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ABSTRACT 

 

In ramp-incremental cycling exercise, some individuals are capable of producing 

power output (PO) in excess of that produced at their limit of tolerance (LoT) while others 

cannot.  This study sought to describe the: 1) prevalence of a “power reserve” within a group 

of young men (n=21; mean ± SD: age 25±4 years; V̇O2max 45±8 ml•kg-1
•min-1); and 2) muscle 

fatigue characteristics of those with and without a power reserve. Power reserve was 

determined as the difference between peak PO achieved during a ramp-incremental test to 

exhaustion and maximal, single-leg isokinetic dynamometer power. Pre- versus post-exercise 

changes in voluntary and electrically-stimulated single-leg muscle force production measures 

(maximal voluntary contraction, voluntary activation, maximal isotonic velocity and 

isokinetic power; 1-, 10-, 50-Hz torque and 10/50-Hz ratio), V̇O2max and constant-PO cycling 

time-to-exhaustion also were assessed.  A dichotomy in power reserve was prevalent within 

the sample resulting in two groups: 1) “No Reserve” (NRES: <5% reserve; n=10) and 2) 

“Reserve” (RES: >15% reserve; n=11). At the LoT, all participants had achieved V̇O2max. 

Muscle fatigue was evident in both groups, although the NRES group had greater reductions 

(p<0.05) in 10-Hz peak torque (PT), 10/50 Hz ratio, and maximal velocity. Time-to-

exhaustion during the constant-PO test was 22±16% greater (p<0.05) in RES (116±19 s; PO 

= 317±52 W) than in NRES (90±23 s; PO = 337±71 W), despite similar ramp-incremental 

exercise durations and V̇O2max between groups. The differences in muscle fatigue and 

function between groups suggest that the mechanisms contributing to the LoT are not 

uniform.  

Keywords: Peripheral fatigue, central fatigue, muscle function, ramp-incremental 

exercise  
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CHAPTER 1 

1 REVIEW OF LITERATURE 

1.1 INTRODUCTION 

 

Using breath-by-breath gas-exchange measurements, ventilatory properties (such 

as the rate of oxygen consumption (V̇O2) and carbon dioxide production (V̇CO2), 

ventilation (VE), end tidal oxygen (PETO2) and carbon dioxide (PETCO2), and 

respiratory-exchange ratio (RER)) can be analyzed to differentiate the exercise domains 

(light intensity, moderate intensity, heavy intensity, very-heavy intensity/severe 

intensity). Exercising at a work rate (WR) in the moderate intensity domain (below the 

lactate threshold (LT) or gas exchange threshold (GET)) is characterized by a V̇O2 

increase within the first breath (Phase I/cardiodynamic component) followed by a rapid 

exponential increase (Phase II) to steady-state (Phase III) (Poole & Jones, 2012). The 

heavy-intensity domain (between LT/GET and critical power (CP; the asymptote of the 

power-duration curve for high-intensity exercise – the highest work rate/ V̇O2 that can be 

sustained for prolonged time (Whipp et al., 1986)) is characterized by a secondary V̇O2 

elevation superimposed on Phase II (termed the V̇O2 slow component; V̇O2sc), which 

occurs after approximately 90 seconds (Poole et al., 1991; Roston et al., 1987; Whipp et 

al., 1980; Whipp et al., 1986). The upper-limit of the high-intensity domain (CP) is the 

highest metabolic rate at which V̇O2, lactate, intramuscular creatinephosphate (PCr), and 

H+ can stabilize (Jones et al., 2008), above which becomes the very-heavy or severe-

intensity domain. Within the very-heavy intensity domain, V̇O2 will either rise rapidly 

and exponentially to maximal oxygen consumption (V̇O2max), or a V̇O2sc will increase and 

drive V̇O2 to V̇O2max (Hill et al., 2002; Poole et al., 1988).  
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Breath-by-breath gas-exchange can also be used to accurately assess V̇O2max 

during a variety of exercise protocols using discrete step-increases in work rate (WR) 

within the very heavy-intensity exercise domain (Hill & Lupton, 1923; Taylor et al., 

1955; Mitchell et al., 1958; Astrand & Saltin, 1961; Duncan et al., 1997), continuous 

step-incremental (SI; Maksud & Coutts, 1971) or ramp-incremental (RI) protocols where 

WR progressively increases to the limit of tolerance (LoT), as used in the current study 

(Duncan et al. 1997; Whipp et al., 1981). V̇O2max is one of the most common 

physiological measurements made in exercise physiology as it provides an indication of 

an individual’s maximal capacity for uptake, transport, and utilization of oxygen 

(McConnell, 1988). The traditional “gold standard” criterion for establishing V̇O2max is a 

plateau in V̇O2 despite an increase in WR. Although the classical V̇O2max reports of 

Mitchell et al. (1958) and Taylor et al. (1955) did not implicitly require the data response 

to plateau (only that at another discrete time the highest V̇O2 achieved does not increase 

with increasing work-rate), this criterion has consistently been used when assessing 

V̇O2max. However, a true plateau is only demonstrated in approximately 50% of 

participants (Noakes & St Clair Gibson, 2004; Poole & Jones, 2017), typically requiring 

other criterion or validation for V̇O2max to be confirmed; these criteria include an increase 

in heart rate (HR) to maximum values estimated for age (Martiz et al., 1961), a 

respiratory exchange ratio (RER) of 1.15 or greater (Issekutz et al., 1962), and/or 

maximal post-exercise blood lactate levels (>10 mmol·L-1; Astrand, 1952). However, 

Poole et al. (2008) suggested that these secondary criteria (used to establish V̇O2max) be 

abandoned as they consistently lead to a significant under-measurement of V̇O2max. In an 

effort to establish a protocol non-reliant on a V̇O2 plateau or secondary criterion, 
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“verification” protocols were developed to examine whether any difference existed 

between the V̇O2peak achieved during a RI protocol and a step-exercise (SE) protocol (Day 

et al., 2003, Rossiter et al., 2006). In the verification protocol, the RI-protocol was 

followed by a constant-load, SE-protocol to a WR corresponding to 95% WRpeak (RISE-

95) or 105% WRpeak (RISE-105) (Rossiter et al., 2006). During constant-load exercise 

performed in the very-heavy (VH) intensity exercise domain (above critical power), V̇O2 

increases until V̇O2max is achieved, presuming exercise can be tolerated for sufficient 

duration (Whipp et al., 1997). As a result, if the V̇O2peak in the RI and SE are not different 

despite differing work rates, V̇O2max is confirmed (Rossiter et al., 2006; Poole & Jones, 

2017).  

 

 

1.2 THE LIMIT OF TOLERANCE 

 

 

While V̇O2max and the LoT are typically thought to occur simultaneously (i.e., if 

VO2max is attained, it is unlikely that exercise can be tolerated and sustained for much 

longer), it is unclear whether the two are connected directly or by some common 

mechanism (Ferguson et al., 2016). The concept of symmorphosis pertains specifically to 

V̇O2max, suggesting that what limits V̇O2max is either the mitochondrial capacity to 

consume oxygen or the supply of oxygen to the mitochondria depending on the fitness of 

the individual (Gifford et al., 2016). In untrained individuals, V̇O2max is limited by the 

capacity of the mitochondria to consume oxygen despite an excess of oxygen supply, 

whereas, among trained individuals, V̇O2max is limited by the supply of oxygen to the 

mitochondria despite an excess of mitochondrial respiratory capacity (Gifford et al., 
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2016). In either instance, the amount of energy that the muscle can produce and utilize 

for power production dictates the LoT. However, this is only applicable if V̇O2max is 

achieved; if the LoT occurs sub-V̇O2max, some other mechanism must be acting to limit 

exercise performance.  

Literature on the LoT has preferentially focused on peripheral fatigue 

development, with the primary fatigue sites appearing within the muscle cell itself and for 

the most part not involving the central nervous system or the neuromuscular junction 

(Fitts, 1994; Kent-Braun et al., 2012). In the context of ramp-incremental (RI) exercise, 

the LoT occurs when peripheral muscle fatigue develops to such an extent that the muscle 

can no longer produce force beyond that required by the task despite maximal voluntary 

effort (Allen et al., 2008; Jones & Burnley, 2009). This occurs as a result of disturbances 

in the muscle cell surface membrane, excitation-contraction coupling, and metabolite 

accumulation (such as Pi, Cr, H+, Ca2+, K+, Na+, ADP, and AMP; Fitts, 1994; Kent-Braun 

et al., 2012). Recent literature has suggested that the LoT arises from reaching a “critical 

fatigue threshold” which downregulates efferent motor output to reduce power output and 

protect the muscle (Amann & Dempsey, 2008; Amann et al. 2006, 2008, 2009, 2011). It 

has been suggested that a critical fatigue threshold is reached when metabolites have 

accumulated within the active muscle, thereby increasing muscle group III and IV 

afferent stimulation that feeds-back centrally to reduce central motor output and thus 

muscle force development, and contributes to task/performance failure (Amann & 

Dempsey, 2008; Amann et al., 2006, 2008, 2009, 2011). It is thought that this critical 

fatigue threshold acts to terminate exercise (LoT) to protect the muscle from irreversible 

structural damage (Amann & Dempsey, 2008; Amann et al. 2006, 2008, 2009, 2011).   
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Alternatively, it has been proposed that from the onset of exercise, a “central 

governor” of exercise regulates peripheral fatigue development and terminates exercise at 

submaximal levels to avoid catastrophic failure in the exercising muscle (Noakes & St 

Clair Gibson, 2004).  This model suggests that homeostasis is preserved by regulating 

neural output (decreasing the firing rate) which subsequently creates the sensation of 

fatigue and terminates exercise from the feeling or emotion of discomfort rather than 

from the actual manifestation of peripheral fatigue (Noakes & St Clair Gibson, 2004). 

The central governor, a supposed specific brain centre, acts to provide feed-forward 

regulation of the duration that a vigorous effort can be maintained in order to conserve 

homeostasis, protecting vital organs (such as the brain, heart, and skeletal muscle) from 

hyperthermia, ischemia and other manifestations of catastrophic fatigue (Shephard, 

2009). Even the classic experiments of A.V. Hill (1923) suggested that myocardial 

ischemia was prevented by a “governor” in the heart or brain that would prevent 

irreversible heart damage during maximal exercise. However, conflict exists in relation to 

the central governor model and its existence (Marcora, 2008; Shephard, 2009; Inzlicht & 

Marcora, 2016). Shephard (2009) suggests that the central governor model seems to hold 

true, although being task-specific for marathon-like, self-paced events rather than shorter, 

maximal bouts of exercise. In contrast, Inzlicht & Marcora (2016) believe the central 

governor model teaches “precious little” about exercise regulation, suggesting that self-

control simply wanes over time, with participants being less willing to exert effort the 

longer they have already exerted effort (Baumeister et al., 2007).  Additionally, it seems 

improbable that a central governor would evolve to preserve homeostasis that could 

easily be overturned with a small change of motivation (Inzlicht & Marcora, 2016).   
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1.3 PERIPHERAL AND CENTRAL FATIGUE 

 

During heavy and very-heavy intensity exercise, peripheral skeletal muscle fatigue 

develops as a result of the high-energy demand and large dependence on anaerobic 

metabolism (Fitts, 1994; Kent-Braun et al., 2012; Westerblad, 2016). Peripheral muscle 

fatigue development is accelerated at near-maximal exercise intensities due to the 

reliance on fast-twitch fibres to maintain power-output. The fast conduction velocity and 

high force production associated with fast-twitch fibres make them ideal for maintaining 

high power-output, though they are fatigue sensitive (Henneman & Mendell, 1983). Fast-

twitch fibres are less oxidatively efficient, a characteristic that is worsened in the high H+ 

environment that develops during exercise in the heavy and very-heavy intensity domain 

as a result of metabolite accumulation (Fitts, 1994; Kent-Braun et al., 2012). At the LoT, 

task failure is thought to result from an inability of weakened and slowed muscles to 

maintain power-output as a result of impaired contractility, excitation-contraction 

coupling failure, and metabolite accumulation. Impaired contractility has long been 

thought to result mainly from hydrogen ion (H+) accumulation (muscle acidosis; Fitts, 

1994; Kent-Braun et al., 2012), with many studies showing a positive correlation 

between the extent of acidosis and decrease in contractile function (Cady et al., 1989; 

Kent-Braun, 1990). However, there are instances where this correlation is missing, such 

as the observed decline in force accompanied by a decrease in muscle H+ (Degroot et al., 

1993). Regardless, muscle acidosis is known to exacerbate the fatigue-inducing effects of 

other metabolic changes associated with peripheral muscle fatigue, especially increased 

concentration of inorganic phosphate ([Pi]) and a reduced amplitude of the calcium 

transient (Ca2+) (Fitts, 2016).  During heavy and very-heavy intensity exercise, the 
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increase in Pi is thought to reflect an increased energy cost of exercise (i.e., increased 

ATP cost of force production) to maintain power output (Broxterman et al., 2017). This 

decrease in power output efficiency is thought to result from the combination of muscle 

acidosis (high H+) and increased [Pi], which together are associated with an increase in 

[HPO42-] that has been linked to reductions in muscle power production (peak power by 

59% and maximal shortening velocity by 31% (Nelson et al., 2014)). Depression of 

power production has also been associated with reduced myofibrillar Ca2+ sensitivity 

(Place et al., 2010), reduced open probability of ryanodine receptors (Place et al., 2010), 

reduced shortening velocity (inhibition of myofibril ATPase; Nelson et al., 2014), 

increased curvature of the force-velocity relationship (lower peak force for a given 

velocity; Knuth et al., 2006), and depolarization of the sarcolemma and excitation-

contraction coupling failure (Na+/K+ pump inhibition increased [K+] combined with 

reductions in sarcolemma Ca2+ release; Allen et al., 2008; Fitts, 1994; Kent-Braun et al., 

2012)),  

 

As peripheral muscle fatigue develops, modifications to central motor output 

(central fatigue) act to either i) increase efferent output to increase the firing rate and/or 

the amount of recruited muscle fibres to maintain power output, or ii) decrease efferent 

output to protect the muscle from irreversible structural damage (Gandevia, 2001). As 

metabolites accumulate (peripheral fatigue) in the muscle, afferent feedback from group 

III and IV decrease efferent motor drive to ensure the muscle does not deviate drastically 

from homeostasis and/or cause permanent muscle damage (Amann & Dempsey, 2008; 

Amann et al. 2006, 2008, 2009, 2011). These afferents are thought to be responsible for 
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inducing muscle pain and limiting voluntary effort (O’Connor & Cook, 1999). 

Involuntarily, central motor drive is limited in an effort to protect not only excitation-

contraction coupling and actin-myosin interactions, but also to impair performance when 

its continuation would compromise whole-body homeostatic mechanisms such as 

temperature regulation, blood pressure, and ventilation (Gandevia, 2001). This is 

consistent with the decline in motor unit firing rate observed during maximal exercise, a 

product of competing excitatory and inhibitory influences on the motoneuronal pool to 

limit peripheral fatigue (Gandevia, 2001). 

 

 

1.4 POWER RESERVE 

 

The maximum power that human muscle can produce is determined by its 

structure, fibre type composition, and the present state of the muscle as influenced by 

previous activity (Sargeant, 1994). At the LoT of an incremental exercise test, it is 

expected that a truly maximal effort has been given and that no power can be produced 

above that required by the exercise task. However, recent literature has questioned 

whether the power output achieved during a ramp-incremental exercise test to the LoT is 

truly “maximal”, or whether the muscle still is capable of generating additional, 

physiologically significant, power beyond the “peak” level achieved at the LoT but, for 

whatever reason, is unable to be generated voluntarily (termed “power reserve”; Coelho 

et al., 2015; Ferguson et al., 2016; Morales-Alamo et al., 2015). In the studies of Coelho 

et al. (2015) and Ferguson et al. (2016), no power reserve was evident beyond that 

observed at the LoT associated with the completion of a RI cycle test. A fundamental 

assumption is that the LoT or “exhaustion” occurs because of central and peripheral 
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fatigue mechanisms that reduce muscle function to the point that the muscle is unable to 

produce the force/power required by the task despite maximal voluntary effort (Allen et 

al., 2008; Jones & Burnley, 2009). This lack of a “power reserve” at the LoT has been 

reported in publications by Burnley, 2010; Macintosh et al., 2012; Coelho et al., 2015; 

and Ferguson et al., 2016.  

However, Marcora & Staiano (2010) and Morales-Alamo et al. (2015) 

demonstrated that a significant power reserve existed at the LoT.  In these studies 

participants were able to generate additional power by as much as three-times greater 

than that required by the exercise task. Such a large power reserve may result from 

mechanical, rather than physiological, phenomenon related to the power-velocity 

relationship, as allowing participants to pedal at a maximal velocity (rather than a fixed 

cadence) during maximal power testing will result in increased power-production simply 

as a result of increased cadence (Burnley, 2010). However, when the cycling cadence was 

fixed in an isokinetic mode, Morales-Alamo et al. (2015) still demonstrated that a power 

reserve exists at the LoT of a RI protocol, demonstrating that the presence of a power 

reserve is not just a mechanical phenomenon and that some underlying physiological 

phenomenon must exist. It seems evident that in some individuals a power reserve exists, 

while in others no power reserve remains. However, no explanation has been provided 

for why this difference may exist. 

The mechanisms associated with the presence or absence of a power reserve at the 

LoT of RI cycling test have not been studied directly, though many theories exist to 

explain this phenomenon. A reduction in maximal voluntary muscle activation 

(reductions in central motor drive and/or spinal inhibition of cortical drive) is associated 



10 

 

with the LoT of a RI cycling test (Coelho et al., 2015). However, the appearance of a 

power reserve depends on whether the reduction in maximal voluntary muscle activation 

occurs at the individuals “maximal” exercise capacity, or if the reduction occurs 

submaximally – in the former, no power reserve would be present, while a power reserve 

would be evident in the latter. For instance, some of the power reserve may reflect a 

reduction in supraspinal drive to the motoneurons, which may end exercise sub-

maximally to protect the muscle from further peripheral fatigue, though at the expense of 

a truly maximal performance (Gandevia, 2001). In those without a power reserve, it is 

suggested that muscle fatigue (peripheral) and reduced muscle activity (central) combine 

to reduce maximal evocable power (Ferguson et al., 2016).  

 

1.5 STUDY RATIONALE 

 

 Recent literature has suggested that at the LoT (with the associated 

inability to continue exercise), it is contentious whether a voluntary power reserve exists 

that is in excess of the power output necessary to maintain the peak external power output 

required at the termination of a RI exercise test.  To the best of our knowledge, no 

literature has investigated the prevalence of a power reserve within a group of active 

young men and compared differences in muscle fatigue and muscle function between 

those with and without a power reserve. Therefore, the primary rationales for completing 

this study were 1) to determine the prevalence of a power reserve at the LoT during an RI 

protocol within a group of active young men; and 2) to examine peripheral muscle fatigue 

development and voluntary activation in participants with and without a power reserve. 

Based on inconsistencies in the literature (i.e., that a power reserve may or may not be 

present at LoT), we hypothesized that: 1) there would be a distribution of participants 
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who did and did not display a power reserve; and 2) decrements in voluntary and 

electrically-stimulated muscle force production would be greater in participants without 

compared to with a power reserve. To confirm that participants were motivated and 

provided a sustained, maximal effort to the end of the RI protocol, we considered 

attainment of V̇O2max to reflect maximal effort.  Therefore, in the present study, V̇O2max 

was measured and verified by using a RISE95 protocol (Rossiter et al 2006).  

Additionally, with this protocol, it was hypothesized that V̇O2max would be confirmed in 

all individuals (confirming a maximal effort) but that during the SE protocol, the exercise 

duration before reaching the LoT would be greater in individuals expressing a power 

reserve. 
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CHAPTER 2 

2 POWER RESERVE FOLLOWING RAMP 

INCREMENTAL CYCLING TO EXHAUSTION: 

IMPLICATIONS FOR MUSCLE FATIGUE AND 

FUNCTION 

 

2.1 INTRODUCTION 

Ramp-incremental exercise to the limit of tolerance (LoT) is a commonly used 

protocol for assessing parameters of aerobic function – i.e., lactate threshold; exercise 

efficiency; O2 uptake kinetics; and peak or maximal O2 uptake (V̇O2max; Davis et al., 

1982; Whipp et al., 1981). The mechanism(s) contributing to an inability to continue 

exercising at intensities associated with the upper limits of a RI protocol (i.e., at the LoT) 

despite strong verbal encouragement and the participant being highly motivated are not 

well-understood. A common observation during RI exercise is that the LoT occurs 

coincident with, or in close proximity to, the attainment of V̇O2max
 (Keir et al., 2016; 

Rossiter et al., 2006). A prevailing theory is that LoT coincides with the development of 

a specific level of neuromuscular fatigue (“critical fatigue threshold”) (Amann & 

Dempsey, 2008; Amann et al., 2008, 2009, 2011) that prevents the muscle from 

producing higher power outputs. Ferguson et al. (2016b) recently demonstrated that, in a 

homogenous group of young, endurance cyclists (age, 22 yrs; V̇O2peak, 4.2 L/min), that 

the instantaneous isokinetic maximal power generating capacity of the muscles during 

cycling at the LoT in an RI protocol was not different from the task-specific power 

requirement – i.e., there was no “power reserve” at the LoT.  In this study, the authors 

suggested that the LoT was related to both a reduced central drive for muscle activation 

and to peripheral, metabolically-induced, muscle fatigue (Ferguson et al., 2016b), and 
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was not related to a peripheral fatigue threshold or to differences amongst participants in 

their physiological and perceptual limits to the exercise task.  Alternatively, Coelho et al. 

(2015), using an exercise protocol similar to that used by Ferguson et al. (2016), although 

with a more heterogeneous group of heathy, active, older, participants (age, 42 yrs [range, 

29-72 yrs]; V̇O2peak, 3.2 L/min), observed a small (~18%) but significant power reserve at 

the LoT following RI exercise. While the existence of a power reserve could be identified 

using an isokinetic cycling model (Coelho et al., 2015), this method could not 

discriminate the neuromuscular origins of the contractile impairment and task failure. In 

addition, Marcora and Staiano (2010) and Morales-Alamo et al. (2015) observed a large, 

significant power reserve (as much as 300%). However, this large power reserve was 

thought to be the result of mechanical rather than physiological influence, as cadence 

(which itself can increase power output) was not controlled during the maximal power 

generation protocol (Burnley, 2010). 

Whether a power reserve remains at the point of task failure during RI exercise is 

contentious (Ferguson et al., 2016a; Morales-Alamo et al., 2016), and its relationship to 

fatigue development has not been studied in detail. The mechanisms responsible for 

reductions in muscle force development leading to task failure can originate in peripheral 

sites within the exercising muscle and/or central sites associated with central motor 

output and spinal or supraspinal transmission proximal to the neuromuscular junction 

(Allen et al., 2008; Amann & Calbet, 2008; Burnley & Jones, 2007; Fitts, 1994; Noakes 

& St Clair Gibson, 2004; Secher et al., 2008; Walsh, 2000) but the extent to which these 

mechanisms influence the power reserve is unknown.  Importantly, when establishing 

whether a power reserve exists at task failure it must be assumed that participants are 
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highly motivated and willing to push themselves to exhaustion during the RI protocol 

such that the LoT represents a truly maximal, fatiguing effort, typical of that required to 

engender V̇O2max. However, previous work in this area did not confirm V̇O2max with a 

validation trial and so it is not possible to determine in those displaying a power reserve 

whether or not a truly exhaustive effort was produced.   

Therefore, the purpose of this study was: 1) to determine the prevalence of a 

power reserve at the LoT during an RI protocol within a group of active young men; and 

2) to examine peripheral muscle fatigue development (as identified by quadriceps muscle 

force decrements in response to low- and high-frequency electrical stimulation) and 

voluntary activation (as determined by maximal voluntary contraction (MVC) with twitch 

interpolation, and maximal isotonic contraction velocity) in participants with and without 

a power reserve. Based on inconsistencies in the literature (i.e., that a power reserve may 

or may not be present at LoT), we hypothesized that: 1) there would be a distribution of 

participants who did and did not display a power reserve; and 2) decrements in voluntary 

and electrically-stimulated muscle force production would be greater in participants 

without compared to with a power reserve. To confirm that participants were motivated 

and provided a sustained, maximal effort to the end of the RI protocol, we considered 

attainment of V̇O2max to reflect maximal effort.  Therefore, in the present study, V̇O2max 

was measured and verified by using a RISE95 protocol (29).  Additionally, with this 

protocol, it was hypothesized that V̇O2max would be confirmed in all individuals 

(confirming a maximal effort) but that during the SE protocol, the exercise duration 

before reaching the LoT would be greater in individuals expressing a power reserve. 
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2.2 METHODS 

 

Participants 

 Twenty-one young, healthy and recreationally active men participated in the study 

(mean  SD; age 25 ± 4 years; body mass 81± 10 kg; height 184 ± 7 cm; V̇O2max 45 ± 8 

ml•kg-1
•min-1). Participants were non-smokers with no known musculoskeletal, 

respiratory, cardiovascular or metabolic conditions, and none were taking medications 

that might influence cardiorespiratory or metabolic responses to exercise.  

 

Ethical Approval 

 The study was conducted according to the Declaration of Helsinki and all 

procedures were approved by The University of Western Ontario Ethics Committee for 

Research on Human Subjects. Procedures and risks were explained to each participant 

before they volunteered and gave informed written consent to participate in the study.  

 

Experimental Protocol 

Exercise testing.  All tests were conducted in an environmentally controlled laboratory at 

a similar time of day, 2 to 3 hours after a standardized meal (composed of 500 ml of 

water and 2–3 g/kg body mass of low glycemic-index (approved cereal, pasta, oatmeal, 

legumes, etc.) carbohydrates). Subjects were reminded of the required standardized meal 

the night before reporting to the laboratory, and all subjects confirmed dietary adherence 

prior to commencing any protocol.  Exercise protocols were performed on an 

electromagnetically-braked cycle ergometer (Velotron; RacerMate, Seattle, WA). 

Participants were instructed to abstain from vigorous physical activity in the 24 hours 
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preceding each test and to avoid caffeine consumption on the day of testing. All testing 

sessions were separated by a minimum of 48 hours.  

The experiment consisted of three visits to the laboratory separated by a minimum 

of 48 hours (see Fig.1).  The first visit served as a familiarization session for the RI 

exercise test protocol (Fig. 1A).  On the second visit an RI test to the LoT was performed 

and included voluntary and electrically-stimulated neuromuscular testing both before and 

immediately after the RI test (see below) to establish muscle performance and fatigue 

characteristics at LoT in individuals identified with and without a power reserve (Fig. 

1B).  On the third visit a RISE95 exercise test was completed (see below) (Rossiter et al., 

2006) to verify the attainment of V̇O2max and to establish exercise tolerance (as measured 

by time-to-fatigue) during the constant-PO (SE) component of the RISE95 protocol in 

individuals identified with and without a power reserve (Fig. 1C).   

The RI test protocol consisted of 4 min leg cycling at a baseline PO of 50 W, 

followed by a progressive increase in PO at 25 W/min to the participant’s LoT.  

Participants maintained a cadence of 70 rpm throughout the exercise protocol and the test 

was terminated (LoT) when participants were unable to continue the exercise and/or the 

cycling cadence fell below 55 rpm despite strong verbal encouragement by laboratory 

personnel.  The RISE95 test consisted of an initial RI test (at 25 W/min) to the 

participant’s LoT followed by 5 min recovery (2 min resting recovery and 3 min cycling 

at 50 W baseline), and then a constant PO step-exercise (SE) test at a PO equal to 95% 

POpeak reached at the LoT in the preceding RI test (Rossiter et al., 2006). 

 On the second visit, participants completed the RI protocol to the LoT but with 

assessment of neuromuscular function made immediately before and within ~ 35 s after 
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the RI test.  Measures of neuromuscular function consisted of voluntary and electrically-

stimulated static and dynamic single limb quadriceps contractions.  

 It should be noted that although comparisons between whole-body cycling and 

knee extensions cannot be made directly, it has been reported that during whole-body 

cycling the largest proportion of the total positive mechanical work is achieved by the 

knee extensor muscles (39%; in comparison to 27% hip extensors, 4% hip flexors, 10% 

knee flexors, and 20% ankle plantar flexors) (Ericson, 1986). In this regard, isolating the 

knee extensor muscles for neuromuscular testing provides insight into the relative 

influence of fatigue development on the LoT and the presence or absence of a power 

reserve.  

 

Neuromuscular testing. Neuromuscular testing was performed on the second visit, before 

and immediately following the RI test.  All post-RI stimulation and joint angle settings 

were identical to those established pre-exercise, allowing post-testing to commence 

within ~ 35 s of the participants reaching their LoT, with all neuromuscular testing 

completed within ~ 3 min of the RI protocol. Participants performed a series of 

quadriceps muscle function tests (described below and Fig. 2) of the left leg while seated 

in a Humac-Norm Cybex dynamometer (Computer Sports Medicine, Stoughton, MA), 

with the joint angles of the hip, ankle and knee adjusted to match, as close as possible, the 

joint angles associated with upright cycling. The lever length of the Humac-Norm Cybex 

dynamometer was adjusted so that the resistance pad rested comfortably on the leg just 

proximal to the malleoli with the center of rotation aligned with the rotational axis of the 

knee. Participants were secured firmly in the seated position using shoulder and waist 
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straps. Two custom-made aluminum foil electrodes (~20 x 5 cm) wrapped in paper towel 

and soaked with a conductive brine were taped tightly over the anterior thigh 

musculature. One electrode was placed over the proximal thigh 10 cm distal to the 

inguinal fold, and the second electrode was placed on the distal thigh 7 cm superior to the 

patella (Roos et al., 1999). The electrodes were attached to a constant current muscle 

stimulator (DS7AH; Digitimer, Welwyn Garden City, Hertfordshire, UK) to elicit 

electrically-stimulated contractions. The order for neuromuscular assessment was similar 

pre- and post-RI exercise except that post-RI voluntary MVC measures were measured 

last thereby minimizing any effects of fatigue recovery on the post-exercise voluntary 

dynamic (isokinetic & isotonic torque) and electrically-stimulated force-frequency 

measures.     

 Isokinetic torque (Nm), isometric torque (Nm) and maximal velocity of isotonic 

knee-extensions (deg/s) were recorded before and after each exercise protocol. Torque 

data were collected and displayed on a computer using Spike 2 version 7.02 (Cambridge 

Electronic Design, Cambridge, UK). Torque and velocity were sampled at a frequency of 

500-Hz.  

 

Isometric torque:  Doublet stimulation (pulse separation 10 ms; pulse width 200 us; 400 

V, range 250–650 mA) was used to establish the maximal knee-extensor twitch torque 

(Nm), defined as the point at which increases in stimulation intensity (mA) no longer 

resulted in an increase in torque production. Stimulation intensity was then increased by 

20%. A minimum of two maximal voluntary contractions (MVCs) lasting 3 s were 

completed, and a third MVC was completed if the first two MVCs differed by more than 
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10%. Two minutes of rest was provided between each attempt. Participants were 

provided with visual feedback and strong verbal encouragement during all MVCs. A 

supramaximal doublet was elicited during (superimposed twitch) and succeeding 

(potentiated twitch) each MVC. This was used to calculate voluntary activation (VA 

superimposed twitch/potentiated twitch) (Belanger & McComas, 1981). All post-RI 

stimulation settings were identical to that established pre-exercise.  

The quadriceps muscle twitch and tetanic torques were assessed at stimulation 

frequencies of 1-, 10- and 50-Hz each for 1 s [see Edwards et al., 1977] using a 50-µs 

pulse width (400 V, range 250–475 mA) at an intensity that achieved ~50% MVC at 50-

Hz. The 1- and 10-Hz stimulation were elicited at the same stimulator settings as the 50-

Hz stimulation. Post-exercise stimulation intensities (mA) were identical to those used at 

pre-exercise.  

 

Isokinetic torque:  Maximal isokinetic torque production was assessed with a series of 

five isokinetic knee extension maneuvers at two velocities (separated by 15 s) matched to 

simulate the set velocity markers during cycling (set-cadence: 70 rpm = 220.1 deg/s; cut-

off cadence: 55 rpm = 120 deg/s). A sixth knee extension maneuver was made if any of 

the peak torque values varied by more than 10% during the five knee extensions. 

Participants were instructed to extend their left leg rapidly and with maximal effort 

throughout the set range of motion. The average torque achieved throughout each of the 

five knee extension maneuvers was recorded and the average of all knee extensions for 

each participant was calculated and reported. Maximal isokinetic knee extension power 

(W) was calculated as the product of angular velocity (in radians/s) and maximal torque 
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(Nm).  

 

Isotonic torque:  Maximal knee extension isotonic velocity was assessed against a 

resistance equivalent to 20% of the pre-exercise MVC torque. Participants were told to 

extend their leg as rapidly as possible during five knee extension maneuvers, with each 

separated by 2 s rest. A sixth kick was performed if peak velocity varied by more than 

10% during the five kicks. The average values of the five knee-extension maneuvers were 

calculated and reported. Velocity was recorded in radians per second. Isotonic power (W) 

was determined as the product of angular velocity (radians/s) and torque (Nm).  

 

Gas exchange. During each trial, breath-by-breath gas-exchange measurements were 

made as follows: inspired and expired volumes and flow rates were measured using a 

low-dead-space bidirectional turbine (VMM 110; Alpha Technologies, Laguna Hills, 

CA) and pneumotach (4813; Hans Rudolph, Shawnee, KS). Respired air was sampled 

continuously at the mouth and analyzed by mass spectrometry (AMIS 2000; Innovision, 

Lindvedvej, Denmark) for fractional concentrations of O2 and CO2. The volume turbine 

was calibrated before each test using a syringe of known volume (3 liters) over a range of 

flow rates, and the pneumotach was adjusted for zero flow. The mass spectrometer was 

calibrated using precision-analyzed gas mixtures. The time delay between an 

instantaneous square-wave change in fractional gas concentration at the sampling inlet 

and its detection by the mass spectrometer was measured electronically by computer. 

Respiratory volumes, flow, and gas concentrations were recorded at a sampling 

frequency of 100-Hz and transferred to a computer, which aligned gas concentrations 
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with volume signals as measured by the turbine. Flow from the pneumotach was used to 

resolve inspiratory-expiratory phase transitions, and the turbine was used for volume 

measurement. The computer executed a peak-detection program to determine end-tidal 

PO2, end-tidal PCO2, and inspired and expired volumes and durations to build a profile 

of each breath. Breath-by-breath alveolar gas exchange was calculated using the 

algorithms of Swanson (1980).  

 

Data Analyses  

Breath-by-breath V̇O2p data were collected and analyzed for the RI and RISE95 

protocols. V̇O2peak was determined as the average of the final 15 s of the RI (ramp-

incremental) protocol.  By relating the three V̇O2peak values (associated with the RI 

protocols from visits two and three and the 95% PO (SE) protocol) with the respective 

final POs it was possible to verify whether criteria for establishing V̇O2max had been 

achieved – i.e., no significant difference in V̇O2peak despite differences in POpeak. 

To quantify the degree of neuromuscular fatigue, both voluntary and electrically-

stimulated muscle torque and power measures were analyzed and compared pre- vs. post-

exercise for each participant. Voluntary measures included peak MVC torque, voluntary 

activation (VA), maximal isotonic and isokinetic power. Electrically-induced measures 

included the peak torque elicited during the 1-, 10- and 50-Hz tetanic contractions, 

comparison of pre-to-post fatigue potentiated doublet (PoT) torque succeeding the MVC, 

and a ratio of low-to-high frequency (10/50-Hz) was computed. The 50-Hz HRT (half 

relaxation time) and 10-Hz HRT were expressed in normalized values (ratio of amplitude 

to time) to account for the decreased amplitude associated with fatigue.  All changes were 
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expressed in absolute and relative (% pre-RI) units. The magnitude of change in all 

voluntary and electrically-stimulated muscle contraction variables were compared pre- to 

post-exercise within groups, and total percent change post-exercise between groups. 

Power reserve was calculated as the percent difference between POpeak and PisoPOST 

(Ferguson et al., 2016):  

 

Equation 1: ([ PisoPOST - POpeak ] / POpeak) · 100 

 

Statistical Analysis  

Data are presented as means ± SD. Frequency distribution analysis was performed 

to determine the prevalence of isokinetic power reserve within the population. Paired t-

tests were used to analyze pre-post difference within groups. A one-way ANOVA was 

used to compare all electrically-stimulated and voluntary fatigue variables between 

groups. All statistical analyses were performed using SigmaPlot version 11.0 (Systat 

Software, San Jose, CA). Statistical significance was accepted at α < 0.05.  

 

2.3 RESULTS 

 

Power Measurements  

In all subjects (n=21) the mean POpeak (measured at the cycle flywheel) from 

ramp-incremental (RI) exercise was 343 ± 64 W at 70 rpm. The post-RI isokinetic knee-

extension power at 70 rpm (PisoPOST, 408 ± 91 W) was reduced (p<0.05) by 302  126 W 

compared to pre-RI isokinetic power (PisoPRE, 710 ± 218 W); the mean difference between 

POpeak and PisoPOST (ΔPReserve) was 64 ± 71 W yielding an average isokinetic cycle 
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power reserve of 14 ± 13%. Isokinetic knee-extension power at 55 rpm (which was set as 

the lower cut-off limit for stopping the RI test) was reduced 179  5 W (PisoPRE, 675  

150 W; PisoPOST, 497  155 W).   

A dichotomy in ΔPReserve within the subject sample was observed in which 

there was a grouping of subjects with very little difference between the end-RI POpeak and 

the PisoPOST at 70 rpm (< 5% power reserve) and a group with a much larger difference 

between the two peak torque values (>15% power reserve), with no subjects found in the 

5% to 15% region (see Fig. 3).  Based on this separation, subjects were placed into two 

groups: 1) those with a power reserve of < 5% (“NRES”; n, 10; ΔPReserve, 2.7 ± 1.3%; 

range, 0.4 to 4.6%) and 2) those with a power reserve of > 15% (“RES”; n, 11; 

ΔPReserve, 24.4 ± 10.0%; range, 15.2 to 43.7%). There were no between group 

differences in PisoPRE and POpeak (Table 1), but due to a higher (p<0.05) PisoPOST in RES 

(448 ± 87 W) compared to NRES (364 ± 77 W), ΔPReserve was greater (p<0.05) in RES 

(24.4 ± 10.0%) compared to NRES (2.7 ± 1.3%).  

 

V̇O2 measurements  

There were no differences in absolute V̇O2peak amongst the RI protocol (visit 2) 

(3.64  0.68 L/min; POpeak, 343  62 W), the RI phase of the RISE95 protocol (visit 3) 

(3.64  0.66 L/min; POpeak, 348  62 W) and the constant-PO (SE) phase of the RISE95 

protocol (visit 3) (3.55  0.65 L/min; POpeak, 331 59 W) despite differing peak POs 

amongst the RI and SE protocols, thereby satisfying the criteria for confirming V̇O2max. 

There were no differences for V̇O2max between the RES and NRES groups. 
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Muscle Contractile Measurements 

 The voluntary and electrically-stimulated neuromuscular responses measured in 

RES and NRES pre- and post-RI exercise are presented in Table 2. In both RES and 

NRES, the MVC, maximal isotonic knee-extension velocity, 1-Hz twitch, doublet PoT, 

10-Hz PT, 50-Hz PT, and 10/50-Hz ratio were reduced (p<0.05) post- compared to pre-

RI values. Voluntary activation of the MVC was similar in both groups and unchanged 

after RI exercise.  The 1-Hz TPT and 10-Hz HRT were increased (p<0.05) post-RI in 

both groups, while the 1-Hz HRT was increased (p<0.05) post-RI in the RES only.   

 Muscle tetanic torque development with electrically-induced 10-Hz stimulation 

was reduced to a greater extent (p<0.05) in NRES (63  9%) than in RES group (45  

15%) post- compared to pre-RI.  Because no significant changes in muscle tetanic torque 

were seen with 50-Hz stimulation in either group pre- vs post-RI exercise, the 10/50-Hz 

ratio was reduced (p<0.05) more in NRES (51  12%) than in RES (36  16%) post-RI 

(Fig. 4).  Also, maximal voluntary isotonic velocity was reduced to a greater extent 

(p<0.05) in NRES (-17  7%) compared to RES (-9  7%). 

Exercise Endurance Time 

During the constant-PO, verification (SE) portion of the RISE-95 protocol, the 

time to the LoT was 22 ± 16% greater (p<0.05) in RES (116 ± 19 s) than in NRES (90 ± 

23 s), despite similar RI exercise durations and V̇O2max between groups. 
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Table 1: Physical characteristics and aerobic responses to the exercise tests. (*) 

represents a significant difference between POpeak and PisoPOST. (¥) represents a significant 

difference between PisoPRE and PisoPOST. (§) represents a significant difference between 

NRES and RES. Statistical significance was accepted at alpha < 0.05. 

 

Terms: HRpeak, peak heartrate achieved during RI-protocol; VO2max, maximal oxygen 

uptake; PisoPRE, Pre-RI isokinetic power; POpeak, RI maximal power output; PisoPost, Post-

RI isokinetic power; ∆Preserve, Power Reserve (PisoPOST minus POpeak);  
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Table 2: Absolute peak muscle responses before and after exercise and relative change in 

muscle response during voluntary and electrically-stimulated contractions measured after 

RI-1. (¥) represents a significant difference between PisoPRE and PisoPOST. (§) represents a 

significant difference between NERS and RES. Statistical significance was accepted at 

alpha < 0.05.  

 
 

Terms: MVC, maximal voluntary contraction; PT, peak torque; HRT, half relaxation 

time; TPT, time to peak torque; PoT, potentiated twitch; VA, maximal voluntary 

activation; RI, ramp-incremental; Hz, Hertz (stimulations per second); Nm, newton-

meters. 
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Figure 1. Schematic of Exercise Protocol. A (Visit 1; familiarization): Ramp incremental 

(RI) exercise test (50 W baseline, 25W·min-1 ramp). B (Visit 2): RI-muscle fatigue 

intervention. T = -20 to -5 illustrates the pre-RI neuromuscular assessment, T = 0 to 17 

illustrates the RI-muscle fatigue intervention, and T = 17 to 20 illustrates PisoPOST and 

post-RI neuromuscular assessment. C (Visit 3): RI and 95% POpeak for V̇O2max validation 

and time to exhaustion (muscle function). 
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Figure 2. Schematic of Neuromuscular Testing. Pre-RI: doublet stimulation to maximal knee-

extensor twitch torque, MVC, 1-Hz, 50-Hz, 10-Hz, isokinetic knee-extensions (maximal 

power/PisoPRE), and isotonic knee-extensions (maximal velocity). Post-RI: isokinetic knee-

extensions (PisoPOST), isotonic knee-extensions, 1-Hz, 50-Hz, 10-Hz, MVC. 
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Figure 3. Distribution of the prevalence of isokinetic power reserve vs. RI POpeak within 

a single group of recreationally active young men. The absence of isokinetic power 

reserve between 5% and 15% allowed for differentiation of two distinct populations: 1) 

NRES (closed circles; <5%; n = 10) and 2) RES (open circles; >15%; n = 11). The open 

square represents the mean POpeak and ΔPReserve for RES, while the closed square 

represents the mean POpeak and ΔPReserve for NRES. 
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Figure 4. Group mean pre- to post-exercise muscle response (as represented by % change 

in torque measurements during 1-s at 1-Hz (1-Hz PT), 1-s at 50-Hz (50-Hz PT), and 1-s 

at 10-Hz (10-Hz PT) electrical stimulation, potentiated twitch (PoT), and 10/50-Hz ratio. 

Black represents NRES while grey represents RES. Significant differences (¥) exist 

between groups in 10-Hz PT and 10/50-Hz. Statistical significance was accepted at alpha 

< 0.05. 
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2.4 DISCUSSION 

 

 During RI-exercise, the limit of tolerance (LoT) and an inability to continue 

exercise has been attributed to an inability of muscle to meet the torque or power 

requirements of the task, despite maximal effort by the participant. It has been reported 

that at the LoT following an exhaustive RI exercise test some individuals still are capable 

of volitionally producing power far greater than the PO associated with the termination of 

the RI test (i.e., evidence of a power reserve) whereas others are unable to voluntarily 

generate additional power beyond that required of the RI POpeak (i.e., no power reserve).  

While the factors that contribute to the LoT remain debated, these sub-groups of 

individuals indicate that the mechanisms leading to a LoT are not uniform. The current 

study compared the peak PO achieved at the LoT at the end of a RI exercise protocol 

with the maximal volitional isokinetic knee-extensor power measured within ~ 35 s after 

the RI to establish the prevalence of power reserve in a group of 21 participants. 

Additionally, pre- vs post-RI exercise differences in voluntary and electrically-stimulated 

muscle contractions were compared to test the hypothesis that those participants with a 

power reserve would experience greater decrements in muscle function and greater 

muscle fatigue. The main findings were that: i) approximately half of the participants 

studied had a power reserve (defined as a greater than 15% difference between POpeak and 

PisoPOST); ii) at LoT, both the RES and NRES group displayed reductions in voluntary and 

electrically-stimulated quadriceps muscle torque, and the magnitude of decrement in 

force development was greater in the NRES than in the RES group; and iii) exercise time 

to the LoT during the bout of constant-PO exercise at 95% POpeak was shorter in the 

NRES than in the RES group. These data indicate that at the LoT following an RI 
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exercise test, the presence or absence of a power reserve may be consequent to 

differences in peripheral muscle fatigue development and subsequent differences in 

muscle function.  

 When comparing the peak PO achieved at the end of the RI protocol with the 

peak PO generated during maximal voluntary isokinetic knee-extension exercise it 

became apparent that two distinct groups could be identified, those presenting with a 

substantial power reserve (> 15%; RES) and those without an appreciable power reserve 

(< 5%; NRES) (see Fig. 3). This finding is unique because previous work has reported 

either the presence (Marcora & Staiano, 2010; Morales-Alamo et al., 2015) or absence 

(Coelho et al., 2015; Ferguson et al., 2016) of a power reserve at the LoT. The difference 

in findings amongst publications may lie in the interpretation of P at the LoT. In 

previous literature in which a power reserve was observed, the power generating capacity 

of muscle was as much as three-times greater (power reserve ~ 300%) than the power 

required at task failure (Marcora & Staiano, 2010; Morales-Alamo et al., 2015); however, 

this is thought to be the result of mechanical rather than physiological influence as 

cadence – which itself can increase power output – was not controlled during the 

maximal power generation protocol (Burnley, 2010). In the present study, we ensured that 

the cadence was similar to that of the RI protocol. As a result, the RES group was capable 

of generating, on average, ~25% more power above that required by the task at the LoT 

(ΔPReserve = 25 ± 10 %). Ferguson et al. (2016) did not find a power reserve, although 

they stipulated that ΔPReserve needed to exceed 20% to be considered physiologically 

significant; similar to the cutoff for our RES group. Different interpretations of what is 

considered a “physiologically significant” reserve (based on ΔPReserve) may explain 
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why previous studies have not identified in their study sample sub-populations who do 

and do not display a power reserve (in the current study, ΔPReserve of the entire sample 

was large (14 ± 13%) and similar to that reported in Ferguson et al. (2016) (12 ± 15%) 

and Coelho et al. (2015) (18 ± 11%)).  

 To ensure that any observed power reserve was the result of a physiological 

reserve and not simply the result of terminating the test prematurely, it was important to 

verify that participants exercised to their LoT. To accomplish this, the RI protocol was 

used as both a fatigue-intervention protocol and for identifying and confirming whether 

V̇O2max had been achieved – i.e., if participants did not reach V̇O2max, it is likely that the 

test was terminated prematurely. For all participants, the V̇O2peak values from the RI 

(from visit 2) and the values from the RI and SE phases of the RISE95 protocol were not 

different despite differences in peak PO between the RI and SE protocols, thereby 

satisfying the criterion for confirming a true V̇O2max and providing support for 

requirement for a truly exhaustive effort at the LoT.   

Between the RES and NRES groups, no differences existed for V̇O2max or POpeak. 

Despite this homogeneity, those participants in the RES group had a larger ΔPReserve 

because they were able to generate a greater (p<0.05) PisoPOST. Those in the NRES group 

exhibited greater reductions in 10-Hz PT and 10/50-Hz indicating that greater peripheral 

muscle fatigue was accrued in these individuals (Amann & Dempsey, 2008). That 

peripheral muscle fatigue development after the RI test was consistently greater in the 

NRES group suggests that it may be a contributory mechanism leading to the LoT unique 

to those without a power reserve. In this instance, the LoT may have occurred when the 

muscle became unable to maintain cellular homeostasis or metabolic stability thereby 
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triggering increased afferent feedback from the muscle and reflex-inhibition of efferent 

locomotor output (Amann & Dempsey, 2008; Amann et al., 2008, 2009, 2011; Edwards 

et al., 1983). Whereas in the RES group, although significant peripheral muscle fatigue 

was evident (albeit to a lesser degree), the presence of a large reserve may indicate that 

some other mechanism(s) is/are contributing to fatigue development at the LoT. For 

example, a reduction of supraspinal drive to the motoneuron (central fatigue; as indicated 

by the reductions in MVC) could act to protect the muscle from further peripheral fatigue 

and terminate exercise despite the muscle being capable of producing additional power 

output and tolerating additional levels of peripheral fatigue (Gandevia, 2001).  

It would be expected that those presenting with greater peripheral muscle fatigue 

development would experience greater impairment of muscle function. Therefore, in 

addition to voluntary and electrically-stimulated muscle force/torque development, the 

present study also examined muscle function at the LoT through maximal knee-extension 

velocity and time-to-exhaustion during an exhaustive bout of constant-load exercise at 

95% POpeak immediately following the RI-exercise test. Our data show that relative to 

pre-RI, maximal velocity was reduced more and time-to-fatigue during the constant-PO 

SE protocol was shorter in the NRES group consistent with the greater muscle fatigue 

development in this group. This may provide insight as to why individuals in the RES 

group possess either i) a capacity for very short-term power production (Coelho et al., 

2015) or ii) an ability to generate power in significant excess of that required at the LoT, 

as muscle function was more sufficiently preserved.   

Collectively, these data suggest that the mechanism contributing to the LoT may differ 

between groups. It is evident that at the LoT, participants in the RES group developed 
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less peripheral muscle fatigue and muscle function was better maintained compared to the 

NRES group. In this instance, the LoT may result from downregulating efferent output to 

maintain the muscle environment below the critical fatigue threshold (Amann & 

Dempsey, 2008). In contrast, the NRES group experienced greater peripheral muscle 

fatigue suggesting that an alternate mechanism for the LoT exists in this group. The LoT 

in the NRES group may be a result of reaching the critical fatigue threshold (catastrophic 

fatigue; Edwards et al., 1977), impairing the short- and long-term capacity of the muscle 

to generate power in excess of that required at the LoT.    

2.5 CONCLUSIONS 

 

This study determined the prevalence of a power reserve within a seemingly 

homogenous sample (not pre-selected for specific groups), and a novel, direct association 

of the differences that exist in muscle fatigue development and muscle function at 

exhaustion between those with and without a power reserve. At the LoT, peripheral 

muscle fatigue developed more substantially and muscle function was more severely 

impaired in the NRES group. Despite this, both groups finished at the same mean peak 

PO during RI exercise, suggesting that mechanisms contributing to the LoT may differ 

between groups. In those without a power reserve, a critical fatigue threshold may have 

been reached, impairing short-term (knee-extensions) and long-term (RI-exercise) 

capacity to generate power in excess of that required at the LoT. In those with a power 

reserve, lesser peripheral fatigue development may indicate that the RI-exercise test was 

terminated below a critical fatigue threshold, preserving the muscle environment and 

maintaining muscle function, and thus providing a significant capacity for power 

generation. As has been reported previously, the mechanism(s) associated with muscle 
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fatigue is/are complex and it is unlikely that a single, all-encompassing mechanism is 

able to explain exercise tolerance at the higher intensities of RI exercise.  

2.6 LIMITATIONS  

 

Electrical stimulation is used to bypass central motor drive and to isolate the 

peripheral factors contributing to impaired neuromuscular function during muscle 

contractions (Edwards et al., 1977; Jones, 1996).  In our laboratory, it was not possible to 

assess muscle contractile properties directly on the cycle ergometer immediately at the 

LoT after dynamic cycling exercise which required introducing a short delay while the 

participant was moved from the ergometer to the dynamometer.  During this delay, which 

we limited to ~ 35 s, there may have been some recovery of muscle function (Froyd et 

al., 2013; Gruet et al., 2014; Sargeant & Dolan, 1987; Szubski et al., 2007; Temesi et al., 

2017). However, in the present study, significant muscle fatigue was observed in both 

groups despite this short delay.  Also, in four participants (two from each NRES and 

RES) we assessed recovery of muscle function “immediately” (within ~35 s), and at 5 

min and 10 min post-RI exercise to develop a fatigue-recovery timeline and observed that 

all neuromuscular variables (including maximal isokinetic knee-extension power and 10 

Hz stimulated torque and 10/50 Hz stimulated torque ratio) were depressed at each time-

point, indicating that with our exercise model, full recovery is delayed and that 

substantial muscle fatigue remains up to at least 10 min post-exercise.  

It was assumed that fatigue during RI cycling exercise could be compared with 

voluntary and electrically-stimulated muscle force production assessed during knee 

extension contractions.  Despite best efforts to match the biomechanics of whole-body 

cycling (knee and hip angle, range of motion, etc.) and velocity (70 rpm cycling matched 
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to 221.1 deg•s-1 on the dynamometer) to knee extensions, the contributions of different 

muscle groups (isolated quadriceps vs. whole-limb) associated with each movement 

cannot be disregarded (Bini & Carpes, 2014). Additionally, although comparison 

between the two movements cannot be made directly, it is still evident that i) some 

participants produced a power output with knee extension contractions equal to the power 

produced at the LoT in whole-body cycling (NRES) whereas others could produce power 

with knee-extensions well in excess of the power required at the LoT (RES), and ii) 

differences in neuromuscular fatigue and muscle function exist between the two groups. 
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