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Abstract 

Behavioural isolation is a prezygotic mechanism that is usually determined by female 

preference, such as seen with the rejection behaviour exhibited by Drosophila simulans 

females to D. melanogaster males. To confirm the role of a previously identified candidate 

gene fruitless (fru) in behavioural isolation, I proposed to disrupt fru expression in both D. 

melanogaster and D. simulans to allow for the generation of interspecies hybrids expressing 

only a species-specific allele of fru. A reciprocal hemizygosity test would then be used to 

confirm the role of fru in behavioural isolation. Disruptions of fru in both D. melanogaster 

and D. simulans through the CRISPR/Cas9 system were not achieved, however, a mutation 

was generated in the fru common region exon C4 in D. melanogaster. This mutation did not 

have an effect on mating behaviour, suggesting that the C4 exon in fru does not seem to have 

a role in female mate preference or male courtship.  
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1 Introduction 

1.1 Speciation and behavioural isolation 

The evolutionary process whereby new distinct species arise from a common ancestor is 

known as speciation. There are numerous definitions for how to differentiate species, but 

most commonly the Biological Species Concept is used, which states that species can be 

regarded as groups of interbreeding natural populations that are reproductively isolated 

from other such groups (Mayr, 1942; Coyne and Orr, 2004). The development of 

reproductive isolation barriers, regarded as biological features of organisms, prevents 

gene flow between individuals of different species, maintaining species diversity 

(Dobzhansky, 1937). These reproductive isolation mechanisms can be divided into 

prezygotic and postzygotic isolating barriers (Dobzhansky, 1937). Postzygotic isolating 

barriers are those that occur after the formation of the zygote and pertain to hybrid 

sterility and inviability. Prezygotic isolating barriers act to impede gene flow before 

sperm transfer and include behavioural, ecological, and mechanical isolation 

(Dobzhansky, 1937; Coyne and Orr, 2004). While prezygotic barriers can act on their 

own as a species barrier, behavioural isolation experiences stronger selective pressure in 

the presence of postzygotic barriers (Coyne and Orr, 1989; Liou and Price, 1994). When 

hybrid offspring would be unfit, individuals can increase their reproductive fitness by 

mating with their own species and rejecting those from another species that are not 

suitable. 

For species that are in contact, prezygotic barriers are the strongest barriers as they 

reduce gene flow proportionally more than postzygotic barriers (Dobzhansky, 1937; 

Coyne and Orr, 2004). Within prezygotic isolation, behavioural isolation is often 

regarded as one of the most important impediments to gene flow between species and is 

possibly one of the first barriers to initiate speciation (Coyne and Orr, 2004). Behavioural 

isolation consists of behavioural differences in courting and mating signals that prevent 

different species from mating (Dobzhansky, 1937). The signal from individuals of one 

sex will elicit a preference in individuals of the opposite sex from the same species, but 

not from a different species, serving as species-specific cues to avoid heterospecific 
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mating. This incompatibility of mating signals may often be displayed with divergence in 

male courtship behaviour (reviewed in: Spieth, 1974; Ritchie et al., 1999). If a male’s 

signal is ineffective or repellent to females, she will show a lack of preference for that 

male and reject his attempt to mate. 

Courtship behaviour involves a number of different signals including auditory, visual, 

tactile, and chemical signals. In Moltoni’s warblers, Sylvia cantillans, auditory signals 

play a role in courtship. Different populations of this species distinguish mating songs 

between other subspecies, and responded most strongly to songs of their own population 

(Brambilla et al., 2008), demonstrating behavioural reproductive isolation between 

populations within this species. The butterfly species Pieris occidentalis and P. protodice 

rely on visual signals when courting in order to discriminate heterospecific mates 

(Wiernasz and Kingsolver, 1992). Female P. occidentalis use the male dorsal forewing 

melanin pattern to discriminate against P. protodice males, insuring that they only mate 

with conspecific males (Wiernasz and Kingsolver, 1992). In grasshoppers, both auditory 

and chemical signals are used in courtship; between two closely related species, 

Chorthippus biguttulus and C. mollis, males use species-specific calling songs, as well as 

sex-specific information from female cuticular hydrocarbons (CHCs), for sex recognition 

and mate attraction (Finck et al., 2016). These signals elicit a courtship song from the 

males towards conspecific females, but not heterospecific females (Finck et al., 2016). 

Similarly, many species within the genus Drosophila (commonly referred to as the fruit 

fly) also rely on species-specific courtship songs and CHCs to discriminate against 

heterospecific mates. 

Like all traits, species-specific behaviour leading to female and male mate preference can 

be linked back to genetic variation. It is known that there is genetic variation to account 

for preference, as mate recognition systems change quickly, which we see with the high 

occurrence of prezygotically isolated sibling species that have little morphological 

divergence (reviewed in: Butlin and Ritchie, 1989). Further, the genetic basis of 

behavioural isolation can vary depending on the strain being examined, as some 

populations of species do not manifest the same discrimination genes, making some 

genes strain-specific as opposed to species-specific (Carracedo et al., 2000; Moehring 
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lab, unpublished data). Genetic variations that have been linked to species-specific 

behaviour have been associated mostly with male sexual traits, such as those that control 

male song. In the Hawaiian cricket, the variation of pulse rate in courtship song amongst 

Laupala paranigra and L. kohalensis has been attributed to the variable expression of a 

number of genes that each have a small effect on pulse rate (Shaw, 1996). The courtship 

song of male hybrids between the grasshoppers Chorthippus albomarginatus and C. 

oschei showed higher song variation than the variation that exists between the parents. 

This change in song can be attributed to an additive-dominance effect of the parental 

genes in the hybrid, indicating a genetic basis to courtship song (Vedenina et al., 2007). 

One of the first studies to directly link mate preference to genes was done with the 

ladybird Adalia bipunctata where females of different populations showed preference for 

specific colours and patterns of males (Majerus et al., 1982). Females preferred the 

melanic patterned males, with the melanic form being attributed to a dominant locus 

(Majerus et al., 1982).   

The evolution of genes contributing to male and female mating preference behaviour are 

likely to have arisen in one of two ways: originating as one common gene with 

pleiotropic effects in males and females, or two different sex-specific genes that have co-

evolved together (reviewed in: Butlin and Ritchie, 1989). Yet little is still known about 

the nature through which sexual selection acts on genes to give rise to male and female 

preference. In Drosophila, genes affecting behavioural isolation between different 

species have been mapped to chromosomes or small genomic regions (Zouros, 1981; 

Ting et al., 2001; Gleason and Ritchie, 2004; Moehring et al., 2006; Laturney and 

Moehring, 2012a). It is unknown whether within- and between-species mating preference 

may have the same genetic locus, as proposed by Carracedo et al (1989). One study has 

found chromosomal regions affect species-specific mate preference did not overlap with 

regions for conspecific preference, showing that there could be different genes 

contributing to the behaviours of within vs. between species (Gleason and Ritchie, 2004). 
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1.2 Drosophila as a model for behavioural isolation  

To study the genetic basis of behaviour, D. melanogaster is an ideal model organism. 

Drosophila have a short generation time, are easy and cheap to maintain, and are easy to 

collect in large quantities, which is important to generate large samples sizes in behaviour 

studies where there is high variation in a trait. Most importantly, they have a variety of 

genetic information and tools available, as well as a repertoire of stereotypical behaviours 

that they exhibit, such as courtship behaviour, making it possible to study how different 

genes effect behaviour. D. melanogaster can even be crossed in the lab with related 

species for the purpose of mapping species-specific mating behaviours to regions of their 

genomes (reviewed in: Laturney and Moehring, 2012b).  

The single-gene mutant approach in D. melanogaster has allowed scientists to mutate one 

gene at a time to see the underlying effect this mutation has on behaviours (reviewed in: 

Sokolowski, 2001). For example, the discovery that the period (per) gene is an 

underlying genetic component to eclosion rhythm and thus circadian rhythm in flies was 

one of the first to link a gene to complex behaviours (Konopka and Benzer, 1971; 

reviewed in: Sokolowski, 2001; reviewed in: Panda et al., 2002). Discovering the 

mechanisms underlying circadian rhythm has made it possible to map circadian rhythm to 

lateral neurons in brain regions of D. melanogaster. This has allowed for the mechanism 

to be identified in other invertebrate and vertebrates species and for D. melanogaster to 

be a model of circadian rhythm-linked behaviours such as psychiatric diseases in humans 

(reviewed in: Sokolowski, 2001; reviewed in: Panda et al., 2002; reviewed in: Zordon 

and Sandrelli, 2015). Thus D. melanogaster is also a model for neural circuitry, allowing 

for D. melanogaster to be used to study learning, memory, and behaviour. This provides 

the opportunity to map candidate genes of behavioural isolation to neuronal pathways in 

Drosophila. In summary, the ability to distinguish courtship behaviour in Drosophila to 

identify different behaviours that contribute to mate preference, and finally to use the 

genetic tools available in Drosophila, partnered with behavioural tests, to isolate 

candidate genes are what makes Drosophila a valuable model for behavioural isolation. 
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1.2.1 Drosophila courtship and mating behaviour 

To attract a conspecific female, a male of the D. melanogaster subgroup performs a 

stereotypical courtship ritual: (i) he orients himself towards the female; (ii) taps her on 

the abdomen with both of his forelegs; (iii) follows her and vibrates his wing to produce a 

species-specific courtship song; (iv) licks the female’s extended genitalia by extending 

his proboscis; and (v) curls his abdomen and attempts to copulate (reviewed in: Hall, 

1994; reviewed in: Greenspan and Ferveur, 2000). In response to the male’s behaviour, if 

the female is receptive to his mating signals, she will slow down her locomotive activity 

and adjust her external genitalia to make them accessible to the male. However, if the 

female is not receptive to the male, she will perform rejection behaviours by flicking her 

wings, kicking her legs, or extruding her ovipositor (reviewed in: Hall, 1994).  

In Drosophila, the courtship behaviour can differ between species and within species 

subgroups (reviewed in: Spieth, 1974; Cobb et al., 1985). For example, different species 

will exhibit different patterns during courtship song. D. virilis males only extend their 

wings 10-14° and vibrate in small amplitudes of displacement up and down. Conversely, 

D. melanogaster males extend their wings 90° and vibrate up and down at a larger 

displacement while D. planitibia extend their wings 160° and move their wings 

backwards and forwards as well as up and down (reviewed in: Spieth, 1974). 

Behaviours also vary among closely related species within subgroups. For example, in 

the D. melanogaster subgroup, both D. melanogaster and D. simulans produce a pulse 

and sine song in their courtship song, but only D. melanogaster males change the 

duration of each song type as they mature. D. simulans males will keep their songs the 

same no matter the age of the male (Moulin et al., 2001). Additionally, D. simulans males 

show scissoring wing vibration behaviour during their song, which is not done by D. 

melanogaster males (Cobb et al., 1985).  

The pulse song is species-specific, allowing for females to recognize conspecific males, 

while the sine song is important for female sexual stimulation (von Schilcher, 1976). 

These components of the courtship song are one factor that helps Drosophila females to 

identify a suitable conspecific mate; if the male is heterospecific the female will reject the 
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male, preventing gene flow between different species. Additionally, the pheromones of 

Drosophila (CHCs) are species-specific, allowing for females to recognize conspecific 

mates when undergoing courtship. For example, D. serrate has been found to express the 

gene CG3542, which is associated with the production of methyl-branched CHCs. This 

gene is not expressed in the closely related D. birchii due to sequence variation in the 

region, meaning D. birchii does not produce this form of CHCs, influencing mate choice 

between the species (Chung et al., 2014). 

1.2.2 Behavioural isolation in Drosophila  

Behavioural isolation amongst Drosophila is often what keeps each of the Drosophila 

species distinct, and is usually dependent on female preference (Coyn and Orr, 2004). In 

the D. melanogaster subgroup, some sibling species demonstrate asymmetrical sexual 

isolation. This is where males from either species will attempt to mate with heterospecific 

females, but only females of one species are receptive to heterospecific males. The 

females from the species that chooses to only mate with conspecific males can be seen as 

“choosy”, but potentially only in the context of this species pair. 

The sibling species pair D. melanogaster and D. simulans are sympatric species 

inhabiting worldwide regions in Africa, Europe, North America, and South America 

(Sturtevant, 1920; Lachaise et al., 1988; Capy et al., 1993). However, D. melanogaster 

and D. simulans remain behaviourally reproductively isolated from each other because of 

asymmetrical sexual isolation (Carracedo et al., 2000). The behavioural isolation 

experienced between these two species arises from the rejection behaviour exhibited by 

D. simulans females; D. melanogaster females will mate with D. simulans males (albeit 

at reduced frequency), but D. simulans females will rarely mate with D. melanogaster 

males (Figure 1; Watanabe and Kawanishi, 1979; Moulin et al., 2004; reviewed in: 

Nanda and Singh, 2012). Sterile D. melanogaster/D. simulans hybrid females, generated 

through crossing D. melanogaster females with D. simulans males, will mate with D. 

melanogaster males (Figure 1). Thus D. melanogaster female receptivity behaviour is 

dominant or semi-dominant to D. simulans female rejection behaviour as the female 

chooses to mate with a D. melanogaster male, behaving like a D. melanogaster female 
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instead of a D. simulans female (Carracedo et al., 2000; reviewed in: Laturney and 

Moehring, 2012a; Laturney and Moehring, 2012b). 

As characteristic mating behaviours can be identified between D. melanogaster and D. 

simulans, then there is likely a genetic basis for these behaviours. This means genes 

involved in courtship and mating can be the same genes that cause behavioural isolation 

and thus speciation. At the moment, some genes have been identified to account for 

species-specific behaviour, such as per, a gene known for its involvement in circadian 

rhythm (Konopka and Benzer, 1971), and who’s genetic function has also been 

associated with species-specific courtship song in D. melanogaster and D. simulans 

(Wheeler et al., 1991). This same gene affects female preference behaviour, whereby 

females of different species show preferences for different times of mating, as associated 

with per expression (Tauber et al., 2003). However, most genes associated with courtship 

behaviour have only been associated with female conspecific mating preference, not 

heterospecific discrimination. For example, dissatisfaction (dsf) is a gene that acts in a 

subset of female neurons such that when it is mutated, it causes females to resist 

conspecific male courtship and take longer to mate (Finley et al., 1997; Finley et al., 

1998; O’Kane and Asztalos, 1999). The gene chaste (chst) also makes females less 

sexually receptive to conspecific males by causing strong mate refusal in females with a 

chst disruption mutation (Juni and Yamamoto, 2009). Females with a mutation in spinster 

(spin) also show subnormal receptivity to copulation by exhibiting rejection behaviours 

such as decamping, kicking, and fending when they were courted by conspecific males 

(Suzuki, et al., 1997). There is still no clear understanding of how many genes can affect 

female behaviour, especially female species-specific preference, nor how their genetic 

expression can cause different female behaviours in different species. Female preference 

behaviour is an important contributor to maintaining reproductive isolation between 

species as it reinforces the divergence of two separate species by preventing gene flow 

(Coyne and Orr, 2004).  By understanding what genes underlie female behaviour, we can 

uncover genetic variants, such as mutations or alterations in genes, which cause 

heterospecific differences in mating behaviour. Candidate genes for female preference 

can then be confirmed through gene disruptions and behavioural tests (see below), 

followed by mapping of the neural pathway upon which genes linked to mating 
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behaviour act in order to find where along the path signals differ to give rise to different 

mating behaviours. 
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Figure 1: Schematic of the behavioural isolation that occurs between D. 

melanogaster and D. simulans. 

Female and males from the same species (i.e. female D. melanogaster and male D. 

melanogaster) will mate with each other. However, a D. simulans female does not mate 

with a D. melanogaster male. D. melanogaster/D. simulans hybrid females mate with D. 

melanogaster males, albeit at reduced frequencies, exhibiting behaviour more similar to 

female D. melanogaster than D. simulans rejection. Fly images were created from 

photographs taken from FlyBase (2016). 
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1.2.3 Commonly-used genetic tools in Drosophila 

Drosophila became a prominent model to study genetics back in 1910 when Thomas 

Hunt Morgan used D. melanogaster to define genes and show that genes are found on 

chromosomes (Kohler, 1994; reviewed in: Jennings, 2011). D. melanogaster was one of 

the first model organisms to have genetic tools to study gene expression (reviewed in: 

Arias, 2008), and continues to be on the leading edge of technological advances, making 

it a popular model organism for genetics. It was one of the first organisms to have its 

genome sequenced: Craig Venter’s team released the first sequence of the D. 

melanogaster genome in March 2000 (Adams et al., 2000). The sequence and annotation 

of the genome became publicly available on FlyBase (Tweedie et al., 2008), where the 

genomic sequences of other Drosophila species are also available, notably the full D. 

simulans genomic sequence (Hu et al., 2013).  

The wide diversity of techniques available in D. melanogaster allow for the manipulation 

of genes to study their phenotypic effects. Two types of tools exclusive to Drosophila are 

outlined in the sections below. Mutations in nearly every gene have been generated and 

lines are readily available for order through stock centres such as the Bloomington 

Drosophila Stock Center, along with targeted expression lines for the use of specific tools 

such as GAL4/UAS, RNAi, FLP/FRT, and CRISPR/Cas9. However, the genetic tools 

available for use in Drosophila are mostly restricted to D. melanogaster. With the 

advancement of such tools like CRISPR, this limitation has changed, giving us a better 

ability to study what genes are affecting behaviour in D. simulans. 

1.2.1.1 P-elements 

P-elements are a type of mobile DNA element that was introduced into the D. 

melanogaster population around 1950 through horizontal gene transfer with another 

Drosophila species (reviewed in: Ryder and Russell, 2003). P-elements have also 

recently been discovered in D. simulans populations (Kofler et al., 2015).  

The first use of P-elements as a transgenic tool was done by Spradling and Rubin (1982), 

who injected P-elements into Drosophila embryos and were able to recover flies that had 

intact copies of the P-elements inserted into genes. P-elements are a popular genetic tool 
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and have been used to disrupt gene expression for approximately 65% of all D. 

melanogaster genes. Researchers can readily obtain 95% of these transgenic P-element 

insertion fly lines from the Bloomington Drosophila Stock Center (reviewed in: Venken 

and Bellen, 2005).  

However, as Spradling and Rubin (1982) discovered, the P-element insertions are not 

randomly inserted into the genome, appearing at a wide variety of chromosomal sites, but 

P-elements are unable to target specific genes. This is one of the drawbacks for using P-

elements for gene tagging and gene disruptions of specific targets. Additionally, P-

elements also exhibit insertion bias, which can be another problem if specific targets are 

needed. This is due to the occurrence of hot spots and cold spots for P-element insertions 

in the genome, preventing certain genes from ever being targeted (reviewed in: Venken 

and Bellen, 2005).  

1.2.1.2 Balancer chromosomes 

The use of balanced lethals, known as balancer chromosomes, in Drosophila, has 

provided researchers with an easy way to maintain mutations in stocks (e.g. gene 

disruptions) (Arias, 2008). Balancer chromosomes help to maintain homozygous lethal 

mutations in populations such that linkage between alleles can be maintained and prevent 

recombination amongst multiple alleles on the same chromosome (Bloomington 

Drosophila Stock Center). To achieve this, all balancer chromosomes have two main 

features. First, they must contain recessive deleterious mutations that cause lethality or 

sterility when homozygous, ensuring that the non-balancer chromosome must always be 

present (Bloomington Drosophila Stock Center). The second feature, inversion 

breakpoints, prevents the recovery of recombinant chromosomes by inhibiting synapsis 

and produces lethal aneuploid gametes when single crossovers within inversions do occur 

(Bloomington Drosophila Stock Center). Additionally, many balancers have genetic 

elements associated with them, making it easier to score phenotypically the inheritance of 

a balancer in a population. One common feature is a dominant visible marker, which 

provides a clear means of determining if individuals inherited the balancer chromosome 

or non-balancer chromosome. An example of one of these markers is the stubble hair 

phenotype associated with the TM3 balancer, which contains a mutation in the Stubble 
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(Sb) gene. Though balancers are mostly restricted to D. melanogaster, some strains are 

available for other species, which contain an inversion that can be used in a similar 

manner to the balancer chromosome. 

1.2.4  Deficiency mapping  

There is a limit to using Drosophila to identify candidate genes for behavioural isolation: 

crossing males and females of different species is usually difficult because the crosses do 

not produce a lot of offspring, the offspring are unhealthy, or only sterile hybrid offspring 

are produced. D. melanogaster, the species with the most genetic tools, does not produce 

fertile F1 offspring with any of its sibling species, making it impossible to employ the 

traditional recombinant mapping approach to narrow down candidate genes for 

behavioural isolation. 

Deficiency mapping can be employed to overcome the limitations of not being able to use 

recombinant mapping to identify candidate regions of behavioural isolation in D. 

melanogaster sibling species. Deficiency mapping relies on using the genetic tools of 

transposable elements (commonly P-elements) or FLP/FRT (Parks et al., 2004), and 

balancer chromosomes to identify genes that contribute to quantitative traits such as 

mating behaviour (Moehring and Mackay, 2004) and longevity (Pasyukova et al., 2000). 

This technique is even effective in mapping a trait down to a single gene (Pasyukova et 

al., 2000; Moehring and Mackay, 2004). Deficiency mapping requires the use of 

deficiency fly stocks, whereby the lines are entirely diploid except for a single region that 

is hemizygous due to a deletion on one of the homologous chromosomes. The 

deficiencies are maintained over a balancer chromosome, allowing for a visible marker to 

score for individuals with the balancer and maintain the deficiency in the lines, as 

deficiencies are usually homozygous inviable. To use deficiency mapping to identify 

candidate regions for behavioural isolation, a recessive gene that controls a trait of 

interest can be crossed to the deficiency line. For example, when looking at female 

species-specific mate preference between D. melanogaster and D. simulans, female D. 

simulans rejection behaviour of D. melanogaster males is recessive to D. melanogaster 

female receptive behaviour. Therefore, by crossing wild-type D. simulans to D. 

melanogaster bearing a deficiency, the female hybrids can have one of two genotypes 
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(Figure 2A). If females inherit the balancer chromosome from her deficient father, all of 

her recessive D. simulans genes will be masked by D. melanogaster genes in the 

chromosomal region covered by the balancer. Alternatively, if the female inherits the 

deficiency, any recessive D. simulans genes in that region will be unmasked and thus 

expressed, as there is no D. melanogaster allele present. If the females that have the 

deficiency now act like D. simulans females and reject D. melanogaster males, then the 

D. simulans alleles within that region are candidate genes for female preference 

behaviour. To control for genetic background and hemizygosity effects, D. melanogaster 

with the deficiency are crossed wtih wild-type D. melanogaster to make two genotypes 

again: D. melanogaster with the balancer or D. melanogaster with the deficiency (Figure 

2B). This is done to ensure that the effect of D. simulans behaviour in hybrids is not due 

to hemizygosity or an extraneous factor elsewhere in the genome, but the behaviour is 

really due to unmasking the D. simulans alleles (Figure 2). 

Previous work used deficiency mapping to identify the genetic basis of D. simulans 

rejection behaviour towards D. melanogaster (Laturney and Moehring, 2012b). Five 

regions on the right arm of the third chromosome were identified that contain genes 

potentially linked to female rejection behaviour underlying behavioural isolation in this 

species pair (Laturney and Moehring, 2012b). Additional fine-mapping and tests of 

individual genes identified fruitless (fru), a gene that is involved in the sex-determination 

pathway in Drosophila, as a candidate gene that contributes to female rejection behaviour 

(Moehring lab, unpublished data). In hybrid females where the D. melanogaster allele of 

fru is knocked out and only the D. simulans allele is being expressed, females have 

shown decreased mating with D. melanogaster males, thus acting like D. simulans 

females, when compared to hybrids that are also expressing D. melanogaster fru 

(Moehring lab, unpublished data).  
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Figure 2: Crosses used to test the four genotypes used in deficiency mapping. 

A. A heterospecific cross between D. simulans (blue) and D. melanogaster (red) 

deficiency stock to create two hybrid females, one with the balancer (Bal) and one with 

the deficiency (Df). The deficiency hybrid will allow for the unmasking of D. simulans 

alleles in that region of the chromosome. B. A conspecific cross between D. 

melanogaster to generate two control females. Controls are used to ensure the D. 

simulans recessive behaviour being unmasked is not due to the effect of having a single 

allele expressed. Bars represent homologous chromosomes with the broken chromosome 

representing a deficiency. 
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1.3. The fruitless gene in D. melanogaster 

1.3.1 fruitless in the sex determination pathway 

The fru gene is involved in the sex determination pathway in many insect species, from 

the mosquito Anopheles to Drosophila (Gailey et al., 2006). The sex determination 

cascade that results in sexual differentiation in Drosophila takes on the key strategies 

observed in other sex determination pathways in insects, namely a primary genetic signal 

that is different in males and females due to the use of a switch gene towards the end of 

the pathway (Schutt and Nothiger, 2000). Male or female expression is first induced by 

the ratio of X chromosomes to autosomes, leading to sex-specific expression in 

Drosophila. The sex determination cascade (Figure 3) begins with Sex lethal (Sxl), where 

sex-specific expression achieved through alternative splicing sees the production of the 

Sxl protein in females and a lack of protein expression in males due to premature 

termination of translation (Bell et al., 1991). Sxl controls the expression of the 

downstream gene transformer (tra); as Sxl is only expressed in females, it splices at the 

3’ splice site of tra allowing for the production of mRNA with an open reading frame 

(Belote et al., 1989). At the same level of that cascade is transformer2 (tra2) where its 

function is necessary both to prevent male sexual differentiation and to allow for female 

differentiation (Belote and Baker, 1982; Nagoshi, et al., 1988). Together, the expression 

of these genes regulates the expression of fru and the master-switch gene doublesex (dsx) 

through alternative splicing, to produce female-specific transcripts (Nagoshi, et al., 

1988). As far as we know, female-specific fru mRNAs are not translated into functional 

proteins, due to an early stop codon in the sequence, but the female-specific Dsx protein 

is responsible for inducing female somatic structures and external morphology (reviewed 

in: Billeter et al., 2006a). 

Male-specific transcripts of dsx and fru are both alternatively spliced to produce male-

specific proteins, but without the assistance of tra or tra2; Tra is not expressed in males, 

allowing for the male-specific Fru protein to be produced by a default splice. In males, 

the products of dsx and fru (zinc finger transcription factors) specify different aspects of 

male differentiation (somatic structures and external morphology) and male sexual 
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behaviour (Burtis and Baker, 1989; Anand et al., 2001; Demir and Dickson, 2005; 

reviewed in: Billeter et al., 2006a; Billeter et al., 2006b). The fru portion of the sex 

determination cascade is responsible for nearly all steps of male courtship behaviour with 

dsx likely controlling male song (Ryner et al., 1996; Villella et al., 1997; Goodwin et al., 

2000; Baker et al., 2001; Kimura et al., 2008). Besides fine-mapping and candidate gene 

behavioural mating tests on fru (Moehring lab, unpublished data), there is currently no 

evidence directly linking fru to female species-specific mate preference. 
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Figure 3: The sex determination pathway in female and male Drosophila. 

In females (left) Sxl alternatively splices the 3’ end of tra, which works with Tra2 to 

alternatively splice dsx and fru to give female specific products. Only female-specific 

Dsx, not female-specific Fru, is functional in females, which goes on to specify female 

differentiation. In males (right), both male-specific copies of Dsx and Fru are expressed, 

contributing to male differentiation. Fru is responsible for male courtship behaviour. 

White circles indicate sex-specific proteins that are not expressed in the cascade, with 

pink indicating female-specific proteins, blue for male-specific proteins, and yellow as 

non sex-specific. This figure is adapted from Billeter et al. (2006a). 
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1.3.2 fruitless: a complex gene 

The fru gene is an approximately 130 kbp long gene on the third chromosome composed 

of a number of different alternatively-spliced exons (Figure 4; Ryner et al., 1996; 

Heinrichs et al., 1998; Goodwin et al., 2000; FlyBase: Gramates et al., 2017); the P 

exons (P1-4) at the 5’ end, where P1 is sex-specifically spliced into male and female 

isoforms; common region exons (C1-5), where the common region is found in all fru 

transcripts, are highly conserved between insect species (Clynen et al., 2011), and exons 

C1 and C2 code for the BTB/POZ domain; and exons A-D at the 3’ end that code for 

alternative zinc-finger (ZF) domains. The 5’ P and 3’ A-D exons are alternatively spliced, 

producing transcripts that have a single P exon in combination with one of the A-D 

exons, with almost all transcripts containing the entire common region (if exon D is in a 

transcript, C5 is not present) (Figure 4; Ryner et al., 1996; Goodwin et al., 2000). Fru is a 

sequence-specific DNA binding transcription factor, where the BTB domain acts as a 

protein-protein interaction module and ZF domains act as DNA-binding domains, with a 

linker region between these two domains (Zollman et al., 1994; Ito et al., 1996; Ryner et 

al., 1996; Stogios et al., 2005). 

Transcripts of fru associated with P2 to P4 are expressed in both males and females and 

are essential for development in both sexes, controlling the development of imaginal 

discs and motoneuronal synapses (Ryner et al., 1996; Anand et al., 2001). P2 transcripts 

are expressed in pupae but have the highest expression in the adult central nervous 

system (CNS) compared to all other transcripts; P3 and P4 transcripts are expressed in 

early stages of development, as they are integral for the formation of the CNS during 

embryogenesis (Song et al., 2002; Dornan et al., 2005; Neville et al., 2014). 

While P2 to P4 transcripts have common expression in males and females, being 

expressed in the CNS of both sexes, P1 transcripts have a sex-specific function. In males, 

P1 transcripts produce male-specific functional proteins (FruM) while female P1 

transcripts are restricted to becoming non-functional truncated proteins due to an early 

stop codon (Lee et al., 2000).  If there was no early stop codon in female transcripts, 

there would be the potential to encode proteins with BTB domains near their terminal end 
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(encoded by exons C1 and C2) and one of four ZF pairs at their carboxy ends (encoded 

by exons A-D) (Ryner et al., 1996; Goodwin et al., 2000; Anand et al., 2001).  

It is male-specific expression of P1 transcripts in neurons of the CNS that are responsible 

for the development of the male-specific abdominal muscle known as the Muscle of 

Lawrence (MOL) (Gailey et al., 1991; Usui-Aoki et al., 2000) and male sexual behaviour 

(Ryner et al., 1996; Goodwin et al., 2000; Demir and Dickson, 2005). Neurons 

expressing male-specific Fru protein (FruM) have been identified in 2% of the male CNS 

(Usui-Aoki et al., 2000) and are believed to be connected together in a circuit that also 

intersect with olfactory or gustatory neurons, a required pathway in order to exhibit a 

behavioural response to female sex pheromones (Stockinger et al., 2005). However, 

exactly how FruM acts at the neuronal level to control male behaviour is still not fully 

understood.  
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Figure 4: Organization of the fru gene and alternative splicing that gives rise to fru 

products in males and females. 

The gene fru contains four independent first exons (P1-P4) (grey boxes) where the P1 

promoter undergoes alternative splicing in males and females under the control of tra and 

tra2 in the sex determination pathway. It produces three male-specific transcripts that 

contain the common regions (blue boxes), which makes the BTB domain in Fru protein, 

and either A, B, or C (green boxes) that compose the zinc-finger domain in the protein. 

There is no functional protein produced from P1 transcripts in the female. Transcripts 

from promoters P2-P4 are non-sex-specific (produced in both males and females) and 

have four alternative products that have the common regions and either A, B, C, or D, 

composing the final Fru proteins. This figure is adapted from Neville et al. (2014). 
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1.3.3 fruitless and behaviour 

FruM produces three different proteins, where each has one of three alternative C-terminal 

zinc-finger DNA binding domains characterized in fru as exons A-C (Figure 4). FruM 

isoforms with A are restricted to a subset of neurons in the male CNS with isoforms B 

and C more broadly expressed in the male CNS, appearing in most of the cells where 

FruM expression has been seen (Billeter et al., 2006b; Neville et al., 2014). Cells forming 

Fru-specific neurons either express one, two, or all three isoforms (von Philipsborn et al., 

2014). Isoform A does not seem to be highly involved with male behaviour on its own, 

but works collectively with the other isoforms of FruM to stimulate male-specific 

behaviour (Neville et al., 2014). Isoforms B and C can work collectively like isoform A, 

but appear to also have individual roles in male courtship. Both are required for males to 

exhibit wild-type levels of courtship, whereas isoform B appears to be heavily associated 

with a male’s initiation of courtship towards females, while isoform C has been 

associated specifically with the production of courtship song and with the formation of 

the MOL (Billete et al., 2006; Neville et al., 2014; von Philipsborn et al., 2014). 

Additionally, isoform C seems to be heavily involved in male-specific neuron structure 

patterns as knocking down expression of this isoform causes female neural patterning 

(von Philipsborn et al., 2014). Eliminating expression of FruM isoform C in a subset of 

Fru neurons, aSP4 and vAB3, feminizes the neurons morphology (von Philipsborn et al., 

2014).  

Recently, it was found that the FruM protein forms a complex with Bonus (Bon), a 

transcription cofactor that is expressed in all CNS neurons, including fru neurons (Ito et 

al., 2012). The Fru-Bon complex alters chromatin modification to induce gene silencing 

depending on whether it interacts with HDAC1 or HP1a in order to regulate the level of 

neural masculinization. When the complex recruits HDAC1, it acts as a positive regulator 

for masculinization; when it recruits HP1a, it acts as a negative regulator for 

masculinization. Together, they counteract each other for mediating Fru-dependent 

sexually dimorphic neuronal development to determine the sexual fate of neurons. 

FruM has been found to be part of the same neuronal pathway as Gr32a gustatory 

neurons, which act in the male foreleg to detect CHCs secreted by other species in order 
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to recognize when a female is heterospecific and help inhibit heterospecific courtship 

(Fan et al., 2013). Specifically, FruM also functions in subesophageal ganglion aDT6 

gustatory neurons, which act to inhibit courtship of females from another species, but 

these neurons do not directly interact with Gr32a neurons (Fan et al., 2013). This 

indicates that multiple, distinct mechanisms act in this pathway to control interspecies 

courtship in males. For females, the Gr32a neurons do not have a role in interspecies 

mating and so the neuronal basis for female rejection is still unknown (Fan et al., 2013). 

The heavy association of three FruM isoforms with male courtship through the function of 

the ZF domains implies that the ZF domains in other transcripts, though not sex-specific, 

could have a sex-specific effect on the neuronal circuitry. This could imply an association 

with female behaviour. If lack of FruM-specific expression can feminize neurons, then 

perhaps this, partnered with dimorphic expression of the ZF isoforms of the common Fru 

proteins, leads to female behaviour. The expression of multiple common isoforms in 

different subsets of neurons and their interaction with other genes could regulate the 

female behavioural pathway, just as isoforms of FruM assist in the development of 

neurons, with the assistance of dsx, to give rise to male copulatory behaviour (Billeter, et 

al., 2006b). 

1.4 Goal: Confirming the involvement of fruitless in female 

rejection behaviour 

As deficiency mapping and candidate gene complementation tests performed in my lab 

have solidified fru as a candidate gene for behavioural isolation (Moehring lab, 

unpublished data), then fru must play a role in female species-specific mate preference 

behaviour. As the fru disruption in D. simulans has never been tested before, this study 

will look to confirm that fru does contribute to behavioural isolation between D. 

melanogaster and D. simulans by disrupting expression of fru in both species. If fru does 

have a role in female species-specific mate preference behaviour, then it is expected that 

hybrids expressing only the D. simulans allele of fru will show significantly reduced 

mating compared to the female hybrids expressing D. melanogaster fru allele when these 

females are paired with D. melanogaster males. One way to accomplish this would be to 
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replace the entire D. melanogaster fru gene and its regulatory sequences with the 

corresponding sequences from D. simulans and then score female behaviour. Since the 

gene is a cumbersome 130 kbp long, and most of the regulatory sequences have not been 

identified, this approach is currently intractable. Additionally, incorporating the entire 

DNA region of a large gene like fru is very difficult (Cande et al., 2014). An alternative 

approach is to perform a gene disruption test, where the D. simulans allele is disrupted, 

and observe the effect on behaviour. The appropriate behavioural test to use for this aim 

is the reciprocal hemizygosity test.  

1.5 Experimental approach 

1.5.1 Reciprocal hemizygosity test with fruitless disruption to 

confirm its role 

A reciprocal hemizygosity test uses hybrids that have the same genomes, except at one 

locus, to test if the gene at that locus has diverged between the two species. This requires 

crossing two strains in which a gene disruption has been generated (Stern, 2014). In this 

case, it would be the crossing of D. simulans with fru disruption to wild-type D. 

melanogaster, and D. melanogaster with fru disruption to wild-type D. simulans. This 

will allow for the generation of F1 offspring that are genetically identical at all loci 

except at the location of the mutation, where they only express a species-specific allele 

(Stern, 2014). In the case of D. melanogaster and D. simulans, hybrids generated would 

be a D. melanogaster/D. simulans hybrid with the D. simulans fru disruption, (only D. 

melanogaster fru expressed), or a D. melanogaster/D. simulans hybrid with the D. 

melanogaster fru disruption (only D. simulans fru expressed) (Figure 5). The approach 

chosen to disrupt fru in D. melanogaster and D. simulans in order to carry out a 

reciprocal hemizygosity test is CRISPR/Cas9 – see below. 
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Figure 5: Generation of hybrids with a species-specific allele disruption of fru to test 

behaviour using a reciprocal hemizygosity test. 

D. melanogaster (red) and D. simulans (blue) strains, two of which were made to have a 

fru knockout (broken lines). When crossed with the opposite species (wild-type), hybrids 

are generated, both of which have identical genomes except for the one-species fru allele 

that has been knocked out. This test can be used to see if expression of species-specific 

fru alleles in an identical genetic background gives rise to species-specific behaviour. If it 

does, then the behaviour of the two hybrids would not be equivalent to each other. 
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1.5.2 CRISPR/Cas9 system 

Currently, CRISPR (clustered regularly interspaced short palindromic repeats) is the most 

efficient genome editing technique for generating double strand breaks (DSB; reviewed 

in: Beumer and Carroll, 2014). CRISPR has several advantages compared to previously 

used genome editing techniques (such as ZFNs and TALENs; reviewed in: Beumer and 

Carroll, 2014). To edit the genome using CRISPR, only a single splicing protein (Cas9) is 

used, meaning that no protein engineering is required, unlike when using TALENs. 

CRISPR targeting only depends on base pairing, requiring the production of a simple 

single guide RNA (sgRNA) to target the sequence of interest. CRISPR also has the 

ability to produce DSBs at multiple targets (reviewed in: Beumer and Carroll, 2014). 

CRISPR/Cas9 system is a widely used system for genome engineering in such organisms 

as yeast (Saccharomyces cerevisiae) (DiCarlo et al., 2013; Jakociunas et al., 2015), 

silkworms (Bombyx mori) (Wang et al., 2013), mosquitos (Aedes aegypti) (Dong et al., 

2015), beetles (Tribolium castaneum) (Gilles, et al., 2015) zebrafish (Hwang et al., 2013; 

Jao et al., 2013), plants and crops (Shan et al., 2013; reviewed in: Belhaj et al., 2013), 

mice and rats (Li et al., 2013; Wu et al., 2013; Wang et al., 2013), human cells (Ding et 

al., 2013; Mali et al., 2013), and in different Drosophila species (personal 

communication with Best Gene where they expressed they could inject in any species 

provided to them, but could not guarantee efficiency). Thus, CRISPR/Cas9 can be used in 

D. melanogaster and D. simulans, giving it the advantage over tools that are only 

available in D. melanogaster (such as Gal4/UAS) to study species-specific mate 

preference. 

1.5.2.1 History and classification 

Originally, the CRISPR system was identified as an adaptive immunodefence system 

used by bacteria and archaea to fight off invading viruses. The components of the 

adaptive immune system are broken down into three main stages: acquisition, expression, 

and interference (reviewed in: Bhaya et al., 2011). The first stage begins once a virus 

attacks, whereby small 32-nucleotide fragments of the viral DNA gets incorporated into 

the bacterial or archaeal chromosome at the end of a repetitive element, forming the 

CRISPR loci (Deveau et al., 2008; Garneau et al, 2010). These CRISPR loci are often 
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adjacent to cas (CRISPR-associated system) genes and have numerous 29-nucleotide 

palindromic repeats separated by the 32-nucleotide fragments of viral DNA known as 

spacers (Deveau et al., 2008). The incorporation of spacers allows for an adaptive 

immune system that can recognize virus and cleave the double-stranded DNA that 

compliments the spacer sequence (Garneau et al, 2010). At the second stage, 

transcription of the repeat and spacer forms CRISPR RNA (crRNA) that base-pairs to 

trans-activating crRNA (tracrRNA), forming a two-RNA structure that directs Cas9 

endonuclease to the invading virus. This begins the third stage where the crRNA and 

tracrRNA with Cas9 initiate DSBs in the target DNA sequence, interfering with virus 

replication and imparting immunity to the host (Jinek, et al., 2012, reviewed in: Bhaya et 

al., 2011).  

The CRISPR/Cas system has been classified into three main groups known as type I, type 

II, and type III (Jansen et al., 2002; Makarova et al., 2011; Sinkunas et al., 2011; 

reviewed in: Bhaya et al., 2011; Jinek et al., 2012) that all have a large number of diverse 

cas genes, but with cas1 and cas2 being common to all systems (Haft et al., 2005, 

reviewed in: Bhaya et al., 2011). The specific nuclease genes can be classified as 

universal (cas1 and cas2), type-dependent (cas4, cas5, cas6, cas7, and cas8), and 

signature (cas3, cas9, and cas10) (Haft et al., 2005; reviewed in: Bhaya et al., 2011). 

Type-dependent genes are often associated with expression and/or interference while 

signature genes are usually only associated with interference (reviewed in: Bhaya et al., 

2011). The expression of these genes is what helps to classify different CRISPR systems 

into the three types. 

Type I is the most diverse of the three CRISPR types, containing six subtypes (type I-A 

through to type I-F) that all cleave DNA with assistance from the exclusive Cas3 

endonuclease (Makarova et al., 2011; Sinkunas et al., 2011). Type III has two variations, 

type III-A and III-B, based on the functional differences between the two: type III-A 

targets plasmid DNA in vivo, as seen in the immune system of Staphylococcus 

epidermidis while type III-B, found in Pyrococcus furiosus, only cleaves single-stranded 

RNA substrates in vitro (Marraffini and Sontheimer, 2008; Hale et al., 2009; reviewed in: 

Wiedenheft et al., 2012). The finding of type III-B CRISPR shows the complexity and 
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mechanistic differences that exists within the CRISPR systems, as it is one of the first 

subtypes to cleave RNA instead of DNA (Hale et al., 2009). 

The type II CRISPR/Cas9 system is composed of a guide RNA (gRNA) with two parts 

(crisprRNA and tracrRNA) that bind the DNA target sequence and Cas9 endonuclease. 

Cas9 then creates a DSB adjacent to the target sequence (Figure 6A; Jansen et al., 2002; 

Jinek et al., 2012). The Cas9 protein requires a 20-nucleotide guide sequence 

complementary to the target sequence (gRNA; specifically the crRNA component) and a 

conserved protospacer adjacent motif (PAM) sequence, composed of nucleotides NGG, 

downstream of the target sequence (Jinek et al., 2012). NGG occurs approximately every 

8 bases in the DNA, making it easy to acquire targets. Additionally, the requirement of 

having NGG at the 3’ end of the target sequence can be relaxed to also include NAG, 

allowing for more potential targets (Mali et al., 2013).  

1.5.2.2 CRISPR/Cas9 mechanism: generating targeted DSBs 

The type II system has been simplified to a two-component system for use in vivo; it is 

composed of Cas9 and a single synthetic guide RNA (sgRNA) that contains the minimal 

function sequence from the gRNA (Figure 6B; Mali et al., 2013; reviewed in: Bassett and 

Liu, 2013; Bassett, et al., 2013; Gratz, et al., 2013; Ren, et al., 2013; Bassett and Liu, 

2014; Gratz, et al., 2014; Ren et al., 2014). One sgRNA can be used to create a DSB, 

paired sgRNAs can be used to target complimentary strands for higher specificity, or two 

sgRNAs aimed at two different sequence targets in a gene can be used to delete the 

intervening sequence. This latter scenario can also be paired with a single stranded 

oligonucleotide donor sequence to integrate short sequences at the cleavage site (Gratz et 

al., 2013; reviewed in: Bassett and Liu, 2013; Ren et al., 2013). In addition, transgenic 

flies expressing the Cas9 protein have been produced to optimize the system, allowing for 

only sgRNA to need to be injected into the embryo. Cas9 expression in Drosophila can 

be driven by either the germline-specific nanos (nos) promoter, vasa promoter, or the 

ubiquitous Actin5c (Act) promoter (Kondo and Ueda, 2013; Ren et al., 2013; reviewed in: 

Port et al., 2014).  
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Though CRISPR/Cas9 is regarded as a good system for its target specificity (reviewed in: 

Wu et al., 2014), there are limitations when using the system. The requirement for a 

PAM motif sequence to be immediately next to the 3’ end (Jinek et al., 2012) dictates 

what sequences can be targeted. In addition, there is the potential for species with lots of 

PAM sites in their genome to have more off-target alterations, making off-target effects 

possible in D. melanogaster and D. simulans (Wu et al., 2014). It is still difficult to 

predict genome-wide off-target effects of Cas9. For example, a recent study done in mice 

found that sgRNAs target loci independently of their target, causing a high number of 

off-target CRISPR-induced indel mutations that could be deleterious (Schaefer et al., 

2017). It is still being worked out whether improving sgRNA design or using a high-

fidelity Cas9 could reduce off-targets, meaning that the general rules for optimizing 

Cas9/sgRNA specificity are still incomplete (reviewed in: Wu et al., 2014). 
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Figure 6: CRISPR/Cas9 type II system. 

A. Schematic of type II CRISPR/Cas9 system in bacteria. Targeted (thick light orange 

line) cleavage (scissors) of viral DNA adjacent to a PAM motif (red) is achieved through 

the formation of a crRNA (thin orange line) and tracrRNA (thin purple line) complex 

with Cas9 endonuclease (blue oval). B. Schematic of two-component type II 

CRISPR/Cas9 system for use in vivo. The Cas9-sgRNA complex shows how the sgRNA 

(thin purple and orange line) is designed to target the complimentary sequence of the 

target site (thick orange line), adjacent to the PAM sequence (red), allowing for the Cas9 

endonuclease (blue oval) to cause a double strand break at the cleavage site (scissors). 

This figure was adapted from Bassett and Liu (2014). 
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1.5.3 Repairing DSBs 

Cleavage of a target sequence triggers repair mechanisms within the cell to repair a DSB. 

This can take place in two ways, either though non-homologous end joining (NHEJ) or 

homologous recombination (HR) (Figure 7). NHEJ is a common repair pathway in 

multicellular organisms that is used to repair stress-induced DSBs as well as DSBs that 

were generated with enzymes, such as when using the CRISPR/Cas9 system. The 

chromosome is repaired without the use of external homologies, instead relying on the 

modification of the broken ends to make them compatible in order to bring the ends 

together to re-join the sequence using ligase IV (in Drosophila) (Lieber et al, 2003; 

McVey et al., 2004).  This often results in deletions of 1-10 nucleotides from each end of 

the DSB, resulting in indel mutations that can cause a frameshift in the sequence (Figure 

7A; Lieber et al., 2003). If two DSBs are made within the same sequence, repair through 

NHEJ can result in a deletion of the sequence between those two break points (Figure 

7B).  

HR, on the other hand, uses a homologous chromosome or homologous donor template to 

copy information from one homologue to the other (Haber, 1995; Lieber et al., 2003). 

Where this process naturally occurs in the yeast S. cerevisiae, the repair of DSBs occurs 

without the loss of genetic information (Haber, 1995). HR is also being widely used in 

transgenics to either insert a gene (Figure 7C) or replace a donor template with an 

alternative sequence (Figure 7D) at the target where the DSB was generated (reviewed in: 

Bassett and Liu, 2013; reviewed in: Housden et al., 2014; reviewed in: Ren et al, 2014). 

Both repair mechanisms are native to Drosophila and so either option is available when 

choosing a means to repair a DSB generated by CRISPR (reviewed in: Bassett and Liu, 

2013; reviewed in: Housden et al., 2014; reviewed in: Ren et al., 2014). The repair 

mechanism of choice depends on the preference for either the creation of small deletions 

or precise genome modifications. I will be generating two DSBs in exons of fru using 

CRISPR/Cas9-mediated NHEJ to cause a deletion in the sequence. 
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Figure 7: Representation of repairing DSBs with (A, B) NHEJ and (C, D) HR. 

A When a single DSB is made in a sequence, repair with NHEJ can result in a gene 

disruption due to the possibility of a few nucleotides during the repair. B If two DSBs are 

made in the same sequence, repair through NHEJ can result in a chromosomal deletion of 

the portion of the sequence in between the two break points. C For repair to a single DSB 

by HR, a donor template with flanking sequence that is homologous to the sequence on 

either end of the cut can be added to the sequence during repair, resulting in the addition 

of a gene. D The occurrence of two DSBs in a sequence allows for the possibility of 

replacing one gene with another by use of a donor template paired with a sequence 

homologous to the donor sequences flanking the cut sites. 
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1.5.4  Overview 

My goal is to confirm definitively that fru has a molecular role in female rejection 

behaviour by generating reciprocal gene knockouts in D. melanogaster and D. simulans 

using CRISPR/Cas9-mediated NHEJ, targeted to the common regions in fru. Since I do 

not know which fru transcript underlies female rejection behaviour, I can ensure that fru 

expression is completely disrupted by targeting the common region, which is present in 

all fru transcripts. I aim to generate DSBs in both exons C1 and C2, or in C4 and C5, 

allowing for the intervening portion of sequence to be removed. Removing two separate 

regions reduces the likelihood that any observed phenotypes are due to off-target effects. 

Knocking out fru will allow for the generation of D. melanogaster/D. simulans hybrids 

with either the D. melanogaster or the D. simulans fru allele disrupted. These hybrids 

will be genetically identical throughout the genome except at the fru locus, where only 

the allele of a single species will be expressed. This will allow for the performance of a 

reciprocal hemizygosity test (Figure 5; Stern, 2014) that can positively identify if fru 

contributes to the differences in female behaviour between the two species. In this 

experiment, two types of D. melanogaster/D. simulans hybrids will be generated and 

tested to confirm the effect of fru on species-specific female rejection behaviour. In 

hybrids that only express the D. simulans allele of fru, females are expected to reject D. 

melanogaster males and have reduced mating, while in the reciprocal cross, a female that 

only expresses the D. melanogaster fru allele, will not reject D. melanogaster males 

(Figure 8). This experimental approach will verify that a gene contributes to the genetic 

basis of species-specific female rejection behaviour. From there, it may be possible to 

map out the genetic interactions of the gene with other loci that affect female mate 

preference and then locate the neurons in which these genes are expressed, forming 

signals to elicit female preference behaviours. Altogether this will tell us how 

behavioural isolation acts at the molecular level to give rise to a phenotypic barrier of 

speciation. 
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Figure 8: Reciprocal hemizygosity test between D. melanogaster and D. simulans 

with fru disruption. 

Female hybrids containing one homolog from D. melanogaster (red) and D. simulans 

(blue) that have a species-specific allele of fru disrupted (broken lines). These females are 

crossed with D. melanogaster males to see if the female will accept or reject mating. As 

fru has been previously shown to affect female preference, the behaviours exhibited by 

these two hybrids are expected to be different, confirming that fru has a role in female 

species-specific rejection behaviour. 
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2 Materials and Methods 

2.1 Fly husbandry 

Drosophila stocks were maintained on standard cornmeal medium (Bloomington 

Drosophila Stock Center recipe) in 30 mL vials at 24°C, 70% humidity with a 14:10 

light:dark cycle. Wild-type D. melanogaster line BJS was obtained from Dr. Brent 

Sinclair. A transgenic D. melanogaster line expressing Cas9 under the nanos promoter on 

the X chromosome (y1 M{nos-Cas9.P}ZH-2A w*) and a balancer stock (w1118/Dp(1;Y)y+; 

CyO/nub1 b1 snaSco lt1 stw3; MKRS/TM6B, Tb1) were obtained from the Bloomington 

Drosophila Stock Center. Wild-type D. simulans line Florida City (FC) was obtained 

from Dr. Jerry Coyne. A D. simulans stock with an inversion on the third chromosome 

(D. simulans Dlp/st Ubx) and a transgenic D. simulans stock expressing Cas9 under the 

nanos promoter on the X chromosome (D. simulans 1029::Cas9) were obtained from Dr. 

David Stern. A D. melanogaster GFP-tagged sperm line was obtained from Dr. John 

Belote.  

2.2 CRISPR constructs and sgRNA transcription 

Target sites consist of 20 nucleotides with an additional three nucleotide (NGG) 

protospacer adjacent motif (PAM) sequence at the 3’ end, essential for Cas9 binding and 

cleavage of the target sequence. Optimal target sites have one or two guanines (G) at the 

5’ end of the target sequence with no or minimal off-target sites. Target sites for sgRNA 

chosen for common region exons in fru (C1, C2, C4, and C5) for D. melanogaster and D. 

simulans (Appendix A) were identified using the flyCRISPR optimal target finder (Gratz, 

et al., 2014; http://tools.flycrispr.molbio.wisc.edu/targetFinder/). As a control for the 

effectiveness of my sgRNA generation protocol and injection protocol, I used sgRNA for 

frost (fst) and yellow (y). fst sgRNA was in vitro transcribed by Alaa Briek (courtesy of 

the lab of Dr. Anthony Percival-Smith) and maintained at -80°C, and sgRNA target site 

for y was taken from Bassett and Liu (2014) and in vitro transcribed by myself. 

Unlike the D. melanogaster fru sequence, D. simulans fru sequence was not yet annotated 

to identify the different exons of fru, therefore requiring an extra step before target sites 
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could be determined. To find fru targets in D. simulans, I annotated the fru sequence in 

comparison to the D. melanogaster fru sequence using BLAST and Clustal Sequence 

Alignment (EMBL-EBI). I amplified the common region exons in D. simulans FC 

samples through PCR using exon specific primers, followed by gel extraction for clean-

up using the Geneaid Purification kit (FroggaBio, North York, ON). Samples were sent to 

the Robarts DNA Sequencing Facility (London, ON) for sequencing to ensure target 

sequences were present in D. simulans FC. Though the common region is mostly 

conserved between the two Drosophila species, SNPs were present, and thus the 

sequence of the particular strain was useful in identifying precise common region targets 

for sgRNA for both D. melanogaster and D. simulans (Appendix A; Table 1). 

sgRNA for the four fru targets in D. melanogaster, 10 fru targets in D. simulans, and the 

one y target, were generated through the in vitro transcription method outlined by Bassett 

and Liu (2014). Firstly, target sequences had to be amplified to use for in vitro 

transcription of sgRNA. This was done by amplifying CRISPR F oligonucleotides 

containing the target sequence (without the PAM sequence), T7 promoter and gRNA 

backbone (Tables 1) alongside the CRISPR R oligonucleotide 

(AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTAT

TTTAACTTGCTATTTCTAGCTCTAAAAC) (Eurofins, Mississauga, ON). When 

designing CRISPR F oligonucleotides, if the target sequence did not begin with guanine, 

then a guanine could be added to the 3’ end of the T7 promoter sequence (Table 1; 

Bassett and Liu, 2014).  

After amplification of the CRISPR oligonucleotides, 2 µL of PCR product sgRNA 

template was analyzed on a 2% TBE agarose gel to ensure a single band. The remaining 

product was purified using a Geneaid Purification kit (FroggaBio, North York, ON) and 

300 ng was used for in vitro transcription. After initial in vitro transcription of sgRNA 

using a T7 MEGAscript kit (ThermoFisher Scientific, Burlington, ON), sodium acetate 

was added to 10.5 ng of sgRNA, followed by 70% ethanol to precipitate the solution 

before analyzing the product on a 1.2% TAE agarose gel and freezing at  -80°C until 

needed for the injections. 
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Table 1: Target sites and sgRNA oligonucleotides for fru exons C1, C2, C4, and C5, 

and y 

Species	 Target	
genes	
and	
exon	

CRISPR	F	Oligonucleotides	(5’	to	3’)	

T7	Promoter	 Target	site	 gRNA	backbone	

D.	melanogaster	 fru	C1	 GAAATTAATACGACTCACTATAGG	 CAACACTGACCAAGGAGCGA	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

GTTTTAGAGCTAGAAATAGC	

	

fru	C2	 GAAATTAATACGACTCACTATAGG	 TGCAGGCTGACAGGATGGTC	

fru	C4	 GAAATTAATACGACTCACTATAG	 GCTCAGACCGCTAAGGGCGC	

fru	C5	 GAAATTAATACGACTCACTATAGG	 CTCGAACTGATACAGCCAGT	

y	 GAAATTAATACGACTCACTATAG	 GTTTTGGACACTGGAACCG	

D.	simulans	 fru	C1	 GAAATTAATACGACTCACTATAGG	 CAACACTGACCAAGGAGCGA	

fru	C2	 GAAATTAATACGACTCACTATAG	 GCTGCCCATGTTTCTCAAGA	

fru	
C4a	

GAAATTAATACGACTCACTATAGG	 TCGAGTCCCGTGCCCAAAAC	

fru	
C4b	

GAAATTAATACGACTCACTATAG	 GGCGCGGCCAGCGCCCTGAG	

fru	
C4c	

GAAATTAATACGACTCACTATAGG	 TCGGAGTCGGAGGACGCCGG	

fru	
C4d	

GAAATTAATACGACTCACTATAG	 GCCGCCCAGATGGACGCTGG	

fru	
C5a	

GAAATTAATACGACTCACTATAGG	 CTCGAACTGATACAGCCAGT	

fru	
C5b	

GAAATTAATACGACTCACTATAG	 GCAGCAGCCACACCTTACGC	

fru	
C5c	

GAAATTAATACGACTCACTATAGG	 CAAAGCCCAGCGATACCATC	

fru	
C5d	

GAAATTAATACGACTCACTATAGG	 TCGCAAATGGAGCGGTGAGC	
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2.3 Egg collection  

Between one week to two days before injection, flies were placed into fly cages with a 

grape or apple juice agar plate (Recipe in Appendix B) smeared with yeast; plates were 

changed twice a day when injections were not being performed. The day before injecting, 

plates were changed every hour during the window of time injections would be 

performed the next day (e.g. if injections were to be done between 12 p.m. and 6 p.m., 

plates would be changed every hour between 12 p.m. and 6 p.m. the day before). This 

was done to help induce flies to lay eggs on the juice plates during the time injections 

would be performed. On the day of injections, juice plates containing eggs were collected 

every 30 minutes and replaced with a fresh juice plate. When preparing eggs for 

injection, eggs could either be left with their chorion on, or have their chorion removed.  

2.3.1 Egg collection with bleach dechorionation 

Dechorionation of eggs was done by soaking the eggs on the juice agar plate in 3% 

bleach for 1 minute, pouring the bleach with the eggs into a mesh egg basket and rinsing 

with deionized water. Dechorionated eggs were then transferred from the mesh onto a 

fresh juice agar plate (no yeast) to allow for easy manipulation of the eggs. All eggs were 

vertically aligned with posterior ends in one direction with a fine paintbrush. Aligned 

eggs were then transferred onto a cover slip using double-sided sticky tape and then 

mounted on a microscope slide. Eggs were desiccated by placing under a hairdryer for an 

appropriate time (in a 18°C room, embryos were dried for 4.5 minutes; at 24°C, 3 

minutes), allowing for better survivability and higher likelihood of sgRNA entering the 

egg while decreasing leakage of cytoplasm during injection. Eggs were then covered in 

halocarbon oil. Initial tests to find the most efficient dechorionation protocol were done 

in partial assistance with Melissa Wong who contributed to half of the results for testing 

survivability after wire-and-tape dechorionation and injections (see Results). 

2.3.2 Egg collection without dechorionation 

Chorionated eggs were washed off a juice agar plate with water and poured into a mesh 

basket. They were then transferred to a water droplet on a coverslip mounted on a 
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microscope slide and vertically aligned with posterior ends in one direction, but at a 

slight angle, using a fine paintbrush. Eggs were given time to dry so that they could 

adhere to the coverslip; adherence was determined by pushing the eggs lightly with a dry 

paintbrush to see if they would move. Eggs were then covered in halocarbon oil.  

2.4  Microinjection and screening mutations 

Before and after injections, sgRNA was electrophoresed on 1.2% TAE agarose gel to 

ensure that the sgRNA had not degraded. Injections were performed using a glass 

capillary tube injection needle made with the needle puller (Sutter Instrument Company, 

Micropipette Puller P-97) provided by Dr. Gregory Gloor, using protocol 9 on the 

machine. Injection needles were loaded with sgRNA in an injection mix, sgRNA alone, 

or sgRNA and Cas9 using glass capillary loading needles on the day injections were 

being performed. The needles were then mounted into a needle holder on a dissecting 

microscope (Nikon Stereo microscope) attached to a digital microinjector (Sutter 

Instrument Xenoworks Digital Microinjector). Eggs were injected at the posterior end 

and drained of halocarbon oil after injections. The injected dechorionated eggs were then 

transferred to a food plate smeared with yeast, kept at 18°C for 48 hours, and transferred 

to a 24°C incubator with a 14:10 light:dark cycle. Eggs injected without dechorionation 

were put into a beaker with wet kimwipes and sealed with parafilm (Figure 9). They were 

then placed in a 24°C incubator with a 14:10 light:dark cycle and removed from the 

beaker after 48 hours. Once the dechorionated or non-dechorionated eggs developed into 

larvae, the larvae were transferred to 30 mL food vials where they could eclose into 

adults.  
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Figure 9: Incubation of injected eggs with chorion in beakers sealed with parafilm. 

After injection, the coverslip containing the injected eggs is placed on a food plate 

smeared with yeast (seen here in the beaker surrounded by kimwipes) angled slightly 

towards the yeast in the middle to allow for extra halocarbon oil to drain and for 

developing larvae to gain easier access to the food. Wet kimwipes surround the food plate 

to provide moisture to the developing embryos. After 48 hours, food plates are removed 

from the beakers. 
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2.4.1 Injections for targeted fru mutations 

Eggs were injected with either: sgRNA in an injection mix (250ng/µL of each sgRNA, 

500ng/µL repair template, 0.5 µL food dye, 2 µL 10% glycerol, and 2 µL 1X PBS), or 

sgRNA alone, if injecting into D. melanogaster eggs expressing Cas9, or sgRNA and 

Cas9 protein (New England Biolabs, Ipswich, Massachusetts) if injecting into D. 

simulans FC. When injecting, two sgRNAs targeting two common region exons of fru 

were paired such that there could be the creation of a DSB in both C1 and C2, or in C4 

and C5. Best Gene and I performed injections of sgRNA targeting C1, C2, C4, and C5 in 

D. melanogaster in duplicate.  

2.4.2 Crosses and genotyping for fru mutations 

Injected flies with targeted fru disruption (G0) were mated to either a balancer (D. 

melanogaster) or an inversion (D. simulans) stock to allow for maintenance of a 

CRISPR-modified fru locus. After mating, injected adults (G0) were scored for successful 

gene disruptions through genotyping using PCR with primers flanking the cut sites, 

followed by restriction enzyme (RE) digestions (Table 2; Figure 10). To ensure that the 

deletion was in the germline, the offspring of parents with mutations (G1 – heterozygotes 

for fru deletion over a balancer or inversion) were then crossed again to balancer or 

inversion stock flies and G1 flies were genotyped and scored again for the gene 

disruption. The offspring (G2) of G1 flies bearing a disruption were crossed together, 

allowing for the generation of a stable stock of flies with successful fru disruptions 

maintained over a balancer or inversion, as a homozygous fru disruption is lethal (Ryner 

et al., 1996). Flies injected by Best Gene were crossed to D. melanogaster Cas9 stock 

and balancer stock, making the third chromosome genotype fruC4-/TM6B, Tb1, with the X 

chromosome recombinant between that of the Cas9 stock and the balancer stock, and the 

second chromosome recombinant between that of the Cas9 stock and the Scutoid-bearing 

homolog of the balancer stock. 

Screening for knockouts was done either by amplification with primers flanking two 

exons and their cut sites, to screen for a large deletion of these exons, or with primers 

specific to each exon such that the portion of the sequence surrounding the Cas9 cut site 
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could be amplified and used for RE digest, to identify a deletion in a single exon (Table 

2). Samples were amplified under the following PCR conditions when using the Taq 

polymerase from Invitrogen (ThermoFisher): 1 cycle 95°C 3 min; 2 cycles 95°C 30 

s/58°C 30s/72°C 30 s; 4 cycles 95°C/30 s 57.2°C/30s 72°C/30 s; 30 cycles 95°C/30 s 

56.5°C/30s 72°C/30 s; 1 cycle 72°C/5 min; hold 4°C. When using Froggabio Taq 

polymerase extension time was longer, as follows: 95°C 3 min, 95°C 30 s, 58°C 30s, 

72°C 1 min (2 cycles), 95°C 30 s, 57.2°C 30s, 72°C 1 min (4 cycles), 95°C 30 s, 56.5°C 

30s, 72°C 1 min (30 cycles), 72°C 10 min, 4°C hold. Samples were then electrophoresed 

on 2% TBE agarose gels to screen for deletions according to product size. 

When screening for deletions in only a single exon, REs were used that had a recognition 

sequence that overlapped the Cas9 cut site. These REs were identified using NEBcutter 

(Vincze et al., 2003; http://www.labtools.us/nebcutter-v2-0/) (Table 2). RE digests were 

prepared using 10 µL of PCR product, 18 µL of nuclease-free water, 2 µL of appropriate 

buffer (provided with RE), and 10 units of RE (generally 0.5 µL). This mix was 

incubated at the appropriate temperature for the specific enzyme for 13-16 hours, 

denatured for 20 minutes, and held at 4°C until samples could be electrophoresed on a 

2% TBE agarose gel to visualize bands (Figure 10). When mutations were detected, 

samples were gel extracted, purified using the Geneaid Purification kit (FroggaBio), and 

sent to the Robarts DNA Sequencing Facility (London, ON) for sequencing to identify 

the extent of deletions. Amino acid sequences for the common region were obtained from 

FlyBase (Gramates et al., 2017) and NCBI BLAST (Altschul, et al., 1990) to identify 

amino acid changes due to deletions and variation in sequences amongst Drosophila 

species. Protein structures were modeled using Phyre2 (Kelley, et al., 2015; 

http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) default parameters. The 

default parameters of Phyre Investigator and SuSPect were ran to assess alignment 

quality and mutational analysis. 
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Table 2: Primers used for genotyping by PCR for single or double cut-site induced 

mutations in fru along with RE. 

	 Target	
exon	

Primer	sequence	(5’	–	3’)	

Forward	and	Reverse	

Restriction	
enzyme	

D.	melanogaster	 C1-C2	 F:	TGTTTCGCAAGACTCGCTT	

R:	ACACCGTTACACACGACCAA	

	

C4-C5	 F:	TGTTGGGTCCTCTTTCAAGG	

R:	GCCAACTTCAAGTCGAGTCC	

C1	 F:	TATCTCATGGACGCACCTTG	

R:	AAACAAAGCAGGCGCTAAAC	

BseDI	

C2	 F:	GATCCCTGATTTGCACACAC	

R:	CAAGGTGCGTCCATGAGATA	

DrdI	

C4	 F:	ACGATGCAGCAACAAAATCA	

R:	TCCCTTTCAATGGCAGACTC	

Bpu10I	

C5	 F:	GCTAATCCTGAGCGGTGTGT	

R:	GAAGCGTTTTTAGGCAGCAC	

Bsr1	

D.	simulans	 C1-C2	 F:	ATGCTCTTGTCTCGCCACAT	

R:	AGTCGGAGCGGTAGTTCAGA	

	

C4-C5	 F:	GGTTTCGCGTCGTTATCAGT	

R:	GCTAATCCTGAGCGGTGTGT	

C4	 F:	GGTTTCGCGTCGTTATCAGT	

R:	CTCACGTTTTTGGGAAGCAT	

Bpu10I	

NaeI	

C5	 F:	GAAGCGTTTTTAGGCAGCAC	

R:	GCTAATCCTGAGCGGTGTGT	

Bsr1	

LpnP1	
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Figure 10: Illustration of genotyping for mutations using a RE digestion. 

When performing a RE digestion to determine if a single sgRNA was able to target a 

specific exon in fru, the RE would only fully digest if the sequence was not targeted, 

indicating Cas9 did not make a DSB. Lane 1 shows what that digest would look like – the 

full sequence has been digested, represented by the two shorter fragments. Lane 2 shows 

the digest if sgRNA was capable of targeting the sequence, causing a DSB to occur. 

Partial digestion would still occur (as seen with two smaller fragments), as CRISPR 

would not be able to cause a DSB in every cell. The larger fragment on top represents the 

portion of the sequence that was not digested due to a mutation caused by the DSB 

through Cas9. G0 flies with CRISPR-mediated mutation would look like Lane 2.  
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2.4.3 Injections and screening for fst mutations 

Control injections using two sgRNAs targeting fst and a repair template with a white+ 

marker (courtesy of the lab of Dr. Anthony Percival-Smith) were mixed in an injection 

solution of: 250ng/µL of each sgRNA, 500ng/µL repair template, 0.5 µL food dye, 2 µL 

10% glycerol, and 2 µL 1X PBS. Food dye was used to help visualize the solution when 

it was being injected. Transgenic D. melanogaster expressing Cas9 under the nanos 

promoter were used for fst injections. Crossing viable injected adults to wild-type D. 

melanogaster and screening progeny for white eyes was done to screen for fst mutants. 

2.4.4 Injections and screening y mutations 

Injecting sgRNA targeting y used no injection mix as described above, but only sgRNA. 

As well, there were different flies than those used for targeting fru common regions in D. 

melanogaster. The original stock used for fru injections contained a mutation in the y 

gene, which would prevent scoring for additional CRISPR-induced mutations in this 

gene. Therefore, hybrid transgenic Cas9 D. melanogaster/wild type D. melanogaster 

males or females were used, as these hybrids would contain a single functional allele of y 

on the X chromosome, which could be targeted for disruption. To generate hybrids for 

injections, virgin transgenic Cas9 females and wild-type males (or vice versa) were put 

into fly cages such that the eggs laid were hybrids. Once grown, hybrid female injected 

flies (G0) were selected for and mated to wild-type male D. melanogaster. Their male 

progeny (G1) were then visually screened for y disruption (Figure 11). If the injections 

worked and y was disrupted, all males would lack y expression, as seen by yellow 

discoloration of their bodies.  
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Figure 11: Crossing scheme for inducing y mutation in transgenic hybrids and 

scoring for y disruption. 

The bars in this figure represent chromosome 1 (X and Y) in Drosophila, where two bars 

represent one individual fly with a set of chromosomes; two equal length chromosomes 

are females (two X chromosomes); one long (X) and one short (Y) chromosome are 

males. Yellow x’s represent a y disruption. Red bars represent wild-type homologs in 

wild-type D. melanogaster flies; purple bars are homologs containing the Cas9 transgene 

(black triangle) and y disruption (yellow x) in transgenic D. melanogaster. In the first 

cross, a male wild-type D. melanogaster is mated to a female transgenic Cas9 D. 

melanogaster. Hybrid eggs produced by this cross are used for injections and ideally 

would produce a female with the inherited copy of y disruption from the mother and a 

disrupted y copy as generated by CRISPR (lightning bolt). To ensure y was disrupted by 

CRISPR, this female is mated to a wild-type male (second cross), and her male progeny 

are screened for y disruption. If all males produced from a single injected female exhibit y 

phenotype, and not just a portion of males (as they merely inherited the disrupted copy 

from the transgenic allele), then CRISPR worked in the y control injections (male 

progeny shown). 
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2.5  Behavioural mating assays  

D. melanogaster with CRISPR-mediated NHEJ deletions in C4 (see Results) were 

balanced over TM6B to make three stable stocks. The first stock to be stable had a three-

amino acid deletion (deletion stock C4-a) (see Results) and was used to test male and 

female mating behaviour.  

2.5.1 Male behavioural sterility assay 

Males from fru deletion stock C4-a were used to test male sterility, as males homozygous 

for fru mutations do not attempt to copulate with females (Hall, 1978). The protocol used 

to test for male behavioural sterility was taken from Gailey and Hall (1989). Briefly, 

pupae that were homozygous for the fru C4 deletion were collected; virgin males were 

collected at eclosion and kept with no more than 10 males in one vial. Wild-type virgin 

males from the stock used for injections were also collected to act as a control for male 

behaviour. All males were aged 5-7 days before placing individually into a food vial with 

up to 4 virgin wild-type females from the injection stock, aged 5-7 days. After 7 days, 

vials were scored for presence of larval progeny.  

2.5.2 Female receptivity behavioural mating assay 

D. melanogaster with deletion in C4 exon of fru was also tested to see if the deletion had 

an effect on female species-specific mating preference. Virgin females heterozygous for 

C4 deletion maintained over TM6B balancer were collected at eclosion and aged for 5-7 

days before crossing to wild-type virgin D. melanogaster males from the Cas9 stock used 

for injections or wild-type virgin D. simulans FC males, aged 5-7 days. From each cross, 

virgin females with the balancer and virgin females with the deletion were collected and 

aged 5-7 days. The four different genotypes of females were then used for behavioural 

mating assays to see if the deletion of C4 in hybrid females would cause a reduction in 

mating compared to the D. melanogaster/D. simulans hybrid with the balancer and the D. 

melanogaster females heterozygous for the deletion or heterozygous for the balancer (as 

in Figure 2). Behavioural mating assays were performed by observing courtship and 

mating between virgin female and virgin wild-type D. melanogaster males with GFP-
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tagged sperm in 30 mL glass vials for one hour at 24°C with 70% relative humidity. After 

one hour, the pairs were placed into 30 mL food vials for 24 hours. After 24 hours, the 

female reproductive tract was dissected to score for presence of sperm (as a proxy for 

mating) or absence of sperm (as a proxy for no mating) to determine if there was a 

change in behavioural phenotype to reject a mate. The proportion of pairs that mated was 

analyzed using a G-test. If a reduction in mating of the hybrid females with the deletion 

in C4 exon were observed, than this line would be appropriate to use for one half of the 

reciprocal hemizygosity test (Appendix C). 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 

 

3 Results 

The goal of this study was to knockout fru in D. melanogaster and D. simulans in order 

to confirm the role of fru in female species-specific mate preference behaviour. To 

achieve this, first reciprocal gene knockouts in D. melanogaster and D. simulans had to 

be achieved by targeting the common region exons in fru to ensure gene disruption using 

CRISPR/Cas9 and NHEJ repair of the sequence. This approach was not entirely 

successful, as deletions in only a single exon of fru were achieved in D. melanogaster. 

Therefore, this study did not see the completion of generating female hybrids expressing 

only one species-specific allele of fru and testing for mating behaviour with a D. 

melanogaster male using the reciprocal hemizgosity test. 

3.1 Testing injection protocols: survivability of eggs 

A key component to having CRISPR/Cas9 target the gene of interest is to be able to 

inject the CRISPR/Cas9 components into appropriately aged eggs. An injection protocol 

had not yet been set up in the Moehring lab at the start of this project, but through 

learning different injection protocols and adapting them for the lab space and equipment 

available, I was able to establish an injection protocol for the Moehring lab. 

An injection protocol can be broken down into the following components: preparation of 

injection and loading needles, preparation of flies for egg laying, dechorionation 

(removal of the chorion) of eggs, desiccation of eggs, and microinjection of eggs. To 

establish an efficient injection protocol, troubleshooting of dechorionation and 

microinjection were first completed. Removal of the chorion allows for easier puncturing 

of the embryo with a needle, but the process of removal can cause reduced survivability. 

Though some injections were done with dechorionation, injections with an intact chorion 

were a better approach for this study (see below). Other approaches that were tested were 

the use of an injection mix (see Results section detailing y injections) and different 

strategies for egg laying (see Discussion). 

The purpose of dechorionation is to remove the outer shell from the egg and allow access 

to the embryo, making it easier to identify the age of the embryo and easier for the 
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injection needle to pierce the embryo. The two different dechorionation methods tried 

were: washing eggs in 3% bleach for one minute as this was sufficient time to remove the 

entire chorion (personal communication, Dr. Anthony Percival-Smith) and lining up eggs 

between two thin wires and removing the chorion with sticky tape (personal 

communication, Dr. Anne Simon). Another option that was later explored was to leave 

the chorion intact (Bassett and Liu, 2014). These tests were carried out on eggs collected 

from either transgenic D. simulans Cas9-expressing flies or transgenic D. melanogaster 

Cas9-expressing flies.  

Of the two dechorionation methods tested on D. simulans Cas9-expressing eggs, 3% 

bleach was deemed to be the most effective (when first attempted at the beginning of this 

project), since bleach preparation was faster, even though it had a significantly lower 

survivability of eggs than the wire and sticky tape method (Table 3; 49% survivability 

with bleach vs. 100% survivability with tape; z-test, P = 0.001).  

After initial injections of dechorionated eggs with saline solution, bleach also had a lower 

survivability (z-test, P = 0.0459) than the wire-and-tape method, but the problem with 

using wire and sticky tape was the eggs would often be shifted out of orientation. This 

presented a problem since all eggs must be in a straight line with their posterior ends 

facing one direction in order for microinjections to be quick and effective. Realigning the 

eggs was difficult and time-consuming, surpassing the 10-minute interval allotted to 

dechorionation and alignment (Table 4). Therefore, the strategy of dechorionating eggs 

with bleach was chosen for injections targeting disruptions in fst, y, and fru in D. 

melanogaster. 

Later in the year, injections of D. melanogaster Cas9-expressing eggs after bleach 

dechorionation had lower survivability (Table 7, 8), and so bleach dechorionation was 

retested on D. melanogaster Cas9-expressing eggs and found to have significantly lower 

survivability than when first tested (z-test, P = 0.00002). The dramatic shift in bleach 

survivability between previous tests (Table 3) and more current survivability tests (Table 

5) make dechorionation an inconsistent approach. A factor like change in potency of 

bleach over time could have played a role, but was not tested. I found an alternative 
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approach for preparing eggs for microinjections, which was to keep the chorion on and 

skip the dechorionation process. This approach was tested to see if there would be better 

survivability. When egg survivability was tested with bleach treatment and without the 

dechorionation process (without injection) on transgenic D. melanogaster flies, it was 

found that keeping the chorion on was a better approach to ensure significantly higher 

survivability (z-test, P = 0.000001) before injections (Table 5). However, survival of eggs 

with an intact chorion was expected to be 100% as there was no dechorionation or 

injection of the eggs, but there was only 50% survivability. These tests used D. 

melanogaster Cas9 line, as opposed to transgenic D. simulans Cas9, which was used in 

the original dechorionation survivability tests. Low survivability could indicate there is a 

low eclosion rate amongst the transgenic D. melanogaster Cas9-expressing flies 

compared to the D. simulans Cas9-expressing flies. 

Additional steps in the microinjection protocol including desiccating the eggs after 

dechorionation, or covering the eggs with halocarbon oil, were also tested for 

survivability (Table 6). These tests were all seen to lower survival, although the 

survivability difference between dechorionating with bleach alone, with addition of 

halocarbon oil (z-test, P = 0.737), or desiccation time (z-test, P = 0.626) was not 

significant. Survivability was significantly lower for intact eggs covered in halocarbon oil 

compared to those that were not covered with halocarbon oil (z-test, P = 0.023), but 

survivability of eggs with chorion on and halocarbon oil was significantly higher than 

eggs exposed to bleach and halocarbon oil (z-test, P = 0.029). Therefore, skipping the 

dechorionation process was seen as a way to ensure more consistent survivability and 

potentially higher survivability when injecting. When performing injections to target y, 

survivability after injections using bleach dechorionation and no dechorionation of D. 

melanogaster eggs were compared (see section 3.3.1) and survivability was not 

significantly different for the two approaches (z-test, P = 0.590). Injecting with an intact 

chorion was less time consuming than dechorionation, so the chorion intact protocol was 

employed for injecting into D. melanogaster and D. simulans to disrupt fru. However, 

this approach could have limited mutation efficiency, as it was more difficult to visualize 

where sgRNA was being injected into the egg. 



51 

 

Table 3: Survivability of transgenic D. simulans Cas9-expressing eggs after 

dechorionation only. 

	 Bleach	 Wire-and-tape	

No.	of	eggs		 49	 23	

No.	of	larvae	 24	 23	

No.	of	pupae	 24	 23	

No.	of	adults	 24	 23	

Survivability	 48.9%	 100%	

 

Table 4: Survivability of transgenic D. simulans Cas9-expressing eggs after 

dechorionation and injection. 

	 Bleach	and	injection	 Wire-and-tape	and	
injection	

No.	of	eggs	injected	 51	 161	

No.	of	larvae	 11	 6	

No.	of	pupae	 9	 6	

No.	of	adults	 9	 6	

Survivability	 17.6%	 37.5%	

140 eggs were dechorionated, but due to being put out of proper orientation during that process, only 16 
were injected into the posterior ends. 
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Table 5: Survivability of transgenic D. melanogaster Cas9-expressing eggs after 

being dechorionated with bleach and egg eclosion rate with no dechorionation. 

	 Bleach	dechorionation	 No	dechorionation	

No.	of	eggs	 73	 88	

No.	of	larvae	 10	 44	

No.	of	pupae	 10	 44	

No.	of	adults	 9	 44	

Survivability	 12%	 50%	

 

Table 6: Survivability of transgenic D. melanogaster Cas9-expressing eggs when 

exposed to dechorionation and desiccation/ halocarbon oil or no dechorionation and 

halocarbon oil. 

	 Bleach	and	
desiccation	only	

Bleach	and	
halocarbon	oil	only	

No	dechorionation	
and	halocarbon	oil	

only	

No.	of	eggs	 64	 31	 64	

No.	of	larvae	 6	 3	 24	

No.	of	pupae	 6	 3	 24	

No.	of	adults	 6	 3	 20	

Survivability	 9.4%	 9.7%	 31.2%	
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3.2 Transcription of sgRNA  

Synthesis of sgRNA for use in targeting genes when injected into eggs can be achieved 

by either sgRNA plasmids or synthetically transcribing sgRNA. I chose to perform in 

vitro transcription of sgRNA and to inject sgRNA as opposed to using plasmids, as the 

former has been found to be highly efficient at generating mutations by NHEJ (Bassett & 

Liu, 2014). This method was used to transcribe sgRNA targets for the four common 

regions of fru in both species (Figure 12), along with additional sgRNA targets for C4 

and C5 exons in D. simulans and y sgRNA (Figure 12) as based on an sgRNA sequence 

from Bassett & Liu (2014). This process allowed for sgRNA to be prepared in 3 days to 

use for injections. sgRNAs targeting genes in D. melanogaster were then injected into a 

D. melanogaster Cas9-expressing line. A transgenic Cas9 stock was used, as the most 

efficient CRISPR method involves injecting short synthetic gRNA (sgRNA) into 

transgenic Drosophila embryos expressing Cas9 (Bassett and Liu, 2013; Ren et al., 2013; 

reviewed in: Housden et al., 2014; Ren et al., 2014). A D. simulans Cas9-expressing line 

was also originally planned to be used for injections, which would first require crossing 

the Cas9 into the D. simulans FC background. However, reports of weak Cas9 expression 

in this line (personal communication, Nicholas W VanKuren) meant that it would be 

more efficient to inject sgRNA and Cas9 directly into D. simulans FC instead.  
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Figure 12: sgRNA transcribed in vitro for four fru common region exons in D. 

melanogaster (mel) and D. simulans (sim) and y in D. melanogaster (mel). 

Each lane received 1 µl of sgRNAs generated for common region exons C1, C2, C4, and 

C5 of fru in D. melanogaster and D. simulans, and y in D. melanogaster respectively. 

The 50bp ladder on the left indicates band sizes for sgRNA. All sgRNAs were ~200 bp in 

size, with unidentified smearing appearing below this band at ~75bp due to DNA or 

protein contamination. The extra larger bands for mel C4 could have also been due to 

contamination, so this particular sgRNA transcript was not used for injections and other 

purified sgRNA targeting C4 was used.  
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3.3 Screening injected flies for CRISPR/Cas9 germline 

mutations 

To ensure successful germline mutations of D. melanogaster and D. simulans with fru 

disruptions, there needed to be an efficient CRISPR method to produce sgRNA and an 

efficient injection protocol. Injections were first done with in vitro transcribed sgRNA 

targeting fst to act as a control and test the efficiency of the injection protocol. These 

injections were completed at the same time as injections into D. melanogaster targeting 

fru. This was followed by injections into D. melanogaster targeting y as another control 

to test the injection methods and CRISPR/Cas9-mediated NHEJ efficiency, additional 

injections into D. melanogaster targeting fru, and injections into D. simulans targeting fru 

common regions C4 and C5.  

3.3.1 D. melanogaster control injections targeting fst and y 

Control injections were performed to help establish an efficient CRISPR method and 

injection protocol. Previous fst injections by Dr. Anthony Percival-Smith using the fst 

sgRNA vector, the fst repair vector, and the Cas9 vector underwent CRISPR-mediated 

HR with a mutation efficiency of 10% (personal communication, Dr. Anthony Percival-

Smith). In vitro transcribed fst sgRNA and the fst repair template were injected into 

Cas9-expressing transgenic D. melanogaster to test for recombination efficiency and to 

act as a control for injections. Germline mutations were screened for a white-eye (w+) 

phenotype after mating. Only 15 viable G0 adults were obtained, none of which produced 

w+ progeny (Table 7). This is likely due to low survivability (of 15, one would only 

expect about 1 individual to have a mutation) and degradation of sgRNA during 

injections due to use of added food dye in injection mix. Injection mix with food dye was 

originally used for fst injections and fru injections into D. melanogaster performed by 

me, as this was how previous fst injections were being performed by members of the lab 

of Dr. Percival-Smith. Food dye was used to help visualize the solution during injections. 

Food dye was only discovered after injections of fst and fru D. melanogaster sgRNA to 

degrade RNA, as it was not tested for RNase contamination during these injections (see 

below). As there was low survivability and no germline mutations for fst injections, this 
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was not a valuable control for mutation efficiency and to help troubleshoot an efficient 

injection protocol. 

Injections with y were added as a second control to test CRISPR-mediated NHEJ 

germline mutation. Injections of y in vitro-transcribed sgRNA injected alongside Cas9 

mRNA have been found to have a germline mutation efficiency of 34.5% (Bassett et al. 

2013, Bassett & Liu, 2014). Using the same design of y sgRNA, sgRNA was injected into 

hybrid transgenic Cas9-expressing D. melanogaster. These injections were done with and 

without dechorionation, with both approaches giving low survivability and no germline 

mutations (Table 7). Therefore, y was also not a valuable control to test if in vitro 

transcription of sgRNA is an efficient method. However, it was a valuable control for 

troubleshooting the use of injection mixes in the injection protocol. During y injections, 

degradation of sgRNA was found to be caused by the food dye used in injection mix. 

Before and after every round of injections, sgRNA was electrophoresed on a 1.2% TAE 

gel to check integrity. sgRNA with food dye was electrophoresed after injections and 

found to be degraded, but sgRNA without food dye was found to be intact (Figure 13). 

For this reason, all injections following this (injections targeting y without 

dechorionation, injections performed by Best Gene, and injections targeting C4 and C5 in 

D. simulans) were done without an injection mix and food dye, allowing for sgRNA to 

maintain its integrity during the injection procedure. As survival with or without 

dechorionation was relatively the same, the key problem to survival was likely the 

injection method. However, as I was working with limited injection experience, I did 

deem the chorion intact method better than the bleach dechorionation method as keeping 

the chorion intact provided more time to perform injections. 
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Table 7: Survivability and mutation rates of viable D. melanogaster adults after 

control injections with or without dechorionation. 

	 frost	sgRNA	and	
repair	template	

(Injections	with	bleach	
dechorionation	&	food	

dye)	

yellow	

(Injections	with	bleach	
dechorionation	&	food	

dye)	

yellow	

(Injections	without	
dechorionation	&	
without	food	dye)	

No.	of	eggs	injected	 205	 173	 112	

No.	of	larvae	 17	 7	 4	

No.	of	pupae	 15	 7	 4	

No.	of	viable	adults	 15	 4	 3	

Survivability	 7.8%	 2%	 2.7%	

Germline	mutations	 0%	 0%	 0%	



58 

 

      

 

Figure 13: Screening for sgRNA degradation after injections. 

1 µl of yellow sgRNA ran alongside a 100 bp DNA ladder. A. Degradation of sgRNA 

when mixed with food dye. Lane 1: sgRNA mixed with food dye, kept at -20°C for one 

hour. Lane 2 and 3: sgRNA mixed with food dye after 4 hours of injections. B. sgRNA 

without food dye is still intact after 4 hours of injections. 
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3.3.2 D. melanogaster injections targeting fru 

Injections of sgRNA targeting fru in D. melanogaster transgenic flies expressing Cas9 

were performed such that sgRNA targeting C1 and C2, and sgRNA targeting C4 and C5, 

were injected together to generate a deletion spanning two exons. The common region 

exons of fru were chosen because removal of them ablates all fru functionality, 

eliminating the need to target fru transcripts individually. The first round of injections 

used C1 and C2 sgRNA or C4 and C5 sgRNA in a mixed solution with food dye into 

bleach-dechorionated eggs, which gave low adult survivability and no germline 

mutations (Table 8). Inconsistencies with bleach dechorionation prompted the move to 

injecting without dechorionation, though injecting sgRNA alongside food dye was still 

done as it was not yet determined that food dye contributed to the degradation of sgRNA. 

This approach also resulted in low adult survivability, though more consistent 

survivability than bleach, as well as no germline mutations (Table 9).  

At the same time as I was performing these injections, sgRNA (only sgRNA, no injection 

mix with food dye) was sent to Best Gene to inject into the same line of transgenic Cas9-

expressing D. melanogaster. This approach resulted in a higher survivability that allowed 

for screening of a greater amount of viable adults for a deletion in fru (Table 10). A large 

deletion between exons through NHEJ was not achieved, so screening for deletions in 

only a single exon was done using RE digestion. The idea behind a RE digestion was if a 

single sgRNA was targeting a sequence as opposed to both sgRNAs, than a smaller 

deletion in a specific exon could be occurring. If no mutation was present (i.e. the 

sequence was either not cleaved by Cas9 or was not altered by a repair) then the sequence 

would be digested by the RE. If the sequence were altered in any way by CRISPR, the 

sequence would not be cleaved (Figure 10). Deletions were obtained in the C4 exon of 

fru (Figure 14); there was a 4% germline mutation efficiency of C4 using in vitro 

transcribed sgRNA (Table 10). Flies with a fru C4 deletion were crossed to D. 

melanogaster TM6B balancer stock with tubby phenotype to maintain the deletion 

(deletion stocks C4-a, -b, -c). However, stocks with the deletion are homozygous viable. 

This was unexpected as fru deletions are not homozygous viable (Ryner et al., 1996). 
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Table 8: Survivability and mutation rates of viable D. melanogaster adults after fru 

injections (dechorionated eggs). 

	 fru	C1/C2	targets	

(Injections	with	bleach	
dechorionation	&	food	dye)	

fru	C4/C5	targets	

(Injections	with	bleach	
dechorionation	&	food	dye)	

No.	of	eggs	injected	 101	 17	

No.	of	larvae	 12	 0	

No.	of	pupae	 8	 0	

No.	of	viable	adults	 5	 0	

Survivability	 4.9%	 0%	

Germline	mutations	 0%	 0%	

 

Table 9: Survivability and mutation rates of viable D. melanogaster adults after fru 

injection (no dechorionation). 

 fru	C1/C2	targets	

(Injections	without	bleach	
dechorionation	but	with	food	

dye)	

fru	C4/C5	targets	

(Injections	without	bleach	
dechorionation	but	with	food	

dye)	

No.	of	eggs	injected	 447	 326	

No.	of	larvae	 49	 20	

No.	of	pupae	 47	 19	

No.	of	viable	adults	 37	 17	

Survivability	 8%	 5%	

Germline	mutations	 0%	 0%	
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Table 10: Survivability and mutation rates of viable D. melanogaster adults after fru 

injections (by Best Gene). 

	 fru	C1/C2	targets	

(Injections	without	food	dye)	

fru	C4/C5	targets	

(Injections	without	food	dye)	

No.	of	eggs	injected	 >300	 >300	

No.	of	larvae	 ~90	 ~70	

No.	of	pupae	 89	 80	

No.	of	viable	adults	 89	 78	

Survivability	 ~30%	 ~26%	

Germline	mutations	 0%	 4%	in	C4	target	

Best Gene provided only approximate numbers for eggs injected and surviving larvae. 
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A																								GCTCAGACCGCTAAGGGCGCTGG	

	

B	

Wild-type	

CGGCAAGTAATCTGGGGGCAGGGCCACGTGGTGTTCCCGATGCTGCTGCTGCTGCTGGGCGTCCATCAGCT
CCTGCTTGATGCTCAGCGACTGGCTCAGACCGCTAAGGGCGCTGGCCGCGCCCACATTGCCACCACCGCCG
CCCAGATGAACGCTTGTGGTCATCGACAGCGGCGAGTCGTGGCGACCGCCGGCGTCCTCCGATTCCGATGT
GCTGCCGCCCGTTTTGGGCACGGGACTCGACTTGAAGTTGGC 

Deletion	stock	C4-a	

CGGCAAGTAATCTGGGGGCAGGGCCACGTGGTGTTCCCGATGCTGCTGCTGCTGCTGGGCGTCCATCAGCT
CCTGCTTGATGCTCAGCGACTGGCTCAGACCGCT−−−−−−−−−GGCCGCGCCCACATTGCCACCACCGCCG
CCCAGATGAACGCTTGTGGTCATCGACAGCGGCGAGTCGTGGCGACCGCCGGCGTCCTCCGATTCCGATGT
GCTGCCGCCCGTTTTGGGCACGGGACTCGACTTGAAGTTGGC 

Deletion	stock	C4-b	

CGGCAAGTAATCTGGGGGCAGGGCCACGTGGTGTTCCCGATGCTGCTGCTGCTGCTGGGCGTCCATCAGCT
CCTGCTTGATGCTCAGCGACTGGCTCAGACCGC−−−−−−CGCTGGCCGCGCCCACATTGCCACCACCGCCG
CCCAGATGAACGCTTGTGGTCATCGACAGCGGCGAGTCGTGGCGACCGCCGGCGTCCTCCGATTCCGATGT
GCTGCCGCCCGTTTTGGGCACGGGACTCGACTTGAAGTTGGC 

Deletion	stock	C4-c	

CGGCAAGTAATCTGGGGGCAGGGCCACGTGGTGTTCCCGATGCTGCTGCTGCTGCTGGGCGTCCATCAGCT
CCTGCTTGATGCTCAGCGACTGGCTCAGACCGCTAAGGG−−−TGGCCGCGCCCACATTGCCACCACCGCCG
CCCAGATGAACGCTTGTGGTCATCGACAGCGGCGAGTCGTGGCGACCGCCGGCGTCCTCCGATTCCGATGT
GCTGCCGCCCGTTTTGGGCACGGGACTCGACTTGAAGTTGGC 

Figure 14: Germline mutation of fru C4 exon in D. melanogaster. 

A. The sgRNA target sequence (yellow) with the PAM sequence (red) in C4 with the 

arrowhead marking 3 nucleotides upstream of the PAM sequence where the Cas9 enzyme 

cleaves the sequence. B. The DNA sequence of C4 exon in D. melanogaster, with the 

wild-type sequence at the top, followed by the whole sequence with each deletion 

obtained (deletion stocks C4-a, -b, -c). Dashes represent where nucleotides in the 

sequence have been deleted due to DSB and repair by NHEJ.  
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3.3.3 D. simulans injections targeting fru 

sgRNA was designed for disrupting the same four D. simulans common region exons as 

were targeted in D melanogaster. However, due to the above success targeting C4, 

precedence was taken to attempt first to disrupt C4 and C5 exons in fru to generate 

similar deletions in D. simulans as already generated in D. melanaogaster. Three 

additional targets in those two exon sequences were designed and sgRNA for each of 

these was in vitro transcribed; one of these new targets in C4 overlapped the C4 target 

sequence used in D. melanogaster (Table 1, Appendix A). Two sgRNA targeting C4 and 

two sgRNA targeting C5 were injected together in various combinations, or all sgRNA 

were injected together. The injection solution (made up of only various sgRNA and Cas9 

protein) excluded food dye to prevent sgRNA degradation. This was injected into wild-

type D. simulans flies; transgenic D. simulans flies for Cas9-expression were not used 

due to reports of it being inefficient (personal communication, Nicholas W VanKuren). 

Injections were done without dechorionation and yielded similar low egg laying and low 

survivability as seen with D. melanogaster injections (Table 10). Injections in D. 

simulans were not successful at generating a large-scale deletion of C4 and C5 sequences, 

or individual deletions in either exon (Table 11).  
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Table 11: Survivability and mutation rates of viable D. simulans adults after 

injections targeting fru. 

	 fru	C4/C5	
targets	

all	sgRNA	

(Injections	without	
dechorionation	&	
without	food	dye)	

fru	C4/C5	
targets	

sgRNA	A,	B1	

(Injections	without	
dechorionation	&	
without	food	dye)	

fru	C4/C5	
targets	

sgRNA	B,	C1	

(Injections	without	
dechorionation	&	
without	food	dye)	

fru	C4/C5	
targets	

sgRNA	C,	D1	

(Injections	without	
dechorionation	&	
without	food	dye)	

No.	of	eggs	injected	 131	 162	 109	 364	

No.	of	larvae	 13	 12	 6	 11	

No.	of	pupae	 13	 11	 5	 11	

No.	of	viable	adults	 12	 7	 3	 9	

Survivability	 9.2%	 4.3%	 2.75%	 2.5%	

Germline	
mutations	

0%	 0%	 0%	 0%	

1sgRNA target sequences, as found in Table 1. 
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3.4 Protein analysis of fru deletion in D. melanogaster 
All three different deletion stocks (deletion stocks C4-a, -b, -c) generated through 

CRISPR/Cas9 in D. melanogaster did not result in a frame shift mutation, though 

deletions at the nucleotide level did generate deletions of, or changes to, amino acids in 

the Fru protein (Figure 15). Fru protein is known to be a part of the BTB-ZF family, 

where C1 and C2 of the common region code for the BTB/POZ domain of the protein 

(Ito et al., 1996). When analyzing the amino acid sequence, Phyre2 did identify this 

association between C1 and C2 (Figure 16A), but Phyre2 did not identify the C4 amino 

acid sequence within the BTB/POZ domain, so C4 could not be represented on the 

protein model. The model also predicted these deletions to have very minor effects on the 

protein structure as this region of the sequence could tolerate mutations. As the C4 amino 

acid sequence was not recognized to be part of a conserved domain, this indicates that the 

deletions I generated in C4 are less likely to affect the functionality of Fru. However, 

when the C4 amino acid sequence was analyzed alone and not within a Fru protein, the 

C4 amino acid sequence was shown to form an alpha-helical structure that could have a 

role in chromosome partitioning, as it was similar to other sequences with this role 

(Figure 16B). 
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Wild-type	
ANFKSSPVPKTGGSTSESEDAGGRHDSPLSMTTSVHLGGGGGNVGAASALSGLSQSLSIKQELMDAQQQQQ
HREHHVALPPDYLP 

Deletion	stock	C4-a	
ANFKSSPVPKTGGSTSESEDAGGRHDSPLSMTTSVHLGGGGGNVGAAS−−−GLSQSLSIKQELMDAQQQQQ
HREHHVALPPDYLP 

Deletion	stock	C4-b	
ANFKSSPVPKTGGSTSESEDAGGRHDSPLSMTTSVHLGGGGGNVGAASG−−GLSQSLSIKQELMDAQQQQQ
HREHHVALPPDYLP 

Deletion	stock	C4-c	
ANFKSSPVPKTGGSTSESEDAGGRHDSPLSMTTSVHLGGGGGNVGAAST−GLSQSLSIKQELMDAQQQQQH
REHHVALPPDYLP 

The wild-type sequence (top) compared to the amino acid deletions obtained in the three 

fly stocks of C4 deletions (last three sequences). Dashes indicate where amino acids were 

deleted in the sequence and red underlined letters indicate an amino acid change. Letters 

are the short form for their associated amino acid. Deletion lines are as follows: three 

amino acid (3 a.a.) deletions (deletion stock C4-a), 2 a.a. deletions with 1 a.a. change 

(deletion stock C4-b), and 1 a.a deletion with 1 a.a. change (deletion stock C4-c).       

 

 

 

 

 

 

 

Figure 15: Amino acid sequence of C4 protein with the three identified deletions. 
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 A                                                B 

 

Figure 16: Protein structure of (A) Fru BTB-POZ domain consisting of C1 and C2 

sequence, and (B) C4 secondary structure. 

Alpha-helix (spiral) and beta (arrow) secondary structures where the rainbow patterning 

identifies the regions of the protein, with red indicating N terminus and blue indicating C 

terminus. Protein models designed using Phyre2 (2015). The BTB-POZ domain in Fru 

(A) only consists of the C1 and C2 amino acid sequences so that C3, C4, and C5 

sequences were not apart of the modeled structure. 
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3.5. Conservation of the common region amino acid 

sequence between Drosophila species 

I looked at the protein sequences of C4 in Drosophila species in order to find out whether 

the sequence is conserved, suggesting that it is constrained in its evolution in relationship 

to Fru function, or if it diverges between species, which would suggest divergence of Fru 

function between species. The amino acid sequence is highly conserved between D. 

melanogaster and D. simulans, with identical amino acid sequences. However, there are 

slight variations in the sequence when compared to species recently diverged from D. 

melanogaster subgroup such as D. yakuba (two additional glutamines in the sequence), 

D. pseudoobscura (one alanine deletion, three glycine substitutions, one threonine 

substitution, and one additional glutamine), and further diverged species such as D. 

virilis, where the sequence is seen to be less conserved (one serine substitution, one 

threonine deletion, two separate glycine insertions, one arginine substitution, one valine 

insertion, one valine deletion, two glycine deletions, an additional glutamine, and a 

glutamic acid substitution) (Figure 17). In these comparisons, species that have longer 

divergence time have a more highly diverged sequence, as expected. However, the amino 

acid sequence among these species is identical where the CRISPR/Cas9 deletion was 

generated (Figure 17). This is interesting because it could mean that this portion of the 

sequence is constrained in its evolution in relationship to Fru function. As flies with the 

deletion were homozygous viable (see above) and did not appear to affect Fru structure 

(Figure 16), the deleted sequence is likely not pivotal for survivability, but the deletion 

could affect behaviour. 

Divergence in sequence amongst species also seems to apply when looking at the amino 

acid sequences of C3 and C5 (data not shown). In the C5 amino acid sequence, there are 

two amino acid changes and one deletion between D. melanogaster and D. simulans, but 

the sequence becomes even more divergent when compared to D. yakuba and D. 

pseudoobscura, with multiple amino acid substitutions and deletions. A homologous 

amino acid sequence could not be identified for D. virilis, or a C5 genomic DNA 

sequence. C3 was not a focus for targeting deletions in this project, but as part of the 
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common region, its amino acid sequence was analyzed. C3 amino acid sequences were 

identical between D. melanogaster and D. simulans, but had amino acid substitutions and 

deletions amongst the other species, with the most differences in the sequences observed 

between D. pseudoobscura and D. virilis.   

The amino acid sequences of C1 and C2, which form the BTB/POZ domain in the zinc-

finger protein, are highly conserved among all species examined. The C1 amino acid 

sequence is identical in all species – except for D. virilis, although change in sequence 

was with two amino acid substitutions. The C2 amino acid sequence is identical in all 

species examined. The C1 and C2 sequences, composing the BTB/POZ domain, are 

highly conserved. 
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Figure 17: Conservation of C4 amino acid protein sequence between different 

Drosophila species. 

A phylogenetic tree showing the divergence of the amino acid sequence of C4 in fru 

between D. melanogaster, D. simulans, D. yakuba, D. pseudoobscura, and D. virilis. The 

amino acid sequence is beside each of the represented species, in the same box colour as 

the species it originates from. Species with the same colour are those that have the same 

sequence. Amino acid changes in comparison to the D. melanogaster sequence are as 

follows: amino acid insertions are bolded letters, substitutions are red letters, and 

deletions are represented by dashes. Underlined letters indicate the amino acid changes 

that were targeted by CRISPR in the three deletion stocks, showing conservation of these 

amino acids between all species examined. 
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3.6 Behavioural analysis of fru deletion in D. melanogaster 

Although the amino acid deletions induced by CRISPR do not cause an obvious 

conformational change in the protein or seem to affect viability, they may still affect the 

phenotype of the organism. This is because the amino acids that were deleted in C4 were 

conserved amongst the species, which could mean they have an important role in Fru 

function, where deletions could disrupt Fru function in behaviour. The third chromosome 

of these deletion lines are identical to the Cas9-expressing D. melanogaster stock except 

that one homolog of the third chromosome has a fru mutation, and this third chromosome 

is maintained over a TM6B balancer. The X chromosome and the second chromosome 

were recombinants, so genotypes of these chromosomes varied. The homozygous males 

for the fru C4 deletion and the Cas9 stock have identical third chromosomes, except for 

fru.  

3.6.1 Male behavioural sterility assay 

I tested the effect of the deletion on male behaviour since fru has been extensively 

studied in this regard (Hall, 1978; Gailey and Hall, 1989; Burtis and Baker, 1989; Ryner 

et al., 1996; Goodwin et al., 2000; Anand et al., 2001; Demir and Dickson, 2005; 

reviewed in: Billeter et al., 2006a; Billeter et al., 2006b). It is characteristic for males 

with a fruM deficiency to be sterile (Gailey and Hall,1989), so I first tested whether males 

homozygous for the deletion would be sterile due to lack of mating. The deletion C4-a 

did not cause for males to become sterile as they copulated frequently with females and 

produced offspring. Chaining behaviour, a characteristic for fruM deficient males, where 

males form a line and court each other, was also not observed in the deletion line 

amongst males. However, increased mating in the deletion line compared to the wild-type 

control males was observed (Table 12). 94% of mutant males produced offspring within 

the mating assay, while 68% of controls produced offspring (z-test, P= 0.00174, N = 50). 

The significantly low mating in control males compared to fru deletion line was 

unexpected, as controls are expected to mate at 100% efficiency as seen in the sterility 

assay performed by Gailey and Hall (1989). The control males used were transgenic D. 

melanogaster flies expressing Cas9, and have been observed to be slow at mating during 

this project (data not shown).  
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Table 12: Behavioural phenotype of homozygous fru C4-a mutant males compared 

to wild-type males. 

Genotype	 Mating	fraction	

fru	C4-a	deletion	 47/50	

Wild-type	 34/50	
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3.6.2 Female behavioural mating assay 

I also tested the effect of the deletion on female hybrids’ rejection of D. melanogaster 

males to see if the C4-a deletion line could be used to generate hybrids for the reciprocal 

hemizygosity test. Courtship and copulation in D. melanogaster controls and hybrids was 

scored based on observation in the first hour of the behavioural assay. Copulation in the 

hybrids was scored on presence or absence of sperm in the female reproductive tract 24 

hours after the initial behaviour assay, as hybrids often take longer to mate then the 

controls. C4-a deletion mutants/D. simulans female hybrids are heterospecific, except at 

the fru locus, where the D. melanogaster allele contains the CRISPR-induced deletion. 

These females showed high levels of mating, equivalent to both the control (balancer) 

hybrids and D. melanogaster pure species females when paired with D. melanogaster 

males (G-test, P = 0.848, N = 30; Figure 18). This test did not match results from 

previous behavioural mating assays, where fru disruptions saw significantly reduced 

mating in the hybrid fru disruption females (Moehring lab, unpublished data). As a result, 

the C4 deletion lines could not be used for the reciprocal hemizgosity test, as the deletion 

did not affect female preference.  
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Figure 18: Mating proportions of hybrid females with fru mutation to wild-type D. 

melanogaster males compared to controls. 

The blue line represents D. melanogaster/D. simulans hybrid females (Sim Hybrid) with 

fru mutation or Bal genotype, the red line represents D. melanogaster females (Mel) with 

fru mutation or Bal genotype. All females were scored for courtship and copulation with 

D. melanogaster males to see if hybrid females with fru mutation would show reduced 

mating compared to the other three genotypes, due to unmasking of the D. simulans fru 

allele. No significant change in mating (P=0.848, N=30) for the hybrid mutant was 

observed. 
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4 Discussion 

4.1 Efficiency and optimization  

A component of this project was to find a protocol that could be easily used for 

generating sgRNA to target fru and allow for disruption of the targeted exon in fru. In 

addition, a working protocol had to be established for microinjection, which would allow 

for efficient injection of CRISPR components into fly embryos for germline mutations. 

4.1.1 CRISPR 

CRISPR/Cas9 has been used for genome manipulation since 2013, making it a new 

technique that is still being developed (reviewed in: Wu et al., 2014). Its first use was in 

mammalian cells to test the efficiency of injecting Cas9 and sgRNA vectors to target a 

sequence of interest and generate a DSB to be repaired by either NHEJ (Cong et al., 

2013) or HR (Mali et al., 2013), both of which were effective. 

In regards to generating mutations using NHEJ, as this project aimed to do, four different 

methods have been explored in D. melanogaster and proven to be efficient at targeting y 

or w. The first method required the injection of two plasmids into embryos: one plasmid 

for Cas9 and one for sgRNA. The Cas9 plasmid expressed the Cas9 gene under Hsp70 

promoter, and the sgRNA plasmid was the expression of sgRNA driven by the U6 

promoter: a recognized highly efficient promoter for expressing sgRNA (Gratz et al., 

2013; reviewed in: Bassett and Liu, 2013). The second method also required the injection 

of sgRNA and Cas9 into embryos, but this method used in vitro transcribed sgRNA under 

the T7 promoter and in vitro transcribed Cas9 expressed either through the T7 or Sp6 

promoter. This method had higher mutagenesis rates and thus a greater efficiency 

(reviewed in: Bassett and Liu, 2013; Yu et al., 2013; Bassett, et al., 2013; Bassett and 

Liu, 2014). The third method was a transgenic approach where flies that transgenically 

expressed Cas9 under the nanos promoter were crossed to transgenic flies expressing 

sgRNA under U6 promoter (Kondo and Ueda, 2013; reviewed in: Bassett and Liu, 2013). 

This method is the most efficient as it can produce more than 90% mutagenic flies, but is 

the most time consuming because it is more difficult molecularly to generate two 
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transgenic lines, and requires extra generations of crossing flies. The fourth and final 

method takes strategies from the first and third methods: plasmids encoding sgRNA are 

injected in Cas9-expressing transgenic flies where Cas9 is expressed under the vasa or 

nanos promoters (Ren et al., 2013; Sebo et al., 2014; reviewed in: Bassett and Liu, 2013). 

This method is thought to be the best compromise of all of the methods outlined in terms 

of mutation efficiency, effort, and time required (reviewed in: Housden et al., 2014). 

An alternate method uses parameters of techniques two and four: in vitro transcribed 

sgRNA is injected into transgenic Cas9 flies. This approach had not yet been tested for 

efficiency (reviewed in: Bassett and Liu, 2013), but was employed in this project and was 

able to produce mutations in the C4 exon of fru, demonstrating that this is another viable 

technique to use in Drosophila. However, this exact method was only applicable for use 

in D. melanogaster as a D. simulans stock with efficient expression of Cas9 has not been 

acquired. Use of the CRISPR/Cas9 system in D. simulans still involved in vitro 

transcribed sgRNA, but sgRNA was co-injected with Cas9 protein into wild-type flies. 

This strategy can be seen as an effective solution as direct injection of Cas9 protein into 

mammalian cells has been found to reduce the amount of off-target effects compared to 

plasmid injections (Ramakrishna et al., 2014; Kim et al., 2014; reviewed in: Wu et al., 

2014). 

As NHEJ germline mutation was achieved in D. melanogaster at a rate of 4%, this new 

technique can be used to generate mutations, but is not overly efficient, as other CRISPR-

mediated NHEJ germline mutation efficiencies in D. melanogaster have ranged from 4%-

88% (Bassett et al., 2013). This could be due to the sgRNAs used and the target gene, as 

some sgRNAs are more effective than others in targeting the same gene (Bassett and Liu, 

2014). Injection of multiple sgRNAs targeting different sequences in the same gene can 

be used as a way to overcome this, as efficiency seems to rely on the sgRNA sequence 

and DNA sequence being targeted (reviewed in: Wu et al., 2013). Multiple designs of 

sgRNA sequences targeting other sequences in each common region exon of D. simulans 

were designed to overcome the problem of only getting cleavage of C4 exon when DSBs 

in two exons were desirable.  
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Transcription of sgRNA was relatively fast, with in vitro transcription taking no more 

than a maximum of three days and sgRNA could be directly injected into flies once 

made. Though in vitro transcription is quick, a limited amount of sgRNA is made, and so 

more sgRNA has to be repeatedly transcribed if many injections are performed. 

4.1.2 Microinjections 

Setting up effective microinjection within the lab proved to be a large hurdle and still 

needs to be improved to have success in creating transformed flies with CRISPR/Cas9. 

One set-back was collecting enough eggs every 30 minutes for injections. A single 

female can lay 50-70 eggs in one day, and so a fly cage with many females can be 

expected to produce over 100 eggs every 30 minutes (Tyler, 2000). The aim is to inject 

50-100 eggs every 30 minutes (personal communication, Dr. Anthony Percival-Smith). 

All flies were kept in store-bought large and small fly cages (Genesee Scientific) that 

were placed in incubators. When using transgenic D. melanogaster flies, only 1-30 eggs 

would be collected every 30 minutes, making it difficult to inject a large amount of eggs. 

A reason for this could have been the males of transgenic D. melanogaster Cas9-

expressing line that were used, as they seemed slow at courtship and copulation. When 

injecting to target y, using wild-type D. melanogaster males alongside Cas9-expressing 

D. melanogaster females did increase the number of eggs being laid in the chambers, 

such that 15-30 eggs were likely to be collected every 30 minutes, but egg laying was still 

low. Using wild-type D. simulans in fly cages resulted in a slight increase in eggs laid 

each half hour, being 15-60 eggs, which allowed for a greater number of egg injections to 

be performed, and a closer number to the anticipated 50 eggs, which is the largest amount 

I was capable of injecting every 30 minutes. This low egg yield could have affected the 

lack of CRISPR/Cas9 transformed flies, as injecting so few eggs and having a low 

survivability after injection lowered the odds of how many flies could have a targeted 

deletion. 

To overcome the problem of low egg yield, I employed such strategies as crowding the 

fly cage with more flies, using younger flies (those that were under a week old), changing 

the agar juice plates constantly the day before injection, changing the cage every two 

weeks to ensure that the chamber was not dirty, and making grooves in the agar juice 
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plate to help induce egg laying. None of these approaches dramatically increased egg 

yield, though they did help to bring up the number of eggs laid into the range of 15-60 

eggs as listed above. One factor that was found to affect egg yield was weather, 

specifically change in barometric pressure. It was observed that on warmer, sunny days, 

more eggs were laid than on stormy days when the pressure was lower. Another factor 

that could be affecting egg yield is the noise of the incubator where the cages are stored, 

as noise does reduce mating and egg laying (personal communication, Dr. Anne Simon). 

Therefore it is recommended that fly cages be kept outside of incubators in a temperature 

and humidity controlled room, and to maintain a flexible schedule when it comes to 

injecting, such that injections can take place when the barometric pressure is ideal for egg 

laying. The circadian rhythm of flies should also be considered, so that injections can 

take place during peak egg laying times. Additionally, collecting eggs from more than 

one fly cage could help. During this project, eggs were collected from only one or two 

cages, but additional cages could be made out of polypropylene beakers or plastic cups 

and covered with fine stainless steel or nylon mesh to cut costs.  

Another aspect of microinjections that needed to be troubleshot was whether injecting 

dechorionated eggs or eggs with their chorion intact would be a better option. One option 

that was tested once and quickly discarded due to lack of access to a vacuum where the 

fly cages were kept was dechorionation with a filtration apparatus (Sullivan et al., 2000; 

Cartwright, 2009). Two other methods that I explored (see Results chapter), was the use 

of bleach or wire-and-tape for removing the chorion. Once again mechanics of 

dechorionation is what gave bleach an advantage and made it the best method of 

dechorionation for this project. However, dechorionation still gave low survivability and 

so the avenue of injecting with the chorion intact was explored. Keeping the chorion 

intact did not significantly change the survival of eggs compared to dechorionation. 

Therefore, the issue experienced with low survivability was likely due to the 

microinjection process, as very few larvae would emerge from the eggs that were 

injected.  

To explore this problem, further survivability tests were done to look at desiccation of the 

eggs and the use of halocarbon oil (Table 6). For eggs that were dechorionated, 
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desiccation and covering eggs in halocarbon oil only decreased survivability by <3%, 

while eggs intact, covered in oil, decreased in survivability by ~19%, though this could 

have been due to random variation. However, this does showcase the problem of leaving 

halocarbon oil on the eggs after injection; halocarbon oil must be drained off of the eggs 

after injection (Gompel and Schröder, 2005; Bassett and Liu, 2014), which was always 

ensured at time of injections in this project. Additionally, it is recommended to aerate the 

halocarbon oil before injections (Gompel and Schröder, 2005), though this was not done 

in this project but is recommended for future tests. 

These tests did not fully explain the lethality issues being experienced, and so other 

problems must be due to injections themselves. These issues could be: overloading the 

egg with injection mix, putting the needle too far into the egg, and having excessive 

leakage of cytoplasm (Sullivan et al., 2000; Gompel and Schröder, 2005; Cartwright, 

2009). To try and overcome these issues, the pressure of the needle was adjusted to only 

release a small bubble of injection mix, a very thin needle tip was used, as larger tips 

caused greater leakage (Sullivan et al., 2000; Cartwright, 2009), and when 

dechorionating the egg, desiccating the egg for the correct amount of time helped to 

prevent leakage (Sullivan et al., 2000) 

In regards to whether injecting with or without a chorion, it seems that the choice is down 

to personal preference and equipment available. Keeping the chorion intact does make it 

more difficult to visualize sgRNA entering the egg, but halocarbon oil or use of ethanol 

can help to make the chorion more translucent. My experience testing survivorship with 

each method does show survivorship is dependent on a number of different factors in the 

microinjection protocol. If a needle puller is available to pull needles appropriately, then 

one can inject with the chorion intact (Sullivan et al., 2000 p. 354). Additionally, the 

lesser amount of disturbance to the eggs caused by skipping the dechorionation process is 

regarded by some to be preferable (personal communication with Dr. Graeme Maiden of 

Genetivision). 
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4.2 Targeting deletions of fru  

In both D. melanogaster and D. simulans, targeted deletions of fru were aimed to cause 

DSBs in the common region exons such that a portion of the sequence of two exons could 

be deleted through NHEJ repair. It was also critical for deletions to occur in the germline 

so that a stock of D. melanogaster and D. simulans with a fru disruption could be 

maintained and used to generate hybrids with a single species-specific allele of fru. 

4.2.1 CRISPR-mediated NHEJ in D. melanogaster 

Injections of sgRNA targeting four exons of the common region in D. melanogaster were 

done by me and through Best Gene. Although a large sequence deletion between two 

exons was not obtained in either case, a sequence deletion in the C4 exon was achieved. 

Three different germline deletions in C4 (Figure 14) all resulted in the loss of amino 

acids (Figure 15), although there is likely no change to protein structure from these 

deletions (Figure 16).  

As the C4 amino acid sequence is present in all Fru proteins, it was expected that this 

deletion would affect the expression of fru. A characteristic of fru mutants is homozygous 

lethality (Ryner et al., 1996). However, individuals homozygous for the C4 deletion are 

viable, indicating that the deletion did not affect survivability. Though this is the case, 

there was still the possibility for the mutation to be affecting behaviour. This was 

explored in the fru deletion stock with three amino acid deletions: deletion stock C4-a (as 

this stock was stable at the time) by performing sterility and behavioural mating assays to 

see the potential effect on male and female mating behaviour (Table 12, Figure 18). 

The deletion in C4 did not inhibit males courtship or copulation abilities as seen in other 

fru mutants (Gailey and Hall, 1989), though only null FruM mutations have been found to 

abolish male courting behaviour completely. All other FruM mutant males still retain the 

ability to court females, whether the females were conspecific or heterospecific (Fan et 

al., 2013). Thus, I can conclude that the C4 deletion does not completely disrupt FruM 

expression. However, there was a significant increase in copulation due to the mutation.  

The higher rate of copulation in the mutant compared to the control was not seen before 
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between fru mutants and wild-type flies (Gailey and Hall, 1989). These mutants and the 

control share the same third chromosome, except for fru, but the X chromosome and 

second chromosome were not identical between the mutants and control, which could 

account for the differences in mating. It would therefore be ideal to study this change in 

behaviour more closely, by performing the mating assay again with wild-type D. 

melanogaster flies that do not carry Cas9, and with the mutation crossed into the same 

wild-type background, to determine if the mutation still produces a higher copulation 

success. In addition, male courtship behaviour in the deletion line could be quantified to 

see how much time the male spends in each of the courtship steps and if the timing is 

different from that seen in the control.  

The deletion also did not significantly reduce mating of the hybrid females with the 

deletion when paired with D. melanogaster males, which would have been expected if 

the deletion allowed for the recessive expression of the D. simulans allele that affected 

female preference (Laturney and Moehring, 2012a; Moehring lab, unpublished data). 

These findings could indicate that perhaps the deletion was too small to affect the 

molecular function of non-sex-specific Fru proteins, as it was not capable of disrupting 

FruM expression. Alternatively, perhaps the C4 exon is not pivotal for fru’s role in female 

behaviour, and the sequence changes can be tolerated so that the function of fru in 

behaviour remains unaffected. It could however hold another role in females that is not 

behaviour-specific, such as a developmental role. 

Only the C1 and C2 exons contribute to the BTB/POZ domain, (Zollman et al., 1994; Ito 

et al., 1996), a major component of the BTB-zinc finger (BTB-ZF) motif of Fru, acting as 

a protein-protein interaction motif that mediates transcriptional regulation (Yamamoto, et 

al., 2004; Stogios, et al., 2005). When looking into the conservation of the common 

region across different Drosophila species, the amino acid sequence of the BTB/POZ 

domain was highly conserved, while the other sequences of the common region, namely 

C4 and C5, had more sequence divergence, though the sequence where the deletion was 

obtained was conserved. This indicates that there is some divergence in the common 

region, especially in exons outside of the BTB/POZ domain, but overall the region is 

mostly conserved amongst Drosophila. However, as the C4 sequence was conserved 
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between closely related species (D. melanogaster and D. simulans), but had more 

sequence changes in Drosophila species outside of that clade, perhaps it does contribute 

to speciation through molecular divergence of Fru between species. Previous work has 

used the fru DNA sequence, particularly the BTB-domain of fru, as a way to classify 

different Drosophila species (Gailey et al., 2000), as BTB domain families have 

undergone lineage specific expansions, and so can be used to classify different species 

(Stogios, et al., 2005). This indicates that divergence in the common region may play a 

role in species diversification, but the role of C4 is still unknown. If C4 does not play a 

behavioural role, it could have another role in females that is yet determined. Perhaps it is 

connected more to female development than behaviour, as non sex-specific isoforms that 

have C4 are involved with early development (Ryner et al., 1996; Anand et al., 2001; 

Song et al., 2002; Dornan et al., 2005; Neville et al., 2014). With the divergence in C4 

sequence between distantly related species, we could expect for species with large 

variations in the common region sequences to have different Fru protein isoforms, change 

the efficiency and timing of protein binding during neuronal development, or have Fru 

interact with different proteins. For example, this later case is seen in D. yakuba and D. 

suzukii, where Tra does not suppress the female-specific fru transcript expression as it 

does in other Drosophila species (Yamamoto et al., 2004). As the C4 sequence is 

identical in D. melanogaster and D. simulans, it could have a role that is evolutionary 

conserved, such as an effect on female development that went unnoticed in this project. 

Alternatively, perhaps C4 does not have a large role to play in protein function, which is 

why there is divergence in sequence between species and it is not as highly conserved as 

C1 and C2 exons. This could mean that the deletions do not greatly affect Fru function, 

and as such are not integral to gene expression. 

Since C4 does code for an amino acid sequence that is seen in all Fru isoforms, it would 

be beneficial to find out what role C4 has in the Fru protein. As C3, C4, and C5 are in 

between the BTB domain and the zinc-finger (ZF) domains, they could form the middle 

linker region; a region observed in some of the most common BTB families that follows 

the BTB domain (Stogios et al., 2005). In BTB-ZF proteins, the linker region has been 

seen to interact with accessory proteins to aid in chromatin remodeling and transcription 

repression, and its sequence is often not as highly conserved as the BTB or ZF regions 
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(Stogios et al., 2005). Therefore, C4 inclusion in the protein could be beneficial for 

correct folding and spacing of the protein to help form protein binding sites (Ito et al., 

1996), though this could not be modeled (Figure 16). Or, as these sequences are present 

in all protein variants of fru, even where ZF motifs are not present (Yamamoto et al., 

2004), perhaps they act as a tether for the BTB domain to bind to proteins, such as in 

aiding the formation of the Fru-Bon complex (Ito et al., 2012). Perhaps all of the 

common region exons outside of the BTB domain are required for the association of 

HDAC1 or HP1a with the Fru-Bon complex, which drives or suppresses masculinization 

of neurons (Ito et al., 2012). This in turn could help in the formation of neurons dictating 

mating behaviour. As such, there may be a molecular evolution of fru whereby the 

modification of the common region could dictate the protein complex formation for Fru 

with other proteins, which could dictate the activity of the Fru zinc-finger isoforms and 

control the transcription factor activity and efficiency of Fru on downstream genes in 

neurons responsible for mating behaviour.  

4.2.2 CRISPR-mediated NHEJ in D. simulans 

With the success of a deletion in the C4 exon of fru in D. melanogaster, the aim for 

ensuring a sequence deletion in D. simulans took precedence for targeting C4 and C5. 

However, due to lack of targeting two exons in the common region to cause a large 

sequence deletion in D. melanogaster, the strategy of injecting multiple sgRNA targeting 

C4 and C5, as opposed to one target for each exon, was employed. When injecting with 

multiple sgRNAs, different combinations of sgRNAs were used, such as injecting all 

eight sgRNAs, or injecting four sgRNAs (two sgRNAs for each exon). 

No deletion was obtained, though this is likely due to low survivability after injection. If 

the D. melanogaster deletion in C4 was only obtained at a 4% germline mutagenesis rate, 

then low mutation efficiency could also be possible for D. simulans. But with only less 

than 9% of injected embryos surviving to become viable adults, it would not have been 

likely to get a survivor with a mutation, as observed. 
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4.3 Limitations 

As a summary of the discussion above, there were limitations in my study in the 

approaches used, the fly lines used, and the portion of the gene being targeted. Firstly, 

there was a large learning curve for microinjections as I had to establish a protocol for my 

lab. I was unable to produce a highly efficient protocol, as there were problems with low 

survivability after injection, which affected my ability to disrupt fru, but a protocol is in 

place that can be improved upon. I was also using a relatively new methodology to 

generate CRISPR products by injecting in vitro transcribed sgRNA into transgenic Cas9 

D. melanogaster flies. The effectiveness of this protocol in Drosophila has not yet been 

reported (reviewed in: Basset and Liu, 2013). sgRNA transcription produced a blob or 

smear below the sgRNA band (Figure 12). The cause of this is unknown, but could have 

been due to leftover reagents from the transcription protocol that were not properly 

separated from sgRNA during purification. Though deletions in C4 were still obtained 

from sgRNA that had a smear, this could have affected the efficiency of sgRNA 

targeting. Another reason why efficiency could have been low was insufficient Cas9 

expression in D. melanogaster transgenic flies. Insufficient expression of Cas9 was seen 

in transgenic Cas9-expressing D. simulans flies, which caused modification of the 

injection protocol; I injected Cas9 along with sgRNA, which could have also had an 

effect on achieving germline mutations. 

Though deletions in fru were obtained in D. melanogaster, the deletion was only obtained 

in a single exon. It has been stated earlier that target efficiency relies on both the sgRNA 

sequence and the DNA target, with some sgRNA being more effective than others 

(reviewed in: Wu et al., 2013). However, it is also possible that the DNA sequences of 

the common region are not effective targets for sgRNA. CRISPR deletions of fru are 

currently only available for the P exons and A-C exons (fly lines available from Dr. 

Stephen Goodwin), but there are no reports of CRISPR-mediated deletions in the 

common region. 

Additionally, all the protocols tested for efficient CRISPR germline mutation have 

currently only been done in D. melanogaster and efficiency of each technique is not 

reported in other Drosophila species. As D. simulans is closely related to D. 
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melanogaster it was assumed that any CRISPR technique used would be similar in 

efficiency for D. simulans. However, the efficiency of CRISPR-mediated NHEJ germline 

mutations varies across different species, from 5.5% efficiency in mosquitoes (Dong et 

al., 2015) to 40%-60% efficiency in beetles (Gilles et al., 2015) to 70%-100% efficiency 

in mice (Li, et al., 2013; Qin, et al., 2015), showcasing how CRISPR as a tool can be 

better utilized in some species than in others. 

4.4 Future directions  
Due to difficulties in getting mutations in fru through CRISPR-mediated NHEJ in both 

species, this project could not reach the end goal of performing a reciprocal hemizygosity 

test, to test female species-specific mating behaviour amongst hybrids with fru 

disruptions. As a result, the focus turned to generating fru disruption lines that could be 

used in the future to test behaviour. 

Though a deletion in fru in D. melanogaster was generated through targeting the common 

region of fru, this deletion did not have an effect on female behaviour, as described 

above, and so a fru deletion in D. melanogaster will need to be attempted again. This can 

be achieved by designing additional sgRNA targets for the common region, just as was 

done for D. simulans. Focus on generating a larger deletion by causing DSBs in two 

exons will likely cause disruption of fru. Ideally, targeting C1 and C2 exons may be able 

to disrupt fru as these exons give rise to the BTB domain of Fru (Ito et al., 1996). 

Another way to increase chances of disrupting fru would be to improve upon the 

microinjection protocol used here, by troubleshooting with injections targeting y to help 

increase egg survivability. Then, following the method of in vitro transcription of sgRNA 

and microinjection described here, successful mutations can be generated. Additionally, 

with no successful D. simulans fru disruption, disruption lines will also have to be made, 

ideally targeting the same exons as those that are targeted in D. melanogaster to ensure 

the deletion can be identical in both species to overcome any off-target effects.  

As genotyping for deletions caused by NHEJ was more time consuming due to PCR and 

RE digests, it might be beneficial to focus on generating mutations through alternative 

approaches. Focusing on CRISPR-mediated HR, a visual marker could be inserted into 
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fru where the two DSBs are made in the common region. This will allow for easier 

scoring to look for fru disruptions. Taking this approach may require changing the 

CRISPR protocol, as injecting in vitro transcribed sgRNA alongside Cas9 or injecting 

into transgenic flies has not been tested for efficiency with HR, just NHEJ (reviewed in: 

Bassett and Liu, 2013). Therefore it is recommended that for CRISPR-mediated HR, the 

approach that can be taken is to inject the donor template and plasmids containing the 

sgRNA sequence expressed under the U6b promoter (Port et al., 2014) into transgenic 

flies expressing Cas9, as this approach is effective for time and effort (reviewed in: 

Housden et al., 2014). Alternatively, traditional methods of designing CRISPR can be 

replaced: recently, scientists have been using t-RNA flanked sgRNAs. These have been 

recognized to be highly efficient for targeting when working with multiple sgRNA targets 

(Port and Bullock, 2016). 

Once disruptions of fru can be obtained in both D. melanogaster and D. simulans, they 

can be crossed to the opposite species to generate hybrids that only express a species-

specific allele of fru. These female hybrids can then be tested for female mating 

preference through a reciprocal hemizygosity test by pairing with wild-type D. 

melanogaster males. The protocol to perform a reciprocal hemizygosity test can be found 

in Appendix C. 

4.5  Conclusion 

Establishing disruptions of fru in both D. melanogaster and D. simulans through 

CRISPR-mediated NHEJ was troublesome and had low efficiency. As a germline 

deletion was obtained in D. melanogaster, targeting the common region through in vitro 

transcribed sgRNA injected into transgenic flies expressing Cas9 is possible. Therefore, 

the initial steps of forming a working CRISPR-mediated NHEJ protocol and a 

microinjection protocol has been established upon which the future steps of this project 

can be completed. However, if someone with injection experience does not continue this 

project, injections could be outsourced to a company such as Best Gene, which produced 

the C4 deletion stocks in D. melanogaster. 
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I generated stable stocks of fru C4 mutations in D. melanogaster that can be used for 

future experiments to understand what molecular effect, if any, the deletion has on the 

function of fru, giving new insight into the role of the common region. This information 

can further help in unraveling the story of why D. melanogaster and D. simulans are 

reproductively isolated from each other. 
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Appendices  

Appendix A: Common region sequences 

Annotated sequences of the fru common region exons C1, C2, C4, and C5 in lines D. 

melanogaster BJS and D. simulans FC containing the sgRNA targets. The D. 

melanogaster and D. simulans sequences are reverse compliments to each other. 

sgRNA target site used  

Alternate sgRNA target site that could be used in future study 

D. melanogaster 

C1 

CTTGACTGTTTCGCCCTCGCAGGCGAGCGTGAACGTCGCATAGCGCCTCCCGC

TGCAGCAGTGAGGTTAGCACGCCGGTCAAATTTGTGGGATGATTGTTCCAGC

GCAAGCAGAATTGCTGGTCCATCGCTCCTTGGTCAGTGTTGTAC 

The reverse complement of this sgRNA site was used for targeting. 

C2 

CTGCAGGCTCTCGGCCGTCTTGAGAAACATGGGCAGCGAACTCTGGCCCACG

TTGACCTCGCCCTTGTACATGAAGTCGAGCAGAGATCGCATCTCTGAGTATCT

GACATCTTTCAAGTAAGATGATGGGATGTGGATGCTGGTTCTGTAGGAAAAT

CGTCTCGAAGTACGGACTGCAGGCTGACAGGATGGTCTGGTGAGC 

C4 

CGGCAAGTAATCTGGGGGCAGGGCCACGTGGTGTTCCCGATGCTGCTGCTGC

TGCTGGGCGTCCATCAGCTCCTGCTTGATGCTCAGCGACTGGCTCAGACCGCT

AAGGGCGCTGGCCGCGCCCACATTGCCACCACCGCCGCCCAGCTGAACGCTT
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GTGGTCATCGACAGCGGCGAGTCGTGGCGACCGCCGGCGTCCTCCGATTCCG

ATGTGCTGCCGCCCGTTTTGGGCACGGGACTCGACTTGAAGTTGGC 

C5 

CAAAATAATTATATTCTTTTATTAATGCTTCTCAGTTTATTGTTCAATTTTCGC

CAATGTCAAATGCTGTTTGCTTTTGTTCATAGTAGCTGCCAAGTTCTTAGGTT

ACTAAATATATTTTACTTTTCGGACATTTAATTGATAACGAAAACTTAATGCT

AATGCCTATGGCTAATCCTGAGCGGTGTGTTGGGTCCTCTTTCAAGGACCTGT

CTCTATGCGCTGTTCTTGCCCACATTTATGGTGATAATTTCGGGGGAACGTCG

CTTGGAGCTGCCTCCTGCACTTCCACTGGGCATGGGATGTTGCTGCTGCTCCT

GGAGCTCACGCTCGTAGCACATGCGATGCGATTTGCATTTGTTGTGGTGGTTG

ACGATCTCCAGGCGAAAGTTGGAGTTGCCCTCAACGAAGGAGGTGCGTATGT

CGGCCAGCTCGCCGCTCCATTTGCGACAATGGCGGCAGAACATGGTGTTGCC

CGCTCGTCGTATTGCAGCCACTCGAACTGATACAGCCAGTTGGCCCTAAATC

GACCACTTTTCCGGGAGCTTCCTCCCGCAGAGCCCGATGGTATCGCTGGGCTT

TGGGATTTTCCCAGCGAATGGTGTGGCTGCTGTTGATGCTGTTGTTGCTGCTC

CTGGTGTTGTTGCTGCTGTGCCAGCAATCTGTGCATGGCAGAATCCAAGCCCT

CGTTCTGATAATGCAGCTGAAAGCTCTTCAACTGAGCCTCCACTGCCTGGTGG

AGGAGCATTTGATGCATGGACTTGTTGCCTGTGCTGCCTAAAAACGCTTCGTG

ACTTTTTCAC 

D. simulans 

C1 

GTACAACACTGACCAAGGAGCGATGGACCAGCAATTCTGCTTGCGCTGGAAC

AATCATCCCACAAATTTGACCGGCGTGCTCACCTCACTGCTGCAGCGGGAGG

CGCTATGCGACGTCACGCTCGCCTGCGAGGGCGAAACAGTCAAG 
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C2 

GCTCACCAGACCATCCTGTCAGCCTGCAGTCCGTACTTCGAGACGATTTTCCT

ACAGAACCAGCATCCACATCCCATCATCTACTTGAAAGATGTCAGATACTCA

GAGATGCGATCTCTGCTCGACTTCATGTACAAGGGCGAGGTCAACGTGGGTC

AGAGTTCGCTGCCCATGTTTCTCAAGACGGCCGAGAGCCTGCAG 

C4 

GCCAACTCCAAGTCGAGTCCCGTGCCCAAAACCGGCGGCAGCACATCGGAGT

CGGAGGACGCCGGCGGTCGCCACGATTCGCCGCTCTCGATGACCACCAGCGT

TCATCTGGGCGGCGGTGGTGGCAATGTGGGCGCGGCCAGCGCCCTGAGCGGT

CTGAGCCAGTCGCTGAGCATCAAGCAGGAGCTGATGGACGCCCAGCAGCAG

CAGCAGCATCGGGAACACCACGTGGCCCTGCCCCCAGATTACTTGCCG 

C5 

GTGAAAAAGTCAGAAGCGTTTTTAGGCAGCACTGGCAACAAGTCCATGCACC

AAATGCTCCTCCACCAGGCAGTGGAGGCTCAGTTGAAGAGCTTTCAGCTGCA

TTACCAGAACGAGGGCTTGGATTCCGCCATGCACAGATTGCTGGCACAGCAG

CAACACCAGGAGCAGCAACAGCAGCACCAGCAGCAGCCACACCTTTCGCTG

GGAAAATCCCAAAGCCCAGTGATACCATCGGGCTCTGCGGAGGAAGCTCCCG

GAAAAGTGGTCGATTTAGGGCAACTGGCTGTATCAGTTCGAGTGGCTGCAAT

ACGACGAGCGGGCCAACACCATGTTCTGCCGCCACTGTCGCAAATGGAGCGG

TGAGCTGGCCGACATACGCACCTCCTTCGTGGAGGGCAACTCCAACTTTCGC

CTGGAGCTCGTCAACCATCACAACAAATGCAAATCGCATCGCATGTGCTACG

AGCGTGAGCTCCAGGAGCAGCAGCAACATCCCATGCCCAGTGGAAGTGCAG

AGGCAGCTCCAAGCGACGTTCCCCCGAAATCATCACCATAAATGTGGGCAAG

AACAGCGCATAGAGACAGGTCCTTGTAACAGACCCAACACACCGCTCAGGAT

TAGCCATAGGCAATAGCATTAAGTTTTCGTTAACAATAAATGTCCGCAAAGT

AAAATATATTTAGAAACCTAAGAACTTGGCAGCTACTGTGAACAAAAACAAA

CATCATTGACAGCATTTGCATTGGCAAAAATTGAACAATAAACTGAGGAGCA

TTAA 
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Appendix B: Egg plate recipe 

Recipe for grape or apple juice agar plates used in the fly cages to collect eggs, obtained 

from the lab of Dr. Percival-Smith. 

Appendix B: Egg plate recipe 1 

Ingredients  2 litres (~ 50 egg plates or 2 packages) 

Water 1000 mL 

100% apple or grape juice 1000 mL 

Agar 50 g 

Sugar 120 g 

Propionic acid 6 mL 

Add water, juice, and agar together in a large pot and put on high heat. Next, add agar 

and stir constantly as agar burns quickly, followed by propionic acid (wear gloves). Heat 

to a boil and keep stirring until no granules are left and most of the bubbles have 

dissipated. Turn the heat down and keep stirring until the solution appears less opaque. 

Distribute into 100 mL petri dishes and let it cool and harden before placing in fridge. 
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Appendix C: Reciprocal hemizygosity test 

D. melanogaster and D. simulans flies with fru disrupted (maintained over either a 

balancer –TM6B – or inversion) will be crossed to the original stocks used for embryo 

injections of the opposite species (Figure 8). The two types of interspecies female hybrids 

that are produced [mel(fru-)/sim and mel/sim(fru-)] will be assayed. Pure species hybrids 

(mel/sim) made from the same stocks will be assayed at the same time as a positive 

control. Mating assays will follow that of Laturney and Moehring (2012b). Briefly, 

courtship and mating will be observed for one hour at 24°C with 70% relative humidity, 

between virgin female hybrids and virgin wild-type D. melanogaster males with GFP-

tagged sperm in 30 mL glass vials. After one hour, the pairs will be placed into 30 mL 

food vials for 24 hours. After 24 hours, the female reproductive tract will be dissected to 

score for presence of sperm (as a proxy for mating) or absence of sperm (as a proxy for 

no mating) to determine if there is a change in behavioural phenotype to reject a mate. 

Proportion of pairs that mated will be analyzed using a z-test. If D. simulans fru increases 

female rejection of D. melanogaster males, as expected, then the unmasking of this allele 

in mel(fru-)/sim hybrids should result in significantly reduced mating compared to 

mel/sim(fru-) hybrids and mel/sim hybrids (Figure 8). 
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