions: Heterogeneous Productivity Changes
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Figure B.4: Heterogeneous Tariff Changes: Mexico

Figure B.5: Heterogeneous Tariff Changes: Canada
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Figure B.6: Heterogeneous Tariff Changes: Japan



Appendix C

Chapter 4 Appendix

C.1 Data Sources and Implementation

The gasoline price data comes from the Kent Group Ltd. website, publicly

available at http://charting.kentgroupltd.com/. I use weekly data on retail prices,

excluding taxes, for regular gasoline, from the 44 cities listed, and compile it

over the years 2001 to 2017. These prices represent a city-wide weekly average

of gasoline prices in each city, as sampled by the Kent Group from a wide se-

lection of branded and independent gasoline retailers every Tuesday morning

at 10:00AM local time.

The distance between cities is calculated as the shortest driving distance

as suggested by online navigation system Mapquest.1 While many papers use

variations of the Great-circle or Euclidean distances between locations to mea-

sure distance, this paper focuses on the arbitrage condition that governs price

dispersion, which is a function of the costs associated with physically trans-

porting gasoline products between locations. The default alternative for trans-

porting gasoline is by truck, as it is the only method accessible to all locations.

1available at https://www.mapquest.ca/.
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I therefore use the shortest highway route provided by Mapquest, measured in

kilometers, as the measure of distance between any given cities.

The region dummies are calculated to correspond with the natural supply

orbits suggested by Natural Resources Canada- cities in British Columbia, Al-

berta, Saskatchewan and Manitoba, as well as the Yukon and Northwest ter-

ritories fall into the West region; cities in Ontario and Quebec fall into their

respectively named regions; and cities in New Brunswick, Nova Scotia, Prince

Edward Island and Newfoundland and Labrador fall into the Atlantic region.

The pipeline dummies are calculated according to the current pipeline in-

frastructure in Canada, available from the Canadian Association of Petroleum

Producers (CAPP). Cities that considered to be connected by pipeline if they

are directly connected by an existing pipeline, or if they are both connected to a

common third city by pipeline. For example, while Edmonton and Regina may

not share a direct pipeline link, they are both connected to Calgary, and are

thus considered to be linked via pipeline.

The seaport dummies are set to one if there exists a plausible maritime

connection between the two cities, whether or not gasoline products are cur-

rently shipped via marine tanker between the two cities. This reflects the fact

that the price dispersion between cities is defined by the arbitrage condition

governed by the available transportation options, whether they have been em-

ployed in the past or not. For example, Saint John, N.B. and St. John’s, NFLD

are considered to be connected via seaport, where existing shipping routes ex-

ist; Thunder Bay, ON and Sault Ste. Marie, ON are considered to be connected

by seaport, even though they are not currently serviced by marine tanker; how-

ever Thunder Bay and St. John’s are not considered to be linked via seaport,

since it is not feasible for marine tankers to navigate the sea route between the
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cities, due to their size and scale, even though both cities have accessible ports.

The distances to the nearest terminals are calculated by the shortest high-

way distance provided by Mapquest, as well, using the terminal locations pro-

vided by Petroleum industry suppliers, like Esso. 2

C.2 Regression Tables

Table C.1: Mean price differences regressions
Regression estimation: Dependent variable = |log(P̄i)− log(P̄j)|
Variable Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5 Reg. 6 Reg. 7 Reg. 8 Reg. 9
(Std. Dev)
α 0.0013 0.0059 0.0110 0.0136*** 0.0231*** 0.0214*** 0.0199*** 0.0466*** 0.0446***
(Constant) (0.0163) (0.0128) (0.0112) (0.0116) (0.0074) (0.0074) (0.0081) (0.0046) (0.0047)
β 0.0374*** 0.0374*** 0.0379*** 0.0370*** 0.0374*** 0.0387*** 0.0398*** 0.0219*** 0.0233***
(distance) (0.0171) (0.0173) (0.0175) (0.0172) (0.0175) (0.0175) (0.0182) (0.0116) (0.0114)
γ 0.0627*** 0.0634*** 0.0642*** 0.0621*** 0.0628*** 0.0621*** 0.0523***
(Region) (0.0226) (0.0233) (0.0240) (0.0232) (0.0241) (0.0243) (0.0235)
δ -0.0353*** -0.0363*** -0.0385*** -0.0374*** -0.0408*** -0.0385*** -0.0125**
(Pipeline) (0.0115) (0.0119) (0.0118) (0.0122) (0.0122) (0.0120) (0.0055)
λ -0.0126 -0.0127 -0.0129 -0.0131 -0.0135
(Seaport) (0.0086) (0.0087) (0.0095) (0.0095) (0.0095)
θ 0.0052 0.0055 0.0067***
(Pop diff) (0.0037) (0.0035) (0.0032)
θ 0.0045 0.0050 0.0065
(Pop dens) (0.0044) (0.0049) (0.0047)
ψ 0.0029
(Term. distance) (0.0033)
R2 0.1974 0.1939 0.1875 0.1861 0.1747 0.1727 0.1544 0.0947 0.0925
Adj. R2 0.1906 0.1879 0.1824 0.1809 0.1704 0.1692 0.1517 0.0918 0.0906
N (obs.) 946
***-significant at 99% CL, **-sig. at 95% CL, *-sig. at 90% CL

2available at http://www.essomaps.ca/terminals.
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Table C.2: Weekly relative price regressions
Regression estimation: Dependent variable = |log(Pit)− log(Pjt)|
Variable Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5 Reg. 6 Reg. 7 Reg. 8 Reg. 9
(Std. Dev)
α 0.0288*** 0.0331*** 0.0384*** 0.0401*** 0.0499*** 0.0478*** 0.0468*** 0.0703*** 0.0701***
(Constant) (0.0042) (0.0036) (0.0033) (0.0029) (0.0021) (0.0020) (0.0020) (0.0009) (0.0006)
β 0.0416*** 0.0416*** 0.0421*** 0.0412*** 0.0417*** 0.0432*** 0.0439*** 0.0282*** 0.0283***
(distance) (0.0017) (0.0018) (0.0019) (0.0018) (0.0019) (0.0018) (0.0018) (0.0011) (0.0010)
γ 0.0563*** 0.0569*** 0.0578*** 0.0558*** 0.0564*** 0.0556*** 0.0493***
(Region) (0.0027) (0.0028) (0.0030) (0.0028) (0.0031) (0.0031) (0.0031)
δ -0.0221*** -0.0231*** -0.0254*** -0.0241*** -0.0276*** -0.0247*** -0.0015***
(Pipeline) (0.0010) (0.0009) (0.0008) (0.0009) (0.0008) (0.0007) (0.0018)
λ -0.0160*** -0.0161*** -0.0164*** -0.0165*** -0.0170***
(Seaport) (0.0013) (0.0013) (0.0014) (0.0013) (0.0014)
θ 0.0048*** 0.0050*** 0.0064***
(Pop diff) (0.0006) (0.006) (0.0007)
θ 0.0048*** 0.0054*** 0.0067***
(Pop dens) (0.0004) (0.0005) (0.0006)
ψ 0.0027***
(Term. distance) (0.0004)
R2 0.1349 0.1331 0.1288 0.1291 0.1218 0.1199 0.1154 0.0823 0.0823
Adj. R2 0.1349 0.1331 0.1288 0.1291 0.1218 0.1199 0.1154 0.0823 0.0823
N (obs.) 856130
***-significant at 99% CL, **-sig. at 95% CL, *-sig. at 90% CL
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Table C.3: Mean price differences regression: Excluding Que/ATL
Regression estimation: Dependent variable = |log(P̄i)− log(P̄j)|
Variable Reg. 1
(Std. Dev)
α -0.0188
(Constant) (0.0197)
β 0.0520***
(distance) (0.0176)
γ 0.0751***
(Region) (0.0200)
δ -0.0405***
(Pipeline) (0.0146)
λ 0.0358
(Seaport) (0.0299)
θ 0.0240***
(Pop diff) (0.0069)
θ 0.0042
(Pop dens) (0.0049)
ψ -0.0003
(Term. distance) (0.0026)
R2 0.3966
Adj. R2 0.3835
N (obs.) 378
***-significant at 99% CL, **-sig. at 95% CL, *-sig. at 90% CL
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Table C.4: Weekly relative price regression: Excluding Que/ATL
Regression estimation: Dependent variable = |log(Pit)− log(Pjt)|
Variable Reg. 1
(Std. Dev)
α 0.0148***
(Constant) (0.0054)
β 0.0544***
(distance) (0.0022)
γ 0.0660***
(Region) (0.0029)
δ -0.0298***
(Pipeline) (0.0017)
λ 0.0433***
(Seaport) (0.0033)
θ 0.0209***
(Pop diff) (0.0008)
θ 0.0054***
(Pop dens) (0.0005)
ψ -0.0004
(Term. distance) (0.0004)
R2 0.2288
Adj. R2 0.2288
N (obs.) 342090
***-significant at 99% CL, **-sig. at 95% CL, *-sig. at 90% CL
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Table C.5: Mean price differences regression: Excluding YK/NWT
Regression estimation: Dependent variable = |log(P̄i)− log(P̄j)|
Variable Reg. 1
(Std. Dev)
α -0.0299***
(Constant) (0.0037)
β 0.0044**
(distance) (0.0023)
γ 0.0076*
(Region) (0.0045)
δ -0.0157***
(Pipeline) (0.0038)
λ -0.0095**
(Seaport) (0.0044)
θ 0.0019
(Pop diff) (0.0014)
θ 0.0030*
(Pop dens) (0.0018)
ψ -0.0000
(Term. distance) (0.0007)
R2 0.0791
Adj. R2 0.0704
N (obs.) 861
***-significant at 99% CL, **-sig. at 95% CL, *-sig. at 90% CL
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Table C.6: Weekly relative price regression: Excluding YK/NWT
Regression estimation: Dependent variable = |log(Pit)− log(Pjt)|
Variable Reg. 1
(Std. Dev)
α 0.0556***
(Constant) (0.0024)
β 0.0114***
(distance) (0.0008)
γ 0.0054***
(Region) (0.0014)
δ -0.0040***
(Pipeline) (0.0007)
λ -0.0130***
(Seaport) (0.0009)
θ 0.0014***
(Pop diff) (0.0004)
θ 0.0035***
(Pop dens) (0.0003)
ψ -0.0001*
(Term. distance) (0.0003)
R2 0.0381
Adj. R2 0.0381
N (obs.) 779205
***-significant at 99% CL, **-sig. at 95% CL, *-sig. at 90% CL
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