
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-23-2017 1:30 PM 

An Internet-Wide Analysis of Diffie-Hellman Key Exchange and An Internet-Wide Analysis of Diffie-Hellman Key Exchange and 

X.509 Certificates in TLS X.509 Certificates in TLS 

Kristen Dorey, The University of Western Ontario 

Supervisor: Dr. Aleksander Essex, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering 

Science degree in Electrical and Computer Engineering 

© Kristen Dorey 2017 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

Recommended Citation Recommended Citation 
Dorey, Kristen, "An Internet-Wide Analysis of Diffie-Hellman Key Exchange and X.509 Certificates in TLS" 
(2017). Electronic Thesis and Dissertation Repository. 4792. 
https://ir.lib.uwo.ca/etd/4792 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4792&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4792?utm_source=ir.lib.uwo.ca%2Fetd%2F4792&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract
Transport Layer Security (TLS) is a mature cryptographic protocol, but has flexibility dur-

ing implementation which can introduce exploitable flaws. New vulnerabilities are routinely
discovered that affect the security of TLS implementations.

We discovered that discrete logarithm implementations have poor parameter validation,
and we mathematically constructed a deniable backdoor to exploit this flaw in the finite field
Diffie-Hellman key exchange. We described attack vectors an attacker could use to position
this backdoor, and outlined a man-in-the-middle attack that exploits the backdoor to force
Diffie-Hellman use during the TLS connection.

We conducted an Internet-wide survey of ephemeral finite field Diffie-Hellman (DHE)
across TLS and STARTTLS, finding hundreds of potentially backdoored DHE parameters and
partially recovering the private DHE key in some cases. Disclosures were made to companies
using these parameters, resulting in a public security advisory and discussions with the CTO
of a billion-dollar company.

We conducted a second Internet-wide survey investigating X.509 certificate name mismatch
errors, finding approximately 70 million websites invalidated by these errors and additionally
discovering over 1000 websites made inaccessible due to a combination of forced HTTPS and
mismatch errors. We determined that name mismatch errors occur largely due to certificate
mismanagement by web hosting and content delivery network companies. Further research
into TLS implementations is necessary to encourage the use of more secure parameters.

Keywords: Transport Layer Security, discrete logarithm problem, Diffie-Hellman, small
subgroup attack, X.509 certificate, name mismatch error
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Chapter 1

Introduction

Simply put, if you use the Internet, you have used Transport Layer Security (TLS). The green
padlock icon (Figure 1.1) displayed in the browser on your desktop or cellphone shows that
TLS is used by that website. Most users unknowingly entrust TLS to secure services such
as online banking, email, and internet voting – without it, an attacker can see your banking
information, obtain your email passwords, or see who you voted for in an online election.
New vulnerabilities such as Logjam [8] and DROWN (Decrypting RSA using Obsolete and
Weakened eNcryption) [12] are routinely discovered that could undermine the security of those
systems.

Figure 1.1: The Green Padlock Icon. Examples of the green padlock for Google Chrome and
Mozilla Firefox.

Comprehensive checks of vulnerable systems can be done with Internet-wide data sets, which

1



2 CHAPTER 1. INTRODUCTION

also provide insight into the less travelled corners of the Internet. In the last few years, Internet-
wide scanning has become easier and more popular with application-layer scanners such as
ZGrab [36]. With this wealth of data, there are aspects of current TLS deployment that remain
uninvestigated. This thesis demonstrates a new vulnerability in the implementation of TLS and
additionally presents a survey of a well-known TLS misconfiguration.

1.1 Motivation

TLS is mature and makes excellent use of cryptography to provide security, but implementa-
tions of TLS are open to interpretation which can introduce vulnerabilities [8, 12, 81, 38]. This
work aims to make TLS implementations more secure: we demonstrate that it only takes one
weak spot for an entire implementation to become vulnerable, and we encourage implementa-
tions to follow best practices even when an attack is not immediately evident.

1.2 Contributions

This thesis makes five contributions to the study of TLS implementations, of which the first
four were published at the 2017 Network and Distributed System Security Symposium [35]:

1. We outline a method for mathematically constructing a backdoor that remains deniable
while exploiting poor parameter validation in discrete logarithm implementations.

2. We conducted an Internet-wide survey of ephemeral Diffie-Hellman (DHE) support, un-
covering hundreds of TLS- and STARTTLS-enabled web and mail servers using com-
posite moduli. These potentially backdoored parameters were found across a range of
protocols – including HTTPS, SMTP, SMTPS, IMAPS, and POP3S – and spanned over
30 countries and a diverse set of organizations. In some cases, we were able to recover
large portions of the private DHE key. We additionally found 1.6 million servers offering
non-safe prime groups of unknown order.

3. We discuss how TLS 1.2 and earlier is vulnerable to a man-in-the-middle attack, where
an attacker that can exploit backdoored parameters can force a DHE cipher suite to be
negotiated as long as both parties support it. We present several possible attack vectors
to deliver these malicious parameters: directly attacking the server or TLS endpoint, or
by attacking the software upstream.
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4. We disclosed the potentially backdoored parameters to 17 companies, resulting in a pub-
lic security advisory (CVE-2016-5774) and conference calls with the CTO of a billion-
dollar company. The organizations we spoke to declined to explain how composite mod-
uli came to be used in their DHE configurations.

5. We conducted an Internet-wide survey of X.509 certificates invalidated by name mis-
match errors, uncovering approximately 70 million websites with this error. We catego-
rized these errors and determined that web hosting or content delivery network (CDN)
companies were the most common cause. We additionally found over 1000 websites
with this error that forced HTTPS use, making their websites inaccessible.

1.3 Organization of Thesis

The remainder of this thesis is organized into five chapters:

• Chapter 2 details the Transport Layer Security (TLS) protocol and its uses. It further
discusses two aspects of TLS: the finite field Diffie-Hellman key exchange in terms of
its purpose, cryptographic operations, and methodology; and X.509 certificates in terms
of their purpose, trust hierarchy, structure, and invalidating errors.

• Chapter 3 outlines and demonstrates the lack of parameter validation found in discrete
logarithm implementations, and explains the construction of a backdoor that exploits this
weakness.

• Chapter 4 describes an Internet-wide survey into potentially backdoored parameters
across TLS and STARTTLS; presents a man-in-the-middle attack to force DHE use,
which requires an attacker to first position the backdoor through attack vectors we de-
scribe; and details vulnerability disclosures.

• Chapter 5 describes an Internet-wide survey into certificate-invalidating name mismatch
errors, and outlines the impact of these errors on websites that force HTTPS use.

• Chapter 6 discusses the declining support for finite field Diffie-Hellman due to the com-
bination of our work and others, and outlines potential future work in the area of name
mismatch errors.



Chapter 2

Background

A version of § 2.4.4 has been published as part of [35].

2.1 Network Security

When considering the security of communications over a network, the network can be concep-
tualized as layers that are secured separately [80, 67]. There are seven layers defined by the
Open Systems Interconnection (OSI) model: physical (the lowest layer), data link, network,
transport, session, presentation, and application. Security requirements differ across layers,
meaning only some layers have security protocols and those protocols vary. For example, in the
data link layer, a wireless local area network (LAN) such as Wi-Fi can be secured through the
Wi-Fi Protected Access II (WPA2) protocol. In the network layer, a Virtual Private Network
(VPN) can be secured through Internet Protocol Security (IPSec). In the transport layer, which
provides end-to-end communication between applications on network-connected hosts, a pro-
tocol such as the Transmission Control Protocol (TCP) can be secured with confidentiality,
integrity, and authenticity through Transport Layer Security (TLS).

2.2 Transport Layer Security

In this section, we discuss the goals, subprotocols, and applications of Transport Layer Security
(TLS) protocol.

2.2.1 What is Transport Layer Security?

The Transport Layer Security (TLS) protocol is a cryptographic protocol used to secure com-
munication at the transport layer of a network. TLS 1.2 [33] was finalized in 2008, and TLS

4



2.2. TRANSPORT LAYER SECURITY 5

1.3 [72] is currently a draft. TLS provides a security and proficiency upgrade to the Secure
Sockets Layer (SSL), which had its final version SSL 3.0 deprecated in 2015 [15] after crit-
ical security vulnerabilities were discovered. For example, the fix for the POODLE attack
(Padding Oracle On Downgraded Legacy Encryption) [64] required extensions, which are only
possible in TLS 1.0 and above. Despite this, SSL 3.0 is still used in a few HTTPS connections
today [52].

Goals of TLS. RFC 5426 [33] specifies four goals for TLS in order of importance: crypto-
graphic security for connections, interoperability between different applications, extensibility
for future expansions, and relative efficiency for cryptographic operations. Expanding the first
goal, TLS is intended to secure communicating applications by supplying confidentiality, in-
tegrity, and authenticity to the connection. Confidentiality is provided through encryption, and
protects against eavesdropping and also data theft from either server or client. Integrity is pro-
vided through message authentication codes, and protects against data, memory, and message
traffic modification. Finally, authenticity is provided through digital signatures, certificates,
and public key cryptography. It protects against impersonation and data forgery [79].

Uses of TLS. TLS is placed above the transport layer, but does not fit neatly into an OSI
model layer. It can therefore be used with any application protocol. Common application
protocols used include Hypertext Transfer Protocol (HTTP) for communicating on the World
Wide Web; Simple Mail Transfer Protocol (SMTP) for transmitting email; Internet Message
Access Protocol (IMAP) and Post Office Protocol (POP) for retrieving email; and Extensible
Messaging and Presence Protocol (XMPP) for instant messaging [78]. These protocols are
discussed further in § 2.2.4. The freedom to choose application protocols means that their TLS
implementations are not specified, enabling different interpretations and providing openings
for vulnerable configurations. The remainder of § 2.2 discusses the inner workings of TLS to
provide context for the vulnerability discussions in Chapter 4 and Chapter 5.

Layers of TLS. There are two layers to TLS: the TLS Record Protocol, and the TLS Hand-
shake Protocol which also contains subprotocols. The first layer is the TLS Record Protocol,
placed above the transport layer. The TLS Record Protocol takes higher-layer data that needs
to be transmitted, divides it into blocks, and potentially compresses the data. A message au-
thentication code (MAC – not to be confused with a Media Access Control address) is then
added to the record, followed by encrypting the data based on the previously negotiated cipher
and sending the final product to the transport layer [33].

The second layer of TLS is the TLS Handshake Protocol, placed above the Record Protocol.



6 CHAPTER 2. BACKGROUND

It has three subprotocols: the Change Cipher Spec Protocol, used for changing previously ne-
gotiated ciphers during the handshake; the Alert Protocol, used for sending warning messages
as information or fatal messages to terminate the connection; and the Handshake Protocol. The
Handshake Protocol is used by a client, such as a browser, and a server to determine cryp-
tographic keys that enable secure communication between the parties. For simplicity, further
references to the Handshake Protocol refer to the subprotocol.

2.2.2 TLS Handshake Protocol

Handshake Types. In general, there are three types of the TLS Handshake: abbreviated
handshake, and full handshake with or without client authentication [76]. The abbreviated
handshake is the most common method, and is done when resuming a session created from
a previous full handshake. The main advantage to abbreviating a handshake using already
negotiated security parameters is the computational cost reduction. The full handshake can
be seen with client authentication if the server has been successfully authenticated. However,
client authentication is not often done; instead, a client is usually authenticated through a user-
name and password [44]. This section expands upon the full handshake with optional client
authentication for completeness.

Overview of Full Handshake. The full TLS Handshake consists of Hello messages; cer-
tificate requests, receipts, and verifications; key exchanges; and Finished messages [33].
The handshake sequence, illustrated in Figure 2.1, consists of a maximum of eleven messages
in specific order: client hello, server hello, server certificate, server key exchange, certificate
request, server hello done, client certificate, client key exchange, certificate verify, client fin-
ished, and server finished. The Change Cipher Spec messages are part of the Change Cipher
Spec Protocol, not the Handshake Protocol, but their placement is related to the handshake
sequence as explained in § 2.2.3.

2.2.3 TLS Handshake Messages

(1) Client Hello. To initiate a TLS connection, the client sends a ClientHello to the
server. We focus on four important aspects of the ClientHello:

A. List of supported cipher suites. A cipher suite in TLS 1.2 and below, seen in
Figure 2.2, defines the algorithms used in the rest of the handshake:

i. Encryption. A cipher algorithm and its mode of operation are used for encryp-
tion. A common choice is the Advanced Encryption Standard (AES) operating
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Figure 2.1: The TLS Handshake. The TLS Handshake Protocol can be broken into four
phases [79].

by Galois/Counter Mode (GCM), for security and efficiency respectively.

ii. Key Exchange. A client and server exchange keys that are later used to derive
the encryption and message authentication code (MAC) keys for the connec-
tion. Key exchange is described later in this section.

iii. Authentication/Signature. Public keys exchanged may be signed to prove
their authenticity, depending on the key exchange method. Signature verifica-
tion is confirmed through certificates.

iv. Hash Function. A hash function is used when creating the MAC. A common
choice is the Secure Hash Algorithm 2 (SHA-2) for security. In TLS 1.2, the
hash function can also be used in the pseudorandom function (PRF) for key
derivation.
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B. Random bytes. The included random bytes (ClientHello.random) are used
later during key generation to produce unique encryption and authentication keys
for the TLS connection. Some of these bytes are epoch time – the number of
seconds since January 1, 1970. Unique keys are needed to prevent replay attacks,
where an attacker saves data from a previous connection and resends it to one party,
producing a valid connection.

C. TLS version. The client includes its desired TLS version in the ClientHello,
which is the highest version it supports.

D. Session identifier. The session identifier is used if reusing security parameters from
a previous session (see abbreviated handshake from § 2.2.2).

Figure 2.2: A TLS cipher suite. An example cipher suite supported by Chrome 57.

(2) Server Hello. After the ClientHello, the server must respond with its Server-
Hello. It is structured similar to the ClientHello; for example, it also contains
random bytes ServerHello.random. However, in general the ServerHello con-
tains the server’s selections rather than options. For example, the server usually picks its
most preferred cipher suite that the client also supports.

(3) Server Certificate. The message following the ServerHello is the server’s digital
certificate(s), which is the first step in authenticating the server to the client. Server au-
thentication is explained later in the ServerKeyExchange since it relies on both the
server’s certificate and key exchange. Except in rare cases, the server must always send
at least one public key certificate to the client, where multiple certificates form a chain.
More specifically, a server’s Certificate message is required when using any key
exchange method defined in TLS 1.2, except for one which is deprecated in TLS 1.3 [72].
For all versions of TLS, X.509 version 3 (v3) certificates [28] are the default, although
experimental methods exist such as OpenPGP certificates [61] derived from Pretty Good
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Privacy (PGP). X.509 certificates are explained further in § 2.5. Among other fields,
these certificates contain the server’s public key, which is used for server authentication
through encryption or signature verification depending on the key exchange algorithm.

(4) Server Key Exchange. A server’s certificate chain, or the ServerHello if no Cer-
tificate message was sent, is typically followed by the ServerKeyExchange.
This message is required if the client needs additional information to generate the pre-
master secret. The premaster secret is explained later in the ClientKeyExchange.

Key exchange finishes server authentication that started with the server’s certificate. Key
exchange algorithms requiring ServerKeyExchange include ephemeral finite field
Diffie-Hellman (DHE) and ephemeral Elliptic Curve Diffie-Hellman (ECDHE) [23],
where ephemeral means the DHE/ECDHE keys are used only once. Using Rivest-
Shamir-Adleman (RSA) or fixed/static Diffie-Hellman for key exchange does not re-
quire a ServerKeyExchange message since the client obtains the public parameters
needed for premaster secret generation from the server’s certificate [67]. For RSA, server
authentication is finished by encrypting the premaster secret with the server’s public key
from its certificate – the server is authenticated since it must use the corresponding pri-
vate key to decrypt.

Definition. (Ephemeral.) A key is ephemeral if it is used only once.

If a ServerKeyExchange message is sent, it contains the DHE or ECDHE parame-
ters (see § 2.4) along with a signature of those parameters. The server creates the signa-
ture by hashing the parameters with the ClientHello and ServerHello randoms,
then encrypting the hash with the private key that matches the public key on the server’s
certificate. The client uses that public key, previously obtained through the server’s cer-
tificate, to verify the signature – the server is authenticated since it must have used the
corresponding private key to sign the parameters.

(5) Certificate Request. This step is the first in client authentication, which is not frequently
done in the TLS handshake. Client authentication is different than server authentication;
it still depends upon certificates but signs previously exchanged messages instead of
key exchange parameters. Client authentication is expanded upon in the client’s Cer-
tificate and CertificateVerify. A server previously authenticated with its
certificate and key exchange can send a CertificateRequest to the client after the
ServerKeyExchange. If there was no ServerKeyExchange, this message is sent
after the server’s Certificate. The CertificateRequest contains the types of
keys the client’s certificate can contain, among other information.
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(6) Server Hello Done. A server must send an empty ServerHelloDone message to
inform the client that it has sent all of its handshake messages. It does not respond again
until it is time for its Finished message. After receiving the ServerHelloDone,
the client should check the acceptability of the ServerHello message and the validity
of the server’s certificate chain if one exists.

(7) Client Certificate. This is the second step in client authentication, and therefore it is
not often done. If the server has previously sent a CertificateRequest, the client
must respond with a Certificate message. A server may choose to continue the
handshake even if the Certificate message contains no certificates. The client’s
Certificate message follows the same format as the server’s Certificate mes-
sage – one of its fields is the client’s public key, used in client authentication. This
message must also be compatible with the specifications outlined in the server’s Cer-
tificateRequest.

(8) Client Key Exchange. A client’s certificate chain, or the ServerHelloDone if no
Certificate message was sent, must be followed by the ClientKeyExchange.
This message ensures both parties have the premaster secret pre_master_secret,
although the exact message depends on the key exchange algorithm. For example, with
DHE or ECDHE key exchange, the client sends its public DHE or ECDHE parameters
so that the server can compute the premaster secret. In RSA key exchange, the client
computes the premaster secret itself and sends it to the server after encrypting it with the
public key from the server’s certificate.

The premaster secret with the addition of the random bytes from the ClientHello
and ServerHello are used to generate the 48-byte master secret [33]:

master_secret = PRF(pre_master_secret, "master secret",
ClientHello.random + ServerHello.random)

The master secret master_secret then generates the key block [33]:

key_block = PRF(master_secret, "key expansion",
ServerHello.random + ClientHello.random);

The key block is then split into a client encryption key, server encryption key, client
message authentication code (MAC) key, and server MAC key.
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(9) Certificate Verify. This is the last step in client authentication, and as such it is not
often done. If a client has sent a certificate with signing capabilities, it must complete
its authentication to the server with a CertificateVerify message following the
ClientKeyExchange. Therefore this message must always be sent except when
fixed/static Diffie-Hellman was used for key exchange. The CertificateVerify
message is a signed hash of previously exchanged handshake messages from Clien-

tHello to before CertificateVerify. Similar to server authentication, the server
uses the public key previously obtained through the client’s certificate to verify the sig-
nature – the client is authenticated since it must have used the corresponding private key
to sign the messages. After this message is received by the server, the parties are ready
to exchange Finished messages.

(10) Client Finished. Before the client sends its Finished message, it sends a Change-
CipherSpec message that is part of the Change Cipher Spec Protocol. This message
indicates that the client has enough information use an encrypted connection with its
generated keys. The client then sends its Finished message which is secured with
the previously negotiated algorithms. The Finished message is a hash of all previ-
ously exchanged messages from the ClientHello to before the client’s Finished
message. It verifies that the key exchange and authentication(s) were done properly.

(11) Server Finished. After verifying the client’s Finished message, the server sends a
ChangeCipherSpec message similar to the client. It then sends its own Finished
message, which is of the same format as the client’s except that the hash also includes
the client’s Finished message. After the client has verified the server’s message, the
two parties can now exchange application data.

2.2.4 Applications of TLS

As mentioned in § 2.2.1, common application protocols protected by TLS include the Hy-
pertext Transfer Protocol (HTTP), Simple Mail Transfer Protocol (SMTP), Internet Message
Access Protocol (IMAP), and Post Office Protocol (POP). The application of TLS with these
protocols is explained further in this section.

HTTPS. The Hypertext Transfer Protocol (HTTP) is the application protocol used for com-
munication via the Internet. HTTPS is the implementation of HTTP and either SSL or TLS. As
such, HTTPS is defined as HTTP Secure, HTTP over SSL, or HTTP over TLS [71]. HTTPS
has been used by web browsers such as Google Chrome (i.e. Chrome) and Mozilla Firefox (i.e.
Firefox) for years to secure communication between the browser and web server.
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An example use of HTTPS is to secure password transmission on login pages, and in fact
some websites drop the HTTPS connection for HTTP after this user authentication. More gen-
erally, many websites simply do not use HTTPS. Since HTTP communicates information over
unencrypted channels, an attacker can easily view information passed along the connection.
By contrast, an attacker wanting information from a site secured with HTTPS needs to con-
duct a man-in-the-middle (MITM) attack to gain information about or modify the connection.
One such attack is HTTPS stripping [60], which can be prevented by forcing HTTPS-only use
through HTTP Strict Transport Security (HSTS).

HSTS. HTTP Strict Transport Security (HSTS) [50] is a mechanism introduced recently that
allows websites to specify that they should only be accessed through HTTPS. Two important
attacks that HSTS prevents are HTTPS stripping [60] and attacks using invalid certificates, by
forcing HTTPS use and disabling user circumvention respectively. HSTS can be implemented
in two ways: setting the Strict-Transport-Security header in the HTTP response
(activates when the website is accessed over HTTPS), or submitting the website to a HSTS
preload list. Chrome has a HSTS preload list, and many major browsers such as Firefox have
HSTS preload lists adapted from it [76].

SMTP and SMTPS. The Simple Mail Transfer Protocol (SMTP) is used for transmitting
email from the email sender to its final server destination. SMTP can use TLS directly, called
SMTP Secure or SMTP over SSL/TLS (SMTPS), or through the STARTTLS extension [51].
STARTTLS upgrades an existing connection to be secure over TLS, and so works over the
same port as the unsecured protocol. By contrast, the protocol over TLS is used over a separate
encrypted port.

IMAP/S and POP3/S. Both the Internet Message Access Protocol (IMAP) and Post Office
Protocol version 3 (POP3) are used by email clients to retrieve email from an email server [79].
Similar to SMTP, either can use TLS directly (IMAPS and POP3S) or through the STARTTLS
extension.

2.3 Secure Shell

Similar to TLS, the Secure Shell (SSH) protocol is used to secure communication at the trans-
port layer of a network. Its newest version is outlined in Internet Engineering Task Force
(IETF) Request for Comments (RFC) 4250 to 4256. However among other differences, TLS is
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commonly used to secure HTTP while SSH is known for securing remote logins. Most impor-
tantly for this discussion, SSH can use Diffie-Hellman for key exchange [87] similar to TLS.
A major implementation of SSH is OpenSSH,1 which we discuss briefly in § 4.4.2.

2.4 Diffie-Hellman

The current primary key exchange algorithm used in TLS is ephemeral Diffie-Hellman over fi-
nite fields (DHE) or elliptic curves (ECDHE). We say Diffie-Hellman is used over finite fields
to distinguish it from elliptic curves; this terminology is widely used [8, 13, 42, 45]. At the time
of writing, telemetry data shows that three key exchange methods are used in TLS handshakes:
ECDHE accounts for 90-92%, RSA for 8-9%, and DHE for 0.01-1% [65]. Despite this, we
show in § 4.2.2 that DHE is still widely supported; for example in HTTPS, DHE cipher suites
were supported by 25% of servers. This section discusses the need for key exchange algo-
rithms, the cryptography behind finite field Diffie-Hellman key exchange, and the related work
in this area.

2.4.1 Public-Key Key Exchange

In § 2.2.3, the concept of key exchange was introduced as a step in the TLS handshake. It was
assumed in that section that if a client and server wanted to communicate, they could securely
transmit the keys needed to do so. In reality, during the TLS handshake the client and server
are communicating over an insecure network, yet need a secure way to transfer keys.

The two types of key cryptography used in TLS are symmetric-key cryptography and
public-key cryptography (also known as asymmetric-key cryptography). Symmetric-key cryp-
tography is frequently used in encryption, where it uses the same key for encrypting plaintext
(i.e. unencrypted information) and decrypting ciphertext (i.e. encrypted information). In TLS,
symmetric keys are used for encryption/decryption and MACs; for example, the AES encryp-
tion scheme uses symmetric-key cryptography. Unfortunately, symmetric-key cryptography
does not solve the problem of first having to securely communicate the key between parties,
which is why in TLS symmetric keys are only used internally by the client and server.

The secure key transfer problem of symmetric-key cryptography is why public-key cryp-
tography was invented. Before public-key cryptography, transferring keys securely was done
by physical methods such as face-to-face meetings. This method had its own problems such as
potential key loss or tampering en route. A secure key transfer method was needed, one which

1https://www.openssh.com/

https://www.openssh.com/
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allowed two parties to compute a shared secret such that no observer of the transfer could re-
cover the shared secret. Each party has a different key pair: a public key (able to be exchanged
over an insecure channel) and a private key (kept secret).

Definition. (Key pair.) A key pair, used in public-key key exchange, consists of a public key
that can be exchanged over an insecure channel and a private key that is known only to the
party who generated it.

The shared secret is computed separately by both parties using their own private key and the
other’s public key. Diffie and Hellman were the first to publicly propose such a method [34],
and it was considered a major advance in secure communication since entities who had never
met could now communicate securely. Their public-key key exchange protocol is called the
Diffie-Hellman key exchange. The cryptography behind the Diffie-Hellman key exchange is
discussed in § 2.4.2, and the actual protocol is discussed in § 2.4.3.

2.4.2 Cryptography

The cryptography behind the finite field Diffie-Hellman key exchange is discussed in this sec-
tion.

Groups. A group {G,∗} is a set of elements G such that a pair of elements (a,b) can be
combined to form another element (a ∗ b) through a binary operation, ∗, such as addition or
multiplication [63]. For the purposes of this discussion, multiplication is the most relevant
binary operation. The group G needs to have four properties:

• Closure. For any two elements a,b in G, G must also contain the combined element
(a∗b).

• Associative. For any three elements a,b,c in G, combining two of the elements with
the remaining element should always produce the same result. For example, a∗ (b∗ c) =

(a∗b)∗ c.

• Existence of Identity Element. G includes an identity element e, which for multiplica-
tion of real numbers is 1. When combining the identity element with any other element,
it always equals the second element. For example, a∗ e = e∗a = a.

• Existence of Inverse Element. Each element a in G has a corresponding inverse element
a−1. When the two are combined, the result is the identity element e. For example,
a∗a−1 = a−1 ∗a = e.
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The group G is considered an abelian group if it has an additional property:

• Commutative. For any two elements a,b in G, combining the two elements in a different
order should not change the result. For example, a∗b = b∗a.

Abelian groups are important to the definition of a field, where fields are fundamental to dis-
crete logarithms and therefore Diffie-Hellman. A field F is a set of elements with binary
operations of addition – under which F forms an abelian group – and multiplication, among
other properties. For the purposes of this discussion, multiplication is the most relevant binary
operation; under multiplication, the non-zero elements of the field form an abelian group [79].
A finite field possesses an order equal to the finite number of elements in it, so finite fields
are more useful in cryptography than infinite fields. This order must equal pn, where n is the
positive integer that a prime p is raised to. This discussion is restricted to the case of n = 1, or
a finite field with order p. This type of field is the set of integers Zp = {0,1, ..., p−1}, where
the elements can be multiplied modulo p. A similar field can be defined for other primes; for
example, with prime q there exists Zq = {0,1, ...,q− 1}. All integers in Zp except 0 are rel-
atively prime to p, since the only common positive integer factor between p and each integer
is 1. This property means that a multiplicative inverse exists for every integer in Zp except 0.
This set of invertible elements is Z∗p = {1, ..., p− 1}, also called the multiplicative group of
numbers modulo p. It is used to define a cyclic group Gq.

Cyclic Groups. A cyclic group is an abelian group G where there exists an element g in G,
i.e. g ∈ G, such that for all elements a ∈ G there exists an integer i such that gi = a where
gi = g∗g∗ ...∗g i-times. The element g is called a generator because repeated applications of
the binary operation to g generate the set of elements. The finite cyclic group Gq of order q is
a subgroup of Z∗p, meaning it has only some of the elements from Z∗p. If q is prime, then all
elements of Gq are generators. In general, p = rq+1 where r is an integer and q is also prime.
If p is a safe prime, this means that r = 2 so p = 2q+1.

Definition. (Safe prime.) A safe prime, ps, is a prime of the form ps = 2q+1, where q is also
prime.

Definition. (Safe prime group.) A safe prime group, Gq, is the q-order subgroup of Z∗ps
(the

multiplicative group of numbers modulo ps), where ps is a safe prime of the form ps = 2q+1.

Definition. (Non-safe prime.) A non-safe prime, pn, is any prime that is not a safe prime.

Definition. (Non-safe prime group.) A non-safe prime group, Gq, is the q-order subgroup of
Z∗pn

(the multiplicative group of numbers modulo pn), where pn is a non-safe prime.
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Definition. (Composite.) A composite number, n, is any positive integer that is not prime.

The elements in Gq are generated by the generator g, which is also a group element. Not every
group element is a generator; an element is only a generator if using the binary operation, ∗,
on itself repeatedly generates all group elements.

Definition. (Generator.) A generator, g, generates the q-order subgroup Gq if the subgroup
Gq = {g,g2,g3, ...,gq}, where gq = g0 = 1.

The concepts of generators, moduli, and Gq are used to shape the discrete logarithm problem.

Discrete Logarithms over Finite Fields. The discrete logarithm (DL) of an element a of
Gq is defined as k where a = gk mod p. The discrete logarithm problem (DLP) is therefore
attempting to solve for k, given a modulus p and generator g of Gq which has an element a

and order q. The DLP is computationally hard when the order q is large and is not smooth,
meaning it cannot be factored into smaller primes.

Definition. (Discrete logarithm problem.) The discrete logarithm problem (DLP) involves
attempting to solve for k, where a = gk mod p for a prime, p, and a generator, g, of the q-order
subgroup Gq which has an element, a.

Definition. (Smooth number.) A b-smooth number, sn, is an integer that can be factored into
a sequence of primes such that sn = p1 p2...pn, where pi ≤ b for some bound b. Informally,
the term “smooth” number is used to describe a “small” b. In this thesis, we mean b is small
enough such that solving the discrete logarithm in subgroups of order pi ≤ b is efficient.

The current recommended key lengths by the National Institute of Standards and Technology
(NIST) are |p|≥ 2048 bits and |q|≥ 224 bits [14]. The hardness of the DLP makes it the basis
for DL implementations such as the Diffie-Hellman key exchange.

2.4.3 Diffie-Hellman Key Exchange

As mentioned at the beginning of § 2.4 and in § 2.4.1, ephemeral finite field Diffie-Hellman
(DHE) is one of the public-key algorithms used in the key exchange portion of TLS. It makes
use of the discrete logarithm problem (DLP) to calculate a shared secret between two parties
communicating over a public authenticated channel [67]. If the DLP is sufficiently hard, then
the Diffie-Hellman key exchange is theoretically secure.
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Attacker Definitions. We have used the term “attacker” briefly, but the remainder of this
chapter along with Chapters 3 and 4 require more specific definitions of “attacker”. We take
three attacker definitions used in cryptography:

• Eve: Eve is a passive attacker/eavesdropper, who is able to listen to communicated mes-
sages but is unable to change them;

• Mallory: Mallory is a malicious and active attacker who can change communicated
messages;

• Heidi: Heidi is a malicious designer of cryptography parameters [42]. We additionally
use Heidi to choose attack targets for installing her designed parameters.

These attacker names are used throughout this work.

Finite Field Diffie-Hellman Key Exchange. The finite field Diffie-Hellman key exchange
is outlined in Figure 2.3. It starts with two users Alice (A) and Bob (B), who in TLS would be
the client and server. An eavesdropper, Eve (E), can see any public parameters communicated
between Alice and Bob. Alice and Bob agree upon a generator g of Gq and a modulus p, where
their choices should ensure that the DLP is hard. These choices are called Diffie-Hellman
domain parameters.

Definition. (Diffie-Hellman domain parameters.) Diffie-Hellman domain parameters (or sim-
ply DHE parameters) are modulus p (should be prime) and generator g of a q-order subgroup
Gq.

We use the notation a $←− S to denote a value a sampled uniformly at random from set S. The
parties independently choose a random integer from Zq, i.e. ka

$←− Zq and kb
$←− Zq for Alice

and Bob respectively, where ka is known only to Alice and kb is known only to Bob. These
integers act as the private DHE keys in the exchange. Alice then calculates her public DHE
key:

Pa = gka mod p.

Bob does a similar process to calculate his public DHE key:

Pb = gkb mod p.
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Pa is sent to Bob and Pb is sent to Alice. Now that both parties have the other’s public DHE
key, they can compute the Diffie-Hellman shared secret, s. Alice computes s:

s = (Pb)
ka

= (gkb)ka mod p

= gkakb mod p.

Bob computes s independently of Alice:

s = (Pa)
kb

= (gka)kb mod p

= gkakb mod p.

Both parties end up with the same shared secret. This result is possible due to the commutative
property discussed in § 2.4.2. Although Eve is able to see p,g,Pa, and Pb, she cannot calculate
s if the DLP is hard. The Diffie-Hellman shared secret becomes the premaster secret used in
the TLS key generation (see § 2.2.3).

Figure 2.3: Diffie-Hellman Key Exchange. The finite field Diffie-Hellman key exchange
involves two parties exchanging public keys and computing a shared secret.

The security of Diffie-Hellman is more specifically defined from the computational Diffie-
Hellman (CDH) assumption and the decisional Diffie-Hellman (DDH) assumption. Properly
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chosen Diffie-Hellman domain parameters should satisfy these assumptions, ensuring the key
exchange is theoretically secure.

Definition. (Computational Diffie-Hellman (CDH) assumption.) The CDH assumption states
that given a random set of Diffie-Hellman domain parameters 〈p,q,g〉 forming Gq, and ele-
ments 〈ga,gb〉 in Gq, it is computationally intractable to find gab.

Definition. (Decisional Diffie-Hellman (DDH) assumption.) The DDH assumption states that
given given a random set of Diffie-Hellman domain parameters 〈p,q,g〉 forming Gq, and ele-
ments 〈ga,gb,gc〉 in Gq, it is computationally intractable to recognize a difference between gab

and gc.

Backdoors. A backdoor is a way to bypass security mechanisms, such as encryption and
authentication from a cryptosystem. Although it can refer to a bypass installed for legitimate
reasons such as troubleshooting, it is more often secretly exploited or installed by malicious
designer Heidi. For the purposes of this work, a backdoor refers to a maliciously installed back-
door. We discuss creating, finding, and installing backdoors in Diffie-Hellman in Chapters 3
and 4.

2.4.4 Related Work

Inadequate DHE Parameter Validation. As mentioned in § 2.4.2, the discrete logarithm
problem is hard for subgroups that are sufficiently large and not smooth. Not following these
guidelines results in insecure implementations, which has been known for decades [59, 11, 82].
Despite this, many popular discrete logarithm implementations do little or no parameter valida-
tion, which will be discussed further in § 3.2. Valenta et al. [81] published work independently
but concurrently to our paper [35], and it contained many similar results about the weak Diffie-
Hellman parameters used in HTTPS and other protocols. Whereas our paper focuses on the
possibility of backdoors stemming from small subgroups of hidden order, their work focuses
on how the lack of parameter checking can be exploited in the context of Digital Signature
Algorithm (DSA) style groups.

Other recent work exploiting poor parameter validation includes Bhargavan et al.’s 2014 [21]
and 2015 [22] papers. The first paper demonstrated a triple handshake attack against TLS,
which succeeded because the client did not check if the group order was prime. The second
paper demonstrated a small subgroup attack against TLS and SSH, which succeeded because
the public key was not validated and thus could be chosen in a deliberately small subgroup.
Mavrogiannopoulos et al. [62] defined a TLS attack used when a server supports explicit Ellip-
tic Curve Diffie-Hellman curves, which succeeded since the client can view the Elliptic Curve
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Diffie-Hellman parameters as Diffie-Hellman parameters. Despite recovering the premaster
secret, this attack is very limited as explicit Elliptic Curve Diffie-Hellman curves are not sup-
ported in the majority of TLS implementations due to their open-source nature.

Backdoors Based on Subgroups of Smooth Order. Our work with Diffie-Hellman dis-
cusses the possible existence of backdoor discrete logarithm groups (see § 4.2 and § 4.3).
Henry and Goldberg [49] solved the discrete logarithm in some smooth order groups using a
parallelized implementation of the Pollard’s rho algorithm [70], and concluded that their im-
plementation could be used to create a backdoor DL group.

In addition to Valenta et al. [81], Wong [85] recently published concurrent but independent
work to us. Wong found composite DHE moduli over HTTPS in the wild, but our work reports
on considerably more moduli across a wider range of protocols. In addition, the exploitation
by Wong required both the client and server to prefer a DHE cipher suite, which limits the
attack potential since current telemetry data [65] indicates DHE key exchanges account for at
most 1% of TLS handshakes. In § 4.4.1 we describe how an attacker can exploit backdoored
parameters to force a DHE cipher suite to be selected if both parties support it. Additionally
we explain how one of Wong’s backdoor constructions could be reversed in less operations
than he expected. We also conducted a number of vulnerability disclosures and discuss vendor
responses in § 4.6.

Backdoors Based on Number Field Sieves. In addition to work on backdoors based on
smooth order subgroups, there has also been work on backdoors based on number field sieves.
Lenstra [56] and Gordon [46] observed that even if it was established that a particular group
had a sufficiently large prime order and that all relevant values were members of the group, it
is not necessarily sufficient to ensure the hardness of the discrete logarithm problem if p was
maliciously chosen to be “nice” in the context of the generalized number field sieve. Here, a
backdoored prime modulus could be constructed using a polynomial of low-degree and con-
strained coefficients for the purposes of greatly accelerating the sieving and descent steps of
a generalized number field sieve (GNFS). Given only p, a verifier would need to deduce this
polynomial in order to establish the existence of a backdoor. This approach to building back-
doored Diffie-Hellman parameters was previously considered too computationally intensive to
perform in practice.

However, Fried et al. [42] recently demonstrated the creation of a 1024-bit backdoored
prime modulus using the special number field sieve. Number field sieving can even be applied
in some situations where the group was not attacker controlled. Adrian et al. [8] demonstrated
a modified version of the GNFS, which they named Logjam, in which an attacker could recover
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private DHE keys from export strength (512-bit) groups.

2.5 X.509 v3 Certificates

As mentioned in § 2.2.3, X.509 v3 certificates are used for server authentication in TLS. This
section discusses the need for certificates, the trust hierarchy of certificate chains, certificate
generation and issuance, fields and extensions in a certificate, and the related work in this area.

2.5.1 The Need for Certificates

MITM Attacks on Diffie-Hellman. In § 2.4.3, we outlined how Diffie-Hellman key ex-
change could be used to securely compute a shared secret between parties Alice and Bob. It
was assumed in that section that an eavesdropper, Eve, could not calculate the shared secret
if the DLP was hard. However, that scenario does not stop Eve from establishing a Diffie-
Hellman key exchange with both Alice and Bob.

First, Eve would intercept Alice’s attempt to set up a key exchange with Bob, and complete
a Diffie-Hellman key exchange with Alice such that their shared secret is sae. Eve would then
initiate a Diffie-Hellman key exchange with Bob such that their shared secret is sbe. Since a
shared secret is the basis for secure communication, Eve can now intercept Alice’s messages to
Bob, undo the security with sae, then redo the security with sbe before forwarding the messages
to Bob. The same idea applies with Bob’s messages to Alice. To prevent this MITM attack
from happening, DHE parameters need to be signed as mentioned in § 2.2.3.

Digital Signatures. In § 2.2.3, we explained that DHE parameters are signed with the server’s
private key (corresponding to the public key on the server’s certificate) before they are sent to
the client. A digital signature scheme consists of three parts:

1. Key Generation. Key generation involves randomly generating a key pair (private
signing key and associated public verification key). In TLS, the server is the one to
generate a key pair.

2. Signing Algorithm. The message to be signed is hashed. The hash value is given to
the signature algorithm along with the private signing key to produce a digital signature.
In TLS with Diffie-Hellman, the DHE parameters with signature are sent to the client.

3. Signature Verification. The party who receives the signature verifies it with the public
verification key. In TLS, the client verifies the server’s signature on the DHE parameters,
confirming the authenticity of the parameters.
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Common signature schemes used in TLS are RSA and the Elliptic Curve Digital Signature
Algorithm (ECDSA). While digital signature schemes prevents the MITM attack on Diffie-
Hellman described previously, there is still a problem of confirming that the public verification
key is from the server. Public-key certificates were created to solve this problem.

Certifying Public Verification Keys. A public-key certificate, or simply certificate, is used
to certify the ownership of a public key such as a public verification key. In general, a X.509
v3 certificate [28] consists of a public key and identifying information about the owner of the
public key, and it is signed by a trusted third party who issued the certificate [79]. In TLS, the
client uses a certificate to attest to the authenticity of the public verification key. This attestation
confirms that the key comes from the server, which means the signature and therefore the DHE
parameters are also from the server. In the next sections, we discuss X.509 v3 certificates in
more detail.

2.5.2 Chain of Trust

Public-Key Infrastructure. In the context of the Internet, X.509 certificates form the basis
for a public-key infrastructure (PKI) to securely and efficiently certify public key owners as
explained in § 2.5.1. This PKI establishes a trust hierarchy between a trusted third party (a
certification/certificate authority, or CA), and an end entity who needs the certificate.

Chain of Trust. In the TLS Handshake, server certificates are typically arranged in a hier-
archical chain. This chain of trust is demonstrated in Figure 2.4 using Facebook2 and Twit-
ter3 as examples. The italicized names are the common names of each certificate (discussed
in § 2.5.3). The trust chain contains three types of certificates:

A. Root Certificate. A certificate chain starts with a certificate from a trusted root CA [17];
clients come already installed with a list of root CAs to trust by default. Certificates from
root CAs are aptly called root certificates. The specific list of root certificates trusted de-
pends on the browser and operating system. For example, using Chrome on Windows
employs the Microsoft root certificate store (shipped with Windows), but using Firefox
on Windows employs the Mozilla store (shipped with Firefox). The root certificate store
is also called the trust store. Root certificates are self-signed, meaning the certificate is
issued by the same authority as its subject. This practice is only acceptable with root

2https://www.facebook.com/
3https://twitter.com/

https://www.facebook.com/
https://twitter.com/
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certificates because they exist at the top of the trust chain and so cannot be signed by
another authority [67].

Definition. (Self-signed certificate.) A self-signed certificate is one where the certificate’s
issuer is also its subject.

B. Intermediate Certificate. The second part of the certificate chain is one or more in-
termediate certificates. An intermediate certificate, from an intermediate or subordinate
CA, is trusted because its issuer is a root CA [67]. The purpose of an intermediate cer-
tificate is to decrease the possibility of root certificate compromise by providing another
layer of protection. There may be multiple intermediate certificates in a chain, but the
last one is responsible for issuing a certificate to the end entity the requires it.

C. Leaf Certificate. The final certificate in the chain is the leaf, or end-entity, certificate.
This certificate is the one issued to the end user or system, which for our purposes is a
domain owner. Leaf certificates are discussed further in § 2.5.3.

2.5.3 Certificate Fields and Extensions

This section focuses on the fields and extensions present in X.509 v3 certificates, specifically
leaf certificates. An example certificate from google.com, seen in Figure 2.5, is used to
illustrate common fields and extensions.

Certificate Fields. X.509 certificate fields outline the basic structure of the certificate. We
restrict our discussion to relevant fields.

(1) Version. See line 3 of Figure 2.5. The version field indicates which version of X.509 is
used. At the time of writing, this is normally version 3.

(2) Issuer. See line 7 of Figure 2.5. The issuer field contains information about the certifi-
cate’s issuer, collectively called the distinguished name (DN) of the issuer [76]. A DN
is made up of attributes; common attributes include country, organization, and common
name. Common names are explained in the subject field.

(3) Validity. See line 8 of Figure 2.5. The certificate is valid between the start and end dates
specified in the validity field.
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Figure 2.4: Certificate Trust Hierarchy. A chain of trust using Facebook and Twitter as
examples.

(4) Subject. See line 11 of Figure 2.5. The subject field contains the DN of the certificate’s
subject, which is the entity that has the private key that pairs with the public key on the
certificate [28]. The subject’s DN contains the same possible attributes as the issuer’s
DN.

A relevant attribute for our research is the common name (CN). The common name at-
tribute is a Fully Qualified Domain Name (FQDN), which is a complete domain name
(i.e. specifies an exact host on the Internet, see § 5.2.1). It can contain a wildcard
(see § 5.2.1), meaning FQDN contains an asterisk (*) at the far left [71]. As an exam-
ple, the common name *.google.com covers www.google.com but does not cover
test.www.google.com. Wildcards are implemented to allow a domain owner to re-
quire less certificates, but can be confusing for a user connecting to a domain that is not
exactly specified by the certificate.

Definition. (Common name.) A common name (CN) is an attribute of a certificate’s subject.
This attribute is usually a Fully Qualified Domain Name (FQDN) or a domain with wildcard
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1 Certificate:
2 Data:
3 Version: 3 (0x2)
4 Serial Number:
5 6b:0c:76:d7:7a:a0:ae:e0
6 Signature Algorithm: sha256WithRSAEncryption
7 Issuer: C=US, O=Google Inc, CN=Google Internet Authority G2
8 Validity
9 Not Before: Jul 19 11:30:28 2017 GMT

10 Not After : Oct 11 11:30:00 2017 GMT
11 Subject: C=US, ST=California, L=Mountain View, O=Google Inc, CN=∗.google.com
12 Subject Public Key Info:
13 Public Key Algorithm: rsaEncryption
14 PublicKey: (2048 bit)
15 Modulus:
16 00:bc:6a:a7:b9:61:36:71:2e:1d:5d:79:4c:7a ...
17 (additional bytes omitted)
18 Exponent: 65537 (0x10001)
19 X509v3 extensions:
20 X509v3 Extended Key Usage:
21 TLS Web Server Authentication, TLS Web Client Authentication
22 X509v3 Subject Alternative Name:
23 DNS:∗.google.com, DNS:∗.android.com, ... (additional names omitted) ...,

DNS:youtube.com, DNS:youtubeeducation.com, DNS:yt.be
24 Authority Information Access:
25 CA Issuers URI:http://pki.google.com/GIAG2.crt
26 OCSP URI:http://clients1.google.com/ocsp
27
28 X509v3 Subject Key Identifier:
29 F1:6A:43:32:4C:17:53:37:A9:01:44:40:85:DF:EA:78:ED:84:74:CB
30 X509v3 Basic Constraints: critical
31 CA:FALSE
32 X509v3 Authority Key Identifier:
33 keyid:4A:DD:06:16:1B:BC:F6:68:B5:76:F5:81:B6:BB:62:1A:BA:5A:81:2F
34
35 X509v3 Certificate Policies:
36 Policy: 1.3.6.1.4.1.11129.2.5.1
37 Policy: 2.23.140.1.2.2
38
39 X509v3 CRL Distribution Points:
40
41 Full Name:
42 URI:http://pki.google.com/GIAG2.crl
43
44 Signature Algorithm: sha256WithRSAEncryption
45 04:3f:93:00:57:f0:c1:e5:0f:5e:f2:7f:fa:91:d0:30:62:f0 ...
46 (additional bytes omitted)

Figure 2.5: X.509 Certificate. An example X.509 certificate of google.com obtained using
OpenSSL’s s_client.
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such as *.example.com.

(5) Subject Public Key Info. See line 12 of Figure 2.5. The public key field contains the
public key of the subject and its associated algorithm, along with domain parameters if
needed.

Certificate Extensions. X.509 certificate extensions are possible in version 3 certificates,
and were created to add more options to the basic structure. We restrict our discussion to
relevant extensions.

(1) Subject Alternative Name. See line 22 of Figure 2.5. When a certificate needs to be
valid for more domains than the common name specifies, the subject alternative name
(SAN) extension is used. In the example above, the certificate for google.com covers
additional domains such as youtube.com.

Definition. (Subject alternative name.) The subject alternative name (SAN) extension is used
in a certificate if it needs to cover more domains than the one(s) specified in the CN.

Server Name Indication. Server Name Indication (SNI) was created since name-based vir-
tual hosting allowed for multiple websites at one Internet Protocol (IP) address, but makes use
of the HTTP header that happens after the TLS handshake. In the case where multiple HTTPS
websites are hosted on a server using one IP address, they must all use one certificate unless
SNI is used. SNI is an extension to TLS [39] that is frequently used by browsers to specify
the website to connect with before the TLS handshake, which allows a web server to have
multiple certificates on one IP address. SNI is now almost universally adopted; a recent study
by Content Delivery Network (CDN) provider Akamai4 showed that 99% of HTTPS requests
over Akamai’s network are done by clients supporting SNI [66].

Certificate Errors. If a user connects to a website and the browser detects a problem with
the certificate, the browser will display a certificate error. Generally the user has the option to
ignore the error and continue to the website, and recent studies show that between 33% and
56% of users do ignore the warning [10, 41]. If the website uses HSTS, users are not permitted
to click through the warning as explained in § 2.2.4.

We focus the discussion on two certificate errors which make the certificate invalid: self-
signed certificates and name mismatch errors. Self-signed certificates are needed for root cer-
tificates (see § 2.5.2), but are not considered valid for leaf certificates. A name mismatch error

4https://www.akamai.com/

https://www.akamai.com/
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occurs when the user accesses a website over HTTPS and the website is not covered by the cer-
tificate. More specifically, the website must be present in the CN and/or SAN of the certificate,
either as an exact match or as a wildcard match.

Definition. (Name mismatch error.) A name mismatch error is one type of error that invalidates
a certificate. This error occurs when none of the names in the CN and SAN of the accessed
website’s certificate cover that website through an exact or wildcard match.

We now discuss the related work in the area of name mismatch errors.

2.5.4 Related Work

X.509 Certificates from Internet-Wide Scans. Holz et al. [53] conducted various active
scans, including of the IPv4 (IP version 4) space, along with passive scans of a research net-
work to investigate X.509 certificates in HTTPS. One of their findings was that around 80% of
the investigated certificates had name mismatch errors, but did not investigate further beyond
a few unusual names in the CN and self-signed certificates. A similar study by Eckersley and
Burns [40] had been done the year prior, albeit on a slightly smaller scale. Taking all domains
from sets such as .com, .net, .org domains, Ristić [75] scanned 119 million domains to investi-
gate their certificate configurations. However, to narrow the investigation, he did not examine
certificates with name mismatch errors.

Over approximately a year, Durumeric et al. [37] conducted 110 scans of the IPv4 space
to study the behaviour of CAs, and as a side effect discovered some unusual names in the
CN and SAN similar to Holz et al. [53]. More recently, VanderSloot et al. [83] used multiple
measurement techniques to create the most comprehensive HTTPS certificate list possible.
Their data sets included IPv4 scans and all domains from .com, .net, and .org. They determined
that IPv4 scanning alone misses approximately 65% of websites because many sites require
SNI.

TLS Configurations from Internet-Wide Scans. Holz et al. [52] conducted active scans of
IPv4 space and passive scans of a university network to investigate the TLS and STARTTLS
configurations of mail and chat protocols such as SMTP and XMPP. Although certificate chain
validity was investigated in detail, name matching could not be studied as they scanned IP
addresses instead of domain names. Akhawe et al. [9] used passive scanning to investigate
common TLS warnings and provide suggestions to decrease the prevalence of these errors.
They found that about 20% of certificate errors were name mismatch errors. They further
categorized name mismatch errors into groups for the purpose of suggesting improvements for
browsers.
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TLS Configurations from Specific Website Groups. Some recent related work has also
focused on narrowed website groups within HTTPS. SSL Pulse5, a follow-up project to Ristić’s
2010 survey [75], outlines TLS implementation issues for approximately 150 000 popular sites
every month. It does not examine name mismatch errors. Kranch et al. [55] found basic errors
in many sites’ HSTS implementations, surveying sites on HSTS preload lists and in the Alexa6

Top Million list. Liang et al. [58] investigated sites from the Alexa Top Million list that had
ties to one of 20 CDNs, and found many issues with HTTPS implementation by CDNs.

5https://www.ssllabs.com/ssl-pulse/
6http://www.alexa.com/

https://www.ssllabs.com/ssl-pulse/
http://www.alexa.com/


Chapter 3

Diffie-Hellman Backdoors: Mathematical
Construction

A version of this chapter has been published as part of [35].

3.1 Overview

In § 2.4.3, we explained the Diffie-Hellman key exchange is a discrete logarithm implemen-
tation, with its security depending on the selection of Diffie-Hellman parameters, 〈p,q,g〉.
In § 2.4.2, we clarified that the discrete logarithm problem (DLP) is computationally hard
when the order q is sufficiently large and not smooth. Validating Diffie-Hellman parameters is
necessary to ensure DLP hardness; if the DLP is efficient, the Diffie-Hellman key exchange is
insecure which undermines the entire security of the TLS connection.

In this chapter, we found that many discrete logarithm implementations perform little or no
validation on Diffie-Hellman parameters. We demonstrate this lack of validation by success-
fully connecting to implementations using DL, such as Chrome, with optimally weak param-
eters (i.e. parameters for which the DLP is efficient). We then investigated weak parameters
further in the context of backdoors: an attacker could construct backdoored Diffie-Hellman pa-
rameters so that the DLP is both efficient and appears to be inefficient. We outline a backdoor
construction that would accomplish these goals and contrast it with Wong’s [85] concurrent but
independent backdoor proposal.

This chapter contains three sections: the parameter hygiene of discrete logarithm imple-
mentations, including poor validation techniques and unnecessary information leaking, is dis-
cussed in § 3.2; demonstrations showing poor validation in practice is discussed in § 3.3; and
backdoor constructions are discussed in § 3.4.

29
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3.2 Parameter Hygiene in DL Implementations

In this section, we discuss the poor parameter hygiene found in discrete logarithm (DL) im-
plementations, including a lack of validation checking and a tendency to work in a group that
breaks the DDH assumption defined in § 2.4.3.

3.2.1 Missing Validation Checks

Verifying the validity of the domain parameters is sufficient to detect the kinds of weakened or
backdoored parameters considered by this thesis. However, most of the software implementa-
tions we examined skip one or more validity checks:

• Length: Check that |p| and |q| are sufficiently large (i.e. |p|≥ 2048 bits, |q|≥ 224 bits as
per current NIST guidelines [14]);

• Primality: Check p and q are both prime;1

• Group Order: Check q|(p− 1). No mechanism is provided in TLS to communicate
group order [32, 72];

• Group Membership: Check any asserted group element (i.e. generator g, public key,
etc.) is an element a of the group Gq. Specifically, check 1< a< p−1 and aq mod p= 1.
Note a = p− 1 is explicitly excluded by the associated NIST standard [13], since it
always only has an order of 2, regardless of the choice of p. Safe prime groups working
in Z∗ps

can omit the exponentiation by the group size, since all elements 1 < a < ps−1
are part of this group.

Most finite-field based DL implementations we examined inherently treat domain parameters
as trusted. Many of the necessary checks (e.g. primality, group membership, etc.) are done
when the parameters are generated, but at no point thereafter. As an example, recall the digital
signature scheme outlined in § 2.5.1 – the OpenSSL implementation of the Digital Signature
Algorithm (DSA) does not check parameters during key generation, signing, or verification
and we were able to construct accepted universal forgeries with maliciously constructed pa-
rameters. This would not pose a problem in most cases since usually the signer is expected to
generate their own parameters, but this strategy does not always work out.

One related example arose in OpenSSL when using non-safe prime groups (i.e. X9.42
groups [1]) in Diffie-Hellman key exchanges, where the server’s private Diffie-Hellman key
was reused (in fixed/static Diffie-Hellman modes) or when exponents were reused across more

1Technically q only must contain a sufficiently large prime factor.
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than one connection for efficiency. By not checking the received client public Diffie-Hellman
key was in the intended group (i.e. in Gq), a malicious client could partially or fully recover
the server’s private Diffie-Hellman key. This resulted in CVE-2016-0701 [2]. Now OpenSSL
performs a group membership test of client public Diffie-Hellman keys on the server side, but
only when an X9.42 group is ostensibly in use. In the case of maliciously injected parameters,
OpenSSL will still successfully proceed with Diffie-Hellman key agreements using composite
moduli, small groups, and other weak parameters.

3.2.2 Working in Z∗p with Generator of Order 2q

Many of the finite-field discrete logarithm implementations we examined work in Z∗p, as op-
posed to a prime order subgroup. The trend seems to have begun with the Handbook of Applied
Cryptography (see Section 4.6.1 of [63]), and many implementations explicitly cite it. For ex-
ample, OpenSSL generates Diffie-Hellman parameters that intentionally work in Z∗p, noting in
a code comment that their generator of Z∗p “will generate either an order-q or an order-2q group,
which both is OK.”2 However, the comment further goes on to say “[it’s] just as OK (and in
some sense better) to use a generator of the order-q subgroup.” One reason that working in Gq

is better than working in Z∗p is that with a generator of order 2q, the latter needlessly leaks a bit
of the private DHE key since the discrete logarithm of 2-order subgroup is easily computed.
This generator selection breaks the DDH assumption since it can now be distinguished if the
private DHE key is even or odd.

Officially, there is little risk to the CDH assumption (see § 2.4.3) if p−1 contains a suf-
ficiently large factor and full length exponents are used. In this case, the private exponent is
also sampled from Z∗p, although Boneh et al. suggest related attacks in this setting [24]. A
major risk comes about when developers use short exponents (e.g. 160, 224, or 256 bits) in the
interest of performance, and the Pohlig-Hellman attack [68] may become applicable depending
on the subgroup structure.

But we argue working in Z∗p with a generator of order 2q is simply bad parameter hygiene;
there is no reason to leak even one bit of information. In addition, it sets a bad precedent for de-
velopers who might be tempted to apply this thinking to seemingly similar but subtly different
situations. For example, we found the libgcrypt,3 pycrypto,4 and bouncycastle5 implemen-
tations of ElGamal all by default work in Z∗p with a generator of order 2q. This generator
selection is conspicuous since it breaks the DDH assumption and hence semantic security as

2https://github.com/openssl/openssl/blob/master/crypto/dh/dh_gen.c
3https://gnupg.org/software/libgcrypt/index.html
4https://pypi.python.org/pypi/pycrypto
5https://www.bouncycastle.org/

https://github.com/openssl/openssl/blob/master/crypto/dh/dh_gen.c
https://gnupg.org/software/libgcrypt/index.html
https://pypi.python.org/pypi/pycrypto
https://www.bouncycastle.org/
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explained earlier.

GNU Privacy Guard (GPG), for example, uses libgcrypt and the authors confirmed their
GPG public ElGamal encryption keys all leak one bit of their respective private keys. Al-
though this does not lead directly to an attack because the plaintext in this setting is (largely)
a random value, it is both unnecessary and potentially a sign of additional cryptography is-
sues. For example, GPG makes curious parameter choices and an ElGamal key pair at the
2048-bit level consists of a prime in which p−1 consists of a 340-bit private key in a 235-bit
subgroup. Although many of the applications using these libraries seem not to require DDH,
focusing instead on things such as encrypting random nonces, neither do the libraries come
with the warning that the implementations are not semantically secure as one might nominally
expect of an ElGamal implementation. This is probably acceptable when encrypting a session
key, but is not as acceptable if the library were to be used as part of an implementation of
a cryptographic voting system encrypting ballot choices. For example, Chang-Fong and Es-
sex recently exploited small subgroups in Helios [27], an Internet voting system that provides
end-to-end cryptographic verification. Finally we note the use of Z∗p with a generator of order
2q is not universal. In contrast to the more ad hoc approach to parameter generation of many
implementations, standardized parameters such as the Modular Exponential (MODP) [57] and
Oakley [48, 54] safe prime groups use generators that do not leak a bit. We consider work-
ing with safe prime groups with short exponents to be a good balance between security and
efficiency.

3.3 Successful Connections with Weak Parameters

In this section, we demonstrate the lack of parameter validation discussed in § 3.2 by success-
fully serving weak parameters to DL implementations.

3.3.1 Connections with OpenSSH

A backdoored modulus may possibly remain undetected for longer if the weak modulus at
least looks valid, e.g., does not end with an even digit. To demonstrate this, we investigated the
visual similarity between a safe prime modulus and a deliberately weak modulus, and showed
that lack of proper validation allows software implementations to connect with both moduli.
As a demonstration, we modified the OpenSSH \etc\moduli file to use a deliberately weak
modulus. The default OpenSSH moduli file consists of safe primes with short generators such
as 2 or 5. Although the software does not check group validity, an attack in the context of a
version update should allow the parameters to pass casual inspection. The attacker – in this
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# Time Type Tests Tries Size Generator Modulus

20160522030737 2 6 100 2047 2 DB36277B45EA5615C782C08BF6A290A3D61E6B9690E4A147042113FC1BFC0AE
EC5FB0FF82FC1FEA86E273F667EC387FEF3421FFFC617A70C34B1987986C6B35C715713914AB75932A3D1942ECC0F
324D81BF00D59916B3BFDC7BA432AF5C5DFCF30BF4A2C80B8CA52A9B80E989D3A852BD81A8BD3ADC97497F43C6F0A
90882D9CFA165CF1F735C96428BF9BC32A58B71CF1D4FD48A6D2C616E91BB6E07C5CB0DF0C59DAF79D659C6E53007
843497BBEE5B341D27DE2E2543B8DFEB4DDAE6328EAD441C3F36509C1FA689FE494B0426ADCAF9E567A1C5A330168
9C5CCC55EC4002FAA5D254C2F3C0F8636BEA7019D1CD212B74EE4F273E0B9997720E8AEC5D76B

20160522030739 2 6 100 2047 2 8A4F17035FD10C065879FCC6C6632C15F18E15B6F88CAE2BA8C40D23E3DC2FD
68E8897E12F9FD6C3447B72C1595B2EF56C103162BB6C15AA64761C4258E56D47FE156832F6BB4273A106D2E6310A
9D5E54C497517A928A988A359FB0032BED2FEF690487F6AC6F0B3659A43643A316F601DE73E563F7BC2C37A67E751
DE1916B08FBE92FB9E32E35DC5FD051E9EBC4B2256BC4021DACD2CA816F46C7A5C5D1B298A259C925AB0DC404BCF7
2FDAF04C849DCA4C2F6576FCC586A5B942188312787D971D9BE6D70896A8E8458F3D75D6C8F97CE289688A175F699
B938DBFFC7A349D4130558794936E67C349EF96B83517CB647BADBF012E9BF1B4890E72B70849

Table 3.1: OpenSSH moduli file. One modulus is a valid safe prime (ostensibly) gener-
ated by developers. The other is a smooth composite allowing efficient discrete logarithms.
OpenSSH will successfully connect with either.

case malicious designer Heidi – wants to create parameters that also have short generators (and
thus are valid looking), but are still efficient to solve. Non-safe prime groups are unlikely to
have short generators of small subgroups, and large generators (i.e. the same length as the
modulus) would be overtly suspicious. Since OpenSSH does not verify the primality of the
modulus, Heidi can instead work with smooth composite moduli. Here discrete logarithms can
be made to be efficiently solvable for any generator of any subgroup.

As an example, we set p as the product of all primes up to 1471, excluding 2 and 5 (so
it is not obviously prime from inspection in base 2 or 10). This number is 2043 bits and has
231 factors. Multiplying it by 19 will bring the length to a standard 2048 bits. In this case,
one of the factors will be (192). Table 3.1 shows an example of a safe prime modulus and
our smooth composite modulus. The lack of proper validation described in § 3.2.1 means
OpenSSH connects with both the safe prime modulus and our composite modulus designed to
allow efficient DLs. The discrete logarithm of a number relative to an arbitrary base (e.g. 2) can
be computed individually across each of the factors of p and reassembled using the Chinese
remainder theorem (CRT). The discrete log in each of the subgroups can be pre-computed.
Computing a discrete log, therefore, can be reduced to 231 look-ups in this dictionary, followed
by a single CRT of 231 congruences. Implementing this in Sage6 we were able to compute
discrete logarithms in 4 ms on a laptop.

3.3.2 Connections with Browsers

We determined ephemeral finite field Diffie-Hellman (DHE) support by browsers, then tested
their parameter validation by serving them weak DHE parameters. Many major web clients still

6http://www.sagemath.org/

http://www.sagemath.org/
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support DHE, although Safari and Chrome have removed DHE support. At the time of writing,
Chrome was still in the process of removing support [18], but in the interest of interoperability
connected with DHE if it is the only key exchange mode offered by the server. First it sent
the ClientHello without DHE cipher suites, and if that fails it attempted again with DHE
cipher suites added back in. This was largely in response to the difficulty in guaranteeing large
moduli bit lengths following the results of Logjam [8], which we discuss further in § 2.4.4.
Additional factors include the slower performance relative to ECDHE, although this gap is
exacerbated by the predominance of safe prime implementations using full-length exponents.
At the time of writing, DHE was still supported in approximately 87% of browsers,7 though
this dropped steeply to about 22% after Chrome removed support. Based on our own survey
approximately 26% of servers support DHE over HTTPS (see § 4.2.2 for more information).

We tested major web browsers to see to what extent they would accept weak DHE parame-
ters. We configured OpenSSL’s s_server to accept only DHE cipher suites and serve custom
generated Diffie-Hellman parameters. We wrote a program to generate malicious DHE param-
eters and encode them in OpenSSL’s ASN.1 / pem format. We tested a number of different
composite moduli as well as non-safe prime groups of low order.

Tested browsers include Chrome, Safari, Firefox, Internet Explorer, and Microsoft Edge.
At the time of testing all browsers still supported DHE cipher suites. In each of the browser
cases, the connection was successfully established with weak parameters or composite moduli,
and no warnings were shown except in certain special cases. For example, Chrome generated
an error when served moduli below 512-bits, even prior to the Logjam [8] disclosure.

Interestingly browsers do perform a kind of limited primality test on the modulus and will
reject even numbers. When presented with an even modulus, most browsers would generate
an error, then switch to RSA for key exchange and proceed with the connection. In all cases
the browsers would not accept obviously trivial values such as public DHE keys or generators
equalling 1 or p−1, meaning they do defend against working in the trivial group G2. The next
smallest possible subgroup is one of order 3, in which the server public DHE key can be either
1, g or g2. Working in this group will generate a browser error approximately one third of
the time (i.e. when g = 1), but in the interest of reliability many browsers would attempt the
connection several more times and would succeed with high probability, and no errors would
be displayed to the user. A 2-bit key is an extreme example, and a real designer Heidi can make
failure extremely unlikely by selecting a slightly larger subgroup while still keeping discrete
logarithms computable in real-time.

7https://www.w3counter.com/trends

https://www.w3counter.com/trends
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Figure 3.1: Two-bit Security in TLS. A successful DHE connection in Chrome using a gener-
ator of order 3. During this run the generator happened to equal the public DHE key, indicating
the private DHE key was congruent to 1 mod 3.

As a concrete example we used the following parameters in our browser test:

p = 22048−1557

g3 = 2(p−1)/3 mod p

Here p represents the largest 2048-bit prime and g3 is a generator of a subgroup of order 3
(i.e. the smallest possible non-trivial subgroup a browser would need to perform validation).
As an illustration in Figure 3.1 we show a successful connection in Chrome with the server
presenting the parameters (p,g3,y = g3). In the Developer Tools,8 Chrome warns that DHE is
deprecated, but does not notice the weak group. This result is expected, as TLS contains no
explicit field for communicating a group’s order.

In summary, the browsers we tested were unable to defend against a variety of weak pa-
rameters (small or smooth order), as well as backdoored groups involving composite moduli.
The limited forms of checking that are performed are interesting from our perspective, as they
constitute a kind of tacit acknowledgement that parameter validation is important – just so long
as it is efficient.

3.4 Backdoor Construction

Working in small subgroups is efficient from the malicious designer Heidi’s perspective, but
comes with two downsides: (1) others can also exploit the weak group, and perhaps more
importantly (2) strong evidence exists that the parameters are compromised. A more interesting
scenario is to backdoor the modulus such that only Heidi can exploit it while making its very

8https://developer.chrome.com/devtools

https://developer.chrome.com/devtools
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existence a matter of speculation. In this setting Heidi can use a composite (e.g. RSA) modulus
to construct a backdoor instance of the discrete logarithm problem. Let n = pq for large primes
p,q with the number of generators for the n-order group being φ = (p−1)(q−1). The idea is
to work in small subgroups of hidden and smooth order, such that (p−1) and (q−1) contain
smooth factors. A generator is then selected so as to have reasonably low order modulo p and
q respectively, allowing the person knowing the factorization of n to solve several independent
and efficient discrete logarithms.

3.4.1 Related Constructions

Concurrent and independent to us, Wong [85] also proposes using a hidden subgroup of a
composite modulus in the context of backdoored Diffie-Hellman key agreement. Let p =

2p1 p2+1 and q= 2q1q2+1 where p1,q1 are sized small enough to allow efficient computation
of the discrete log in subgroups of order p1 and q1, but large enough to prevent brute forcing
the discrete logarithm in a subgroup of hidden order p1q1, while p2,q2 are large so as to prevent
factorization attacks, such as Pollard’s p-1 attack [69]. Let the length of p1 and q1 be ` (i.e.
|p1|= |q1|= `). A generator g is chosen of the unique subgroup G< Z∗n of order p1q1.

The order of g has length 2`. The orders of g modulo p and q respectively are `-bits in
length each. Computing a discrete logarithm separately modulo p and q takes 2

`
2 operations

each using general discrete logarithm algorithms (e.g. Pollard’s rho [70], etc.). With knowledge
of the backdoor, therefore, the attacker can compute a discrete logarithm in 2

`
2+1 operations.

Without knowledge of the group order, Wong argues an attacker would require 2` operations to
compute a discrete logarithm. As an example, Wong suggests that if g had an order of 200 bits
in length (i.e., where ` = |p1|= |q1|= 100), then an observer would require 2100 operations to
compute a discrete logarithm, while an attacker could solve the discrete logarithms separately
modulo p and q, requiring 2 ·2 100

2 = 251 operations.

This expectation, as it turns out, is false as shown by Coron et al. [29] in the context of the
cryptosystem due to Groth [47], which works in small RSA subgroups of hidden order. Groth’s
construction is effectively identical to Wong’s backdoor discrete logarithm construction, except
is being applied in the context of an encryption scheme. Once again let n = pq for p = 2p1 p2+

1 and q= 2q1q2+1 for p,q, p1, p2,q1,q2 prime, and let g generate the unique subgroup G<Z∗n
of order p1q1. Let h generate a subgroup of order p1 p2q1q2. The values (n,g,h) form the public
key. The values (p1,q1) form the private key. A message m is encrypted as follows:

Enc(m) = grhm mod n.
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for random r. Decryption for a ciphertext, c, is accomplished as follows:

Dec(c) = cp1q1 = (gr)p1q1(hm)p1q1 = (hp1q1)m mod n.

The discrete log of (hp1q1)m is computed to recover m. This can be efficient if m is small,
although Groth also proposed a variant in which p2 and q2 are smooth, allowing for the discrete
logarithm to be efficiently computed using Pohlig-Hellman [68]. The best attack proposed by
Groth [47] factorizes n in time O(2`), and works as follows. Recall g has order p1q1 and that
gp1 ≡ 1 mod p and that gq1 ≡ 1 mod q. For the greatest common divisor gcd, this gives

gcd(gp1−1,n) = q

and
gcd(gq1−1,n) = p.

Thus n can be factorized by computing gcd(gi− 1,n) starting at i = 2` and incrementing un-
til a factor is found, requiring at total of min(p1,q1)− 2` operations. Note this approach is
independent of the size of factors p2 and q2,

Similar to Wong, Groth proposed `= |p1|= |q1|= 100 as a trade-off between security and
efficiency. Coron et al., however, demonstrated an attack on Groth’s scheme recovering the
factors of n in time O(2

`
2 ) instead of the expected O(2`). Notice here that g in Groth’s scheme

has the same order as g in Wong’s scheme, and thus any attack on Groth’s scheme that can
recover the factors of n based on g can be directly applied to Wong’s scheme revealing the
backdoor. Coron et al. proposes Groth’s scheme use ` ≥ 160. This is problematic if applied
to our backdoor setting, since it would require the backdoor owner to compute two discrete
logarithms on the order of 280 operations.

3.4.2 Our Backdoor Construction

Similar to Groth’s attack, Coron et al.’s attack exploits the overall order of g, but cannot directly
exploit the order’s factorization (since it is unknown). Our strategy, therefore, makes the overall
order of g large enough to make factorization attacks infeasible, while smooth enough to still
allow efficient computation of DLs by the backdoor owner.

Let p = 2p1 . . . pkrp +1 and q = 2q1 . . .qkrq +1 for prime p,q. Let each pi,qi be distinct,
randomly chosen primes of bit length `. Let rp,rq be distinct randomly chosen primes. We
choose g to generate a group G< Z∗n of order p1 . . . pkq1 . . .qk, which gives g an overall order
of 2k` bits.

We size ` to be large enough to preclude factorization of n using Pollard’s p−1, while
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small enough that solving discrete logarithm instances in subgroups of order approximately
2` is efficiently computable. Using Pollard’s p−1 factorization method, n can be factored as
follows. Choose some a $←− Z∗n. Let ρi be the i-th prime. For each ρi < 2` :

1. Set a← aρi mod n

2. If gcd(a−1,n) 6= 1 and 6= n, output factor, otherwise continue.

Factorization is guaranteed after all primes ρi < 2` have been exponentiated in, correspond-
ing to approximately li(2`) modular exponentiations, where li(·) is the logarithmic integral.
Henry and Goldberg [49] studied solving discrete logarithms in smooth-order groups using
optimized GPU implementations, and suggest ` = 55 as sufficient, requiring 1500 years of
(non-parallelizable) wall-clock time to factor n, while requiring less than two minutes to com-
pute the discrete logarithm with knowledge of the backdoor.

We size k to be large enough to preclude factorization of n based on the order of g (as
in Coron et al.’s attack), i.e., 2

k`
2 operations is computationally infeasible. Following Coron

et al.’s suggestion we have k` ≥ 160. As a concrete parameter choice, let p,q each be 1024-
bit primes where p = 2p1 p2 p3rp + 1 and q = 2q1q2q3rq + 1 where p1, p2, p3,q1,q2 and q3,

are distinct, random 55-bit primes and rp,rq are distinct, random primes of a length sufficient
for p,q respectively to be 1024 bits. A generator g is chosen of order p1 p2 p3q1q2q3. Given
a public Diffie-Hellman key gx mod n, recovering private key x requires 6 separate discrete
logarithms to be computed in subgroups of order 255, for a total of approximately 6 ·2 55

2 ≈ 230

operations.

Plausible Deniability. One of the most desirable aspects of this attack paradigm is the ability
for malicious designer Heidi to construct a discrete-log backdoor while maintaining plausible
deniability. It is easy to tell that a modulus is composite (when you’re looking), but deter-
mining group structure without knowledge of the factorization, and hence the likelihood of
the existence of a backdoor, can be made to be computationally infeasible. As we explain
in § 4.6.5, none of the vendors we contacted about the composite moduli we discovered were
able or willing to either confirm or deny the existence of a backdoor – precisely as Heidi might
hope!

One possible explanation for the origin of a composite modulus is that it was simply a
random number chosen by accident, or perhaps began as a prime and had a digit or two flipped
in an editor. In this case we would expect the resulting value to have a distribution of factors
similar to that of a random composite number. We discussed setting n = pq for large primes
p,q, but this might arouse suspicion, beyond simply being composite, because it would contain
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no small factors. Small factors up to some bound b may be recoverable using elliptic curve
factorization, and the probability that a random composite number is b-rough (i.e. contains no
factors smaller than b) could be used as evidence toward the determination of the existence
of a backdoor. One option would be for Heidi to use an RSA modulus as before but multiply
in a sequence of naturally increasing factors up to bound b. We leave a heuristic for creating
convincing random-looking but backdoored moduli for future work.



Chapter 4

Diffie-Hellman Backdoors: TLS and
STARTTLS Presence

A version of this chapter has been published as part of [35].

4.1 Overview

In § 3.2, we outlined the lack of parameter validation by DL implementations, which fail to
check basic properties such as moduli primality. We further demonstrated this lack of valida-
tion in implementations such as Chrome in § 3.3. Since browsers such as Chrome could accept
weak DHE parameters, we outlined a mathematical construction for backdoored DHE parame-
ters in § 3.4 that would allow an attacker to efficiently compute the DL of the parameters while
keeping the backdoor deniable.

In this chapter, we investigated the possibility of backdoored DHE parameter use in TLS
and STARTTLS. We conducted scans of the IPv4 space in both mail and web protocols to
search for composite and non-safe prime DHE moduli, and found hundreds and millions of
composite and non-safe prime moduli respectively. We additionally looked for such moduli in
over 100 open-source projects. We factored some of the composite and non-safe prime moduli
found and were able to recover a significant portion of the private DHE key in some cases. To
increase the attack space, we proposed a MITM attack to force DHE in TLS 1.2 and below,
and then discussed possible attack vectors for placing DHE parameters for use. Finally, we
disclosed the composite moduli to companies and proposed mitigation strategies.

This chapter contains six sections: scans for composite DHE moduli are discussed in § 4.2;
the other DHE testing, such as non-safe prime and open-source project investigations, are
discussed in § 4.3; the MITM attack is discussed in § 4.4; attack vectors for placing DHE

40
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parameters are discussed in § 4.5; company disclosures are discussed in § 4.6; and mitigation
strategies are discussed in § 4.7.

4.2 Composite DHE Moduli

This section outlines the composite DHE moduli found in protocols such as HTTPS.

4.2.1 Overview of Affected Protocols and Countries

Methodology. In order to find potential backdoors in discrete logarithm implementations, we
collected Diffie-Hellman data from two sources. For HTTPS, we downloaded Censys1 IPv4
scans [36] where only DHE cipher suites were offered by the client. Censys routinely collects
this data using ZGrab2 (an application-layer scanner) and ZMap3 (a network scanner). For
DHE-only scans in SMTP/S, POP3/S, and IMAP/S, we used ZGrab to run our own scans due
to its fast performance. We investigated both non-safe and composite DHE moduli in HTTPS,
and focused on composite moduli only in SMTP/S, POP3/S, and IMAP/S. This section focuses
on composite moduli; non-safe prime moduli are discussed in § 4.3.1.

Affected Protocols. Overall, there were over 500 IP addresses in 31 countries using poten-
tially backdoored composite moduli. A summary of moduli properties and the affected pro-
tocols are seen in Table 4.1. Out of the seven protocols investigated, composite moduli were
found in five: HTTPS, IMAPS, POP3S, SMTP, and SMTPS. Almost all of the moduli were one
of two numbers: a 512-bit modulus used in SMTP or a 2048-bit modulus used in HTTPS. This
recycling of parameters is common practice; while it does not directly suggest backdoor use,
having the same backdoor in hundreds of IP addresses is advantageous for an attacker. At the
very least, this moduli reuse proves that weak DHE parameters are used in the wild due to lack
of Diffie-Hellman parameter validation. Table 4.1 also shows three moduli with non-standard
lengths of 4255-, 1102-, and 904-bits, indicating further carelessness in parameter choice.

Affected Countries. To see the impact of these composite moduli, we determined each IP
address’ location using WHOIS queries. The results are seen in Table 4.2. Nearly all the
composite moduli were used in HTTPS or SMTP, but the HTTPS moduli were spread around
the world while the SMTP moduli were only located in China. In HTTPS, North American and
European countries were most heavily seen. The location spread in HTTPS and the relative

1https://censys.io/
2https://github.com/zmap/zgrab
3https://github.com/zmap/zmap

https://censys.io/
https://github.com/zmap/zgrab
https://github.com/zmap/zmap
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Label # of IPs Mod. Size (Bits) Affected Protocols Modulus

1 265 512 SMTP da583c16...4774e833

2 242 2048 HTTPS c28992c5...d4681697

3 28 4255 HTTPS 4d494942...41674543

4 5 1102 POP3S 30818702...47020105

5 2 1024 HTTPS a7790db6...288a9773

6 2 1024 HTTPS cc17f2dc...8e073c6d

7 2 2048 HTTPS 8dd38f77...a8fdca8f

8 1 904 HTTPS 9ce85640...2220dc53

9 1 1024 IMAPS, SMTP 98ea99db...ab2b1b33

10 1 1024 HTTPS d67de440...24218eb3

11 1 2048 HTTPS f5a3da75...f564c113

12 1 2048 SMTP, SMTPS ad85473c...3b2d764b

13 1 4096 HTTPS 9152ba0b...85fab358

Table 4.1: Composite DHE Moduli. The frequency, affected protocols, and other properties
of the composite DHE moduli used in the wild.
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Affected Protocol Number of IPs Nationality

HTTPS 280

Austria, Bahrain, Bolivia, Canada, Chile, Czech Re-
public, France, Germany, India, Iraq, Israel, Italy,
Japan, Lebanon, Malaysia, Mexico, Netherlands,
Nicaragua, Pakistan, Poland, Romania, Saudi Ara-
bia, Singapore, South Korea, Spain, Sweden, Taiwan,
United States

IMAPS 1 Japan

POP3S 5 Ukraine

SMTP 267 China

SMTPS 1 Russia

Table 4.2: Protocols and Countries. Composite DHE moduli by protocol and country.

moduli abundance in SMTP increases the likelihood that these moduli are backdoors rather
than random composites.

4.2.2 Composite Moduli Used By Web Servers

We first downloaded a Censys IPv4 scan to investigate DHE moduli in HTTPS. In April 2016,
there were approximately 43M IP addresses in the HTTPS space, of which approximately
11M supported DHE. Over 300,000 distinct DHE moduli were observed across these 11M. We
observed 5,783 unique non-safe prime moduli across 1.6M IPs, which will be further discussed
in § 4.3.1. We observed 9 unique composite moduli across 280 IPs. We did a comparison
to ECDHE and found that of 32 million IPs, all used a standard SECP curve, and that the
server public ECDHE key was a valid point on the curve. This, of course, is consistent with
expectation. Discovering composite DHE moduli, on the other hand, was not.

None of the composite moduli observed in HTTPS were export-grade; all were at least
904-bits in length. In May 2016, 46% of these IP addresses chose a Diffie-Hellman cipher
suite by default, meaning forcing DHE (as described in § 4.4.1) is not needed in those cases.

To determine if these composite moduli were the result of a specific server implementation,
we looked at the types of web servers using these moduli. The breakdown of these servers
can be seen in Table 4.3. Apache servers were used by 125 IP addresses, which accounted
for 45% of the IP addresses using composite moduli in HTTPS. Almost the same percentage
of IP addresses (37%) did not specify a server. The remaining 21% of servers were spread
over Microsoft, Oracle, Lighttpd, Nginx, and other servers specified by their company name.
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Although Apache accounted for almost half the servers, the version numbers varied or did not
exist. This trend was also seen in the other servers specified. Therefore the variety of servers
and versions indicate that no one server implementation was responsible for the composite
moduli.

The existence of composite moduli cannot be explained by poor entropy during genera-
tion, although poor entropy could potentially explain a systematic prime modulus. While it is
possible that these composite moduli are pseudoprimes, enabling them to erroneously pass a
probabilistic primality test, pseudoprimes occur so infrequently that they would not be a result
of poor entropy. This fact coupled with the variety of server implementations means these
moduli were potentially generated on purpose.

We then examined the public ownership information of the affected IPs in public databases
and in the content of any public web pages. When the IP address owners and webpage con-
tent differed, both companies were considered identifiers for the IP address. For example,
if one organization was supplied software by another, the second organization could have a
logo displayed on the webpage. We decided to focus on companies associated with multi-
ple IP addresses or with at least one active webpage. This left us with 21 companies: A1
Telekom Austria (A1), Amazon Web Services (AWS), Banco de Crédito (BCP), Bloomberg,
Blue Coat Systems, Centre national de la recherche scientifique (CNRS), Deutsche Reisebüro
(DER) Touristik, ELITE, Expedia, Eyou.net, FTSE Russell, JAMF Software, KDS, KPN, Ned-
erlandse Spoorwegen (NS), NH Hotel Group, Nordea Bank, Santa Clara University (SCU),
TravelTainment Germany, United Parcel Service (UPS), Universal Sompo General Insurance,
and Universidad Nacional de Educación a Distancia (UNED).

We completed vulnerability disclosures to companies with at least one active webpage in
HTTPS and which provided appropriate contact information; these disclosures are discussed
in § 4.6. We also contacted the company with multiple affected IP addresses in SMTP. Compa-
nies in the tourism industry, such as TravelTainment and DER Touristik, accounted for about
50% of the IP addresses. The remaining companies were in various industries such as educa-
tion and finance. Most companies, noticeably those with more affected IP addresses, had an
active webpage.

To determine the longevity of composite moduli, we tested the 280 IP addresses three times
during the course of writing to see if composite moduli were still used. In May 2016, 88% of
the IP addresses still used the same composite modulus as before. Of the remaining 12% of IP
addresses, about half switched to a prime modulus and half no longer connected under Diffie-
Hellman. In June 2016, these statistics remained approximately constant. However, by August
2016, only 39% still used the same composite modulus and 53% used a prime modulus. The
remaining 8% no longer connected under Diffie-Hellman, almost the same amount from May
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Server Number of Uses

Apache 95

Apache-Coyote/1.1 3

Apache/2.2.9 (Debian) 3

Apache/2.2.12 (Linux/SUSE) 1

Apache/2.2.15 (CentOS) 3

Apache/2.2.15 (Red Hat) 3

Apache/2.2.16 (Debian) 1

Apache/2.2.22 (Debian) 1

Apache/2.2.22 (Red Hat) 2

Apache/2.2.22 (Ubuntu) 2

Apache/2.4.3 (Unix) 3

httpd/1.00 8

Microsoft-IIS/7.5 2

Microsoft-IIS/8.0 1

Microsoft-IIS/8.5 6

Oracle Application Server 10g 1

Lighttpd 1

Nginx 24

Nginx/1.6.3 1

Nginx/1.9.10 1

Others 16

Not Specified 103

Table 4.3: Web Servers. Types of web servers using composite DHE moduli.
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and June 2016. The decrease in composite moduli used could be attributed to our vulnera-
bility disclosures and, independently, Wong’s [85]. This assumption seemed to coincide with
company responses, as many companies changed from composite moduli to prime as their pri-
mary response. Despite this, many composite moduli remained in use over months, indicating
backdoored DHE parameters could go unnoticed for long periods of time.

4.2.3 Composite Moduli Used By Mail Servers

Since Censys did not have DHE scans for mail servers, we ran ZGrab scans in July 2016 on
SMTP/S, POP3/S, and IMAP/S in TLS and STARTTLS looking for composite DHE moduli.
We found 272 IP addresses with composite DHE moduli spread throughout IMAPS, POP3S,
SMTPS, and SMTP. These results doubled the total number of composite moduli found, show-
ing the problem extends beyond HTTPS.

IMAPS. Although there was only one IP address in IMAPS with a composite modulus, this
IP address used the same modulus in SMTP. This modulus is number 9 in Table 4.1. The
address is linked to a transportation company in Japan, which supports the trend of HTTPS
companies that are not related to security and thus provide an advantageous attack target.

POP3S. There were five IP addresses in POP3S that all used the same composite modulus.
This modulus is number 4 in Table 4.1. Although the company could not be determined accu-
rately, the range of IP addresses suggested that only one Ukrainian company was involved.

SMTPS. Although there was only one IP address in SMTPS with a composite modulus, this
IP address used the same modulus in SMTP. This modulus is number 13 in Table 4.1. This
address is linked to a real estate company in Russia, which is also an industry that provides an
advantageous attack target.

SMTP. Almost all the composite moduli in mail protocols were seen in SMTP. Out of 267
IP addresses with composite moduli, 265 used the same composite modulus (number 1 in
Table 4.1). The remaining two were the IP addresses seen already in IMAPS and SMTPS. The
265 IP addresses were spread out across China, but all connected to an email service provider
called Eyou.net [6]. This company was also contacted in the vulnerability disclosures described
in § 4.6.
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Popularity Modulus (bits) Subgroup (bits) Source

76.9% 1024 160 MODP (RFC5114) [57]

11.3% 1024 160 Amazon Web Services

7.5% 768 160 sun.security.provider

3.2% 1024 160 sun.security.provider

0.3% 2048 224 MODP (RFC5114) [57]

0.1% 2048 224 sun.security.provider

~1% – – (others)

Table 4.4: Non-Safe Prime DHE Moduli. The distribution and sources of non-safe DHE
moduli.

4.3 Other DHE Parameter Investigation

This section outlines additional investigation into the areas of non-safe prime moduli, factor-
ization of some moduli to recover significant portions of private DHE keys, and moduli used
by open-source projects.

4.3.1 Non-Safe Prime Moduli Used By Web Servers

In addition to the composite moduli found in the HTTPS scan, we also found non-safe prime
moduli used by 1.6M IPs. Of the 5,783 distinct non-safe primes we found, 5,409 were unique to
a single IP. Six primes accounted for approximately 99% of sites. The distribution of non-safe
primes is seen in Table 4.4. MODP groups were seen in 77% of IP addresses using non-safe
primes. Parameters used in the sun.security.provider package by Java were seen in
11% of IPs using non-safe primes. This package has had previous instances of misconfigured
Diffie-Hellman groups [8]. At the time of writing AWS load balancers no longer offer DHE
cipher suites following a security policy update.

Safe prime groups have the property that all values in the range 1 < g < p−1 are generators
of groups of large order (either q or 2q), and that an arbitrary value in this range is an element
of Z∗p with probability approaching P = 1

2 , meaning implementers are free to pick just about
any generator they wish, and often opt for the smallest possible value (e.g. 2, 3, etc.). Non-safe
prime groups, on the other hand, generally should be more select in their choice of generator,
especially when the order of Z∗p contains smooth factors. If a group element has an order
containing smooth factors, partial recovery of the private DHE key is possible. For a random
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114356381100738840153121389513746326020580788713898181372 \ \
757840692493482634612304277048270052450717458185043187444 \ \
98415461673127855611205755830392736507955

= 5 ∗ 11 ∗ 3130497666273667404271 ∗ 132398438917079824212 \ \
370893794766672908033 ∗ 501650748974370233413468006002745 \ \
013076943662195591458981539797641214671553476408791132267

Figure 4.1: 512-bit Modulus Factorization. Factorization of the 512-bit composite modulus
found in SMTP.

non-safe prime group with an n-bit modulus and m-bit prime order subgroup Gq, the probability
an arbitrary value is a generator of Gq is approximately 2n−m. Thus we should not generally
expect to see generators such as 2 or 3 used in non-safe prime groups. We can expect such
groups to leak more information about the exponent than the one bit of some safe prime groups.

Of the 1.6M IPs offering non-safe prime groups, we found 1,270 IPs using small generators.
Generator values of 2 and 5 were most common but we also found cases of all prime numbers
up to 31, as well as even values such as 4 and 6. This doesn’t directly break DHE so long as
(a) the order of the generator contains a large prime factor and (b) full-length exponents are
used. This is a precarious situation, since the typical reason for using non-safe prime groups is
precisely for the purpose of using short exponents (e.g. X9.42 groups [1]). It also speaks to the
notion of parameter hygiene in which choices appropriate for one setting i.e. small generators
of safe prime groups, is misapplied to another setting.

4.3.2 DHE Moduli Factorization

While a well-implemented DHE backdoor would not be exploitable, we set about conduct-
ing what partial factorizations of composite moduli we could. We used CADO-NFS and our
own custom implementation of Pohlig-Hellman [68]/Pollard’s P-1 [69] to recover, in many
cases, numerous bits of a private DHE key. We factored the 512-bit composite SMTP modulus
(number 1 in Table 4.1) revealing 5 factors seen in Figure 4.1.

We then factored ( f−1) of each factor f revealing the overall underlying group structure.
The largest factor has a 280-bit subgroup, which prevented us from performing a complete
discrete logarithm as the generator had order close to p−1. We were, however, able to recover
129 bits of the private DHE key using Pohlig-Hellman. The servers we examined appeared not
to be using short exponents. If, however, a server did use a short exponent such as 160-bits,
this SMTP prime would make an efficient backdoor: the first 129-bits could be recovered as
described, and the remaining bits could be recovered from the 280-bit subgroup using Pollard’s
P-1 method in time approximately 2

160−129
2 ≈ 216.

We conducted a partial factorization of the 904-bit composite modulus (number 8 in Ta-
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5 ∗ 23 ∗ 474289 ∗ 726101 ∗ 72240863 ∗ 48794510505931
∗ 70980749229449041 ∗ 5093965413985867 ∗ 2763354329179
∗ 1711955530550801 ∗ 71015949150893819 ∗ . . .

Figure 4.2: 904-bit Modulus Factorization. Factorization of the 904-bit composite modulus
found in HTTPS.

ble 4.1) and found a number of suspiciously smooth factors seen in Figure 4.2.

This site used an improper generator of 4, which allowed us similarly to recover 372 bits
of the private DHE key. With either short exponents or knowledge of complete factorization,
greater and more efficient recovery is possible.

Similar to with composite moduli, we also were able to conduct partial key recoveries
in non-safe prime groups with improper generators. In one improper export-grade non-safe
prime group we were able to recover a full half of the private DHE key (assuming a full-length
exponent), though obviously for export-grade moduli, Logjam [8] would be a more efficient
general attack strategy.

4.3.3 Survey of Open-source Projects

To determine if open-source projects use any weak moduli, we surveyed the default moduli
of over a hundred open-source projects on GitHub. We used search terms based on common
Diffie-Hellman byte array names (e.g., dh1024_p, etc.). Out of the 95 projects supporting
export-grade 512-bit moduli, we found 16 distinct moduli, of which one was found in 44
projects. The most common modulus observed in Logjam was found in 9 projects. All were
safe primes. Across 120 projects supporting 1024-bit moduli, there were 32 unique moduli.
All the moduli were safe primes except for two: one reused from OpenSSL,4 and a MODP
group with 160-bit subgroup [57]. For 2048-bit moduli, there were 43 projects with 23 unique
moduli. Similar to 1024-bit moduli, the only 2048-bit modulus that was not a safe prime was
a MODP group with 256-bit subgroup [57]. For 3072-bit moduli, there were 3 unique safe
primes spread over 4 projects. For 4096-bit moduli, there were 8 unique safe primes spread
over 28 projects. Overall no weak moduli were found to be used, but parameter injection
through an open-source project remains a possible attack vector for backdoors (see § 4.5.2).

4.4 Man-in-the-Middle Attack

This section discusses a man-in-the-middle (MITM) attack in TLS 1.2 and below to force DHE
use, and explains the attack’s limitations in SSH.

4https://github.com/openssl/openssl/blob/master/test/ssltest_old.c

https://github.com/openssl/openssl/blob/master/test/ssltest_old.c
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4.4.1 Forcing DHE in TLS

As mentioned in § 2.4, cipher suites using DHE for key exchanges currently account for ap-
proximately 0.01-1% of TLS handshakes [65], limiting the potential for the attacker to exploit
weak groups passively. Fortunately for the attacker – in this case active attacker Mallory – the
message sequence of TLS makes it possible for someone knowing the master secret to actively
modify the handshake to force DHE to be chosen if both parties support it. This is in contrast
to SSH, which is not vulnerable to an active attack of this kind due to a differing message order
(see § 4.4.2).

The client initiates a TLS handshake providing a list of supported cipher suites. Mallory
modifies the client hello removing all but DHE cipher suites. The client and server exchange
DHE keys as normal, except Mallory is able to exploit the weak or backdoored parameters
to compute the discrete logarithm of the client or server public values and compute the pre-
master secret gab, from which they can compute the master secret. With a careful choice
of parameters Mallory can compute the discrete log in real-time. Finally using the master
secret, Mallory forges fake client- and server-finished messages tricking the respective parties
into believing the other party only supported DHE cipher suites, and thus there was no other
choice but to connect under DHE. Furthermore, because the master secret is only a function of
the pre-master secret and the client- and server-random values, both endpoints will derive the
same master secrets, allowing the attacker – now passive attacker Eve – to continue passively

eavesdropping the connection from this point forward. This attack is illustrated in Figure 4.3.

This MITM attack has some fundamental differences to the MITM attack proposed by
Adrian et al. [8] (i.e. Logjam MITM). Our MITM forces DHE to be chosen by the server;
the Logjam MITM forces the server to send export-grade DHE parameters to the client who
believes non-export DHE is used. Both MITMs derive the master secret – while our MITM
uses it to forge finished messages that allow the MITM to then passively eavesdrop on the TLS
connection, the Logjam MITM uses the master secret to actively pretend to be the server.

4.4.2 Attack Limitations in SSH

The SSH protocol [87] specifies two fixed groups for Diffie-Hellman exchange: the 1024-bit
Oakley group 2 [48] and the 2048-bit Oakley group 14 [54]. In major implementations of
SSH, such as OpenSSH, these groups are included directly in the source code, although an
extension of SSH does provide the option for a server to maintain its own list of group param-
eters [43]. Although the SSH standard calls specifically for the use of safe prime groups [43],
older OpenSSH versions explicitly name non-safe primes as an option.5

5http://man.openbsd.org/OpenBSD-4.3/cat5/moduli.0

http://man.openbsd.org/OpenBSD-4.3/cat5/moduli.0
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However in addition to SSH version restriction, active attacker Mallory would also have
to force DHE during the connection. OpenSSH now prefers ECDHE for key exchange, so
if Mallory wanted the parties to use DHE instead she would need to man-in-the-middle the
handshake. Owing to the message sequence in SSH, being able to recover a DHE shared secret
is not sufficient for this attack.

In SSH, the client chooses its preferred key-exchange method based on the server’s indi-
cated support [87]. Mallory could attempt to modify this initial server message, but then the
attack would fail at the end of the handshake when the server provides a signed hash of the
protocol messages. At this stage the client would detect that it saw a different sequence of
messages than the server and would abort the connection, and Mallory could not forge this
message without the server’s private signing key. This is outside our threat model. If either
party does not support ECDHE, but both parties support DHE, then they will connect under
DHE.

4.5 Attack Vectors

The previous sections provided examples of potentially backdoored DHE moduli in the wild
and discussed the subsequent implications. We now propose three scenarios that enable an
attacker – in this case malicious designer Heidi – to position weak parameters for use as a
backdoor. If the target uses these parameters to perform cryptographic operations (i.e. key
generations, signatures, key agreements, encryptions, etc.), the associated security guarantees
no longer hold. Since Diffie-Hellman group parameters are infrequently modified, attacking
them can lead to persistent backdoors, even if the keys themselves are ephemeral. The proposed
threat vectors include dropping the parameters onto a server, incorporating the parameters in
an open-source project, and installing the parameters on a network appliance that ships to
customers.

4.5.1 Attacking the Server

The most intuitive way to get backdoored parameters in use is to install them at the source.
First, Heidi creates the weak parameters and chooses a target that supports Diffie-Hellman ci-
pher suites. Second, Heidi injects these parameters as a backdoor payload onto the desired
server. This step does require root access to the server, presumably in the context of a broader
exploit. Having root access enables other attacks, such as stealing the server’s private RSA
signing key. This RSA attack would produce a similar outcome as the backdoored moduli,
as efficient man-in-the-middle attacks are also possible for active attacker Mallory with the



4.5. ATTACK VECTORS 53

server’s private RSA signing key. However, obtaining and using the private RSA key has two
disadvantages. In many enterprise situations, the private RSA key is stored on a hardware
security module (HSM) [7] attached to the server [25]. Since HSMs are designed to provide
additional security to cryptographic keys, it would be difficult to steal a key stored on an HSM
even with root access to the server. The second disadvantage to using the private RSA key is
that it requires an active man-in-the-middle attack by Mallory. An active attack is also neces-
sary to force DHE cipher suites when not preferred, but only during the handshake. However,
as seen in § 4.2.2, half the IP addresses that use composite moduli in HTTPS prefer DHE
cipher suites. Therefore Heidi could choose attack targets that prefer DHE cipher suites, al-
lowing for passive eavesdropping by Eve instead of actively attacking with Mallory. This type
of passive attack is only possible with backdoored moduli; using the private RSA signing key
always requires an active attack.

Dropping the weak parameters onto the server requires no source code modification and
creates a persistent backdoor; because of this, the backdoor may persist source code updates.
The lack of parameter validation explained in § 3.2.1 and the examples of persistent composite
moduli in § 4.2.2 mean that backdoored DHE moduli could remain undetected for some time.

4.5.2 Attacking the Application

The second threat scenario involves submitting the backdoored parameters to an open-source
project rather than attacking the server directly. First, Heidi creates the weak parameters and
finds an open-source project that supports Diffie-Hellman. Second, the parameters are sub-
mitted as a patch to that repository. Once the repository accepts the change, the persistent
backdoor would then be installed for users of that project. Conversely, Heidi could create a
new project that already contains the backdoored parameters. Since the Logjam disclosure,
many GitHub projects have been updating their Diffie-Hellman parameters to remove 512-bit
moduli and modify 1024-bit moduli. This widespread change could ironically provide a reason
for Heidi to submit a patch.

Socat, an open-source data transfer relay, recently published a security advisory [74] that
outlines a similar scenario, and was one of the motivations behind Wong’s recent paper [85].
Here a hard-coded 1024-bit composite DHE modulus was discovered in the OpenSSL imple-
mentation. The Socat commit logs show that the composite modulus was introduced in January
2015 [73], and the security advisory was published more than a year later in February 2016,
and the origin of the modulus remains unclear. Interestingly we also found this modulus twice
in the HTTPS space (see modulus 6 in Table 4.1). This gap between implementation and de-
tection indicates backdoored moduli could remain undetected for a long time. The individual



54 CHAPTER 4. DIFFIE-HELLMAN BACKDOORS: TLS AND STARTTLS PRESENCE

associated with the commit deleted much of his Internet presence on the day the advisory was
published [86]. Attempts to factor the modulus suggest that there are large factors, which could
indicate a backdoor configuration such as those suggested in § 3.4. Although we didn’t find any
suspicious parameters in the GitHub projects mentioned in § 4.3.3, the Socat example suggests
that starting a malicious open-source project is one potential delivery vector, and that the ad
hoc nature of parameter checking would hinder detection.

4.5.3 Attacking the Network

The final threat scenario involves installing backdoored parameters onto a network appliance
that is shipped to customers. Network appliances such as load balancers and traffic shapers
are often used by companies to optimize application or network performance. Load balancers
optimize application performance by distributing traffic across many servers, which decreases
the load on individual servers. This traffic can be application or network traffic. Balancers also
provide SSL termination so that servers do not have to perform encryption and decryption [5].
Although this invites man-in-the-middle attacks, the servers and balancer are often located on
the same internal network which decreases this possibility. Another network appliance is traffic
or packet shapers, which optimize network performance by delaying less important network
packets. Various applications can be shaped differently, a process called application-based
traffic shaping or deep packet inspection (DPI). Since DPI allows users to look at layers 2
through 7 of the OSI model, it is possible to view the ServerKeyExchange message [77]. DPI
also provides the possibility of packet payload tampering [84].

This threat scenario requires Heidi to be a company employee who creates the weak param-
eters. Heidi then installs the backdoored parameters onto the load balancing network appliance
sold by her company. Blue Coat’s PacketShaper S-Series, a traffic shaping network appliance,
can be connected with another PacketShaper to provide load balancing capability [4]. The load
balancer equipped with backdoored parameters is then sold to a customer. The balancer sends
decrypted traffic to the chosen server, then encrypts the server’s response and sends it to the
client as usual. Therefore the success of this scenario depends mostly on the trust placed in the
load balancer to securely encrypt and decrypt traffic.

4.6 Vulnerability Disclosures

This section discusses the associations involved in publicly acknowledging vulnerabilities, and
describes our vulnerability disclosures to companies along with their responses.
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4.6.1 Public Acknowledgement of Vulnerabilities

The Common Vulnerabilities and Exposures (CVE) list6 managed by the MITRE Corporation7

provides publicly acknowledged vulnerabilities in information security, called CVE identifiers
or CVEs informally, which are endorsed by the industry. A standardized set of vulnerabil-
ity identifiers allows for easy reference and scoring by a multitude of systems, and removes
interoperability issues stemming from a lack of standardization.

A vulnerability is acknowledged with a CVE identifier by a CVE Numbering Authority
(CNA), primarily MITRE, and is placed in the publicly available list on the CVE website.
A CVE identifier contains a number (e.g. CVE-2012-1723), a description such as affected
products, and references such as security advisories.

The CVE list is also given to the U.S. National Vulnerability Database (NVD),8 which
provides additional information for each CVE such as a severity score. The Common Vulnera-
bility Scoring System (CVSS) is an industry standard that provides a numerical severity score
out of 10 and qualitative metrics for the vulnerability based on its exploitability and impact on
systems. The primary standard for CVSS scoring is CVSS v2, although the current version of
CVSS is CVSS v3 (released in 2015) and NVD reports both v2 and v3 scores.

4.6.2 Disclosure Methodology

As mentioned in § 4.2.2, we issued vulnerability disclosures to companies that were using
composite moduli in HTTPS. Security contact information for each company was searched
for in the HackerOne directory,9 although only one company (Blue Coat Systems) had such
information. Only companies with at least one active webpage were contacted, since webpage
identifiers were important in determining the company associated with the IP address. Out
of the 21 companies listed in § 4.2.2, only 17 were contacted. Only 47% of the contacted
companies responded to our disclosure.

4.6.3 Disclosure to Blue Coat Systems

Blue Coat Systems, a billion-dollar company now owned by Symantec, was the first company
contacted. We communicated on several occasions with a number of high-ranking employees
within the company on the matter; in particular, we had multiple conference calls that included
Blue Coat’s Chief Technology Officer. A patch for the affected product, PacketShaper S-Series

6https://cve.mitre.org/
7https://www.mitre.org/
8https://nvd.nist.gov/
9https://hackerone.com/directory

https://cve.mitre.org/
https://www.mitre.org/
https://nvd.nist.gov/
https://hackerone.com/directory
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11.5, was released in June 2016 along with a security advisory10 acknowledging our contri-
bution. A few weeks later on July 12, 2016, a CVE was released for this vulnerability under
the label CVE-2016-5774 [3]. This CVE has a high severity score of 8.1 in CVSS v3 but only
a medium score of 4.3 in CVSS v2, as v2 emphasizes percentage of impacted systems rather
than level of impact as v3 does. Therefore although composite DHE moduli are not abundant
in the wild, these moduli have a high degree of impact on affected systems. An interesting side
effect of our disclosure was that it inadvertently uncovered a number of improperly configured
web-facing administrator login pages, which allowed Blue Coat to follow up with affected
customers.

4.6.4 Disclosure to Other Companies

After disclosure, the other 16 companies were split into three groups depending on the status of
the vulnerability fix: completed, partially completed, or not started. At the time of writing, the
vulnerability was fixed by 56% of these companies, although not all responded to us and three
had implemented fixes prior to our disclosure. These independent solutions could have been
a result of Wong’s disclosures [85]. The solution implemented by most companies involved
changing the composite moduli to prime, although one company simply removed its DHE
cipher suites altogether. Of the 19% of companies who partially completed the vulnerability fix,
all are progressively changing composite moduli to prime. The remaining 25% of companies
did not respond to our disclosure and have not modified their Diffie-Hellman parameters. One
of these companies had the highest number of affected IP addresses by far. A language barrier
existed for some companies, which could have contributed to this result.

4.6.5 Company Responses

We spoke to senior management at Blue Coat and technical staff at many other companies.
Despite this, all companies we had discussions with declined to provide us with information
on the source of the potentially backdoored parameters. Blue Coat more specifically stated that
the information could not be provided due to security reasons. Another company explained
that its composite modulus was attributed to cipher modifications made by the company, but
no specifics were given. Two others provided broad information on their load balancing, but not
in the context of the specific vulnerability. As we were unable to receive external confirmation
that these moduli were backdoored and could not completely factor the moduli to prove it, we
cannot say unequivocally that these moduli are backdoored. We have discovered everything

10https://www.symantec.com/security-center/network-protection-security-
advisories/SA127

https://www.symantec.com/security-center/network-protection-security-advisories/SA127
https://www.symantec.com/security-center/network-protection-security-advisories/SA127


4.7. MITIGATION STRATEGIES 57

possible about each company’s vulnerability using publicly available information. Without
additional information from the companies themselves, we cannot speculate further on topics
such as the cause of the vulnerability.

4.7 Mitigation Strategies

There is a growing consensus that Diffie-Hellman negotiations are less secure than previously
thought. Safari has removed DHE ciphersuites altogether, and Chrome plans to remove them in
upcoming versions [18]. However, during the time of writing Chrome continued to offer DHE
cipher suites if all other cipher suites offered were not accepted by the server. The current
TLS 1.3 draft [72] proposes using named DHE groups [45], similar to the named ECDHE
groups currently used. These named DHE groups are used in the supported_groups and
key_share extensions, and would not be susceptible to the kinds of attacks described in this
paper.

Information on using Diffie-Hellman properly has been extensively discussed by Adrian
et al. [8], who suggest using at least 2048-bit Diffie-Hellman groups with safe prime moduli.
Therefore we restrict our discussion to mitigation strategies for the outlined vulnerability. We
propose four different strategies for mitigation: deprecating Diffie-Hellman cipher suites, veri-
fying Diffie-Hellman parameters correctly, using named Diffie-Hellman groups, or modifying
the ServerKeyExchange message to sign all previously seen messages.

Deprecate DHE. One option is to follow the example of Safari and Chrome and deprecate
finite field Diffie-Hellman altogether. In our opinion, this option makes sense in certain sit-
uations, but not as a general solution. As we saw with Dual_EC_DRGB, there is a trade-off
between trust and convenience through standardization. With that in mind, Bernstein et al. [19]
added a new name to the standards of Alice and Bob: Jerry, an authority who generates curve
parameters such that his attack cost is decreased. With the deprecation of RSA key exchange
coming in TLS 1.3, DHE cipher suites represent the only alternative key exchange method.

Verify parameters properly. Our preferred option would be to simply implement the nec-
essary domain parameter validation to begin with. The first issue, however, is computational
cost. In order to verify that a generator or public DHE key has the intended order, modular ex-
ponentiation must be performed at runtime for each connection. Similarly p must be tested for
primality, and, importantly, if general non-safe prime groups are to be permitted, the TLS and
SSH protocols must provide an explicit means to communicate group order q. As we discussed
in § 2.4.4, basic checking is not sufficient to prevent all attacks.
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Use named parameters. A third solution is to develop standardized, named parameters simi-
lar to those in an ECC setting. The RFC proposed by Gillmor [45] and supported in the TLS 1.3
draft [72] involves standardizing parameters in the FFC setting to augment the MODP groups.
As we see in ECC, named parameters are a feasible mitigation strategy used in the real world.
One issue of restricting moduli to only safe primes is performance: private key lengths are
10 times larger than NIST recommended minimum standards. One performance optimization
Gillmor suggests is to compromise by using safe prime groups with short, DSA-like exponents.

Change TLS. The last solution is to modify the ServerKeyExchange message so that
all previously exchanged messages are also signed. The MITM attack from § 4.4.1 works as the
ServerKeyExchangemessage only signs the DHE parameters, ServerHello.random,
and ClientHello.random. If the list of cipher suites suggested in ClientHello and
the chosen cipher suite in ServerHello were also signed, then the cipher suite tampering
would be discovered upon receiving the ServerKeyExchange message. This solution was
also proposed by Mavrogiannopoulos et al. [62] to prevent their cross-protocol attack.

Finally, a recent proposal by Bhargavan et al. [20] proposes an elegant method for down-
grade resilience in TLS 1.3, and was incorporated into the draft as of Version 11. In their
strategy, the server puts the highest version of TLS supported by the client into the Server-
Hello.random, which will be incorporated into the signed ServerKeyExchange mes-
sage. If a client supports TLS 1.3, but is being man-in-the-middled in the context of a down-
grade attack such the one described in § 4.5, the man in the middle will be unable to modify
the signed ServerKeyExchange message, and the client will see that the server believes
the client does not support TLS 1.3, which is false so the handshake is aborted. This method,
combined with the use of named safe prime DHE groups in TLS 1.3, would solve the issue of
backdoored groups.



Chapter 5

X.509 Certificate Name Mismatch Errors

5.1 Overview

In § 2.5.1, we explained that in TLS with Diffie-Hellman key exchange, an X.509 certificate
attests to the ownership of the public key used to verify the signature on Diffie-Hellman pa-
rameters. One error that invalidates an X.509 certificate is a name mismatch error, as defined
in § 2.5.3. Although there has been significant research on X.509 certificate errors in recent
years, there has been less emphasis on name mismatch errors as studying them requires more
than an IPv4 scan.

In this chapter, we conduct a survey of name mismatch errors based on scans of over 150
million domains. The domains are taken from the .com, .info, .net, and .org base
domain sets. We implemented ZGrab, also used in Chapter 4, to obtain certificate data and
found some disturbing results. We discovered that name mismatch errors occur in 69-79%
of HTTPS connections, due largely to CDNs and hosting companies along with self-signed
certificates. We further investigate HSTS-enabled websites and find that approximately 3%
contain a name mismatch error that prevents their website from being accessed.

This chapter contains two sections: the methodology behind finding name mismatch errors,
including related terminology, is discussed in § 5.2; and name mismatch error categorization
along with the HSTS investigation is discussed in § 5.3.2.

5.2 Methodology

This section discusses the process for selecting a domain set and obtaining each domain’s leaf
certificate data in order to study the extent of name mismatch errors on the Internet.

59



60 CHAPTER 5. X.509 CERTIFICATE NAME MISMATCH ERRORS

5.2.1 Terminology

As discussed in § 2.5.3, a name mismatch error involves a mismatch between a website ac-
cessed over HTTPS and the names in the common name (CN) field and subject alternative
name (SAN) extension of the website’s certificate. In that section, we used the terms “do-
main” and “FQDN” briefly, but this chapter requires more specific definitions of “domain”.
Although we could define domains in terms of the Domain Name System (DNS) hierarchy, we
instead focus on practical examples for each definition since they are considered in that context
throughout the chapter.

Definition. (Fully Qualified Domain Name.) A Fully Qualified Domain Name (FQDN) (e.g.
www.example.com), also known as an absolute domain, specifies an exact host on the In-
ternet. For our purposes, the CN and SAN contain FQDNs.

Definition. (Wildcard certificate.) A wildcard certificate contains at least one FQDN in its CN
or SAN that has an asterisk, *, in its far left position (e.g. *.example.com).

Definition. (Top-Level Domain.) A Top-Level Domain (TLD) (e.g. .com) is the portion of an
FQDN located on the far right.

Definition. (Base domain.) A base domain (e.g. example.com) is the portion of an FQDN
located directly left of the TLD and including the TLD itself.

Definition. (Second-level domain.) A second-level domain (e.g. example) is the portion of a
base domain located to the left of the TLD.

Definition. (Subdomain.) A subdomain (e.g. www.example.com) is any domain that is a
subset of another domain (e.g. example.com).

Definition. (Zone file.) For our purposes, we simplify the official definition of a zone file.
We refer to a zone file as a list of all base domains registered to a specific TLD (e.g. all base
domains for .com), although in actuality a zone file also contains additional DNS-related
information.

Definition. (Internal name.) An internal name is part of a private network, such as the local
area network (LAN) of an office. For our purposes, we are interested in internal names such as
IP addresses and short names that are not FQDNs (e.g. localhost).

5.2.2 Domain Set Selection

Domains versus IP Addresses. To study name mismatch errors, an IPv4 scan similar to [52]
and [37] is insufficient as the FQDN is needed to compare with the FQDNs in the CN and
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SAN. A set of domains is required, and comprehensive domain sets can be found in zone
files. Although zone files contain only base domains, they provide a list of every base domain
registered to the specific TLD. This is in contrast to reverse DNS lookups (i.e. finding a FQDN
from an IP address), which theoretically provide FQDNs [16] but in reality do not always
provide accurate or indeed any results [52].

Zone File Selection. Similar to [75] and [83], we decided to use the zone files for .com,
.info, .net, and .org to obtain a list of domains to study. These TLDs are generally
considered the most popular and contain the most domains.1 The .com TLD is particularly
utilized; the .com zone file we obtained in May 2017 had 127 million domains compared to
the next highest file, .net, which had 14 million. Although many zone files can be obtained by
registering with the Centralized Zone Data Service (CZDS),2 the zone files for .com, .info,
.net, and .org can only be obtained by requesting access through their respective registries3.
We also used the Alexa Top Million list,4 which is routinely updated with the top million
websites based on traffic volume. We attempted to get the zone file for .ca domains, but the
Canadian Internet Registration Authority (CIRA)5 does not allow access to this file.

5.2.3 Obtaining Name Mismatch Errors

Getting Leaf Certificates for Domains. After unique base domains are extracted from a
zone file, the leaf certificate information (see § 2.5.2) for each domain needs to be found
in order to find name mismatch errors. We used the DNS lookup tool ZDNS6 to collect IP
address(es) for each base domain, then used the associated application-layer scanner ZGrab
(see § 4.2.1) to attempt TLS handshakes on port 443 (i.e. HTTPS) with each IP-domain combi-
nation. The X.509 leaf certificate information was extracted for successful handshakes. ZGrab
supports SNI so the having multiple certificates on one IP address does not pose a problem.
Domains were run with all their associated IP addresses for completeness, but any duplicated
ZGrab results were removed after the scan so that only unique name mismatch errors were
studied. We ran ZDNS+ZGrab on the cloud computing platform DigitalOcean.7

1Based on domain totals from https://wwws.io/
2https://czds.icann.org/en
3.com and .net are registered with https://www.verisign.com/, .info is registered with

https://afilias.info/, and .org is registered with https://pir.org/
4http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
5https://cira.ca/
6https://github.com/zmap/zdns
7https://www.digitalocean.com/

https://wwws.io/
https://czds.icann.org/en
https://www.verisign.com/
https://afilias.info/
https://pir.org/
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://cira.ca/
https://github.com/zmap/zdns
https://www.digitalocean.com/
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Scans Completed. Two ZDNS+ZGrab scans were done on the .com, .info, .net, .org,
and Alexa Top Million lists: one in May 2017 which scanned the base domains and saved the
CN, and SAN if applicable, from the leaf certificate; and one in June 2017 which additionally
scanned the www subdomains and also saved the self-signed boolean value. Since only the
domain, CN, and optionally SAN are necessary to find a name mismatch error, only those
values were saved to reduce result file size. The June 2017 scan additionally saved the self-
signed boolean value to recognize self-signed leaf certificates. As explained in § 2.5.3, these
certificates are considered invalid because they are signed by the certificate’s subject, and tend
to have additional validity issues beyond name mismatching.

Determining Name Mismatch Errors. The decision tree for determining name mismatch
errors from certificate information is seen in Figure 5.1. The goal of the decision tree is to find
name mismatch errors in two situations: the domain is a base domain, and does not match any
of the FQDNs given in the CN and SAN (if applicable); or the domain is a subdomain (www
of base domain, or other subdomain), and does not match any of the FQDNs given in the CN
and SAN (if applicable) through either exact or wildcard matching. As an example of wildcard
matching, s1.s2.site.com would match *.s2.site.com but not *.site.com.

We implemented the decision tree in Figure 5.1 in Python and ran it on the ZGrab results
from the May and June 2017 scans. These results are discussed in § 5.3.

5.2.4 Potential False Positives and Negatives

The methodology described in § 5.2.3 has the possibility of giving false positives (i.e. outputs
a name mismatch error when there is not one) and false negatives (i.e. outputs no error when
there is one). We describe why these false results do not unduly affect our results, although
they could be addressed in future work.

False Negative. In Figure 5.1, the name error decision tree checks the names in the CN even
when the SAN extension is used. According to the HTTPS RFC [71], this is not allowed; the
SAN only must be checked when it is used. Our results could include false negatives where
a domain matched a name in the CN that was not included in the SAN. As our survey shows
in § 5.3, name mismatch errors occur in approximately 75% of the HTTPS-enabled domains
studied, so removing false negatives would only increase an already high percentage.

False Positive. It is possible to have an IP address support one HTTPS-enabled website and
one or more HTTP websites. If a client tried to connect to the HTTP site using HTTPS,
the certificate from the HTTPS-enabled website is fetched and a name mismatch error would
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Set Total Domains Total Responding On Port 443 (%)

May 2017 June 2017 May 2017 June 2017 (Base) June 2017 (www)

COM 126909094 127481013 31 31 33

INFO 5547030 5843252 20 19 20

NET 14910270 14939912 26 25 26

ORG 10426322 10402840 31 32 34

Alexa 1M 1000000 1000000 66 66 68

Table 5.1: Domains Supporting HTTPS. The percentage of domains supporting HTTPS from
each domain set.

occur. This situation is technically a false positive since the requested website does not have a
certificate (and so should not show an error), but since the client would consider this an error it
does not change our results.

5.3 Name Mismatch Error Survey

This section discusses the name mismatch error results from the May and June 2017 scans
described in § 5.2.3. The discussion includes the result difference over the two scans and cate-
gories of name mismatch errors such as having a name contain the domain’s www subdomain.
We additionally investigated domains on the HSTS preload list with name mismatch errors in
July 2017.

5.3.1 Percentage of Domains with Name Mismatch Errors

To determine if name errors across TLDs persisted across time and subdomains, we investi-
gated the percentage of name errors in the May 2017 base domains, June 2017 base domains,
and June 2017 www subdomains. Table 5.1 shows the number of domains tested in each scan
along with the percentage that responded on HTTPS. Both the number of domains and the
amount that responded on port 443 (i.e. HTTPS) remained approximately constant. It was
reassuring to see that the most popular websites from the Alexa Top Million had a higher
propensity to use HTTPS.

We next investigated the percentage of HTTPS-enabled domains that had a name mismatch
with the CN and SAN names on their certificates, seen in Table 5.2. Overall, there was a
disturbingly high percentage of name mismatch errors seen across all zone file domains and a
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Set Total with Name Mismatch (% of HTTPS Domains)

May 2017 June 2017 (Base) June 2017 (www)

COM 74 71 69

INFO 79 77 77

NET 78 76 75

ORG 74 73 71

Alexa 1M 37 36 37

Table 5.2: Domains With Name Mismatch Errors. The percentage of HTTPS-enabled do-
mains with a name mismatch error.

negligible difference between the base domain and www subdomain results. Name mismatch
errors occurred for 69-79% of domains responding to HTTPS, which is significantly higher
than 20% found by Akhawe et al. [9] but slightly less than Ristic et al. [75]. Although the name
mismatch error percentages did decrease between May and June, it was small compared to the
number of domains affected, showing that the initial results painted an accurate picture. The
Alexa Top Million websites were less affected than the zone file domains, but considering these
websites are accessed the most frequently of all, having one third affected is still concerning.
In the next section, we set out to categorize the errors to determine the main causes behind their
frequent occurrence.

5.3.2 Categories of Domains with Name Mismatch Errors

The name mismatch errors for each domain set were separated into eight categories in order,
where a name error was put only into the first category it matched. The breakdown for each
scan is seen in Tables table 5.3, table 5.4, and table 5.5.

(1) Self-signed Certificates (June 2017 only). Self-signed certificates are issued and signed
by the same entity, which for leaf certificates means the website itself. These certificates
usually have additional issues because they have not been screened by a CA, and there-
fore are removed from the name mismatch list first.

In the June 2017 scans, self-signed certificates accounted for between 15.6-20.3% of
name mismatch errors from zone file domains. This result is consistent with Akhawe et
al. [9], who found that 3% of invalid connections were due to self-signed certificates and
19% were due to name mismatch errors. Holz et al. [52] and Durumeric et al. [37] found
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Category Percentage of Name Mismatch Errors (%)

COM INFO NET ORG Alexa 1M

Self-signed - - - - -

CDNs 46.7 41.8 43.8 47.1 34.8

www Subdomain 0.2 0.1 0.3 0.3 5.4

Base Domain - - - - 0

Other Subdomain 0.3 0.3 0.6 0.4 5.2

Longest Domain Piece 0.3 2.3 2.0 1.5 2.1

IP Address 0.2 0.3 0.3 0.4 1.3

No Dots 6.3 8.2 7.0 5.3 12.2

Undefined 46 47 46 45 39

Table 5.3: Name Mismatch Errors Categorization, May 2017 (Base). The percentage of
name mismatch errors from the May 2017 scan of base domains that could be categorized.

Category Percentage of Name Mismatch Errors (%)

COM INFO NET ORG Alexa 1M

Self-signed 15.8 20.3 17.6 16.5 26.3

CDNs 46.2 42.0 45.7 47.1 34.2

www Subdomain 0.3 0.1 0.2 0.3 5.3

Base Domain - - - - ≈ 0

Other Subdomain 0.2 0.2 0.4 0.3 4.1

Longest Domain Piece 0.2 2.2 1.8 1.4 1.9

IP Address 0.1 0.1 0.1 0.3 ≈ 0

No Dots 0.2 0.1 0.2 0.1 0.2

Undefined 37 35 36 34 28

Table 5.4: Name Mismatch Errors Categorization, June 2017 (Base). The percentage of
name mismatch errors from the June 2017 scan of base domains that could be categorized.
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Category Percentage of Name Mismatch Errors (%)

COM INFO NET ORG Alexa 1M

Self-signed 15.6 19.8 17.4 16.2 24.0

CDNs 46.2 41.1 43.4 47.2 42.5

www Subdomain - - - - -

Base Domain 0.4 0.4 0.6 0.5 3.0

Other Subdomain ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Longest Domain Piece 0.5 2.5 2.3 1.7 4.3

IP Address 0.1 0.1 0.1 0.3 ≈ 0

No Dots 0.2 0.1 0.2 0.1 0.2

Undefined 37 36 36 34 26

Table 5.5: Name Mismatch Errors Categorization, June 2017 (www). The percentage of
name mismatch errors from the June 2017 scan of www subdomains that could be categorized.

twice the number of self-signed certificates, but they checked for self-signed certificates
over all certificate errors instead of only mismatch errors.

From our results, it was concerning to see that Alexa Top Million domains had a larger
percentage of self-signed certificates than those from the zone files. Since these domains
are the most heavily visited, they should be more conscious about security, but this is not
the case based on the percentage of self-signed certificates.

(2) Web Hosting Companies and CDNs. Content delivery networks (CDNs), web hosting
companies, and other companies that contain others’ website information on their servers
are known to frequently configure TLS incorrectly [58, 31, 30]. With this idea in mind,
we identified over 200 CDNs and related companies based on the CN and SAN names
of domains with name mismatch errors. The full list can be seen in Appendix B. It
includes companies from Canada, the United States, Japan, and Russia among other
countries. More important than the specific companies is the widespread adoption of
careless CN and SAN selections; many name mismatch errors remain unidentified. The
200 companies we found were only some of the possible companies, as analysing the
full set of name errors by companies was too time intensive to complete. Therefore,
many of the undefined name errors included additional companies, further emphasizing
the widespread mismatch errors.
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In general, name mismatch errors attributed to a CDN or other company made up over
40% of the name errors for both zone file domains and Alexa domains. This result
is somewhat confirmed by Holz et al. [52], who find that 48% of invalid certificates
in XMPPS related to the CDN incapsula.com. In contrast to the self-signed cer-
tificate results, the Alexa domains had a smaller percentage for its base domain scans
than the zone file domains. Some of the more frequently occurring names in the CN
or SAN included websitewelcome.com and variations of hostgator (i.e. Host-
Gator), secureserver.net (i.e. GoDaddy), xserver.jp, variations of akamai
(i.e. Akamai), weebly.com, sakura.ne.jp, wpengine.com (i.e. WordPress),
webhostbox.net (i.e. ResellerClub), bluehost.com, and kasserver.com (i.e.
Mertens Media).

(3) www Subdomain. For scans of the base domains, we checked if its www subdomain was
present in the CN or SAN. This result was less than 1% for the zone file domains but
around 5% for the Alexa domains, both making up only a small portion of the overall
name errors. The higher percentage in the Alexa domains could indicate a better attempt
at certificate validity, as a name mismatch error due to a subdomain is less blatant than a
CDN name for example.

(4) Base Domain. For the scan of the www subdomains, we checked if its base domain was
present in the CN or SAN. Similar to www subdomain matching, this category constituted
only a small portion of name errors and was slightly higher for the Alexa domains, again
indicating a better attempt at name matching.

(5) Other Subdomain. For scans of the base domains and www subdomains, we checked
if that domain was present within another name in the CN or SAN (e.g. a subdomain
besides the www version). For the base domain scans, this category was approximately
similar to both www subdomain matching and base domain matching. However, for
the www subdomain scan, this category was negligible, a result which is expected as
subdomains containing a www subdomain are not commonly seen.

(6) Longest Domain Piece. For scans of the base domains and www subdomains, we
checked if the longest piece from that domain was present within another name in the CN
or SAN. Ideally, this piece was the second-level domain (e.g. example from exam-

ple.com) so that it described the website, but it could also point to a different piece [9]
(e.g. example from example.site.com). This category generally consisted of
less than 3% of name mismatch errors, and was present slightly more frequently in the
.info and Alexa domains.
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(7) IP Address. For scans of the base domains and www subdomains, we checked if an IP
address was one of the names in the CN or SAN. Certificates are prohibited from having
internal names such as IP addresses as of November 2015, and previously existing cer-
tificates should have been revoked by October 2016 [26]. This standard was created to
prevent MITM attacks that take advantage of non-unique internal names; a MITM could
request a certificate with the same internal name as its target. We found IP addresses in
small percentages, but seeing any IP address is concerning since all certificates contain-
ing them should have been revoked months ago.

(8) No Dots. For scans of the base domains and www subdomains, we checked if a name
without dots (i.e. not an FQDN) was one of the names in the CN or SAN. This method
could miss names that are not FQDNs but have dots (e.g. localhost.localdomain).
The names in this category are internal names, and therefore certificates containing them
should have been revoked [26]. In June 2017, there were relatively few found, but there
was many more in May 2017; the zone domains and Alexa domains had over 5% of
their name mismatch errors because of this category. It is possible that the revocation
of these certificates was delayed and occurred between May and June 2017. Regardless,
the small presence in June 2017 indicates that certificates containing names without dots
still exist.

5.3.3 HSTS Domains with Name Mismatch Errors

As explained in § 2.2.4, websites can use the HTTP Strict Transport Security (HSTS) mecha-
nism to specify that they can only be accessed over HTTPS. A website using HSTS but having
an invalid certificate will be “locked”; HSTS prevents users from continuing to such websites.
In this section, we investigated invalid certificates in the context of name mismatch errors for
websites on Chrome’s HSTS preload list8 since other browsers’ lists are based off this list [76].
The list contains additional information beyond HSTS entries, but that information is not rele-
vant to this work.

We obtained Chrome’s HSTS preload list in July 2017, and extracted FQDNs that supported
HSTS from the list. After adding the www subdomains from websites that supported HSTS
for their subdomains, we had 57258 FQDNs. Using the methodology described in § 5.2.3,
in July 2017 we ran ZDNS+ZGrab to attempt TLS handshakes with each domain and get
the certificate’s CN and SAN if possible. Of the FQDNs, only 82% responded on port 443
(HTTPS). The remaining 18% could be websites that are no longer active or that are awaiting

8https://cs.chromium.org/chromium/src/net/http/transport_security_state_
static.json

https://cs.chromium.org/chromium/src/net/http/transport_security_state_static.json
https://cs.chromium.org/chromium/src/net/http/transport_security_state_static.json


5.3. NAME MISMATCH ERROR SURVEY 69

exclusion from the list, since it takes months9 for a removal to propagate.
Out of the FQDNs that responded to HTTPS, there were 1320 (2.8%) that had a name

mismatch error. These websites would show a certificate error when accessed from a browser
and HSTS would prevent the user from continuing to the website. We tested a random sam-
pling of these FQDNs in Chrome which confirmed this behaviour. We searched the domains
for websites that would be relevant to a variety of users, such as government or banking
websites, and found a few examples. However, a Google search of those websites showed
that none of them were utilized – the utilized website had a valid certificate and was a www
subdomain or base domain of the erroneous website, or in some cases was a different web-
site entirely. As an example, ncpc.gov is a United States government site, and while it
had a name mismatch error, the utilized website was actually www.ncpc.gov which had
a valid certificate. Another example is ebankcbt.com, a banking website, where the uti-
lized website www.gocitizens.bank had a valid certificate. Even Google had a name
mismatch error for www.groups.google.com, although the utilized website was actually
groups.google.com.

Although we only found instances of name mismatch errors for websites that had a properly
configured website on another name, we argue that this practice sets a bad precedent. There
were less than 60000 websites that supported HSTS on Chrome’s preload list, which is almost
negligible compared to the hundreds of millions of domains we examined in § 5.3. Although we
did not investigate the Strict-Transport-Security header, potentially missing HSTS
websites, neither did we investigate other errors such as self-signed certificates that could “lock
out” additional websites. The websites on the HSTS preload list have an obligation to set a
standard – it is bad practice to force HTTPS but use invalid certificates – and the presence of
name mismatch errors does not inspire confidence.

9According to https://hstspreload.org/

https://hstspreload.org/
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Chapter 6

Conclusion and Future Work

In this thesis, we discovered a new vulnerability in the implementation of the Diffie-Hellman
key exchange. Poor Diffie-Hellman parameter validation enabled DHE implementations to
connect under weak and potentially backdoored parameters, which we demonstrated in all
major browsers. We proposed a Diffie-Hellman backdoor construction that would allow an
attacker to efficiently compute the discrete logarithm while denying the backdoor’s existence.
We then conducted a survey of DHE parameters across TLS and STARTTLS and found hun-
dreds of potentially backdoored parameters in use. A large portion of the private DHE key was
recovered for some of these parameters. DHE cipher suites account for a small number of TLS
connections but are still well supported, so we proposed a man-in-the-middle attack to force
DHE use by an attacker exploiting a backdoor. Vulnerability disclosures were completed for
17 companies, and in the most significant case we had several conference calls with the CTO
of a billion-dollar company that resulted in a publicly acknowledged vulnerability.

We additionally conducted a survey on name mismatch errors in HTTPS for over 150 mil-
lion websites, and found that on average 75% of HTTPS connections are invalidated by name
mismatch errors. After categorizing these errors, we determined that at least 40% were caused
by invalid certificates owned by web hosting or content delivery network companies. We also
found over 1000 websites that force HTTPS use but have a name mismatch error, making them
inaccessible.

Our work on Diffie-Hellman adds to many related works, and together we have significantly
decreased support for DHE cipher suites. In 2015, Adrian et al. [8] implemented a downgrade
attack that would allow 512-bit Diffie-Hellman parameters to be used, and employed precom-
putation to recover the private DHE key. In 2016, Bhargavan et al. [20] proposed downgrade
protection, incorporated into the TLS 1.3 draft [72], which prevents downgrades to DHE cipher
suites. In 2017, concurrent but independent work by Valenta et al. [81] also investigated the
exploitation of weak DHE parameters through lack of parameter validation. This combined

71



72 CHAPTER 6. CONCLUSION AND FUTURE WORK

work has decreased support for Diffie-Hellman significantly – in the time between writing
our paper [35] and this thesis, the most widely used browser (Google Chrome) has removed
DHE cipher suites, and telemetry data from Mozilla Firefox [65] indicates that default DHE
connections have decreased from 1% to almost 0%.

Our work on name mismatch errors uncovered startling statistics on the prevalence of in-
valid certificates in use. The methodology was sound overall, but had some slight flaws that
could be improved in future work. While we were able to categorize the likely reason behind
many of the errors, on average 40% remained undefined due to the high number of errors. We
speculate that many of these undefined errors are also due to web hosting and content delivery
networks, but due to time constraints we were only able to identify 200 companies. It would be
interesting to fully investigate the name mismatch errors and track any changes over a longer
time period – as shown by our Diffie-Hellman scans, sometimes the most interesting findings
are hidden among data sets of millions.
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Appendix A

Permission to Reproduce Article Material

Figures A.1 and A.2 allow the author to reproduce material from [35] for this thesis.

Figure A.1: License from ISOC. The License section of the copyright form filled out for [35]
provides the author license to reproduce material from the paper.

Figure A.2: Permission Notice. The permission notice displayed on the first page of [35]
provides the author license to reproduce material from the paper if this notice is displayed.
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Appendix B

Companies Found in Connection to Name
Mismatch Errors

The full list of companies found in connection to name mismatch errors is provided here. Each
is specified by a keyword based on the company’s website or based on its FQDN known to be
used on certificates.

’akamai’, ’cloudfront’, ’cachefly’, ’cdnetworks’, ’chinacache’, ’cloudflare’, ’CloudFlare’, ’distilnetworks’,
’edgecastcdn’, ’fastly’, ’googleusercontent.com’, ’appspotpreview.com’, ’.hpe.’, ’incapsula’, ’instartlogic’,
’leaseweb’, ’limelight’, ’.ovh.’, ’xserver.jp’, ’wpx.jp’, ’xtwo.ne.jp’, ’fc2.com’, ’github’, ’godaddy’,
’secureserver.net’, ’sakura.ne.jp’, ’hostmonster’, ’netowl’, ’axspace’, ’secure.ne.jp’, ’easyhebergement’,
’sedoparking’, ’herokuapp’, ’home.pl’, ’ipage’, ’webhostbox.net’, ’heteml’, ’hostgator’,
’websitewelcome.com’, ’webfaction’, ’dinaserver’, ’chinanetcenter’, ’hoster.kz’, ’speedhost247’,
’freehost.com.ua’, ’arvixe’, ’valuehost.ru’, ’reklam9’, ’chaturbate’, ’hekko.pl’, ’.reg.ru’, ’bigrock’,
’yahoo.com’, ’secure.hostingprod.com’, ’ucoz.net’, ’ucoz.ru’, ’sharpschool.com’, ’tumblr.com’, ’notarius’,
’hc.ru’, ’securedata.net’, ’webempresa’, ’fozzyhost’, ’mchost.ru’, ’gridserver.com’, ’bizland’,
’bluehost.com’, ’forumotion’, ’inmotionhosting’, ’kasserver.com’, ’mylittledatacenter.com’,
’rozblog.com’, ’gudzonhost.ru’, ’gmoserver.jp’, ’fornex’, ’wildfanny.com’, ’webhosting.com’,
’registrarservers.com’, ’tistory’, ’webhost1.ru’, ’nyi.net’, ’nexcess.net’, ’dp.tb.ask.com’, ’justhost.com’,
’jino.ru’, ’godo.co.kr’, ’sixcore’, ’snakeoil.dom’, ’trafficplanethosting.com’, ’wordpress’, ’wpengine.com’,
’strikingly.com’, ’myinsales.ru’, ’accountservergroup.com’, ’webserversystems.com’, ’lunarpages’,
’cyon.ch’, ’townsquaremedia’, ’acquia’, ’4hu.com’, ’pointhq.com’, ’mediacenter.hu’, ’valuedomain’,
’top10bestvpn’, ’asoshared.com’, ’azure’, ’yourserver.de’, ’notexist.com’, ’wedos.ws’, ’sdska.ru’,
’rugion.ru’, ’myqcloud.com’, ’allinternet.jp’, ’sony.’, ’sonypictures’, ’synology.com’, ’timeweb’, ’alynx’,
’ning.com’, ’unoeuro’, ’artfiles.de’, ’webshopapp.com’, ’sucuri’, ’firstfind.nl’, ’123secure.com’,
’bravehost.com’, ’mapf.com’, ’163.com’, ’rackset.com’, ’securesecure.co.uk’, ’netangels.ru’,
’hostland.ru’, ’sidearmsports.com’, ’nfadmin.net’, ’tarhely.eu’, ’cafe24’, ’arvancloud’, ’snjtoday.com’,
’vozpopuli.com’, ’andar.co.kr’, ’trsprtr2.com’, ’websiteseguro.com’, ’weebly.com’, ’sgvps.net’,
’parseek.com’, ’gridhost.co.uk’, ’hostinger.com’, ’hostingplatform.com’, ’nazwa.pl’, ’linuxpl.com’,
’srv.cat’, ’infomaniak’, ’xrea.com’, ’squarespace.com’, ’opentransfer.com’, ’myserverhosts.com’,
’zenbox.pl’, ’∗.∗’, ’makeshop.jp’, ’ehosts.com’, ’businesscatalyst.com’, ’websitehostserver.net’,
’agava.net’, ’turhost.com’, ’mirtesen.ru’, ’alfahostingserver.de’, ’mybigcommerce.com’, ’bizmw.com’,
’maintenis.com’, ’eurobyte.ru’, ’blog.me’, ’kinghost.net’, ’elsevierhealth.com’, ’ferozo.com’,
’valueserver.jp’, ’serveriai.lt’, ’lineapps.com’, ’sslblindado.com’, ’vpsprivate.net’, ’hoster.by’,
’myregisteredsite.com’, ’loopiasecure.com’, ’webhostinghub.com’, ’ioservers.com’, ’publigo.fr’,
’newscyclecloud.com’, ’vshosting.cz’, ’aruba.it’, ’tmall.com’, ’myshopify.com’, ’livejournal.com’,
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’pantheonsite.io’, ’blog.ir’, ’jimdo.com’, ’civicplus.com’, ’schoolwires.net’, ’m3xs.net’, ’justsize’,
’webspaceverkauf.de’, ’krystal.co.uk’, ’venez.fr’, ’ktnet.kg’, ’planethoster’, ’aliyuncs.com’, ’kalalist.com’,
’speedweb.sk’, ’hostoffshore.com’, ’proginter’, ’.tom.com’, ’naltis’, ’cdn77.com’
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