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Abstract 

The optimal methodology to determine the thermal properties of solids is particularly influenced 

by their thinness and morphology. As far as highly thermally conducting and ultra-thin layered 

materials on transparent and insulating substrates are concerned, contactless measurements that 

deposit a modest amount of heat on the sample are essential. In our thesis a combination of 

analytical and numerical solutions of  Fourier’s equation of heat is used, with the appropriate 

boundary conditions, for modelling the thermally modulated optical response of solids, in phase 

and amplitude, as a function of a their periodical illumination by a light beam that generates a 

heating of the thin-film substrate system at the same periodicity. Inverse solutions of Fourier's 

heat equation are required to extract the thermal conductivity and specific heat of the system in 

these cases. Two configurations are specifically considered. In the first configuration, in which 

the thermal properties are uniform at the macroscopic level in the directions orthogonal to the 

light beam, a photothermal deflection (PTD) configuration is considered and modeled under the 

assumption that the thermo-optical properties can be measured both from the thin film-side and 

the substrate-side of the system. We find that, on both sides, the phases of the PTD principally 

depend on the thermal diffusivity of the thin film, while the amplitudes also depend on the 

specific heat. In a second configuration, in which the thermal conductivity changes from point to 

point of the surface at the mesoscopic level, we developed a numerical method to solve Fourier's 

equation in configurations in which the thermo-optical properties are measured by scanning near-

field optical techniques. 

This configuration has been used graphene thin films decorated with a copper 

nanoparticle (Cu-NP) layer, before and after the deposition of Cu-NPs and after Cu-NP removal. 

In this system, we have been able to show that the decrease of thermal conductivity of graphene 

in contact to metal nanoparticles is due to phonon scattering by Dirac electrons in graphene, and 

not to metal-graphene interfacial thermal resistance, solving a long-standing debate in the 

literature.  A description of this phenomenon in terms of diagrammatic quantum field theory will 

be offered. 
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 “I do not know what I may appear to the world, but to myself I  

seem to have been only like a boy playing on the sea-shore,  

and diverting myself in now and then finding a smoother 

 pebble or a prettier shell than ordinary, whilst the great 

 ocean of truth lay all undiscovered before me.” 

Isaac Newton 

Chapter 1 

Background and literature review  

1.1 Introduction  

Recent years have seen a rapid growth of interest in the scientific communities in the thermal 

properties of materials. Heat removal has become a crucial issue for continuing progress in the 

electronics industry, and thermal conduction in low-dimensional structures has revealed truly 

intriguing features
1
. The search for systems composed of different materials that conduct heat 

well has become essential for the design of the next generation of integrated circuits and three-

dimensional (3D) electronics2. Similar thermal issues have been encountered in optoelectronic 

and photonic devices
1
. 

A systems ability to conduct heat is rooted in, the microscopic atomic structure of its 

composed materials and their macroscopic configuration with respect to one another and the 

environment. Thermal conductivity is introduced through Fourier’s heat equation which is
3, 4

: 

  ),,(),,(),(
),,(

),( tyxqtyxTyxk
t

tyxT
yxc th 




,     (1.1) 

where T(x,y,t) is the temperature, c(x,y) is the heat capacity and kth(x,y) is the thermal 

conductivity of the system. q(x,y,t) is the heat generated per unit volume within the system. Eq. 

(1.1) is reminiscent of the conservation of energy in a homogeneous control region of solid, in 

which heat can be generated by the right-hand term of the equation, c(x,y)( T(x,y,t)/ t) is the 

amount of heat accumulated over time and ·[kth(x,y)T(x,y,t)] is the amount of heat 

transferred or leaked through the control region boundaries. In solids, heat is carried by acoustic 

phonons which are, ion-core vibrations in a crystal lattice and electrons so kth = kth,p + kth,e, 

where kth,p and kth,e are the phonon and electron contributions, respectively. In metals such as 

https://en.wikipedia.org/wiki/Isaac_Newton
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copper, kth,e is dominant owing to large concentrations of free carriers while in carbon-based 

materials thermal conductivity is usually dominated by phonons
5
. 

The temperature profile in a homogeneous and isotropic system is governed by Fourier’s 

heat equation which is
6
: 

t

tyxT

Dy

tyxT

x

tyxT













 ),,(1),,(),,(
2

2

2

2

,    (1.2) 

where D is the thermal diffusivity that is assumed to be independent of the Euclidean coordinate 

axis x, y, and z and is defined as D = k/c. We write the temperature profile as a series of solutions 

with different eigenvalues and due to the linear characteristic of Fourier’s equation, for which the 

principle of superposition is valid we are able to add and subtract the temperature profiles with 

each other. In the next sections, we will solve Fourier’s heat equation in the presence of a 

harmonic heating pulse and study the macroscopic and microscopic nature of thermal 

conductivity in materials along with some examples from the state of art methods.  

1.2.1 Fourier’s heat equation in the presence of harmonic heating pulse 

To find the equation of heat we first write the amount of heat flow within a system. Due to 

experiments, we know that the heat flow is proportional to the gradient of temperature
6
: 

),,(),(),,( tyxTyxktyxJ  .   (1.3) 

By applying Stokes theorem
7
 we get that the heat flowing out of volume V, bounded by a surface 

S, is: 

  
S V

dVJdSnJ


ˆ .     (1.4) 

We write the total energy within the volume V as: 

dVtyxTyxcE
V

),,(),( .    (1.5) 

The rate of energy loss through the surface will be: 

  








V V

dV
t

T
ccTdV

t
.    (1.6) 

Equating Eq. (1.6) and Eq. (1.8) we get: 

t

tyxT
yxctyxJ






),,(
),(),,( ,   (1.7)  

and by substituting Eq. (1.9) into Eq. (1.5) we get: 
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t

tyxT

D
tyxT






),,(1
),,(2

.    (1.8) 

For the solution of the two-dimensional heat equation in the presence of a periodic square 

pulse with the frequency , we write the temperature profile as a series of solutions (x,y,t)with 

different eigenvalues a. To solve the temperature profile we use the technique of separation of 

variables
7
 in along the x and y-direction. We then impose certain boundary conditions related to 

the problem in hand. The first boundary condition that we use throughout this thesis comes from 

conservation of energy which we assume the total heat flux is continuous
3
 throughout the system 

under study. We write it as: 

n

T
k

n

T
k

p

p

q

q








,     (1.9) 

where the subscripts p and q indicate the two different materials that are in contact with each 

other. The derivative n is the direction of heat flow between the two materials. 

The second boundary condition which we will use in subsequent chapters expresses the 

continuity of temperature. We assume that the interfacial thermal resistivity
32, 33

 between 

different layers of a single material and also throughout the system composed of different 

materials is negligible and we have a continuity in temperature which we write as:  

),(),( 00 yxxTyxxT pq  ,    (1.10) 

where the temperature at the surface of contact x=x0 is equal between two different materials. 

 By solving Fourier’s heat equation in the foretold manner Eq. (1.2) we can calculate the 

thermal properties of the system such as the thermal conductivity via various methods, some 

which we have used in the following chapters. 

1.2.2 Microscopic origin of thermal conductivity 

The transport of thermal properties between different materials is intimately connected to the 

presence of interfaces, through electron-phonon interaction
8
 and phonon-phonon interaction

9-11
. 

In the context of heat transfer, the effect of increased thermal resistance due to an interface was 

discovered by Kapitza in 1941
12,13

 in the liquid helium-metal system and later on was 

demonstrated to be ever-present in any type of interfaces
14

. In nonmetallic solids, thermal energy 

is predominantly carried by lattice vibrations or phonons while in metals it is carried by 

electrons. If we have a material which has a perfect infinite lattice without any defects
9
, phonons 
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would propagate without scattering resulting in an infinite thermal conductivity. The interaction 

of lattice waves with each other which is referred to as the phonon-phonon scattering in materials 

with an anharmonic lattice results in a decrease in the thermal conductivity of such materials. 

However, in an elastic 4continuum, thermal resistance does not only arise from the lattice being 

anharmonic but it is the discrete nature of the crystal lattice itself that makes anharmonic thermal 

resistance possible
15

.  

 An important concept in explaining how anharmonic phonon interactions in the crystal 

lattice lead to finite thermal conductivity is that of normal vs umklapp phonon-phonon scattering. 

Umklapp processes (U-processes) are scattering processes among elementary excitations in 

crystals where momentum conservation is fulfilled with a contribution from the lattice
4
.The 

normal process conserves the phonon momentum and doesn’t contribute to the thermal resistance 

while in the umklapp processes, the wave vector conservation involves a reciprocal lattice vector 

which changes the momentum and thereby causes thermal resistance
16-22

. We should pay 

attention that although this definition might seem appealing the distinction between normal and 

umklapp processes is to some extent artificial and depends on our convention in choosing the 

basic cell of the reciprocal lattice
4, 23, 24

. 

An example of the umklapp process would be in isolated single-walled carbon nanotube’s 

where the thermal conductivity increases with the increase of temperature at low temperature, 

which shows a peak behavior at about 85 K before falling off at higher temperature
25

. Umklapp 

processes also play a role in noncrystalline structures without any periodic order such as a 

monatomic liquid in which inelastic excitations can be interpreted as the noncrystalline 

counterpart of Umklapp peaks
26

. 

We solve the thermal conductivity introduced through Fourier’s heat equation Eq. (1.1) 

and apply electron-phonon scattering along with the umklapp process to explain the local 

decrease in thermal conductivity in certain regions of the composite samples under study. 

1.3.1 Limits of state-of-the-art methods for measuring the thermal 

properties of thin films 

In recent years, the so-called 3ω method Figure 1.1 has emerged as the technique of choice for 

measuring the thermal conductivity in thin films due to its reliability and simplicity of 

implementation
27

. In the 3ω method, a thin metallic resistor deposited on the thin film specimen 
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to be measured acts at the same time as a heat source and a thermistor. An AC current at 

frequency ω is applied to this resistor, which causes the power delivered by the metal to the 

sample to oscillate periodically at double frequency, 2ω. Since the intensity of the thermal power 

absorbed by the thin film specimen from the metallic resistor depends on the specimen’s thermal 

conductivity as well as the periodic fluctuations in the thermal resistivity of the metal, the AC 

voltage at the two ends of the metallic resistor presents a modulation at 3ω frequency, which is 

also proportional, in its intensity, to the thermal conductivity of the sample. Nevertheless, if the 

interfacial (Kapitza-type) thermal resistivity from the heating resistor to the sample is 

comparable to the sample’s thermal resistance, the intrinsic thermal conductivity of the thin film 

measured by the 3 method will be grossly underestimated
27

. This issue causes major problems 

for thermal measurements in thin film materials with extremely high thermal conductivities in 

contact based techniques including the 3 method. Contactless methods for measuring the 

thermal conductivity are in extremely high demand when measurements in highly thermally 

conducting thin films are needed. In addition, the contribution of the substrate in evacuating heat 

is very difficult to take into account when using the 3 method. 

 

 

Figure 1.1: The 3 method is based on the radial heat flow. An AC current at frequency ω 

is applied to this resistor, which causes the power delivered by the metal to the sample to 

oscillate periodically at double frequency, 2ω. 

1.3.2 Limits of state-of-the-art methods for thermal imaging  

Despite great demands, experimental techniques capable of imaging thermal conductivity at the 

high lateral resolution demanded by state-of-the-art electronic components, pose a tremendous 

challenge to both academia and industry. Most of the methods used to determine the thermal 

conductivity of thin solid films, including the 3  method, laser flash techniques
28

 and others
29, 
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30
, are macroscopic in nature and average the thermal properties over large areas. They are 

unable to recognize the local fluctuations in sample composition and in the local variations of the 

thermal properties at the nanoscale.  

To date, nanoscale thermal measurements mostly rely on scanning thermal microscopy 

(SThM), a family of contact-mode scanning probe microscopy techniques that utilize thermal 

sensors integrated with cantilever probes. In SThM architectures that have been proposed to date, 

both the cantilever acts as the thermal sensor and simultaneously as a heat generator, or the heat 

generated by electrical current flowing through the scanning probe cantilever and the sample is 

detected by local thermometers based on infrared spectroscopy, thermoelectric effects or a 

combination of these methods. Unfortunately, in all these cases, relatively voluminous scanning 

probe cantilevers are required to be in contact with the sample. The measuring probe acts as an 

important thermal sink and the strong coupling between the probe and the sample cannot be 

neglected. Significant interfacial thermal resistivity also affects SThM measurements. 

Thermal sinks and interfacial thermal resistivity effects associated to SThM probes are 

largely irreproducible due to the irreproducibility of the distance and the thermal contact between 

the probe and the sample, an issue that is particularly problematic in samples with nanoscale 

roughness. SThM measurements in which the cantilever is immersed in a fluid have been 

attempted with the objective of improving the thermal contacts. However, fundamental studies 

have shown that a solid-liquid interface also constitutes a large thermal barrier. Subsequently, 

liquid-immersion SThM is unlikely to mitigate many of the thermal sink issues commonly 

associated with SThM techniques. Different approaches are required to overcome the constraints 

of SThM
31

. 

1.3.3 Methods for calculating the thermal properties of graphene-based 

materials and the limitation of the electron-phonon interaction method 

Controlling the thermal properties of graphene thin films by assembling metallic structures on 

their surface is a promising direction with significant applications in industry and electronic 

devices. Explanations such as interfacial thermal resistivity
 
between the metals and graphene thin 

films 
[34-36]

, phonon-phonon scattering caused by metals creating defects on the surface of the 

graphene flake
37, 38

, disorder-assisted electron-phonon scattering39 and charge impurity 

scattering on the surface of the graphene flake 
[40-44] 

have been given for the thermal property 
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variations of graphene composites. However, the role of electron-phonon scattering in affecting 

the thermal properties of graphene composites has never been investigated in detail. 

It has been shown that by applying metals on the surface of graphene its electronic band 

structure alters
45

. For example, when metals such as (Cu, Al, Ag, Au, and Pt) are applied on the 

surface of graphene they cause a shift in the graphene Fermi energy. To this end, the use of 

specific metals, such as copper 
[46-48]

, has been explored for graphene-based devices. Using 

classical calculations, Ziman et al.
49

 showed that the thermal conductivity of a material can 

decrease due to electron-phonon scattering. Although Zimans three particle process with an 

electron and phonon on one side and an electron on the other side is true in many cases it is 

unlikely to happen in graphene-based materials. This due to the fact that the electron-phonon 

interaction for the three particle process is not resonant and zone boundary electrons couple 

weakly with acoustic phonons that are mostly zone centered. To this end higher order electron-

phonon interactions are required.  

1.4 Conclusion and thesis overview 

Understanding heat evacuation in thin films and low dimensional systems is vital to design heat 

spreaders for efficient thermal management. The microstructure of thin films and coatings 

produced by chemical and physical deposition processes is heterogeneous by nature and their 

thermal conductivity may experience strong local fluctuations at the nanoscale due to the 

nonhomogeneous morphology of these coatings and the presence of interfaces, therefore making 

thermal conductivity measurements on thin films very challenging. The thesis is divided into 

three major sections, studying the thermal properties at the macroscopic, mesoscopic and 

microscopic level. In chapter 2 of the thesis, we study the thermal properties of a system at the 

macroscopic level. We use a new method for calculating the thermal properties of the thin film-

substrate system which is photothermal deflection spectroscopy (PDS). In chapter 3, 4 and 5 of 

the thesis, we study the thermal properties of a material at the mesoscopic level. We introduce a 

new method for acquiring thermal imaging at the nanoscale which is near-field scanning 

thermoreflectance imaging (NeSTRI) which we use to image the thermal conductivity and heat 

capacity of a graphene flake. In chapter 5 we also image the thermal conductivity of a graphene 

flake with copper particles embedded on its surface through applying the perturbation method. 

Then we investigate the role of electron-phonon interaction on the thermal conductivity of 
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graphene thin films. In chapter 6, we study the thermal properties of the graphene flake with 

embedded copper particles on its surface at the microscopic level. We write the second 

quantization Hamiltonian for electron-phonon interactions and by using Feynman diagrams we 

compare the thermal conductivity of the graphene flake before and after copper particles are 

embedded on its surface. Finally, in chapter 7, we summarize our study and suggest future 

research directions for our work. 
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“Heat, like gravity, penetrates every substance of the universe, 

 its rays occupy all parts of space. The object of our work is to 

 set forth the mathematical laws which this element obeys.  

The theory of heat will hereafter form one of the most  

important branches of general physics.” 

Joseph Fourier 

Chapter 2 

Thermal conductivity measurements by Photothermal Deflection 

Spectroscopy 

2.1 Introduction 

Photothermal Deflection Spectroscopy (PDS) has been frequently used to measure the thermal 

diffusivity of thin films on their substrates. However, in the most commonly used models to 

interpret PDS data, the substrate is assumed to be highly thermally insulating, which poses 

restrictions on the reliability of thermal diffusivity measurements by PDS and limits the 

possibility to use this technique for also measuring the thermal capacity of the samples. 

Simultaneous knowledge of thermal capacity and thermal diffusivity is necessary to determine 

the thermal conductivity of thin film materials, which is critical, both fundamentally and 

technologically. In this chapter, we calculate the deflection angle of the PDS signals both on the 

front and back side of a thin-film substrate system with different properties. We also calculate 

the phase and amplitude of the PDS signal at the two opposites sides of a thin-film substrate 

system. We find that, on both faces, the phases of the PDS signal depend on the thermal 

diffusivity of the thin film, while the amplitudes depend on its thermal capacity. By using the 

phase difference and amplitude difference at the two faces, we show that the accuracy of thermal 

measurements by PDS is significantly improved. We validate our analytical method by 

comparing it with experiments done on thin gold films attached to glass substrate being 

illuminated at different frequencies. 
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2.2 Photothermal deflection spectroscopy 

Photoexcitation spectroscopies are a group of high sensitivity spectroscopy techniques capable of 

simultaneously measuring the optical absorption coefficient and several thermal characteristics 

of a sample. Examples of photoexcitation spectroscopies are photoacoustic spectroscopy
1
 and 

photothermal bending spectroscopy
2
. Measurements performed by these techniques rely on the 

change in of the thermal state of an ambient/thin film/substrate system, which results from 

deliberate absorption of light directly inside the film. Consequently, they can be relatively free 

from artefacts associated with interfacial thermal resistivity
[10-13]

 effects and the contributions 

from the non-zero thermal conductivity of the substrate may also be taken into account. The 

temperature profiles in the thin film specimen and the adjacent media are governed by the 

Fourier equation of heat for isotropic media
3
, 
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where Tq is the temperature in the sample and the adjacent media (substrate and air, or another 

fluid) and Dq are their thermal diffusivities. After heat is being generated in the sample, it will 

transmit to the surrounding medium, also modifying their thermal state. PDS is a specific 

photoexcitation spectroscopy in which a thin film is periodically heated from illumination by a 

strong pulsed light beam at frequency  (also known as the “pump” beam) and the consequent, 

periodic, thermal gradient at the thin film/ambient interface is detected from the periodic changes 

in refractive index of the ambient materials resulting from its delayed periodical heating and its 

subsequent changes in density. As a consequence of these changes in refractive index, a weak 

(“probe”) laser beam traveling in the proximity of the substrate will be deflected at an angle  

Figure 2.1, according to the following equation, which is a consequence of Fermat’s principle for 

ray optics
4
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where the subscript s indicates that the integral has to be performed exactly at the 

sample/ambient interface, x is the direction normal to the sample/ambient interface and y is the 

direction along with the “probe” beam is traveling prior to crossing the heated region. It is worth 

noting that, in general, x and y are not necessarily orthogonal. Since the delay in the thermal 

http://en.wikipedia.org/wiki/Spectroscopy
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gradient to appear at the ambient/sample interface depends on the thermal diffusivity of the 

sample, Ds can be measured from the phase lag between the illuminating “pump” beam and the 

“probe” beam signal if Eq. (2.1) is solved for the appropriate geometry and with the suitable 

periodic and boundary conditions
5
. Consequently, PDS can be used to calculate the thermal 

conductivity of the thin film specimen as: 

             sssth CDk , .          (2.3) 

 

Figure 2.1: The system gets heated up by a pulsed pump beam with a certain frequency. 

The consequent, periodic, thermal gradient at the thin film/ambient interface is detected 

from the periodic changes in refractive index of the ambient materials resulting from its 

delayed periodical heating and its subsequent changes in density. As a consequence of these 

changes in refractive index, a weak (“probe”) laser beam traveling in the proximity of the 

substrate will be deflected. 

In order for the probe beam to have a bigger deflection, we use a photothermal fluid. 

Photothermal fluids are liquids that experience strong changes in refractive index n from 

relatively small changes in fluid temperature, Tf. Since air has relatively poor photothermal 

properties (with Thermo-optical coefficient (dn/dTf)/n ~10
-9

 K
-1

) samples for PDS experiments 

are normally immersed in special fluids, including carbon tetrachloride (dn/dT f)/n~10
-3

 K
-1

) or 

Fluorinert
TM

 (dn/dT f)/n ~10
-4

 K
-1

to increase the amplitude of the photothermal signal, which also 

depends on the thermal capacity Cs of the specimen
4, 6

. PDS has been used by our group to 

determine the thermal conductivity of several types of materials, including amorphous silicon
4
, 
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graphene thin films
7
, and graphene-polymer nanocomposites

8
. 

2.3 Analytical model for thin film-substrate system 

2.3.1 Measuring the temperature profile for the thin film-substrate  

In PDS an absorbing sample is heated by a pulsed light beam and the effects of such heating on 

the optical properties of a nonabsorbing medium surrounding the samples are probed by a 

second, continuous light beam. Measurements performed by these techniques rely on the change 

of the thermal state of an ambient/thin film/substrate system, which results from deliberate 

absorption of light directly inside the film. 

Consequently, they can be relatively free from artefacts associated with interfacial 

thermal resistivity effects and the contributions from the non-zero thermal conductivity of the 

substrate may also be taken into account.  

  We assume that the interfacial thermal resistivity is zero between the thin film, substrate 

and the fluid and therefore the temperature is continuous. By using the method of separation of 

variables alongside with assumption that temperature is continuous throughout the system, we 

have four temperature profiles. The temperature profiles would be the temperature profile of the 

thin film, the temperature profile of the substrate and temperature profiles of the photothermal 

fluid on the front and back side of the system. 

The subscripts s, f and b will refer to the thermal diffusivity (D) and conductivity (k) of 

the thin film specimen, fluid, and substrate (background), respectively and i will be the 

imaginary unit. Also, q0 is the amount of heat absorbed by the sample and  is the frequency that 

our laser beam is illuminating the sample. 

In this section, we assume that the thin film has a much higher thermal conductivity than 

the substrate and it absorbs all the heat illuminated by the pump beam. The temperature profile 

for the thin film is:  
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where we have taken the thin film to be two dimensional with no thickness and therefore Eq. 

(2.4) has no x components. Also, we assume that the thin film is being illuminated at a pinpoint 
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in the center and therefore the temperature decays exponentially as we move along the positive 

and negative directions on the y-axis.  

The temperature profile for the fluid on the front side of our PDS system is: 
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where we move from minus infinity to zero along the x-axis. We assume that the fluid doesn’t 

absorb any heat from the pump beam passing through it and only absorbs heat from the thin film. 

The temperature profile decays exponentially along the y-axis as we move away from the center 

and it also decays exponentially along the x-axis as we move away from the thin film. 

The temperature profile for the substrate is: 
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where we move from zero to the substrate’s thickness Lx along the x-axis. Also, the temperature 

drops exponentially along the y-axis as we move away from the center of illumination. 

The temperature profile for the fluid on the right side of the system is:  
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            (2.7) 

where we move from Lx to positive infinity along the x-axis. The temperature along the y-axis 

again drops exponentially as we move away from the center. From the following equations, it 

can easily be seen that temperature profile is continuous along the fluid, thin film and substrate. 

Having the temperature profile of the fluid on the front and back side of the system we can 

calculate the deflection angle of the PDS beam.    

 

 



16 
 

2.3.2 Calculating the deflection angle of the probe beam along the y-axis 

The configuration sketched in Figure 2.2 shows the PDS system being illuminated at the center 

by a pump beam and a probe beam directed in the y-direction is being deflected. 

 

Figure 2.2: The thin film-substrate being illuminated at the center by a pump beam and the 

probe beam being emitted along the y-axis. 

Figure 2.3 shows the sample is illuminated by a thin beam (a) and a thick beam (b). In 

order to get the deflection angle on the front and back side of the system, we first assume that the 

width of the pump beam is extremely thin which means that we are only heating a point at the 

center of the sample which can be approximated to be delta-shaped. This argument is based on 

the fact that the width of the pump beam is much smaller than the thermal diffusion length in the 

thin film. Then for analyzing problems more similar to the experimental setup, we study the 

deflection angle for when the pump beam is thick and is illuminating a certain area on the 

surface of the sample. In this case, we write the width of the beam as a series of delta functions 

and add them all up. 

 

Figure 2.3: a) The thin film is illuminated by a thin beam that can be approximated as a 

Dirac delta distribution. b) The thin film is illuminated by a thick beam with a certain 

width that can be written as the accumulation of thin beams. 
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The results of the deflection angle for the front and back side of the PDS system for when 

the probe beam is being emitted along the y-direction for the thin beam configuration is: 
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            (2.9) 

where Eq. (2.8) is the deflection angle on the front side of the PDS system and Eq. (2.9) is the 

deflection angle on its backside.   

Due to the linear characteristic of Eq. (2.1), the temperature profile obtained in this way, 

Gq(x, y y0), represents the Green function
9, 14

 that, by summing an infinite array of delta-shaped 

sources at y = [-Ly/2; + Ly/2]  offers the actual temperature profile in the fluid/thin film/substrate 

system:                                                                                          
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Having the temperature profiles for the fluid on the front and back side of our system from Eq. 

(2.5) and Eq. (2.7) and implementing them into Eq. (2.9) we get the new temperature profile for 

the thick pump beam Figure 2.3(b).  

For measuring the amount of heat being absorbed by the thin film for the thick beam 

configuration we write q0 as: 
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where P0 is the power of the laser beam,  is the optical absorption coefficient of the thin film, 

and LyLz is the area illuminated by the thick beam. Computing the average amount of the heat 

absorbed by the sample we get: 
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where d is the thickness of the sample. Implementing the new temperature profile for the thick 

beam into Eq. (2.11) we get the new deflection angle on the front and back side of the PDS 

system which is: 
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where Lx, Ly, and Lz are, respectively, the thickness, length, and width of the PDS system. Also 

for simplifying our equations, we define two new variables  and  which are defined as:  
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We will extract the amplitude and the phase shift from the deflection angle. The amplitude on the 

front and back side of the system is equal to the real terms in Eq. (2.12) and (2.13). The phase 

shift is equal to the imaginary components of the exponential. 
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Finding the phase shift and amplitude along the y-axis does not give us a complete set of 

equations to calculate the thermal conductivity since the temperature was solved in the two 

dimensions x and y and taking an integral over y Eq. (2.10) diminishes one of the variables. As 

can be seen from Eq. (2.22) the phase shift for the front of our PDS system is constant for all thin 

films and substrates and this won’t be useful in developing new models with different thin film 

coatings and substrates. To solve this problem we emit the probe beam of the PDS system along 

the z-direction.  

2.3.3 Measuring the deflection angle of the probe beam along the z-axis 

The major difference of this section with the previous one is that in the new configuration Figure 

(2.4), the probe beam is emitted along the z-axis rather than the y-axis.  Hence, in Eq. (2.2) we 

integrate the path covered by the probe beam over the z-axis instead of the y-axis. Due to the 

different measurement configuration used in this model, deflection of light occurs both 

longitudinally to the probe-beam axis (along y-direction) and transversally (along with the x-

direction). These two components can be evaluated by replacing the first-derivatives of the 

temperature profile in Eq. (2.2), along with the out-of-plane (x) and in-plane (y) directions 

relative to the sample surface, in which two distinct temperature gradient occur due to sampling 

heating. These lead to the following expressions for the periodical deflection angle in 

longitudinal direction: 
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while the corresponding deflection angle in transversal direction is given by: 
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The temperature profiles of the system for the fluid, thin film and substrate remain the same as 

before, equations (2.4), (2.5), (2.6), (2.7).  

Since the probe beam will be moving along the surface of the thin film, pointing along 

the z-direction, we would have two profiles for the deflection angle. Figure 2.4(a) is for when the 

probe beam is not emitted within the surface area illuminated by the pump beam, and Figure 

2.4(b) is for when the probe beam is being emitted within the surface area illuminated by the 

pump beam. Due to the fact that Fourier’s heat equation is a second order differential equation, 
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the amplitude and the deflection angle should remain continuous as we move the probe beam 

along the y-direction.  

 

Figure 2.4: a) The emitted probe beam along the z-direction not passing by the surface area 

illuminated directly by the pump beam. b) The emitted probe beam along the z-direction 

not passing by the surface area illuminated directly by the pump beam. 

To proceed with the calculations we take δ to be the length of the area illuminated by the 

pump beam along the y-axis. For when the probe beam is not emitted within the surface area 

illuminated by the pump beam y> δ and y<-δ Figure 2.4(a), the deflection angle on the front side 

is: 

 

      



































































































42
expcoshsincossinh

2
exp

)exp(1
..

1

2/1
2/122

2/12/1

2

,

0
,











y
D

ctghtgarctgi

y
DDD

D

Ldk

dP

T

n

n

s

ssf

s

ysthf

f

f

xfront

,  (2.22) 

 

      




















































































4

3

2
expcoshsincossinh

2
exp

)exp(1
..

1

2/1
2/122

2/12/1

2

,

0
,











y
D

ctghtgarctgi

y
D

D

Ldk

dP

T

n

n

s

s

s

ysthf

f

f

yfront

.  (2.23) 

The x and y subscripts indicate whether the deflection is transversal or longitudinal. Also for 

simplifying our equations we define  to be: 
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Writing the amplitude and the phase shift along the x-axis for Eq. (2.27) we have: 
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Writing the amplitude and the phase shift along the y-axis for Eq. (2.23) we have: 
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With the same assumption that the probe beam is emitted along the z-axis outside the 

surface area illuminated by the pump beam, the deflection angle of the back side PDS signal for 

the corresponding transversal and longitudinal is: 
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 Writing the amplitude and the phase shift along the x-axis for Eq. (2.29) we have: 
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Writing the amplitude and the phase shift along the y-axis for Eq. (2.30) we have: 
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            (2.34) 

We have calculated the amplitude and phase shift for the probe beam being emitted along 

the z-axis outside the surface area illuminated by the pump beam in equations (2.22-2.34). We 

observe that the amplitude and phase shift decrease exponentially as a function of y as we move 

away from the center which is being illuminated by the pump beam. This is expected since the 

temperature profile also decreases exponentially as a function of y which indicates that less heat 

is being propagated in that direction. This results in the thermal gradient and the deflection angle 

of the probe beam to also decrease in a similar manner. 

For when the probe beam is emitted within the surface area illuminated by the pump 

beam -δ<y<δ Figure 2.4(b), the deflection angle on the front side is: 
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            (2.35)  

Writing the amplitude and the phase shift along the x-axis for Eq. (2.35) we have: 
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            (2.37) 

With the same assumption that the probe beam is emitted along the z-axis inside the 

surface area illuminated by the pump beam, the deflection angle of the back side PDS signal for 

the corresponding transversal direction is: 
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Writing the amplitude and the phase shift along the x-axis for Eq. (2.38) we have: 
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We have calculated the amplitude and phase shift for the probe beam being emitted along 

the z-axis inside the surface area illuminated by the pump beam in equations (2.35-2.40). Since 

the probe beam is emitted across the surface area illuminated by the pump beam -δ<y<δ, the 

phase shift and amplitude decrease exponentially as a function of [1-(δ-y)] as we move from the 

center to the point δ=y. 

In this section, the deflection angle of the probe beam has been calculated along the z-

direction on the front and back side of the PDS system. From the deflection angle, we have 

computed the amplitude and the phase shift of the PDS signal. As can be seen by equations 

(2.26), (2.28) and (2.37) the phase shift is no longer a constant on the front side of the PDS 

system and its value depends on the geometrical and thermal properties of the system. 

2.4 Analytical model for substrate-side photothermal deflection 

2.4.1 Substrate being illuminated by the pump beam 

In the new configuration of the PDS system, we illuminate the thin film-substrate from the 

substrate side. First, we assume we only have a 3-dimensional substrate with a limited thickness 

being illuminated by a thin pump beam. By illuminating the substrate at the center the substrate 

heats up and propagates heat throughout itself as well as the photothermal fluid surrounding it. 

Due to the substrate heating up, the refractive index of the photothermal fluid surrounding it 

changes and the probe beam passing alongside the front and back side surface of the substrate 

gets deflected as can be seen in Figure 2.5. 

 

Figure 2.5: The substrate immersed in a photothermal fluid is being illuminated by a thin 

beam from one side. Due to the substrate heating up the refractive index the photothermal 

fluid surrounding it changes and the probe beam passing alongside the front and back 

surface of the substrate gets deflected. 
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The model can later be expanded by putting a 2-dimensional thin film on the other side of 

the PDS system with various thermal properties with respect to the substrate. 

2.4.2 Calculating the temperature profile 

The temperature profiles in the substrate and the surrounding medium are governed by the 

Fourier equation of heat Eq. (2.4). Since we are illuminating the center of the substrate with a 

thin beam we assume that the temperature drops exponentially on the surface of the substrate 

once we start to go further away from the center. By using separation of variables method we 

find the temperature profile as a series of solutions with different eigenvalues for the 

photothermal fluid on the front side, the substrate and the photothermal fluid on the back side. 

We write them in order as: 
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The subscripts fF and fB indicate the fluid on the front and back side of the substrate while the 

subscript b indicates the substrate (background medium). The D is the thermal diffusivity and a, 

b and c indicate the different eigenvalues of the temperature which should be summed over. A, 

A, B and A are constants that we evaluate by imposing the certain boundary conditions related 

to the system under study.  

2.4.3 Temperature profile of the substrate  

To compute the temperature profile of the substrate we divide it into two symmetric and 

antisymmetric profiles. We then have a set of Fourier harmonics for the different sets of 

eigenvalues for the symmetric and antisymmetric temperature profiles. Due to the linear 

characteristic of Fourier’s equation, for which the principle of superposition is valid, we add the 

two symmetric and antisymmetric temperature profiles with each other and get the final result.  

To get a symmetric temperature profile we assume that we illuminate the substrate from 

both sides, Figure 2.6(a) and to get the antisymmetric temperature profile we assume we are 

heating the sample from one side and extracting the same amount of heat from the other side, 
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Figure 2.6(b). Summing the two aforementioned models gives us a model equivalent to the 

substrate being illuminated from one side, Figure 2.6(c). 

Figure 2.6: a) The substrate being illuminated from both sides creating a symmetric 

temperature profile. b) The substrate is illuminated from one side while the exact amount 

of heat is being taken away from the system on the other side creating an antisymmetric 

temperature profile. c) Summing the two models will give us the exact setup that we have 

with the substrate being illuminated from one side. 

The symmetric and antisymmetric temperature profiles which are the result of the models 

discussed in Figure 2.6 are shown in Figure 2.7(a) and 2.7(b). The green and red lines for the 

temperature profiles of Figure 2.7(a) and 2.7(b) indicate different thermal diffusivities within the 

substrate, with green line showing a substrate with low thermal diffusivity which the substrate 

reaches its maximum temperature very close to the surface of illumination and the red line shows 

a substrate with high thermal diffusivity which heat penetrates within the substrate much more 

and therefore the maximum temperature is much further from its surface of illumination. Due to 

the linear character of Fourier’s equation, we add the two temperature profiles together and 

arrive at the temperature profile of the PDS system in use Figure 2.7(c). 

 

Figure 2.7: a) The symmetric temperature profile designated by red and green lines with 

the red line indicating a substrate with low thermal diffusivity and the green line indicating 

a substrate with high thermal diffusivity. b) The antisymmetric temperature profile 

designated by red and green lines. c) The sum of the two temperature profiles which gives 

us the temperature profile of the PDS system in hand. 
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To get the temperature profile we also use the rule of conservation of energy at the 

boundaries where the heat flow should be conserved throughout the substrate and the 

photothermal fluid surrounding it. Unlike the model we had in the previous section where heat 

was absorbed only by the 2-dimensional thin film, in this case, the heat penetrates through the 

surface of the substrate as shown in Figure 2.8. The equation for the boundary condition is 

written as: 
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where kth,b and kth,f are the thermal conductivity of the substrate and the fluid and q0 is the 

amount of heat absorbed by the substrate. Since the thermal conductivity of the photothermal 

fluid is much less than the thermal conductivity of the substrate we can write Eq. (2.44) as: 
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Figure 2.8: The heat flow throughout the substrate once being illuminated by the pump 

beam. 

Now we have all the necessary tools for calculating the temperature profile for the symmetric 

and antisymmetric model and then add them up to get the actual temperature profile. 

a) Symmetric temperature profile 

In this model, the back and the front side of the substrate is being illuminated, creating a 

symmetric temperature profile. Implementing this boundary condition for Eq. (2.42) we have: 
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where L is the thickness of the substrate. Also by implementing the boundary conditions at the 

surface of contact between the substrate and the fluid we have: 
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By implementing the above boundary conditions into Eq. (2.42) the temperature profile for the 

substrate in the symmetric model is: 
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To find the constant value A we insert Eq. (2.49) into Eq. (2.46) and get:  
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To get the temperature profile for the symmetric model we write it as a series of solutions with 

energy eigenvalues b. Inserting the constant value A into Eq. (2.49) we write the temperature 

profile as: 
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            (2.51) 

To solve this integral and find the symmetric temperature profile of the substrate we go to 

the complex space and draw a contour to find the poles necessary to solve the integral. The 

complete solution can be found in Appendix I. The final temperature profile for the symmetric 

temperature profile is: 
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where z1 and z2 are the specific eigenvalues of the temperature profile which are: 
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b) Antisymmetric temperature profile 

In this case, the front side of the substrate is being illuminated by the pump beam while the same 

amount of heat is being extracted from the back side, creating an antisymmetric temperature 

profile. Implementing this boundary condition from Eq. (2.42) we have: 
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This leads to the following: 
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To find the constant value A we insert Eq. (2.54) into Eq. (2.42) and get:  
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Just like the symmetric temperature profile we write the antisymmetric temperature 

profile as a series of solutions with energy eigenvalues b. We write the temperature profile for 

the substrate as: 



31 
 



























































































































0

2
2

1

22
2

1

2
,

0

2
1

2
2

1

2

2
1

2
2

1

2

22

),,(
L

b
D

i

b

L
b

D

i

b

yb
xb

D

i
xb

D

i

bth

ti

b

bb

bb

ebb
D

i
ebb

D

i

eee

db
k

eq
tyxT









,

 (2.57) 

To solve this integral and find the antisymmetric temperature profile of the substrate we 

go to the complex space and draw a contour to find the poles necessary to solve the integral. The 

complete solution can be found in Appendix I. The final temperature profile for the 

antisymmetric temperature profile is: 
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where z3 is the specific eigenvalue of the temperature profile which is: 
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c) Final temperature profile of the substrate 

Since the superposition principle is valid for Fourier’s heat equation we add the symmetric and 

antisymmetric temperature profiles with each other. The temperature profile of the substrate is: 
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             (2.60) 

The temperature profile of the substrate computed has three eigenvalues which are the positive 

values of z1, z2 and z3. 

2.4.4 Temperature profile of the fluid 

To find the deflection angle of the probe beam passing through the surface of the substrate we 

need to find the temperature profile of the fluid. We assume that the temperature profile is 
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continuous passing through the substrate to the fluid. Therefore the boundary condition we apply 

on the surface of the interface between the fluid and the substrate is: 
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We find the constant values A Eq. (2.41) and A Eq. (2.43) by using the aforementioned 

boundary condition. Again we write the temperature profile in a Fourier set of harmonics, solve 

the integral and find the specific eigenvalues for the temperature.  

The temperature profile of the fluid for the front side of the PDS system is: 
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The temperature profile of the fluid for the back side the PDS system is: 
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Having the temperature profile of the fluid on the front and back side of the substrate we can use 

Fermat’s principle to calculate the deflection angle. 

2.4.5 Measuring deflection angle of the probe beam 

After heat is generated in the substrate, it will transmit to the photothermal fluid. In the system 

under study, the substrate is periodically heated from illumination by the pump beam at a 

frequency  and the consequent, periodic, thermal gradient at the substrate interface with the 

photothermal fluid is detected from the periodic changes in refractive index of the photothermal 

fluid.  
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Implementing Eq. (2.62) and Eq. (2.63), the temperature profile of the fluid on the front 

and back side of the substrate into Eq. (2.2) we measure the deflection angle of the system with 

the y-axis going from +h to -h. 

The deflection angle on the front side is: 
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and the deflection angle on the back side is: 
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The eigenvalues in Eq. (2.64) and Eq. (2.65) which come from equations (2.53) and 

(2.59) depend on the width of the substrate L, the frequency of the chopper  and the thermal 
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diffusivity of the substrate itself Db. Therefore the deflection angle would vary by applying 

substrates with different thermal diffusivities and different thicknesses. 

We have calculated the deflection angle of the 3-dimensional substrate. Later on, we can 

attach a 2-dimensional thin film to the substrate and find the deflection angle for the thin film-

substrate system. If the thermal conductivity of the substrate is much higher than the thermal 

conductivity of the thin film the same results that were conducted in Eq. (2.64) and Eq. (65) will 

hold. By applying a specific substrate with a known thermal diffusivity and a known thickness 

we can find the amplitude and the phase shift for the front side Eq. (2.65) and back side Eq. 

(2.66) of the PDS system which are required to compute the thermal conductivity of the system.  

2.5 Results and Discussion 

In this section, we analyze the analytical results which we have acquired for the thin film-

substrate and compare them with the experimental results. We take the probe beam to be directed 

along the z-direction and to be moving along the y-axis passing near the front and back side of 

the thin film-substrate. We then analyze our results at different frequencies and compare them 

with the experimental measurements done on the system. We also analyze the results for the 

substrate with various thicknesses. 

Figure 2.9 shows the analytical solution for the front and back side amplitude of the 

probe beam deflected in the transversal direction for the thin film-substrate. We assume the thin 

film side is being illuminated by the pump beam and the thin film has a much higher thermal 

conductivity than the substrate, equations (2.25), (2.31), (2.36), (2.39).  The PDS system under 

consideration is composed of a 200nm thin gold film attached to a 0.23mm glass substrate. The 

pump beam has a wavelength of 407nm and is emitted at frequencies equal to 10Hz, 20Hz and 

40Hz. 
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Figure 2.9: a) The front side amplitude of the deflected probe beam in the transversal 

direction Eq. (2.25), Eq. (2.36) for three different frequencies. b) The back side amplitude 

of the deflected probe beam in the transversal direction Eq. (2.31), Eq. (2.39) for three 

different frequencies. 

 Since the amount of heat absorbed by the front side of the thin film-substrate is more than 

the amount of heat absorbed by its backside, there is more heat exchange between the thin film-

substrate and the fluid on the front side than on the back side. Therefore we expect the amplitude 

on the front side to be greater Figure 2.9(a) than the amplitude on the back side Figure 2.9(b). 

Furthermore, as the frequency of the pump beam increases the amplitude decreases. This is 

expected since as the frequency increases the sample has less time to absorb heat and increase its 

amplitude. Analyzing the amplitude peaks Figure 2.9 we observe a broader amplitude peak on 

the back side than on the front side of the thin film-substrate. We can explain this phenomenon 

by stating that we when heat propagates throughout the substrate from the front side to the back 

side it not only propagates in the x-direction but it also propagates in the y-direction resulting in a 

broader amplitude peak on the back side than on the front side. 

Figure 2.10 shows the experimental measurements carried out on the thin gold film 

attached to a glass substrate at frequencies 10Hz, 20Hz and 40Hz. By comparing Figures 2.9 and 

2.10 for the amplitude on the front and back side of the PDS system for the thin film-substrate 

system, we see that the experiment is in accordance with the analytical solution that has been 

devised for the PDS system. 
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Figure 2.10: a) The front side amplitude of the probe beam being emitted along the z-

direction and being deflected in the x-direction at three different frequencies. b) The back 

side amplitude of the probe beam being emitted along the z-direction and being deflected in 

the x-direction at three different frequencies. The continuous lines are the numerical 

fittings of the experimental results.  

Figure 2.11 shows the analytical solution for the back side amplitude of the probe beam 

deflected in the transversal direction, Eq. (2.33) and Eq. (2.39), with the substrate having various 

thicknesses. We again take the probe beam to be directed along the z-direction and to be moving 

along the y-axis passing near the back side of the thin film-substrate. The PDS system is 

composed of a 200nm thin gold film attached to a glass substrate with thicknesses equal to 

0.23mm, 2.3mm and 23 mm. The pump beam has a wavelength of 407nm and is illuminating the 

thin film at a frequency 10Hz. 

As we increase the thickness of the substrate the deflection angle on the back side 

decreases. This is as expected since as the substrate gets thicker there would be less heat 

penetration from the front side to the back side of the sample. The deflection angle remains the 

same on the front side and the thickness of the substrate doesn’t affect it at all. 
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Figure 2.11: The back side amplitude of the deflected probe beam in the transversal 

direction Eq. (2.31), Eq. (2.39) for the substrate having three different thickness. The 

amplitude decreases as the thickness of the substrate increases.   

2.6 Conclusion 

In this chapter, we have used PDS which is a contactless method to come up with the quantities 

necessary to measure thermal conductivity for the first time. Using different models constructed 

for measuring two-side PDS systems we managed to compute the amplitude and phase shift of 

the deflection angle for the PDS system. This will lead to the measurement of the thermal 

conductivity in such systems.  

We devise two models to construct our measurements for the thin film-substrate system 

where the thin film is being illuminated by the pump beam and has a much higher thermal 

conductivity than the substrate. The first model is measuring the deflection angle of the probe 

beam being emitted along the y-direction for metallic thin films on a substrate. The major 

problem of this model is arriving with a constant phase shift for the front side deflection angle no 

matter what kind of thin film and substrate we use. For the second model, we measure the 

deflection angle of the probe beam being emitted along the z-direction. We write the theory for 

the front and back side of the PDS system for both when the probe beam is passing the surface 

area illuminated by the pump beam and when the probe beam doesn’t pass the surface area 

illuminated by the pump beam. We compare the analytical results with the experimental 

measurements and find that they are in good co ordinance with one another.   

We also devised a model for the thin film-substrate system where the substrate is being 

illuminated by the pump beam and has a much higher thermal conductivity than the thin film.We 
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illuminate the substrate from one side by a thin laser beam and divide the temperature profiles 

into symmetric and antisymmetric modes and write them in terms of a series of Fourier solutions 

with different eigenvalues. The eigenvalues depend on the width of the substrate L, the frequency 

of the chopper  and the thermal diffusivity of the substrate itself Db. By using Fermat’s 

principle in optics we compute the deflection angle for the PDS system composed of different 

substrates. By having the deflection angle we can compute the amplitude and phase shift of the 

system which are the required values to measure the thermal conductivity. 
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“Mathematical physics is in the first place physics and 

 it could not exist without experimental investigations.” 

Peter Debye 

Chapter 3 

Contactless scanning thermoreflectance imaging 

3.1 Introduction 

Determining and imaging the thermal properties at the nanoscale is a demanding experimental 

challenge. So far, virtually any techniques used to image nanoscale thermal properties require 

positioning the sample in contact with voluminous probes that act as undesirable thermal sinks 

and dramatically affect the measurements, in spite of poor interfacial thermal resistivity. 

Thermoreflectance, a contactless method in which the thermal conductivity is measured by 

probing the heat-induced changes in the optical properties of a sample, is extensively used for 

measuring the macroscopic and microscopic thermal properties of solids, but, so far, it has been 

limited by diffraction in its applicability at the nanoscale. Here, we present near-field scanning 

thermoreflectance imaging (NeSTRI), a new scanning probe technique in which an aperture-type 

near-field optical microscope at sub-wavelength resolution is used to determine the 

thermoreflectance of thin films in non-contact mode. As a case study, NeSTRI is here applied to 

multilayer graphene films on glass substrates. The thermal conductivity of micrometer-size 

multilayer graphene platelets is determined and is consistent with previous macroscopic 

predictions. We also find that the thermal conductivity is locally higher at specific 

crystallographic edges of multilayer graphene platelets, which is indicative of the spatial 

resolution of our method. NeSTRI is uniquely suited to understanding the thermal properties of a 

large class of nanostructured and nanoscale systems. 

3.2 Near-field scanning thermoreflectance imaging  

Modulated thermoreflectance
1-5

 is a contactless technique commonly used to measure the 

thermal conductivity of solids, but is macroscopic in nature. With this technique, the sample is 

periodically heated at the surface, and heat transfers to air, or another fluid at the interface, which 

experiences periodic changes in density and refractive index due to the subsequent periodic 

https://libquotes.com/peter-debye
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oscillations in temperature. The phase lag at which changes in the fluid refractive index occur 

depends on the thermal properties of the sample, which can thus be measured by means of a light 

beam. The use of light eliminates the necessity of physical contact between the sample and the 

probe. Thermoreflectance measurements are contactless and alleviate many of the thermal 

sinking problems commonly associated with other contact-based thermal measurements. 

Micro-thermoreflectance was used to accurately map the thermal properties of 

micrometer-thick gold films
5
. However, differently, from scanning thermal microscopy (SThM), 

this technique suffers from inherent limitations in terms of lateral resolution. Light, the thermal 

probe used in thermoreflectance measurements, is limited by diffraction in its capability to 

characterize nanometer-size objects. Optical methods that are not diffraction-limited and 

combine the advantages of SThM and thermoreflectance will be vital to enable contactless 

thermal imaging at the nanoscale. 

Scanning near-field optical microscopes (SNOM) are optical instruments that exploit the 

properties of evanescent waves generated by scattering of light in the proximity of a 

nanostructured sample to enable resolution beyond the diffraction limit
6
. SNOM measurements 

rely on the interaction of two distinct nanometer-size objects: a nanoscale feature in the 

illuminated sample and a nanometer-size probe. Apertureless SNOM utilizes nanoparticles as 

probes, while nanometer-size openings are used to detect the optical signal in aperture-type 

SNOM. With modern aperture-type instruments, the near-field optical signal is generated and 

detected by hollow scanning probe cantilevers and the sample topography is simultaneously 

scanned by atomic force microscopy (AFM). If visible light is used for SNOM experiments, the 

sample-probe distance can be extended up to several hundred nanometers during measurements
7
, 

thus enabling SNOM imaging in non-contact mode, with negligible mechanical and thermal 

interaction between the cantilever and the sample. 

Here, we demonstrate that an aperture-type SNOM system operating out of contact with 

the sample can be utilized to detect modulated thermoreflectance signals from a nanostructured 

thin film, thus enabling contactless thermal imaging with nanoscale resolution. Due to the 

combination of SThM and thermo-reflectance, the technique we are here introducing for the first 

time can be termed near-field scanning thermoreflectance imaging (NeSTRI). The implemented 

NeSTRI apparatus will include two distinct microscopes from which specimen under 

investigation can be illuminated: an inverted optical microscope from which the sample can be 
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uniformly irradiated and heated by an intense time-modulated “pump” laser, and an upright, 

aperture-type SNOM microscope, from which the surface irradiated from the inverted 

microscope can be scanned at sub-wavelength resolution by a low-intensity “probe” laser beam 

at different wavelength. In addition to illuminating the sample with the probe laser beam, the 

SNOM system will be used to collect the pump laser light that traverses the sample and to 

measure its intensity. In this way, the optical absorption coefficient of the sample can be locally 

determined. The SNOM instrument is complemented by a grazing-angle detector to collect and 

quantify the amount of “probe” laser light reflected by the sample. From the periodic modulation 

of the reflectivity of the probe beam, and its phase delay with respect to the modulation of the 

pump beam, the amplitude and phase of the temperature oscillations in the proximity of the 

sample can be determined. 

Due to the flexibility of the NeSTRI apparatus, two distinct sets of images are obtained 

for each sample: (i) the heating profile H(x, y, t) locally generated in the sample from periodic 

illumination by the pump beam, and (ii) the amplitude δρ0 (x, y) and phase δφ0(x, y) of periodic 

thermoreflectance oscillations experienced by the “probe” beam in the proximity of the 

periodically heated sample. 

In this chapter by a combination of the above data sets, we solve the Fourier equation 

governing the diffusion of heat, and acquire thermal conductivity and heat capacity images, 

without any need of contacting the sample with a heat sink.  

3.3 Experimental setup 

The NeSTRI setup presented in this study has been implemented using a Witec Alpha 300S 

aperture-type AFM and SNOM system, equipped with hollow cantilever tips (SNOM-NC, NT-

MDT Co.)
8-11

. Near-field optical response is obtained by illuminating the scanning near-field 

optical microscopes (SNOM) tip aperture through an upright confocal optical microscope. For 

reflection-mode SNOM imaging, evanescent waves locally generated at the tip aperture, and 

scattered by the sample, were collected at grazing angle by a subminiature accessory (SMA). For 

transmission mode SNOM, evanescent waves locally generated at the tip aperture and scattered 

through the sample were collected by an inverted optical microscope and conveyed to the 

photomultiplier tube. Combination of reflection and transmission SNOM images were acquired 
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with this assembly, shown in Figure 3.1(a), and provided maps of the sample absorbance, A0(x, 

y), via the relationship: 

),(),(1),(0 yxyxyxA   ,   (3.1) 

where τ(x, y) and ρ(x, y) are, respectively, the transmittance and reflectance of the sample. 

Information on the absorbance, in conjunction with knowledge of the laser power P0, was used to 

determine the sample heat profile upon uniform illumination. To record modulated 

thermoreflectance images, the setup is shown in Figure 3.1(b) was used with the tip lifted off 

from sample contact. 

 

Figure 3.1: a) Setup used for transmission (τ) and reflection (ρ) SNOM images, from which 

A0(x, y), the sample absorbance can be obtained and used to determine the heat generation 

profile according to Eq. (3.2). b) NeSTRI setup used for thermoreflectance imaging in 

phase (δφ0) and amplitude (δρ0). A 405 nm pump beam, modulated at frequency ω by a 

chopper, heats the sample over a large area from the inverted microscope. Heat, after 

diffusing along the thin film surface, is transferred to the air. Air changes in volume and 

thus experiences, at a certain phase, lag periodic changes in refractive index that induce 

small oscillations in reflectance at the air–sample interface. Such oscillations are probed, in 

amplitude and phase, by a 532 nm probe beam originating from the upright SNOM 

microscope and detected using a lock-in amplifier.  A set of filters at the SMA coupler 

eliminates 405 nm light scattered from the pump beam. 
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Large sample areas are uniformly illuminated. The pump beam is intersected with a 

mechanical chopper operated at ω = (25-450) Hz angular frequencies. In this way, we obtain a 

pulsed “pump” beam that illuminates the sample and generates, at any time t, a periodic heat 

profile accordingly to: 
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where d(x, y) is the thickness of the absorbing film, and H0(x, y) ≈ P0·A0(x, y)/d(x, y) represents 

the amount of heat locally deposited per sample unit volume. During pulsed heating from the 

pump beam, the sample surface was scanned in the near-field by evanescent light originating 

from a continuous “probe” laser beam with a significantly lower power than the pump beam. The 

amount of the probe beam evanescent radiation reflected at each point (x, y) of the surface was 

detected by the SNOM accessory. Upon heating, heat is transferred from the sample to air. Air 

decreases in volume and experiences a consequent decrease in refractive index. In 

thermoreflectance experiments, the change in refractive index of the sample is negligible over 

the change in refractive index of air, because thermal dilatation is significantly higher in gases 

than solids. The amplitude δρ0(x,y) of thermoreflectance oscillations, experienced by the probe 

beam due to the periodic heating of air from sample heating, is proportional to the temperature 

oscillations at the sample surface. The phase lag δφ0(x, y) relative to the pump beam depends on 

the mean free path of the thermal waves reaching each point (x, y) from the surrounding region. 

The complex thermoreflectance at the sample surface is given by: 

  ),(exp),(),,( 00 yxtiyxtyx   .   (3.3) 

In NeSTRI, δρ0(x, y) and δφ0(x, y) can be recorded independently at each point and phase and 

amplitude images of the complex thermoreflectance could thus be obtained. 

3.4 Numerical model  

The objective of our numerical model is to calculate the thermal conductivity kth(x, y) and 

volumetric specific heat c(x, y) of inhomogeneous thin films from the quantities imaged by 

NeSTRI: the heat generation profile Eq. (3.2) and the amplitude and phase of the complex 

thermoreflectance at the sample surface Eq. (3.3). In our model, the substrate is assumed to be 

transparent and thermally insulating, a reliable assumption for our test samples and many other 
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thin films of practical interest. Our model requires the numerical solution of the inverse equation 

of heat
11

 using a finite difference method.  

Radiation from the pump beam is absorbed in different amounts at different locations of 

the thin film under investigation and heat locally generated by photons preferentially diffuses 

along the film surface, which leads to a thermal profile accordingly to the Fourier equation
11, 12

: 
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Eq. (3.4) is reminiscent of the conservation of energy in a control region about point (x, y), in 

which heat can be generated, transferred, and accumulated. It is worth noting that, in the present 

work, T(x, y, t) does not represent the absolute temperature, but corresponds to the temperature 

difference between the sample surface at point (x, y) and the environment. 

In our experiments, H(x, y, t) is periodic with the same periodicity as the chopper 

frequency, as seen from Eq. (3.2). In this case, a solution of Eq. (3.4) can be written by 

considering that the temperature and thermoreflectance only carry the Fourier component 

oscillating at that specific frequency: T(x, y, t) = T0(x, y)·exp{i[ωt + δφ0(x, y)]}. Substitution of 

this solution into Eq. (3.4) leads to the following expression for the equation of heat written in 

the Fourier domain: 

     ),(]),(exp),([),(),(exp),(),( 00000 yxHyxiyxTyxkyxiyxTyxci th   . (3.5) 

Eq. (3.5) has two components, real and imaginary, and their physical meaning is associated to 

the finite thermal diffusivity at which heat propagates along the thin film surface, due to nonzero 

lateral thermal diffusion length. 

Eq. (3.4) and (3.5) indicate that, for any given profile of heat generation, H(x, y, t) 

depends on the thermal conductivity and heat capacity at any other points on the thin film 

surface. In our case, H(x, y, t) is given by Eq. (3.2). At very short lateral thermal diffusion 

lengths, heat is released to air close to the point (x′, y′) at which it is generated, T(x, y, t ) only 

depends on the value of H(x′, y′, t ) at points situated in the very proximity of (x, y), and Eq. (3.5) 

is real, with δφ0(x, y) ≈ 0. Conversely, at large thermal diffusion lengths, heat travels relatively 

long distances along the surface, before being released to the air. In this way, relatively large 

heated domains will contribute to T(x, y, t), and Eq. (3.5) will be predominantly imaginary, with 

δφ0(x, y) closer to 90°. As the lateral thermal diffusion length along the surface is inversely 
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proportional to the pump beam frequency, NeSTRI measurements at varying ω, leading to 

different phase lags, are needed to exhaustively understand the film thermal properties. 

As will be shown in the next chapter a linear relation exists between T0(x,y) and 

the thermoreflectance: 

),(),( 00 yxhTyx  ,     (3.6) 

where h, a negative proportionality coefficient, is independent of x, y and . It is convenient to 

write Eq. (3.5) in terms of 0(x,y) instead of T0(x,y) because this is the quantity actually 

measured by NeSTRI. By replacing Eq. (3.6) into Eq. (3.5), we can write a complex equation in 

the Fourier domain, which links the phase and amplitude of the complex thermoreflectance with 

the specific heat and thermal conductivity at any generic point of the thin film: 

),()}]},(exp{),([),({)},(exp{),(),( 00000 yxHhyxiyxyxkyxiyxyxci th  

.            (3.7) 

The physical meaning of the real and imaginary parts of Eq. (3.7) is the same as in 

the corresponding components of Eq. (3.5). The two components can be separately 

equated leading to the following identities: 
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for the real part, and 
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for the imaginary part. The solution of the real equation Eq. (3.8) provides kth(x,y), a map of the 

thermal conductivity of the thin film, which can then be replaced into Eq. (3.9). c(x,y) can thus 

be explicitated. In this way, the solution of the imaginary equation Eq. (3. 9) provides a map of 

the film heat capacity.  

Due to the nonanalytic nature of 0(x,y), 0(x,y) and H0(x,y), the known quantities 

recorded by NeSTRI experiments, the solution of Eq. (3.8) must be obtained numerically, using a 

finite difference method. The generality of this solution makes it suitable to analyze a large 

variety of thin films measured by NeSTRI. The numerical computer routine used to solve Eq. 

(3.8) is described in detail in chapter 4. Boundary conditions for the numerical problem are the 

known values of kth(xb,yb) at (x,y) = (xb,yb), the boundaries of the NeSTRI image, at which the 
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surface is made of glass and the thermal conductivity is known. In the specific case of our test 

samples, the thermal conductivity of glass was set at kth(xb,yb) = 1.1 W/m/K
13

. The quantity 

kth(x,y)/h can be extracted from the numerical solution of Eq. (3.8), and represents the thermal 

conductivity in specific arbitrary units that depend on the geometry of the used SNOM tip and its 

distance from the surface, via the proportionality coefficient of Eq. (3.6). Due to the difficulty to 

estimate the tip-sample distance, the actual value of h involved in the right-hand term of Eq. 

(3.8) needs to be determined experimentally. This can be done via Eq. (3.9) because the heat 

capacity of glass, c(xb,yb) = 860 J/Kg/K, is also known
14

. In this way, the solution of Eq. (3.8) 

and (3.9) was implemented using a Matlab
TM

 routine and leads to the determination of kth(x,y) 

and c(x,y). 

3.5 Sample absorbance  

Although sample illumination from the pump beam is uniform, the value of H(x,y,t) at a 

specific point also depends on the local value of the absorbance. Specifically, H(x,y,t) = 0 

at any points on bare glass, at which A0(x,y) = 0, while is more significant, up to 0.09 

mW/m
2
, at points on relatively thick multilayer graphene. The result of these measurements 

is presented in Figures 3.2(a-c) that show, respectively, AFM topography, transmittance 

and reflectance images of the test sample.  

Figure 3.2(d) shows the variation of A0(x,y) in multilayer graphene platelets as a 

function of the number of graphene layers. From the transmittance image shown in Figure 

3.2(b), it can be observed that the glass substrate is always significantly more transmitting 

than multilayer graphene. On the other hand, from Figure 3.2(c), it can be noticed that the 

reflectance of glass and graphene are both relatively small and comparable, except at a 

few locations in which graphene flakes are particularly wrinkled and rich in ridges, and 

become highly reflecting with  up to 30%. There is a wide range of thicknesses and 

number of layers in the platelets shown in Figure 3.2. The average optical absorbance 

could be determined for different selected regions and is plotted in Figure 3.2(d). 
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Figure 3.2: a) Topography, b) Transmission and c) Reflection SNOM images of the 

test sample. The shown topography was obtained during SNOM transmission-mode 

measurements. d) Absorbance vs. number of graphene layers. Thick platelets are 

relatively absorbing, while thinner platelets are more transparent. Fringes that can 

be observed in panel b are due to effects from edge modes of graphene flakes. 

Figure 3.2(d) shows that A0(x,y) increases with increasing number of layers, 

consistently with previous macroscopic observations that showed absorbance increase 

according to the Beer-Lambert law, A0  1–exp(N/M) (M  50) in multilayer graphene 

platelets
15

. We can thus infer that this relationship is valid at the nanoscale level. These 

results indicate that graphene platelets with less than 50 layers are locally transparent, 

with relatively low heat load applied to them. Darker areas in the SNOM transmittance 

image in Figure 3.2(b) are highly absorbing and will be affected by high thermal load. 

Due to such different levels of heat generated at each point of the sample, knowledge of 

optical absorbance, calculated from Eq. (3.2), will be critical for quantitative estimates of 

the thermal conductivity and thermal capacity of the test sample, as described in the next 

section. 
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3.6 Multi-frequency NeSTRI imaging  

 

Figure 3.3: a) NeSTRI amplitude and b) phase images recorded at 75 Hz pump 

beam modulation frequency in non-contact from the test sample. Dotted squares 

highlight the detail that is further investigated. Negative phase is a consequence of h 

< 0 in Eq. (3.6) and is a strong indication of the fact that images are from genuine 

complex thermoreflectance signals. An excellent correlation between NeSTRI images 

in the present figure and the corresponding contact AFM and SNOM images from 

the figure (3.2) can be observed. 

Figure 3.3 shows the NeSTRI images, amplitude, and phase, of the test sample, recorded 

at  = 75 Hz. A close correlation between these images, recorded in non-contact from the 

sample, and the corresponding SNOM and topography images, recorded in contact mode 

and reported in Figure 3.2, can be observed. The thermal diffusion length along the 

surface decreases as the pump beam modulation frequency increases. Therefore, 

thermoreflectance measurements at different values of  lead to different amplitude and 

phase lags, and decrease the arbitrariness in the determination of the thermal properties
1-5

. 

Figure (3.4) shows multifrequency NeSTRI measurements on a detail of Figure (3.3). It 

shows the AFM topography Figure 3.4(a) SNOM reflectance Figure 3.4(b) and thermal 

amplitude and phase of the temperature profile for two different modulation frequencies 

of the pump beam.  
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Figure 3.4: a) Detail of AFM and b) SNOM reflectance images of multilayer 

graphene flake from Figure (3.2). c) Multifrequency NeSTRI experiments: 

thermoreflectance amplitude and d) phase at  = 45 Hz frequency and e) 

thermoreflectance amplitude and (f) phase at  = 450 Hz. It is always observed 

0(x,y) < 0, as a consequence of h < 0 in Eq. (3.6) because (x,y,t) and T(x,y,t) are in 

180
o
 phase opposition. g) The amplitude monotonically decreases as  increases due 

to shorter thermal diffusion length at increasing frequency. h) Phase in multilayer 

graphene (MLG) increases from about -1.6
o
 to nearly zero and, from comparison of 

panels d and f, it is evident that 0 is lower in graphene than glass at 25 Hz, while, 

at 450 Hz, it is lower in glass than graphene. 

Panels (c) ( = 45 Hz) and (e) ( = 450 Hz) in Figure (3.4) show that the 

thermoreflectance amplitude is significantly different between thin and thick regions of 

the flake on the one hand, and between graphene and the glass substrate on the other 

hand. When the changes in the reflectivity are larger due to stronger heat dissipation, the 

measured amplitude is higher, which leads to bright features in the amplitude images. In 

general, the magnitude of the amplitude always tends to monotonically decrease as  
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increases, due to shorter thermal diffusion length at increasing frequency, as demonstrated 

in panel (g). The thermal diffusion length
11

 can be defined as:  

Lth  (D/)
1/2

,     (3.10) 

where D(x,y) = kth(x,y)/c(x,y) is the local thermal diffusivity of the sample, and the 

amplitude of the thermoreflectance signal is controlled by the thermal diffusion length.  

 

Figure 3.5: a) Large thermal diffusion length (Lth) at low frequency, dominated by 

the diameter (DG) of graphene flake, with heat dissipation mainly occurring in the 

glass, and b) Low thermal diffusion length at high frequency, in which Eq. (3.10) 

holds and heat dissipation mainly occurs in graphene. A smaller phase lag occurs 

from the medium from which the largest amount of heat is dissipated to air. 

While the amplitude is always decreasing at increasing , phase images exhibit a 

more intriguing trend that also depends on the specific sample location. Panels (d) and (f) 

of Figure 3.4 show NeSTRI phase images at 45 Hz and 450 Hz, respectively. It is 

immediate that in panel (d), at low frequency, the graphene flake exhibits a larger phase 

lag than glass. Conversely, in panel (f), at high frequency, the glass substrate exhibits a 

larger phase lag than graphene. It is worthwhile noting that heat generation only occurs in 

graphene because glass is optically non-absorbing. Instead, thermal dissipation may occur 

either from glass, which possesses a very short thermal diffusion length regardless of the 

used pump beam frequency, or graphene where the thermal diffusion length is 

significantly higher, up to several m
16

 and is determined by Eq. (3.10). At low 

frequencies, the thermal diffusion length in graphene is larger than the size of the flake 

probed in Figure 3.5 (i.e. about 10 m). Thus, the heat generated within the graphene 

sample is transferred in significant amounts to glass and a more significant phase lag is 

observed in graphene than glass, as demonstrated in Figure 3.5(a). Conversely, at high 

frequencies, Lth is shorter than the flake size and heat generated in graphene is mostly 
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dissipated within the same flake and minimally transferred to glass, as demonstrated in 

Figure 3.5(b). The crossover between the high frequency and low frequency conditions 

can be estimated from Figure 3.4(f), to corresponds to about  = 150 Hz. From these 

considerations, it is evident that multifrequency NeSTRI will be a very powerful and 

effective technique to visualize the thermal diffusivity and thermal diffusion length in 

layered materials. 

3.7 Recognition of potential NeSTRI artefacts 

When developing a new scanning probe technique, it is imperative to recognize and avoid 

any possible measurement artefacts. In NeSTRI, they could be either mechanical 

artefacts, typical of AFM and caused by the non-ideal interaction of the tip with the 

sample, or optical artefacts associated with SNOM measurements. Specifically, it is 

worthwhile noting that the SNOM signal intensity is strongly affected by the interference 

between light scattered from the tip and the specular image of the sample, which provides 

an oscillatory dependence of the optical signal on the distance between the tip and the 

sample surface
7, 17-19

. In order to prevent NeSTRI artefacts associated to such oscillations, 

we anticipate it is vital to perform SNOM and NeSTRI scans at a tip-sample distance z 

corresponding to the first maximum of the optical signal
7
, z0. In this way, small distance 

fluctuations z around z0 will produce minima of the intensity of the SNOM signal both at 

z0–z and z0+z. As demonstrated in Figure 3.6, oscillations of z at the same frequency of 

the pump pulses, will only produce intensity modulations of the NeSTRI signal at double 

frequency, 2, which do not affect the measurements, as the detector response is locked-

in at the chopper angular velocity. 

Avoiding the detection of SNOM artefacts associated to periodic tip-sample distance 

oscillations is particularly critical in NeSTRI. Intense heating may produce non-negligible 

and periodic thermal dilatation of the sample and, indeed, periodic modulations at the 

same frequency. We ruled out that such z()-oscillations significantly affect our NeSTRI 

scans by measuring a set of uniform aluminum films at different thicknesses, from 20 nm 

to 80 nm, as shown in Appendix II.  
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Figure 3.6: Demonstration of the mechanism for which, in case of tip-sample 

distance oscillations due to thermal dilatation of the sample, the NeSTRI signal at 

frequency  is unaffected by near-field artefacts, because signal intensity 

fluctuations (z0z) < (z0) only occur at double-frequency 2. 

If z()-oscillations led to critical thermal-dilatation related artefacts, the signal 

amplitude of uniform Al thin films would increase at increasing thickness. In contrast, 

genuine NeSTRI scans result in a signal decrease for thicker Al layers, because, at larger 

thicknesses, heat is generated within a larger sample cross-section, which also results in 

lower surface temperatures (see Appendix II for quantitative details). Figure II.1 in the 

appendix clearly shows that the NeSTRI signal amplitude of uniform Al films decreases 

with their thickness, in good quantitative agreement (see Figure II.2) with a model that 

assumes a decreasing amount of volumetric heat generation in thicker films, due to 

stronger attenuation of the pump beam along their larger cross section. This is a strong 

indication of the genuineness of our NeSTRI measurements and corroborates the 

hypothesis that, when carefully performed, NeSTRI is insensitive to periodic, thermally 

induced, dilation and contraction of solid samples at their surface. 

3.8 Conclusion 

In this chapter, we introduced NeSTRI, a scanning near-field-based thermoreflectance 

imaging technique capable of mapping the thermal properties of thin solid films at the 

nanoscale.  From NeSTRI measurements, the phase shift and amplitude of the sample 

thermoreflectance can be imaged and the sample optical absorbance and topography can 

be independently probed using SNOM measurements in contact with the sample. By 

analyzing the absorbance of our samples we found that thinner samples are more 
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transparent with respect to thick samples. Also by analyzing the phase shift and amplitude 

in different frequencies we observed that the amplitude and phase shift of the graphene 

flake decreases as we increase the frequency while the phase shift in the multilayer glass 

increases. In the end, we studied the role of artefacts in NeSTRI measurements and 

concluded that when NeSTRI measurements are carefully performed, they are insensitive 

to periodic, thermally induced dilation and contraction of solid samples at their surface. 
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“Truth is much too complicated to 

 allow anything but approximations.” 

John von Neumann 

Chapter 4 

Numerical solution of the Fourier’s heat equation for the near-field 

scanning thermoreflectance imaging technique 

4.1 Introduction 

In the previous chapter, we presented near-field scanning thermoreflectance imaging (NeSTRI), 

a new non-contact scanning probe technique for acquiring thermal images at the nanoscale. Due 

to the nonanalytic nature of the known quantities recorded by NeSTRI which are the 

thermoreflectance amplitude and the amount of heat locally deposited per sample unit volume, 

Eq. (3.8) must be obtained numerically, using a finite difference method
7, 8

. In this chapter, we 

give a detailed proof of how the calculations are done to solve the Fourier’s heat equation and 

acquire the thermal conductivity and heat capacity maps. We use Rayleigh’s law
1
 to obtain a 

relationship between the thermoreflectance amplitude and surface temperature. We then develop 

a finite difference method to generate the thermal conductivity images.    

4.2 Linear relationship between thermoreflectance amplitude and surface 

temperature 

4.2.1 Reflectance due to light scattering at the tip aperture 

Here, we offer a proof of the existence of a direct proportionality between the amplitude of the 

thermoreflectance signal 0(x,y), measured by near-field scanning thermoreflectance imaging 

(NeSTRI), and T0(x,y), the temperature at the sample surface, which is expressed by Eq. (3.6). 

The validity of Eq. (3. 6) is essential to infer T0(x,y) from NeSTRI measurements. In our proof, 

we will assume the validity of Rayleigh’s assumptions
1
 for electromagnetic radiation scattered at 

the aperture of the scanning near-field optical microscope (SNOM) tip. Rayleigh’s law is valid 

for scattering by objects with individual dimensions that are small compared with the wavelength 

of incident radiation. We assume that incident oscillating electric and magnetic fields induce 

http://www.azquotes.com/quote/529908
http://www.azquotes.com/quote/529908
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electric and magnetic multipoles at the boundaries of the tip aperture, which oscillate in phase 

with the incident electromagnetic wave and radiate energy in different directions. Furthermore, 

the tip apertures used in our SNOM and NeSTRI experiments are coated with non-ferromagnetic 

metals, in which electric dipoles are more significant than magnetic dipoles, so our proof will 

only deal with electric dipoles. As far as the wavelength is long compared to the size of the 

aperture, only multipoles of the lowest order, electric dipoles, are important. 

The geometry we utilize for our proof, which is a good approximation of our 

experimental setup, is shown in Figure 4.1. Incident radiation is a plane monochromatic wave at 

wavenumber k and wavelength  = 2/k, with the direction of incidence defined by the unit 

vector n0, and complex incident polarization vector e0. It impinges an aperture of radius a bored 

in a relatively flat SNOM cantilever of thickness L. The associated incident electric field of 

intensity E0 can be expressed as 

xik

0inc eEE


 0n

0e .     (4.1)  

Einc induces electric dipoles moments p and magnetic dipole moments  on the cylindrical 

surface of the SNOM tip aperture, which acts as a scatterer. Dipoles radiate energy at any generic 

directions indicated by unit vectors n and polarization vectors e. Far away from the aperture, the 

intensity of the scattered field along a generic direction is given by
1
: 
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where r is the distance between the tip aperture and the observer, c is the speed of light and 0 is 

the dielectric permittivity in the air, which is relatively close to that of vacuum. We neglect the 

second addend in Eq. (4.2) since our SNOM tips are non-ferromagnetic and | |/c << |p|. 
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Figure 4.1: Small circular SNOM tip aperture of radius a and thickness L (a and L <<  = 

k/2) drilled in a dielectric and non-ferromagnetic material and acting as a scatterer for 

plane and incident electromagnetic waves. The observer is positioned at a distance r and 

angle  from the aperture. 

Because the intensity of electromagnetic radiation is proportional to the square of the 

electric field, the amount of reflected light at any given direction is given by  

2

inc

2
)(

sc
)(

E

E
n

n  .    (4.3) 

To calculate the reflectance, the scattered and incident electric fields given by Eq. (4.1) and (4.2) 

must be replaced into Eq. (4.3). In addition, it must be considered that the magnitude of the 

electric dipoles at the surface depend on the intensity of the incident electric field. Thus we have 

|p| ~ E0, with a proportionality coefficient that also depends on the complex dielectric constant 

(or complex refractive index) of the tip material. Finally, scattering contributions at point r from 

all of the induced electrical dipoles at the scatterer surface must be superimposed by means of 

integration. For solving this scattering problem in an arbitrary geometry, it is convenient to 

decompose the two field vectors into components that are, respectively, parallel (E//sc
(n)

 and E//inc) 

and perpendicular (Esc
(n)

 and Einc) to n0, and write them in a matrix form
2
. Eq. (4.2) can thus 

be generalized as: 
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In our particular cylindrical geometry, S, the scattering matrix, can be expressed as
2
: 
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This expression depends on the volume of the cylindrical aperture, V = a
2
L, and on the form 

factor f, which is a consequence of the superimposition of the contributions from all of the 

dielectric dipoles in the particular geometry under consideration. For a cylinder, the form factor 

can be calculated as: 
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from which it can be seen that f(,)  2 in the long wavelength approximation, at a << . 

Equation (4.5) also depends on the complex refractive indices of the two media, air, and the tip 

material, through the factor (m
2
 – 1) / (m

2
 + 2) that is reminiscent of the proportionality factor 

between p and E0 offered by Clausius-Mossotti relationship
3
. Also, in Eq. (4.5) m is the optical 

contrast coefficient 

tt

a

t

a

iKN

N

M

M
m


 ,     (4.7) 

that represents the ratio between the complex refractive index of the tip material (Mt = Nt+iKt) 

and air, for which Ma  Na ~ 1. In the specific geometry used for NeSTRI and SNOM 

measurements, the SMA coupler used to collect the reflected light is placed at the same z-axis 

level of the tip and therefore, at  = 90
o
. In these conditions, and for f(,)  -2, Eq. (4.4) and 

(4.5) lead to the relationship:   
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and, for exp(2ikr)  ½, to the following expression of the reflectance at  = 90
o
: 
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The 
4
 dependence of Eq. (4.9) on the wavelength of the probe beam is reminiscent of a similar 

dependence in Rayleigh scattering
1
, and is indicative of the fact that Rayleigh’s law and Eq. (4.9) 

are derived under the same assumptions. 

4.2.2 Amplitude of the thermoreflectance signal  

In thermoreflectance measurements, the reflection coefficient determined via Eq. (4.9) changes 

with the temperature of air due to the temperature dependence of m. When light heats the 

sample, heat is transferred to air that decreases in density, and its refractive index decreases 

accordingly, as: 

Na(T) = Na(0) – T,      (4.10) 

where Na(0)  1 is the refractive index of air under ambient conditions, in the absence of 

transferred heat, and   6 10
-4

 K
-1

 is the air thermo-optical coefficient
4
. It is worthwhile noting 

that, although  is quite small, it has been demonstrated by several experiments in the literature 

to be sufficient to perform thermoreflectance measurements at the microscopic levels even with 

powers that are significantly lower than those used in our experiments
5
. In order to estimate how 

Eq. (4.10) affects the reflectance determined via Eq. (4.9), we consider that Nt
2 

<< Kt
2 

for 

nontransparent tip materials such as, in our experiments, aluminum (for which Mt = Nt + iKt = 

0.90 + i6.21 at  = 532 nm probe beam wavelength
6
). Thus, we can write: 
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From this expression, by expanding the Clausius-Mossotti factor in Taylor series for 

sufficiently small values of m [i.e. (m
2
 – 1) / (m

2
 + 2)  - ½ + ¾ m

2
] and by substituting it into 

Eq. (4.9), we obtain the following expression for the temperature-dependent reflectance at the 

tip-air interface: 
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It is thus demonstrated that, under our specific assumptions, the thermoreflectance at the sample 

surface is given by: 
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Thus, from our derivation, the proportionality coefficient between 0(x,y) and T0(x,y), which 

we introduced in Eq. (4.7), can be estimated as: 

h = 24
4
L

2
a

4
 / (r

2


4
Kt

2
).    (4.14) 

In Eq. (4.14), h does not depend on the specific location of the sample at which the 

thermoreflectance is measured. It only depends on the radius and length of the tip aperture, the 

optical properties of the system, the probe beam wavelength, and the distance between the 

sample and the detector. Consequently, due to the generality of our derivation which does not 

assume any significant tip-sample interaction, it remains demonstrated that the amplitude of the 

thermoreflectance signal measured by NeSTRI is linearly proportional to the temperature at the 

sample surface. It is worthwhile noting, from Eq. (4.14), that h < 0. Consequently, the 

thermoreflectance is lower at the times and locations at which the temperature is locally higher 

and the phases of T0(x,y) and 0(x,y) are shifted by 180
o
. Therefore, the two quantities are in 

phase opposition. 

4.3 Finite-difference method used to generate thermal conductivity 

images 

4.3.1 Formulation of equations (3.8) and (3.9) in terms of finite 

differences  

In this section, we develop a numerical algorithm capable of modeling, from phase [0(x,y)] 

and amplitude [0(x,y)] thermoreflectance images, the diffusion of heat along an 

inhomogeneous thermally conducting thin film on a thermally insulating substrate. Objective of 

the algorithm is to reconstruct, from thermoreflectance phase and amplitude images, the thermal 

conductivity kth(x,y) that inhomogeneously varies from point to point of the film. We write Eq. 

(3.8) as: 
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Eq. (4.15) represents the real part of Fourier equation for periodic and inhomogeneous heat 

generation in a sample of optical absorbance A0(x,y). A pump laser at uniform power density P0 

impinges the imaged sample area, and heat is locally generated proportionally to the amount of 

power being locally absorbed by the thin film. In our experiments, the substrate is optically non-
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absorbing. Both P0 and A0(x,y) are known from independent experiments. The thermal 

conductivity kth(x,y) is unknown, and so is h, the proportionality coefficient given by Eq. (4.14) 

that is independent of x  and y. Due to the arbitrary and nonanalytical nature of A0(x,y), 0(x,y) 

and 0(x,y), Eq. (4.15) is a 2D first-order equation in kth(x,y) which needs to be solved 

numerically. 

To solve Eq. (4.15), we here introduce a first-order, finite-difference method, in which 

the differential equation of an image of PQ pixels, will be transformed into an algebraic system 

of PQ linear equations in the same number of scalar unknowns. We write Eq. (4.15) in a way 

that each differential term, known or unknown is expressed by a finite difference (FD). The 

following known FD terms are calculated (for i = 1…P and j = 1… Q) from the 

thermoreflectance amplitude image [0(i,j)]: 

jiji ˆˆˆˆ
,,

y

j)(i,δρ1)j(i,δρ

x

j)(i,δρj)1,(iδρ
y)(x,δρ 0000

0










--
VU jiji ,   (4.16)                                 

yx
y)(x,δρ0







 ji1jijij1i2
-VV-UU ,,,,

,        (4.17) 

where Ui,j and Vi.j are the two scalar components of the thermoreflectance gradient and i and j 

represent two unit vectors along coordinate directions x and y, respectively. The following 

known FD term is calculated from both the thermoreflectance phase [0(i,j)] and amplitude 

images: 
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In equations (4.16-4.19), x and y are the width and height of each pixel, which are 

independent of i and j. In addition, in Eq. (4.15), the unknown term kth(x,y) is written as a finite 

difference in the form: 
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where kth(x,y)  ki,j  at any point (i,j). The FDs expressed by equations (4.16-4.19) can be 

replaced into Eq. (4.16) to obtain a set of algebraic finite-difference equations of the form 

ji,ji,ij1ji,ji,j1,iji, GHYX   KKK ,   (4.20) 

in which the following quantities have been defined for compactness: 
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Where kG is the thermal conductivity of the substrate (i.e. kth = kG = 1.1 W/m/K in the case of 

glass). In total, a number of PQ scalar equations of the form of Eq. (4.20) can be written to 

form an algebraic system in the set of unknowns {Ki,j} which will be numerically solved, giving 

us a quantity proportional to thermal conductivity along the surface for each point, with a 

proportionality constant, h, to be determined.  

4.3.2 Solution of the finite-difference system with appropriate boundary 

conditions 

It is important to bear in mind that, although Eq. (4.20) is valid in general, for any pixel (i,j) of 

our images, the thermal conductivity at the boundaries (i.e. at points where i = 1 or P, or j = 1 or 

Q) is known and must be equal to the thermal conductivity of the substrate. Due to the linear 

character of Fourier’s equation (4.15), for which the principle of superposition is valid,  if we 

solve  a system of equations of the form (4.20) with boundary conditions  

KG = K(i = 1 or P, j) = K(i, j = 1 or Q) = 0,    (4.22) 

the thermal conductivity at the sample surface will be determined as 

 ki, j = h  Ki, j + kG.     (4.23) 

Consequently, our method is fully capable to reconstruct thermal conductivity images {ki, j} from 

NeSTRI experiments. 

In order to solve our algebraic system, it is convenient to rearrange it by labeling the 

variables with a single index, l = 1,… , PQ, in lieu of two of them, i and j. The scheme used for 

such a rearrangement is reported in Figure 4.2. Each column j forming the images of the known 

quantities Xi,j, Yi,j, Hi,j, and Gi,j, and of the unknown Ki,j  is piled in a column vector of PQ 

elements. This implies that for a certain number of equations of the form of Eq. (4.20) 

(specifically at l = 1,…P; l = P(Q1), …, PQ; l = jP; and l = jP+1) at least one of the addends 

at the left hand of Eq. (4.20) corresponds to a boundary condition, for which  Kl = KG = 0, and is 

therefore null. In the specific cases of l pointing to image corners, two of the addends at the left 
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hand of Eq. (4.20) correspond to boundary conditions and are null. We are dealing with four 

different types of finite-difference equations of the form (4.20), depending on the number of 

boundary conditions they involve.  

 

Figure 4.2: Scheme used in our numerical finite-difference calculations to transform pixel 

images K(j = 1…P, j=1…Q) into column vectors K[1,..., PQ]. This scheme allows us to 

transform our finite-difference equation, Eq. (4.20), into an algebraic system of PQ scalar 

equations in PQ unknowns of the type AK = B. Each scalar unknown, K[1], …, K[PQ], 

represents the thermal conductivity of a specific pixel (i,j). The scalar equations have a 

different formulation depending if the pixel sits at the corner of the image, at an x-edge, at 

a y-edge, or in the bulk of the image, which is a consequence of the fact that we impose the 

boundary condition K[b] = kG for any point at an edge or corner. 

 

a) Corner equations correspond to pixels (i, j) = (1,1); (i, j) = (P, 1); (i, j) = (1, Q) and (i, 

j) = (P, Q) [for which l = 1, l = P, l = (Q-1)P+1, and l = PQ) if a single-index notation is used, 

as in Figure 4.2]. In these cases, we have both Ki1,j  = KG = 0 and Ki,j1  = KG = 0. By transferring 

the known terms to the right hand of Eq. 4.20, we obtain four linear equations of the form  

jiGjiGjijiij GYXGH ,,,,  KKK ji, .    (4.24)         
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b) x-edge equations correspond to pixels (i, 1) and (i, Q) with i = 2,…, P1  [for which l = 

jP or l = jP+1, with j = 2, …Q1) if a single-index notation is used, as in Figure 3.3]. In these 

cases, we have Ki1,j  = KG = 0. By moving the known term Xi,jKG to the right hand of Eq. 4.20, 

we obtain 2(Q2) linear equations of the form: 

jiGjijiijji GXGHY ,,,,   KKK ji,1ji, .   (4.25) 

c) y-edge equations correspond to pixels (1, j) and (P, j) with j = 2,…, Q1  [for which l = 

2,…P1 and l = (Q1)P+2,…,QP1 if a single-index notation is used, as in Figure 4.2]. In 

these cases, we have Ki,j1  = KG = 0. By moving the known term Yi,jKG to the right hand of Eq. 

(4.20), we obtain 2(P2) linear equations of the form: 

jiGjijiijji GYGHX ,,,,   KKK ji,j1,i .  (4.26) 

d) Bulk equations correspond to pixels that are not situated at the vicinity of the edges. 

This implies that, in general, each equation of the form of Eq. (4.20) presents three nonzero 

unknowns. Equations of type (4.20), in the forms a), b), c) and d), can be combined in a matrix 

form AK = B that can be solved using sparse-function algorithms (e.g. using Matlab
TM

) so that 

{Ki, j}  can be determined. By using the compact, single-index notation for which l = 1, …. PQ  

our system AK = B that can be written as: 
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After inverting the equation (4.27) using a specially designed Matlab
TM

 routine and determining 

K, the column vector containing the values of (non-calibrated) thermal conductivity per each 

pixel have been rearranged into a PQ matrix. 
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4.4 Results and Discussion  

Figure 4.3 shows the specific heat images obtained by processing the thermoreflectance data by 

using equations (3.8) and (3.9). It can be observed that, within the experimental errors, the 

specific heat is independent of the frequency used in the measurements. It can be observed that 

the specific heat is not significantly different in glass (860 J/Kg/K) and graphite (720 J/kg/K). At 

room temperature, Dulong-Petit law holds for a large class of materials for which the thermal 

properties are determined by lattice properties
9
. Consequently, a slowly varying specific heat 

along the entire surface is realistic. Local variations can only be observed at locations in which 

the low-dimensional nature of the thin film is more evident, including graphene edges, defects, 

and particularly thin regions.  

 
 

 
 

 
 

Figure 4.3: a) Images of specific heat for the multilayer graphene flake 

independently obtained at  = 75 Hz, b)  = 200 Hz, and c)  = 450 Hz. 

 

Figure 4.4 shows the thermal conductivity maps extracted from NeSTRI 

thermoreflectance images from the same regions and at different frequencies. To confirm 

our results we compare the thermal conductivity maps for a different number of pixels to 

make sure they are consistent with one another. From panel b we notice that the thermal 

conductivity is higher at certain edges than at the center of the graphene flake. There are 

two types of edges in graphene, armchair, and zigzag. Different atomic spacing along the 

armchair and zigzag edges result in distinctly different electron and phonon density 

distributions, with armchair edge atoms forming shorter and stronger bonds
9
. Although 

the zigzag edges are less dense than armchair edges, the armchair edges have lower 

energy due to the fact they can form triple bonds
10

. Armchair and zigzag edges also have 

different phonon distribution of states with the armchair edges having more zone 

boundary phonons than zigzag edges. Since umklapp processes
11

 are responsible for 

thermal resistivity effects, it is expected that the edge modes with a higher density of 

states at the zone boundary would have a lower thermal conductivity. In addition, due to 

the anisotropy in the phonon dispersion for graphene multilayers, zigzag graphene edges 
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have higher thermal conductance than armchair graphene edges of comparable widths
12

. 

For the flake under consideration, we recognize both armchair and zigzag edges, in 

consideration of its triangular shape. Therefore, the different thermal conductivity at the 

edges may be related to the different edge nature.  

 

 

 

 

 

 

 

Figure 4.4: Thermal conductivity maps for three different frequencies, a) 75 Hz, b) 

200 Hz and c) 450 Hz. The images are similar to each other consistently with the fact 

that the thermal conductivity is a property of the material, and does not depend on 

the modulation frequency of the pump beam. 

4.5 Conclusion 

In this chapter, we introduced the detailed calculations for acquiring thermal conductivity and 

thermal capacity maps using NeSTRI method. By using Raleigh’s law for near-field scattering 

we found that there is a linear relationship between thermoreflectance amplitude and surface 

temperature. Finding the proportionality value between the surface temperature and the 

thermoreflectance amplitude we try to solve Fourier’s heat equation. Having the complete set of 

data from the experiment we solve Fourier’s heat equation numerically using the finite difference 

method. We then implemented the results of NeSTRI measurements discussed in chapter 3, into 

Fourier’s heat equation and we derived the thermal conductivity and heat capacity at each point 

and therefore developed the thermal conductivity and heat capacity images for the sample. Our 

method is suitable to be extended to image the thermal properties of a large class of sparse, 

layered and thin film materials. 
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“The measure of greatness in a scientific idea 

 is the extent to which it stimulates thought 

 and opens up new lines of research.” 

Paul Dirac 

 

Chapter 5 

On the role of localized charge transfer and Dirac electrons in limiting 

the thermal conductivity of graphene layers 

5.1 Introduction 

A critical application of graphene, that has been vital in translating this starting material from the 

realm of fundamental physics into applied research and industry, is related to its utilization in 

heat spreaders, and for thermal evacuation integrated electronic devices at high power density. 

Tremendous efforts have been done towards understanding the thermal properties of single-layer 

graphene, virtually a thermal superconductor, with nearly infinite thermal carrier mean free in 

nearly ideal phonon gases
1, 2

. The unprecedented thermal properties of single-layer graphene also 

extend to its few-layer counterparts, and to thin graphite, in which in-plane propagation of 

phonons is still relatively collision-free. To this end, controlling the thermal properties of 

graphene thin films by assembling metallic structures on their surface
3
 would be a promising 

direction with significant applications. There have been many investigations on the thermal 

variation of graphene doped materials
4-12

 however, the role of electron-phonon scattering in 

affecting the thermal properties of graphene composites has not been investigated in detail. In 

1956, Ziman et al.
13

 showed that the thermal conductivity of a material can decrease due to 

electron-phonon interactions. Although Zimans three particle process with an electron and 

phonon on one side and an electron on the other side is true in many cases it is unlikely to 

happen in graphene-based materials.  

In this chapter, we study the thermal properties of multilayer graphene thin films 

decorated by copper particles. We acquire the thermal images of the sample under study by 

applying the perturbation method to the Fourier heat equation and using near filed 

thermoreflectance imaging (NeSTRI)
14

. By analyzing and comparing the thermal properties of 

the multilayer graphene films before and after being deposited by copper particles and later when 

the copper particles have been etched off the surface of the graphene flake we present a new 

http://www.azquotes.com/quote/712202
http://www.azquotes.com/quote/712202
http://www.azquotes.com/quote/712202
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explanation based on electron-phonon interaction on the nature of the low local thermal 

conductivity on the surface of graphene thin films decorated by copper particles. 

5.2 Experimental setup 

The experimental setup is the same as we had for before for NeSTRI method. We measure the 

topography, amplitude, transmittance, reflectance and the phase shift of the sample at three 

different phases, once for when the graphene flake has not yet been decorated with copper 

particles, once when the graphene flake has been decorated with copper particles and in the end 

when the copper particles have been etched off the sample Figure 5.1. With the help of these 

data, we determine the thermal conductivity at the three aforementioned phases.  

 

Figure 5.1: The topography, amplitude and the phase shift for a) the graphene flake, b) the 

graphene flake decorated with copper particles and c) the copper particles etched off the 

surface of the graphene flake. 
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5.3 Determining the value of thermal conductivity from measured data 

For determining the thermal conductivity of the graphene flake before being decorated by copper 

particles and after being etched off from it we write Eq. (3.4) which is the Fourier’s heat 

equation: 

  ),,(),,(),(
),,(

),( tyxHtyxTyxk
t

tyxT
yxc th 




.       (5.1) 

For writing the Fourier’s heat equation for the graphene flake being decorated by copper 

particles we add a small perturbation term to the primary heat capacity and thermal conductivity 

of the graphene flake, since the heat capacity and thermal conductivity of copper particles are 

much less than the heat capacity and thermal conductivity of the graphene flake
15

 and we treat 

them as a perturbation to the system. We also add a small perturbation term to the temperature on 

the decorated graphene flake since copper particles cannot absorb and obtain much heat to 

change the temperature on the surface of the sample due to low thermal conductivity and low 

heat capacity with respect to the graphene flake. The Fourier’s equation for the graphene flake 

decorated with copper particles is:  

  ),,(),,(),(
),,(

),( tyxHtyxTyxk
t

tyxT
yxc th





 ,     (5.2) 

where c(x,y) and kth(x,y) are the new heat capacity thermal conductivity of the sample, H(x,y,t) 

is the new amount of heat locally absorbed by the sample and T(x,y,t) is the new temperature. 

The amount of H(x,y,t) is measured by experiment in the same way H(x,y,t) was measured in 

chapter 3. For the new thermal conductivity and heat capacity we write: 

),(),(),( yxcyxcyxc cugraphene  ,   (5.3) 

),(),(),( , yxyxkyxk graphenethth  ,   (5.4) 

where we have added a first-order perturbation term in terms of (x,y) and ccu(x,y,t), for the 

thermal conductivity and heat capacity of the copper particles decorating the surface of the 

graphene flake. For writing the new temperature we write the primary temperature of the 

graphene flake T(x,y,t) and add the perturbation (x,y,t) for introducing copper particles. 

      tiyxTtyxT exp),(),,( 0 ,        (5.5) 

         2/exp),(exp),(),,( 0//0    tiyxtiyxtyx ,   (5.6) 
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),,(),,(),,( tyxtyxTtyxT  .        (5.7) 

To be able to solve Fourier’s heat equation for the doped graphene sample we divide 

(x,y,t) into its parallel and perpendicular components, were the parallel component coincides 

with T(x,y,t) and the perpendicular component is perpendicular to it Figure (5.2).  

 

Figure 5.2: The temperature profile in the complex space. We add the primary 

temperature of the graphene flake T(x,y,t) to the perturbation term (x,y,t) to get the new 

temperature. We write (x,y,t)  in its parallel and perpendicular components with the 

parallel component coinciding with T(x,y,t). 

As can be deducted from Figure 5.2 0(x,y) and 0(x,y) are equal to: 

   SinyxTyx ),(),( 00 ,   (5.8) 

  ),(),(),( 00//0 yxTCosyxTyx   .  (5.9) 

Implementing the new thermal conductivity k(x,y), heat capacity c(x,y) and 

temperature T(x,y,t) into Eq. (4.2) and calculating up to the first order of perturbation we 

have an equation with two components, real and imaginary, and their physical meaning is 

associated to the finite thermal diffusivity at which heat propagates along the thin film 

surface, due to nonzero lateral thermal diffusion length which has been discussed in full 

length in chapter four. The two components can be separately equated leading to the 

following identities: 
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for the real part, and 
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             (5.11), 

for the imaginary part. Given that we already have computed the thermal conductivity kth(x,y) 

and the heat capacity c(x,y) of the graphene flake
14

, the solution of Eq. (5.10) provides (x,y), 

which can then be replaced into Eq. (5.11) and ccu(x,y) can be explicitated. Eq. (5.10) can be 

numerically solved in exactly the same manner that Eq. (5.8) was solved in MATLAB, using the 

finite difference method
16, 17

. We can then implement (x,y) into Eq. (5.4) and get the thermal 

conductivity map of the doped graphene flake.   

5.4 Thermal conductivity maps and results  

In Figure 5.3 we plot the thermal conductivity map for the three stages of the experiment. 

Figure 5.3(a) is the thermal conductivity of the graphene flake, Figure 5.3(b) is the thermal 

conductivity of the graphene flake after being decorated with copper particles and Figure 5.3(c) 

is for when the copper particles have been etched off from the surface of the graphene flake. By 

comparing the three thermal conductivity maps we observe a local decrease in thermal 

conductivity at some points in Figure 5.3(b) and from Figure 5.3(c) we observe that the thermal 

conductivity again increases as we remove the copper particles off the surface of the graphene 

flake. The locally low thermal conductivity regions in Figure 5.3(b), are the regions of the 

graphene flake being decorated by copper particles, and after etching the surface of the graphene 

flake from copper particles we see that the thermal conductivity is restored to its initial value. 
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Figure 5.3: The thermal conductivity maps of the three stages of the experiment, a) the 

graphene flake before being deposited by copper particles, b) the graphene flake after 

being deposited by copper particles, c) the graphene flake after the copper particles have 

been etched off from its surface. 

In Figure 5.4 we depict some points at the center of the copper particles on the doped 

graphene flake and move away from them. We observe a low thermal conductivity at the center 

of the copper particles and an increase in thermal conductivity as we move further away from the 

center. We also observe that the thermal conductivity varies due to the thickness of the graphene 

flake. 
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Figure 5.4: Thermal conductivity variations on the doped graphene. d), e), f) Thermal 

conductivity variation for some of the depicted particles embedded on different thicknesses 

of the graphene flake. We observe that as we move away from the center of the copper 

particles the thermal conductivity tends to increase. 
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In Figure 5.5 we compare the thermal conductivity of various copper particles with 

different diameters embedded on the surface of the graphene flake to see the relation between the 

thermal conductivity of copper particles residing on the graphene flake and their circumference. 

We observe that the thermal conductivity of copper particles decrease as we increase their 

diameter. 

 

Figure 5.5: The plots for the relation between the diameter of copper particles and their 

thermal conductivity. a, b) The topography and the thermal conductivity of the graphene 

flake decorated with copper particles, c, d) the thermal conductivity versus the diameter of 

the copper particle on a certain region of the graphene flake with a given thickness. 

Figure 5.6 shows the thermal conductivity variation along a line at the three stages of the 

experiment. In Figure 5.6 (d) we have analyzed the thermal conductivity variation along the line 

A-A, on the surface of the sample at the three stages.   
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Figure 5.6: The thermal conductivity maps of the three stages of the experiment, a) the 

graphene flake before being deposited by copper particles, b) the graphene flake after 

being deposited by copper particles, c) the graphene flake after the copper particles have 

been etched off from its surface. d) Thermal conductivity variation along the line A-Aat 

the three stages.   

By comparing the three thermal conductivity maps we observe a local decrease in 

thermal conductivity at areas of the graphene flake deposited by copper particles on the surface 

and then as we remove these particles from the surface of the graphene flake we observe that the 

thermal conductivity again increases reaching approximately its initial value. 

5.5 Discussion 
The local decrease in thermal conductivity on the graphene flake with deposited copper particles 

on its surface can be the result of one or several of the following phenomenon. Phonon-phonon 

interaction caused by lattice defects, interfacial thermal resistivity or electron-phonon scattering.  
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By comparing the thermal conductivity Figures 5.3 at the three stages we observe that as 

we etch off the copper particles from the surface of the graphene flake its thermal conductivity 

gets restored approximately to its initial value. This means that the local deficiency in thermal 

conductivity in regions covered by copper particles is not the result phonon-phonon scattering 

caused by lattice defects.  

By analyzing Figures 5.4 and 5.6 we observe that the local decrease in thermal 

conductivity is not uniform throughout the whole region covered by copper particles and thermal 

conductivity increases gradually as we move away from the center of the copper particles and 

move towards its edges. This means that the local decrease in thermal conductivity cannot be the 

result of interfacial thermal resistivity either.  

Therefore, to understand the main root of the local low thermal conductivity on the surface of 

the deposited graphene flake we study the nature of heat carriers in graphene thin films and in 

copper particles. In solids, heat is carried by phonons which are, ion-core vibrations in a crystal 

lattice and electrons so kth = kth,p + kth,e, where kth,p and kth,e are the phonon and electron contribu-

tions, respectively. In metals such as copper, ke is dominant owing to large concentrations of free 

carriers while in carbon-based materials such as graphene, thermal conductivity is dominated by 

phonons. The work of Akbari et al. has shown that depositing copper particles on the surface of 

graphene thin films turns graphene thin films from a band-gap semiconductor, into a semi-metal 

with Fermi level about 0.2 eV above the Dirac point
18

, Figure 5.7.  

 

Figure 5.7: The Dirac cone representation. The energy level increases as we deposit 

copper particles on the surface of the graphene flake and then goes back to its initial 

value after being etched off.  

We postulate that a small amount of the free electrons on the surface of the copper particles 

transfer to the graphene flake through quantum tunneling. These electrons interact with phonons 
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and cause a local decrease in thermal conductivity. As Ziemann et al. has shown the local 

decrease in thermal conductivity due to electron-phonon interaction can be the result of a three 

particle process between two electrons and a phonon
13

, Figure 5.8(a). The process is between an 

electron and phonon on one side and an electron on the other side. This process is unlikely to 

happen in the deposited graphene flake under study since, the energy of acoustic phonons is 

Eaco,pho  0.028 eV
19

 while the energy of the electrons in the doped graphene flake is 0.2 eV and 

therefore electron-phonon scattering within the graphene flake will be nonresonant. Also, zone 

boundary electrons couple weakly with acoustic phonons that are mostly zone centered. 

Since the local decrease in thermal conductivity due to electron-phonon scattering cannot be 

explained by a three particle process we study a four-particle process between two electrons and 

two phonons, figure 5.8(b). The process is between an electron and phonon on one side and an 

electron and a phonon on the other side. This process is more likely to happen in the deposited 

graphene flake under study since, to obey the conservation of energy rule we will have optical 

phonons instead of acoustical phonons with energies near to the electrons in the doped graphene 

flake
19

 and therefore the process will be resonant. Also, since, zone boundary electrons strongly 

couple with zone boundary phonons we have strong electron-phonon coupling.  

We assume the electron-phonon interaction happens in the first Brillouin zone and the 

outgoing phonon could be scattered in any of the eight neighboring Brillouin zones depicted in 

Figure 5.8(c, d). If the outgoing phonon is scattered to the 1
st
, 4

th
, 5

th
 and 8

th
 lattice sites the 

momentum of the phonon remains conserved and the collision will be elastic, Figure 5.8(c). If on 

the other hand the outgoing phonon is scattered to the 2
nd

, 3
rd

, 6
th

 and 7
th

 lattice sites the 

momentum of the phonon does not remain conserved due to Umklapp process
20

 and we have to 

deduct the inverse lattice vector K from the phonons momentum vector which makes the 

process to be inelastic, Figure 5.8(d). 

Since phonons are the main heat carriers in graphene thin films, if we assume the four 

electron-phonon process to be elastic, Figure 5.8(c), there will be no change in the substance 

thermal conductivity but, if we assume the four electron-phonon process to be inelastic, figure 

5.8(d), the phonons momentum vector will be very small and the lattice vibrations will be zone 

centred therefore conducting no heat across the lattice. With the probability of the phonon to be 

scattered equally in any of the eight neighboring lattice sites, we conclude that the local thermal 



79 
 

conductivity of the graphene drops by nearly half its original value when deposited by copper 

particles on top. 

 

Figure 5.8: Electron-phonon scattering. a) The three particle process between an electron 

and phonon on one side and an electron on the other side. b) The four particle process 

between an electron and a phonon on one side and an electron and a phonon on the other 

side. c) The elastic scattering happening at the 1
st
, 4

th
, 5

th
 and 8

th
 lattice sites were k1 is the 

momentum of the ingoing electron, k2 is the momentum of the scattered electron, q1 is the 

momentum of the ingoing phonon and q2 is the momentum of the scattered phonon. d) The 

inelastic scattering happening at the 2
nd

, 3
rd

, 6
th

 and 7
th

 lattice sites were due to umklapp 

process the momentum vector of the scattered phonon is deducted from the value of the 

inverse lattice size K. 

5.6 Conclusion 

In this chapter, we investigated the thermal properties of multilayer graphene thin films 

decorated by copper particles. We used a scanning near-field-based thermoreflectance imaging 

technique to acquire thermal conductivity maps of multilayer graphene thin films at three phases 
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before and after being decorated by copper particles and later when we etch off the copper 

particles from its surface. By comparing the results we see a locally low thermal conductivity at 

regions of the graphene flake being decorated by copper particles, and later on, we see that the 

thermal conductivity is restored to its initial value after etching the surface of the graphene flake. 

By analyzing the results we show that the thermal conductivity of the decorated graphene flake 

decreases due to electron-phonon scattering. The electron-phonon scattering will be a four 

particle process which involves an electron and phonon on one side and an electron and phonon 

on the other side. The scattered phonon could end up equally in any one of the eight nearest 

neighboring lattices for which half of them the process would be elastic and for the other half, 

the process would be inelastic. The inelastic process causes the thermal conductivity of the 

decorated graphene flake to decrease by about half its initial value. In the next chapter, we will 

discuss the theoretical aspects of electron-phonon scattering. 
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“Study hard what interests you the most in 

 the most undisciplined, irreverent and 

 original manner possible.” 

Richard P. Feynman 

Chapter 6 

Theory of phonon scattering by Dirac electrons in doped graphene 

6.1 Introduction 

In order to apply graphene-based materials in nanoscale systems, it is of paramount importance 

to establish the relationship between their molecular structure and their thermal properties. In the 

recent years, there has been a significant effort to locally modify the thermal and electrical 

properties of graphene and to characterize these local modifications
1, 2, 3

. 

There is a general census that indicates that the thermal conductivity of graphene 

decreases when it is doped substantially
4, 5

. In the previous chapter, we discussed the role of 

electron-phonon interactions in locally decreasing the thermal conductivity of the doped 

graphene. Studies on electron-phonon interactions in solids have been done for three particles 

processes consisting of two electrons and a phonon. In the three particle process an electron and 

a phonon collide with each other and get annihilated and a new electron is created or an electron 

decays into a new electron and phonon
6, 7

. Doing calculations for the three particle process, 

Ziman et al.
8
 showed that the thermal conductivity of solid crystal decreases due to electron-

phonon scattering. Although this is true in some solids in doped graphene films, the calculations 

must be carried out to higher order terms in which more than three particles are involved the 

electron-phonon interaction process. 

In this chapter as a case study, electron-phonon interaction is applied to multilayer 

graphene thin films decorated with copper particles on top. We show through calculations that 

electron-phonon interactions are responsible for the local decrease in thermal conductivity along 

the surface of graphene doped materials. We show that the three particle process consisting of 

two electrons and one phonon is unlikely to happen and we carry out the calculations for a five 

particle process consisting of three electrons and two phonons. All the calculations are carried 

out at room temperature so that the Fermi-Dirac statistics is taken as a step function
9 

and we 

assume that the particles move in a nonrelativistic framework. 

http://www.azquotes.com/quote/343610
http://www.azquotes.com/quote/343610
http://www.azquotes.com/quote/343610
http://www.azquotes.com/author/4774-Richard_P_Feynman
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6.2 Electron-phonon interaction 

The basic idea underlying the electron-phonon interaction is that when ions sit at their 

equilibrium positions, the state of an electron is described by a Bloch function
10

 of wave vector k 

and band index n. A phonon disturbs the lattice, and ions move out of their equilibrium positions. 

This causes a change in the potential of the electron which causes the electron to get scattered 

into another state with wave vector k'. For explaining the locally low thermal conductivity at 

regions of the graphene flake decorated by copper particles we calculate the electron-phonon 

interaction in the graphene flake. We assume that a small portion of the electrons in the copper 

particles transfer to the surface of the graphene flake through quantum tunneling and thus the 

thermal conductivity of the graphene flake in the regions covered by copper particles decrease 

due to electron-phonon interactions. 

In order to understand this phenomenon, we consider two different models. The first 

model which is a three particle process involves two electrons and a phonon and the second 

model which is a five particle process involves three electrons and two phonons were one of the 

electrons acts as a fermion propagator.  

 We consider the graphene lattice consisting of N unit cells with a basis of x atoms. The 

displacement from equilibrium of atom l (l = 1, 2, .. . , x) in unit cell n (n =1, 2, . ... N) is denoted 

by the phonon wave function which is: 
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where Ml is the mass of atom l and  is the polarization vector that determines the direction of 

the displacement of the lattice vibration relative to the wave vector q. q is the frequency of the 

of lattice vibration, bq is the annihilation operator and we use Rn,l  to describe the location of the 

ion l = 1, ..., r belonging to unit cell n = 1, ..., N. 

a) Three particle process 

For simplicity of notation, we assume that there is one atom per unit cell. The 

Hamiltonian of the electron-phonon interaction for the three particle process Figure 6.1, within 

the lattice is
11

: 
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where Vl is the Thomas-Fermi screening potential
16

. We can proceed a bit further if we adopt the 

effective mass approximation:  

xki

k e
V

x



1
)( ,      (6.3) 

where V is the volume of the crystal. To calculate the interaction Hamiltonian we express the 

potential Vl in terms of its Fourier transform. This would be equal to: 

Q

Q

RxiQ

nl Ve
V

RxV ln



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,
,

1
)( 


,    (6.4) 

where Q is the Fourier component of the potential.  

 

Figure 6.1: The three particle process of electron-phonon scattering. a) The electron decays 

into a new electron and a phonon. b) Electron and phonon collision creating a new electron 

Now we apply Wick’s theorem
12, 13

to the Hamiltonian of the electron-phonon interaction. By 

applying the Wick’s theorem we can calculate the transition probability for the three particle 

process between its initial and final. According to Wick’s theorem we write: 

  
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 (6.5) 

where T is the time ordering operator and n is the number of interactions that we have. For the 

three particle process we write: 
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The following process is unlikely to happen in the doped graphene flake under study. If 

we assume the phonon to be acoustical its energy would be Eaco, pho  0.028 eV
15

 while the 

energy of the electrons in the doped graphene flake is 0.2 eV
14

 and therefore electron-phonon 
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scattering within the graphene flake will be nonresonant. On the other hand, if we assume the 

phonon is optical its energy would be Eopt,pho  0.18 eV
15

 and therefore it would violate the 

conservation of energy. Also, zone boundary electrons couple weakly with acoustic phonons that 

are mostly zone centered. 

b) Five particle process 

The Hamiltonian of the electron-phonon interaction for the five particle process Figure 

6.2, within the lattice, is: 
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The spin of the electron doesn’t change in the electron-phonon interaction so we won’t sum over 

the different spins.  

By applying the Wick’s theorem for the five particle process we calculate the transition 

probability between the initial and final state. To solve the integral we make use of the following 

equations: 

 
Qq
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RQqi
Ne n

,
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,      (6.8) 

kkQxdkkQi  ,

33 )2()(exp  .    (6.9) 

 

 

Figure 6.2: The five particle process of electron-phonon scattering. An electron and phonon 

collide with each other creating a medium electron which carries their momentum and 

energy and then the medium electron decays into a new electron and phonon 
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Since graphene thin layers are approximately two dimensional we do the calculations in the two 

dimensions of space and one dimension of time. Making use of the following equations the 

integral over the interaction Hamiltonian is: 
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Where the medium electron is the fermion propagator denoted as iSF(x2-x1). Solving the integral 

and taking its expectation value between the initial and final state we have: 
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By inserting Eq. (6.8) into Eq. (6.11) we get: 
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where the Dirac delta enforces energy and momentum conservation. If the emitted phonon and 

electron get scattered to a neighboring reciprocal lattice site the initial and final crystal momenta 

will differ by a nonzero reciprocal lattice vector, K. We write the fermion propagator in the 

momentum space in a nonrelativistic framework. The fermion propagator is: 

ikvE

i
pS

F

F


 )( ,     (6.13) 

where vF is the fermion velocity inside the lattice for room temperature and  is a scalar with 

0. 

For the potentials Vq and Vq we make the following assumption. Since ions move very 

slowly compared to electrons, we can assume that the screening is static, similar to the screening 

of a fixed charged impurity. The screened Coulomb potential of an ion is thus taken to be 4 

Ze/q
2
 (q, 0), where Ze is the ionic charge and (q, 0) is the static dielectric function. In the 
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calculations we use the Thomas Fermi screening potential
16

 and the screening potential will be 

4 Ze/(q
2
+ qTF

2
), where qTF is the Thomas Fermi wave number. We won’t carry out the 

calculations to higher order terms since the screening potential is smaller than one and the 

process will become more and more unlikely if we add more interactions to the electron-phonon 

scattering process. 

The transition probability for the absorption of an electron and phonon at point x1 and the 

emission of an electron and phonon at point x2 is: 

T

S
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fi
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 ,     (6.14) 

where T is the time for the entire process to take place. Inserting Eq. (6.12) and Eq. (6.13) into 

Eq. (6.14) we get the following equation for the transition probability of the electron-phonon 

interaction: 
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In the next section, we will find the value of W by summing over the electrons and phonons 

momentum values in the lattice. 

6.3 Calculating the thermal conductivity 

We carry out our calculations in the reciprocal lattice frame, Figure 6.3. Since we are 

working at sufficiently low temperatures, the momentum for the absorbed and emitted electrons 

will be: 
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where k is the momentum of the absorbed (incoming) electron and k is the momentum of the 

emitted (outgoing) electron. As the Fermi-Dirac function at sufficiently low temperature is 

nearly a step function, the joint density of occupied (i) and unoccupied (o) electronic states is 

close to being a Dirac delta in the proximity of the Fermi energy, EF, of “doped” graphene and, 

therefore, both k and k are about k = EF/vF. Previous works have demonstrated that contact of 
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few-layer graphene with copper nanoparticles is actually very similar to a doping effect, with 

charge transfer from Cu to the -electronic states of the graphene sheets
14

. Movements of the 

Fermi level associated with such a charge transfer “doping” effect moves the Fermi level up to 0 

< EF  < 0.2 eV above the vertex of the Dirac cone of the  and * electronic bands of graphene 

at the Dirac point K, with a constant and dispersionless Fermi velocity vF =6.5 eV·Å. Therefore, 

charge transfer of Cu particles results in the appearance of conduction electrons at the zone-

boundary K point. Such electrons scatter phonons to a neighboring Brillouin zone with a certain 

probability that determines the corresponding limitations in the thermal conductivity of “doped” 

graphene over its undoped counterparts. 

 Figure 6.3(b) shows the electron-phonon interactions in the reciprocal lattice were, q and 

k are the absorbed phonon and electron and q and k are the new emitted electron and phonon. 

We assume that the electron-phonon absorption occurs in the first reciprocal lattice site and 

based on the angle of the collision the new phonon and electron could be scattered in the first 

Brillouin zone or any of the 7 reciprocal neighboring lattice sites.   

 

Figure 6.3: a) The copper particle at the center of the graphene lattice. b) The electron-

phonon scattering in the reciprocal lattice.  
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Based on the umklapp process
16

 the initial and final crystal momenta differ by a nonzero 

reciprocal lattice vector, K. As we studied in the previous chapter after the phonon has been 

scattered off by the electron there is a 50% chance for it to end up in the 1
st
, 2

nd
, 5

th
 and 6

th
 

reciprocal lattice and a 50% chance for it to end up in the 3
rd

, 4
th

, 7
th

 and 8
th

 reciprocal lattice. In 

the first case, the phonons momentum does not change and we would have an elastic collision 

were q

 - K = q. In the second case, the collision would be inelastic and q


 - K = k. 

To solve Eq. (6.15) we write: 
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where we have replaced the summation over the phonons momentum with an integration 

between its maximum and minimum values. Since the momentum of the electron should be k = 

k
 

= EF/vF in order for the electron-phonon interaction to take place we won’t sum over the 

different values of the momentum of the electron. Integrating over the 8 reciprocal lattice 

neighboring sites we have: 
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            (6.18) 

where, the electron-phonon collision is elastic when the emitted phonon gets scattered to 4 of the 

reciprocal lattice sites and, the electron-phonon collision is inelastic when the phonon gets 

scattered to the other 4 reciprocal lattice sites. 

In order to find the maximum and minimum amount of the phonons momentum we write: 
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1

min 19.1  A
v

E
OKq

F

F ,      (6.20) 

wherein the particular case of graphene
16

 |OK| = 1.22 Å
-1

.     



90 
 

To calculate the thermal conductivity of the electron-phonon interaction in 2 dimensions 

we write
17

: 

W
cck vth

1

2

1 2 .    (6.21)  

Here cv is the specific heat of the phonon and c is the speed of sound inside a specific medium. 

Calculating the ratio of the thermal conductivity without the copper particle and with the copper 

particle at the center of the graphene flake we arrive at the given result: 

           1
,

,


beforeth

afterth

k

k
,     (6.22)

 

This states that the thermal conductivity has decreased due to electron-phonon scattering. This 

was expected since the phonon momentum decreases significantly in half the reciprocal lattice 

sites due to the umklapp process. 

6.4 Conclusion 

In this chapter, we calculated the electron-phonon interaction in doped graphene. We did the 

calculations for a three particle process consisting of an electron and phonon on one side and an 

electron on the other side. We showed that due to the fact that the three particle process is 

nonresonant and there is weak coupling between electrons and acoustical phonons this process is 

unlikely to happen. We then studied higher order interactions consisting of three electrons and 

two phonons. We took the middle electron to be the Feynman propagator. We used Feynman 

diagram to find the transition probability of the electron-phonon interaction and from this, we 

calculated the thermal conductivity in doped graphene. By comparing the thermal conductivity 

of the graphene flake before and after being decorated by copper particles we observe a decrease 

in thermal conductivity for the decorated graphene flake which confirms our results in chapter 5.  
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“We cannot solve our problems with the same 

 thinking we used when we created them.” 

Albert Einstein 

7. Conclusion and Future Work 

In chapter 2 we studied the thermal property at the macroscopic level. We used PDS which is a 

contactless method to measure the thermal conductivity of a thin films-substrate system for the 

first time. By using different models constructed for measuring two-side PDS systems we 

managed to compute the amplitude and phase shift of the deflection angle of the probe beam 

which led to the measurement of the thermal conductivity in such systems. In future studies, we 

can study a three-dimensional temperature profile and apply the Fermat’s principle to observe 

the deflection angle for more complicated and accurate results. 

 In chapter 3 and 4 we studied the thermal property at the mesoscopic level. We 

introduced NeSTRI, a scanning near-field-based thermoreflectance imaging technique capable of 

mapping the thermal properties of thin solid films at the nanoscale and presented the 

mathematical technique which we used to get the thermal images using NeSTRI. We developed 

the thermal conductivity and the heat capacity maps and studied the properties of the material 

under study. In future studies, a new method can be devised to map the thermal diffusivity of the 

sample. Also by having the thermal images of different nanocomposites, we can study the 

interfacial thermal resistivity between them in depth. In addition in the near-field scattering, we 

neglected the magnetic dipole effect and only studied the electric dipoles since it was much 

larger than the magnetic dipole. In future studies, we can come up with a set of solutions when 

we only take the magnetic dipole into account and neglect the electric dipoles. 

 In chapter 5 we again studied the thermal property at the mesoscopic level. By the help of 

the perturbation theory, we managed to get thermal conductivity map of the graphene flake 

decorated with copper particles using NeSTRI method. We then studied the reason behind the 

local decrease in thermal conductivity of doped graphene by comparing thermal conductivity 

maps of the graphene flake at the different stages of the experiment. In the end, we concluded 

that the local decrease in thermal conductivity of the doped graphene is due to electron-phonon 

interactions. In future studies, we can decorate the graphene flake with elements like cobalt and 

palladium in which case we won’t have a weakly doped graphene anymore and the momentum 
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of the phonon is close to the momentum of the electron. By observing the thermal conductivity 

maps of graphene flake decorated by these elements we can then study their thermal properties.   

 In chapter 6 we studied the thermal property at the microscopic level. We drew out the 

mathematical framework for electron-phonon interaction in a graphene flake decorated by 

copper particles. In our study, we took the electrons to be nonrelativistic and we carried out our 

calculations in a two-dimensional framework. In future, more complicated research can be done 

by taking into account by taking electrons moving at high speeds and by assuming a three-

dimensional model and figuring out how adding an extra dimension influences the thermal 

conductivity.  
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Appendix I 

a) Symmetric temperature profile of the substrate  

Conducting a change in variables changing 2cb  , the integral in Eq. (2.57) would be: 
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To solve the symmetric temperature profile of the substrate we go to the complex space 

and draw a contour to find the poles necessary to solve the integral.  

At first, we study the temperature profile of a 2-dimensional substrate with no thickness. 

Then we go to the realistic model in hand were the substrate is 3-dimensional. Shrinking the 

thickness of the substrate to zero makes us have no component in the x  direction and Eq. (I.1) 

would be: 
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Taking the integral to the complex space and trying to solve it we have: 
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The pole would be at z = 0. We draw the following contour Figure I.1 to solve Eq. (I.3).   
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Figure I.1: The contour is drawn to solve Eq. (I.3). We start from A and go all the way to F 

in a counterclockwise direction. 

We start from A and go in a counterclockwise direction. The calculations along the contour are:  

  didzzBCDdcdzczAB ii ReRe,  ,  (I.4)                                                                                             
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Inserting these into the integral in Eq. (I.3) we arrive at: 
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where we have taken R and 0.  

Now we study the realistic case were we have a 3-dimensional thin substrate with the 

following condition: 
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Therefore the temperature profile in Eq. (I.1) would be: 
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If we put L=0 we get the same integral as in Eq. (I.2) for a 2-dimensional substrate. To solve the 

integral in Eq. (I.8) we go to the complex space as follow: 
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To solve the integral in the complex space we have to find the poles, therefore we have: 
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The poles in Eq. (I.10) depend on the width of the substrate L, the frequency of the 

chopper  which indicates the rate the pump beam illuminates the sample and the thermal 

diffusivity of the substrate itself Db. To solve the integral in Eq. (I.9) we draw the following 
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contour Figure I.2. From the four poles that we find in Eq. (I.10) the two positive poles would 

fall within the contour boundary. 

 

Figure I.2: The contour is drawn to solve Eq. (I.9). Two of the four poles fall within the 

contour boundary. 

Writing Eq. (I.9) with the given contour gives us: 
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By taking a large radius which approaches infinity R and by using the residue theorem we 

have:  
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This is the symmetric temperature profile of the substrate. 

b) Antisymmetric temperature profile of the substrate  

We write Eq. (2.67) as: 
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We have changed the variable b = c
2
. As we did for the symmetric temperature profile at first we 

study the temperature profile of a 2-dimensional substrate with no thickness. Then we go to the 

realistic model in hand were the substrate is 3-dimensional. Shrinking the thickness of the 

substrate to zero makes us have no component in the x  direction and Eq. (I.13) would be: 

0),,(  tyxTb .     (I.14) 

This is exactly what we expect since heat is being generated and extracted from the same surface 

leading the temperature profile to remain zero. 

Now solving for the realistic case where we have a 3-dimensional thin substrate with the 

following condition: 
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By this assumption the temperature profile is: 
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In order for us to solve this integral, we again go to the complex space and write the temperature 

profile as:  
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To solve the integral in the complex space we should first find the poles of the integral in Eq. 

(I.17). Finding the poles we have: 
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From Eq. (I.16) we see that the poles depend on the width of the substrate L, the frequency of the 

chopper  which indicates the rate the pump beam illuminates the sample and the thermal 

diffusivity of the sample itself Db. To solve the integral in Eq. (I.17) we draw the same contour 

as the previous case for finding the symmetric temperature profile Figure I.2. From the two poles 

that we find in Eq. (I.16) one of them would be within the contour that has been drawn. Writing 

Eq. (I.15) with the given contour gives us: 
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By taking a large radius which approaches infinity R and by using the residue theorem we 

have:  
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This is the antisymmetric temperature profile. 
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Appendix II 

The objective of this section is to demonstrate the genuineness of the amplitude and phase 

images measured using our experimental apparatus, and show they are originating from 

thermoreflectance oscillations at the air-sample interface, and not from scanning near-field 

artefacts, including periodic changes of the tip-surface distance due to the periodic thermal 

expansion of the sample.  

To this end, a set of negative test samples, consisting of thermally evaporated aluminum 

thin films, have been deposited and analyzed. These samples were designed as shown in Figure 

II.1, with a step between a large (several cm
2
) and 20-nm thick Al thin film, and an equally large, 

but thicker (D = 40 nm, 68 nm, or 80 nm), Al film on the right. Samples were prepared by 

thermal evaporation of Al pellets (K.J. Lesker) in a vacuum chamber integrated to a glovebox 

operating in a nitrogen atmosphere (Nexus II, Vacuum Atmospheres Co.) that is described 

elsewhere
1
. A uniform, the 20-nm film is initially grown on glass, and the growth rate is checked 

using a Sycom STM2 quartz crystal monitor. As soon as the desired thickness is reached, a part 

of the sample is masked, and the deposition continues on the unmasked side of the sample until 

the desired thickness D is reached. All samples were measured by NeSTRI, as described in the 

experimental section of the paper. The presence of a similar, 20-nm thick, region in all of the 

samples serves as a reference control for the NeSTRI amplitudes and ensures that measurements 

performed on different samples are comparable.   

Our goal is to demonstrate that all these samples produce NeSTRI images, with 

amplitudes that are proportional to the volumetric heat that is locally generated within each 

sample and phases that are independent of the sample thickness. Our negative test samples will 

ensure that the thermal properties obtained from NeSTRI images do not depend on the sample 

geometry, but only on the material properties of aluminum. In addition, these experiments are 

useful to rule out near-field optical artefacts due to periodic thermal dilatation of the samples at 

the same frequency of the pump beam pulses used for sample heating. If thermal dilatation could 

not be neglected, it would produce a shift z() of the sample surface that is proportional to the 

sample thickness D. A subsequent change of the tip-sample distance, z0 – z(), will then occur. 

Consequently, signal amplitudes due to thermal dilatation artefacts would be proportional to the 

film thickness: 
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           0 D.      (II.1) 

Conversely, in the case of a genuine NeSTRI signal, the equation of heat (Eq. 3.4) for a uniform 

thin film region becomes 

     cAl dT(t)/dt = H0 exp(it),         (II.2) 

where cAl [J/m
3
/K] is the volumetric specific heat of Al and H0 [W/m

3
], the heat generated per 

unit volume of the sample corresponds to the amount of light being absorbed by the entire cross 

section of an Al thin film at the pump-beam wavelength of 405 nm:   

H0 = (P0/D2)             
 

 
 = [P0/(AlD2)][1 exp(AlD)],               (II.3) 

Where P0 [in W/m
2
] is the photon flux of the pump beam, and Al = 1.5 10

8
 m

-1
 is the optical 

absorption coefficient of Al at 405 nm, the pump beam wavelength. As discussed in the text, a 

tentative uniform solution of the form  

(t) = -hT(t) = -hT0 exp[i(t0)] = 0 exp[i(t0)]                      (II.4) 

can be sought and replaced into Eq. II.2. In Eq. II.4, h is a proportionality coefficient (see 

Supplementary Information Section 1) and (t) is the oscillatory thermoreflectance signal of 

amplitude 0 and phase 0, caused by temperature oscillations of amplitude T0. By replacing 

eqs. II.3 and II.4 into Eq. II.2, we then obtain 

0 = hP0/(cAlAlD2)[1 exp(-AlD)] 

0 = -900 = const(D).                                                    (II.5) 

 Contrarily to Eq. II.1, Eq. II.5 indicates that genuine NeSTRI amplitude signals decrease 

at increasing thickness because of lower power density generated in thicker and more 

voluminous samples, which produce smaller temperature raises. This can be appreciated from 

II.1, which shows that the left (20-nm thick) side of the image of 0 exhibits a significantly 

higher amplitude of the right side (40-nm thick) of the image. Conversely, the image of 0 does 

not exhibit any significant difference or thickness dependence far away from the interface 

between the two thicknesses. Since Eq. II.5 indicates that 0 does not depend on the thermal 

conductivity k in a homogeneous and flat region, but only on the volumetric specific heat c, the 

information on k contained in 0(x, y), for values of x within a few thermal diffusion lengths in 

the proximity of an edge, are critical to determine k in uniform thin films by NeSTRI.           
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II.1. The geometry of negative test samples, with corresponding 405-nm SNOM images in 

transmittance () and reflectance (). AFM shows that images are taken at the edge between 

20-nm thick and 40-nm thick Al regions. The granular structures of aluminum present on 

both regions are not visible in the thermal images, of which the phase (0) becomes 

thickness-independent at ~30 m from the edge, while the amplitude (0) decreases with 

thickness accordingly to Eq. II.5. 

 

II.2. NeSTRI signal amplitude (0) as a function of Al thin film thickness (D). The blue 

line is a data fitting accordingly to Eq. II.5. The fact that 0 decreases at increasing D, as 

well as the good quality of the fit, are a strong indication of the genuineness of the NeSTRI 

signal, originated from thermoreflectance effects at the air-sample surface. Conversely, 

near-field optical artefacts would have led 0 to increase proportionally to the thin-film 

volume per unit surface area and, consequently, with D. 
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The findings presented in II.1 are quantified and further substantiated in II.2 that reports 

the NeSTRI signal amplitude as a function of Al thickness for the entire set of negative test 

samples. The blue line in II.1 is a data fitting accordingly to Eq. II.5. The fitting quality is 

remarkably good, which is an additional strong indication that the NeSTRI signal originates from 

thermoreflectance effects at the air-sample surface, and not from thermal expansion artefacts that 

would have led the amplitude of the signal to linearly increase with D. Finally, from II.1, it is 

apparent that the granular Al structures that can be observed in the AFM image are also 

reproduced in the reflection () and transmission () SNOM images, but do not significantly 

affect the NeSTRI images, neither in phase nor amplitude. We can thus infer that NeSTRI is free 

from nano-optical artefacts
2
 producing images that are mere optical readouts of the AFM 

topography. 
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