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Abstract 

This thesis details the process taken for the computational modelling of convective heat 

transfer in porous media with the objective of improving the accuracy of porous continuum 

models. CFD simulations were performed to predict convective heat transfer resulting from 

forced flow through highly conductive porous blocks.  For the pore-level predictions, an 

idealized geometric model for spherical-void-phase porous materials was used to generate 

several domains over a range of porosity and pore diameter typical of graphitic foams.  

Simulation on these domains was conducted using the commercial software ANSYS CFX. 

Similar simulations were conducted using an in-house conjugate domain solver wherein 

porous regions are modelled using a porous continuum approach.  These results were 

compared to the pore-level results and indicate that a modification to the conductivity of the 

solid phase of the porous material must be included to account for the tortuosity, or 

complexity of the solid structure. The tortuosity is shown to appear naturally in the derivation 

of the volume-averaged energy equation for the solid-phase constituent, and has not 

previously been considered when calculating the effective solid phase conductivity. The 

implementation of this modification resulted in a closer match of the heat transfer predicted 

by the in-house porous continuum model when compared to results generated by commercial 

CFD software. Subsequent simulations were performed to show that the tortuosity was 

purely a geometric function – depending only on the solid phase structure.  

 

  



 

ii 

 

Acknowledgments  

I thank my family for their unending love and encouragement.  

I would also like to thank my supervisor Prof. Anthony Straatman for his continuous 

guidance, support, and patience.  

To my colleagues in the Computational Fluid Dynamics Lab, I have greatly enjoyed the last 

two years working alongside you.  

 

 

  



 

iii 

 

Table of Contents 

Abstract ................................................................................................................................ i 

Acknowledgments............................................................................................................... ii 

List of Tables ..................................................................................................................... vi 

List of Figures ................................................................................................................... vii 

Nomenclature ...................................................................................................................... x 

Chapter 1 ............................................................................................................................. 1 

1 Background .................................................................................................................... 1 

1.1 Literature review ..................................................................................................... 3 

1.1.1 Closure parameters...................................................................................... 4 

1.1.2 Experimental studies ................................................................................... 5 

1.1.3 Geometry generation ................................................................................... 6 

1.1.4 Computational studies ............................................................................... 11 

1.2 Objectives/motivation ........................................................................................... 13 

Chapter 2 ........................................................................................................................... 15 

2 Volume averaging ........................................................................................................ 15 

2.1 Introduction ........................................................................................................... 15 

2.2 Mass and momentum equations ............................................................................ 17 

2.3 Energy equation .................................................................................................... 18 

2.1 Summary ............................................................................................................... 21 

Chapter 3 ........................................................................................................................... 22 

3 Preliminary simulations ............................................................................................... 22 

3.1 Introduction ........................................................................................................... 22 

3.2 Geometry............................................................................................................... 22 

3.3 Computational set up ............................................................................................ 24 

3.4 Grid independence ................................................................................................ 27 



 

iv 

 

3.5 Results ................................................................................................................... 28 

3.5.1 Momentum results .................................................................................... 29 

3.5.2 Thermal results.......................................................................................... 32 

3.5.3 Implementation of parameters into porous continuum model .................. 37 

3.6 Summary ............................................................................................................... 40 

Chapter 4 ........................................................................................................................... 41 

4 Conjugate simulations .................................................................................................. 41 

4.1 Introduction ........................................................................................................... 41 

4.2 Geometry............................................................................................................... 41 

4.3 Computational set up of pore-level model ............................................................ 42 

4.4 Grid independence ................................................................................................ 43 

4.5 Computational setup of volume averaged model.................................................. 44 

4.5.1 Grid independence in continuum model simulations................................ 45 

4.6 Results ................................................................................................................... 46 

4.6.1 Momentum results .................................................................................... 46 

4.6.2 Energy results............................................................................................ 46 

4.7 Full conjugate simulation with attached substrate ................................................ 50 

4.7.1 Results ....................................................................................................... 51 

4.8 Modification of conduction within solid matrix ................................................... 53 

4.9 Calculating tortuosity ............................................................................................ 54 

4.10 Implementation of tortuosity factor ...................................................................... 58 

4.11 Summary ............................................................................................................... 63 

Chapter 5 ........................................................................................................................... 64 

5 Summary and Future Work .......................................................................................... 64 

5.1 Research conclusions and contributions ............................................................... 65 

5.2 Future work ........................................................................................................... 65 



 

v 

 

6 References .................................................................................................................... 67 

Curriculum Vitae .............................................................................................................. 72 

 

 

  



 

vi 

 

List of Tables 

Table 3.1: Fluid properties of air and water used in pore-level simulations........................... 24 

Table 3.2: Summary of boundary conditions for isothermal simulation shown in Fig. 3.2 ... 26 

Table 3.3: Summary of measured quantities showing improved accuracy as a result of 

increasingly fine mesh used in isothermal simulations........................................................... 27 

Table 3.4: Summary of computed parameters ........................................................................ 28 

Table 3.5: Cf and K at different geometries ............................................................................ 32 

Table 3.6: Comparison of heat transfer in isothermal case between pore-level simulations and 

porous continuum simulations ................................................................................................ 38 

Table 4.1: Summary of boundary conditions for conjugate simulation shown in Fig. 4.1 ..... 43 

Table 4.2: Summary of measured quantities showing improved accuracy as a result of 

increasingly fine mesh used in conjugate simulations ............................................................ 44 

Table 4.3: Comparison of total heat transfer between pore level and porous continuum model 

using simplified geometry....................................................................................................... 54 

Table 4.4: Summary of computed tortuosity factor for different geometries ......................... 58 

 



 

vii 

 

List of Figures 

Figure 1.1: Photographs of (a) Scanning Electron Microscope (SEM) image showing the 

cross section of carbon foam, and (b) an aluminum foam consisting of interconnected 

ligaments (taken from [1]) ........................................................................................................ 1 

Figure 1.2: CAD model of unit cube model geometry used for CFD simulations of porous 

materials. ................................................................................................................................... 7 

Figure 1.3: Image showing modelled and actual Kelvin cell [32] used to calculate hydraulic 

and thermal properties............................................................................................................... 8 

Figure 1.4: CAD model of modified unit cell developed by Leong and Li [34] ...................... 8 

Figure 1.5: CAD model of random sphere carbon foam developed by Kirca et al. [35] .......... 9 

Figure 1.6: CAD model of periodic cubic REV developed by Chueh et al. [37] ................... 10 

Figure 1.7: CAD model of fully periodic REV developed by Dyck [38] ............................... 11 

Figure 2.1: Image showing fluid and solid volume fractions within an REV (image taken 

from [48]) ................................................................................................................................ 15 

Figure 3.1: Surfaces (highlighted green) where Inlet and Outlet boundary conditions were 

applied. This resulted in backflow, and so was not used in subsequent simulations. ............. 23 

Figure 3.2: CAD model of geometry used for preliminary isothermal simulations ............... 24 

Figure 3.3: Mesh used for preliminary isothermal simulations (Porosity 0.85 is shown) ...... 28 

Figure 3.4: Inlet and outlet surfaces of porous block .............................................................. 29 

Figure 3.5: Pressure drop across porous block as a function of inlet velocity. ....................... 30 

Figure 3.6: Velocity vector contours at Re 5, Porosity 0.75, Water, isothermal case, from y = 

0 plane ..................................................................................................................................... 31 



 

viii 

 

Figure 3.7: Temperature contours at Re 5, Porosity 0.75, Water, isothermal case, from y = 0 

plane ........................................................................................................................................ 33 

Figure 3.8: Outlet surface of computational domain over which bulk outlet temperature is 

found (note that the outlet is entirely a pure fluid region). ..................................................... 34 

Figure 3.9: Interstitial heat transfer coefficient computed for porosity 0.75 using water as the 

working fluid. .......................................................................................................................... 36 

Figure 3.10: Images showing difference between unit cube model and current geometric 

model produced by YADE...................................................................................................... 37 

Figure 3.11: Axial pressure drop for porosity 0.75, water, Re 10, isothermal case ................ 39 

Figure 3.12: Axial bulk temperature for porosity 0.75, water, Re 10 ..................................... 40 

Figure 4.1: CAD model of geometry used for conjugate simulations. Top shows solid and 

fluid geometry before mating. Bottom shows final geometry. ............................................... 42 

Figure 4.2: Mesh used in conjugate simulations (Porosity 0.85 is shown)............................. 44 

Figure 4.3: Mesh used in continuum model simulations ........................................................ 45 

Figure 4.4: Velocity vector contours obtained from conjugate simulation at Re 5, Porosity 

0.75, 400-micron diameter, and using water........................................................................... 46 

Figure 4.5: Temperature contours obtained from conjugate simulation at Re 5, Porosity 0.75, 

400-micron diameter, and using water.................................................................................... 47 

Figure 4.6: Plot showing comparisons of total heat transfer between pore – level simulation 

and porous continuum model. ................................................................................................. 48 

Figure 4.7: Temperature contours obtained from porous continuum model at Re 80, Porosity 

0.75, 400-micron diameter, and using water........................................................................... 49 

Figure 4.8: Temperature contours obtained from conjugate simulation at Re 80, Porosity 

0.75, 400-micron diameter, and using water........................................................................... 49 



 

ix 

 

Figure 4.9: CAD model of geometry used for full conjugate simulations with substrate ...... 51 

Figure 4.10: Comparison of temperature contours obtained from full conjugate simulation 

(top) and bottom heated conjugate simulation (bottom) at Re 20, Porosity 0.85, 400-micron 

diameter, and using water. ...................................................................................................... 52 

Figure 4.11: CAD model of simplified geometry used for conjugate simulation. The 

geometric properties (Asf and porosity) were preserved from previous porous geometries. .. 53 

Figure 4.12: Streamlines of flow around cylinders emphasizing tortuosity [55] ................... 55 

Figure 4.13: Cut section of solid phase structure showing conduction paths. This is analogous 

to the streamlines shown in Figure 4.12; instead of flow however, heat transfer is represented 

by the black lines. ................................................................................................................... 56 

Figure 4.14: Plot showing effects of varying solid phase conductivity on total heat transfer at 

porosity 0.85, 400 micron diameter and using water. ............................................................. 59 

Figure 4.15: Plot showing comparison of total heat transfer calculated using pore level CFD 

simulations and the porous continuum model (after implementing the tortuosity factor) at 

different porosities. ................................................................................................................. 60 

Figure 4.16: Image showing locations of lines along which average temperature is calculated

................................................................................................................................................. 61 

Figure 4.17: Plot showing comparisons between average fluid temperatures along Z axis 

computed by pore-level simulation and porous continuum model. ........................................ 62 

Figure 4.18: Plot showing comparisons between average solid temperatures along Z axis 

computed by pore-level simulation and porous continuum model. ........................................ 62 

 

  



 

x 

 

Nomenclature 

A area, m2 

Asf denotes surface of intersection between Vf and Vs 

Cf Forcheimer coeffiecient for porous medium 

Cp,f constant pressure specific heat capacity, J/kg ·K 

Cp,s specific heat capacity for a solid, J/kg ·K 

d pore diameter, m 

h heat transfer coefficient, W/m2·K 

hsf Interstitial heat transfer coefficient, W/m2·K 

I identity matrix 

kf fluid thermal conductivity, W/m·K 

ks solid thermal conductivity, W/m·K 

kse effective conductivity of solid phase, W/m·K 

kfe effective conductivity of fluid phase, W/m·K 

kdisp dispersion conductivity 

l length scale of averaging volume (Chapter 2), m 

L length scale of porous medium (Chapter 2), m 
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Chapter 1  

1 Background 

Porous materials have applications throughout a wide variety of engineering and science 

disciplines. Some examples include catalytic converters and packed bed reactors, as well 

as flow through soil. A porous material is essentially a two-phase structure – a solid 

phase, and a fluid phase. A wide range of materials fall under this definition. This can 

include anything from sponges, wood, or even bodily tissues.  

It consists of a solid microstructure, and a working fluid. Porous materials have seen 

increasing use in heat transfer applications due to the high surface area-to-volume ratio. 

This is the same reason fins are used in cooling applications as heat sinks, however the 

surface area of porous materials is often much greater. In this application, a cooling fluid 

is forced through the porous material (or fins), and draws heat away from the surface. 

Figure 1.1 shows close-up images of typical porous materials.  

   

Figure 1.1: Photographs of (a) Scanning Electron Microscope (SEM) image showing 

the cross section of carbon foam, and (b) an aluminum foam consisting of 

interconnected ligaments (taken from [1]) 
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There are many different shapes or structures when using porous materials. One such is 

reticulated structures, shown in Fig. 1.1(b).  Other examples include spherical – void 

phase, in which graphite is a commonly used material. This was developed by Oak Ridge 

National Laboratory, and have a much higher effective thermal conductivity than 

aluminum foams. This is due to two reasons: the material conductivity of graphite is 

higher than that of aluminum’s, and the spherical void phase structure results in a much 

higher surface area to volume ration when compared to the reticulated structure. The 

combination of these attributes make such materials an excellent choice for enhanced 

heat transfer applications such as heat sinks or heat exchangers. Straatman et al. 

[2,3,4,5,6] performed experiments using flow configurations such as parallel, impinging, 

and internal flow to evaluate the performance of graphite foams, which had the spherical 

void-phase structure. It was found that enhancements in heat transfer were significant 

when compared with aluminum foams, however the pressure drop is higher than that 

found when using aluminum or reticulated foams.  

Due to their applications in convective heat transfer, it follows that porous materials must 

be properly characterized so that engineers may design with them using the same 

principles as heat sinks. Before the design process, however, they must be modelled to 

predict performance. This can be done using pore level simulations. Pore level means that 

the full instantaneous Navier Stokes equations are solved for the entire flow and 

temperature field inside the porous structure. This presents some drawbacks – first is that 

it is very computationally expensive due to the complicated geometry of porous 

materials. Second, until recently there was no way to generate physically accurate porous 

geometry for CFD. 

To circumvent these issues, the Navier Stokes equations can be volume averaged. This 

process treats the porous medium as a continuum comprised of the solid and fluid phases. 

The mass and momentum equations treat the porous medium as a single continuum. The 

energy equation is slightly different. When local thermal non-equilibrium (LTNE) is 

assumed, the fluid and solid phase energy equations are treated separately – a separate 

energy equation is used for each. LTNE implies that there is a temperature difference 

between the two phases of the porous material. On the other hand, when assuming local 
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thermal equilibrium (meaning there is no temperature difference between the fluid and 

solid phases), the domain is treated as a single continuum, and assigns a single 

temperature for both the fluid and solid phases. In enhanced heat transfer applications, 

the conductivity ratio between the solid and fluid phase is quite high, and thus the 

assumption of local thermal equilibrium is invalid.  

Many codes and numerical algorithms have been developed to solve these volume-

averaged equations. Among these, a structured porous continuum code was developed by 

Betchen [7] (which will be referred to herein as the porous continuum model) using local 

thermal non-equilibrium in which the porous material is treated as a continuum. 

Calibration was required before the model could be used to accurately predict the heat 

transfer and flow fields, and was validated using graphite foams [5]. Correlations exist 

which calculate the thermophysical properties [8], however these were only applicable to 

the reticulated foams mentioned previously. Calibration must be performed using 

experimental results, or, as in the case of this work, pore level simulations.  

The methodology used in the porous continuum model gives very good results, as seen in 

the validation. However, despite calibration, there are still some cases where the errors 

grow unacceptably large – up to 50% when compared to results generated from 

commercial CFD software. If the model is to be used in the design process, the accuracy 

must be improved. This chapter will serve as an introduction and literature review in the 

topics of closure parameters, experimental studies, geometry generation, and 

computational studies of porous media. This will lay the groundwork for the material 

shown in the subsequent chapters.  

1.1 Literature review 

The following section will review the current literature as it relates to modelling transport 

in porous media, with specific focus on heat transfer applications and high-conductivity 

porous foams. It starts with an overview of the closure parameters that must be computed 

before solving the volume-averaged governing equations It will then move on to 

experiments performed on porous media, as that was the earliest method of studying such 
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materials. Geometry generation will then be examined. Finally, a review of 

computational studies will be presented. 

1.1.1 Closure parameters  

Porous materials have several parameters that describe them. When the governing 

equations are volume-averaged, closure models must be developed that relate the pore 

level physics to the volume-averaged level. This is because after applying the volume-

averaging operator, there are still variables that remain which depend on the local 

transport variables. Since the purpose of the volume-averaged equations is to solve for 

the bulk flow and thermal fields, these pore-level variables must be resolved to provide a 

closed set of equations which does not rely on the spatial deviations. This is generally 

done either heuristically, or using constitutive relations. Closure models have been 

developed for both the momentum equation by Whitaker [9] and the energy equation by 

Quintard et al. [10], which operates under local thermal non-equilibrium. It should be 

noted that while there are many studies focusing on closure for thermal equilibrium [11-

15], it is considered not applicable in the present work due to the large difference in 

conductivities between the solid phase and the working fluid and the large temperature 

differences that are often encountered in heat transfer applications.  

In the momentum equation, the pressure drop must be related to the bulk velocity.  One 

of the most basic models, Darcy’s law, shown in Eq. (1.1), is presented in [16]: 

−∇𝑝 =
𝜇

𝐾
〈𝐮〉 (1.1) 

In this equation, p is pressure, K is the permeability, and the average velocity vector is 

given by 〈𝐮〉. Unfortunately, Darcy’s law is only applicable to flows at very low 

Reynolds number – at higher Reynolds number, the linear relationship between pressure 

and velocity no longer holds. Darcy’s Law as it stands is, therefore, not practical for 

many flows encountered in engineering applications. To account for this, an additional 

term must be used. Ward [17] added a quadratic term which accounts for the inertial 

effects. The new expression is shown in Eq. (1.2). The CE term is referred to as the 
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Forcheimer coefficient. At low Reynolds numbers, the quadratic term is effectively zero, 

and can be neglected – reducing to the Darcy’s Law.  

−∇𝑝 =
𝜇

𝐾
〈𝐮〉 +

𝜌𝐶𝑓

√𝐾
〈𝐮〉〈𝐮〉 

(1.2) 

In the energy equation, there is convection at the interface between the solid and fluid 

phases of the porous material, with the heat transfer being driven by the temperature 

difference between the two phases. The interstitial heat transfer coefficient (denoted by 

the variable hsf) determines the level of heat transfer. All the parameters previously 

discussed can be determined experimentally, or, as in later cases, numerically.  

1.1.2 Experimental studies 

The earliest method of studying porous geometry was through experimental means. This 

was before the widespread use of CFD, as well as before porous geometry could easily be 

modelled. To do this, a physical representation of the porous material was obtained, and 

experiments would be carried out. Gallego and Klett [18] performed such experiments to 

evaluate heat transfer coefficients. Straatman et al. [19] determined hydraulic and heat 

transfer coefficients for four different graphitic foams, and have developed correlations 

for the interstitial heat transfer coefficient. The experiment measured the temperature 

difference across a heated foam block, and used the following expression for the Nusselt 

number: 

𝑁𝑢 =
𝑞

𝐴𝑒𝑓𝑓∆𝑇
 (1.3) 

Aeff is the effective area, and an estimate can be calculated using correlations. Fu et al. 

[20] correlated the interstitial heat transfer coefficients of cellular ceramics in the form of 

Nu = CRem. Another study by Kamiuto and Yee [21] compiled different studies [22,23] 

and found that a fairly accurate correlation exists when the strut diameter is used as a 

characteristic length in open cell foams. Ando et al [24] experimentally determined the hsf 

for ceramic foams. This method differs from that used by Straatman et al. – a “single 

blow method” was used instead. In this method, the transient temperature response is 
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measured. Hot air is passed through a porous block, and once steady state has been 

achieved, the heat supply to the air is suddenly cut off. This introduces a temperature 

difference, and the system becomes transient. The volume averaged energy equations 

(under thermal non-equilibrium) are then solved, and the hsf is adjusted so that the 

volume averaged results match the experiments. It is emphasized that the determination 

of hsf is extremely important, as it is the parameter which characterizes heat transfer, and 

accurate determinations must be made to ensure proper results.  

The Forcheimer coefficient and permeability has also been of interest. Jambhekar [25] 

uses experimental data to fit these coefficients. Different regression methods were used, 

depending on the desired accuracy. From performing both isothermal and non – 

isothermal experiments, it was found that the local thermal equilibrium assumption is not 

appropriate since it fails to match the non-isothermal experimental results.  Other studies 

include those done by Calmidi et al [26], which had experiments (as well as numerical 

simulations) performed on aluminum foams to study the effect of thermal dispersion. 

Results showed that dispersion is negligible when air is used as the working fluid, 

however its effects are much more significant when water is used instead.  

1.1.3 Geometry generation 

Pore level simulations are inherently difficult to conduct. Firstly, the geometry needed is 

difficult to generate. One method is to use reconstruction from Computer Tomography 

scans. A digital representation of the physical sample of interest is obtained and 

discretized, allowing simulations to be performed. Some notable examples include work 

done Haussener et al, in which hydraulic, thermal, and radiative transport properties were 

obtained for materials such as porous ceramics [27], reacting packed beds [28,29] and 

snow [30].  

Using 3D modelling software, many geometries are simply cylinders arranged in a 

periodic fashion, as the periodicity plays a significant role in simplifying the 

computational boundary conditions. The unit cube model (shown in Fig. 1.2) was then 

developed [31], allowing the porosity to be prescribed, while still retaining the 

periodicity.  
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Figure 1.2: CAD model of unit cube model geometry used for CFD simulations of 

porous materials. 

These are created by hollowing a single pore out of a cube until the desired porosity is 

achieved; the geometry is simple, which makes it easy to calculate parameters such as 

porosity and surface area. Yu et al. [31] used the unit-cube model to examine the 

hydraulic and thermal properties of spherical void phase porous media, but found that 

estimates of the permeability led to pressure drops that were unrealistically low. 

Boomsma & Poulikakos [32] proposed a different geometry – a tetrakaidekahedron shape 

(or the Kelvin cell). This Kelvin cell, shown in Fig. 1.3, was used to calculate hydraulic 

and thermal properties by authors Kumar et al. [33].  
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Figure 1.3: Image showing modelled and actual Kelvin cell [32] used to calculate 

hydraulic and thermal properties  

Another addition to the unit cube family was proposed by Leong and Li [34], in which 

spheres are subtracted from the corners of a cube, shown in Fig. 1.4. This was used to 

evaluate hydrodynamic and thermal properties of carbon foam.  

 

Figure 1.4: CAD model of modified unit cell developed by Leong and Li [34] 

There are many drawbacks to the unit cube model however, because its simplicity. 

Simply put – they are not physically realistic. The pores are equally sized, and the model 

is isotropic. Many attempts have been made to improve this. Kirca et al. [35] placed 
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random bubbles inside a cube, and modified the bubble radii, average bubble radius, and 

neighboring bubble interactions to obtain a desired porosity. The geometry, shown in Fig. 

1.5 was used to determine Young’s modulus and poisons ratio, but not heat transfer 

coefficients.  

 

Figure 1.5: CAD model of random sphere carbon foam developed by Kirca et al. 

[35]  

A random-generation was proposed by Wang & Pan [36], where open-cell foams are 

modelled by randomly generating points and then linking neighboring nodes using 

stochastic methods. The method was used to determine thermal conductivity. Notably, 

Chueh et al. [37] created cubic REVs (shown in Fig. 1.6) which were periodic in two 

directions. These were used, again to predict thermal conductivity. 
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Figure 1.6: CAD model of periodic cubic REV developed by Chueh et al. [37] 

In 2012, Dyck [38] used Discrete Element Modeling (DEM) to create a fully periodic, 

cubic domain, shown below in Fig. 1.7. The model uses a contact law based on bubble 

physics which handles the interaction and interference between spheres. The sphere 

diameters are random within a specified interval, and the volume is compressed to obtain 

a desired porosity. 
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Figure 1.7: CAD model of fully periodic REV developed by Dyck [38] 

This geometry was used to determine radiative transport properties in porous materials. 

As well, it was shown that this model was much more effective at predicting hydraulic 

and thermal properties than the unit cube model.  

1.1.4 Computational studies 

With the rise of CFD, along with the increased capabilities to reproduce geometry in 

CAD software, more numerical simulations are being performed to investigate the 

behavior and characterization of porous materials. Kopanidis et a. [39] used the Kelvin 

cell geometry to model conjugate heat transfe. Simulations involving both the fluid and 

solid phase were performed. The geometry was described with a 3D numerical model, 

and used a tetrahedral volume mesh for both phases. An in-house FORTRAN code was 

used to solve the Navier-Stokes and energy equations. Comparisons were made between 

the numerical results and experimental results, which showed good agreement in both 

flow fields and temperature fields. Unlike the present work, which will focus on 

spherical-void phase geometries; this study utilized a structure which was more ligament 

based. 
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Bianchi et al. [40] used a scale-resolving approach to investigate the heat transfer near the 

wall of sponges packed into a tubular reactor. CFD models based on X-ray computed 

tomography was utilized in different studies [41,42] to compute interstitial heat transfer 

coefficient and pressure drop values. A finite volume direct pore-level numerical 

simulation was used to solve for the instantaneous Navier-Stokes equations, and results 

were in good agreement with experimental results. Meinicke et al [43] also performed 

CFD modelling of heat transfer in solid sponges, using a scale – resolving technique, at a 

reasonable computational cost. The scale-resolved CFD calculations are applied only to 

representative elementary volumes within the porous material, rather than the whole 

porous domain. These pore level calculations are then coupled with the rest of the 

domain, which are modelled as a porous continuum. Bodla et al. [44] developed a 1D 

conduction model used to estimate the effective thermal conductivity of open-celled 

metal foams. An analogy between electrical and thermal conduction led to a new 

resistance model which could compute values for the effective thermal conductivity 

quickly. Karimian and Straatman [45] used direct simulations to model flow and heat 

transfer to gain insight into axial dispersion. Straatman et al. [46] performed the pore-

level simulations using the geometry proposed by Dyck and Straatman, which resulted in 

a simplified 1D model for heat transfer. Air was used as the working fluid, and the 1D 

model was based on the temperature profile equation for an extended surface. Results 

indicated a reasonable match between the 1D model and that predicted by commercial 

CFD, however at higher Reynolds numbers the prediction is off by 10%. It was possible 

that the back conduction along the axial direction is the reason for these errors.  

While the previous studies present good agreement between numerical results, they still 

require the instantaneous Navier-Stokes equations to be solved at the pore level. As a 

more time-efficient alternative to pore-level simulations, which are computationally 

expensive due to the complex geometries involved, the volume-averaged governing 

equations can be solved instead.  Volume-averaging is used to simplify the governing 

equations (a more in-depth analysis will be performed in Chapter 2). Before solving the 

volume-averaged equations, the closure parameters and the porous material properties 

must be computed.  Betchen et al. developed a 3D finite-volume code (the porous 

continuum model) that solves the volume-averaged transport equations [7] in the porous 
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regions of conjugate domains. The code was validated against standard problems such as 

the porous plug and the Beaver-Josephs problem [47] in terms of global parameters. 

DeGroot expanded the solver to include unstructured grids [48], and provided an in-depth 

analysis of the dispersion conductivity. In a work by Zhang et al [49], a comparison was 

made between volume-averaged and pore-scale simulations in terms of thermal radiation 

and natural convection. In this particular case, the volume-averaged model not only saves 

time, and also provided reasonable results when comparing against experimental results. 

Costa et al [50] employed a control-volume finite-element method to implement the 

stress jump condition at an interface between a porous material and a pure fluid region. 

The resulting implementation was tested with the Beavers Joseph problem [47] and 

matched well with analytical results. DeGroot et al. [51] performed a numerical study 

using the porous continuum model to investigate the forced convective heat transfer in 

heat sinks. Aluminum foam was placed between the fins of the heat sink to enhance heat 

transfer, and this effect was studied and compared to experimental results. It was found 

that the total heat transfer predicted by the model showed the correct trends, but did not 

entirely match the results obtained from experiments, which suggests there may still be 

deficiencies in the formulation of the porous continuum model.  

1.2 Objectives/motivation 

This thesis aims to reconcile the differences seen between the porous continuum model 

and the results seen in pore level CFD simulations. Pore level simulations will be 

conducted, and compared with results generated by the porous continuum model code 

written by Betchen et al. [7]. The pore level simulations will be conducted using the 

random geometry YADE model created by Dyck and Straatman [38]. Preliminary pore-

level simulations are performed to compute the closure parameters which will then be 

input to the porous continuum model. The momentum equation and mass equation use a 

form coefficient and permeability closure model. The energy equation requires the 

interstitial heat transfer coefficient, and the exposed surface area.  

The motivation of this thesis is to improve the accuracy of the porous continuum solver, 

allowing CFD simulations of the key thermofluid outcomes to be performed more 

efficiently. The overarching goal of this thesis will be to improve the capabilities of the 
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porous continuum model, and to show a validated method of calculating the proper 

parameters needed to characterize a porous structure. 
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Chapter 2  

2 Volume averaging 

2.1 Introduction 

This chapter will focus on the process of volume-averaging the governing equations. 

Volume-averaging can be thought of as analogous to Reynolds averaging. Rather than 

directly solving the Navier-Stokes equations for a porous material, the equations are 

instead averaged so that only the bulk – or volume-averaged – effects are predicted. It is 

assumed that the working fluid is Newtonian and incompressible, and that the porous 

material is isotropic (from the macroscopic level). After volume-averaging, the equations 

still have some remaining terms that involve the pore-level deviations in velocity, 

pressure and temperature. Closure models will be applied at that point which replace 

these pore-level variables with empirical parameters.  

 

Figure 2.1: Image showing fluid and solid volume fractions within an REV (image 

taken from [48]) 

A typical representative elementary volume (REV) is shown in Fig. 2.1, where 𝐿 is the 

length scale of the domain, 𝑙 is the length scale of the representative elementary volume, 

𝑉𝑝 is the volume of the domain, and 𝑉 is the averaging volume, or REV. As the name 

implies, the REV is the smallest volume, which is representative of the entire domain. 

The volume V must be large enough that the volume-average at a point is unaffected by 
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the choice of volume, yet small enough that the quantity (be it temperature, velocity, or 

pressure) is assumed constant throughout the averaging volume.  In practice, this volume 

is usually determined through progressively selecting smaller volumes until the previous 

criteria is met. For a more detailed description and illustration of the process, refer to 

[48]. The following mathematical definitions can then be presented, where Eq. (2.1) is 

the extrinsic or superficial average of a scalar quantity 𝜙, where 𝑚 denotes the phase 

over which the quantity is averaged over. The intrinsic average can similarly be defined 

in Eq. (2.2), and the two are related through Eq. (2.3).  

〈𝜙𝑚〉 ≝
1

𝑉
∫ 𝜙𝑚𝑑𝑉

𝑉𝑚

 
(2.1) 

〈𝜙𝑚〉𝑚 ≝
1

𝑉𝑚
∫ 𝜙𝑚𝑑𝑉

𝑉𝑚

 
(2.2) 

〈𝜙𝑚〉 = 𝜀〈𝜙𝑓〉𝑓 𝑖𝑓 𝑚 = 𝑓 ; (1 − 𝜀)〈𝜙𝑠〉𝑠 𝑖𝑓 𝑚 = 𝑠  (2.3) 

Another important definition to be used is the Spatial Averaging Theorem (SAT), shown 

in Eq. (2.4). This is used when the averaging is applied to derivatives – rather, what is 

needed is not the average of derivatives, but the derivative of averages.  

〈∇𝜙𝑚〉 = ∇〈𝜙𝑚〉 +
1

𝑉
∫ �̂�𝜙𝑚𝑛𝑑𝐴

𝐴𝑚𝑛

 
(2.4) 

Another important expression is required when dealing with the volume-average of 

products of variables. This is dealt with by Whitaker as a decomposition of the variable 

into an intrinsic volume-average and a pore-level spatial deviation, shown in Eq. (2.5). 

The volume-average of a product of variables is then defined in Eq. (2.6):  

𝜙𝑚 = 〈𝜙𝑚〉𝑚 + �̌�𝑚  (2.5) 

〈𝜙𝑚,1𝜙𝑚,2〉 =
1

𝜀𝑚
 〈𝜙𝑚,1〉〈𝜙𝑚,2〉 + 〈�̃�𝑚,1�̃�𝑚,2〉 

(2.6) 
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It is safe to assume that the volume-average of spatial deviations is zero [3], as well as 

assuming that volume-averaged quantities are constant within the averaging volume, 

which was one of the original requirements for the selection of the averaging volume. 

Using the presented definitions, the volume averaging process can be carried out on the 

mass, momentum, and energy equations. The following derivations have been carried out 

in the past [38,48], and can be examined in greater detail in those works.  

2.2 Mass and momentum equations 

The instantaneous (or pore level) mass and momentum equations (Eq. 2.7 and Eq. 2.8), 

and their volume averaged counterparts (Eq. 2.9 and Eq. 2.10), are presented below.  

∇ ∙ 𝐮 = 0  (2.7) 

𝜌𝑓 (
𝜕𝐮

𝜕𝑡
+ 𝐮 ∙ ∇𝐮) = −∇𝑝 + 𝜇𝑓∇2𝐮 

(2.8) 

∇ ∙ 〈𝐮〉 = 0 (2.9) 

𝜌𝑓 (
𝜕〈𝐮〉

𝜕𝑡
+

〈𝐮〉

𝜀
∙ ∇〈𝐮〉)

= −𝜀∇〈𝑝〉𝑓 + 𝜇𝑓∇2〈𝐮〉

+
1

𝑉
∫(−�̃�𝐧𝑓𝑠 + 𝜇𝑓∇�̃� ∙ 𝐧𝑓𝑠)𝑑𝐴 − 𝜌𝑓∇ ∙ 〈�̃��̃�〉

𝐴𝑓𝑠

 

 

(2.10) 

The momentum equation presents a closure problem – the pore level pressure and 

velocity terms are still present. The purpose of the volume – averaged equations is to 

solve for the bulk flow and thermal fields. As such, the pore level pressure and velocity 

terms must be resolved in such a way that the final set of equations no longer depends on 

the pore level variables. One way in which this is dealt (and which will be used in this 

thesis), is replacing these terms with an empirical Darcy coefficient (K) and Forcheimer 

constant (Cf), terms which arise from the extended Darcy equation. This is the approach 

used by Vafai and Tien [1]. This reduces the momentum equation to the form shown 

below. 
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𝜌𝑓 (
𝜕〈𝐮〉

𝜕𝑡
+

〈𝐮〉

𝜀
∙ ∇〈𝐮〉) = −𝜀∇〈𝑝〉𝑓 + 𝜇𝑓∇2〈𝐮〉 −

𝜀𝜇𝑓

𝐾
〈𝐮〉 −

𝜀𝜌𝑓𝐶𝑓

√𝐾
|〈𝐮〉|〈𝐮〉  

(2.11) 

Here the permeability K and the Forcheimer coefficient Cf are introduced. These 

parameters are related to the pressure drop through the equation shown below, as 

developed by Ward [17].   

−∇〈𝑝〉𝑓 =
𝜇𝑓

𝐾
〈𝐮〉 −

𝜌𝑓𝐶𝑓

√𝐾
|〈𝐮〉|〈𝐮〉 

(2.12) 

The momentum and mass equations have now been volume-averaged, and with the 

specification of K and Cf, have no specific dependency on the pore-level physics.  

2.3 Energy equation 

The fluid and solid phase energy equations are shown below. 

𝜌𝑓𝐶𝑝,𝑓 (
𝜕𝑇𝑓

𝜕𝑡
+ 𝐮 ∙ ∇𝑇𝑓) = 𝑘𝑓∇2𝑇𝑓 

(2.13) 

𝜌𝑠𝐶𝑝,𝑠

𝜕𝑇𝑠

𝜕𝑡
= 𝑘𝑠∇2𝑇𝑠 

(2.14) 

After volume averaging, the equations become: 

𝜌𝑓𝐶𝑝,𝑓 (
𝜕〈𝑇𝑓〉𝑓

𝜕𝑡
+ 〈𝐮〉 ∙ ∇〈𝑇𝑓〉𝑓)

= 𝑘𝑓𝛻2〈𝑇𝑓〉𝑓 + 𝛻 ∙ ( 
1

𝑉
∫ 𝑘𝑓�̃�𝑓𝐧𝑓𝑠𝑑𝐴 

𝐴𝑓𝑠

)

+
1

𝑉
 ∫ 𝑘𝑓𝛻�̃�𝑓 ∙ 𝐧𝑓𝑠𝑑𝐴

𝐴𝑠𝑓

− 𝜀𝜌𝑓𝐶𝑝,𝑓𝛻 ∙ 〈�̃��̃�𝑓〉𝑓        

 

(2.15) 
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(1 − 𝜀)𝜌𝑠𝐶𝑝,𝑠

𝜕〈𝑇𝑠〉𝑠

𝜕𝑡

= (1 − 𝜀)𝑘𝑠𝛻2〈𝑇𝑠〉𝑠 + 𝛻 ∙ ( 
1

𝑉
∫ 𝑘𝑠�̃�𝑠𝐧𝑓𝑠𝑑𝐴 

𝐴𝑓𝑠

)

+
1

𝑉
 ∫ 𝑘𝑠𝛻�̃�𝑠 ∙ 𝐧𝑓𝑠𝑑𝐴

𝐴𝑠𝑓

 

 

(2.16) 

It should be noted that local non-thermal equilibrium is assumed – that is, there a distinct 

temperature for both the fluid and the solid phase, rather than one uniform average 

temperature. The pore level temperature deviations present must be dealt with. The last 

term on the RHS of the energy equation governs the heat transfer between the solid and 

fluid phases. This is usually modeled using Newton’s Law of cooling. hsf is the interstitial 

heat transfer coefficient, and Asf is the exposed surface area over which heat transfer 

occurs. 

1

𝑉
 ∫ 𝑘𝑓𝛻�̃�𝑓 ∙ 𝐧𝑓𝑠𝑑𝐴

𝐴𝑠𝑓

= −ℎ𝑠𝑓𝐴𝑠𝑓(〈𝑇𝑓〉𝑓 − 〈𝑇𝑠〉𝑠) 
(2.17) 

1

𝑉
 ∫ 𝑘𝑠𝛻�̃�𝑠 ∙ 𝐧𝑓𝑠𝑑𝐴 = −ℎ𝑠𝑓𝐴𝑠𝑓(〈𝑇𝑠〉𝑠 − 〈𝑇𝑓〉𝑓)

𝐴𝑠𝑓

 
(2.18) 

The 2nd last term is referred to as the Tortuosity term. Quintard et al. developed a two-

equation model [2], which when applied gives the following: 

𝑘𝑠  
1

𝑉
∫ 𝐧𝑓𝑠�̃�𝑠𝑑𝐴 = 𝑘𝑠

1

𝑉
∫ 𝐧𝑠𝑓𝐛𝐬 ∙ ∇〈𝑇𝑠〉𝑠𝑑𝐴

𝐴𝑠𝑓𝐴𝑓𝑠

= ∇〈𝑇𝑠〉𝑠 ∙ 𝑘𝑠

1

𝑉
∫ 𝐧𝑠𝑓𝐛𝐬𝑑𝐴

𝐴𝑠𝑓

  

 

(2.19) 

Inserting this back into the energy equation yields: 
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(1 − 𝜀)𝜌𝑠𝐶𝑝,𝑠

𝜕〈𝑇𝑠〉𝑠

𝜕𝑡

= ∇ ∙ ((1 − 𝜀)𝑘𝑠𝐈 + 𝑘𝑠

1

𝑉
∫ 𝐧𝑠𝑓𝐛𝐬𝑑𝐴

𝐴𝑠𝑓

) ∙ ∇〈𝑇𝑠〉𝑠

− ℎ𝑠𝑓𝐴𝑠𝑓(〈𝑇𝑠〉𝑠 − 〈𝑇𝑓〉𝑓) 

 

(2.20) 

The bracketed terms on the RHS of the equation is grouped together into a single quantity 

– the conductivity tensor: 

𝐊𝑠𝑒 = (1 − 𝜀)𝑘𝑠𝐈 + 𝑘𝑠

1

𝑉
∫ 𝐧𝑠𝑓𝐛𝐬𝑑𝐴

𝐴𝑠𝑓

 
(2.21) 

Since an isotropic medium is assumed, this tensor reduces to a diagonal matrix, in which 

the effective thermal conductivity remains. This conductivity is of interest in this work. It 

consists of three parts – the conductivity of the material, the conductivity due to the 

effects of dispersion, and the conductivity due to the effects of tortuosity. The effective 

conductivity can then be written as: 

𝑘𝑠𝑒 =
𝑘𝑠

𝜏
∗ (1 − 𝜀) + 𝑘𝑑𝑖𝑠𝑝 

(2.22) 

The tortuosity τ is defined as the length of a particle path, over the distance between the 

two end points, and will be the focus of a subsequent chapter. As such, it will always be 

greater than 1. This factor, and its effects on heat transfer, will be the main focus in later 

chapters. The volume averaged energy equation for the solid phase is therefore: 

(1 − 𝜀)𝜌𝑠𝐶𝑝,𝑠

𝜕〈𝑇𝑠〉𝑠

𝜕𝑡
= 𝑘𝑠𝑒∇2〈𝑇𝑠〉𝑠 − ℎ𝑠𝑓𝐴𝑠𝑓(〈𝑇𝑠〉𝑠 − 〈𝑇𝑓〉𝑓) 

(2.23) 
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The fluid energy equation is closed in the exact same manner, with the addition of a 

convection term. Applying the theorems discussed previously, the fluid phase energy 

equation is finally given as:  

𝜌𝑓𝐶𝑝,𝑓 (
𝜕〈𝑇𝑓〉𝑓

𝜕𝑡
+ 〈𝐮〉 ∙ ∇〈𝑇𝑓〉𝑓) = 𝑘𝑓𝛻2〈𝑇𝑓〉𝑓 − ℎ𝑠𝑓𝐴𝑠𝑓(〈𝑇𝑓〉𝑓 − 〈𝑇𝑠〉𝑠) 

(2.24) 

2.1 Summary 

In this chapter the theory behind volume averaging is explained, and the volume averaged 

governing equations are presented. The pore-level variables that remain after the volume 

averaging process are resolved using closure models which introduce parameters relating 

the pore-level physics to the volume-averaged level. Local thermal non-equilibrium is 

assumed in the porous region, resulting in two separate energy equations for the solid and 

fluid constituents. After computing the values for the closure parameters, these equations 

will be solved using an in-house finite volume code. 
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Chapter 3  

3 Preliminary simulations 

3.1 Introduction 

Recall that the volume-averaged equations require closure parameters to be solved. These 

parameters are: the Forcheimer coefficient (Cf), the permeability (K), and the interstitial 

heat transfer coefficient (hsf). Rather than performing experiments to obtain these 

parameters, the geometry produced by the YADE model enables accurate pore level 

simulations to be performed from which the parameters can be evaluated. This chapter 

will detail the preliminary simulations – the sole purpose being to compute the closure 

parameters required for the volume averaged 3D code. The pore level simulations are 

conducted using ANSYS CFX, while the volume-averaged simulations employ an in-

house, structured finite volume solver (the porous continuum model). These simulations 

were performed for each different geometry (blocks with different porosity). When a 

different fluid is used, all three parameters must be recalculated. However, when the 

conductivity of the porous block is changed, these parameters stay the same. This is 

because the heat transfer coefficient is not dependent on the heating conditions (i.e. the 

conductivities and temperature differences) since the Nusselt number is generally only a 

function of the Reynolds number and Prandtl number. Once these parameters are 

established, they can be input into the volume-averaged code. The simulations were run 

over the range of Reynolds number 1 to 200 (10 cases within this range). This was 

considered a large enough range in the laminar regime – beyond this the flow regime 

transitions to turbulence.   A REV is modelled – which means that the volume is small 

enough such that the solid phase temperature can be set to a constant temperature, as well 

as a uniform mass flow rate at the inlet.  

3.2 Geometry 

The geometry used for the isothermal case is shown on the following page. A single 

porous block is used to model the REV. Previous work [38] has established this to be an 

accurate representation. The pore-level simulations were carried out on geometric models 

generated by the YADE code [38]. Geometric models were generated for a pore diameter 
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of 400 microns and porosities 0.75, 0.8 and 0.85. The pore diameter and porosities were 

chosen due to being the standard size ranges that porous materials are used for in heat 

transfer applications.The geometric models were converted to CAD models in 

SolidWorks and then imported into ANSYS Workbench and subsequently meshed using 

the ANSYS Meshing tool. A more detailed discussion of the grid and independence study 

is presented in a subsequent section.  

An inlet and outlet length of 1mm was used – both to avoid having to deal with backflow 

in the boundary conditions. Due to the geometry being considered as a REV, the 

definition implies that a uniform mass flow rate across the volume is realistic and 

expected. It was found that if a uniform mass flow is specified directly at the inlet face of 

the porous block (without the 1mm lead up), the solver experiences problems with 

backflow at this surface, and will not converge. The same issue is experienced if an outlet 

condition is specified directly at the outlet surface of the porous block. Figure 3.1 shows 

this in picture format – the green surfaces are the inlet and outlet, and the flow is in the 

direction of the arrows shown. The sides not highlighted were specified as translationally 

periodic with their paired face.  

 

Figure 3.1: Surfaces (highlighted green) where Inlet and Outlet boundary conditions 

were applied. This resulted in backflow, and so was not used in subsequent 

simulations. 
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This geometry is considered an REV, as defined earlier. Because of the definition of an 

REV, it is reasonable to impose an isothermal condition in the solid phase, and 

subsequently the interior of the solid phase does not require meshing. The CAD model of 

the geometry used for meshing and conducting the simulations is shown in Fig. 3.2. The 

porous block itself is a cube, and has an edge length of roughly 1.5mm, depending on the 

porosity specified during the geometry generation. The inlet and outlet length is 1mm as 

mentioned previously. 100 spheres were used in the generation of the geometry (the 

sphere in spherical void-phase), as this was found in previous work to be a sufficient 

number of spheres needed to accurately represent porous geometry [38]. 

 

Figure 3.2: CAD model of geometry used for preliminary isothermal simulations 

3.3 Computational set up  

Two different working fluids were used in the simulations: air, and water. Their 

properties at 25ºC are shown below in Table 3.1. 

Table 3.1: Fluid properties of air and water used in pore-level simulations. 

 Air Water 

Density [kg/m3] 1.185 997.0 

Dynamic Viscosity [kg/m s] 1.831E-5 8.899E-4 

CP [J/kg K] 1004.4 4181.7 

Conductivity [W/m K] 0.0261 0.6069 
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ANSYS CFX was used as the CFD package due to being a proven solver. The 2nd order 

high-resolution advection scheme was used due to its high accuracy. The problem is 

steady-state, however the CFX solver still employs “a false timestep as a means of under-

relaxing the equations as they iterate towards the final solution” [52]. This improves the 

stability of the numerical solution, and allows for easier convergence. This timescale was 

controlled using the “Auto Timescale” option, which provides a conservative estimate. 

Because the simulations did not take very long to run (less than 1 hour), the auto 

timescale was preferred over a more aggressive approach, which would have decreased 

convergence time at the expense of numerical stability.  

Two quantities were monitored to establish convergence: the pressure drop across the 

porous block, and the bulk temperature at the outlet. Recall that the purpose of these 

simulations was to find Cf, K, and hsf. Cf and K are computed using the pressure drop, 

and hsf is computed using the bulk outlet temperature. Therefore, once these two 

quantities are unchanging to within an acceptable tolerance, the simulation is considered 

resolved for this purpose. This was useful in deciding on the residual target. The root 

mean square residual was monitored, since it is the industry standard. It was found that 

by the time the residuals reached 1E-4, the two quantities of interest had stopped 

changing to within 2%. To decrease the error even further, the computational time 

required grows exponentially. For the purposes of these preliminary simulations, which 

was to compute the closure parameters, an accuracy of 2% was deemed adequate. The 

length of time taken to decrease this error percent is not worth the extra accuracy, which 

is why 2% was chosen. Therefore, 1E-4 was chosen as the residual target for all 

simulations.  

The solid phase is modelled as isothermal. Therefore, the wall boundaries where the fluid 

phase contacts the solid phase is specified as 318K, and the bulk inlet temperature is 

298K. The temperature difference was chosen for two reasons. From the CFD 

simulations mentioned previously in which a 1D conduction model is proposed [46], the 

temperature difference was the same. The same boundary conditions were used in the 

present work to ensure the computational set up was correct and that the simulation was 

run in the correct manner.  
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A second reason is that the temperature difference between the inlet temperature and wall 

temperature does not affect the interstitial heat transfer coefficient. While it is true that 

the temperature is used to compute the coefficient, it does not depend directly on the 

heating conditions. It is important to note that the heat transfer coefficient is purely a 

function of the local Reynolds and Prandtl number.  

The energy increase due to viscous dissipation was neglected, and the boundary 

conditions are listed in Table 3.2. 

Table 3.2: Summary of boundary conditions for isothermal simulation shown in Fig. 

3.2 

Surface Boundary (no slip wall) and specified temperature of 318 [K] 

Inlet Specified mass flow and temperature of 298 [K] 

Outlet 0 [Pa gauge] 

Sides Translational periodicity 

Again, it is emphasized that the geometry being modeled is considered to be a REV. It 

follows that the geometry is sufficiently small that an isothermal condition in the solid 

phase is a reasonable assumption. That is also the reasoning for the periodic boundary 

condition – the REV is considered small enough that the bulk axial velocity is uniform 

and that the REV is spatially periodic. The hsf for a given working fluid is purely a 

function of the Reynolds number for small temperature differences between the solid 

phase and fluid phase (20 [K] in this case). Thus, if a correlation is found for hsf and 

Reynolds number, this can be input into the porous continuum model since a conjugate 

non-isothermal simulation will have varying Reynolds numbers throughout the domain 

(particularly in the boundary layer). A correlation would thus specify a different heat 

transfer coefficient at each volume, depending on the local Reynolds number. A total of 

30 cases were run for each working fluid – 3 different porosities at 10 different Re each.  
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3.4 Grid independence 

To ensure the solutions were independent of the grid density, grid-convergence 

simulations were performed. This involved starting with a coarse grid and then doubling 

the mesh size until a certain measured property stayed within some predetermined 

tolerance. The two measured quantities were the pressure drop across the porous block, 

and the bulk outlet temperature. These parameters were measured due to their physical 

relevance - as stated previously, the closure parameters depend only on these quantities, 

and so once they are unchanging, the simulation is considered grid independent for this 

purpose. Table 3.3 below shows the quantities computed using 3 different meshes. It is 

standard practice to use the “worst case scenario” when running a grid independence 

study – that is, the study is run using the case that would have the most difficulty 

converging. Following this, the grid independence study was performed using a porosity 

of 0.75, pore diameter 400 microns, water, and Re 200. 

Table 3.3: Summary of measured quantities showing improved accuracy as a result 

of increasingly fine mesh used in isothermal simulations 

 Elements Pressure drop [Pa] |% diff| Q [W] |% diff| 

Mesh 1 1750000 20036.75  18.57  

Mesh 2 3500000 17824.34 12.41 22.13 16.09 

Mesh 3 7000000 17097.78 4.25 21.27 4.04 

The solution remains within 5% of the coarser mesh, and so is considered converged. The 

final mesh has ~630000 nodes and ~3500000 elements. Meshing was performed using 

ANSYS mesher and tetrahedra were chosen as the element shape due to being the 

standard in computational fluid dynamics for irregular geometries. Figure 3.3 shows the 

mesh used for a sample geometry. 5% was chosen as the criteria for grid convergence 

since a mesh doubled in size of mesh 3 is much more computationally expensive, and the 

extra accuracy gained is not worth the computational cost due to the large number of 

simulations that must be performed.  
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Figure 3.3: Mesh used for preliminary isothermal simulations (Porosity 0.85 is 

shown) 

3.5 Results  

Table 3.4 below shows the results and computed parameters for a single geometry and 

working fluid – in this case, porosity 0.85, pore diameter 400 microns, and water as the 

fluid. The following sections will detail how these parameters were computed.  

Table 3.4: Summary of computed parameters 

 

Re Inlet Velocity [m/s]Mass flow rate [kg/s]Pin [Pa] Pout [Pa] Delta P dP/dX Tout [K] hsf 

1 2.23E-03 5.30E-06 2.03E+00 9.24E-03 2.02E+00 1.31E+03 3.18E+02 7.36E+03

5 1.12E-02 2.65E-05 1.06E+01 -1.91E-03 1.06E+01 6.90E+03 3.17E+02 1.14E+04

10 2.23E-02 5.30E-05 2.31E+01 -1.39E-01 2.32E+01 1.51E+04 3.15E+02 1.37E+04

15 3.35E-02 7.96E-05 3.79E+01 -4.27E-01 3.83E+01 2.49E+04 3.13E+02 1.54E+04

20 4.46E-02 1.06E-04 5.52E+01 -8.78E-01 5.60E+01 3.64E+04 3.11E+02 1.67E+04

40 8.93E-02 2.12E-04 1.51E+02 -4.33E+00 1.55E+02 1.01E+05 3.08E+02 2.00E+04

80 1.79E-01 4.24E-04 4.77E+02 -1.88E+01 4.96E+02 3.22E+05 3.05E+02 2.39E+04

120 2.68E-01 6.36E-04 9.90E+02 -4.22E+01 1.03E+03 6.71E+05 3.03E+02 2.63E+04

160 3.57E-01 8.49E-04 1.69E+03 -7.58E+01 1.77E+03 1.15E+06 3.02E+02 2.78E+04

200 4.46E-01 1.06E-03 2.60E+03 -1.10E+02 2.71E+03 1.76E+06 3.02E+02 2.87E+04



29 

 

3.5.1 Momentum results  

The Forcheimer constant and permeability can be found using the pressure drop across 

the porous block. The coefficients K and Cf are determined by the expression shown in 

equation (3.1): 

∆𝑃

𝐿
=

𝜇

𝐾
𝑈 +

𝜌𝐶𝑓

√𝐾
𝑈2 

(3.1) 

This is the extended Darcy Law, where the second term on the RHS accounts for the 

inertial effects. The L in the equation refers to the lateral width of the porous block, since 

∆P is the pressure drop across the block. K and Cf are used as closure parameters in the 

volume averaged equations, and are essential to modeling an accurate pressure drop. The 

area-weighted average pressure is computed at both the inlet and outlet of the porous 

block, shown as surfaces in Fig. 3.4.  

 

Figure 3.4: Inlet and outlet surfaces of porous block 

Eq. (3.2) shows the expression used to compute the area-weighted average. At each node, 

the quantity (pressure in this case) is multiplied by the cross-sectional area of that 

volume. The entire surface is summed, and then divided by the total area. The area 
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weighted average was used for pressure since it made the most physical sense – pressure 

multiplied by area is force, and there must be a force balance throughout the domain.   

1

𝐴
∫ 𝜑𝑑𝐴 =

1

𝐴
∑ 𝜑𝑖|𝐴𝑖|

𝑛

𝑖=1

 
(3.2) 

Once the pressures are computed, the quantity 𝑑𝑃/𝑑𝑥 (or ∆𝑃/𝐿) can be plotted for all 

cases considered. This is shown in Fig. 3.5, where ∆𝑃/𝐿 is a function of the inlet 

velocity.  

 

Figure 3.5: Pressure drop across porous block as a function of inlet velocity. 

At low values of U, the second term on the RHS of Eq. (3.1) is negligible, and there is a 

linear relationship between the inlet velocity and the pressure drop. However, as U 

increases, this term becomes more significant, and the relationship blends into a parabola. 

One method of finding the two parameters is to use the first few data points in the linear 

range to compute the permeability first, then use the remaining data points to compute the 

Forcheimer coefficient. Another more streamlined process simply fits a quadratic curve 

to all data points throughout the range of Reynolds numbers, and from there the quadratic 
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equation can be used to calculate the permeability K and the Forcheimer coefficient Cf. 

This was the approach taken by Dyck [38], and was shown to be equally valid. Table 3.5 

shows the computed K and Cf for at different geometries and working fluids. The 

velocity vector contours taken from a sample simulation at the y = 0 plane are also shown 

in Fig. 3.6. The effects of the void phase in the porous structure can clearly be seen even 

at low Reynolds number – the velocity field leads to greatly enhanced mixing when 

compared to a common structure such as fins or cylinders in usual heat sinks. It should be 

noted that there are also dead areas – area in which the pores are not open, and the fluid 

does not flow through, indicated by a darker shade of blue in the contour plot. This is a 

result of the geometry generation process. In real life application, the forming processes 

sometimes create these dead areas as well.  

 

Figure 3.6: Velocity vector contours at Re 5, Porosity 0.75, Water, isothermal case, 

from y = 0 plane 
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Table 3.5: Cf and K at different geometries 

Diameter Porosity Fluid K Cf 

400 0.75 Air 1.09E-09 0.46 

400 0.8 Air 1.44E-09 0.41 

400 0.85 Air 2.62E-09 0.40 

400 0.75 Water 7.00E-10 1.08 

400 0.8 Water 1.09E-09 0.47 

400 0.85 Water 1.69E-09 0.26 

800 0.7 Water 2.67E-09 1.42 

800 0.8 Water 5.00E-09 0.40 

800 0.85 Water 7.96E-09 0.24 

3.5.2 Thermal results  

Figure 3.7 shows the temperature contours at Re = 5 taken from the y = 0 plane. The fluid 

quickly approaches the solid phase temperature, even at high flow. Recall that the 

isothermal case is treated as an REV. Since the ∆𝑇 between the solid and fluid phase is 

small enough that the fluid properties remain constant, hsf is not a function of 

temperature, and is a function of the local Reynolds number only (at a given working 

fluid). This is the reasoning for finding the interstitial heat transfer coefficient at different 

Reynolds numbers – once a function is found that relates the coefficient to the local 

Reynolds number, this function can be used in fully conjugate simulations where the 

velocity is not uniform as it is in the isothermal case (due to the periodic boundary 

conditions). 
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Figure 3.7: Temperature contours at Re 5, Porosity 0.75, Water, isothermal case, 

from y = 0 plane 

The interstitial heat transfer coefficient is found by using an equation analogous to heat 

transfer in heated pipe flow. For a pipe with a constant wall temperature, the convective 

heat transfer is calculated using one of two expressions below: 

𝑄𝑐𝑜𝑛𝑣 = �̇�𝐶𝑝(∆𝑇𝑖 − ∆𝑇𝑜); 𝑤ℎ𝑒𝑟𝑒 ∆𝑇𝑚 = 𝑇𝑤 − 𝑇𝑚  (3.3) 

𝑄𝑐𝑜𝑛𝑣 = ℎ𝐴𝑠∆𝑇𝐿𝑀 (3.4) 

𝑙𝑜𝑔 𝑚𝑒𝑎𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∆𝑇𝐿𝑀 =  
∆𝑇𝑜 − ∆𝑇𝑖

ln (
∆𝑇𝑜

∆𝑇𝑖
)

 
(3.5) 

By equating the two heat transfer expressions, the following equation arises to calculate 

the heat transfer coefficient: 



34 

 

ℎ =
−�̇�𝐶𝑝 ln (

∆𝑇𝑜

∆𝑇𝑖
)

𝐴𝑠
=  

−�̇�𝐶𝑝 ln (
𝑇𝑤 − 𝑇𝑜

𝑇𝑤 − 𝑇𝑖
)

𝐴𝑠
 

(3.6) 

This equation can be readily applied to porous media.  In the case of an isothermal solid 

region, the constant wall temperature is the uniform solid temperature. Instead of As, the 

surface area of a pipe, the surface area of the porous geometry is used instead, Asf, which 

can easily be found in SolidWorks. Tw is the uniform temperature of the solid (the wall 

temperature 318 [K]), Ti is the specified inlet temperature (298 [K]), and To is the bulk 

outlet temperature. The interstitial heat transfer coefficient in a porous material with 

constant solid temperature is therefore: 

ℎ𝑠𝑓 =
−�̇�𝐶𝑝 ln (

𝑇𝑤 − 𝑇𝑜

𝑇𝑤 − 𝑇𝑖
)

𝐴𝑠𝑓
 

(3.7) 

To find the bulk outlet temperature To, a mass weighted average of the temperature is 

computed at the outlet surface (shown in Fig. 3.8).  

 

Figure 3.8: Outlet surface of computational domain over which bulk outlet 

temperature is found (note that the outlet is entirely a pure fluid region). 
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The equation CFX used to calculate the mass-weighted average is shown in Eq. (3.8). 

Similar to the area weighted average, at each node the quantity (temperature) is 

multiplied by the mass flow rate over the boundary face. The entire surface is summed in 

this fashion, then divided by the total mass flow rate through the surface. The mass 

weighted average was used instead of the area weighted average because of its physical 

relevance – energy requires mass, and whenever an energy balance is performed, the 

temperature is always multiplied by the mass flow rate.  

∫ 𝜑𝜌|�⃑� ∙ 𝑑𝐴|

∫ 𝜌|�⃑� ∙ 𝑑𝐴|
=

∑ 𝜑𝑖𝜌𝑖|�⃑� ∙ 𝐴|𝑛
𝑖=1

∑ 𝜌𝑖|�⃑� ∙ 𝐴|𝑛
𝑖=1

 
(3.8) 

Once To is found, the hsf at each Reynolds number can be computed. Using the pore 

diameter as the characteristic length, the Reynolds number is calculated as: 

𝑅𝑒𝑑 =
𝜌𝑈𝑑

𝜇
 

(3.9) 

Fig. 3.9 shows the variation of hsf vs. Reynolds number for porosity 0.75, and water. The 

data points can be fit using a simple power law. This is the same form that Straatman et 

al. [19] used, in which the Nusselt number can be correlated as a function in the 

form 𝑁𝑢 = 𝐶𝑃𝑟𝑛𝑅𝑒𝑚. 
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Figure 3.9: Interstitial heat transfer coefficient computed for porosity 0.75 using 

water as the working fluid. 

Note that even though the Nusselt number is both a function of the Prandtl number and 

Reynolds number, a value for the n parameter (the exponent of the Prandtl number) was 

not computed. This was due to only using two fluids – air and water. As such, when the 

correlation is used in the code, a simple power law was used relating the Reynolds 

number to the interstitial heat transfer coefficient. In this case, the Prandtl number is 

constant, and so can be lumped into the C term. This correlation is now input into the 

porous continuum model. It is noted that the hsf is much higher than that predicted by a 

unit cube model. To better illustrate this, consider Fig. 3.10 which shows a comparison 

between the unit cube model and the current geometry. Fluid will pass through the void 

phases in each structure. The unit cube model has a uniform and structured pattern to the 

void phases, as opposed to the current geometry which is much more random, and has 

pockets and holes of varying sizes and diameters. The randomness and varying sizes of 

holes in the structure leads to better mixing, and thus a much higher heat transfer 

coefficient.  
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Figure 3.10: Images showing difference between unit cube model and current 

geometric model produced by YADE. 

3.5.3 Implementation of parameters into porous continuum model 

As the main purpose of the simulation work was to identify gaps and inaccuracies in 

porous continuum modelling, the parameters derived from the pore-level simulations 

were applied to the porous continuum model and for the case considered in the previous 



38 

 

section, cases were run and compared. It was important to validate the computed 

parameters, and to ensure that the method for computing them led to accurate results. 

The modelling of a REV was chosen since it was the simplest possible case. The same 

boundary conditions and geometry dimensions are implemented into the code. Grid 

independence was performed, and will be detailed in a later chapter. The computed 

closure parameters (Cf and K) as well as the hsf correlation, are input into the code. Since 

heat transfer is the focus, the quantity q (the heat transfer into the domain) is compared 

between the two simulations. This is calculated using an earlier equation mentioned:  

𝑄𝑐𝑜𝑛𝑣 = �̇�𝐶𝑝(𝑇𝑜 − 𝑇𝑖) (3.10) 

Table 3.6 below shows the comparison at porosity 0.75 and 400 microns, with water. 

From Re 1 to 200, there is less than 5% difference between the two results, giving 

confidence in the method and equations used to calculate these parameters. The 

percentage error (calculated by 100*(Qpore-level-Qcontinuum)/ Qpore-level) does not follow any 

trend based on Reynolds number. 

Table 3.6: Comparison of heat transfer in isothermal case between pore-level 

simulations and porous continuum simulations 

Q [W] 

Re Pore-level Porous continuum % diff 

1 0.496 0.501 0.972 

5 2.326 2.405 3.396 

10 4.114 4.124 0.255 

15 5.568 5.682 2.057 

20 6.837 7.076 3.49 

40 10.866 11.255 3.581 

80 15.801 16.262 2.917 

120 18.513 18.616 0.627 

160 20.174 20.599 2.105 

200 21.238 21.763 2.473 

Figures 3.11 and 3.12 show the bulk axial pressure and temperature, respectively. From 

these plots, not only does the bulk heat transfer match to within 5%, but the temperature 

and pressure profiles match to within 5% as well which indicates that it is now safe to 
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proceed to the conjugate simulations.  The solid red line shows the pressure obtained 

from pore level simulations (CFX) while the blue dots indicate the results taken from the 

volume – averaged (VA) code (the porous continuum model). The pressure profile taken 

from CFX was an area-weighted average pressure in the axial direction, taken at discrete 

points. Once plotted, these points are connected – hence why the pressure profile is not a 

smooth line, and has “wiggles” appearing.  

 

Figure 3.11: Axial pressure drop for porosity 0.75, water, Re 10, isothermal case 
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Figure 3.12: Axial bulk temperature for porosity 0.75, water, Re 10 

3.6 Summary 

This chapter detailed the preliminary CFD simulations performed to compute the closure 

parameters required before solving the volume-averaged governing equations: the 

Forcheimer coefficient Cf, the permeability K, and the interstitial heat transfer coefficient 

hsf. A correlation was developed which computes the hsf based on the local Reynolds 

number and Prandtl number. 3 different geometries were used: porosity 0.75, 0.80, and 

0.85 all at a pore diameter of 400 microns. ANSYS CFX was used as the commercial 

CFD software, and the results were grid independent to within 5%. Validation was 

performed which gives confidence in the method used to calculate the parameters. 
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Chapter 4  

4 Conjugate simulations 

4.1 Introduction 

One of the purposes of the volume-averaged 3D code is to provide a computationally 

efficient, yet still accurate, substitute to pore level simulations. In applications such as the 

design of heat sinks, this decreased simulation time is extremely valuable. When heat 

sinks are modeled, generally the isothermal assumption is not applicable, and so a full 

conjugate domain must be used – where both the fluid phase and the solid phase 

temperatures are solved. This becomes very computationally expensive when solving the 

instantaneous Navier-Stokes equations on a geometry such as the one generated in 

previous sections. An alternative is to solve the volume-averaged equations instead, 

which is what the porous continuum model does using a finite volume method. Once the 

closure parameters have been obtained from the preliminary pore-level simulations, they 

can be input into the porous continuum model. If the porous continuum model can 

provide a reasonably accurate representation of the pore level conjugate physics, this will 

be of great benefit in design processes due to the faster simulation time. This chapter will 

detail the comparisons, and the major differences, between the pore level and volume 

averaged conjugate simulations.  

4.2 Geometry 

Since the conjugate simulation no longer has the isothermal condition, the solid phase 

must be modeled and meshed as well. The geometry for a conjugate simulation is 

therefore the same as the isothermal case, however with the addition of the solid phase. 

Both the solid and fluid phase are mated together to form a conjugate geometry. This can 

be seen in Fig. 4.1. The same geometry specifications were used: 3 different porosities at 

0.75, 0.80, and 0.85, and 2 different pore diameters at 400 microns and 800 microns.  



42 

 

 

 

Figure 4.1: CAD model of geometry used for conjugate simulations. Top shows solid 

and fluid geometry before mating. Bottom shows final geometry. 

4.3 Computational set up of pore-level model 

The same solver settings were used as in the isothermal case. However, the boundary 

conditions (shown below in Table 4.1) are slightly different to mimic a case wherein the 

porous region is heated from below by a substrate.  This case was chosen due to being the 

standard application for heat sinks – for example in finned heat sinks with porous 

materials in between the fins [52]. 
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Table 4.1: Summary of boundary conditions for conjugate simulation shown in Fig. 

4.1 

Bottom No slip wall and specified temperature of 318 [K] 

Top No slip wall and adiabatic 

Fluid/Solid interface Interface condition 

Inlet Specified mass flow and temperature of 298 [K] 

Outlet Opening and 0 [Pa] 

Left/Right side Symmetry 

Instead of a uniform temperature for the solid, a temperature of 318 [K] is specified on 

the bottom surface of the porous block – at both the fluid and the solid phases. This is 

more realistic, and similar to how heat sinks are used in real world applications. The 

periodic boundary conditions no longer apply – instead, the left and right sides are 

specified as symmetry, and the top is adiabatic. These were chosen, again, to closely 

resemble heat sinks in real applications. At the fluid/solid interface, an interfacial 

condition was specified which allows for heat transfer between the two surfaces. This 

was needed due to the local thermal non-equilibrium. The properties of Aluminum were 

specified for the solid material. Due to its high conductivity, it is a favored material for 

porous materials in enhanced heat transfer applications (other popular choices being 

graphite and carbon). However, for the purpose of this work, it should be noted that the 

material of the solid phase is of little consequence. For one, the conductivity of a material 

can be changed through heat treatment [53]. Secondly, the present work aims to 

investigate the differences between the results generated by the porous continuum model 

and those generated by commercial CFD software. The actual operating conditions are of 

little significance, and only the differences are noted.  

4.4 Grid independence 

The grid independence was carried out in the exact same way as the isothermal case. 

Table 4.2 below shows the convergence of the quantities of interest, using water at Re 

200, porosity 0.75, and 400-micron pore diameter.  
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Table 4.2: Summary of measured quantities showing improved accuracy as a result 

of increasingly fine mesh used in conjugate simulations 

  
Elements Pressure drop [Pa] |% diff| Q [W] |% diff| 

Mesh 1 3,250,000 20155.75   6.23   

Mesh 2 6,500,000 18124.60 10.08 5.70 8.54 

Mesh 3 13,000,000 19031.80 5.01 5.82 2.09 

The final mesh for the non – isothermal simulations had ~1,250,000 nodes and 

~6,500,000 elements. Figure 4.2 shows the mesh used in the non – isothermal case. The 

tolerance for grid convergence was set at 5%. A mesh finer than 13,000,000 took much 

longer to run than one at 6,500,000, and the accuracy was deemed not worth the extra 

time.  

 

Figure 4.2: Mesh used in conjugate simulations (Porosity 0.85 is shown) 

4.5 Computational setup of volume averaged model 

The closure parameters obtained in Chapter 3 are input into the porous continuum model. 

The boundary conditions are the same as those used for the pore level simulation. 

Thermal dispersion was modelled using a correlation developed by Calmidi et al for 

aluminum foams [26]. This was chosen due to the same material being used, as well as 
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results appearing reasonable. The dispersion conductivity is calculated by equation (4.1) 

shown below: 

𝑘𝑑

𝑘𝑒
= 0.06𝑅𝑒𝐾𝑃𝑟𝑒   (4.1) 

where 𝑅𝑒𝐾 is the Reynolds number based on permeability and 𝑃𝑟𝑒 is the Prandtl number 

based on the effective conductivity of the porous medium 𝑘𝑒. The steady state solutions 

were obtained for the range of Reynolds numbers, and using air and water. On average, 

both the energy and momentum equations were converged to a mean residual of less than 

1E-10.  

4.5.1 Grid independence in continuum model simulations 

A grid independence study was also carried out on the volume averaged cases, and the 

mesh is shown below. It was found that 105 nodes were needed in the x – direction, and 

55 nodes in the y – direction. The z – direction (which, in this case, is the width, and not 

the height), only required 1 node due to the symmetry boundary condition. The final 

mesh is shown in Fig. 4.3.  

 

Figure 4.3: Mesh used in continuum model simulations 
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4.6 Results 

4.6.1 Momentum results 

There was very little difference in the momentum results between the isothermal and non 

-isothermal case, as the temperature has little influence on the velocity field. Similarly, 

the velocity field predicted by the porous continuum agrees well with the pore level 

simulations. A velocity vector contour taken at the y = 0 plane is shown in Fig. 4.4. Other 

than the influence of the wall boundary conditions along the top and bottom, resulting in 

small boundary layers, the velocity contours are very similar to the isothermal case, as 

indicated by the value range.  

 

Figure 4.4: Velocity vector contours obtained from conjugate simulation at Re 5, 

Porosity 0.75, 400-micron diameter, and using water.  

4.6.2 Energy results 

The heat transfer for the conjugate system is much less than in the isothermal case – at Re 

200, only a quarter of the heat is swept away in the bottom heated case (21 [W] with 

isothermal conditions, and 5 [W] without). The temperature contours for a sample case 
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are shown in Fig. 4.5, taken from the y = 0 plane. A comparison between the isothermal 

and non-isothermal contours show a drastic difference – even at a low Reynolds number 

of 5, the temperature of the solid phase quickly drops in the z-direction.  

 

Figure 4.5: Temperature contours obtained from conjugate simulation at Re 5, 

Porosity 0.75, 400-micron diameter, and using water.  

It is at this point that discrepancies appear between the 3D code results and the pore-level 

results. The total heat transfer (Q) was computed, and is plotted in Fig. 4.6 for water at 

porosity different porosities. The porous continuum model greatly over predicts the heat 

transfer with errors of up to 50% at Re 200 and using water. Using air, the magnitude of 

the difference is smaller, at ~20%, however this is still unacceptable. Figures 4.7 and 4.8 

show the temperature contours taken at the right side of the domain – the porous 

continuum model predicts a much higher temperature in the boundary layer. To reconcile 

the differences in heat transfer predicted from the pore-level and continuum codes, two 

avenues are explored: the lower surface on which the temperature condition is applied, 

and the specification of conduction in the solid matrix.  
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Figure 4.6: Plot showing comparisons of total heat transfer between pore – level 

simulation and porous continuum model. 
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Figure 4.7: Temperature contours obtained from porous continuum model at Re 80, 

Porosity 0.75, 400-micron diameter, and using water.  

 

Figure 4.8: Temperature contours obtained from conjugate simulation at Re 80, 

Porosity 0.75, 400-micron diameter, and using water. 
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4.7 Full conjugate simulation with attached substrate 

It was possible that the introduction of a solid substrate beneath the porous block would 

solve the discrepancies. Inclusion of a solid substrate at the bottom of the porous block 

will allow the temperature to develop towards the solid/porous interface, thereby 

including any resistance due to the sudden change in cross-section. The reasoning being 

that a Dirichlet boundary condition of a set temperature directly at the bottom was 

unrealistic, since this is not feasible in experiments. Rather, it is more realistic to have a 

substrate attached, heat the bottom, and have the resulting temperature develop naturally. 

Ouyang et al examined a similar effect [54] and aimed to investigate the heat transfer 

split at the interface between the solid substrate and the porous media zone. Instead of a 

set temperature, a constant heat flux was applied on the bottom.  A simplified model was 

created from the volume averaged equations based on these boundary conditions which 

assumes local thermal non – equilibrium in both the substrate and the porous media zone. 

At the interface, the separate heat flux into the solid phase and fluid phase was compared 

to pore-level simulations, and was found to match closely, giving confidence in the 

model. For further details, and for graphs which compare quantities such as the heat flux 

and temperature profiles, refer to [54]. 

Figure 4.9 shows the geometry used for the subsequent simulations. The boundary 

conditions are exactly the same as the previous simulations, with the addition of a 

substrate. The bottom of the substrate is set to 318 [K], while the other sides of the 

substrate are adiabatic.  
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Figure 4.9: CAD model of geometry used for full conjugate simulations with 

substrate 

4.7.1 Results 

It was found that the addition of a substrate had virtually no effect on the differences 

between the porous continuum model and the pore level simulations – the errors were 

still present and of the same magnitude. Figure 4.10 shows a comparison of the 

temperature contours taken at the y = 0 plane between the pore level simulations heated 

via a solid substrate, and directly from the bottom. As observed in the work done by 

Ouyang et al there is a non-equilibrium region near the porous-solid interface in which 

the temperature profile develops. The temperature at the interface between solid and 

porous regions is also slightly lower than the set 318 [K] due to the increased resistance 

presented by the solid substrate.  
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Figure 4.10: Comparison of temperature contours obtained from full conjugate 

simulation (top) and bottom heated conjugate simulation (bottom) at Re 20, Porosity 

0.85, 400-micron diameter, and using water. 



53 

 

4.8 Modification of conduction within solid matrix 

Another possible explanation for the discrepancy was the complex geometry of the 

porous material. Due to the complex path that the structure provides for heat to travel 

through, resistances arise which can lower the total heat transfer. This would be captured 

in the pore-level conjugate simulations, but not in the porous continuum code.  

To test this hypothesis, a much simpler geometry using vertical solid cylinders was 

produced, shown in Fig. 4.11. To match the porous geometry as much as possible, the 

cylinder diameter, spacing, and quantity was specified in a way such that the porosity and 

the Asf were preserved.    

 

Figure 4.11: CAD model of simplified geometry used for conjugate simulation. The 

geometric properties (Asf and porosity) were preserved from previous porous 

geometries.  

The same procedure was used to obtain the Cf, K, and hsf coefficients, and the same 

boundary conditions were used as in the conjugate case. Water was used as the working 

fluid, and aluminum properties were used for the solid material.  
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When comparing the results (summarized in Table 4.3) of these pore level calculations to 

the porous continuum model, the results were in much better agreement – the model was 

accurate to within 3.6%.  

Table 4.3: Comparison of total heat transfer between pore level and porous 

continuum model using simplified geometry 

Q [W] 

Pore - level Porous continuum % diff 

0.496 0.500 0.972 

2.326 2.405 3.396 

4.114 4.124 0.255 

5.568 5.682 2.057 

6.837 7.076 3.490 

10.866 11.255 3.581 

15.801 16.262 2.917 

18.500 18.616 0.627 

20.174 20.599 2.105 

21.238 21.763 2.473 

This confirms the presence of a resistance caused by the complex geometry. Because the 

pins were straight and have a uniform cross-sectional area, the conduction path is simple. 

The formal name for the complexity of the porous material is referred to as “tortuosity”, 

which is essentially a measure of how twisting and winding a certain path length is. This 

property, and its implementation into the code, will be discussed in the following 

sections.  

4.9 Calculating tortuosity 

Tortuosity is typically defined as the length of the actual path, or arc length (LC) [55], 

over the length of the shortest path through a porous material, or the length between two 

points (L).  

𝜏 =
𝐿𝐶

𝐿
 

(4.2) 

To explain, observe the streamlines in Fig. 4.12. They do not follow a straight path – due 

to the cylinders placed in the field, the streamlines follow a more twisted path. The total 
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length of the streamline path, divided by the straight length of the rectangular geometry, 

is tortuosity the tortuosity factor τ. As such, the tortuosity is always greater than or equal 

to 1. An analogy can be made to solid conduction – Fig. 4.13 shows the conduction path 

in the solid phase of the porous material. Rather than streamlines, the black lines indicate 

the path along which conduction occurs. The lengthened conduction path presented by 

the geometry lessens heat transfer when compared to a straight conduction path. Along 

with the lengthened conduction path presented by the geometry, the tortuosity accounts 

for other geometric resistances such as the changing cross-sectional areas, or regions 

where the ligaments of the structure expand or contract in spherical void-phase porous 

materials. This is not shown explicitly in Eq. (4.2) since that expression is the most 

convenient physical expression for tortuosity, and is used in a general sense, applicable to 

all geometries.   

It is emphasized that the tortuosity in this work focuses on the solid phase, not the fluid 

phase. The tortuosity in this work is related to the conduction path – due to the 

complexity of the solid structure; the conduction path is a winding and tortuous length. It 

is purely a function of the solid geometry, and is independent of the flow field. Kopanidis 

et al. [39] presented an equation used to calculate the tortuosity, however this was only 

applicable to Kelvin cell geometries, and was based on the ligament length and diameter.  

 

Figure 4.12: Streamlines of flow around cylinders emphasizing tortuosity [55] 
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Figure 4.13: Cut section of solid phase structure showing conduction paths. This is 

analogous to the streamlines shown in Figure 4.12; instead of flow however, heat 

transfer is represented by the black lines.  

There are several types of tortuosity – electric, diffusive, and hydraulic to name a few. 

These have been studied in numerous papers [55,56]. However, thermal tortuosity is still 

relatively unstudied. Recall that the effective conductivity of a porous material is made 

up of the contribution of three terms – the material conductivity, the effects of dispersion, 

and the effects of tortuosity. Dispersion increases the effective conductivity, while 

tortuosity has the opposite effect – decreasing the effective conductivity due to the 

complex conduction path.  

The dispersion conductivity in the fluid phase has been studied extensively by DeGroot 

[48], and the correlation examined in that work was used in the current work. Because the 

correlation reconciled any major differences in the effective fluid conductivity between 

the volume averaged level and the pore level, it is assumed that the effects of tortuosity 

have already been accounted for. It might be relevant to note that in spherical – void 

phase geometry, the fluid phase is more “spacious” than the solid phase, and especially 

the fact that the conductivity of the fluid is so much lower than the solid phase. The 
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combination of these two leads to the fluid tortuosity not affecting the overall heat 

transfer significantly.  

There is no flow in the solid phase, and so no dispersion is added to the conductivity. 

Recall the equation used to calculate the effective solid conductivity: 

𝑘𝑠𝑒 =
𝑘𝑠

𝜏
∗ (1 − 𝜀) + 𝑘𝑑𝑖𝑠𝑝 

(4.3) 

In the current code, kdisp is 0, but to this point, τ has not been accounted for, meaning the 

value is left at 1 (which is clearly not the case). As mentioned in the previous section, this 

assumption is not valid for spherical void-phase geometry, and is the reason for the large 

discrepancies between the volume-averaged results and the pore level simulations. To 

find 𝜏, a retroactive approach was taken. Presently, there is no way of calculating the 

tortuosity factor in the same step as the other parameters: Cf, K, and hsf.  

The following procedure is used: preliminary pore-level isothermal simulations are run 

from which closure parameters are computed; non-isothermal simulations of conjugate 

heat transfer are also run for comparison with porous continuum results. Once volume-

averaged and pore-level results are obtained for a particular geometry, the heat transfer Q 

is compared. An initial estimate for 𝜏 is input into the porous continuum code, and is 

subsequently adjusted until the heat transfer Q matches the pore level simulations to 

within a specified tolerance (approximately 5%). The established τ is then the tortuosity 

factor for that geometric condition. Simulations implementing this factor are examined in 

subsequent sections, and provide support that the tortuosity has been physically 

accounted for, and not merely generated by forcing results from different models to 

match.  

Note also that the tortuosity is a function of the geometry, and as such does not depend on 

the Reynolds number, Prandtl number, or solid phase conductivity. The tortuosity factor 

was subsequently computed for 6 geometries: porosities 0.75, 0.8, and 0.85 at pore 

diameters of 400 and 800 microns. The results are summarized in Table 4.4.  
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Table 4.4: Summary of computed tortuosity factor for different geometries 

Porosity Pore diameter (microns) Tortuosity 𝜏 

0.75 400 2.08 

0.8 400 2.22 

0.85 400 2.50 

0.75 800 2.11 

0.8 800 2.23 

0.85 800 2.60 

4.10 Implementation of tortuosity factor 

The tortuosity factor is a function of the solid geometry and conduction path only, and 

therefore should stay the same no matter the operating conditions. To test this, one case 

was randomly selected: porosity 0.85, with a pore diameter of 400 microns and water as 

the working fluid. The conductivity of the porous block was varied from 50,100, 400, and 

800 [W/m K]. The range of Reynolds number was from 1 to 200. The same tortuosity 

factor was used for all simulations. A plot of the bulk heat transfer Q from the various 

cases is shown in Fig. 4.14. As expected, varying the conductivity while maintaining the 

tortuosity factor gives very accurate results over the range of conditions studied. 
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Figure 4.14: Plot showing effects of varying solid phase conductivity on total heat 

transfer at porosity 0.85, 400 micron diameter and using water. 

Figure 4.15 shows a comparison of the total heat transfer Q at porosities 0.75, 0.80, and 

0.85 for water at a pore diameter of 400 microns. Also included are the results at porosity 

0.75 without the tortuosity factor. This plot shows the significant improvements when the 

tortuosity in the solid phase conductivity due to the complex conduction path is 

considered. 

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Q
 [

W
] 

P
o

ro
u

s 
co

n
ti

n
u

u
m

Q [W] Pore level

m=1 237 50 100 400 800



60 

 

 

Figure 4.15: Plot showing comparison of total heat transfer calculated using pore 

level CFD simulations and the porous continuum model (after implementing the 

tortuosity factor) at different porosities.   

When the tortuosity is included, not only is the bulk heat transfer improved, but the 

temperature profiles are also more accurate. To illustrate this, the average temperature in 

the vertical direction, at a specified x location, is compared. At a specified X value, a YZ 

plane is taken. On this plane, several line locations (shown in yellow in Fig. 4.16) are 

created. At each line, the average temperature along that line is computed. Using this 

process, the average vertical temperature profile is found. Note that the solid phase and 

fluid phase temperatures are computed separately. The particular case used is porosity 

0.75, 400 micron diameter, and water at Re 20. This is compared with the porous 
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continuum model, and is shown in Fig. 4.17 and 4.18. A clear improvement can be seen 

when the tortuosity factor is included.  

 

Figure 4.16: Image showing locations of lines along which average temperature is 

calculated 
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Figure 4.17: Plot showing comparisons between average fluid temperatures along Z 

axis computed by pore-level simulation and porous continuum model. 

 

Figure 4.18: Plot showing comparisons between average solid temperatures along Z 

axis computed by pore-level simulation and porous continuum model. 

298

300

302

304

306

308

310

312

314

316

318

320

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018

Te
m

p
er

at
u

re
 [

K
]

Z [m]

Pore level

Porous continuum

Porous continuum (uncorrected)

298

300

302

304

306

308

310

312

314

316

318

320

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018

Te
m

p
er

at
u

re
 [

K
]

Z [m]

Pore level

Porous continuum

Porous continuum (uncorrected)



63 

 

4.11 Summary 

This chapter details the full conjugate simulations performed using both commercial CFD 

software as well as the porous continuum model. Grid independence was performed, and 

both set of results were converged to within 5%. It was found that as the Reynolds 

number increases, the difference between the results generated from the porous 

continuum model and those generated using CFD software grew, and reached up to 50% 

at the highest Reynolds number. Two solutions were considered – the first being the 

addition of a solid substrate at the bottom of the porous block, which would allow the 

temperature profile to develop more naturally towards the interface between the solid and 

porous regions. This was found to have no effect, with the errors remaining. The other 

solution was to modify the calculation of the effective solid phase thermal conductivity. 

Previously, the tortuosity (which is a measure of how complex a path is) was neglected in 

the calculation of the conductivity. It was found that this is not an accurate assumption, 

and the tortuosity must be accounted for. This is due to the conduction path in the solid 

phase of the porous structure – due to the twisting and winding geometry, as well as the 

cross-sectional area changes within the solid phase, the effective thermal conductivity is 

lowered. It was shown that the tortuosity is purely a function of geometry, and does not 

depend on either the solid phase conductivity or the working fluid.  
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Chapter 5  

5 Summary and Future Work 

The objective of this thesis was to investigate and reconcile any significant differences 

existing between the porous continuum model and pore-level simulations. The porous 

continuum model solves the volume-averaged momentum and energy equations using a 

structured, three-dimensional finite-volume CFD code. CFD results of forced convection 

generated from the porous continuum model and pore-level simulations were compared, 

and were found to differ significantly. This work determined that there was a missing 

parameter in the description of the porous material, which was subsequently incorporated 

into the code, and significantly improved results. 

It was found that the closure parameters previously used (the Forcheimer coefficient Cf, 

the permeability K, and the interstitial heat transfer coefficient hsf) are insufficient when 

modelling the heat transfer in conjugate simulations involving porous media in which the 

bottom is heated, and result in large errors, especially when a fluid such as water is 

chosen.  

Two avenues were explored as possible solutions. The first involved adding a solid 

substrate to the bottom of the porous block, and heating the substrate bottom rather than 

directly heating the bottom of the porous block, as in previous cases. This allows the 

temperature profile to develop naturally towards the solid-porous interface, providing a 

more realistic simulation. Both porous continuum and pore-level simulations were run 

using this new geometry. It was found that this did not improve the errors, so a second 

approach was explored. This involved modifying the conductivity of the solid phase in 

the porous geometry – due to the tortuosity and complexity of the conduction path within 

the solid matrix, heat transfer resistance is introduced which is captured in the pore-level 

simulations, but is missing from the porous continuum model. The bulk heat transfer 

from the porous continuum model now matches much more closely with pore-level 

simulations, as well as temperature profiles.   
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5.1 Research conclusions and contributions 

Chapter 4 details the conjugate heat transfer cases in which the solid temperature 

distribution is considered. These were conducted using both pore-level physics (CFD 

software), and the porous continuum model. The results were compared, and the 

differences between the two methods indicates a missing element within the porous 

continuum model. Two possible solutions were investigated – the addition of a solid 

substrate beneath the porous block, and the modification of the conductivity within the 

solid phase. The addition of the solid substrate did little to improve the errors.  

It was found that a tortuosity factor must be introduced, which accounts or the complex 

conduction path presented by the geometry of the porous block. By adding in the term, 

not only did the bulk heat transfer computed by the porous continuum model match much 

more closely with pore level simulations, but the temperature profiles were improved as 

well. The tortuosity is purely a function of the geometry of the porous material, as it 

relates to the conduction path and changing cross sectional areas encountered in the 

ligaments of the solid phase. The tortuosity is independent of operating conditions such 

as temperature difference between wall temperature and inlet temperature, material 

conductivity, and flow field. This was shown through running simulations using the same 

geometry with varying solid phase conductivities.  

5.2 Future work 

Currently there is no correlation, or a general equation to find the tortuosity factor. 

However, it should be noted that if an equation were to be found, at most it would be 

specific to a particular structures only.  Thus, it would also be useful to consider alternate 

solid structures, such as the reticulated foams measured earlier. The spherical void phase 

(SVP) geometry was used as it was available, and was shown to be an accurate 

representation of SVP materials. It would be interesting to compare how the tortuosity 

differs between geometries.  

Because of time constraints, only six cases were considered in this thesis (two pore 

diameters, at three porosities each). Future work could focus on collecting more data 
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from cases, and seeing whether a trend or pattern exits. As of now, it is still unclear what 

geometric property correlates the most to tortuosity. Another future project could look at 

a new method of determining the tortuosity factor directly from the pore level simulations 

without having to resort to the retroactive comparison shown in the present work, which 

is a tedious process. Tying in with the previous suggestion, a correlation relating 

geometric properties such as pore diameter, porosity, surface area to volume ratio, or 

ligament length, or any combination of these, would be extremely helpful. Again, more 

data would have to be collected before any significant conclusion can be made.  
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