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Abstract 

Prostate cancer remains a substantial contributor to cancer-related mortality worldwide. 

Current screening methods include obtaining a PSA blood test. However, controversy 

surrounds its use as it is neither sensitive nor specific.  

Nanoscale flow cytometry is a type of microfluidics-based technology that allows 

enumeration of submicron tumor fragments known as microparticles (MPs). In this study, 

prostate specific microparticles in patient plasma were targeted using fluorophore-conjugated 

antibodies. Targeted cell surface antigens or biomarkers include: prostate specific membrane 

antigen (PSMA), six-transmembrane epithelial antigen of the prostate-1 (STEAP1), ghrelin 

receptor (GHSR1a) and CD151. 

A statistically significant difference in the level of MP levels was measured with 

PSMA+STEAP1+GHSR1a and PSMA+STEAP1+CD151 triple-expressing MPs when 

comparing Gleason score (GS) 6 to GS3+4, GS4+3 and GS≥8 cohorts. In this pilot and 

exploratory study, I show that MPs have the potential of becoming a “liquid biopsy” that can 

assist in risk stratification prior to a prostate needle biopsy. 
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Chapter 1  

1 Introduction 

1.1 Epidemiology 

Prostate cancer continues to be the most common non-cutaneous neoplasm affecting 

North American men (Howlander et al., 2017). In 2016, it is estimated that 21% percent 

of all new diagnosed cancers in males will be from the prostate, making it the number 

one diagnosed neoplasm in Canadian men (Canadian Cancer Society, 2017). It will 

account for approximately 10% of all cancer deaths in Canadian males, ranking third, 

after lung cancer and colorectal cancer (Canadian Cancer Society, 2017). Men over the 

age of 60 have the greatest risk of developing prostate cancer. The incidence rate in 

Canada peaked in 1993 and 2001, with a decline in the following years. These peaks 

were believed to be attributed to intensified screening with the use of PSA (Canadian 

Cancer Society, 2017). Since 2001, incidence rates have been declining roughly at 1.5% 

rate per year and mortality rates have been declining at a rate of 3.3% per year. This 

decline in mortality is likely attributed to improvements of treatment in radiation and use 

of hormonal therapy especially in the setting of metastatic castrate resistant prostate 

cancer (Cooperberg et al., 2003; Kupelian et al., 2003; Joelle et al., 2013). 

In the United States, it is estimated that in 2016, 180,890 men will be diagnosed with 

prostate cancer and 26,120 will die from the disease (Howlander et al., 2017). Similar to 

Canada, 1 in 8 American men will develop prostate cancer in their lifetime. (Howlander 

et al., 2017). The median age of diagnosis and death in 2016 are 66 and 80, respectively.  

In 2012, estimated global incidence makes prostate cancer the second most common 

cancer in men with over a million cases resulting in 307,000 deaths. Prostate cancer 

incidence varies more than 25-fold worldwide (Globocan, 2012). High-income countries 

who adopted PSA screening had the largest decline in mortality, such as, United States (-

3.5%), Canada (3.1%), England (-2.6%), and Australia (-1.7%) (Canadian Cancer 

Society, 2016; Collin et al., 2008; Feletto et al., 2015). Mortality rates are the highest in 
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Sub-Sahara Africa (Globocan, 2012).   

1.2 Prostate Anatomy 

The prostate is part of the male reproductive system that works in tandem with the 

seminal vesicles to produce and store seminal fluid that nurtures, protects, and facilitates 

sperm transport for reproduction (Aumüller, 1979). Embryologically, the prostate is 

distinct from the seminal vesicles as it arises from the urogenital sinus under the 

hormonal influences of dihydrotestosterone, while the seminal vesicles develop from the 

Wolffian ducts through testosterone stimulation. It is comprised of 70% glandular tissue 

and 30% fibromuscular stroma. (Aumüller, 1979; Wein et al., 2016).  

The prostate gland is divided into 4 zones: peripheral, central, transition and anterior 

fibromuscular stroma zone (Figure 1). The peripheral zone is a sub-capsular region of 

small round acini lined by simple columnar epithelium with clear cytoplasm and basal 

nuclei (McNeal, 1969). Approximately, 70% of prostate cancers are contained in this 

zone (Prostate Cancer Information, 2010). The central zone arises close to the ejaculatory 

duct orifices and follows these ducts proximally, branching laterally near the prostate 

base. Its lateral border fuses with the proximal peripheral zone border (McNeal, 1981). 

Central zone accounts for 2.5% of prostate cancers (Cohen et al., 2008). The transition 

zone surrounds the proximal urethra and is the site for benign prostatic hyperplasia 

(McNeal, 1981). It also accounts for 10-20% of prostate cancers (Prostate Cancer 

Information, 2010). The anterior fibromuscular stroma forms the entire anterior surface 

of the prostate which is thick, nonglandular and typically not involved with prostate 

cancer (McNeal, 1981).  
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Figure 1. Anatomy of the zones of the prostate. Image obtained from: Verze, P., Cai, 

T. & Lorenzetti, S. (2016). The role of the prostate in male fertility, health and disease. 

Nature Reviews Urology. 13, 379–386.  
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1.3 Prostate Cancer and Risk Factors 

The most common form of prostate cancer is adenocarcinoma which arises from the 

prostate’s abundant secretary epithelial cells (Miller et al., 2003). In the post-PSA era, 

average age for diagnosis and death is 65 and 77 years of age respectively. Prostate 

cancer in its early stages often does not produce symptoms. However, advanced cases of 

prostate cancer may give rise to: hematuria, urinary obstruction, sexual dysfunction 

impacting erectile function, local invasion of surrounding structures, bony pain and spinal 

compression (Miller et al., 2003). These advanced stages of disease are more commonly 

seen in men with high preoperative PSA and high histological grade cancers (Miller et 

al., 2003). Localized extra-capsular extension is most common in the posterolateral 

prostate near the neurovascular bundle but can also involve the urethra, bladder and 

rectum in advanced cases (Prostate cancer statistics, 2017). Common metastatic sites 

include pelvic lymph nodes and bone while lung, liver, and brain are rare metastatic sites 

(Prostate cancer statistics, 2017). Prostate cancer is incidentally reported in up to 10% of 

men undergoing transurethral resection of the prostate (TURP) (Otto et al., 2014) and in 

14-50% in men undergoing cystoprostatectomy for bladder cancer (Kaelberer et al., 

2016). Complete prostate gland analysis from cystoprostatectomy specimens have shown 

the presence of clinically significant prostate cancer (Filter et al., 2017). 

Risk factors strongly associated with prostate cancer include family history, genetic 

variability, ethnicity and age. Epidemiology studies have shown that relative risk of 

developing prostate cancer increases with number of affected family members, their 

degree of relatedness, and the age at which they were diagnosed. A meta-analysis by 

Zeegers et al., 2003, reported a relative risk (RR) of 2.17 if the father was affected, RR 

3.37 if brother was affected, RR 3.34 if first degree relative was <65 years old at time of 

diagnosis, and RR 5.08 if >2 first-degree relatives were affected. Over 100 alleles have 

been identified that may increase one’s risk of prostate cancer (Amin et al., 2015). Tumor 

suppressor genes, BRCA 1 and BRCA 2, have been linked to early on-set of prostate 

cancer with evidence suggesting more aggressive prostate cancer in those with BRCA2 

mutation (Amin et al., 2015; Siegel et al., 2016). Patients with hereditary prostate cancer 

may develop cancer 6 to 7 years earlier when compared to spontaneous cases (European 
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Association of Urology, 2016).  

Ethnicity also impacts both incidence and mortality of prostate cancer. African 

Americans and Jamaicans of African descent have the greatest risk. African Americans 

are estimated to have mortality rates that are 2.4 times higher when compared to 

Caucasians (Siegel et al., 2016). Hispanics are considered at intermediate risk as they 

have similar incidence and mortality from prostate cancer as their Caucasian 

counterparts. Finally, Asians are considered low risk as they have the lowest incidence 

and mortality rates (Siegel et al., 2016; Globocan, 2012).  

Age appears to be the most significant risk factor for developing prostate cancer. It is 

estimated that men aged 45 to 54 years will comprise of <10% of the newly diagnosed 

cases in 2016. On the other hand, men aged 55 to 64 years and men aged 65-74 years will 

comprise of 32.9% and 37.6% of all newly diagnosed cases, respectively (Siegel et al., 

2016). The incidence of prostate cancer declines in men over 75 years of age which is 

linked to decreased screening in this population, however, mortality rates continue to rise 

with advancing age (Siegel et al., 2016). 

Other risk factors that have been explored but have shown limited or conflicting data 

include diet and environmental factors. The western diet is believed to be linked to an 

increased risk of prostate cancer. There is evidence suggesting high intake of red meat 

such as beef or pork, especially when it is cooked at a high temperature, may increase the 

risk of developing prostate cancer (John et al., 2011). European Prospective Investigation 

into Cancer and Nutrition (EPIC) showed a weak correlation between Insulin-like 

Growth Factor-1 (IGF-1) levels and high intake of protein from dairy products as a risk 

of prostate cancer (Key, 2014). Metabolic syndrome may have a small role in the 

development of prostate cancer. A meta-analysis by Esposito et al., 2013, found that 

metabolic syndrome increased risk by 12%, however the results were not statistically 

significant. When examining factors individually, hypertension and waist circumference 

>102 cm were associated with 15% (p=0.035) and 56% (p=0.007) increased risk of 

prostate cancer, respectively (Esposito et al., 2013). Migration studies of first-generation 

Chinese and Japanese immigrants show increased incidence of prostate cancer when they 
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settle in the United States, but further prospective studies failed to show a dietary link 

(Muir et al., 1991; Wu et al., 2006). Nonetheless, diet may be a risk factor in developing 

prostate cancer but significant limitations impact our understanding due to the nutritional 

variability of the western diet as well as patient genetic variability.  

1.4 Digital Rectal Exam 

In order to screen and diagnose prostate cancer, Urologists rely on history, physical 

exam, PSA blood tests and tissue biopsies. As mentioned previously, family history is a 

vital component of the history taking process. An individual’s risk significantly increases 

with greater number of first-degree family members diagnosed, especially if at a younger 

age. Physical exam incorporates the digital rectal exam (DRE) to help detect palpable 

tumors in the prostate’s peripheral zone. The prostate lies about 4 cm from the anus 

(Wein et al., 2016). DRE notes the size of the prostate, tender areas, irregularities within 

the anal canal and any firm prostatic nodules. The examination is simple to complete. 

Therefore, DRE is routinely performed regardless of PSA level. The positive predictive 

value (PPV) of the DRE increases when used with prostate specific antigen (PSA) 

(Schröder et al., 1998). PPV of a suspicious DRE for PSA ranges between 0 to 1.0 ng/mL 

have been quoted at 5%, PSA 1.1 to 2.5 ng/mL PPV is 14%, PSA 2.6 to 4.0 ng/mL PPV 

is 30%, and PSA level is 3.0 to 9.9 ng/mL the PPV is 33-83% (Schröder et al., 1998; 

Carvalhal et al., 1999). Abnormal DRE is associated with an increased risk of higher 

Gleason score and is an indication for prostate biopsy. 

1.5 Prostate Specific Antigen (PSA) 

Prostatic specific antigen (PSA) was first identified in the 1979 and introduced for 

clinical use a decade later (Rao et al., 2008). PSA is part of the kallikrein gene family, 

also referred as the human kallikrein peptidase 3 (hK3) (Wein et al., 2016). It is secreted 

primarily by the luminal epithelial cells within the prostate (Warade, 2014). This 

protease’s function is to liquefy semen after ejaculation, aiding in freeing up sperm for 

insemination.  

PSA is an organ-specific serine protease that is widely accepted as a prostate cancer 
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tumor marker, however, it is not cancer specific as numerous causes can alter PSA serum 

levels. PSA increases with factors such as age, introduction of androgens after puberty, 

post-ejaculation, African ethnicity, urinary retention and urinary tract infection (Warade, 

2014; Klein and Lowe, 1997). It also increases in prostate diseases such as benign 

prostatic hyperplasia, prostatitis or prostate cancer and from transurethral prostatic 

surgeries or prostatic biopsy (Warade, 2014; Klein and Lowe, 1997). PSA levels drop 

with increasing BMI, men suffering from hypogonadism, use of 5-alpha reductase 

inhibitors, post radical prostatectomy, post radiation therapy and hormonal medications 

for prostate cancer (Warade, 2014; Baillargeon et al., 2005). PSA is highly concentrated 

in semen and not present in the blood in healthy individuals. However, when prostate 

specific diseases are present such as prostate cancer, it disrupts the prostate gland 

architecture leading to greater release of PSA in the blood (Warade, 2014).  

Unfortunately, PSA varies on a day to day basis. Therefore, serial tests are required in 

order to interpret the results (Roehrborn et al., 1996). There is no agreed upon PSA 

threshold level that would trigger prostate biopsy for prostate cancer (Semjonow et al., 

1996). PSA is a continuous parameter, with higher levels indicating a greater likelihood 

of prostate cancer and advanced disease. Men may also harbour cancer despite having 

low serum PSA (Thompson et al., 2004). Traditionally, a PSA level of 4.0 ng/mL was 

defined as the upper limit of normal (Catalona et al., 1994). However, in a subgroup 

analysis of the Prostate Cancer Prevention Trial (PCPT), 2950 men who had PSA levels 

<4.0ng/mL and benign DRE underwent an end of study prostate biopsy. PCPT showed 

that 449 of these men (15.2%) had prostate cancer of which 67 (14.9%) had Gleason 

score (GS) 7 or greater (Thompson et al., 2004). This unexpected finding of higher risk 

disease unfortunately indicates that there is no safe cut off for PSA. 

1.6 Effect of Prostate Specific Antigen (PSA) on Clinical 

Practice 

Since the introduction of PSA testing, prostate cancer mortality has decreased nearly 45% 

along with a 75% reduction in the proportion of advanced-stage disease at diagnosis 

(Etzioni et al., 2008). Furthermore, 81% of newly diagnosed men have localized disease, 
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and rates of metastases have declined from 20 to 40% in 1980s to less than 4% today 

(National Cancer Institute, 2015; Newcomer et al., 1997). Therefore, evidence does 

reveal that PSA serves an important marker in decreasing the mortality rates of prostate 

cancer patients.  However, widespread use of PSA screening and the long natural history 

of prostate cancer has led to a stage migration to clinically localized disease (T1c) 

(O'Donnell and Parker, 2008). In a study conducted by Cooperberg et al, 2004, 8,000 

patients diagnosed with prostate cancer between 1989-2001 were examined. The findings 

concluded that the proportion of cases with low-risk disease increased from 28% between 

1989–1992 to 45.3% between 1999–2001. The proportion of T1c tumors (diagnosis made 

from tissue biopsy for elevated PSA) increased from 15.2% to 61.7%, while the 

proportion of T1a and T1b tumors fell (diagnosis made from TURP surgery). 

Additionally, PSA can also be used to monitor prostate cancer treatment response (Klein 

and Lowe, 1997). It is generally understood the fall of PSA post treatment to near zero 

levels is prognostic for good overall survival outcomes. This is especially the case in 

patients who have prostatic glands but receive radiation therapy or are on androgen 

deprivation therapy. 

1.7 Prostate Specific Antigen (PSA) Permutations That Improve 

Detection of Prostate Cancer 

Various manipulations of PSA have been explored to improve its use as a screening tool 

in clinical practice. One thought was to increase the PSA threshold in order to improve 

the specificity of clinically significant cancers. Increasing the PSA threshold increases the 

PPV of detecting cancer but also increases the likelihood that these cancers will be 

diagnosed in more advanced stages while missing those with clinically relevant cancer. 

PSA lacks specificity at low PSA levels (Brawer, 1999). In order to improve the PPV of 

the PSA test, many dynamic PSA tests have been studied. One such test is PSA velocity. 

Carter et al, 1992, noted that if a man’s PSA rose at a rate greater than 0.75 ng/ml per 

year, he was at increased risk of being diagnosed with prostate cancer (Carter et al. 1992). 

Another dynamic test is PSA doubling time (PSA DT). Klotz et al, 2015, found that a 

PSA DT of <3 years had a 7.8-fold greater risk of PSA progression after definitive 
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therapy when compared to those on active surveillance who had a PSA DT >3 years. This 

supported PSA DT of <3 years is a good indicator for aggressive disease (Klotz et al., 

2015). 

PSA density (PSAD) has been tested in hopes of improving PPV of PSA. PSAD is 

calculated by dividing the PSA level with prostate volume. Each gram of prostate tissue 

contributes to the PSA but cancer is believed to cause a higher PSA level and therefore 

higher PSAD. Although there is conflicting data on the utility of PSAD (Brawer et al., 

1993), a PSAD >0.15 in men with PSA 4-10ng/mL has been recommended to undergo a 

biopsy to assess for cancer (Bazinet et al., 1994). PSAD has been shown to have utility in 

men with low risk prostate cancer on active surveillance (Bul et al., 2013). 

Age-specific PSA levels have also been examined. Since PSA levels increase with age, 

having a single PSA cut off value is not in the best interest of the patient. According to 

Oesterling et al, a man <50 years of age should have a PSA <2.5 ng/ml. This is in 

contrast to a man in his seventies who is capable of having a normal PSA between 0 and 

6.5 ng/ml. They stated that: 

 “these age-specific reference ranges have the potential to make serum PSA a 

more discriminating tumor marker for detecting clinically significant cancers in 

older men (increasing specificity) and to find more potentially curable cancers in 

younger men (increasing sensitivity) (Oesterling et al., 1993).” 

Thus, physicians should place PSA levels in context according to the patient’s age. 

Furthermore, in systemic circulation, PSA is present in both free form (fPSA) or 

complexed states with protease inhibitors (Brawer, 1999). Alpha-1 antichymotrypsin and 

alpha-2 macroglobulin are the most prevalent complexes present in serum. Unlike alpha-

2 macroglobulin complex, PSA that is complexed with alpha-1 antichymotrypsin has two 

epitopes that can be detected with immunoassays. As a result, men with PSA levels 

between 4-10 ng/mL who have a free to total (fPSA/PSA x 100%) percentage of <20% 

are at increased risk of harbouring prostate cancer.  
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Thus, PSA has revolutionized the management of prostate cancer in both early detection 

and following patient’s post-treatment. Using the cut off value of 4 ng/mL, the sensitivity 

and specificity for detecting any prostate cancer is 21% and 91% respectively (Aubry et 

al., 2013). The sensitivity of detecting high risk disease (Gleason score >8) is 51%. 

Unfortunately, PSA is not without its flaws and as of now there is no perfect model when 

it comes to screening men for prostate cancer. The controversies of PSA based screening 

will be explored in chapter 1.11. 

1.8 Transrectal Ultrasound Guided (TRUS) Biopsy and Gleason 

Score 

In order to identify and formally make the diagnosis for prostate cancer, a transrectal 

ultrasound guided (TRUS) tissue biopsy is required. The procedure requires an 

ultrasound probe to be inserted into the rectum and multiple core biopsies are taken using 

a needle biopsy gun. It is common practice to acquire 12 core biopsies in a systematic 

fashion which are then microscopically examined by a pathologist. A Gleason score (GS) 

which reflects tumor cell differentiation is assigned if cancer is detected (Gleason, 1966). 

An overall increase in cancer detection rates was seen when 10 to 12 core biopsy 

protocols were used instead of the standard sextant biopsy protocol (Bjurlin et al., 2013).  

Saturation biopsies, which consist of 20 cores or more, can also be considered in patients 

who are undergoing a repeat biopsy after an initial biopsy was negative (Walz et al., 

2006). It is currently estimated that 1.3 million prostate biopsies are performed annually 

in the United States (Aubry et al., 2013). Portrayal of a routine TRUS biopsy is seen in 

Figure 2. 



11 

 

 

Figure 2. Portrayal of a routine TRUS biopsy. Image obtained from website: 

https://perthurologyclinic.com.au/what-we-do/procedures/337-2/ (Accessed January 

2017). 
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TRUS biopsy is an invasive procedure and 30% of clinically significant prostate cancer 

cases continue to be missed (Bouye et al., 2009). Moreover, patient’s will incur side 

effects such as post procedure pain, acute urinary retention, hematuria, hematospermia, 

blood per rectum, transient fever, epididymitis, prostatitis, and a 4% risk of life 

threatening sepsis (Hara et al. 2008; Nam et al., 2010). To minimize the risk of infection, 

it is highly recommended that patients begin antibiotic prophylaxis 24 hours prior to 

biopsy and continue for a total of 3 days (Wolf et al., 2012). Other modalities using MRI 

and advancements in ultrasound are currently being investigated in order to improve 

TRUS biopsy results (Stoianovici, 2012). 

The Gleason score (GS) is a numerical grading system that was first developed by Dr. 

Donald Gleason in the 1960s (Gleason and Mellinger, 1974).  Traditionally, a Gleason 

grade from a scale of 1 to 5 is assigned to each tissue core. Gleason grade of 1 represents 

well differentiated tissue while a Gleason grade of 5 is the least differentiated and often 

the most invasive. (Gleason, 1966). Biopsy cores are assigned to the two most common 

GS patterns giving an accumulated score of 2 to 10. In 2005, the International Society of 

Urological Pathology updated the original Gleason grading system to incorporate the new 

changes to prostate cancer management with the advent of screening (Epstein et al., 

2005). Gleason grade scale now is graded from 3 to 5. Therefore, new scores now range 

from 6 through 10 with 6 being classified as low risk cancer (also known as GS 3+3), GS 

3+4=7 and GS 4+3=7 as intermediate risk cancer, and GS 8 to 10 (GS 4+4, 3+5, 5+3, 

4+5, 5+4, 5+5) as high-risk cancer (Ghani et al., 2005). Higher GS is associated with 

poor prognosis due to the propensity of the cancer to grow and metastasize (Canadian 

Cancer Society, 2016). Other biopsy findings such as number of cores involved, 

percentage of cores involved and potentially perineural invasion can provide prognostic 

information (Bismar et al., 2003). Therefore, at this point in time, tissue is required to risk 

stratify newly diagnosed cancer patients or those who have been previously diagnosed 

and are currently on active surveillance.  
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1.9 Gleason Score: Current Gold Standard of Prognosis 

Histological grade of prostatic carcinoma is a dominant predictor of clinical outcome. 

Alberston et al, 1998 published a retrospective study designed to estimate long-term 

survival based on age and GS at time of diagnosis in men with a life expectancy greater 

than 10 years who did not receive treatment (i.e. surgery, external beam radiation, or 

brachytherapy). 767 men aged 55 to 74 with clinically localized prostate cancer were 

selected for the study (Alberston et al., 1998). Results showed that men with progressing 

GS (6 versus 7 versus 8-10) had increasing rates of prostate cancer related death within 

15 years of diagnosis independent of age at diagnosis.  GS 8 to 10 was significantly 

associated with poor prognosis with 60% to 87% of patients dying of prostate cancer. 

Recent evidence has now revealed that GS6 (low risk) prostate cancer may no longer 

need to be aggressively treated. In a large prospective cohort on patients with low and 

intermediate risk disease while on active surveillance, outcomes for low-risk patients 

were excellent: a metastasis-free survival rate of 97.2% and a 15-year cancer-specific 

survival (CSS) rate of 94.3%. Only 28 men developed metastatic disease except two 

patients who had GS 7 on biopsy (these two patients lacked surgical grading). Of note, 

cancer specific survival did not differ between those younger or older than 70 years of 

age. Furthermore, 25% of the patients in this study satisfied the D’Amico criteria for 

intermediate risk (Klotz et al., 2015). With a high CSS rate, this study showed active 

surveillance can be a viable option in those patients who have favorable intermediate risk 

disease (GS 7).  

Many older studies have grouped GS 7 as a single score without distinguishing 3+4 

versus 4+3. However, there is significant evidence indicating prognostic differences 

between these two scores. GS 4+3 at time of radical prostatectomy was associated with 

increased risk of progression to metastasis independent of stage or margin status (Chan et 

al., 2000). Sunnybrook Hospital in Toronto recently published an active surveillance 

study comparing GS 6 to GS 7. They did a sub-group analysis comparing GS 3+4 to GS 

6 and GS 4+3 to GS 6. Despite close monitoring and intervention for evidence of risk 

progression, the hazard ratio for 15-year prostate cancer metastasis rate was 3.14 in the 

intermediate risk group. The hazard ratio for 15-year prostate cancer mortality for GS 
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3+4 versus GS 6 was 4.0 and Gleason 4+3 versus GS 6 was 10.5 (Musunuru et al., 2016; 

Yamamoto et al., 2016). Overall, evidence supports that as GS progresses so does 

adverse clinical outcomes. Tissue pathology is needed for diagnosis and prognosis of 

prostate cancer, with any newly developed non-invasive biomarker to work in 

conjunction with the Gleason Score.   

1.10 Staging of Prostate Cancer 

After the diagnosis of prostate cancer is made using TRUS biopsy, it must be 

appropriately staged. The most common system currently used is the Tumor, Nodes, 

Metastasis (TNM) classification system by the American Joint Committee on Cancer 

(AJCC) (American Cancer Society, 2016).  It looks at the extent of the tumor (T), 

whether or not there is lymph node involvement (N), and if there is evidence of 

metastatic disease (M). The new staging system also incorporates PSA at time of 

diagnosis as well as the Gleason score (American Cancer Society, 2016). Staging ranges 

from I to IV with stage I having the best prognosis and stage IV having the worst 

prognosis (Table 1). In order to complete the routine staging work up, urologists obtain 

computerized tomography (CT) scans or magnetic resonance imaging (MRI) of the 

abdomen and pelvis to assess for lymph node metastasis and bone scans to assess for 

bony metastasis (Hovels et al., 2008; Langsteger et al., 2012). Definitive treatment with 

surgery or radiation with the intent to cure is only possible when there is no evidence of 

metastatic disease. 
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Stage Stage Grouping Stage Description 

I T1, N0, M0 

GS 6 

PSA <10 

Nonpalpable tumor. No evidence of 

lymph node involvement (N0) or 

distant metastasis (M0). GS is 6 and 

PSA is less than 10. 

OR 

T2a, N0, M0 

GS 6 

PSA <10 

Tumor palpable and only present in 

less than half of one lobe. No 

evidence of lymph node involvement 

or distant metastasis. GS is 6 and PSA 

is less than 10. 

IIA T1, N0, M0 

GS 7 

PSA <20 

Nonpalpable tumor. No evidence of 

lymph node involvement or distant 

metastasis. GS is 7 and PSA is less 

than 20 

OR 

T1, N0, M0 

GS 6 

PSA 10-20 

Nonpalpable tumor. No evidence of 

lymph node involvement or distant 

metastasis. GS of 6. PSA between 10 

and 20. 

OR 

T2a or T2b, N0, M0 

GS ≤7 

PSA <20 

Tumor palpable and only present in 

less than half of one lobe (T2a) or 

tumor palpable and present in more 

than half of one lobe (T2b). No 

evidence of lymph node involvement 

or distant metastasis. GS can be 6 or 7 

and PSA is less than 20. 

 

IIB T2c, N0, M0 

Any GS 

Any PSA 

Tumor palpable and present in up to 

both lobes (T2c). No evidence of 

lymph node involvement or distant 

metastasis. Tumor can have any GS 

and PSA can be any value. 

 T1, T2a or T2b, N0, M0 

Any GS 

Any >20 

Nonpalpable tumor (T1), tumor 

palpable and only present in less than 

half of one lobe (T2a) or tumor 

palpable and present in more than half 

of one lobe (T2b). No evidence of 

lymph node involvement or distant 

metastasis. Tumor can have any GS 

and PSA is above than 20. 
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OR 

T1, T2a or T2b, N0, M0 

Any ≥ 8 

Any PSA 

Nonpalpable tumor (T1), tumor 

palpable and only present in less than 

half of one lobe (T2a) or tumor 

palpable and present in more than half 

of one lobe (T2b). No evidence of 

lymph node involvement or distant 

metastasis. Tumor can have any GS 8 

or higher and PSA can be any value. 

III T3a or T3b 

Any GS 

Any PSA 

Extracapsular extension of tumor 

(unilateral or bilateral) (T3a) or tumor 

invades seminal vesicles (T3b). No 

evidence of lymph node involvement 

or distant metastasis. Tumor can have 

any GS and PSA can be any value. 

IV T4, N0, M0 

Any GS 

Any PSA 

Tumor has invaded in nearby 

structures such as rectum, levator 

muscles, urethral sphincter, bladder, 

or pelvic side wall (T4). No evidence 

of lymph node involvement or distant 

metastasis. Tumor can have any GS 

and PSA can be any value. 

 OR 

 Any T, N1, M0 

Any GS 

Any PSA 

Tumor may or may have not grown 

outside prostate. Regional lymph 

nodes are involved (N1). No evidence 

of distant metastasis. Tumor can have 

any GS and PSA can be any value. 

 OR 

 Any T, any N, M1 

Any GS 

Any PSA 

Tumor may or may have not grown 

outside prostate. Regional lymph 

nodes may or may not be involved. 

Evidence of distant metastasis (M1). It 

can be non-regional lymph nodes 

(M1a), bones (M1b), or other sites 

with or without bone involvement 

(M1c). 

Table 1. Prostate cancer stages according to AJCC, 2016 
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1.11 Controversy Surrounding PSA Based-Screening 

As mentioned earlier, PSA is an organ specific marker that is highly sensitive and 

specific in the post-treatment setting. However, it lacks sensitivity and specificity in the 

screening of prostate cancer. The American Cancer Society systematically reviewed the 

literature regarding PSA’s performance test characteristics. They estimated sensitivity 

and specificity of a PSA cut-off of 4.0 ng/mL for detecting any prostate cancer was 21% 

and 91%, respectively (Wolf et al., 2010). In 2012, the U.S. Preventive Services Task 

Force (USPSTF) published a recommendation against the routine use of PSA screening at 

any age (U.S. Preventive Services Task Force, 2012). This recommendation was dialed 

back in 2017, stating that clinicians should only offer PSA screening after patients have 

been informed about its risks and benefits. They still recommended against PSA-based 

screening in men 70 years or older. (U.S. Preventive Services Task Force, 2017). In 2014, 

the Canadian Task Force on Preventive Health Care also published guidelines no longer 

recommending PSA-based screening for prostate cancer (Canadian Task Force on 

Preventive Health Care, 2014). These recommendations were mainly based on two large 

prospective studies looking at the role of PSA as a screening tool. The studies were the 

European Randomized Trial of Prostate Cancer Screening (ERSPC) and the Prostate, 

Lung, Colon, and Ovary (PLCO) Trial (de Koning et al., 2002; Auvinen et al., 1996). The 

ERSPC trial is a collection of trials in different countries with different eligibility criteria, 

randomization schemes, and strategies for screening and follow-up (Barry, 2009). In the 

ERSPC trial, Schröder et al. reported that PSA screening without digital rectal 

examination was associated with a 20% relative reduction in prostate cancer death at a 

median follow-up of 9 years, with an absolute reduction of about 7 prostate cancer deaths 

per 10,000 men screened. It is estimated that in order to prevent one prostate cancer 

death, 781 men have to be screened and 27 additional cases of prostate cancer would 

need to be treated (Schroder et al., 2014; Barry, 2009). Thus, the ERSPC provided the 

rationale that PSA screening without the use of DRE was not an effective means of 

reducing cancer related mortality and unnecessarily placed patients at risk of 

overtreatment.  

In the PLCO study based in the United States, cumulative incidence rates for prostate 
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cancer in the screening arm were 12% higher than control arms (RR = 1.12, 95% CI = 

1.07 to 1.17) (Andriole et al., 2012). However, the study concluded that there was no 

difference in prostate cancer mortality between the screened and control arms at a median 

follow-up of 13 years. The cumulative mortality rates from prostate cancer in the 

intervention and control arms were 3.7 and 3.4 deaths per 10,000 person-years, 

respectively, resulting in a non-statistically significant difference between the two arms 

(RR = 1.09, 95% CI = 0.87 to 1.36). However, it should be noted that the PLCO study 

has been criticized for high rates of contamination with more than half the participants in 

the control arm undergoing PSA testing by year five (Barry, 2009). Overall, these trials 

describe the potential for over-diagnosis and overtreatment of prostate cancer with PSA-

based screening, underscoring the concept that PSA is not an ideal screening marker.  

1.12 Biomarkers 

It is well known that PSA screening and tissue biopsy are prone to underestimating 

cancer burden. Therefore, in order to meet the challenge of improving prognostication, 

prostate cancer biomarkers are constantly being developed and studied since the advent 

of PSA. In addition, a biomarker that could accurately risk stratify prostate cancer may 

have a role in patients on active surveillance. Ideally, a biomarker that is more sensitive 

and specific than PSA would improve current methods of risk stratification of prostate 

cancer, thus, reducing the number of TRUS biopsies and side effects within this patient 

population. Biomarkers could have a role in monitoring disease response after treatment. 

The first clinical biomarker for prostate cancer was prostatic acid phosphatase (PAP) 

described in 1940s (Taira et al., 2007). It went on to be replaced by PSA which 

performed significantly better and allows clinicians to monitor treatment response. 

Currently, there are a number of serum and urine base biomarkers being studied. In 

addition to PSA, there are two FDA approved biomarkers available in clinical practice.  

In 2012, the United States Federal Drug Administration (FDA) approved a test called the 

Prostatic Health Index (PHI). PHI includes three biomarkers: [-2]proPSA, fPSA and 

PSA. These biomarkers are combined into an equation, ([-2]proPSA/fPSA)xPSA1/2, that 

provides the percent value for PHI. fPSA was previously addressed in the PSA Chapter 1 
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Section 5. [-2]proPSA is a truncated PSA isoform that differentiate prostate cancer from 

benign prostates. Two prospective studies showed that [-2]proPSA can more accurately 

diagnose prostate cancer from benign tissue when compared to PSA and fPSA within 

PSA ranges of 2.5-10ng/ml (Lazzeri et al., 2013; Le et al., 2010). Some evidence 

suggests potential utility of [-2]proPSA and PHI in active surveillance. In a cohort of 167 

men on active surveillance, [-2]proPSA and PHI provided greater predictive accuracy for 

biopsy reclassification during follow-up than PSA and fPSA alone (Tosoian et al., 2012). 

Another FDA approved biomarker available in screening for prostate cancer is known as 

Prostate Cancer Antigen 3 (PCA3). This biomarker is unique as it is a urine based test. It 

was first isolated in 1999 by Bussemakers and colleagues using differential display and 

Northern blot analysis to compare normal and prostate cancer tissue in the same patients 

(Bussemakers et al., 1999). They identified it as a noncoding RNA located on 

chromosome 9q21-22 that is a very sensitive and specific prostate cancer biomarker. 

Although its function is not known, it has been shown to be expressed very highly in 

cancer tissue in comparison to benign tissue with an area under the curve (AUC) of the 

receiver operating characteristic (ROC) curve of 0.88 (95% CI 0.78-0.97) (de Kok et al., 

2002). Currently there is a standardized transcription mediated RNA amplification assay 

for urine samples that can reliably measure PCA3 mRNA levels in voided samples with 

an AUC ~0.70 (Groskopf et al., 2006, Sokoll et al., 2008). In 2012, the FDA approved 

the use of a commercial assay, Progensa PCA3 Test (Hologic), to aid clinicians in 

decision making for men who have elevated PSAs and initial negative TRUS biopsy 

result. The assay involves performing a reverse transcription polymerase chain reaction 

on urine samples collected post-DRE. The mRNA of PCA3 and PSA is measured and a 

ratio (mRNA PCA3/ mRNA PSA) determines the PCA3 score (Wein et al., 2016). 

Currently there is no standardized cutoff value, however, a threshold of 25 was used in 

the FDA approval studies. A comparative effectiveness review by Bradley and colleagues 

showed that a threshold of 25 results in a sensitivity of 74% and specificity of 57% (false-

positive rate of 43%) (Bradley et al., 2013). 

It should be noted that are a number of non-FDA approved biomarker tests that are 

currently being used in clinical research. They include: TMPRSS2-ERG gene fusion test, 
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Mi-Prostate score test, Oncotype DX test, ProMark test, ConfirmMDx test, Prolaris test, 

Prostate Core Mitomic test, 4K score test, Prostarix test and Decipher test. There are 

biomarkers that are early in their development which include: circulating tumor cells, 

microRNA and exosomal biomarkers (Saini et al., 2016). This thesis will address 

developing a “liquid biopsy” from patient plasma that enumerates putative prostate 

cancer biomarkers on the surface of circulating tumor cell fragments that are known as 

“prostate cancer microparticles” (PCMPs).  

1.13 Microparticles (MPs) 

 Patients with prostate cancer have shown to have higher levels of microparticles 

compared with control patients (Tavoosidana et al., 2011) MPs are able to affect 

neighboring cells in various ways, such as inducing intracellular signaling or by 

transferring different molecules such as proteins, mRNAs, or microRNAs to cells. They 

have been suggested to contribute to cancer cell survival, invasiveness, and metastases 

(Al-Nedawi et al., 2009). MPs may provide a novel method to risk stratify prostate 

cancer, monitor cancer progression and follow treatment response after surgery, radiation 

or hormonal therapy. 

 Extracellular vesicle (EV) is an umbrella term used to describe exosomes, microparticles 

(MP) and apoptotic bodies. They are distinguished by their size, biogenesis and 

mechanism of release. Exosomes range 20-100 nm in size and are released from the cells 

through inward budding of endosomal membranes to form large multivescular bodies. 

The multivesicular bodies then fuse with the plasma membrane of the cell releasing 

multiple exosomes from the multivesicular body. Exosomes often contain endocytic 

markers, such as tetraspanins and heat shock protein 73 (HSP73) (Mathivanan and 

Simpson, 2010; Chaput et al., 2004).  

Microparticles range between 100 nm to 1000 nm and are often released concomitantly 

making differentiation of microparticles and exosomes difficult (Heijnen et al., 1999). 

The majority of microparticles express phosphatidylserine (PS) on their surface whereas 

PS is usually absent on the surface of exosomes (Thery et al., 2002). Other names for 

microparticles include: microvesicles, oncosomes, apoptotic bodies, ectosomes, and 
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prostasomes (Ronquist et al., 2012).  

Apoptotic bodies measure 1000-5000 nm (Huang-Doran et al., 2017) and are generated 

during the programmed cell death mechanism known as apoptosis. These apoptotic 

bodies are then phagocytosed by neighbouring cells and degraded by phagolysosomes. 

Microparticles and apoptotic bodies are released via direct outward budding from the 

surface of cells. Contents within EV range from membrane-bound proteins, lipids, 

metabolites, DNA, and RNAs (mRNA, miRNA, and other small regulatory RNAs) 

protected in a lipid bilayer (Huang-Doran et al., 2017). Since EV are products of cells, 

their cargo is often remnants of parent cells. Major sources of EVs in the blood are from 

platelets, leukocytes and endothelial cells (Yuana et al., 2013). In this thesis, the focus 

will be on microparticles and their role in prostate cancer identification. 

The discovery of microparticles initially stemmed from the observation in 1946, where 

Erwin Chargaff and Randolph West discovered that platelet-free plasma exhibited 

clotting properties. This contradicted the major dogma of preceding times, that platelets 

served necessarily as the blood coagulation contributor (Chargaff and West, 1946). 

However, microparticles were not formally described until 1976, when Peter Wolf noted 

vesicular fragments rich in phospholipids originating from activated platelets, which he 

termed “platelet dust.” This was subsequently replaced with term microparticle (Wolf, 

1971). Platelet microparticles (PMP) are by far the most abundant and account for 70% to 

90% of circulating microparticles in the bloodstream (Xu et al., 2011). It is now accepted 

that PMPs play a significant role in modulating normal physiological processes such as 

coagulation. Coagulation is expressed by way of multifunctional cellular signaling 

proteins such as tissue factor (Brett et al., 2015), plasminogen activator inhibitor-1 and 

vitronectin (Podor et al., 2002). In terms of prostate cancer, PMP firmly adhere to 

prostate cancer cells and significantly increase their adhesion to endothelial cells (Varon 

et al., 2012). In vitro studies have shown that PMPs promote tumor cell invasive 

properties through increases in metalloproteinases (MMP-2) synthesis and secretion 

(Dashevsky et al., 2009). In vivo mouse studies have also shown that platelet 

microparticles enhance prostate cancer cell accumulation and yield more neoplastic foci 

within the lungs of mice (Varon et al., 2012). 



22 

 

MPs associated with the prostate were first discovered in 1977 by Ronquist and 

Hedstrom (Ronquist and Hedstrom, 1977). These EVs were secreted by acinar cells of 

the prostate and later termed prostasomes (Brody et al., 1983). Studies on semen have 

shown that their role in protecting sperm from the female innate immune system is by 

way of suppressing natural killer cell (NK) activation. This is done through CD48 ligand 

on the prostasomes interacting with NK-activating receptor CD244 (Tarazona et al., 

2011). Compared to exosomes, they are enriched with cholesterol, sphingomyelin, Ca2+, 

guanosine diphosphate, and many transmembrane proteins (CD13, CD46, CD55, and 

CD59) (Duijvesz et al., 2011; Sandvig and Llorente, 2012).  

Prostasomes are emerging as rich reservoirs of tumor-specific proteins and biomarkers 

for cancer detection and progression. They can be isolated from prostatic secretions, 

seminal fluid, tissue, urine or blood. Structurally, they are distinct in size, membrane 

composition and specific prostate protein content, potentially providing a novel isolatable 

source of biomarkers (Drake and Kislinger, 2014; Brett et al., 2015). Tavoosidana et al, 

developed a proximity ligation assay (PLA) to detect these microparticles in blood 

plasma from patients with prostate cancer and control subjects. The assay identified 

microparticles to be significantly higher in men with prostate cancer when compared to 

the controls and was able to successfully distinguish prostate cancers with low Gleason 

scores from those with medium and high Gleason scores, reflecting disease severity (GS 

8/9 and GS 7 from GS 6) (Tavoosidana et al., 2011).  

In addition, PCA3 and TMPRSS2-ERG RNA transcripts have been detected in 

prostasomes isolated from urine of prostate cancer patients. It was revealed that elevated 

levels were associated with cancer (Nilsson et al., 2009). Biggs CN, Siddiqui KM et al, 

have enumerated prostate cancer microparticles of patients with various Gleason grades 

using prostate specific membrane antigen (PSMA) and nanoscale flow cytometry. Their 

study highlighted the ability of PCMPs to risk stratify GS≥8, high risk prostate cancer, 

from healthy volunteer plasma. Plasma containing the MPs was collected prior to and 

after radical prostatectomy and GS was obtained from final surgical pathology. 

Interestingly, they were able to show that these microparticles significantly decreased 

post-surgery due to the absence of prostatic tissue, demonstrating their role to monitor 
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treatment response during clinical follow-up (Biggs et al., 2016).  

Elucidating MP composition and functional activity is hampered by the complexity of the 

biological fluids where MPs are present and the small size of MPs (van der Pol et al., 

2010). Visualization techniques such as electron microscopy (EM) and confocal 

microscopy (CM) with MPs stained with fluorescent antibodies provides good 

morphological characterization of microparticles but cannot serve as quantitative assays 

in a high throughput manner. With enhancements in technology, microparticles are able 

to be enumerated with greater accuracy allowing new avenues of research to study their 

clinical utility (Leong et al., 2011). One such advancement is flow cytometry which 

utilizes both fluorescence probes and light scattering. Quantification by flow cytometry 

shows good correlation with the relative light scattering intensities determined by 

dynamic light scattering (Xu et al., 2011). However, conventional flow cytometry light 

scattering has size limitations and usually not able to detect MP with diameters smaller 

than 300–400 nm as a separate fraction (van der Pol et al., 2010; Zwicker, 2010; 

Barteneva et al., 2013). Next generation instruments such as nanoscale flow cytometry 

are able to readily analyze events 100-1000 nm for analysis of multiple biomarkers on 

MPs such as those from the prostate in a high-throughput and multi-parametric manner 

(van der Pol et al. 2014; Biggs et al., 2016). 

1.14 Nanoscale Flow Cytometry 

Our lab utilizes an Apogee A-50Micro nanoscale flow cytometer to enumerate EVs 

smaller than 1000 nm. This specialized instrument analyzes EVs in a high-throughput, 

multi-parametric manner. The equipment is manufactured by Apogee FlowSystems Inc., 

in Hertfordshire, UK (Figure 3). This machine has three lasers installed; the laser 

wavelengths are 405 nm, 488 nm and 635 nm (Figure 4). The multiple light scattering 

and fluorescence detectors help increase the detection limit to 100 nm and increase the 

resolution to <10 nm. This machine is equipped with Peripheral Component Interconnect 

Express (PCIe) high-speed computer software used for data acquisition at a speed of up 

to 100k events per second.  
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Figure 3. Apogee, A-50M nanoscale flow cytometer (Apogee FlowSystems Inc., UK). 
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Figure 4. Depiction of light scatter detectors and the three fluorescent channels in 

the Apogee A-50M nanoscale flow cytometer. Image obtained from website: 

https://flowcytometry.med.ualberta.ca (Accessed January 2017). 
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Conventional flow cytometers on the market today resolve up to 200 nm diameter latex 

beads by light scatter but will fall close to the instrument’s sensitivity limit. Also, latex is 

far more refractive (refractive index ~1.59) than biological particles (refractive index 

~1.40). For example, a 400 nm biological particle may scatter about the same as a 200 

nm latex bead. Conventional flow cytometers are therefore not suitable for measuring 

light scattered by biological particles less than about 400 nm diameter. The Apogee A-

50M can measure particles which scatter 1000 times less than 200 nm latex beads making 

it the ideal instrument to accurately enumerating EVs of various sizes (Apogee Flow 

systems, 2017).  

1.15 Prostate Cancer Surface Markers  

To characterize the cellular origin of MPs in peripheral blood, the most common 

approach is to stain MPs with fluorescently-labeled antibodies directed against antigens 

of parental cells. For example, antibodies against CD41, CD61 and platelet activation 

marker CD62 may be used to identify MPs from platelets, glycophorin for erythrocyte 

MPs; CD45 for lymphocyte MPs; CD14 for monocyte MPs, and so on (Barteneva et al., 

2013). In this study, a combination of three different antibodies targeting distinct antigens 

will be used to characterize the origins of the MPs from prostate cancer plasma samples 

from those of control samples. All antibodies were conjugated to a fluorophore that the 

nanoscale flow cytometer can detect through laser light excitation. Specifically, these 

antigens are divided into two broad categories, namely prostate tissue specific antigens 

and cancer specific antigens. The tissue specific antigens include prostate specific 

membrane antigen (PSMA) and six-transmembrane epithelial antigen of prostate 1 

(STEAP1). The prostate cancer specific antigens include ghrelin receptor (GHSR1a), and 

CD151. The combination of PSMA, STEAP1 and one of the cancer specific antigens will 

be used to enumerate triple-positive MPs. The hypothesis is these combinations can allow 

differentiation prostate cancer plasma samples from control group plasma samples 

(benign prostatic hypertrophy (BPH) or healthy volunteers). A further hypothesis is the 

Gleason grade for prostate cancer can be accurately determined when analyzed using the 

triple-positive microparticles. 
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1.16 Prostate Specific Membrane Antigen (PSMA)  

PSMA is a type II transmembrane protein. It has a unique 3-part structure: a 19-amino-

acid internal portion, a 24-amino-acid transmembrane portion, and a 707-amino-acid 

external portion (Israeli et al., 1993; Chang, 2004). PSMA has known enzymatic 

activities and acts as a glutamate-preferring carboxypeptidase. The impact of these 

enzymatic functions on prostatic tissue remains unclear (Pinto et al., 1996). PSMA does 

have an internalization signal that allows the surface protein to enter into the cell as an 

endosome (Rajasekaran et al., 2003). 

The original monoclonal antibody developed for PSMA was a mAb 7E11 used on the 

prostate cancer cell line LNCaP. It binds to a PSMA intracellular or cytoplasmic epitope 

(Troyer et al., 1997). The US Food and Drug Administration has also approved 

radiographic testing using mAb 7E11 known as ProstaScint, by linking it to 111indium-

capromab pendetide to produce a radio-diagnostic marker (Petronis et al., 1998; Hinkle et 

al., 1998). The next-generation of antibodies now bind to the extracellular portion of 

PSMA and can also be internalized by PSMA expressing cells (Liu et al., 1998). 

Furthermore, they are now either fully human or humanized as opposed to murine 

antibodies, thus making them even more likely to be diagnostically and therapeutically 

effective without possible antimouse reactions (Chang, 2004). 

Studies have shown that PSMA is present on all types of prostatic tissue and expression 

increases in the presence of prostate cancer. Bostwick and colleagues described PSMA 

immunohistochemical expression in 184 prostate specimens examined. All specimens 

showed PSMA expression with the degree of expression correlating with the grade of 

cancer. There was an increase in the percentage of PSMA staining from benign epithelial 

tissue (69.5%) to HG PIN (77.9%) to malignant cells (80.2%) (Bostwick et al. 1998). 

Using antibodies compatible with nanoscale flow cytometry, Biggs CN and Siddiqui KM 

et al, showed that microparticles positive for PSMA could be enumerated in patients with 

prostate cancer. PSMA 3E7 antibodies can accurately differentiate high-grade prostate 

cancer (GS 8 or higher) from lower grade prostate cancer and benign prostatic disease 

(Biggs et al., 2016). While PSMA levels are highest in the prostatic epithelium, it has 
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been confirmed to be present at four sites in the body albeit at significantly lower levels: 

prostate (secretory acinar epithelium), kidney (proximal tubules), nervous system glia 

(astrocytes and schwann cells), and the small bowel (brush border) (Mhawech-Fauceglia 

et al., 2007).  To establish a “liquid biopsy” specific for prostate cancer, we will also 

combine PSMA with another putative prostate specific marker, six-transmembrane 

epithelial antigen of the prostate-1 (STEAP1).  When used in combination on the 

nanoscale flow cytometer, we will be able to specifically enumerate only microparticles 

that co-express both of these prostate-specific markers, PSMA and STEAP1.     

1.17 Six-transmembrane Epithelial Antigen of the Prostate-1 

(STEAP1)   

Six-transmembrane epithelial antigen of the prostate-1 (STEAP1) is a cell surface protein 

highly expressed in primary prostate cancer, with restricted expression in normal prostate 

tissues (Challita-Eid et al., 2007). The STEAP1 gene is located on chromosome 7q21.13 

and was the first member of the STEAP family to be identified (Gomes et al., 2012). It is 

a 339-amino acid protein with six potential membrane-spanning regions that was first 

identified on LAPC-4 (Los Angeles Prostate Cancer) androgen dependent xenografts. 

LAPC xenografts represent advanced prostate cancer specimens that were derived from 

bone and lymph node metastases (Hubert et al., 1999). Hubert RS and Vivanco I et al, 

later went on to identify significant STEAP1 expression in all early and advanced 

primary prostate cancer specimens, including hormone-refractory samples. Prostate 

cancer cell lines LNCAP, DU-145, PC3 are also positive for STEAP1, with LNCAP have 

the highest expression (Challita-Eid et al., 2007; Yamamoto et al., 2013). Furthermore, 

STEAP1 has been identified on other cancer cell lines such as lung, bladder, testicular 

cancer, cervical cancer and ovarian cancer. This suggests the potential applicability in 

cancer research beyond the prostate.  

STEAP1 is localized on plasma membranes at cell-cell junctions of secretory epithelium 

of prostate cells and may function as ion channel/transporter protein for intracellular 

communication (Challita-Eid et al., 2007). Furthermore, there is supportive evidence of 

utilizing STEAP1 antigen as targeted immunotherapy in anti-tumor therapy to prevent 
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growth and metastatic capability in vivo studies (Challita-Eid et al., 2007; Rodeberg et 

al., 2005; Yamamoto et al., 2013). STEAP1 mRNA has been identified by real-time PCR 

in serum of patients with cancer indicating possible use as a biomarker (Valenti et al., 

2009). In fact, STEAP1 localization on the cell membrane, its overexpression in cancer 

tissues, and absence in vital organs underscores its potential use as a biomarker of disease 

and as potential immunotherapeutic targets against prostate cancer (Gomes et al., 2012). 

Recent studies have looked at imaging STEAP1 using zirconium-89 immunoPET to 

determine who may benefit from immunotherapy in prostate cancer (Doran et al., 2014). 

There are many commercial STEAP1 antibodies available for nanoscale flow cytometry. 

1.18 Ghrelin Ligand and its Receptor (GHSR1a)  

Ghrelin receptor, also known as type 1a growth hormone secretagogue receptor 

(GHSR1a), is a G-protein coupled receptor that binds to an endogenous ligand known as 

ghrelin (Chopin et al., 2012). Ghrelin is a 28-amino acid peptide hormone that has a 

posttranslational modification of an octanoyl group added to the third amino acid residue, 

which is serine (Kojima et al., 1999).  Ghrelin was first discovered in 1999 from rats and 

then human stomach (Kojima et al., 1999). Its receptor, GHSR1a, was discovered in 

1996, and first noted to be present on the pituitary and hypothalamus (Jeffery et al., 

2002). Ghrelin stimulates the release of growth hormone (GH) from the anterior pituitary 

through the receptor GHSR1a (Howard et al., 1996).  

With the discovery of GHSR1a in neuroendocrine tumors in 1997 and in vitro in rat 

pituitary tumor cells in 1998, it has been suggested that ghrelin and GHSR1a could play a 

role in autocrine/endocrine pathogenesis of cancer (de Keyzer et al., 1997; Adams et al., 

1998). Ghrelin protein is now understood to be expressed on various malignancies 

involving: the prostate, digestive tract, pancreas, lung, thyroid, breast, ovarian, renal, and 

adrenocortical tumors (Chopin et al., 2012). Jeffery et al. 2002, was the first to 

demonstrate functional evidence that ghrelin’s autocrine/paracrine role in stimulating 

prostate cancer cell proliferation. They incubated PC3 cells with ghrelin (5 nanograms) 

over a 3-day period and noticed a 33% increase in cell growth when compared to the 

control group (Jeffery et al., 2002). This was again seen in another study using higher 
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concentrations of ghrelin (1 microgram), however, with less significant growth (Yeh et 

al., 2005). Researchers at Western University showed that a modified truncated ghrelin 

molecule conjugated to a fluorophen could be used as a potential novel imaging marker 

in patients with prostate cancer. The ghrelin signal was significantly higher in prostate 

cancer tissue specimens when compared to normal tissue and BPH. Although in vivo 

imaging studies are required, this method could be useful in discriminating benign 

disease and cancer in patients (Lu et al., 2012). GHSR1a clearly has a role in prostate 

cancer, thus, it may have a role as a surface marker for risk stratification.  

1.19 CD151  

CD151 is a gene located on chromosome 11p15.5 (Hasegawa et al., 1997). CD151 is a 

tetraspanin that consists of four transmembrane domains with two extracellular (EC1 and 

EC2) and one intracellular loop (Fitter et al., 1995). Expression has been noted on tissues 

such as prostate epithelium, endothelial, smooth muscle, cardiac muscle, and 

lymphocytes, however, to a lower degree than cancer tissues (Geary et al., 2001). The 

family of tetraspanin proteins are linked to various processes including signal 

transduction pathways, cellular activation, proliferation, motility, adhesion, tissue 

differentiation, angiogenesis, tumor progression and metastasis (Detchokul et al., 2014). 

CD151 was the first tetraspanin to be associated with metastasis in human cancers (Testa 

et al., 1999). CD151 forms stable, lateral complexes with laminin-binding integrins, such 

as, 31, 61 and 64 which have been crucial in cancer cell migration and invasion 

(Longo et al., 2001). Many different cancer cell lines have been transfected to 

overexpress CD151 to examine its effect on metastasis (Ang et al., 2010). Ang et al. 

2010, worked with two prostate cancer cell lines, LNCaP and PC3, to study the effect of 

CD151 on prostate cancer cells. Through western blot analysis, LNCaP is shown to have 

a lower expression of CD151 than DU145 and PC3 (Detchokul et al., 2014; Ang et al., 

2010). Therefore, LNCaP cells were chosen to be transfected to overexpress CD151 and 

PC3 cells were transfected with siRNA to knock-down CD151 expression. 

Overexpression of CD151 was not associated with increased proliferation in LNCaP cell 

line but showed increased migration and invasion when compared to control (p=<0.01). 
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PC3 knock-down cells showed less migration and invasion when compared to the control 

siRNA and the no siRNA group (p=<0.01) (Ang et al., 2010). These results reiterate 

findings from previous studies illustrating the role of CD151 in cancer invasion and 

metastasis.  

Ang et al. 2004, also looked at CD151 expression of prostate specimens from patients 

with prostate cancer vs BPH. Through quantitative immunohistochemistry of pathology 

specimens, CD151 expression was found to be significantly higher in prostate cancer 

specimens compared with BPH specimens (P < 0.001). Poorly differentiated cancers 

expressed the strongest staining. The study further concluded CD151 expression was 

negatively correlated with survival (Ang et al., 2004). Although no definitive conclusion 

can be drawn from this small retrospective study, it does shed light on CD151 as a 

potential biomarker in advanced prostate cancers that have a tendency to metastasize.  

1.20 Hypothesis  

In this pilot study, I hypothesize that the level of prostate cancer microparticles in patient 

plasma that co-express PSMA and STEAP1 in combination with CD151 or GHSR1 

represents a “liquid biopsy” that is predictive of the pathologic Gleason Score found in 

whole gland specimens obtained from radical prostatectomy.  

1.21 Research Objectives  

Objective #1: To determine if STEAP1, CD151, and GHSR1 are present on the surface 

of prostate cancer microparticles in plasma samples from prostate cancer patients using 

nanoscale flow cytometry. To optimize the flow cytometric assay for enumeration of 

PSMA, STEAP1, CD151, and GHSR1a expressing microparticles present in prostate 

cancer patient plasma samples. 

Objective #2: Using the optimized assay conditions developed in Objective #1, to 

enumerate every permutation of microparticles expressing tissue biomarkers PSMA and 

STEAP1 with cancer biomarkers (CD151 or GHSR1a). 
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Objective #3: To assess the diagnostic capability of prostate cancer microparticles 

(PCMPs) that co-express PSMA and STEAP1 as well as triple positive PCMPs 

expressing PSMA+STEAP1 and GHSR1a or CD151 for risk stratification in prostate 

cancer patients. Level of these PCMPs will be compared to final surgical pathology to 

determine which combination of tissue-specific and cancer-specific biomarkers will 

result in the best performing “liquid biopsy.”  
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Chapter 2  

2 Materials and Methods 

2.1 Patient Sample Preparation, Blinding and Ethics 

Research ethics board (REB) approvals were obtained for analyzing retrospectively 

collected patient blood samples and patient chart information for patients who underwent 

radical retropubic prostatectomy for prostate adenocarcinoma. This was obtained through 

Western University under ethics applications (REB#103156). The REB approval was 

used to obtain plasma samples from two different biorepositories, the GU Biobank at 

Princess Margaret Hospital (Toronto) and the Ontario Tumor Bank (Ontario Institute for 

Cancer Research). These samples have been de-identified and experiments were 

performed blinded. A master list and all clinical information (age, pathologic staging, 

pre-op PSA levels, Gleason Score from whole mount prostate sections, post-OP PSA 

levels, and date of surgery) was kept separately in the office of Dr. Hon Leong. All blood 

samples were collected via venipuncture into 10mL EDTA-K2 vacutainers and plasma 

was isolated by centrifugation of vacutainers containing whole blood at 2,000×g’s for 20 

minutes at room temperature. The supernatant, platelet poor plasma, was reserved and 

stored into cryovials (1.5 mL capacity) in 1.0mL aliquots and then stored in liquid 

nitrogen prior to shipment to Dr. Leong’s laboratory. All received plasma samples were 

then stored in -80C freezer until they were analyzed. Samples were thawed slowly in 

4C refrigerators prior to being prepared for analysis.  

2.2 Antibody and Reagents 

Antibodies used for nanoscale flow cytometry were obtained from commercial sources. 

The following antibodies were used: mouse IgG1 anti-CD151 (clone 11G5a) (Abcam 

#ab33315), mouse IgG1 anti-GHSR1 (clone #502430) (R&D systems, Inc. #MAB8370), 

mouse IgG2b anti-PSMA 3/E7 (clone J591), and mouse IgG2b anti-STEAP1 (clone J2D2) 

(Novus Biologicals #NBP107094Y).  
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All primary antibodies were conjugated with fluorescent labels by using commercial 

antibody labeling kit. Anti-PSMA and mouse IgG2b (clone MPC-11) (Abcam #ab18457) 

isotype-matched control were conjugated to R-PhycoErythrin (R-PE) fluorophore using 

the Lightning-Link R-PhycoErythrin kit (Innova Biosciences #703-0010) following 

manufacturer’s instructions. Anti-STEAP1 as well as the mouse IgG2b isotype-matched 

control came conjugated by manufacture to Alexa647 fluorophore. Anti-CD151, anti-

GHSR and its respective isotype-matched control mouse IgG1 kappa (clone 11711) (R&D 

systems, Inc. #MAB002) were conjugated using FITC labeling kit (Thermo Scientific 

#F6434) Anti-CD151 isotype-matched control mouse IgG1 kappa (clone MOPC-21) 

(Abcam #ab106163) came conjugated with FITC from the manufacture.  

2.3 Immunolabeling of Prostate Cancer-derived Microparticles 

10 μL of patient plasma was incubated in the dark for 30 minutes at room temperature 

with 0.8 μg of anti-STEAP1-AF 647 [concentration 0.4 μg/uL] and 0.75 μg of anti-

PSMA-PE [concentration 2 μg/uL] to label prostate cancer-derived microparticles. 0.68 

μg of anti-CD151-FITC [concentration 1.0 μg/uL] or 0.8 μg of anti-GSHR1-FITC 

[concentration 0.5 μg/uL] was also added to the plasma. Phosphate buffered saline (PBS) 

was added to the plasma samples to achieve a total volume of 300 μL (30-fold dilution) 

and samples were subsequently analyzed via A50-Micro Nanoscale Flow Cytometer 

(Apogee FlowSystems Inc., UK) for triple-positive EVs between 100-1000 nm in 

diameter.  For each patient, we also incubated plasma samples with isotype-matched 

control antibodies following the same protocol used for nanoscale flow cytometry 

analysis as outlined above. Titrations of all antibodies of interest and isotype-matched 

controls were initially performed in order to determine optimal concentrations. 

2.4 Acquisition settings for nanoscale flow cytometry 

Data was acquired using A50-Micro Nanoscale Flow Cytometer (Apogee FlowSystems 

Inc., UK) equipped with 50mW 405 nm (violet), 488 nm (blue) and 639 nm (red) lasers. 

Parameters in the control panel were set to sheath pressure of 150 mbar and number of 

flush cycles to 2. Sample flow rate of 1.5 µL/min was used for all measurements and the 
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time of acquisition was held constant for all samples at 120 seconds to yield enough 

events.  

Before sample measurements, calibration of flow cytometer was verified using a 

reference bead mix (ApogeeMix, Apogee Flow Systems, #1493) composed of a mixture 

of plastic spheres with diameters of 180 nm, 240 nm, 300 nm, 590 nm, 880 nm, and 

1,300 nm with a refractive index (RI) of 1.42, and 110 nm and 500 nm green fluorescent 

(excited by blue laser) beads with RI of 1.59 (latex) were used. These beads were used to 

assess the flow cytometer’s (FC) light scattering and fluorescence performance (both 

sensitivity and resolution). This can easily and quickly inform the user whether the flow 

cytometer at current settings is capable of quality measurements of EVs. A reference 

bead mix was used to set the photomultiplier tube (PMT) voltages and the thresholds for 

light scattering as follows: L488 (320V), L639 (590V), SALS (200V), and LALS (260V). 

All measurements were performed in log mode. The noise levels in PMT panel were kept 

below 0.5. Thresholds were set at 5 and 15 (log scale) to eliminate unwanted events 

(background noise) and avoid loss of particles of interest. 

Samples incubated with isotype-matched antibodies were run first in order to determine 

the nonspecific binding and autofluorescence within the sample. Gates were then 

designed on the histogram by drawing boundaries that would include the region of 

interest and exclude nonspecific events. Samples incubated with antibodies of interest 

were subsequently run and the triple positive microparticle events/μL were recorded. 

Each event seen on the histogram is a reflection of a single MP captured as a result of 

binding to a specific antibody. On the histogram, the x-axis reflects the size of the 

microparticle while the y-axis reflects the degree of fluorescence (Figure 5). The number 

of triple positive MP events/μL in the isotype sample were subtracted from the number of 

triple positive MP events/μL in the antibody sample to exclude any nonspecific events. 

PBS washes were included after every respective isotype-control and antibody sample 

run to exclude carryover of fluorescently positive events (EVs/fluorescent dye) between 

patient plasma samples. 
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Figure 5.  An example of histograms portraying PSMA-PE isotype (A) and PSMA-

PE antibody (B). The x-axis represents sizing as long angle light scatter (LALS) and 

y-axis represents degree of fluorescence represented by a log scale. Each dot 

represents one positive event within the gate (displayed in red). 

A 

B 
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2.5 Data analysis and Statistics 

Parameters that were recorded are as follows: total microparticles (MP) within sample, 

PSMA positive MP events/μL, STEAP1 positive MP events/μL, CD151 positive MP 

events/μL, GHSR1a positive MP events/μL, PSMA+STEAP1 positive MP events/μL, 

PSMA+CD151 positive MP events/μL, STEAP1+CD151 positive MP events/μL, 

PSMA+GHSR1a positive MP events/μL, STEAP1+GHSR1a positive MP events/μL, 

PSMA+STEAP1+CD151 positive MP events/μL, and PSMA+STEAP1+GHSR1a 

positive MP events/μL. An example of a triple positive MP histogram is seen in Figure 

6. Dual positive gates for MPs are superimposed with a single positive MP gate in order 

to create a triple positive MP gate. For example, dual positive PSMA+STEAP1 positive 

MP gate will be superimposed with GHSR1a positive MP gate in order to create a triple 

positive PSMA+STEAP1+GHSR1a MP gate. The triple positive MP events/μL in the 

isotype sample were then subtracted from the triple positive MP events/μL in the 

antibody sample. All data were collected in an Excel spreadsheet. GraphPad Prism 7.0 

was used to run statistical analysis.  One-way ANOVA test was used to evaluate 

statistical significance across the groups. The confidence interval was set at 95% and the 

p-value of <0.05 was considered significant.  
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Figure 6. Example of a triple positive histogram (A, MPs that are positive for 

PSMA, STEAP1 and GHSR1a). MPs within blue rectangle gate are recorded and 

represented as events/μL. The x-axis represents sizing as long angle light scatter 

(LALS) and y-axis represents degree of fluorescence represented by a log scale. This 

gate was created by superimposing dual positive MPs (B, PSMA+STEAP1) with 

single positive MP gate (C, GHSR1a). Each dot represents one positive event within 

the gate (displayed in red). 

A 

B 

C 
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Chapter 3 

3 Results 

3.1 Study Cohort 

The study cohort contained plasma samples of 60 patients with prostate cancer. Patient 

characteristics are shown in Table 2 (next page). The patient cohort median age is 63 

years (range of 48-74 years). PSA was divided into three groups: PSA <4ng/mL contains 

15 patients (25%), PSA from 4-10ng/mL contains 33 patients (55%) and PSA >10ng/mL 

contains 12 patients (20%). All final pathology is from examination of prostates post 

radical prostatectomy. There was no evidence of metastatic disease at time of surgery. 

There were no healthy volunteer controls or BPH patients with negative prostate biopsies 

that were analyzed in this study. 
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Median Age (range) 63 (48-74) 

Clinical or Pathological 

Feature 

Number of Patients 

(%) 

Gleason Score  

6 (Grade group 1) 16 (27%) 

3+4 (Grade group 2) 14 (23%) 

4+3 (Grade group 3) 15 (25%) 

≥8 (Grade group 4-5) 15 (25%) 

pT stage  

pT2a 15 (25%) 

pT2c 17 (28%) 

pT3a 14 (23%) 

pT3b 8 (13%) 

PSA level (ng/ml)  

<4 15 (25%) 

4-10 33 (55%) 

>10 12 (20%) 

Table 2. Clinical and pathological features of the patient cohort. Pathologic stage of 

six patients is unknown 
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3.2 Optimization of Antibodies used in Detection of Prostate-

derived Microparticles 

Nanoscale Flow Cytometry is a rapid and sensitive technology to detect extracellular 

vesicles in fluids in a high-throughput manner. Optimization and standardization are 

required to allow a rigorous and accurate quantification of microparticles of interest. 

Antibody titration was performed on four metastatic prostate cancer patients for the four 

markers (PSMA, STEAP1, GHSR1a, CD151) in order to determine optimal 

concentrations. Each antibody and isotype was increased incrementally to create titration 

curves. An optimal mass for each antibody was defined as having a robust signal with 

minimal unspecific binding resulting in background noise. Detection of submicron 

particles in the detection limit of the flow cytometer can lead in massive coincidence (or 

“swarm effect”) where aggregation of small particles (<100 nm) can be counted as one 

true positive event resulting in count over-estimation (van der Pol et al., 2012). Caution 

was taken to eliminate the risk of swarm effect and avoid erroneous counts. Examples of 

titration curves for each antibody and respective isotype are shown in Figures 7. 
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Figure 7. Titration curve for each antibody and their respective isotype using 

metastatic prostate cancer patient plasma. For Prostate Specific Membrane Antigen 

clone 3E/7 conjugated with PE (PSMA 3E/7), 0.75 μg was selected as optimal mass 

for study (A). For Six Transmembrane Antigen of Prostate-1 conjugated with Alexa 

Fluor 647 (STEAP1), 0.40 μg was selected as optimal mass for study (B). For 

Ghrelin receptor conjugated with FITC (GHSR1a), 0.80 μg was selected as optimal 

mass for study (C). For CD151 conjugated with FITC, 0.68 μg was selected as 

optimal mass for study (D). X-axis indicates mass of isotype or antibody used in 

micrograms and y-axis indicates percentage of positive events within the region of 

interest (i.e. within the gate) 

D 

C 
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3.3 Gating of Cytograms 

Cytograms for each single, dual and triple positive antibody combinations and isotypes 

are seen on Figures 8-10. Gates to enumerate positive events are displayed in red. The x-

axis displays size using long angle light scatter (LALS) and the y-axis displays 

fluorescence intensity. Total events within gates are recorded as events/μL (not 

displayed). 
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Figure 8. Cytograms displaying single positive microparticles within their respected 

gates: isotype-matched controls (A) and antibodies (B) for STEAP1-Alexa647, 

isotype-matched controls (C) and antibodies (D) for PSMA-PE, isotype-matched 

controls (E) and antibodies (F) for GHSR1a-FITC, and isotype-matched controls 

(G) and antibodies (H) CD151-FITC. The x-axis represents sizing as long angle light 

scatter (LALS) and y-axis represents degree of fluorescence represented by a log 

scale. Each dot represents one positive event within the gate (displayed in red). 
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Figure 9. Cytograms displaying dual positive microparticles with their respected 

gates: isotype-matched controls (A) and antibodies (B) for PSMA-PE+STEAP1-

Alexa647, isotype-matched controls (C) and antibodies (D) for PSMA-PE+GHSR1a-

FITC, isotype-matched controls (E) and antibodies (F) for STEAP1-

Alexa647+GHSR1a-FITC, isotype-matched controls (G) and antibodies (H) for 

PSMA-PE+CD151-FITC, and isotype-matched controls (I) and antibodies (J) for 

STEAP1-Alexa647+CD151-FITC. The x-axis represents sizing as long angle light 

scatter (LALS) and y-axis represents degree of fluorescence represented by a log 

scale. Each dot represents one positive event within the gate (displayed in red). 
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Figure 10. Cytograms displaying triple positive microparticles with their respected 

gates: isotype-matched controls (A) and antibodies (B) for PSMA-PE+STEAP1-

Alexa647+GHSR1a-FITC and isotype-matched controls (C) and antibodies (D) for 

PSMA-PE+STEAP1-Alexa647+CD151-FITC. The x-axis represents sizing as long 

angle light scatter (LALS) and y-axis represents degree of fluorescence represented 

by a log scale. Each dot represents one positive event within the gate (displayed in 

red). 
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3.4 Scatterplot data 

Levels of microparticles (events/μL) harboring each putative biomarker (PSMA, 

STEAP1, GHSR1a, and CD151) were measured and analyzed (Figure 11 and Table 

3). PSMA expressing microparticles were detected in patient plasmas as previously 

described (Biggs et al., 2016). STEAP1, GHSR1a and CD151 were expressed at 

different levels in patient plasmas. Using one-way ANOVA with p-value of <0.05 set 

for significance each biomarker’s level of microparticles at GS6 (low-risk) were 

compared to GS3+4, GS4+3, and GS≥8. Only GHSR1a showed any significant 

difference between GS6 and the other various Gleason scores (Figure 11C).  
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Figure 11. Scatterplots showing levels of PSMA (A), STEAP1 (B), GHSR1a (C), and 

CD151 (D) expressing MPs in patient plasmas for GS6 (n=15), GS3+4 (n=14), 

GS4+3 (n=15), and GS≥8 (n=15). Bars represent the mean in events/μL and +/- 

s.e.m. (* p <0.05, ** p<0.01 in one-way ANOVA test). 
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PSMA Mean +/- s.e.m Median Min Max 

GS6 166409 +/- 7718 161247 122460 226557 

GS7 (3+4) 151890 +/- 13173 152452 66398 243650 

GS7 (4+3) 139878 +/- 14913 140430 56264 255742 

GS≥8  173373 +/- 11983 168301 70804 260445 

STEAP1 Mean +/- s.e.m Median Min Max 

GS6 497378 +/- 51454 515925 108417 848244 

GS7 (3+4) 460022 +/- 52846 422245 227612 832230 

GS7 (4+3) 611734 +/- 71047 537855 279461 1053439 

GS≥8  565157 +/- 79882 451959 244572 1188707 

GHSR1a Mean +/- s.e.m Median Min Max 

GS6 20899 +/- 2918 18620 0 42165 

GS7 (3+4) 47905 +/- 4932 50145 19092 82364 

GS7 (4+3) 41843 +/- 4685 46712 10483 70918 

GS≥8  50984 +/- 5531 53412 17693 100169 

CD151 Mean +/- s.e.m Median Min Max 

GS6 102972 +/- 18307 75838 30595 284442 

GS7 (3+4) 145822 +/- 21356 117153 35604 257418 

GS7 (4+3) 119044 +/- 15815 106414 9870 247495 

GS≥8  83971 +/- 13654 75915 10320 201604 

 

Table 3. Distribution of the positive microparticles for each individual biomarker 

displayed as events/μL. GS6 (n=15), GS3+4 (n=14), GS4+3 (n=15), and GS≥8 (n=15). 
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In order to identify the presence of candidate biomarkers GHSR1a and CD151 in 

prostate-derived microparticles, levels of dual positive with both prostate-specific 

markers were measured (PSMA+STEAP1, PSMA+GHSR1a, STEAP1+GHSR1a, 

PSMA+CD151, and STEAP1+CD151) (Figure 12 and Table 4). Dual positive 

microparticles at GS6 were compared to GS 3+4, GS4+3, and GS≥8. PSMA+STEAP1 

co-expressing MPs had a slight increase in MP levels in GS≥8 when compared to GS6. 

However, there was no significant difference between patients expressing 

PSMA+STEAP1 co-expressing MPs amongst the various Gleason scores (Figure 12A). 

Interestingly, patients expressing PSMA+GHSR1a co-expressing MPs showed a 

significant higher mean of microparticles in GS 3+4 and GS≥8 from GS6. GS4+3 

microparticles were higher than GS6, however, this was not statistically significant 

(Figure 12B). Patients expressing STEAP1+GHSR1a co-expressing MPs showed a 

significantly higher mean of microparticles in GS3+4 and GS≥8 from GS6. GS4+3 

microparticles were higher, however, this was not statistically significant (Figure 12C). 

There was no statistically significant difference between PSMA+CD151 co-expressing 

MPs among the various GS (Figure 12D). Patients expressing STEAP1+CD151 co-

expressing MPs showed an unexpected finding of lower level of microparticles as GS 

progressed. The lower mean of microparticles in GS3+4, GS4+3, and GS≥8 were all 

significant to the elevated mean of microparticles within GS6 (Figure 12E).  
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Figure 12. Scatterplots showing levels of PSMA+STEAP1 (A), PSMA+GHSR1a (B), 

STEAP1+GHSR1a (C), PSMA+CD151 (D), STEAP1+CD151 (E) co-expressing 

microparticles (MP) in patient plasmas for GS6 (n=15), GS3+4 (n=14), GS4+3 

(n=15), and GS≥8 (n=15). Bars represent the mean in events/μL and +/- s.e.m. (* p 

<0.05, ** p<0.01, *** p<0.001 in one-way ANOVA test). 
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PSMA+STEAP1 Mean +/- s.e.m Median Min Max 

GS6 168554 +/- 8212 169528 106420 231168 

GS7 (3+4) 168067 +/- 11893 177589 91597 247058 

GS7 (4+3) 153758 +/- 13201 145032 88309 256855 

GS≥8  180062 +/- 9287 184964 84786 220805 

PSMA+GHSR1a Mean +/- s.e.m Median Min Max 

GS6 19959 +/- 2393 18714 7335 40830 

GS7 (3+4) 40047 +/- 3521 36332 20134 63502 

GS7 (4+3) 31446 +/- 3733 26704 12367 57787 

GS≥8  43199 +/- 4921 42406 14282 89511 

STEAP1+GHSR1a Mean +/- s.e.m Median Min Max 

GS6 23864 +/- 2385 22260 11061 46217 

GS7 (3+4) 44030 +/- 4816 44836 3717 71743 

GS7 (4+3) 37223 +/- 4626 39127 2703 66482 

GS≥8  50387 +/- 5170 49994 19287 98037 
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PSMA+ CD151 Mean +/- s.e.m Median Min Max 

GS6 38944 +/- 5858 37765 7745 76897 

GS7 (3+4) 33504 +/- 3380 29737 21094 68234 

GS7 (4+3) 28432 +/- 2786 30129 10973 47519 

GS≥8  29199 +/- 2246 27640 12015 48452 

STEAP1+ CD151 Mean +/- s.e.m Median Min Max 

GS6 99398 +/- 17030 83901 29008 230936 

GS7 (3+4) 49321 +/- 5725 50789 3833 98341 

GS7 (4+3) 46621 +/- 5143 44668 24147 10374 

GS≥8  44294 +/- 3217 42883 18923 66687 

Table 4. Distribution of microparticles that are dual positive displayed in events/μL. 

GS6 (n=15), GS3+4 (n=14), GS4+3 (n=15), and GS≥8 (n=15). 
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Finally, the number of triple-expressing microparticles (PSMA+STEAP1+GHSR1a and 

PSMA+STEAP1+CD151) were measured (Figure 13 and Table 5). Triple-expressing 

microparticles at GS6 were compared to GS3+4, GS4+3, and GS≥8. Patients expressing 

PSMA+STEAP1+GHSR1a triple-expressing MPs had higher levels of MP for GS3+4, 

GS4+3, and GS≥8 when compared to GS6. Only GS3+4 and GS≥8 had higher levels that 

were statistically significant (Figure 13A). Patients who expressed 

PSMA+STEAP1+CD151 triple-expressing MPs had a statistically significant drop in the 

number of MPs when comparing GS3+4, GS4+3, and GS≥8 to GS6 (Figure 13B). 
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Figure 13. Scatterplots showing levels of PSMA+STEAP1+GHSR1a (A) and 

PSMA+STEAP1+CD151 (B) triple-expressing MP in patient plasmas for GS6 

(n=15), GS 3+4 (n=14), GS4+3 (n=15), and GS≥8 (n=15). Bars represent the mean in 

events/μL and +/- s.e.m. (* p <0.05, ** p<0.01, *** p<0.001 in one-way ANOVA test). 
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PSMA+ STEAP1+GHSR1a Mean +/- s.e.m Median Min Max 

GS6 32861 +/- 3223 31851 13966 58254 

GS7 (3+4) 55973 +/- 4384 55223 34249 82315 

GS7 (4+3) 44583 +/- 4918 37005 20282 78374 

GS≥8  61515 +/- 6662 59346 20360 108954 

PSMA+ STEAP1+ CD151 Mean +/- s.e.m Median Min Max 

GS6 79248 +/- 9763 83256 27510 166244 

GS7 (3+4) 48890 +/- 5213 42833 30973 91001 

GS7 (4+3) 43705 +/- 4539 41516 20232 90079 

GS≥8  42531 +/- 3899 37239 20685 80787 

Table 5. Distribution of microparticles that are triple positive displayed in 

events/μL. GS6 (n=15), GS3+4 (n=14), GS4+3 (n=15), and GS≥8 (n=15). 
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3.5 Assessment of Performance Characteristics 

To assess the performance characteristics of each parameter, receiver operating curve 

(ROC)  was used to calculate the area under the curve (AUC). The closer the AUC is to 

the value of one, the stronger the biomarker performs to distinguish between true 

positives from false positives. Cut-off values for each biomarker test were chosen to 

maximize specificity meaning avoid the detection of false positives. Combinations of 

parameters (dual positive and triple positive MPs) were assessed comparing GS6 to 

GS3+4, GS4+3, and GS≥8. Figure 14-16 displays all ROC curves for the various 

comparisons. 
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Figure 14. ROC curves comparing GS6 to GS3+4 for various combinations of 

microparticles. 

0 20 40 60 80 100
0

20

40

60

80

100

100% - Specificity%
S

e
n
s
it
iv

ity
%

PSMA STEAP1

PSMA GHSR1a

STEAP1 GHSR1a

0 20 40 60 80 100
0

20

40

60

80

100

100% - Specificity%

S
e
n
s
it
iv

it
y
%

STEAP1 CD151

PSMA CD151

PSMA STEAP1

0 20 40 60 80 100
0

20

40

60

80

100

100% - Specificity%

S
e
n
s
it
iv

ity
% PSMA STEAP1

PSMA STEAP1 GHSR1a

0 20 40 60 80 100
0

20

40

60

80

100

100% - Specificity%

S
e
n
s
it
iv

ity
% PSMA STEAP1

PSMA STEAP1 CD151

0 20 40 60 80 100
0

20

40

60

80

100

100% - Specificity%

S
e
n
s
iti

v
it
y
% PSMA STEAP1

PSMA STEAP1 GHSR1a

0 20 40 60 80 100
0

20

40

60

80

100

100% - Specificity%

S
e
n
s
iti

v
it
y
% PSMA STEAP1

PSMA STEAP1 CD151

B 

C 

A 

D 



67 

 

 

 

 

 

Figure 15. ROC curves comparing GS6 to GS4+3 for various combinations of 

microparticles. 
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Figure 16. ROC curve comparing GS6 to GS≥8 for various combinations of 

microparticles.  
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When comparing GS6 to GS3+4, PSMA+GHSR1a co-expressing MPs performed the 

best with an AUC 0.92. A cut-off of a level of 28002 events/μL provided a sensitivity and 

specificity of 85.71% and 92.86%, respectively. The best triple positive combination test 

for distinguishing GS6 from GS3+4 was PSMA+STEAP1+GHSR1a triple-expressing 

MPs with an AUC of 0.89. A cut-off value of 50435 events/μL provided a sensitivity and 

specificity of 57.14% and 92.86%. Table 6 displays AUC for all biomarkers assess GS6 

from GS3+4. 

When comparing GS6 to GS4+3, STEAP1+CD151co-expressing MPs and 

PSMA+STEAP1+CD151 triple-expressing MPs performed similar with an AUC of 0.79. 

A cut-off of 49418 events/μL provided STEAP1+CD151 co-expressing MPs a sensitivity 

and specificity of 73.33% and 73.33%, respectively. A cut-off of 46653 events/μL 

provided PSMA+STEAP1+CD151 triple-expressing MPs a sensitivity and specificity of 

60% and 80%, respectively. Table 7 displays AUC for all biomarkers assess GS6 from 

GS4+3. 

When comparing GS6 to GS≥8, STEAP1+GHSR1a co-expressing MPs performed the 

best with AUC 0.90. A cut-off of 32621 events/μL provided a sensitivity and specificity 

of 86.67% and 92.86%. The best performing triple positive biomarker was 

PSMA+STEAP1+GHSR1a triple-expressing MPs with an AUC of 0.85. A cut-off of 

48364 events/μL provided a sensitivity and specificity of 73.33% and 92.86%. Table 8 

displays AUC for all biomarkers assess GS6 from GS≥8. 
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Table 6. AUC results for the all combinations of microparticles comparing GS6 to 

GS3+4. 

 

 

Table 7. AUC results for the all combinations of microparticles comparing GS6 to 

GS4+3. 

 

 

Table 8. AUC results for the all combinations of microparticles comparing GS6 to 

GS≥8. 

 

 

 

Parameter AUC	+/-	s.d p	value Cut-off	(evts/μl) Sensitivity% 95%	CI Specificity% 95%	CI

PSMA	&	STEAP1 0.52	+/-	0.11 0.83 >	180607 50 23.04-76.96 73.33 44.9-92.21

PSMA	&	GHSR1a 0.92	+/-	0.05 0.002 >	28002 85.71 57.19-98.22 92.86 66.13-99.82

PSMA	&	CD151 0.57	+/-	0.11 0.54 <	25910 35.71 12.76-64.86 73.33 44.9-92.21

STEAP1	&	GHSR1a 0.86	+/-	0.08 0.001 >	33342 78.57 49.2-95.34 92.86 66.13-99.82

STEAP1	&	CD151 0.75	+/-	0.10 0.02 <	50213 50 23.04-76.96 73.33 44.9-92.21

PSMA	&	STEAP1	&	GHSR1a 0.89	+/-	0.06 0.0005 >	50435 57.14 28.86-82.34 92.86 66.13-99.82

PSMA	&	STEAP1	&	CD151 0.76	+/-	0.09 0.02 <	47802 64.29 35.14-87.24 80 51.91-95.67

Parameter AUC	+/-	s.d p	value Cut-off	(evts/μl) Sensitivity% 95%	CI Specificity% 95%	CI

PSMA	&	STEAP1 0.62	+/-	0.11 0.25 <	147584 53.33 26.59-78.73 80 51.91-95.67

PSMA	&	GHSR1a 0.73	+/-	0.09 0.03 >	26666 53.33 26.59-78.73 78.57 49.2-95.34

PSMA	&	CD151 0.60	+/-	0.11 0.33 <	25404 40 16.34-67.71 73.33 44.9-92.21

STEAP1	&	GHSR1a 0.75	+/-	0.10 0.02 >	35575 53.33 26.59-78.73 92.86 66.13-99.82

STEAP1	&	CD151 0.79	+/-	0.09 0.007 <	49418 73.33 44.9-92.21 73.33 44.9-92.21

PSMA	&	STEAP1	&	GHSR1a 0.69	+/-	0.10 0.07 >	53196 33.33 11.82-61.62 92.86 66.13-99.82

PSMA	&	STEAP1	&	CD151 0.79	+/-	0.08 0.07 <	46653 60 32.29-83.66 80 51.91-95.67

Parameter AUC	+/-	s.d p	value Cut-off	(evts/μl) Sensitivity% 95%	CI Specificity% 95%	CI

PSMA	&	STEAP1 0.64	+/-	0.10 0.19 >	179189 60 32.29-83.66 73.33 44.9-92.21

PSMA	&	GHSR1a 0.87	+/-	0.07 0.0008 >	28331 80 51.91-95.67 92.86 66.13-99.82

PSMA	&	CD151 0.63	+/-	0.11 0.24 <	25675 33.33 11.82-61.62 73.33 44.9-92.21

STEAP1	&	GHSR1a 0.90	+/-	0.06 0.0002 >	32621 86.67 59.54-8.34 92.86 66.13-99.82

STEAP1	&	CD151 0.82	+/-	0.09 0.003 <	44379 66.67 38.38-88.18 86.67 59.54-98.34

PSMA	&	STEAP1	&	GHSR1a 0.85	+/-	0.07 0.001 >	48364 73.33 44.9-92.21 92.86 66.13-99.82

PSMA	&	STEAP1	&	CD151 0.82	+/-	0.08 0.003 <	46967 66.67 38.38-88.18 80 51.91-95.67

GS6	vs	GS7	(3+4)

GS6	vs	GS7	(4+3)

GS6	vs	GS≥8

Parameter AUC	+/-	s.d p	value Cut-off	(evts/μl) Sensitivity% 95%	CI Specificity% 95%	CI

PSMA	&	STEAP1 0.52	+/-	0.11 0.83 >	180607 50 23.04-76.96 73.33 44.9-92.21

PSMA	&	GHSR1a 0.92	+/-	0.05 0.002 >	28002 85.71 57.19-98.22 92.86 66.13-99.82

PSMA	&	CD151 0.57	+/-	0.11 0.54 <	25910 35.71 12.76-64.86 73.33 44.9-92.21

STEAP1	&	GHSR1a 0.86	+/-	0.08 0.001 >	33342 78.57 49.2-95.34 92.86 66.13-99.82

STEAP1	&	CD151 0.75	+/-	0.10 0.02 <	50213 50 23.04-76.96 73.33 44.9-92.21

PSMA	&	STEAP1	&	GHSR1a 0.89	+/-	0.06 0.0005 >	50435 57.14 28.86-82.34 92.86 66.13-99.82

PSMA	&	STEAP1	&	CD151 0.76	+/-	0.09 0.02 <	47802 64.29 35.14-87.24 80 51.91-95.67

Parameter AUC	+/-	s.d p	value Cut-off	(evts/μl) Sensitivity% 95%	CI Specificity% 95%	CI

PSMA	&	STEAP1 0.62	+/-	0.11 0.25 <	147584 53.33 26.59-78.73 80 51.91-95.67

PSMA	&	GHSR1a 0.73	+/-	0.09 0.03 >	26666 53.33 26.59-78.73 78.57 49.2-95.34

PSMA	&	CD151 0.60	+/-	0.11 0.33 <	25404 40 16.34-67.71 73.33 44.9-92.21

STEAP1	&	GHSR1a 0.75	+/-	0.10 0.02 >	35575 53.33 26.59-78.73 92.86 66.13-99.82

STEAP1	&	CD151 0.79	+/-	0.09 0.007 <	49418 73.33 44.9-92.21 73.33 44.9-92.21

PSMA	&	STEAP1	&	GHSR1a 0.69	+/-	0.10 0.07 >	53196 33.33 11.82-61.62 92.86 66.13-99.82

PSMA	&	STEAP1	&	CD151 0.79	+/-	0.08 0.07 <	46653 60 32.29-83.66 80 51.91-95.67

Parameter AUC	+/-	s.d p	value Cut-off	(evts/μl) Sensitivity% 95%	CI Specificity% 95%	CI

PSMA	&	STEAP1 0.64	+/-	0.10 0.19 >	179189 60 32.29-83.66 73.33 44.9-92.21

PSMA	&	GHSR1a 0.87	+/-	0.07 0.0008 >	28331 80 51.91-95.67 92.86 66.13-99.82

PSMA	&	CD151 0.63	+/-	0.11 0.24 <	25675 33.33 11.82-61.62 73.33 44.9-92.21

STEAP1	&	GHSR1a 0.90	+/-	0.06 0.0002 >	32621 86.67 59.54-8.34 92.86 66.13-99.82

STEAP1	&	CD151 0.82	+/-	0.09 0.003 <	44379 66.67 38.38-88.18 86.67 59.54-98.34

PSMA	&	STEAP1	&	GHSR1a 0.85	+/-	0.07 0.001 >	48364 73.33 44.9-92.21 92.86 66.13-99.82

PSMA	&	STEAP1	&	CD151 0.82	+/-	0.08 0.003 <	46967 66.67 38.38-88.18 80 51.91-95.67

GS6	vs	GS7	(3+4)

GS6	vs	GS7	(4+3)

GS6	vs	GS≥8

Parameter AUC	+/-	s.d p	value Cut-off	(evts/μl) Sensitivity% 95%	CI Specificity% 95%	CI

PSMA	&	STEAP1 0.52	+/-	0.11 0.83 >	180607 50 23.04-76.96 73.33 44.9-92.21

PSMA	&	GHSR1a 0.92	+/-	0.05 0.002 >	28002 85.71 57.19-98.22 92.86 66.13-99.82

PSMA	&	CD151 0.57	+/-	0.11 0.54 <	25910 35.71 12.76-64.86 73.33 44.9-92.21

STEAP1	&	GHSR1a 0.86	+/-	0.08 0.001 >	33342 78.57 49.2-95.34 92.86 66.13-99.82

STEAP1	&	CD151 0.75	+/-	0.10 0.02 <	50213 50 23.04-76.96 73.33 44.9-92.21

PSMA	&	STEAP1	&	GHSR1a 0.89	+/-	0.06 0.0005 >	50435 57.14 28.86-82.34 92.86 66.13-99.82

PSMA	&	STEAP1	&	CD151 0.76	+/-	0.09 0.02 <	47802 64.29 35.14-87.24 80 51.91-95.67

Parameter AUC	+/-	s.d p	value Cut-off	(evts/μl) Sensitivity% 95%	CI Specificity% 95%	CI

PSMA	&	STEAP1 0.62	+/-	0.11 0.25 <	147584 53.33 26.59-78.73 80 51.91-95.67

PSMA	&	GHSR1a 0.73	+/-	0.09 0.03 >	26666 53.33 26.59-78.73 78.57 49.2-95.34

PSMA	&	CD151 0.60	+/-	0.11 0.33 <	25404 40 16.34-67.71 73.33 44.9-92.21

STEAP1	&	GHSR1a 0.75	+/-	0.10 0.02 >	35575 53.33 26.59-78.73 92.86 66.13-99.82

STEAP1	&	CD151 0.79	+/-	0.09 0.007 <	49418 73.33 44.9-92.21 73.33 44.9-92.21

PSMA	&	STEAP1	&	GHSR1a 0.69	+/-	0.10 0.07 >	53196 33.33 11.82-61.62 92.86 66.13-99.82

PSMA	&	STEAP1	&	CD151 0.79	+/-	0.08 0.07 <	46653 60 32.29-83.66 80 51.91-95.67

Parameter AUC	+/-	s.d p	value Cut-off	(evts/μl) Sensitivity% 95%	CI Specificity% 95%	CI

PSMA	&	STEAP1 0.64	+/-	0.10 0.19 >	179189 60 32.29-83.66 73.33 44.9-92.21

PSMA	&	GHSR1a 0.87	+/-	0.07 0.0008 >	28331 80 51.91-95.67 92.86 66.13-99.82

PSMA	&	CD151 0.63	+/-	0.11 0.24 <	25675 33.33 11.82-61.62 73.33 44.9-92.21

STEAP1	&	GHSR1a 0.90	+/-	0.06 0.0002 >	32621 86.67 59.54-8.34 92.86 66.13-99.82

STEAP1	&	CD151 0.82	+/-	0.09 0.003 <	44379 66.67 38.38-88.18 86.67 59.54-98.34

PSMA	&	STEAP1	&	GHSR1a 0.85	+/-	0.07 0.001 >	48364 73.33 44.9-92.21 92.86 66.13-99.82

PSMA	&	STEAP1	&	CD151 0.82	+/-	0.08 0.003 <	46967 66.67 38.38-88.18 80 51.91-95.67

GS6	vs	GS7	(3+4)

GS6	vs	GS7	(4+3)

GS6	vs	GS≥8



71 

 

Chapter 4 

4 Discussion 

4.1 General Discussion 

Prostate cancer remains the most commonly diagnosed cancer in Canadian men and a 

world leader in cancer related deaths (Canadian Cancer Society, 2017; Globocan, 2012). 

Introduction of PSA in the 1980s (Rao et al., 2008) has revolutionized the screening of 

prostate cancer as it has reduced the number of men presenting with advanced disease 

(Howlader et al., 2017, Newcomer et al., 1997). However, widespread use of PSA 

screening and the long natural history of prostate cancer has led to a stage migration of 

clinically localized disease (T1c) (O’Donnell et al., 2008). With the ubiquitous use of 

PSA and ease of obtaining a prostate biopsy, we risk exposing patients to over-diagnosis 

and overtreatment. The ERSPC trial and the PLCO trial challenged the use of PSA as a 

screening tool for prostate cancer (de Koning et al., 2002; Auvinen et al., 1996). Based 

primarily on these studies, the U.S. Preventative Task Force and Canadian Preventive 

Task Force recommended against the use of PSA screening in men of all ages (U.S. Task 

Force, 2012; Canadian Task Force, 2014). PSA lacks sensitively and specificity in cancer 

detection and thus it is not a robust cancer biomarker.  

Men with elevated PSA values often undergo TRUS biopsy to detect the presence of 

cancer. However, a standard 10-12 core biopsy has a positive yield of about 49% 

(Lawrentschuk et al., 2009). Thus, many men who undergo biopsy will have a negative 

result or may be diagnosed with low volume, low grade disease as seen in the ERSPC 

trial (Auvinen et al., 1996). The procedure exposes men to many side effects including a 

4% risk of life threatening sepsis resulting in increased hospitalizations over the last 10 

years (Nam et al., 2010). 

An ideal prostate cancer biomarker should be able to identify a patient population that 

would have clinically significant prostate cancer and reduce the number of unnecessary 

biopsies in healthy men. To address the challenge of developing a superior prostate 
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cancer biomarker assay, I quantified prostate cancer tumor cell fragments known as 

prostate cancer microparticles (PCMPs) through a specialized instrument known as a 

nanoscale flow cytometer in a high-throughput and multi-parametric format. Unlike 

conventional flow cytometer machines, this instrument can analyze cell fragments as 

small as 100 nm in diameter. Dr. Leong’s Translational Prostate Cancer Research 

Laboratory (St. Joseph’s Hospital, Lawson Health Research Institute, London, ON) is 

focused on developing a “liquid biopsy” for high-risk prostate cancer using PSMA as a 

biomarker. The laboratory was able to identify a significant increase in the expression of 

PSMA expressing extracellular vesicles or microparticles in patient plasmas for those 

who had GS≥8 prostate cancer (Biggs et al., 2016). In my study, I looked to improve on 

this “liquid biopsy” by adding additional biomarkers to analyze PCMPs that are 

expressing STEAP1, GHRS1a and CD151. 

Since a microparticle is an outward budding of the cell membrane, it carries with it the 

cell surface antigens present on the parent cell (Huang-Doran et al., 2017). In order to 

identify PCMPs from patient plasma, PSMA and STEAP1 surface markers were used to 

specifically identify PCMPs in patient plasmas using monoclonal antibodies for PSMA 

and STEAP1. PSMA and STEAP1 are considered prostate specific markers as they are 

highly expressed in the prostate gland in comparison to other tissues within the body 

(Human Protein Atlas, 2017). I looked to improve the ability of differentiating GS6 from 

GS3+4, GS4+3 and GS≥8 by examining levels of PCMPs co-expressing PSMA and 

STEAP1 and one cancer specific marker, GHRS1a or CD151. (Ang et al., 2004; Lu et al., 

2012). 

4.2 Potential Role of PCMP Assay in the Diagnosis of Prostate 

Cancer  

PSA is an organ-specific serine protease that is widely accepted as a prostate cancer 

tumor marker, however, it is not cancer specific as numerous causes can alter PSA serum 

levels (Warade, 2014; Klein and Lowe, 1997). This enzyme is released into the blood by 

glandular epithelial cells of the prostate regardless of disease processes. PCMPs are 

unique in the way that they contain surface proteins found on epithelial prostate cell 
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membranes, providing a biochemical profile of the tissue. PCMPs are different from 

other biomarkers as they may reflect changes seen on epithelial prostate cells as Gleason 

grade progresses.  Therefore, our PCMP biomarker assay can be used as an adjunct to 

PSA screening to help determine which men would benefit from a prostate biopsy. This 

“liquid biopsy” assay can be used to detect the expression of PCMPs in patient plasma 

samples. Our results have shown that we can accurately differentiate GS6 from GS3+4, 

4+3 and GS≥8 when we compare the level of expression of serum PCMPs. This assay 

would provide clinicians valuable information for risk stratification prior to obtaining 

tissue biopsy and would be very useful in a situation where PSA serum levels are no 

longer helpful. For example, if a patient with a suspicious PSA is being investigated for 

prostate cancer, a tissue biopsy is required in order to make the diagnosis. However, the 

PSA assay lacks the ability to risk stratify which patients may have intermediate or high-

risk prostate cancer from low risk prostate cancer (GS 3+3). It is conceivable that the 

PCMP assay could then be used to detect if there are suspicious levels of PCMPs in a 

non-invasive plasma test prior to needle biopsy. Patients who have PCMP levels in 

ranges indicative of intermediate (GS3+4 or GS 4+3) or high-risk (GS≥8) prostate cancer 

should then be recommended to undergo the TRUS biopsy. If the performance test 

characteristics of this “liquid biopsy” are excellent and accurate, then implementation 

prior to needle biopsy may allow clinicians to avoid TRUS biopsy in men who have low 

risk prostate cancer (GS 3+3), thus reducing patient anxiety related to the diagnosis of 

cancer as well as the complications related to the TRUS biopsy which are substantial.  

The benefit of this research is that the “liquid biopsy” is ultimately compared to the 

results of the Gleason Score assigned to final pathology of whole gland specimens from 

radical prostatectomy. The gold standard in this case would be final pathology and not 

PSA, which is not reflective of the biology of the tumor.     

4.3 Measurement of Microparticles 

This is the first study to enumerate MPs that co-express PSMA and STEAP1 with a 

cancer-specific marker, GHSR1a or CD151, in human plasma to develop a “liquid 

biopsy” for risk stratification of prostate cancer prior to surgery. Each biomarker (PSMA, 

STEAP1, GHSR1a, CD151) was assessed individually to determine their level of 
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expression in groups of prostate cancer patient plasmas representing different Gleason 

scores. To increase the probability of measuring MPs from the prostate, we elected to 

enumerate two surface proteins that are highly expressed on epithelial prostate tissue 

(PSMA and STEAP1).  It should be noted that there are no healthy control volunteer 

plasma samples or plasma samples of patients who have BPH and negative prostate 

biopsies. Therefore, this pilot study is not powered to draw conclusions on PCMPs as a 

screening tool for prostate cancer and is more relevant to being used in the context of 

decision making for prescribing a needle biopsy or not after a PSA test result.  

The only single biomarker that had a statistically significant difference of MP levels 

between GS6 and GS3+4 (p<0.01), GS4+3 (p<0.05), or GS≥8 (p<0.001) was GHRS1a. 

As previously mentioned, GHRS1a is a receptor that is expressed on a wide variety of 

tissues involved in the gastrointestinal tract as well as skin, lung, prostate, pituitary and 

other peripheral tissues (Gnanapavan et al., 2002). Therefore, it is not a reliable marker 

on its own for detecting PCMPs. However, it is not surprising to see an increase in the 

expression of GHRS1a expressing MPs as the GS progressed in comparison to GS6. 

Previous research used a modified fluorescein-ghrelin probe which indirectly showed 

elevated expression of the GHRS1a (ghrelin receptor) in prostate cancer cell lines 

(LNCAP and PC3) and prostate cancer specimens from radical prostatectomy (Lu et al., 

2012). Since the sample size in the study is small, it would be interesting to see if the 

elevated GHRS1a expressing MPs pattern continues to be elevated as the sample size is 

increased. Tissue microarrays (TMA) could be used to validate the findings of higher 

GHSR1a expression as Gleason score increases. The level of MPs expressing GHSR1a 

should be reflected in the degree of staining on the TMA. The results could be further 

validated through the use of The Cancer Genome Atlas (TCGA). TCGA is a repository 

that contains gene expression level of various proteins in more than 300 cases of prostate 

cancer along with clinical data for each patient. Degree of GHSR1a gene expression 

should be comparable to the level of MPs expressing the putative surface antigen. Both 

TMA and TCGA investigations could be expanded to validate the MP level of PSMA, 

STEAP1 and CD151. 
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It was surprising to see that there were no significant differences seen in the PSMA 

expressing MPs. Dr. Leong’s lab previously showed that PSMA expressing MPs were 

significantly elevated in GS≥8 (Biggs et al., 2016). However, a small increase in the level 

of PSMA expressing MPs in Gleason score 8 was observed. Any differences that Dr. 

Leong’s lab had previously identified could be masked by the small cohort in this study 

as they used 256 patients with localized prostate cancer. STEAP1 expressing MPs also 

revealed no significant difference amongst the various GS’s even though STEAP1 

expressing MPs had the most recorded events from all single biomarkers. When looking 

at the region of interest (ROI) percentage (data not shown), MPs expressing STEAP1 

monoclonal antibody accounted for 40-60% of total MPs within plasmas. This was seen 

in multiple patient plasma samples such as: patient 3, 5, 10, 14, 26, 27,35, 45, 47, and 53. 

In fact, patient 44 had 80% of MPs positive for STEAP1. The remaining 49 patients had 

~25% of MPs positive for STEAP1. Considering that MPs are released by a wide variety 

of cells (Brett et al., 2015), it is hard to image that such a high number of MPs are 

released from the prostate or that these MPs are truly all STEAP1 positive.  This may 

suggest the STEAP1 monoclonal antibody used in this pilot study was binding less 

specifically than PSMA which often had an ROI that ranges from 2-15%. An exception 

was seen in plasmas: 5, 10, 20, 25, 30, 44 and 65 of whom had a ROI that ranged from 

15-25% for PSMA. Only patient 26 and 27 had a higher ROI of 36%. This study was 

limited by the fact that multiple STEAP1 monoclonal antibodies were tested, however, 

only STEAP1 monoclonal antibody from Novus Biologicals worked on the flow 

cytometer. Using a STEAP1 monoclonal antibody that is custom designed to be more 

specific to the extracellular component of the STEAP1 antigen could potentially improve 

the performance characteristics of the antibody. A new STEAP1 antibody can be 

validated with immunohistochemistry and flow cytometry before using it in future 

studies. Furthermore, additional STEAP1 antibodies that are commercially available can 

be tested to determine if any other monoclonal antibodies on the market have better 

specificity. 

Next, several permutations of dual positive MPs were assessed to determine if any 

combination could differentiate between the various GSs. When using two prostate 

specific markers, PSMA+STEAP1, these co-expressing MPs did not show any significant 
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differences amongst the various GS’s. This is not surprising as both individually 

performed poorly in differentiating between GS’s. PSMA+GHSR1a co-expressing MPs 

and STEAP1+GHSR1a co-expressing MPs both showed significant differences between 

GS6 and GS3+4 (p=<0.01) or GS≥8 (p<0.001). Of these two dual markers, 

STEAP1+GHSR1a co-expressing MPs should be interpreted with caution since the levels 

of STEAP1 expressing MPs were inexplicably elevated and likely did not bind with high 

specificity as previously described. The nonspecific binding of the STEAP1 antibody 

resulted in almost all of the single GHSR1a MP population recorded as events that were 

dual positive for both STEAP1 and GHSR1a by the flow cytometer. Therefore, due to the 

lack of specificity of STEAP1 antibody, the dual positive MP population would be less 

reflective of MPs truly positive for STEAP1 and GHSR1a only and would be reflective 

of a subpopulation of GHSR1a only. The performance of dual and triple positive MPs 

were assessed using the receiver operating characteristic (ROC) curve which will be 

discussed later on in the discussion. 

The results of STEAP1+CD151 co-expressing MPs and PSMA+CD151 co-expressing 

MPs were a surprising finding. Ang et al. 2004, quantified the level of expression of 

CD151 in various prostate cancer specimens with immunohistochemistry. Their study 

found that CD151 was strongly expressed in poorly differentiated cancers (Ang et al., 

2004). It was unexpected to see the abundance of both STEAP1+CD151 co-expressing 

MPs and PSMA+CD151 co-expressing MPs decrease as the GS increased. Only 

STEAP1+CD151 co-expressing MPs showed significant decline in the level of MPs 

when GS6 was compared to GS3+4, GS4+3, or GS≥8. One potential explanation could 

be that the MPs that expressed PSMA or STEAP1 on their surface were of a different size 

than the MPs expressing CD151 on their surface. Therefore, less MPs would be 

expressing both STEAP1 and CD151 or PSMA and CD151 demonstrating a lower level 

of duel MP expression. Atomic force microscopy has previously been used to detect MP 

size (Leong et al., 2011) and could be used to confirm that there exists varying sizes of 

CD151 expressing MPs when compared to STEAP1 expressing MPs and PSMA 

expressing MPs. Another potential theory for the decline in CD151 single could be that 

this tetraspanin internalizes in the MP as GS progresses. Therefore, the fluorescent 

CD151 antibody would not bind to the surface of MPs and the flow cytometer would not 
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read the MPs being positive for CD151. To test this theory, immunohistochemistry of 

prostatic cancer tissue of different GSs could be performed and visualized under confocal 

microscopy. This instrument can detect if the fluorescence of the CD151 antibody is seen 

on the cell membrane or internalized within the cell. 

Triple positive MPs expressing PSMA, STEAP1 and CD151 significantly declined when 

comparing GS6 to GS3+4 (p<0.01), GS4+3 (p<0.01), or GS≥8 (p<0.001). Two potential 

theories were previously mentioned in the past paragraph. Triple positive MPs expressing 

PSMA, STEAP1 and GHSR1a only showed a significant rise when comparing GS6 with 

GS3+4 or GS≥8. The increased expression of PSMA, STEAP1 and GHSR1a triple 

positive MPs in GS4+3 were not significant when compared to GS6. This inconsistent 

trend could be explained by the initial handling of the plasma when it was collected from 

the patients. If the collection of plasma during centrifugation was not optimal or the 

plasma wasn’t initially stored under ideal temperatures, there could be degradation in the 

number of MPs within the plasma which would produce fewer triple positive events.  

4.4 Calculated Area Under the Curve (AUC) for Biomarkers. 

In order to assess the performance characteristics for each parameter, receiver operating 

curves (ROC) were used to calculate the area under the curve (AUC) for test specificity 

and sensitivity. The closer the AUC is to a value of one, the stronger the biomarker 

performs at distinguishing true positives from false positives (1-specificity). ROC curves 

assessing the performance of biomarkers comparing GS6 vs GS3+4, GS6 vs 4+3 and 

GS6 vs GS≥8 were used to assess various combinations of dual and triple positive MPs. 

GS6 was chosen as our comparison group as evidence supports active surveillance in this 

cohort and active treatment for those who have higher Gleason scores (Klotz et al., 2014). 

For each biomarker, cut off values of MPs calculated as events/µL were chosen to 

maximize specificity in order reduce number of false positives. The confidence intervals 

for each biomarker are also portrayed. Overall, the confidence intervals for each 

biomarker are quite wide and increasing the sample size may tighten these values 

assuming a normal distribution of these final results.  
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PSMA+GHSR1a co-expressing MPs was the best performing biomarker for GS6 vs 

GS3+4 with an AUC of 0.92 at a cut off of >28,002 events/µL. This provides a 

sensitivity of 85.71% and a specificity of 92.86%. The second-best biomarker was 

PSMA+STEAP1+GHSR1a triple expressing MPs with an AUC of 0.89 at a cut off value 

of >50,435 events/µL. This provides a sensitivity of 57.14% and a specificity of 92.86%. 

The worst performing biomarker was PSMA+STEAP1 co-expressing MPs with an AUC 

0.52. PSMA+STEAP1+CD151triple expressing MPs had an AUC of 0.76.  

PSMA+STEAP1+CD151 triple expressing MPs was the best performing biomarker for 

GS6 vs GS4+3 with an AUC of 0.79 at a cut off of <46,653 events/µL. The sensitivity 

and specificity at this cut off value are 60.0% and 80.0%, respectively. STEAP1+CD151 

co-expressing MPs performed similarly with an AUC of 0.79 at a cut off of <49418 

events/µL. Sensitivity and specificity at this value was 73.3%. The addition of a third 

biomarker allowed the cut off value to drop and specificity to increase at the expense of 

sensitivity. With a small sample size, it is difficult to confirm if in fact STEAP1+CD151 

co-expressing MPs performs similar to PSMA+STEAP1+CD151 triple expressing MPs. 

PSMA+STEAP1 co-expressing MPs was amongst one of the worst performing 

biomarkers with an AUC of 0.62. PSMA+STEAP1+GHSR1a triple expressing MPs 

exhibited an AUC of 0.69. 

The best performing biomarker at GS6 vs GS≥8 was STEAP1+GHSR1a co-expressing 

MPs with an AUC of 0.90 at a cut off of >32,621 events/µL. This provided a sensitivity 

and specificity of 86.67% and 92.86%, respectively. PSMA+GHSR1a co-expressing MPs 

came second with an AUC of 0.87 at a cut off of >28,331 events/µL. This provided a 

sensitivity and specificity of 80% and 92.86% respectively. The triple expressing MPs, 

PSMA+STEAP1+GHSR1a and PSMA+STEAP1+CD151, had AUC’s of 0.85 and 0.82, 

respectively. PSMA+CD151 co-expressing MPs performed poorly with an AUC of 0.64. 

Overall, the object of the pilot study was to assess whether adding an additional cancer 

specific marker, GHSR1a or CD151, to PSMA and STEAP1 would improve biomarker 

performance. In fact, both PSMA+STEAP1+GHSR1a and PSMA+STEAP1+CD151 

performed better than PSMA+STEAP1 MPs at all three GS comparisons (GS3+4, 
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GS4+3, and GS≥8). PSMA+STEAP1+GHSR1a performed best at GS3+4 (AUC 0.89) 

and GS≥8 (AUC 0.85). PSMA+STEAP1+CD151 performed best at GS4+3 (AUC 0.79).  

In this pilot study, we were able to determine the performance of the various 

permutations of biomarker combinations to give us an idea of which combination to use 

in a much larger training set of patient plasmas representing all risk phenotypes of 

prostate cancer. Both dual positive and triple positive biomarkers for enumeration of 

PCMPs have been identified. A larger cohort will be needed to further assess their 

performance to determine which combination has the most robust performance at an 

optimal cut off value for sensitivity and specificity.  

4.5 Limitations 

There are some key limitations to this study that should be addressed. As discussed 

earlier, a STEAP1 antibody that is more specific for the extracellular component of 

STEAP1 surface antigen could provide more reliable results. Risk of human pipetting 

error could add unpredictable variability when incubating plasma samples. We attempted 

to reduce this variability by using a cocktail of an antibody at a set concentration before 

incubating all samples. Furthermore, the cohort size is quite small to draw any significant 

conclusions except for elimination of some biomarker combinations that would appear to 

fail in a much larger analysis of patient plasmas. Our pilot study contained 60 patients 

with 15 patients in each Gleason score group. The cohort size is hypothesis generating 

but more patients will be required in order to make a more definitive conclusion. Another 

limitation in the study is a lack of a healthy volunteer group. Having a healthy group 

would strengthen the results by giving insight of a potential baseline of MPs. It would be 

interesting to see if there is a threshold of MPs that could suggest a diagnosis of cancer in 

comparison to healthy patients.  An ideal healthy volunteer group would consist of both 

healthy men and women that are age matched to the other prostate cancer patient 

plasmas. A cohort of women would be useful in assessing the level of MPs that co-

express PSMA and STEAP1 as these should be higher in men due to the presence of the 

prostate gland. A BPH group would also help strengthen the study. As the prostate 

becomes enlarged, the MP level could potentially increase as does the PSA level in most 
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patients. Overall, this study doesn’t address if MPs can be used as a screening test as 

there is no healthy volunteer or BPH cohort. It does shed evidence that MPs can be used 

to potentially detect progression of Gleason score as our results highlighted that different 

GS’s have different levels of MP expression.  

This study did not look address a number of factors that could influence MP expression. 

There are a number of medications that are known to exert their effects on the prostate. 

For example, 5-alpha reductase inhibitors prevent hormonal interaction within the 

prostate. Since these classes of medications can reduce prostate size, they may impact 

MP levels. This study also did not assess how the volume of prostate cancer in surgical 

samples or pathologic staging could influence MP level. Due to the low volume of 

patients, these objectives would be difficult to address. Furthermore, our cohort data 

lacked epidemiologic data regarding race and age which are known risk factors for 

prostate cancer. Finally, no post-radical prostatectomy patient plasma was analyzed. 

Therefore, no comment can be made regarding treatment response after surgery and the 

decline of MP levels, as previously shown by Briggs et al, 2016.  
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Chapter 5 

5 Conclusion 

5.1 Conclusion 

Apogee A-50Micro nanoscale flow cytometer was capable of identifying MPs that were 

positive for the surface markers: PSMA, STEAP1, GHSR1a, and CD151, in a high 

throughput and multi-parametric manner. When dual and triple positive MPs were 

enumerated, a significant difference between the expression of GS6 to GS3+4, GS4+3 

and GS≥8 was measurable. PSMA+GHSR1a, STEAP1+GHSR1a, and 

PSMA+STEAP1+GHSR1a expressing MPs saw a significant increase in expression 

between GS6 vs GS3+4 and GS≥8. STEAP1+CD151 and PSMA+STEAP1+CD151 

expressing MPs showed a significant decrease in expression of MPs between GS6 vs 

GS3+4, GS4+3 and GS≥8.  

When it came to assessing biomarker performance, PSMA+STEAP1+GHSR1a and 

PSMA+STEAP1+CD151 triple-expressing MPs, outperformed PSMA+STEAP1co-

expressing MPs in all comparison groups of Gleason score. Further exploration with 

larger patient numbers may help identify which biomarker can best discriminate patients 

amongst the various Gleason scores.  
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5.2 Future Directions 

The next step is to increase the cohort size of the study and reassess the performance of 

the biomarkers that performance the best. Currently, the procurement of more patient 

plasma samples from the biobanks is underway. The plan is also to add a healthy 

volunteer cohort and a BPH cohort to further strengthen the study, which is arguably the 

greatest limitation of this study aside from the cohort size. The samples will be analyzed, 

using the same standardized protocol outlined in this study, while maintaining 

experimental blinding. Antibodies mass produced from reliable manufactures using the 

same lot number will used to run experiments to reduce variability within their 

performance. To further reduce the risk pipetting variability, we will use a cocktail of 

antibodies that are thoroughly mixed at a set concentration before starting our antibody-

plasma incubation. Tissue microarrays will be used as a visual confirmation to validate 

the MP level of expression seen for each biomarker: PSMA, STEAP1, CD151 and 

GHSR1 as Gleason score progresses.  
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