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ABSTRACT AND KEYWORDS 

 This thesis examined the effects of neonatal acute immune activation with the endotoxin, 

lipopolysaccharide (LPS) on postnatal days 3 and 5 on adolescent anxiety- like behaviour in rats 

before and after a stress period. Previous research has shown that adults rats exposed to LPS 

during the neonatal stage show anxiety- like behaviour following a period of stress. This thesis 

investigated this effect in adolescence. The present results showed significantly higher anxiety-

like behaviour in no injection controls, and a potential resilience effect of low dose LPS (15 

µg/kg) contrary to what was reported in adult rats. As well, a phase of stressful, aversive 

conditioning (conditioned disgust) did not elicit anxiety-like behaviour in LPS-treated adolescent 

rats. This study provides novel findings about the adolescent period, and suggest the use of no 

injection controls for neonatal research. This thesis presents data that suggests the importance of 

no injection controls in future neonatal research involving. This thesis also provides support to 

previous literature investigating sex differences in anxiety-like behaviour; female adolescent rats 

showed less anxiety- like behaviour compared to male adolescent rats. Overall, endotoxin 

exposure did not appear to be a significant risk factor for the development of anxiety disorders in 

adolescence. Physical stress during the early-life period may be of importance when researching 

risk factors for anxiety disorders. 

 

Keywords: lipopolysaccharide, adolescence, stress, neonatal, endotoxin, sex differences, 

anxiety, light-dark test, conditioned disgust 
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1.1 Introduction 

The neonatal period is a time in which the developing brain is going through substantial 

neurodevelopment. Synaptogenesis, neurogenesis, programmed cell death, and myelination are 

some key processes that occur during this time (Brunton, 2015). Therefore, disturbances of these 

processes could have a profound impact on how the brain develops; this is known as early-life 

programming. There is now substantial evidence in pre-clinical models suggesting that early life 

stress can influence the appearance of psychiatric disorders later in life, including affective 

disorders (O’Mahony et al., 2009). Studies from human populations have revealed similar 

results, such that early-life adverse events increase the risk of later life psychopathologies 

(Gilmer and McKinney, 2003).  The hypothalamic-pituitary-adrenal (HPA) axis is a vulnerable 

pathway during the perinatal period, and early-life stress directly influences its development 

(Kehoe et al., 1998; Walker et al., 2006). Pathological changes in the HPA axis putatively result 

in anxiety disorders later in life by alteration of excitatory and inhibitory inputs (Gunn et al., 

2015).   

 

1.1.2 Early-life Immune Stress 

One method to induce stress during the early life period is to stimulate the immune 

system.  There is now substantial evidence showing that abnormal activation of immune cells 

early in life may result in pathological brain changes that persist into adulthood (Harvey and 

Boksa, 2012; Bennet and Gunn, 2006).  Due to the critical nature of early postnatal development, 

and the underdevelopment of the immune system at that time, it is crucial to understand the 

effect of postnatal pathogen exposure and its effects on future behaviour (Walker et al., 2006).  

Another consideration is that the blood brain barrier (BBB) during the early life period is also 
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underdeveloped (Bilbo and Schwarz, 2012).  This underdeveloped BBB is susceptible to the 

crossing of lipid-insoluble molecules, which includes peripheral proinflammatory cytokines 

released by the immune system in response to an immunogen (Barichello et al., 2012).  It is also 

well known that there is bidirectional communication between the endocrine system and the 

immune system (Silverman et al., 2005).  Due to bidirectional communication between the 

immune and endocrine system, these abundant proinflammatory cytokines produced by immune 

stimulation may alter the developmental pattern of the HPA-axis (Shanks et al., 2000). The 

proinflammatory cytokines result in the substantial release of glucocorticoids, which in turn 

results in the alteration of glucocorticoid receptor densities within the hypothalamus and 

hippocampus that persist into adulthood (Shanks et al., 1995).  Due to the alterations in 

glucocorticoid receptor densities, changes in synaptic transmission occur,  leading to the 

appearance of psychopathology (Shanks et al., 1995).  Microglia are also likely involved in the 

alteration of neurodevelopment due to early-life immune stress (Hoeijmakers et al., 2014). These 

immune cells (microglia) are heavily involved in neuronal activation and plasticity, and 

therefore, abnormal activation of microglia could alter homeostasis during the early life period 

and result in abnormal brain development (Hoeijmakers et al., 2014; Allen and Barres, 2009).  

The brain changes induced by early life immune stimulation have been theorized to manifest as 

various psychopathologies including schizophrenia, autism, anxiety and stress disorders (Bilbo 

and Schwarz, 2009).   

To model this pathological development in rodents, an experimental protocol known as 

the dual-exposure-to-endotoxin (DEE) is often employed.  This protocol involves intraperitoneal 

(i.p.) administration of an immunogen, such as lipopolysaccharide (LPS), on post-natal day 

(PND) 3 and PND 5 in rats (Walker et al., 2004).  Studies investigating the effect of neonatal 
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DEE on behaviour typically involve doses of 50 µg/kg up to 200 µg/kg.  The timing of drug 

treatment in DEE is based on the nature of endocrine development during the first 2 weeks of 

life.  There is a hyporesponsivity to ACTH during the neonatal period between PND 5 and PND 

14 (Sapolsky and Meaney, 1986; Witek-Janusek, 1998). These effects are likely due to reduced 

adrenal gland size during this post-natal age range and a reduced response by the adrenal cortex 

(Sapolsky and Meaney, 1986; Witek-Janusek, 1998). 

LPS is an immunogen that is found on the cell wall of Gram-negative bacteria that can 

mimic a bacterial infection by initiating an immune response (Bilbo and Schwarz, 2009).  This 

immunogen (LPS) binds to toll-like receptor 4 (TLR4) on immune cells.  A cascade is initiated 

by the receptor activation, resulting in the synthesis and release of a broad range of cytokines 

including: IL-1ß, IL-6, and TNFα.   

From the perspective of the neuroendocrine system, LPS administration results in an 

alteration in HPA functioning in terms of measurement of basal corticosterone and basal blood 

ACTH levels in LPS treated rats when compared to saline controls in adulthood (Shanks et al., 

2000).  There is growing literature supporting the hypothesis that early postnatal pathogen 

exposure in rats may be one of several causes of anxiety disorders in adulthood (Tenk, et al., 

2013; Walker et al., 2009; Breivik et al., 2002).  Anxiety is an affective state, consistent between 

rats and humans, and is characterized by various physiological and behavioural responses (Gray 

and McNaughton, 2003).  This affective state of anxiety can be elicited by either a perceived or a 

true threat.  The most characteristic stress response is the release of corticoids (cortisol in 

humans and corticosterone in rats) following the activation of the HPA axis. However, the results 

of various behavioural assessments are inconsistent. It has been reported that neonatal LPS 

exposure results in anxiety- like behaviour in adults (Breivik et al., 2002, Walker et al., 2004, and 
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Walker et al., 2009); however, decreases or no changes in anxiety- like behaviour following 

neonatal endotoxin exposure have also been determined (Breivik et al., 2002, Tenk et al., 2013, 

and Walker et al., 2008). In general, previous results are suggestive of the hypothesis that 

anxiety- like behaviour is increased in rats exposed to an endotoxin via a stressor effect (Walker 

et al., 2008). This theory states that rats exposed to DEE will show anxiety- like behaviour in 

adulthood if they are exposed to an acute stressor.  

There is currently a gap in the literature investigating the impact of DEE on adolescent 

behaviour.  Behaviourally, it has been found that the DEE (LPS) does not alter anxiety- like 

behaviour in adolescence (Walker et al., 2004); however, it is important to note that this study 

did not involve a stressor effect, which has been theorized to induce anxiety- like behaviour.  To 

the best of the author’s knowledge, no other studies have been conducted investigating the 

impact of neonatal LPS exposure on behaviour in the adolescent age range.     

 

1.1.3 Early-life Physical Stress  

Numerous models for early-life physical stress have been investigated in the rodent 

model.  The methods used to induce early life stress in rodents include the following: acute 

maternal deprivation (de Kloet et al., 2005), maternal separation (Sanchez et al., 2001; Huot et 

al., 2002), handling (Durand et al., 1998), and early weaning of pups (Kikusui and Mori, 2009).  

Another interesting early-life stressor that has not been extensively researched is the role of 

neonatal injection and toe clipping on future behaviour.  Exposure of neonatal rats to these 

mentioned procedures can directly influence behavioural and physiological measures later in life, 

most commonly changes in the hypothalamic-pituitary-adrenal (HPA) axis in response to stress 

(Walker et al., 2006; Brunton, 2015; Maccari et al., 2014; Wingenfeld and Wolf, 2011).   
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Research investigating early-life stress on behaviour later in life suggest that the amount 

of stress and the time period is critical to the development of anxiety- like behaviour in rats.  

There have been few studies looking at this effect in adolescence; however, the results are 

consistent for early-life stress inducing anxiety- like behaviour in adulthood. Weininger (1954) 

found that handling for as little as 10 min daily for 21 days resulted in changes in later life 

physiology and behaviour that was indicative of fearfulness.  This early-life handling elicits an 

endocrine response in the pups which is indicative of a stress response (Meaney et al., 2000).  

Adult female C57BL/6 mice, who underwent maternal separation during the early life period, 

showed reduced anxiety-like behaviour in the elevated-plus maze, and adult males showed an 

increase in anxiety- like behaviour (Romeo et al., 2003). Adult male and female rats exposed to 

periodic maternal separation from PND 3-10, showed significant increases in anxiety- like 

behaviour measured in the elevated plus-maze (Wigger and Neumann, 1999). This was further 

supported by a study by Kalinichev and colleagues (2002), where it was found that both male 

and female adult rats, who had been exposed to maternal separation during early life, spent 

significantly less time in the open arms of the elevated plus maze compared to non-handled 

controls.  

Results of early-life stress on adolescent anxiety- like behaviour are more inconsistent.  

Maternal separation during the neonatal period, consisting of 15 minute periods every day from 

post-natal day (PND) 2 to PND 21, results in decreased adolescent anxiety- like behaviour for 

adolescent females but not adolescent males (McIntosh et al., 1999).  Maternal deprivation, 

consisting of dam separation for 24 hr from PND 9 to PND 10, resulted in no significant changes 

in anxiety-like behaviour on the elevated plus maze test, unless they were subsequently 

challenged with saline injection stress. A similar effect was also seen if rats were not exposed to 
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maternal deprivation, but were exposed to saline injections (Girardi et al., 2014). To the best of 

the current author’s knowledge, there have been no other studies investigating the effect of early 

life stress on adolescent anxiety-like behaviour.  

Research procedures during the early life period (including DEE) frequently employ the 

use of toe clipping and injections in the neonatal period to assess the effect of neonatal drug 

treatment (e.g. lipopolysaccharide) on anxiety-related behaviour and physiology.  Toe clipping 

procedures are used for future identification of animals given drug treatments.  Both toe clipping 

and injections can be considered early life stressors. The physical stress associated with 

intraperitoneal injections and toe clipping in the early post-natal period have not been 

investigated in terms of their effects on adolescent behaviour changes when compared to 

untreated rats.  It is important to consider the effects of these handling procedures, as they have 

similarity to maternal separation.  The handling procedures involve the removal of pups from the 

dam for a period of 10 minutes (Tenk et al., 2007).  Alterations in behaviour from neonatal 

injection and toe clipping stress can be assessed in adolescence using paradigms sensitive to 

anxiety- like behaviour (e.g. time spent in the light chamber of the light-dark test). There is an 

evident gap in literature regarding the use of untreated controls in neonatal research as a 

comparison group to a variety of experimental treatments which can affect behaviour later in life. 

Research in adolescent NIH-Swiss mice has shown that acute i.p. injection of saline 

shows a behavioural profile of mice with heightened anxiety-like behaviour in the elevated plus 

maze (Lapin, 1995).  Chronic administration of saline over a two-week period (7 saline 

injections; 3 sham injections) in adolescent mice has been associated with habituation over the 

two-week period regarding the physiological release of corticosterone (Ryabinin et al., 1999).  

Ryabinin and colleagues (1999) also found that a single injection of saline resulted in a 
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significant release of corticosterone. Therefore, injections show a physiological stress response 

by the subject that habituates over-time.  The lack of an untreated control group may be a factor 

influencing the inconsistent data in neonatal endotoxin research on future anxiety- like behaviour.  

Neonatal injections, toe clipping procedures, and the brief maternal separation may be stressful 

to the pups and induce pathological changes in neuroendocrine communication and functioning.  

Previous research has suggested no significant differences in HPA activity between saline 

controls and no injection controls regarding blood measures of HPA activity in adulthood 

following restraint stress (Meaney et al., 1987; Shanks et al., 1995).  However, results on 

behavioural measures of anxiety-like behaviour have not been previously investigated in either 

adolescence or adulthood.   

1.1.4 Concluding Remarks 

The present thesis investigated the impact of DEE on adolescent rat behaviour measured 

with the light-dark test before (Chapter 2; PND 35) and after chronic injection stress (Chapter 3; 

PND 47).  Novel to the DEE model, the studies within this thesis involved the use of untreated 

controls that were not toe clipped, maternally separated, or neonatally treated with either LPS or 

saline.  The studies involved dual exposure to one of two doses of LPS (15 µg/kg or 50 µg/kg) 

on PND 3 and PND 5 to examine a potential dose response of immune stimulation on anxiety-

like behaviour in adolescence. Sex differences in anxiety- like behaviour were also examined by 

including both males and females from each litter into the studies.  All behaviour was measured 

using the light-dark test to measure approach-avoidance behaviour that are indexes of both 

locomotor activity and anxiety.  

 The study presented in Chapter 3 examined the effect of chronic injection stress on rats 

neonatally treated with either LPS or saline on PND 3 and PND 5, and in untreated neonatal 
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controls (rats that did not receive treatment during the neonatal period).  Previous research has 

suggested that rats exposed to LPS on PND 3 and PND 5 show anxiety- like behaviour in 

adulthood only following a stressor, typically restraint stress (Walker et al., 2008).  Chapter 3 

employed a different method to induce stress in rats.  The stress procedure used in Chapter 3 

involved rats acquiring conditioned disgust. Conditioned disgust is a common method to assess 

anticipatory nausea in rats, and involves the i.p. injection of LiCl, to induce toxicosis, or a saline 

control. Following the injection, the rats are placed in a novel context for a period of 30 minutes. 

Rats receive these injections over 4 conditioning trials with a 72h interval separating each trial. It 

was hypothesized that this procedure would be sufficiently stressful to alter anxiety- like 

behaviour in rats treated with LPS on PND 3 and PND 5.  Untreated controls were involved to 

allow for comparison with the saline controls.  The saline controls did not have their immune 

systems stimulated; however, they still underwent early-life stress involving toe clipping (PND 

3), saline injections (PND 3 and PND 5), and maternal separation (15 min; PND 3 and PND 5).  

Therefore, the untreated controls provide a meaningful comparison to examine the effect of 

early-life stress on anxiety- like behaviour before and after chronic injection stress.      

It was hypothesized that untreated controls would be less anxious before and after the 

stress induced by conditioned disgust compared to all other treatments.  It was also hypothesized 

that a dose of LPS 15 µg/kg would result in similar anxiety-like behaviour compared to saline 

controls, and that an LPS dose of 50 µg/kg would result in significant anxiety-like behaviour 

across all indexes.  Finally, it was hypothesized that anxiety-like behaviour would increase in all 

LPS treated animals following the stress induced by conditioned disgust.     
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2.1 Introduction 

Exposure to environmental events during the early-life period of an organism can result 

in significant changes in neurodevelopment that may ultimately lead to abnormal behaviour later 

in life (Hida et al, 2013).  Anxiety disorders are of a concern within the human population, and 

have been hypothesized to be a result of early-life environmental events that induce 

physiological stress in the newborn (Faravelli et al., 2012).  Pre-clinical rodent models have 

investigated this association between early-life environmental stress and psychopathologies later 

in life.  A variety of models have been employed that include physical stress and immune stress 

to mimic the environments seen in the human population.  Physical stress often uses one of the 

following methods: acute maternal deprivation (de Kloet et al., 2005), maternal separation 

(Sanchez et al., 2001; Huot et al., 2002), chronic early life stress (Ivy et al., 2008), handling 

(Durand et al., 1998), and early weaning of pups (Kikusui and Mori, 2009).  Immune stress is a 

method that involves activation of the immune system at an early age using an endotoxin (e.g. 

lipopolysaccharide; LPS) on PND 3 and PND 5 (Tenk et al., 2007).  This chapter focuses on the 

effect of physical stress and immune stress on PND 3 and 5, and its subsequent effects on 

adolescent anxiety-like behaviour assessed with the light-dark test.  

Physical stress has been extensively used during the early-life period in animal models to 

understand various mechanisms that may induce a predisposition to anxiety- like behaviour later 

in life.  The use of early-life handling as a natural environmental stressor has been used since 

1954 (Weininger, 1954).  Weininger (1954) found that handling for as little as 10 min daily for 

21 days resulted in changes in later life physiology and behaviour that was indicative of 

fearfulness.  This early-life handling elicits an endocrine response in the pups which is indicative 

of a stress response (Meaney et al., 2000).  Early-life handling, however, is a physical stressor 
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that is multifactorial and elicits behavioural changes (Macrì and Würbel, 2006).  This period of 

early handling results in an increase in maternal care (Liu et al., 1997).  This increase in maternal 

care is linked to a general reduction in HPA-responses in adulthood, suggesting that early-life 

handling reduces the endocrine response to stress in adulthood (Macrì and Würbel, 2006).  

However, if this early-life stress begins to increase, the resilience effects produced by an increase 

in maternal care become negligible (Macrì and Würbel, 2006).  Maternal separation is a method 

that is more stressful to the pups, when compared to early-life handling, which entails separation 

of pups from the dam for 180 minutes (Plotsky and Meaney, 1993). When exposed to a stressor 

later in life, maternal separation results in a significant increase in HPA-axis response compared 

to both no handling controls and early-life handling (Plotsky and Meaney, 1993).  Overall, this 

suggests that the adulthood response to acute stress is dependent upon the severity of early-life 

stress experienced (Macrì and Würbel, 2006).   

The immune system is known to have a vital role in host defense as it prevents substantial 

damage by foreign pathogens and objects.  Current research on the immune system has shown its 

critical involvement in homeostasis.  There is now substantial evidence that abnormal activation 

of the immune system during the early life period may result in pathological brain changes 

(Harvey and Boksa, 2012).  There are currently several methods employed to induce an immune 

response within a rodent that can mimic bacterial infection; however, the primary method used is 

the dual exposure to endotoxin (DEE) method.  The DEE method involves the systemic 

administration of lipopolysaccharide (LPS) on PND 3 and PND 5 to induce an immune response. 

LPS is a component of the cell wall of Gram-negative bacteria.  This immunogen induces 

an immune response without the damage often associated with live infection, allowing for 
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examination of immune activation specifically.  LPS binds to TLR-4 receptors found on immune 

cells, where it causes the release of proinflammatory cytokines into the extracellular space.      

Behaviourally the impact of neonatal exposure to an endotoxin is relatively inconsistent. 

However, findings suggest the potential involvement of immune activation on anxiety- like 

behaviour into adulthood (Tenk et al., 2012; Walker et al., 2009; Breivik et al., 2002).   Several 

studies have investigated the effect of a neonatal administration of 50 µg/kg of LPS on adulthood 

behaviour, and it has been found to induce anxiety- like behaviours (Breivik et al., 2002, Walker 

et al., 2004, and Walker et al., 2009).  On the other hand, several studies using this same protocol 

have obtained nonsignificant results regarding anxiety- like behaviour differences between 

neonatal saline treatments and peripheral injection of 50 µg/kg LPS (Breivik et al., 2002, Tenk et 

al., 2013, and Walker et al., 2008). It is also important to note that very few studies have 

investigated the effect of neonatal administration of endotoxins on adolescent anxiety-like 

behaviour.  Adolescence is a key time period that should be explored as changes in microglial 

colonization occur at this age (Rebuli et al., 2016).  

A potential explanation for the inconsistent effects seen in the DEE method is that 

previous studies did not employ the use of untreated controls during the early post-natal period.  

The lack of untreated controls may be a factor influencing the inconsistent data in neonatal 

endotoxin research on future anxiety-like behaviour. The neonatal injections, coupled with toe 

clipping procedures and the brief maternal separation, may reach a stress threshold that induces 

pathological changes in neuroendocrine communication and functioning. Previous research has 

found no significant differences in restraint stress induced HPA activity between saline treated 

controls and no injection controls regarding blood measures of HPA activity in adulthood 

(Meaney et al., 1987; Shanks et al., 1995).  However, results on behavioural measures of 
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anxiety- like behaviour have not been previously investigated in either adolescence or adulthood.  

To date, there have been no studies investigating the impact of untreated neonatal controls on 

anxiety- like behaviour.  The handling associated with the DEE method is unlikely to induce 

long-lasting changes in behaviour and HPA-axis functioning, as previous research has shown 

that this may induce resilience; however, in combination with the stressful saline injections on 

PND 3 and 5 and toe clipping on PND 3, this stress may not be recoverable by maternal care.  

The lack of information regarding this combination of stressors signifies the need to explore its 

effect on future behaviour. 

Therefore, the aim of the present study was to further examine the effect of early life 

stress on anxiety-like behaviour in adolescence, with an emphasis placed on the use of untreated 

controls.  It was hypothesized that the handling, injections, and toe clipping combination during 

the early neonatal period would be sufficient to induce long lasting behavioural changes in 

neonatal saline controls that could be measured in adolescence using the light-dark test.  Sex 

differences were also investigated as there is relatively little data on the effect of DEE in both 

males and females.  

2.2 Methods 

2.2.1 Animals 

Fifteen sexually naïve Long-Evans females (226-250) were paired with sexually 

experienced male Long-Evans males (300-400g).  Breeders were obtained from Charles River, 

Canada.  Two weeks following pairing, the male rat was removed from the cage leaving the 

female single-housed in a standard polypropylene cage (45 cm x 22 cm x20 cm).  Rooms were 

temperature-controlled (20 ± 1 ° C) maintained on a 12:12 h light-dark cycle.  Ad libitum access 

to food (Prolab RMH3000 lab chow) and tap water.  Cages were checked twice daily for birth of 



21 
 

 
 

litters.  Day of birth was designated as postnatal day 1 (PND 1).  Litters were culled to 12 rats 

per litter on PND 5. On PND 22 rats were weaned and group-housed with same-sex littermate 

(3-5 rats per cage).  Same-treatment was preferred; however, due to sample sizes this did not 

always occur. Forty-eight no injection controls were ordered from Charles River, Canada at a 

weight of 50-75g and were same-sex group-housed.  Rats were ordered at this weight range, as 

this was the earliest possible age following weaning at Charles River and allowed habituation to 

the research environment prior to testing.  Furthermore, the age of the No Injection controls was 

estimated to be PND 35 when their average weight was within the weight range chart provided 

by Charles River. All experimental manipulations were conducted during the light phase of the 

light:dark cycle.  Vaginal smears were collected at 14:00 h following the behavioural test and the 

day following at the same time to assess estrous cycles. It is important to consider that the 

vaginal smear collection procedure was stressful to the female rats.  Analysis revealed that 

females were proportionally tested across all estrous stages minimizing estrous cycle effects. All 

procedures were approved by the University of Western Ontario Animal Care Committee and 

were in accordance with the Canadian Council of Animal Care (CCAC) guidelines. 

 

2.2.2 Neonatal drug administration 

 Each litter was assigned either LPS 15 µg/kg or LPS 50 µg/kg, with 0.9% isotonic saline 

controls in each litter.  LPS (derived from E. coli serotype 0111:B4, no. L2630, Sigma Chemical, 

St. Louis, MO, USA) was dissolved in 0.9% isotonic saline. The low dose of LPS 15 µg/kg was 

chosen as it has not been previously used in this field of research, and falls above the effective 

dose, as a low dose of 5 µg/kg still results in slight alterations in cytokine release (Lenczowski et 

al., 1997). The dose of 50 µg/kg was chosen as it has been previously used in our research group 
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with significant results, and is one of the most common doses used in neonatal immune 

stimulation on anxiety- like behaviour (Tenk et al., 2007; Tenk et al., 2008; Tenk et al., 2013).  

On PND 3, rats were randomly assigned to the respective LPS dose for that litter, or saline as a 

control.  All injections were made intraperitoneally using a Hamilton syringe with a 30-gauge 

needle tip at a volume of 1 ml/kg.  Final group numbers are shown in Appendix A.  An attempt 

was made to balance drug treatment group sizes per litter, however, due to mortality rates and 

birth defects, group sizes per litter varied. No more than three pups of each sex were assigned to 

a treatment from a single litter. Following the injection on PND 3, toe clipping was performed to 

assist with future identification of the rat’s treatment.  Prior to toe clipping, the respective feet for 

the toe clipping were cooled with an ice pack to minimize pain during the procedure.  On PND 5, 

rats were again injected with their respective treatment. All injections were administered 

between 10:00 and 12:00 h.  During the injection and toe clipping procedures, the entire litter 

was removed from the home cage and placed under a heat-lamp for the entire duration.  Each 

litter took no more than 10 minutes for injections and toe clippings.  Following PND 5, rats were 

left untouched in their home cage other than for weekly cage changes until PND 22 for weaning.  

Rats were group housed following weaning with same-sex rats, and preference was also placed 

on same-treatment groups.   

  

2.2.3 Light-dark apparatus 

 Eight modified VersaMax Animal Activity Monitors (Accuscan Model RXYCZM-16, 

Columbus, OH) were used to conduct light-dark testing.  Each monitor consisted of a clear 

Plexiglas open-field (40 cm x 40 cm x 30.5 cm) with a clear Plexiglas lid with air holes.  Infrared 

photo beams were located 2.54 cm apart and 5 cm above the floor around the perimeter of the 
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open field.  Two additional banks of 16 photo beams were located on opposite sides of the open-

field, 15.6 cm above the floor.   

 An opaque black Plexiglas box (40 cm x 20 cm x 30 cm) was inserted into each Animal 

Activity Monitor which modified it in such a way that divided the open-field into two equal sized 

chambers.  This opaque black box contained a 10 cm x 8.5 cm entry, which allowed unrestricted 

access between both chambers.  The side containing the black box was considered the “dark” 

chamber, and the other side the “light” chamber.  Above the apparatus was three fluorescent 

bulbs providing a light source of approximately 900 lux at the floor of the light chamber.  The 

black Plexiglas box contained holes around each side to allow the infrared beams to pass through 

the box.  

The light-dark test was used in this thesis as our research group has previously used the 

same apparatus with significant results (Tenk et al., 2007; Tenk et al., 2008; Tenk et al., 2013). 

 

2.2.4 Variables quantified by the Versamax System during light-dark testing 

The Versamax system automatically quantified the variables during behavioural testing.   

 

Anxiety-like Behaviour Variables 

Anxiety-like behaviour variables recorded by Versamax include: Duration of time spent 

in seconds in the light and dark chamber, number of Nose Pokes into the light chamber, and 

Chamber Transitions into the light chamber (animal crossed entire body into the opposite 

chamber).  

Locomotor Activity Variables        
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Locomotor activity variables were assessed to validate anxiety-like behaviour findings, 

and to explore potential changes in locomotor activity due to LPS treatment.  Locomotor activity 

variables recorded by Versamax include: Total Distance in each chamber (corrected for the 

unequal amount of time spent in each of the chambers; cm/s), Vertical Time (time spent moving 

in the vertical plane as a proportion of time spent in each chamber) and Number of Vertical 

Movements (number of movements in the vertical plane per second spent in the respective 

chamber).  

2.3 Procedures 

2.3.1 Behavioural testing procedure 

 On PND 35, adolescent rats were tested in the light-dark apparatus.  Male and female rats 

were tested separately, with males being tested prior to females.  Before testing, rats were 

habituated to the Versamax monitoring room for a duration of 45 minutes.  Immediately 

following the 45 min habituation period, they were placed facing the Plexiglas wall on the 

opposite end of the “dark” chamber entrance.  Rats were allowed unrestricted access to both 

chambers while behavioural data was collected for a duration of 30 minutes; however, only the 

first 10 minutes of data were analyzed.   

  

2.4 Statistical analyses 

 All analysis was conducted using a 2x4 ANOVA accounting for the random effect of 

litter (16 litters, where no injection controls were considered as an additional litter).  Between 

subject factors consisted of sex (at 2 levels: male; female) and neonatal treatment (at 4 levels: no 

injection; saline; LPS 15 µg/kg; LPS 50 µg/kg).  Post-hoc pair-wise comparisons were made 

using least significant difference (LSD) analysis to investigate group comparisons following a 
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significant main effect and interaction effect.  LSD post-hoc analysis was chosen for this study 

due to the exploratory nature of the study being conducted.  All hypothesis tests used an alpha of 

.05 criterion, and analyzed using SPSS 24.0 for Windows.    

 

2.5 Results 

2.5.1 Chamber Transitions 

A significant main effect of neonatal treatment on total chamber transitions was obtained, 

F(2, 13.149) = 4.104, p = .041.  Post-hoc analysis revealed that no injection controls (M = 

35.292, SE = 1.629) had significantly more chamber transitions compared to neonatal saline (M 

= 28.256, SE = 1.463, p = .000), LPS 15 µg/kg (M = 31.994, SE = 1.861, p = .028), and LPS 50 

µg/kg (M = 26.157, SE = 2.007, p = .000), as seen in Figure 2.1.  Rats treated with LPS 15 µg/kg 

also made significantly more transitions compared to LPS 50 µg/kg (p = .018).  No main effect 

of sex was found and no significant interaction was revealed.   

 

2.5.2 Time Spent in the Light Chamber 

A significant main effect of neonatal treatment on time spent in the light chamber was 

found, F(2, 14.565) = 14.478, p = .000.  Post-hoc analysis revealed multiple significant 

comparisons.  No neonatal injection controls (M = 160.723, SE = 8.973) spent significantly more 

time in the light chamber compared to neonatal saline (M = 67.463, SE = 8.059, p < .001), LPS 

15 µg/kg (M = 115.977 s, SE = 10.251, p = .000), and LPS 50 µg/kg (M = 74.931, SE = 11.057, 

p = .000), as seen in Figure 2.2.  Furthermore, rats receiving LPS 15 µg/kg also spent 

significantly more time in the light chamber compared to neonatal saline (p = .003) and neonatal 

LPS 50 µg/kg (p = .020).  There was no significant main effect of litter. No significant main 
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effect of sex was found. F(1, 3.621) = 5.855, p = .079, and no significant interaction effects was 

obtained.   

 

2.5.3 Nose Pokes into the Light Chamber 

 Analysis revealed no significant main effect of neonatal treatment on nose pokes into 

light chamber, F(2, 12.717) = 3.022, p = .084.  A significant main effect of sex was obtained, 

F(1, 11.310) = 7.918, p = .016, with females (M = 11.899, SE = .585) making significantly more 

nose pokes compared to males (M = 8.636, SE = .556, p = .000), as seen in Figure 2.3.  No other 

significant interactions were found.   

 

2.5.4 Total Distance in Light Chamber (Corrected) 

 ANOVA analysis found no significant main effect for sex or neonatal treatment and no 

significant interaction effects. 

 

2.5.5 Vertical Movement Number in the Light Chamber (Corrected) 

 A significant main effect of neonatal treatment was found, F(2, 14.005) = 4.485, p = 

.031.  Post-hoc analysis revealed that neonatal saline treated rats (M = .050, SE = .006) made 

significantly fewer vertical movements per second in the light chamber compared to no injection 

controls (M = .080, SE = .007, p = .001) and LPS 15 µg/kg treated rats (M = .071, SE = .007, p = 

.025).  No significant main effect of sex was found.  A significant interaction between sex and 

neonatal treatment was found, F(2, 12.162) = 7.488, p = .008.  Pairwise comparisons revealed 

that male rats treated with saline (M = .037, SE = .008) had significantly less vertical movements 

per second in the light chamber compared to no injection control (M = .078, SE = .009, p = .001), 
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LPS 15 µg/kg (M = .083, SE = .010, p = .001), and LPS 50 µg/kg (M = .068, SE = .011, p = 

.026), as seen in Figure 2.4.  Furthermore, males treated with saline had significantly fewer 

vertical movements per second compared to females treated with saline (M = .061, SE = .009, p 

= .038). A significant interaction between sex and litter was also revealed, F(12, 8.744) = 3.204, 

p = .046.  

 

2.5.6 Vertical Movement Time in the Light Chamber (Corrected) 

 No significant main effect for sex or neonatal treatment was revealed, and no interaction 

effect was found.   

 

2.5.7 Distance in the Dark Chamber (Corrected) 

 A significant main effect of sex was found following the ANOVA analysis, F(1, 9.529) = 

7.307, p = .023. Females exhibited significantly more total distance (cm) per second spent in the 

chamber (M = 1.615, SE = .060) compared to males (M = 1.333, SE = .057, p = .001), as seen in 

Figure 2.5.  No significant main effect of neonatal treatment was found, and no significant 

interactions were revealed. 

 

2.5.8 Vertical Movement Number in the Dark Chamber (Corrected) 

 No significant main effect was found for sex or neonatal treatment, and no significant 

interaction effects were revealed. 

 

2.5.9 Vertical Time in Dark Chamber (Corrected) 
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 Analysis revealed no significant main effect for sex or neonatal treatment, and no 

significant interaction effects 
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Figure 2.1: Group mean (± S.E.M.) activity behaviour of total chamber transitions during 

adolescence (PND 35). *p < .05 indicates a significant Neonatal Drug Treatment effect, where 

no injection controls made significantly more chamber transitions compared to all other neonatal 

treatments. Rats neonatally treated with LPS 15 µg/kg also made more chamber transitions 

compared to rats receiving 50 µg/kg LPS (No Injection; n = 48, Saline; n = 72, LPS 15 µg/kg; n 

= 42, LPS 50 µg/kg; n = 39). 
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Figure 2.2: Group mean (± S.E.M.) activity behaviour of time spent in the light chamber during 

adolescence (PND 35). *p < .05 indicates a significant Neonatal Drug Treatment effect, where 

no injection controls spent significantly more time in the light chamber compared to all other 

neonatal treatments. Rats neonatally treated with LPS 15 µg/kg also spent significantly more 

time in the light chamber compared to saline controls and rats receiving 50 µg/kg LPS (No 

Injection; n = 48, Saline; n = 72, LPS 15 µg/kg; n = 42, LPS 50 µg/kg; n = 39). 
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Figure 2.3: Group mean (± S.E.M.) activity behaviour of nose pokes into the light chamber 

during adolescence (PND 35). *p < .05 indicates a significant Sex effect, where females made 

significantly more nose pokes into the light chamber compared to males. (Female; n = 99, Male; 

n = 102).  
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Figure 2.4: Group mean (± S.E.M.) activity behaviour of vertical movements in the light 

chamber, per second spent in the chamber, during adolescence (PND 35). *p < .05 indicates a 

significant Neonatal Drug Treatment by Sex interaction effect. Male rats receiving saline 

injections during the neonatal period made significantly less vertical movements per second 

spent in the light chamber compared to all other neonatal treatments.  Females receiving neonatal 

saline also made significantly more vertical movements per second spent in the light chamber 

compared to their male counterparts (male-No Injection; n = 24, male-Saline; n = 36, male-LPS 

15 µg/kg; n = 21, male-LPS 50 µg/kg; n = 21, female-No Injection; n = 24, female-Saline; n = 

36, female-LPS 15 µg/kg; n = 21, female-LPS 50 µg/kg; n = 18).     
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Figure 2.5: Group mean (± S.E.M.) activity behaviour of total distance in the dark per second 

spent in the dark chamber during adolescence (PND 35). *p < .05 indicates a significant Sex 

effect, where females moved significantly more in the dark chamber compared to males. 

(Female; n = 99, Male; n = 102).  



34 
 

 
 

2.6 Discussion 

 

The purpose of the current investigation was to examine the potential long-term 

programming of adolescent behaviour following the exposure to physical and/or immune stress 

during the neonatal period.  Sex differences were also explored in light of the inherent 

differences in microglial colonization during the neonatal period, and hormonal differences 

during the adolescent age period (Schwarz et al., 2013).  Inconsistent results in neonatal 

endotoxin effects using the DEE model on anxiety- like behaviour suggested the need for further 

investigation.  Furthermore, these previous studies did not employ untreated neonates to control 

for the physical stress of handling, injection, and toe clipping on future behaviour.    

The results of the present study suggest that both LPS and saline injections during the 

early post-natal life result in changes in anxiety-like behaviour, as measured by time spent in the 

light chamber, chamber transitions, and vertical movements in the light chamber.  However, 

these results were obtained only when comparisons were made against the untreated controls.  

Interestingly, it was also found that an LPS dose of 15 µg/kg resulted in resilience, such that the 

rats receiving this dose were significantly less anxious when compared to the LPS dose of 50 

µg/kg and saline controls, as measured by time spent in the light chamber and total chamber 

transitions.  Rats receiving LPS at a dose of 15 µg/kg also showed significantly less anxiety- like 

behaviour compared to the saline controls, as measured by time spent in the light chamber. The 

present results also revealed that males receiving neonatal saline showed significantly less 

anxiety- like behaviour compared to females receiving neonatal saline, as measured by vertical 

movements in the light chamber.  Other sex differences consisted of differences in locomotor 

activity, as measured by total distance in the dark chamber, and significantly less anxiety- like 

behaviour in females, as measured by nose pokes into the light chamber.  Collectively, the results 
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of this study suggest that the inconsistent effects seen in the DEE literature may be due to a lack 

of control for the early life physical stress associated with the methods being used for early life 

drug treatment. 

The present results add to the current literature on the effect of DEE on behaviour later in 

life, specifically in adolescence.  Currently, there has been only one study investigating the effect 

of a 50 µg/kg dose of LPS on behaviour in adolescence, where it was shown to not induce 

anxiety- like behaviour on the elevated plus maze (Walker et al., 2004).  The results of the 

present study are consistent with this literature, the 50 µg/kg dose of LPS group was not 

significantly different from saline controls on time spent in the light chamber in the light dark 

test.  It is important to note that the study conducted by Walker and colleagues (2004) did not 

include untreated controls. The present study also found that rats treated with a 15 µg/kg dose of 

LPS spent significantly less time in the light chamber compared to both the saline controls and 

the 50 µg/kg dose of LPS group.   

From a physical stress viewpoint, the three groups (neonatal saline, LPS 15 µg/kg and 

LPS 50 µg/kg) experienced exactly the same procedures, and all showed significantly less time 

spent in the light chamber compared to the untreated controls. The physical stress involved in the 

DEE method involves handling and separation from the dam for a period of 10 minutes, 

intraperitoneal injections, and toe clipping on PND 3.  Thus, the physical stress involved in the 

procedures during neonatal drug manipulation predisposed the rats to anxiety- like behaviour in 

adolescence, as seen by time spent in the light chamber.   

Previous research has shown that maternal separation in rats during the first 2 weeks of 

life results in neurodevelopmental changes in HPA-axis functioning, such that there is 

corticotrophin-releasing hormone (CRH) promoter hypomethylation and an enhancement of 
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CRH transcriptional responses in response to stress in adulthood (Chen et al., 2012).  Neonatal 

mice and their respective dams showed enhanced excitatory glutamatergic drive to the CRH 

neurons in the paraventricular nucleus when they were exposed to early life stress involving 

reduced environmental enrichment (Gunn et al., 2013). Inhibitory inputs in the HPA-axis also 

appear to be altered in models of early life stress, and they are likely dependent on the type of 

early life stress.  Plotsky and Meaney (1993) investigated the differences between no handling, 

handling, and maternal separation.  The difference between handling and maternal separation 

was dependent on the amount of time the pups spent away from the dam: handling involved a 

separation of 15 min daily for 2 weeks, and maternal separation consisted of separation from the 

dam for 180 min daily for 2 weeks.  The results of the present study, and previous studies, 

suggest that rats subjected to no handling during early-life show enhanced HPA-axis response to 

stress when compared to handled neonates (Plotsky et al., 1993; Meaney et al., 1989; Viau et al., 

1993). This suggests that the baseline plasma corticosterone levels are better at inhibiting HPA 

axis activity in rats exposed to handling at an early age (Plotsky et al., 1993).  In other words, it 

appears that handling is protective rather than an inducer of pathological HPA-axis activity in 

later life.  The hippocampus appears to be a primary target for these differences, as rats exposed 

to early life handling show greater glucocorticoid receptor density in the hippocampus compared 

to the non-handled controls (Plotsky et al., 1993).  Early life stress in the Japanese quail, which 

involved the removal of food for 25% of the day (which has been previously shown to be 

stressful in birds; Buchanan et al., 2003), resulted in a decrease in glucocorticoid receptor density 

within the hippocampus (Zimmer and Spencer, 2014).  This trend also appeared in the human 

population where a reduction in glucocorticoid receptor mRNA was found in the hippocampus of 

post-mortem brains of individuals with a history of childhood abuse who committed suicide 
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(McGowan et al., 2010).  Overall, it is suggested that the effects of early life stress on 

hippocampal glucocorticoid receptor density is dependent on the severity of the stress during the 

early life period.  It is also concluded that the 10 minutes of handling in the DEE method in the 

present study is unlikely to induce the anxiety-response in the neonatal treatment groups.   

During the neonatal procedure of the current study, rat pups were removed from their 

dam for 10 minutes, placed under a heat lamp, exposed to an ice pack for local anesthetic for the 

toe clipping procedure, and injected intraperitoneally.  It is possible that the toe clipping 

procedure may have induced the effect seen in the present study, such that untreated controls 

were less anxious overall compared to all neonatal treatments.  Previous research has shown that 

toe clipping on PND 7 resulted in significantly- less time spent in the open arms of the elevated 

plus maze compared to sham toe clipping on PND 17 (Paluch et al., 2014); the authors attributed 

this effect to individual variation.  A separate study conducted by Castelhano-Carlos and 

colleagues (2010) found no significant difference between toe clipping on PND 5 and controls on 

elevated plus maze activity in adulthood.  Therefore, it is plausible that the results seen in the 

present study may have been due to the effect of toe clipping, as previous literature is 

inconsistent.  However, it is difficult to make a definitive conclusion as there has been limited 

research conducted on the effect of toe clipping in rats, and subsequent behavioural assessments 

in adolescence.   

Lastly, the other difference between the untreated controls and the neonatal treatments 

was the use of intraperitoneal injections.  There is very little research conducted on this effect, 

and only a few studies have investigated the differences between neonatal saline and untreated 

controls during the neonatal period.  It has, however, been found that neonatal saline injections 

do not alter biological markers of stress (Meaney et al., 1987).  A single study in mice was found 
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where untreated controls were used to investigate the effect of neonatal morphine on time spent 

in the open arms of the elevated plus maze (Boasen et al., 2009).  It was found that there were no 

significant differences in anxiety- like behaviour in adulthood between neonatal saline injections 

and untreated controls; however, it is important to note that this study was conducted in mice and 

behavioural tests occurred in adulthood.  The current study involved the use of rats and 

behavioural testing in adolescence.  It is plausible that the neonatal injections, whether saline or 

LPS, may have induced changes in the brain resulting in the anxiety-like behaviour in 

adolescence.  More investigation is needed to explore this effect of neonatal injections on 

adolescent behaviour in rats. 

Combining these factors (handling, toe clipping, injection), it is possible that toe clipping 

or a combination of all three factors may have produced the increased anxiety- like behaviour in 

the current study, as measured by time spent in the light chamber and total chamber transitions. 

As stated earlier, the more stressful the test situation (e.g. handling versus maternal separation) 

the greater the impact on glucocorticoid receptor densities within the hippocampus.  Individually, 

these factors may not be stressful enough to induce pathological brain changes; however, in 

combination it may be sufficient.  Future studies should explore these neonatal factors to validate 

neonatal research methods.         

 The unexpected result of the current study was the anxiolytic effect induced by the low 

15 µg/kg dose of LPS.  Previous research has shown that LPS acutely induces an increase in 

plasma ACTH, plasma CORT, and plasma IL-6; however, a low 5 µg/kg dose of LPS does not 

induce an increase in plasma IL-1ß when compared to a high 100 µg/kg dose of LPS 

(Lenczowski et al., 1997).  When combining this result by Lenczowski and colleagues (1997), 

the results can be seen to be inconsistent with previous literature, as IL-1 treatment has been 
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previously shown to reduce corticosterone levels in adult Wistar rats following acute stress 

(Plagemann et al., 1998).  Blunted corticosterone responses are also seen in adult male rats 

following a stress protocol, when exposed to the DEE method with a 50 µg/kg dose of LPS 

(Walker et al., 2009).  A 50 µg/kg dose of LPS in the present study revealed a significant 

reduction in chamber transitions, indicating greater anxiety- like behaviour (i.e. less risk taking).  

 Sex differences were also revealed, such that females showed greater nose pokes and 

locomotor activity within the dark chamber.  It is quite possible that the result associated with 

nose pokes is a result of estrogen effects, as it has been previously shown to regulate HPA-axis 

activity and normalize glucocorticoid receptor densities within the hippocampus (Ferrini et al., 

1999).  Vertical movements in the light chamber also reveal a sex by drug interaction, such that 

females did not show any overall significant differences between treatments on vertical 

movements.  Males, however, did show a significant difference among all treatment groups when 

compared to saline controls.  This again suggests a potential role that estrogen played in the 

female groups, especially given the fact that the rats were tested in adolescence where there is a 

sudden rise of estrogen during puberty in females.  There are also significant sex differences in 

microglial functioning during the neonatal period in which LPS and physical stress are induced, 

which may be relevant to the results seen in the present study (Schwartz et al., 2013).  

It is unclear what links can be made, especially given the fact that saline controls had 

similar anxiety-like behavior measures compared to the 50 µg/kg dose of LPS in the light-dark 

test of the present study.  Quite possibly, the effects being seen in the present study may be more 

strongly related to the effect of physical stress rather than immune stress.  Untreated controls 

were significantly less anxious overall compared to neonatal saline controls and LPS treatments, 

as measured by time spent in the light chamber.              
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NEONATAL EXPOSURE TO IMMUNE AND PHYSICAL STRESS DOES NOT 

PREDISPOSE RATS TO EXAGGERATED ANXIETY-LIKE BEHAVIOUR DURING 

ADOLESCENCE FOLLOWING STRESSOR EXPOSURE 

 

 

 

 

 

 

 

 

 



47 
 

 
 

3.1 Introduction 

 The early life period is pivotal for the development of the organism.  During the first few 

weeks of life, the organism is highly vulnerable and responsive to external and internal threats.  

These threats can have a profound impact on the developmental outcome of the organism.  It is 

widely hypothesized that early life stress, including both physical and immune, can be linked to 

psychopathologies later in life within the human population (Heim et al., 2001; Bale et al., 2010).  

Specifically, this physical and immune stress elicits changes in the functioning of the organism 

through alteration of the normal developmental pattern.  This is known as early life 

programming.  Early life programming has been linked to the development of anxiety-related 

disorders due to the alterations in endocrine and nervous system functioning during the early life 

period (Bale et al., 2010).  Both early life physical and immune stress are common scenarios in 

both the animal and human population, and is therefore important to investigate their changes on 

behaviour later in life. 

Animal literature has placed a heavy emphasis on the role of early life physical stress on 

the development of anxiety-related disorders.  Common methods used in the animal population 

to induce physical stress are the following: acute maternal deprivation (de Kloet et al., 2005), 

maternal separation (Sanchez et al., 2001; Huot et al., 2002), chronic early life stress (Ivy et al., 

2008), handling (Durand et al., 1998), and early weaning of pups (Kikusui and Mori, 2009).  

Maternal separation is the most common method used to induce early life physical stress.  This 

method involves removing pups from the dam for an extended amount of time, which limits 

passive care and feeding to the pup.  When pups exposed to maternal separation reach adulthood, 

changes in endocrine functioning are often seen in response to stress (Plotsky et al., 1993; 

Meaney et al., 1989; Viau et al., 1993).  More specifically, these rats show an overall general 
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increase in stress hormones throughout the body when they are exposed to a secondary stressor 

in adulthood, and is therefore suggestive of early life programming by maternal separation. Adult 

female C57BL/6 mice, who underwent maternal separation during the early life period, showed 

reduced anxiety- like behaviour in the elevated-plus maze, and adult males showed an increase in 

anxiety- like behaviour (Romeo et al., 2003).  Adult male and female rats, who were exposed to 

periodic maternal separation from PND 3-10, both showed significant increases in anxiety- like 

behaviour measured in the elevated plus-maze (Wigger and Neumann, 1999). This was further 

supported by a study conducted by Kalinichev and colleagues (2002), where it was found that 

both male and female adult rats who underwent maternal separation during the early life spent 

significantly less time in the open arms of the elevated plus maze compared to non-handled 

controls during the neonatal period.  

 Anxiety disorders are multifactorial.  There are several factors that can be implicated in 

its development.  Early life physical stress in animal models can mimic the human scenarios, 

however, maternal separation is still considered to be vastly different than early life stress in 

humans.  From an evolutionary standpoint, early life immune stress has greater cross species 

relevance as both animals and humans can be infected at an early age.  Activation of the immune 

system during the early life period elicits an endocrine response that is quite like the effect seen 

in physical stress models, such that there is an acute increase in systemic corticosterone (Walker 

et al., 2004).  A method commonly employed in the animal models is the injection of 

lipopolysaccharide (LPS) on post-natal day (PND) 3 and 5 to induce an immune response.  LPS 

is an immunogen found on the cell walls of Gram-negative bacteria that induces an immune 

response in the host.  The use of LPS in early life immune stress models is ideal due toits 

controlled and reliable effects, as it mimics an infection without the subsequent damage caused 
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by live bacteria.  If rats are exposed to LPS on PND 3 and 5, and reach adulthood, changes in 

neuroendocrine functioning are seen.  The PVN is an important structure within the endocrine 

system and is associated with the feedback loop of the HPA axis.  Adult rats neonatally exposed 

to LPS show significant increases in CRH mRNA within the PVN and are therefore indicative of 

an alteration in the feedback loop, which results in increased HPA-axis activity (Shanks et al., 

1995).  Furthermore, we can also see changes in glucocorticoid receptor binding within the 

hypothalamus, frontal cortex, and hippocampus in adult rats that were neonatally exposed to LPS 

(Shanks et al., 1995).  In response to acute stress, the activation of glucocorticoid receptors 

results in negative feedback; however, with the lack of binding, we see a decrease in effective 

termination of the stress response with an overall increase in corticosterone response (Shanks et 

al., 2000; Hodgson et al., 2001; Walker et al., 2008). Overall, it has been reported that neonatal 

LPS exposure results in anxiety- like behaviour in adults (Breivik et al., 2002, Walker et al., 

2004, and Walker et al., 2009); however, decreases or no changes in anxiety- like behaviour 

following neonatal endotoxin exposure have also been reported (Breivik et al., 2002, Tenk et al., 

2013, and Walker et al., 2008). In general, previous results are suggestive of the hypothesis that 

anxiety- like behaviour is increased in rats exposed to an endotoxin via a stressor effect (Walker 

et al., 2008).   

The current study employed the use of neonatal endotoxin exposure; however, it also 

contains several different physical stressors that may elicit similar changes as maternal 

separation.  Administering LPS on PND 3 and 5 involves pup handling, injection stress, and toe 

clipping on PND 3.  All of which may be physically stressful.  This effect can be seen in Chapter 

2, where it was revealed that saline controls showed significantly more anxiety- like behaviour 

compared to no injections controls.     
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 Much of the research on the effect of early life stress on behaviour has focused on 

adulthood, with very little focus placed on adolescence.  Adolescence is an important period of 

life to consider, as the average age of onset for all anxiety disorders combined is 11 years 

(Kessler et al., 2005). For early-life physical stress in rodents, only one study has been conducted 

on the effect of maternal separation on adolescent behaviour.  Maternal separation during the 

neonatal period - 15 minutes every day from post-natal day (PND) 2 to PND 21 - resulted in 

decreased adolescent anxiety- like behaviour for adolescent females but not for adolescent males 

(McIntosh et al., 1999).  Only one study is known to have investigated the effect of early life 

immune stress on anxiety- like behaviour in adolescence, and it was found that no behavioural 

changes were seen on PND 43 on the elevated plus maze (Walker et al., 2004).  However, 

neither of these studies employed the use of an acute stress, as previous research in adults has 

suggested the need of a stressor to elicit endocrine and behavioural changes. 

 The current study made use of an aversive conditioning procedure to elicit a stress 

response in rats previously exposed to early life stress.  Conditioning stress in this study involved 

the injection of either saline or lithium chloride (LiCl) intraperitoneally on 4 conditioning trials 

with 72 h separating each trial.  It was hypothesized that the stress from the procedure to induce 

conditioned disgust would be strong enough to elicit anxiety- like behaviour differences in the 

light-dark test 48 h following the final conditioning trial. As such, the current study examined the 

effect of neonatal endotoxin exposure, with both saline and untreated controls, on anxiety- like 

behaviour in the light-dark test following conditioning stress.  Furthermore, the data from 

Chapter 2 were used to compare anxiety- like behaviour before and after conditioning stress.  

                

3.2 Materials and Methods 
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3.2.1 Animals 

 All animals used in the previous experiment (Chapter 2) were used.  Animals remained 

group-housed (3-4 rats per cage, same-sex littermates, and same conditioned disgust treatment) 

in standard polypropylene cages (45 cm x 22 cm x 20 cm).  They remained in the same 

temperature-controlled colony room (20 ± 1° C) that was maintained on a 12:12 h light-dark 

cycle.  Ad libitum access to food (Prolab RMH3000 lab chow) and tap water was provided.  

Vaginal smears were collected for female adolescent rats throughout the procedures.  Analysis 

revealed that females were proportionally tested across all estrous stages minimizing estrous 

cycle effects. The experimental methodology was carried out according to the Canadian Council 

on Animal Care guidelines and was approved by the University of Western Ontario Animal Care 

Sub-Committee.   

 

3.2.2 Light-dark apparatus 

 The same light-dark apparatus used in Chapter 2 was used for this experiment.  Results 

from Chapter 2 were also used for repeated measures analysis to compare data before and after 

conditioned disgust. 

 

3.2.3 Variables quantified by the Versamax System during light-dark testing 

 The same variables quantified in Chapter 2 were used for this experiment.  

 

3.2.4 Conditioned disgust apparatus 

 The apparatus (used on all conditioning days and the test day) consisted of a distinctive 

context that was a white Plexiglas box (29 cm x 25 cm x 29 cm) set atop a clear glass plate.  A 
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mirror was mounted at a 45° angle beneath the glass plate in order to view the rat’s ventral 

surface.  Two 40 W red lights were placed below the glass plate.  Lighting cues were kept 

consistent with previous studies employing the rodent model of anticipatory nausea (e.g. Chan et 

al., 2009).  Behavioural responses exhibited on the Drug-Free Test Day were videotaped with a 

video camera (SONY DCR-DVD202; London, Ontario) positioned approximately 1 m from the 

mirror.   

 

3.2.5 Experimental procedure 

 On PND 36, one day following the light-dark testing in Chapter 2, rats underwent 

conditioned disgust.  The light-dark data from Chapter 2 will be used to assess changes in 

anxiety- like behaviour following the conditioned disgust procedure.  All conditioning and testing 

was performed during the light phase of the light:dark cycle.  The conditioned disgust 

experiment consisted of two phases, including a Conditioning Phase (4 days spaced 72 h apart) 

and one Drug-free test Day, 72 h following the final conditioning day.  The procedure can be 

visualized in Appendix B. On PND 47, one day before the Drug-free test day, rats were again 

exposed to the light-dark apparatus used in Chapter 1.  Like Chapter 2, rats were placed in the 

light-dark apparatus for a period of 30 minutes, with the first 10 minutes being used for data 

analysis.  Conditioned disgust results on Drug-free test day were used for a separate study.    

 

3.2.6 Conditioning phase drug treatment 

 On each day of the Conditioning Phase (4 days, 72 h apart) rats received an 

intraperitoneal injection of 96 mg/kg lithium chloride (LiCl; 15 ml/kg), or 0.9% isotonic saline 

(NaCl; 15 ml/kg).  Each rat was immediately placed into the distinctive context for a period of 30 
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minutes.  Following the exposure to the distinctive context, rats were immediately returned to 

their home cage.  There were a total of sixteen treatment groups consisting of (neonatal 

treatment:conditioning treatment): No Injection:NaCl, No Injection:LiCl, NaCl:NaCl, 

NaCl:LiCl, LPS 15 µg/kg:NaCl, LPS 15 µg/kg:LiCl, LPS 50 µg/kg:NaCl, and LPS 50 

µg/kg:LiCl, for both males and females.  Sample sizes for each group can be seen in Appendix 

B.   

 

3.2.7 Statistical analysis 

 All analysis was conducted using a 2x4x2 ANOVA accounting for the random effect of 

litter (16 litters, where no injection controls were considered as an additional litter).  Between 

subject factors consisted of sex (at 2 levels: male; female), neonatal treatment (at 4 levels: no 

injection; saline; LPS 15 µg/kg; LPS 50 µg/kg) and conditioning treatment (at 2 levels: NaCl; 

LiCl).  A repeated measures test was employed to measure differences in light-dark test results 

on PND 35 and light-dark test results on PND 47.  Post-hoc pair-wise comparisons were made 

using least significant difference (LSD) analysis to investigate group comparisons following a 

significant main effect and interaction effect.  LSD post-hoc analysis was chosen for this study 

due to the exploratory nature of the study being conducted.  All hypothesis tests used an alpha of 

.05 and analyzed using SPSS 24.0 for Windows.    

  

3.3 Results 

Light-Dark Test Repeated Measures: Before and After Conditioned Disgust Conditioning 

3.3.1 Chamber Transitions 
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 A 2x4x2 repeated measures ANOVA was conducted to compare the effect of Sex, 

Neonatal Treatment, and Conditioning Treatment on Chamber Transitions before and after 

conditioned disgust.  There was a significant main effect of Neonatal Treatment on chamber 

transitions, as seen in Figure 3.1.  Rats receiving no neonatal injection made significantly less 

chamber transitions after conditioning (M = 10.458, SD = 5.979) compared to before (M = 

14.771, SD = 5.470), Wilks’ Lambda = .910m F(3,184) = 6.048, p = .001.   

 

3.3.2 Time Spent in the Light Chamber 

  A 2x4x2 repeated measures ANOVA was conducted to compare the effect of Sex, 

Neonatal Treatment, and Conditioning Treatment on Time Spent in the Light Chamber before 

and after conditioned disgust.  There was a significant effect of Neonatal Treatment, Wilks’ 

Lambda = .955, F (3, 184) = 2.918, p = .036.  Post-hoc LSD comparisons were made for 

Neonatal Treatment and revealed that Neonatal Saline treatment spent significantly more time in 

the light chamber after conditioned disgust (M = 122.430, SE = 8.566) compared to before 

conditioned disgust (M = 73.775, SE = 7.726), p = .000, as seen in Figure 3.2.  A significant two-

way interaction effect was found for Conditioning Treatment and Sex, Wilks’ Lambda = .981, F 

(3, 184) = 6.063, p = .015.  Post-hoc LSD comparisons revealed that male rats who received 

NaCl during conditioning spent significantly more time in the light chamber after conditioning 

(M  = 110.416, SE = 10.584) compared to before conditioning (M = 85.570, SE = 85.570,  SE = 

9.546), p = .032.  Furthermore, female rats who received LiCl during conditioning spent 

significantly more time in the light chamber after conditioning (M = 163.250, SE = 10.308) 

compared to before conditioning with LiCl treatment (M = 111.892, SE = 9.297), p = .000, as 
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seen in Figure 3.3.  No other significant main effects or interaction effects were found following 

repeated measures analysis.  

A main effect of sex was found on PND 47 alone, F(1, 10.950) = 6.584, p = .026, such 

that females (M = 148.781, SE = 6.620) spent significantly more time in the light chamber 

compared to males (M = 96.389, SE = 6.561, p = .000).   

 

3.3.3 Nose Pokes into the Light Chamber 

A 2x4x2 repeated measures ANOVA was conducted to compare the effect of Sex, 

Neonatal Treatment, and Conditioning Treatment on Nose Pokes into the Light Chamber before 

and after conditioned disgust.  There was a significant main effect of Neonatal Treatment on 

Nose Pokes into the Light Chamber, Wilks’ Lambda = .910, F (1, 184) = 6.048, p = .001.  

Pairwise comparisons revealed that No Injection neonatal controls made significantly less Nose 

Pokes into the Light Chamber following conditioning stress (M = 10.587, SE = .772) compared 

to before conditioning (M  = 14.781, SE = .811),  p = .000, as seen in Figure 3.4.  Furthermore, a 

significant interaction between Neonatal Treatment and Conditioning treatment was also found, 

Wilks’ Lambda = .953, F (3, 184) = 3.023, p = .031, as seen in Figure 3.5.  Pairwise comparisons 

revealed that rats who received No Injection neonatally and NaCl during conditioning made 

significantly fewer nose pokes into the light chamber after conditioning (M  = 10.296,  SE 

=1.068) compared to before conditioning (M = 14.219,  SE = 1.122), p = .003.  Similarly, if No 

Injection neonatal controls received LiCl during conditioning, they made significantly fewer 

nose pokes into the light chamber following conditioning (M = 10.879, SE = 1.068) compared to 

before conditioning (M = 15.344, SE = 1.122), p = .001.  Rats who received NaCl during the 

neonatal treatment and LiCl during conditioning treatment made significantly more nose pokes 
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into the light chamber after conditioning (M = 10.483, SE = .836) compared to before 

conditioning (7.957, SE = .878). No other significant main effects or interactions were found in 

the repeated measures analysis.   

Analysis revealed a significant main effect of sex on nose pokes into the light chamber on 

PND 47 alone, F(1, 9.63) = 8.548, p = .016. Females (M = 12.051, SE = .587) made significantly 

more nose pokes into the light chamber compared the males (M = 8.208, SE = .582, p = .000). 

 

3.3.4 Total Distance in Light Chamber (Corrected) 

 Repeated measures analysis revealed a significant main effect of sex on total distance 

spent in the light chamber (corrected for time spent in the chamber), F (1, 184) = 3.924, p = .049, 

as seen in Figure 3.6.  Females moved significantly more per second in the chamber before 

conditioning (M = 3.306, SE = .276) compared to females after conditioning (M = 2.607, SE = 

.116), p = .020.  Males showed a similar effect, such that they moved significantly more in the 

dark chamber before conditioning (M = 3.701, SE = .269) compared to their results after the 

conditioning stress (M = 2.180, SE = .113), p = .000.  No other significant main effects or 

interactions were found in the repeated measures analysis. 

 A significant main effect of sex was found on PND 47 alone, F(1, 2.760) = 14.954, p = 

.035.  Females (M = 2.691, SE = .136) had significantly more distance moved per second in the 

light chamber compared to males (M = 2.241, SE = .135), p = .020. 

   

3.3.5 Vertical Movement Number in the Light Chamber (Corrected) 

 A significant main effect of vertical movement in the light chamber was found, F (1 ,184) 

= 10.780, p = .001.  There were significantly more vertical movement movements per second 
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spent in the light chamber after conditioning (M = .090, SE = .003) compared to before 

conditioning (M = .067. SE = .004).  

 A significant interaction effect was also found between Vertical Movement Number 

(corrected), Sex, and Neonatal Treatment, F (1, 184) = 3.750, p = .012, as seen in Figure 3.7.  

Post-hoc LSD analysis revealed that female rats who received No Injection during the Neonatal 

Treatment made significantly more Vertical Movements per second of time spent in the light 

chamber after conditioning (M = .105, SE = .010) compared to before conditioning (M = .077, SE 

= .010), p = .012.  Similar results were found for the No Injection controls for male rats, where 

the No Injection control male rats made significantly more corrected Vertical Movements in the 

light chamber after conditioning (M = .102, SE = .010) compared to before conditioning (M = 

.072 SE = .010), p = .012. Female rats who received neonatal saline made significantly more 

Vertical Movements per second in the chamber after conditioning (M = .091, SE = .008) 

compared to before conditioning (M = .070, SE = .008), p = .025. Male rats treated with saline 

during the Neonatal Treatment also saw a similar effect, where they made significantly more 

vertical movements per second in the light chamber after conditioning (M = .086, SE = .008) 

compared to before conditioning (M = .036, SE =.010), p = .000.  Female rats who received LPS 

15 µg/kg for Neonatal treatment also made significantly more Vertical Movements following the 

conditioning stress (M = .092, SE = .010) compared to before conditioning (M = .052, SE = 

.011), p = .002.   

A significant interaction between Vertical Movement Number in the light chamber 

(corrected), Sex, and Condition was also revealed, F (1, 184) = 3.924, p = 049, as seen in Figure 

3.8.  Post-hoc LSD analysis revealed that females who received NaCl during the conditioning 

period made significantly more Vertical Movements in the light chamber per second spent in the 
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chamber after conditioning (M = .099, SE = .007) compared to before conditioning, p = .013.  

Similar results were found for females who received LiCl during the conditioning period (After: 

M = .093, SE = .007; Before: M = .061, SE = .007), p = .000.   Males who received NaCl during 

the conditioning period also saw a similar effect, where they made significantly more Vertical 

Movements in the light chamber per second spent in the chamber after conditioning (M = .093, 

SE = .007) compared to before conditioning (M = .064, SE = .007), p = .000.  The males who 

received LiCl during conditioning saw no significant effect when comparing before and after 

conditioning.   

No other significant main effects or interactions were found within the repeated measures 

analysis for Vertical Movements in the Light Chamber (corrected).         

  

3.3.6 Vertical Movement Time in the Light Chamber (Corrected)  

 Repeated measures analysis revealed a significant main effect of Vertical Time in the 

Light Chamber corrected for time spent in the light chamber, F (1,184) = 52.463, p = .000.  Rats 

spent significantly more time in Vertical Movements after conditioning (M = .132, SE = .006) 

compared to before conditioning (M = .070, SE = .004), p = .000.  A significant interaction 

between Vertical Time in the Light Chamber (corrected) and Litter was also found, F (1, 184) = 

4.756, p = .030.  No other significant effects were found. 

 

3.3.7 Distance in the Dark Chamber (Corrected) 

 Analysis revealed a significant main effect of total distance in the dark chamber corrected 

to account for the time spent in the chamber (cm/s), F (1, 184) = 7.720, p = .006.  Total distance 
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corrected in the dark chamber was significant lower in the light dark test following conditioning 

stress (M = 1.330, SE = .049) compared to before conditioning (M = 1.543, SE = .038), p = .000.   

 A main effect of sex was found, F(1, 12.010) = 6.370, p < .027.  Females (M = 1.604, SE 

= .048) moved significantly more per second compared to males (M = 1.140, SE = .047), p = 

.000. 

 

3.3.8 Vertical Movement Number in the Dark Chamber (Corrected) 

 The repeated measures analysis found that there was a significant main effect on the 

number of vertical movements made in the dark chamber per second, F(1, 184) = 4.811, p = 

.030.  A significant interaction between the repeated measure dependent variable and litter was 

also found, F (1, 184) = 4.811, p = .030.  No other significant effects or interactions were found. 

 

3.3.9 Vertical Time in Dark Chamber (Corrected) 

 A significant main effect on the vertical time in the dark chamber, F (1, 184) = 5.626, p = 

.019.  A significant interaction between the repeated measure dependent variable and litter was 

also found, F (1, 184) = 4.706, p = .031.  No other significant effects or interactions were found. 
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 Figure 3.1: Group mean (± S.E.M.) activity behaviour of chamber transitions before (PND 35) 

and after (PND 47) conditioned disgust. *p < .05 indicates a significant Neonatal Drug 

Treatment by Time effect, where no injection controls made significantly more chamber 

transitions before conditioning compared to after conditioning (No Injection; n = 48, saline; n = 

72, LPS 15 µg/kg; n = 42, LPS 50 µg/kg; n = 39). 
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Figure 3.2: Group mean (± S.E.M.) activity behaviour of time spent in the light chamber during 

adolescence before (PND 35) and after (PND 47) conditioned disgust. *p < .05 indicates a 

significant Neonatal Drug Treatment by Time effect, where saline controls spent significantly 

more time in the light chamber after conditioning compared to before (No Injection; n = 48, 

saline; n = 72, LPS 15 µg/kg; n = 42, LPS 50 µg/kg; n = 39). 
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Figure 3.3: Group mean (± S.E.M.) activity behaviour of time spent in the light chamber during 

adolescence before (PND 35) and after (PND 47) conditioned disgust. *p < .05 indicates a 

significant Conditioning Treatment by Sex by Time effect, where females receiving LiCl during 

conditioning spent significantly more time in the light chamber after conditioning compared to 

before conditioning.  Male rats who received saline during the conditioning period spent 

significantly more time in the light chamber after conditioning compared to before (Female-

NaCl; n = 48, Female-LiCl; n = 51, Male-NaCl; n = 48, Male-LiCl; n = 54).  
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Figure 3.4: Group mean (± S.E.M.) activity behaviour of nose pokes into the light chamber 

during adolescence before (PND 35) and after (PND 47) conditioned disgust. *p < .05 indicates a 

significant Neonatal Drug Treatment by Time effect, where no injections controls made 

significantly more nose pokes into the light chamber before conditioning compared to after 

conditioning (No Injection; n = 48, saline; n = 72, LPS 15 µg/kg; n = 42, LPS 50 µg/kg; n = 39). 
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Figure 3.5: Group mean (± S.E.M.) activity behaviour of nose pokes into the light chamber 

during adolescence before (PND 35) and after (PND 47) conditioned disgust. *p < .05 indicates a 

significant Neonatal Drug Treatment by Conditioning Treatment by Time effect, where no 

injections controls receiving saline and LiCl during conditioning made significantly more nose 

pokes into the light chamber before conditioning compared to after conditioning.  Rats receiving 

neonatal saline treatment made significantly more nose pokes after conditioning compared to 

before if they received LiCl during conditioned disgust (No Injection-Saline; n = 24, No 

Injection-LiCl; n = 24, Saline-Saline; n = 34, Saline-LiCl; n = 38, LPS 15 µg/kg-NaCl; n = 20, 

LPS 15 µg/kg-LiCl; n = 22, LPS 50 µg/kg-Saline; n = 18, LPS 50 µg/kg-LiCl; n = 21). 
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Figure 3.6: Group mean (± S.E.M.) activity behaviour of total distance in the light chamber per 

second spent in the light chamber during adolescence before and after conditioned disgust (PND 

47). *p < .05 indicates a significant Sex effect, where both females and males moved 

significantly more in the light chamber before conditioning compared to before.   (Female; n = 

99, Male; n = 102). 
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Figure 3.7: Group mean (± S.E.M.) activity behaviour of vertical movements in the light 

chamber per second spent in the light chamber during adolescence before (PND 35) and after 

conditioned disgust (PND 47). *p < .05 indicates a significant Neonatal Treatment by Sex effect, 

where females showed significantly more vertical movements in the light chamber after 

conditioning compared to before for all neonatal treatments except an LPS dose of 50 µg/kg.  

Males saw a similar effect for no injection and saline neonatal treatments, where vertical 

movements per second were significantly higher after conditioning compared to before (male-No 

Injection; n = 24, male-Saline; n = 36, male-LPS 15 µg/kg; n = 21, male-LPS 50 µg/kg; n = 21, 

female-No Injection; n = 24, female-Saline; n = 36, female-LPS 15 µg/kg; n = 21, female-LPS 

50 µg/kg; n = 18).     
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 Figure 3.8: Group mean (± S.E.M.) activity behaviour of vertical movements in the light 

chamber per second spent in the light chamber before (PND 35) and after (PND 47) conditioned 

disgust. *p < .05 indicates a significant Conditioning Treatment by Sex by Time effect, where 

females receiving NaCl or LiCl during conditioning made significantly more vertical movements 

per second after conditioning compared to before conditioning.  Male rats who received saline 

during the conditioning made significantly more vertical movements in the light chamber after 

conditioning compared to before (Female-NaCl; n = 478 Female-LiCl; n = 51, Male-NaCl; n = 

48, Male-LiCl; n = 54).  
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3.4 Discussion 

 The purpose of this study was to examine the effect of a conditioned disgust stress 

protocol on rats that had been exposed to both physical and immune stress on PND 3 and PND 5.  

Sex differences were also of interest to explore the potential influence of microglial colonization 

differences during the neonatal period into adolescent (Schwartz et al., 2013).  Prior research has 

not investigated the role of early life physical stress associated with the DEE model; therefore, 

the comparisons against the no injection control in the present study were of interest.   

 The results of the present study suggest that a background of stress does not elicit 

anxiety- like behaviour in adolescent rats that underwent DEE.  Neonatal treatment, regardless of 

sex and conditioned disgust treatment, showed no changes in anxiety- like behaviour for no 

injection controls and both LPS doses; however, an increase in time spent in the light chamber 

was seen for the saline controls.  This suggests that the background of stress influenced the 

neonatal saline treated rats in such a way that they were less anxious following conditioned 

disgust compared to before.  It is unclear why the effect was seen, but may be due to a 

habituation effect that was not seen in LPS treated rats.  Interestingly, we also saw this effect in 

females who received LiCl during conditioned disgust, and males who received saline during 

conditioned disgust, regardless of neonatal treatment.  Both groups spent significantly more time 

in the light chamber compared to the dark, indicative of anxiety-like behaviour.  These results 

run contrary to previous research in adult Fischer 344 rats, which suggests that repeated saline 

injections twice a day for 14 days results in reduced open field activity (Izumi et al., 1997). 

Another measure often investigated in the light-dark test for anxiety- like behaviour is 

vertical movements, which is indicative of risk taking behaviour (Arrant et al., 2013).  The 

results of the present study suggested that all treatments, other than the 50 µg/kg dose of LPS 
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during the neonatal period, resulted in significantly more vertical movements in the light 

chamber compared to before conditioned disgust. This is suggestive of less risk taking, and 

potentially reduced anxiety. A similar result was seen in both the control groups for male rats (no 

injection and saline controls), such that there was an increase in vertical movements in the light 

chamber.  By collapsing the groups, regardless of neonatal treatment, it was shown that an 

increase in vertical movements was also seen in females receiving either NaCl or LiCl, and 

males who received NaCl. Overall, these results suggest that the adolescent rats showed reduced 

anxiety- like behaviour in the light-dark test following conditioned disgust stress, when compared 

to the light-dark test results prior to conditioned disgust.  

 On the contrary, the present study did suggest some increases in anxiety- like behaviour 

following conditioned disgust for both male and female rats.  The primary variables for these 

findings were nose pokes into the light chamber and total chamber transitions.  Interestingly, the 

present study found that the no injection controls, who received either NaCl or LiCl during 

conditioned disgust, had significantly less nose pokes into the light chamber.  This suggests that 

the no injection controls were showing more anxiety-like behaviour following conditioned 

disgust compared to before.  Comparable results were seen in the chamber transition variable, 

such that no injection controls made significantly less chamber transitions following conditioned 

disgust compared to before.    

 There have been very limited studies investigating the hypothesis that the influence of 

DEE on anxiety- like behaviour later in life is dependent on a background of stress (Walker et al., 

2008; Walker et al., 2009).  Compared to the present study, the previous studies employed 

different methods for inducing a background of stress, as well as for testing anxiety- like 

behaviour.  Walker and colleagues (2008) used a stress protocol consisting of 30 minutes of 
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restraint stress for days 1 and 2, social isolation on day 3, with the test day occurring on day 4.  

This study also used adult Wistar rats instead of the adolescent age range used in the present 

study.  The study by the Walker group (2008) showed a significant increase in anxiety-like 

behaviour in LPS treated adult rats, which was evident by the startle amplitude in the acoustic 

startle response.  Walker and colleagues (2009) used the same stress protocol as the one used in 

2008, however, they also used the elevated-plus maze and a hide box/open field to assess 

anxiety- like behaviour.  The results of this study by the Walker group (2009) suggested an 

increase in anxiety- like behaviour across all behavioural tests for LPS treated adult rats, when 

compared against the DEE saline controls.  The results of both of these studies brought forth the 

‘double-hit’ hypothesis, such that neonatal immune stress coupled with psychological stress 

leads to an increase in anxiety- like behaviour. These results are contrary to the present study 

results, as the present study found that there were no significant increases in anxiety- like 

behaviour in the light-dark test following conditioned disgust (used as the stress background).     

 There are several reasons why the results of the present study are not like those found in 

previous research.  One main reason is that a different strain of rat was used.  Both previous 

studies investigating the ‘double-hit’ hypothesis employed the use of Wistar rats, while the 

present study used the Long-Evans rat strain. Rat strains have been previously shown to have 

inherent behavioural differences in response to stimuli, as well as learning and memory (Shepard 

and Myers, 2008; Turner and Burne, 2014; Nosek et al., 2008); however, to the best of the 

author’s knowledge, there have been no previous studies investigating differences in anxiety- like 

behaviour between Long-Evans rats and Wistar rats.  The second reason why there may be 

significant differences in results between the previous studies by the Walker groups and the 

present study, may be due to the age group being tested.  Previous studies investigating a 
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background of stress on the DEE have tested rat strains in adulthood, while the present study 

tested the rats in adolescence.  Previous research has shown that adolescent rats exposed to the 

DEE do not show changes in anxiety-like behaviour in the elevated-plus maze on PND 40, which 

is close to the age tested in the present study (PND 47; Walker et al., 2004).  Quite possibly, the 

current study found no differences in anxiety- like behaviour due to the inherent biological and 

behavioural differences between adolescent and adulthood.  Compared to adulthood, adolescent 

male rats tend to show less anxiety- like behaviour in the elevated plus-maze (Schramm-Sapyta et 

al., 2007; Andrade et al., 2003).  Female rats also show similar results, such that adolescent ages 

exhibit less anxiety-like behaviour on the elevated-plus maze compared to adults (Genn et al., 

2003; Imhof et al., 1993).     

 The present study also showed that females had significantly less anxiety-like behaviour 

compared to the males following conditioned disgust.  This result is supportive of previous 

studies that show that female adult rats are less anxious compared to males in the open field test 

(Masur et al., 1980) and the elevated-plus maze (Genn et al., 2003; Imhof et al., 1993).  It is clear 

that the biological differences between males and females results in differing responses in 

anxiety assessing apparatuses.  It is, however, unclear why this effect occurred.  The results do 

suggest some level of involvement of the LiCl injections on behaviour.  For example, female rats 

who were given LiCl during the conditioning period exhibited significantly less anxiety- like 

behaviour, as measured by time spent in the light chamber.  LiCl has been previously shown to 

reduce anxiety- like behaviour in the elevated-plus maze (Wu et al., 2014).  More research would 

be needed to explore why males who received NaCl during conditioned disgust had reduced 

anxiety- like behaviour. 
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 Overall, the present study suggests that the ‘double-hit’ hypothesis does not hold true in 

adolescent Long-Evans rats that have been exposed to DEE and then exposed to conditioned 

disgust. The present study showed significant increases in anxiety- like behaviour following 

conditioned disgust (when compared to light-dark data prior to conditioned disgust) for no 

injection controls.  In other words, no injection control rats reacted to the conditioned disgust 

protocol, while all rats that underwent the DEE protocol during the neonatal period did not show 

any significant increases in anxiety- like behaviour.  In fact, the opposite was true.  The neonatal 

protocol involving any form of injection, resulted in a decrease in overall anxiety following 

conditioned disgust.   
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4.1 General Discussion 

The present thesis examined the effects of neonatal physical and immune stress on 

anxiety-related behaviour in male and female adolescents, as well as potential sex difference 

with respect to these effects, with the inclusion of neonatally untreated controls.  Studies similar 

to those found in the present thesis help us further understand the potential risks of both physical 

and immune stress during infancy, and how they may be linked to the development of anxiety 

disorders that are prevalent at the onset of adolescence. 

The results of this study suggest that the inconsistent results in current literature on the 

effects of neonatal manipulations on future anxiety- like behaviour may be due to a lack of 

untreated controls. Overall, it was found that untreated neonatal controls were significantly less-

anxious on measures of time spent in the light chamber, chamber transitions and vertical 

movements in the light chamber compared to all other neonatal treatments; these effects were 

seen prior to a period of injection stress from conditioned disgust. This novel result has not been 

investigated in previous literature and shows the magnitude of its importance in future neonatal 

studies. It was also found that a low dose of LPS (15 µg/kg) induced resilience during the 

neonatal period, resulting in less anxiety- like behaviour compared to saline controls and the 50 

µg/kg dose of LPS on the measure of time spent in the light chamber prior to conditioning stress. 

No previous literature has investigated a dose this small on anxiety-like behaviour in either 

adolescence or adulthood. Quite possibly, this effect may be linked to the cytokine release profile 

associated with a smaller dose. Previous research has shown that a dose of 5 µg/kg of LPS does 

not cause an increase in IL-1ß blood serum levels that is often seen with a dose of 50 µg/kg of 

LPS (Lenczowski et al., 1997). IL-1ß has been associated with the activation of the HPA axis 

and results in profound neuroactive steroid release (Silverman et al., 2005). Nose pokes into the 
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light chamber also revealed a sex difference, such that females were less anxious than males 

during the adolescent period. This is consistent with previous research in adolescence and this 

effect has been shown to continue into adulthood (Tenk, 2007; Hughes, Desmond and Fisher, 

2004). 

As suggested earlier, it was also hypothesized that a period of injection stress from 

conditioned disgust would elicit significant differences in neonatal immune treatment. This 

hypothesis was not supported by the results. No significant differences in anxiety- like behaviour 

were found in the measures used for the light-dark chamber. However, like the results prior to 

conditioning stress (Chapter 2), females were shown to be less-anxious overall compared to male 

adolescent rats. Locomotor activity was also investigated and it was shown that neonatal saline 

rats moved significantly more per second in the light chamber compared to rats who received an 

LPS dose of 15 µg/kg and LiCl during the conditioning period. No previous research has 

investigated this interaction effect, especially at such a low dose. 

Repeated measures analyses were also conducted to determine if there were any changes 

within groups over the conditioned disgust period. Rats that were neonatally treated with saline 

showed a significant increase in time spent in the light chamber following conditioning stress. 

This is not consistent with previous research in rats where chronic mild stress showed a relative 

decrease in time spent in the light chamber in adult rats (Farhan and Haleem, 2016). When the 

data was analyzed regarding conditioning treatment and sex, females who received LiCl during 

the conditioning period showed a significant increase in time spent in the light chamber 

following conditioning compared to before conditioning stress. Lithium chloride is often used in 

the general population as a mood stabilizer (Ihne et al., 2012). A study conducted by Ihne and 

colleagues (2012) showed that adult male mice fed a 4 g/kg dose of drug-containing pellets had 
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rescued effects of restraint stress on light-dark exploration. In the present study, there may be a 

sex dependent effect where the LiCl they receive during conditioning may be treating the 

anxiogenic effects elicited by conditioning stress in the female rats. A similar effect was seen in 

the male rats of the current study; however, this was found in the rats who received saline during 

the conditioning period. This is not consistent with previous research showing that chronic saline 

injections in adult rats were associated with a decrease in time spent in the light chamber (Souza-

Pinto et al., 2007). A decrease in nose pokes was also seen in the no injection control rats after 

the conditioning stress, which may be associated with habituation to the light-dark test. Both 

males and females also saw a significant drop in total distance per second in the light chamber, 

however, there was a profound increase in vertical movements per second in the light chamber 

after conditioning for all neonatal treatment groups in females. In males, an increase in vertical 

movements per second was only seen for the no injection controls and saline controls. A 

reduction in chamber transitions was also seen in the no injection controls. Previous research 

regarding chronic stress on behaviour in the light-dark tests occur during adulthood. The results 

seen in the current study may be due to differences in adolescent and adulthood behaviours. 

Adolescent rats typically show more risk-taking behaviour and less anxiety-related behaviour 

than adults (Stansfield and Kirstein, 2006). Risk-taking behaviour in adolescence is theoretically 

believed to be associated with appropriate development and maturation into adulthood (Spear, 

2000). 

Overall, it is reasonable to conclude that no injection controls appear to be critical for 

comparisons between neonatal manipulations. The neonatal procedure for saline controls 

involves separation from the dam for a period of 15 minutes, an injection, and toe clipping on 

PND 3. These three variables may have a profound impact on the development of the brain in the 
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first week of life. We also observed several effects of immune stress prior to a conditioning 

stress, such that LPS 15 µg/kg showed resilience effects (less anxiety-like behaviour) compared 

to the saline controls. A period of chronic stress, using conditioned disgust, did not appear to 

elicit anxiety- like behaviour in the rats that would be consistent with previous literature. 

Repeated measures also revealed less anxiety- like behaviour over several parameters in the light-

dark test following conditioned disgust. 

Previous studies investigating the impact of early life stress and immune stimulation have 

not used untreated controls.  There is a large amount of research that has concluded that neonatal 

LPS exposure does not elicit anxiety- like behaviour unless the rats are exposed to a stressor later 

in life.  However, there may be a ceiling effect where the saline controls have heightened anxiety 

like the neonatal treatments, as the controls were exposed to early life stress during the neonatal 

manipulations.  Therefore, the present thesis paves the way for future research calling for the use 

of untreated controls in neonatal drug manipulation research associated with psychopathologies 

involving anxiety.   
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