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 Abstract 

Metal contamination of soil can be reduced by adding chelators to improve the efficiency 

of metal uptake in phytoremediation, but optimal concentrations and types of chelators 

have not been determined. A geochemical model (Visual MINTEQ3.1) was used to 

estimate the effects of four chelators on the solubility of four metals in hydroponic 

solution. The model showed that no iron was soluble in the absence of a chelator, while 

the solubilities of cadmium, copper and zinc were high with or without chelators. Despite 

low iron uptake in all treatments, symptoms of iron-deficiency were not visible. High 

concentrations of exuded organic acids in solution had negligible effects on metal 

solubility because few metal-organic acid complexes formed. The amounts of metals 

taken up by radish (Raphanus sativus L.) varied with the type of chelator provided. 

EDTA and DTPA maximized cadmium and zinc uptake, respectively. 

Keywords 

Chelation, cadmium, copper, zinc, uptake, toxicity, modelling, radish, solubility, 

speciation. 
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Chapter 1  

1 General Introduction 

1.1 Overview 

Soil and water are frequently contaminated by metals, some of which are non-essential 

elements and therefore may be toxic to plants even at low concentrations, such as 

cadmium and lead; others  are essential nutrients that are toxic only at high 

concentrations, such as iron and magnesium  (Ahmad et al. 2014). Low concentrations of 

these metals are naturally present in the earth; however, anthropogenic sources of 

contamination such as mining, smelting, car fumes, and fertilizers, among others, have 

increased the likelihood of finding metals in dangerous amounts. As of 2015, there are 

reports of more than 10 million sites of soil pollution worldwide; more than half of these 

are polluted with metals (He et al. 2015). While the United States Environmental 

Protection Agency (EPA) states that levels of copper, cadmium, lead and zinc in 

agricultural soil should not exceed 1500, 39, 300 and 2800 mg/kg, respectively 

(Environmental Protection Agency 2010), concentrations of lead up to 3680 mg/kg have 

been found in garden soils in the Massachusetts, USA (Clark et al. 2006), and 

concentrations of other metals are often similarly above permitted limits (Monfared-

Heidarey 2011).  

Plants have been used to bioremediate contaminated soils (Marques et al. 2009); 

however, such phytoremediation efforts have had mixed success (Koptsik 2014). One of 

the most practical methods to predict metal uptake by plants is by using modelling 

software. Programs such as Visual MINTEQ and Geochemist Workbench can help to 

determine soluble and insoluble metal quantities in soil solution, as well as their 

speciation (i.e., chemical form) while they are soluble. By using these models, it is 

possible to determine what are the best conditions to increase plant metal uptake. The use 

of software modelling allows the user to obtain accurate predictions and save time and 

money when selecting the conditions to maximize metal uptake and optimize 

bioremediation of soil. 
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1.2 Factors that affect metal bioavailability 

Metals may be present in several forms with different levels of solubility, including as 

dissolved species (free ions, chelated ions, soluble salts), exchangeable species (organic 

and inorganic compounds) and as precipitates (oxides, phosphates), which are insoluble 

and cannot be taken up by plants (Zalidis et al. 1999). Bioavailability of metals is 

affected by many factors, including, but not limited to, pH, organic matter content, cation 

exchange capacity, microbial activity, and root exudates (Nascimento and Xing 2006; 

Ruttens et al. 2006; Zeng et al. 2011). In soil and nutrient solution, the most relevant 

factor is pH, which plays a crucial role in determining metal speciation, solubility and 

movement, which are all necessary for bioavailability of metals (Zhao et al. 2010). 

Decreased or increased soil pH may reduce the mobility and bioavailability of metals 

(Kalra 1995; Badawy et al. 2002; Du Laing et al. 2007) because each element has an 

optimal pH for solubility. Organic matter can also influence metal uptake for two 

reasons: (1) it supplies organic chemicals that can serve as chelators, which can increase 

metal solubility and increase metal uptake (McCauley et al. 2009); and (2) it can serve as 

a cation exchange site for metal ions (Kennou et al. 2015).  Root exudates , which include 

organic acids and other molecules that can act as chelators, forming metal-chelate 

complexes that can increase metal solubility (Mehes-Smith et al. 2013).  

A single metal ion is held within each chelator molecule by ionic bonds (IUPAC 1994). 

Whether or not chelation increases or decreases metal ion bioavailability depends on the 

relative binding affinity of the chelate for the metal ion. Binding affinity is the strength of 

binding between one molecule and another molecule or ion, and is measured as the 

chemical equilibrium dissociation constant (KD). Different chelators have different 

affinities and may selectively chelate one metal over another.  

Microbial activity also plays a big role in phytoextraction processes, especially in soil. 

Bacteria and fungi at the soil-root interface improve the accumulation of nutrients in 

plants by either enhanced nitrogen fixation or improved solubilization of nutrient 

elements, including nutrient metals, by breaking down insoluble organic compounds 

present in soil (Wood et al. 2016). 
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1.3 Metals in the plant environment 

1.3.1 Effects of metals on plants 

Lead and cadmium are non-essential metals that can cause harmful effects on plants. 

Copper and zinc are essential micronutrients that are required for optimal plant 

development, but elevated concentrations of these metals have negative effects on overall 

plant health. One of the most important sources of metal toxicity for plants is agriculture. 

Organic and inorganic fertilizers, may contain low concentrations of metals (Semu and 

Singh 1995). These fertilizers are manufactured from rock phosphates, which often 

contain metal impurities, including cadmium, arsenic, antimony chromium, zinc, copper 

and nickel (Camelo et al. 1997; Sabiha-Javied et al. 2009). Insecticides and fungicides 

also contain low concentrations of metals, which are intended to target the pest organisms 

(Semu and Singh 1995). Many copper-based pesticides are used in agriculture, and have 

the capacity not only to affect plants in soil, but also to leach into fresh water bodies and 

cause widespread damage to local fauna (De Oliveira-Filho et al. 2004). Although the 

concentrations of metals in a single dose of fertilizer or pesticide is relatively low, the 

repeated application of these products eventually increases the metal concentration in soil 

and water (Markert 1993).  

In this thesis, I will focus on the effects of cadmium, copper and zinc because they are 

common contaminants in the soil (Clark et al. 2006) and I will examine how exogenous 

chelators affect the solubility of these metals. Because iron solubility is controlled mostly 

by chelation (Visual MINTE 3.1) and iron may compete with the previously mentioned 

metals for the chelators, I will also study how the combination of metal treatment and 

chelation affects iron solubility. Plants exposed to cadmium toxicity usually present 

symptoms including chlorosis, growth inhibition, browning of root tips and death (Sanita 

Di Toppi and Gabbrielli 1999; Wójcik and Tukiendorf 2004; Mohanpuria et al. 2007). 

Cadmium affects several plant processes including the uptake, transport and use of 

essential nutrients (calcium, magnesium, phosphorus and potassium) due to competition 

for the same trans-membrane carriers (Clarkson and Lüttge 1989), and can also reduce 

the absorption and fixation of nitrogen by inhibiting nitrate reductase activity in the 

shoots (Hernandez et al. 1996; Balestrasse et al. 2003).  Cadmium has a similar atomic 
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radius to calcium, copper, manganese and zinc, and it can cross the root cell membranes 

through transporters for these essential elements (Verkleij et al. 2009) 

Copper is a micronutrient and has an important role in the respiratory electron transport 

chain, as well as in CO2 assimilation and ATP synthesis (Demirevska-Kepova et al. 

2004). When present in toxic quantities, copper is cytotoxic because it can produce 

oxidative stress and reactive oxygen species via the Fenton reaction (Lewis et al. 2001), 

as well as causing growth retardation and leaf chlorosis by reducing iron uptake and 

directly interfering with chlorophyll synthesis (Duvign 2000) . 

Zinc is also an essential micronutrient for plants that helps with a wide variety of 

processes, including influencing the activity of hydrogenase anhydrase, stabilization of 

ribosomal fractions, as well as helping with the maintenance of the integrity of cellular 

membranes and protein synthesis (Hafeez et al. 2013). Excess zinc causes effects such as 

chlorosis and retarded growth and hastened senescence (Choi et al. 1996; Ebbs and 

Kochian 1997). Zinc has a similar atomic radius to iron, copper and manganese, and 

therefore can substitute for them as a cofactor in enzymes when present in high 

concentrations and can compete with them for access to transport proteins (Shanmugam 

et al. 2011), causing deficiency of competing metals and therefore stunting plant growth. 

1.4 Use of chelators in phytoremediation 

Phytoremediation is based on the use of natural or genetically modified plants capable of 

extracting hazardous substances from the soil (Adriano 2001). Modern phytoremediation 

is divided into four methodological approaches: phytoextraction, phytomining, 

phytostabilization and phytoevaporation, and often uses plants that are classified as 

hyperaccumulators (Rascio and Navari-Izzo 2011) Hyperaccumulators are classified 

depending on the minimum concentration of metal in plant dry tissue. This concentration 

has been established to be 10,000 µg/g for zinc, 300 µg/g for copper and  100 µg/g for 

cadmium  (van der Ent et al. 2013). Hyperaccumulators do not take up excess metals for 

their own benefit. They protect themselves from metal toxicity by sequestering the metal 

ions in sites removed from metabolic activity, such as in trichomes, vacuoles, or in the 

apoplast (Meyers et al. 2008; McNear and Kupper 2014) 
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Phytoextraction is based on the absorption of metals by roots and subsequently removing 

those metals with phytomass harvesting. This technique is especially effective when 

hyperaccumulators are able to translocate high amounts of metals into their shoots.  

However, remediation is limited by its slow time to take up substantial amounts of 

metals, as well as an increased risk of leaching of metals into water bodies when applying 

chelators when compared to plants grown without the presence of chelators (Ghosh and 

Singh 2005). The use of chelators for this technique is not essential, however, it can help 

to increase metal uptake by plants (Mehes-Smith et al. 2013). Phytomining is a special 

case of phytoextraction in which the concentration of a metal in the harvestable plant 

tissue is high enough such that it is economically feasible to recycle the metal. After 

harvest, the plant tissues are combusted to obtain bio-ore. In theory, phytomining can be 

utilized to mine any type of metal in plants, although nickel is the most phytomined metal  

(Brooks et al. 1998). The environmental advantages and disadvantages of phytomining 

are the same as for phytoextraction, with the added benefit of obtaining a sellable product 

(bioore). Its main disadvantage is its limited use due to the few number of 

hyperaccumulators (Koptsik 2014). Phytostabilization involves reducing the mobility and 

availability of metals in soils in the rhizosphere – the region of soil that is under the 

influence of root exudates (Pulford and Watson 2003). Plant-induced chemical changes in 

the rhizosphere include altered pH, redox potential or increased concentration of 

chelators (Raskin and Ensley 1999a). Phytostabilization is useful for reducing leaching of 

metal pollutants to the groundwater but, because phytostabilized metals are not taken up 

by the plants, it is not an approach that can be used to remove contaminants from the 

environment. The main advantage of this technique is its low cost due to the lack of need 

to remove biomass from contaminated areas; however, high concentrations of metals 

accumulating in the rooting zone may eventually prevent survival of plants (Raskin and 

Ensley 1999b). Finally phytoevaporation is based on the capacity of plants to absorb 

organic contaminants (petroleum products, ammunition contaminants and pesticides) and 

transform them into low-toxicity volatile compounds (Prasad and De Oliveira Freitas 

2003). Its main disadvantage is its low versatility, especially since only a few 

contaminants can be volatilized into harmless compounds.  While the vast majority of 
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metals are not volatile, some species of the Brassicaceae family are effective at removing 

selenium from soil through this mechanism (Pulford and Watson 2003). 

While phytoextraction is less disruptive to the soil and costs less than chemical or 

physical techniques to remove contaminants (Marques et al. 2009) it has some 

disadvantages. For example, it can take decades to bring contaminants down to 

acceptable concentrations. Another main disadvantage of this technique is the plant’s 

inability to absorb certain forms of metals, including insoluble compounds such as 

hydroxides and sulfides that tend to precipitate and complex with organic materials 

(Sillanpa and Sihvonen 1997). 

Phytoextraction is more efficient after a contaminated soil is treated with a chelator. 

Since ethylenediamine-tetraacetic acid (EDTA) has been reported to aid in plant nutrient 

uptake from hydroponic solution since 1949 (reviewed in Klein and Manos 1960), it was 

one of the first chelators tested for phytoremediation.   EDTA and other synthetic 

chelators, including  nitrilotriacetic acid (NTA), diethylenetrinitrilo-pentaacetic acid 

(DTPA) and N-(2-hydroxyethyl)-ethylenediamine-triacetic acid (HEDTA) have been 

shown to enhance phytoextraction of metals (Sun et al. 2001). Studies done with diverse 

plants, such as rattlebush (Sesbania drummondii), corn (Zea mays), and sunflower 

(Helianthus annus), among others, have shown that chelators can increase uptake of lead 

up to 40 times (Ruley et al. 2006) and copper up to 100 times (Luo et al. 2005), while 

plants such as rice (Oryza sativa L.) and oilseed rape (Brassica napus var .Ladoga) have 

shown a positive iron uptake increase of up to 100% (Hasegawa et al. 2011; Bloem et al. 

2017) 

Currently, synthetic chelators such as EDTA,HEDTA and DTPA are most commonly 

used to improve plant uptake of elements ; however, new biodegradable chelators such as 

nitrile-triacetic acid (NTA) have been gaining popularity because they will not linger in 

the environment due to efficient degradation by microbes (Nancharaiah et al. 2006). 



7 

 

 

1.5 Chelators exuded from plant roots 

Plants usually have large root surface areas with membrane transporters, which are able 

not only to take up nutrients but also contaminants (Meagher 2000). The non-essential 

metals can enter through non-specific membrane channel proteins (Raskin et al. 1994). 

Plants can increase the solubility of essential metals by several mechanisms, including 

the production of root exudates that either alter the pH of the rhizosphere or chelate metal 

ions (Mehes-Smith et al. 2013), both of which will affect the bioavailability of essential 

and non-essential metals as mentioned in Section 1.2. Some common root exudates 

include carbohydrates, amino acids, organic acids, and proteins. Of these, organic acids 

are the ones most likely to chelate metal ions (Badri and Vivanco 2009). 

Bioavailability could increase or decrease depending on the direction of pH change and 

the chemistry of the metal-chelate complex, giving the plant some control over nutrient 

uptake and contaminant exclusion. For example, exudation of organic molecules can be 

triggered by nutrient deficiency or by stress caused by contaminants (Javed et al. 2013). 

Low phosphate concentration in soil can cause plants to release extracellular 

phosphatases, which hydrolyze and mobilize inorganic phosphorus (Duff et al. 1994). 

Plants can secrete about 20-fold more acid phosphatases from roots when they are 

subjected to low phosphorus conditions than when compared to sufficient phosphorus 

conditions (Tadano and Sakai 1991). Exudation of phenolic molecules is also very useful 

in order to influence iron mobility. Iron-deficient alfalfa (Medicago sativa) plants 

produce phytoalexins, which dissolve ferric phosphate and generates the soluble ferrous 

iron (Masaoka et al. 1993). Other plants, such as tomato (Solanum lycopersicum), can 

exude caffeic acid, which also solubilizes iron, while cereals and grasses exude 

phytosiderophores, which can solubilize ferric compounds for uptake by roots (Romheld 

and Romheld 1987). 

Exudates also play an important role in metal detoxification. The exudation of organic 

acids, such as malate and citrate, is higher in aluminum-tolerant plants than aluminum-

sensitive plants. The formation of aluminum-organic acids complexes create a slower 

transport through the plasmalemma, reducing the uptake of metal throughout the plant’s 

lifespan (Kochian 1995). The production of other exudates, such as phenolic compounds, 
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help with metal detoxification of aluminum as well, mostly by creating a deprotonation 

reaction of phenolics in the presence of organic acids, which in turn strengthens the 

interaction between aluminum ions and organic acid ligands (Driscoll and Schecher 

1990). 

1.6 Study species 

Radish (Raphanus sativus L. cv. Crimson Giant Champion) has been previously used in 

several studies (Georgieva et al. 1997; Garg and Kataria 2009; Hamadouche et al. 2012; 

Hladun et al. 2015) to investigate its potential use as a phytoremediating agent that 

targets metals such as cadmium, lead (Hamadouche et al. 2012), copper and zinc 

(Vamerali et al. 2012). However, its phytoremediation efficiency varies. Under field 

conditions and when exposed to a pluri-contaminated site, radishes were more effective 

at extracting zinc than other metals, and showed poor results when extracting cadmium 

by taking up only 0.63 mg/kg (Vamerali et al. 2010). However another study showed 

high cadmium extraction (7.26  mg/kg) by radish plants exposed to 10 mg/kg cadmium in 

soil (Lin et al. 2014) 

While radish plants are accumulators of certain metals, the mechanisms for this are still 

poorly understood. Root exudation of hydrogen ions, as well as molecules such as OH- 

and CO3
-2 and organic acids, may increase or decrease pH depending on the conditions of 

the environment, therefore increasing or decreasing metal solubility (Javed 2011). Low 

molecular weight organic acids (LMWOAs), such as citrate, oxalate, and gluconate, may 

play a central role in cases of tolerance to metals such as aluminum (Wang et al. 2015), 

but the exudation of these compounds has not been investigated in radishes. Some studies 

done with these organic acids show that they may inhibit metal uptake under acidic 

conditions, but may enhance it under neutral to alkaline conditions by generating aqueous 

organic complexes (Wang and Mulligan 2013). 

Even though radishes have been previously tested as potential phytoremediating agents, 

their efficacy when combined with the use of chelators is still not clear. 
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1.7 Role of software modelling  

Chelators have different affinities for different metals under specific conditions, but their 

efficacy in increasing metal solubility still has not been properly determined. One way to 

determine their potential role in phytoextraction is with the use of modelling software. 

Computer software such as Visual MINTEQ 3 (Gustafsson 2013) has been used to 

generate computer-simulated information about the bioavailability of metals in response 

to changes in solution pH and chelate-metal complexes that are formed in the nutrient 

solution. However, these models have not been used to assess changing metal 

bioavailability during plant growth. The information that is needed to improve the models 

includes plant-induced changes in pH, changes in nutrient and metal concentrations as the 

elements are taken up by the plants and the concentrations of chelators exuded by the 

roots. By obtaining experimental data and adding it into the model, it may be possible to 

increase the accuracy of the model and use it to predict the conditions necessary to 

maximize metal uptake by radishes. 

Chapter 2 contains a detailed description of Visual MINTEQ 3.1, including the 

parameters that are used to calculate metal solubility, the variables that one can 

manipulate to model a variety of environmental conditions, as well as the types of output 

that are generated. 

1.8 Objectives 

The main goal of this research is to identify and analyze the root exudates produced by 

radishes grown in hydroponics, while at the same time obtaining information about plant 

uptake of the key nutrient iron, as well as that of metal contaminants. This information 

will then be processed using the software Visual MINTEQ 3.1 and the results will help to 

predict the best way to maximize (or minimize) the uptake of the tested metals by 

radishes. This goal will be accomplished by completing the following objectives:  

1. Determine the direction and rate of change of pH in nutrient solution in which 

radish is growing in order to establish the pH to be used in modelling, 
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2. Measure total plant dry mass to determine the effects of exogenous chelators on 

relative metal tolerance, 

3. Quantify metal (copper, iron, cadmium and zinc) uptake by radish to compare the 

model’s predicted metal bioavailability to the amounts actually taken up by the 

plants, 

4. Identify and quantify organic acids in the nutrient solution to determine the 

concentrations of exudates to be used in modelling, 

5. Improve the Visual MINTEQ model by adding concentrations of exuded organic 

acids to the database, 

6. Make recommendations of the best chelators used to increase metal uptake. 

 

1.9 Rationale for experiments 

Radishes were selected as a plant of interest because previous studies identified it as a 

potential accumulator of cadmium, copper and zinc (Georgieva et al. 1997; Garg and 

Kataria 2009; Vamerali et al. 2010; Hamadouche et al. 2012; Lin et al. 2014; Hladun et 

al. 2015) and because of its rapid growth rate. Radishes can grow from seed to full 

maturity in 30 to 40 days, which makes them viable candidates for phytoremediation 

purposes since they can be grown and harvested several times per season. The selection 

of a hydroponic system was based on eliminating as many interfering factors as possible, 

especially microbial interactions. While the concentrations of the metals that will be 

studied will be lower than those in natural occurring soil, plants (including radishes) take 

up higher amounts from hydroponic due to the chemical simplicity of the culture (e.g., no 

microbes, no binding of metals to soil particles, controlled pH, etc.) (Salvatore et al. 

2012) as well as the morphology of roots grown in solution (e.g., larger regions of the 

root where solutes can enter the xylem without having to cross the plasma membrane) 

(Bloem et al. 2017).  
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Chapter 2  

2 Modelling software: Visual MINTEQ 3.1 

A number of software programs, including Visual MINTEQ, PHREEQC, The 

Geochemist’s Workbench,  and GEOCHEM-PC, are available that help us to make 

predictions about the effects of exuded and exogenous ligands (e.g. chelators) on metal 

availability in solution. In general, these programs use thermodynamic equilibrium 

constants, compound solubility, as well as other factors such as pH, ionic strength, and 

aqueous complexation reactions, to estimate the chemical fates of elements in solution.   

For this project, the modelling program that will be used is Visual MINTEQ 3.1, 

developed by Jon Peter Gustafsson of the KTH Royal Institute of Technology in Sweden 

(Gustafsson 2013). Visual MINTEQ 3.1 was chosen due to its robust and updated 

database, ease of use, as well as its common use by other researchers. Its capacity to 

calculate speciation of ions and complexes in water, as well as its capacity to simulate 

changes in chemical composition of a water sample after adding different elements and 

compounds, make it a great option for this research project. 

The information below is intended to provide readers with a better understanding of the 

chemical databases included in Visual MINTEQ 3.1, the variables one should manipulate 

to estimate metal solubility in nutrient solution, and the nature of the model’s output. 

2.1 Visual MINTEQ 3.1 

2.1.1 Introduction 

Visual MINTEQ uses four different databases to generate accurate modelling results. The 

solids database contains all the solid compounds that can be modeled by the software. 

These include, but are not limited to, solids that tend to precipitate out of solution such as 

oxides and phosphates. Chemical information about the solids included in this list has 

been taken from the NIST (National Institute of Standards and Technology) 2.1.1 

database. The main thermodynamic database includes all the elements and compounds 

that can be modeled by the software, and includes information such as charge, ion size 

(radius), molecular weight, stability constant and enthalpy change (H). The component 
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database includes all the possible elements and compounds that the user can input to the 

model. This includes organic and inorganic compounds. It is important to note that the 

component database includes all the exogenous chelators that will be used in this research 

project, as well as organic acids that are expected to be exuded from the plant roots. 

Finally, the DOM complex database contains information that allows the software to 

model dissolved organic matter.  

The data required by Visual MINTEQ to predict the equilibrium composition of a certain 

solution, consists of a chemical analysis of the sample, as well as other components such 

as pH, PE, as well as minerals present in the solution. Visual MINTEQ computes several 

formulae in order to obtain data such as saturation index (SI), which is required to 

compute solids in solution. The model starts its calculations using the assumption that all 

components of the solution are ionic. Since the chelation of metal ions, the formation of 

metal salts (e.g., Cu SO4), and precipitation of solids in solution would affect the  

concentrations of elements available for these and other reactions, Visual MINTEQ 

performs up to 5000 iterations of the computations in order to calculate the correct 

equilibrium speciation in solution accurately (Allison et al. 1991) 

Visual MINTEQ allows the user to input different values for factors that would affect 

modelling, including but not limited to: solution pH, alkalinity (capacity of a solution to 

neutralize an acid) measured as CaCO3 , solution temperature, solution ionic strength, as 

well as different components (organic and inorganic) and their respective concentrations. 

Visual MINTEQ also allows the user to exclude chemical species and to specify solid 

phases, redox couples, pE (redox potential) and Eh (electron or oxidation potential) as 

well as CO2 and other gas (including but not limited to methane, nitrogen and oxygen) 

pressure.  

2.1.2 Settings used for current project 

In order to get the most accurate results possible, several settings were optimized. The 

following sections will explain each of the modifications, and their impact on the 

modelling results. 
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2.1.2.1 Saturation of solids 

Saturation of solids is one of the most important aspects that must be tuned in order to 

obtain accurate predictions for metal bioavailability. With the default setting, solids that 

will tend to precipitate in an aqueous solution are not allowed to precipitate in the model, 

meaning that 100% of solids such as FeO, FeOH, CuO, ZnOH, PbOH, among others, will 

be modelled as if they were mixed in solution, therefore being readily available for plant 

uptake.  

Several studies have shown that metals in solution tend to oxidize in alkaline conditions, 

forming insoluble compounds that will not be readily available for uptake (Chuan et al. 

1996; Walker et al. 2003; Shahid et al. 2012). Therefore, if one wants to use the model to 

estimate bioavailability of metals to plants, it is necessary to force Visual MINTEQ to 

allow all insoluble compounds to precipitate out of solution. 

2.1.2.2 Redox couples 

Redox reactions are of great importance for estimating metal bioavailability due to the 

importance of different charge states of metal ions. Ions with different charges will form 

different compounds which may affect solubility of metals in solution. While it is 

possible to input metal compounds in the form that they were added to the nutrient 

solution (for example, iron as ferric iron, Fe3+, copper as the cupric ion, Cu2+, and the 

zinc ion, Zn2+), the model needs to take into consideration that redox reactions will 

happen in solution. Of the metals used in my experiment, cadmium (Cd2+) and lead (Pb2+) 

are the only ones that will not experience redox reactions, since their oxidation state is the 

only one possible under my experimental conditions. Above pH 3.5, ferric iron tends to 

form oxides; only at a very low pH, is it a free Fe3+ ion and readily available for uptake 

(Brumbarova and Bauer 2009). In contrast, ferrous iron, Fe2+, remains soluble up to a pH 

of about 8, at which point it tends to form oxides. Thus, redox reactions in solution can 

alter iron availability by converting Fe3+ to Fe2+ and vice versa.  For my modelling 

experiments, the Fe3+/Fe2+, Cu2+/Cu+ and Zn2+/Zn+ couples will be enabled, allowing the 

program to perform the thermodynamic calculations for these reactions to obtain accurate 

estimates of metal availability. It is important to note, however, that the Zn+1 state is very 
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rare, and can be found only under very specific temperature and pressure conditions 

(Rappoport and Marek 2006). Low pH tends to increase metal solubility and plant uptake 

because the ions are stable, but can cause toxicity if pH is too low. High pH tends to 

decrease metal solubility due the formation of oxides and hydroxides. This may cause 

nutrient deficiency since the formation of hydroxides prevents the plants from taking up 

vital nutrients (Ross 1994). 

2.1.3 Temperature 

A solution temperature of 25°C is normally used in chemical modelling unless it is stated 

otherwise (Beverskog 1997). Temperatures higher or lower than 25°C have an effect on 

thermodynamic reactions, including Gibbs energy, enthalpy and entropy. At the same 

time, temperature has a direct effect on pH. In order to understand that, it is important to 

understand the ionic product for water constant, the water equilibrium formula, and how 

that relates to pH. 

Since water molecules can function both as acids and bases, a water molecule can accept 

a hydrogen ion from a second water molecule. That way, a water molecule acts as a base 

(recipient), while the other one functions as an acid (donor) (Geissler et al. 2001). 

However, since the hydroxonium ion is a very strong acid, and the hydroxide ion is a 

very strong base, they recombine in less than 70 μs, forming water again. The formation 

of water is represented by the following equation:  

𝐻2𝑂(𝑙) ↔  𝐻(𝑎𝑞)
+ + 𝑂𝐻(𝑎𝑞)

−  

The ionic product for water, or Kw, is the equilibrium constant for the reaction: 

𝐾𝑊 = [𝐻+][𝑂𝐻−] 

It is important to note that the ionic product for water, Kw, is temperature-dependent, 

increasing with temperature (Tabbutt 2001) . 

At room temperature (25°C), Kw has a value of 1.00 x 10-14. However, for each hydrogen 

ion arising from water, it is necessary to also have a hydroxide ion. At room temperature, 
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the concentration of hydrogen ions equals the concentration of hydroxide ions and, 

therefore, it is possible to rewrite the equation as following 

[𝐻+]2 = 1.00 × 10−14 

If the equation is solved for [H], then the following is generated 

[𝐻+] = 1.00 × 10−7 

If we substitute the hydrogen concentration in the pH equation, we get the following 

𝑝𝐻 = −𝑙𝑜𝑔10[𝐻+] = −𝑙𝑜𝑔10[1.00 × 10−7] = 7 

Therefore, it is possible to understand why pH has a value of 7 when it is neutral, since 

there is a balance between total hydroxide and hydrogen molecules. Since Kw is 

temperature-dependent, pH changes depending on temperature, therefore playing a very 

important factor in the generation of accurate speciation. The model can be adjusted for 

temperatures between 20 to 60°C, with the model being designed to work best at a 

temperature of 25°C. This project uses the standard temperature of 25°C even though the 

temperature of the nutrient solution was 23°C. 

2.1.3.1 Pressure 

Pressure affects the dissociation of molecules and directly affects the temperature 

required to change the Kw value (Bandura 2006). Visual MINTEQ 3.1 has been optimized 

to model water with pressure of 1 atm or very close to 1 atm. For the purposes of my 

project, a standard 1 atm or 1.01325 bar will be used in the model. 

2.1.3.2 Components in the model 

Visual MINTEQ requires that all the components (elements and compounds) are entered 

in their individual chemical forms. For example, instead of entering FeCl3, the program 

requires the user to input the total concentration of Fe3+ and total concentration of Cl-. In 

my experiments, a modified Hoagland’s nutrient solution (Table 2-1) was used. The 

original Hoagland solution was designed for a variety of plants grown in hydroponic 

conditions. One of its main strengths is its high nitrogen content, which makes it suitable 
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for plants which require nitrogen to build biomass in a short period of time (Hoagland 

and Arnon 1950).  The primary modification made to the nutrient solution was to omit 

EDTA; the original recipe contains 11 µM EDTA as the only chelator. 
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Table 2-1: Components of the nutrient solution used to grow radish and as entered 

in Visual MINTEQ 3.1. The concentrations of compounds added to solution and the 

concentrations of the resulting component ions in solution are shown. 

 

Original 

Component 

Concentration 

(μM) 

Component as 

entered in Visual 

MINTEQ 

Concentration 

(μM) 

Ca(NO3)2 1000 Ca2+ 1000.00 

CuSO4 0.15 Cu2+ 0.15 

FeCl3 10  Fe3+ 10.00 

H3BO3 6 H3BO3 6.00 

K2HPO4 100 K+ 800.02 

K2SO4 100 Mg2+ 280.29 

KNO3 400 Mn2+ 2.44 

Mg(NO3)2 280 NO3
- 3260.68  

MnCl2 2.4 PO4
3- 100.00 

Na2MoO4 0.2  SO4
2- 100.65 

NH4NO3 300 Zn2+ 0.5 

ZnSO4 0.5 NH4
+ 300.06 
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2.1.4 Modelling output 

The results of Visual MINTEQ 3.1 modelling include three main outputs: equilibrated 

mass distribution (distribution of components between dissolved, adsorbed and 

precipitated phases), species distribution (percentage distribution among dissolved and 

adsorbed species) and the concentrations and activities of aqueous inorganic species. 

An extra output, amount of finite solids, is displayed only when solids are formed due to 

precipitation of compounds.  

2.1.4.1 Equilibrated mass distribution 

The equilibrated mass distribution is the total and percentage values of dissolved, 

adsorbed and precipitated phases for each element. For example, the output in Table 2-2 

shows that 99.241% of copper in solution is in a soluble form, while the remainder is an 

insoluble that has formed a finite solid. 

2.1.4.2 Species distribution 

The species distribution, sometimes also called chemical speciation, refers to the 

distribution of an element amongst chemical species in a system (VanBriesen and Small 

2010). The modelling results show all the components that are dissolved in solution and 

the percentage of the total amount of each chemical species that was estimated to be 

formed (Table 2-3). For example, the output in Table 2-3 shows that 99.729% of the NO3
- 

is in the free ion form, and the remainder is split between CaNO3
+ and KNO3 (aq). 

It is important to note that while speciation modelling is useful to estimate all the possible 

compounds that are dissolved in solution, it can carry a certain degree of uncertainty 

(Nitzsche et al. 2000).  The main source of error when using modelling software comes 

from kinetic uncertainty. The model does not have the capacity to determine the reaction 

rate between species (for example, how long does it takes to form a Zn-EDTA complex), 

and while some kinetic constants have been determined for the most important chelators 

available, they have not been introduced into most of the geochemical models available 

(VanBriesen and Small 2010). 
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2.1.4.3 Amount of finite solids 

The amount of finite solids shows all solid phases that are presumed to be present 

initially or that have precipitated in the solution. All the components that are used to 

create the solid compounds are initially extracted from the aqueous phase in order to 

avoid double counting (Allison et al. 1991). Visual MINTEQ also allows for the user to 

enter initial amount of finite solids if those are previously present in the solution (as 

would be the case for lake or stream water), but for my project only aqueous compounds 

are initially included in the model because each solution was made from stock solutions 

and reverse osmosis water.  
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Table 2-2: Sample equilibrated mass distribution table as modelled by Visual 

MINTEQ 3.1. A modified Hoagland’s nutrient solution with copper at toxic levels (10 

µM) and no chelator is being modeled at pH 6. 

Component 
Total 

dissolved 

% 

dissolved 

Total 

sorbed 

% 

sorbed 

Total 

precipitated 

% 

precipitated 

Ca+2 0.001 100 0 0 0 0 

Cl-1 0.000034 100 0 0 0 0 

Cu+2 0.000010 99.994 0 0 6.4882E-10 0.006 

Fe+3 4.38E-13 0 0 0 0.00001 100 

H+1 0.000027 100 0 0 0 0 

H3BO3 0.000006 100 0 0 0 0 

K+1 0.000800 100 0 0 0 0 

Malate-2 0.000016 100 0 0 0 0 

Malonate-2 0.000021 100 0 0 0 0 

Mg+2 0.000280 100 0 0 0 0 

Mn+2 2.62E-08 1.074 0 0 0.00000242 98.926 

MoO4
-2 9.84E-08 99.345 0 0 6.4882E-10 0.655 

NH4
+1 0.000300 100 0 0 0 0 

NO3-1 0.003260 100 0 0 0 0 

Oxalate-2 3.86E-06 100 0 0 0 0 

PO4
-3 0.000097 97.58 0 0 0.00000242 2.42 

SO4
-2 0.000110 100 0 0 0 0 

Zn+2 0.000000 100 0 0 0 0 
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Table 2-3: Sample species distribution table as modelled by Visual MINTEQ 3.1. A 

modified Hoagland’s nutrient solution with copper at toxic levels (10 µM) and no 

exogenous chelator is being modeled at pH 6. 

 

Component % of total 

concentration 

Species name 

Oxalate-2 31.812 Oxalate-2 

 0.467 H-Oxalate- 

 0.572 Zn-Oxalate (aq) 

 1.554 Cu-(Oxalate)2
-2 

 19.502 Cu-Oxalate (aq) 

 26.082 Ca-Oxalate (aq) 

 19.83 Mg-Oxalate 

(aq) 

 0.056 NH4-Oxalate- 

 0.118 K-Oxalate- 

NO3
-1 99.729 NO3

-1 

 0.226 CaNO3+ 

 0.044 KNO3 (aq) 
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Chapter 3  

3 Materials and methods 

3.1 Plant selection, germination and growth conditions 

Seeds of radish (Raphanus. sativus L. cv. Crimson Giant Champion) were germinated on 

moist (distilled water) filter paper in Petri dishes and left in the dark for 24-36 hours. 

When the radicles were approximately 1 cm long, seedlings were transplanted to 15 cm 

diameter pots filled with rinsed coarse (≈1 mm) sand supplemented with nutrient solution 

at half strength. The nutrient solution was a modified Hoagland solution that contained 

the compounds mentioned in table 2.1. Sand culture was necessary until the seedlings 

were large enough to be supported in the hydroponic system 

Seedlings were placed in a growth chamber at an air temperature 21°C, 60% relative 

humidity with a 16 hr light and 8 hr dark cycle. Daytime solution temperatures, however, 

were measured and found to be 23°C. Light intensity was 124 ± 3 mol/m2/s. After 7 

days, plants were large enough to be transferred from the sand into 1 L glass jars filled 

with aerated nutrient solution.  A black plastic lid and foam were used to support the 

plant. The jars were covered in black cloth to prevent algal growth. Plants grew in the jars 

for 3 days before adding the experimental treatments, with the main purpose of allowing 

the plants to acclimatize to their new growth conditions and prevent plant mortality 

during the first few days of treatment. Plants were harvested after a total of 18 days in the 

jars.  

3.2 Treatments 

Five chelator treatments (none, Na2EDTA, NTA, HEDTA and DTPA) (Figure 3-1) and 

four metal treatments (no extra metal, cadmium, copper and zinc), in a full factorial 

design, were used as treatments with 4 replicates per experimental treatment. All growth 

solutions contained nutrient solution (Table 2-1), which had an initial concentration of 10 

μM FeCl3.  
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The concentrations of metals used were determined by a series of preliminary 

experiments in which plants were grown as described in section 3.1 except that 0 to 100 

M CdCl2, CuSO4 or ZnCl2 were added to the nutrient solution in the 1 L jars. For each 

of the added metals, the highest concentration that caused sub-lethal symptoms of metal-

stress in the radish was 10 μM; the metal-treated plants showed chlorosis and stunted 

growth compared to the control plants, but they continued to grow over the period of 

exposure to the metals. Thus, 10 M CdCl2, CuSO4 and ZnCl2 were chosen to be the 

metal treatments that were used to determine the influence of chelators on metal 

solubility and uptake.  

Although these chelators usually complex metals in a 1:1 ratio, the ratio of exogenous 

chelators to treatments metals used was 1.1:1. Not only is this the ratio of chelator 

(EDTA) to iron in the full recipe for Hoagland’s nutrient solution (Hoagland and Arnon 

1950), but it also ensures that some iron would remain available to the plants given the 

metal treatment.  In other words, even if all of an exogenous chelator was bound to 

cadmium, copper or zinc, some chelator would remain available to complex with iron. 

Using a higher amount of chelators may hinder plant growth (Bandiera et al. 2010).  

 

Figure 3-1: Structures of chelators used in this project: A) EDTA, B) HEDTA, C) 

NTA, D) DTPA. 
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3.3 Determination of the rate of change of pH levels versus time 

The solution pH levels were measured every third day with a portable 

pH/Cond/TDS/Salinity tester (Hach Pocket Pro+ Multi 2) in order to determine the rate 

and direction of the change in pH. These measurements were necessary in order to 

determine which pH range would be modeled by Visual MINTEQ 3.1. The nutrient 

solution was not buffered with any additives. Solution levels were not replenished to the 

original one liter and evaporation was considered to be negligible due to the lid and foam 

cover preventing water from escaping the container. A reduction of the nutrient’s solution 

level was considered normal as the plant requires its uptake to perform its normal 

processes. Bacterial growth determination 

In order to verify the absence of bacteria, which may degrade or produce organic 

chelators, a 1 mL sample of each growth medium was collected at the end of the growth 

period and streaked onto Bacto Agar medium in a Petri dish. The plate was placed in an 

incubator at 30°C and checked after 24 to 48 hours for bacterial colonies (Hauser 2006). 

Any colonies detected would be considered as possible contamination of the solution. 

3.4 Plant biomass determination 

At harvest, plants were taken out of their jars and weighed to determine total plant fresh 

biomass. Samples were then placed in brown paper bags and left in an oven at 60°C for 1 

week, when total plant dry biomass was recorded. 

3.5 Determination of total metal uptake 

Intact radish plants were dried at 60°C for 1 week before preparing samples for ICP-MS 

(Inductively Coupled Plasma – Mass Spectroscopy) analysis. NIST SRM (National 

Institute of Standards and Technology Standard Reference Materials 1570A, spinach 

leaves; 1573A, tomato leaves; and 8412, corn stalks) samples were also dried for ICP 

analysis to determine the efficiency of the digestion procedure. Blank nitric acid samples 

were also digested and analysed to verify that there was no contamination. 
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Dried samples were hand-chopped to ~1 mm pieces and 0.1 g subsamples were weighed 

into acid-washed test tubes. Afterwards, 1 ml ultra-pure nitric acid (OmniTrace® 

Ultra™) was added to each tube and a marble was placed on top of the tube to prevent 

evaporation of acid and loss of sample during digestion. Acid digestion proceeded at 

room temperature for 24 hr, then at 90°C until the fumes were transparent (3 to 4 hr). 

After cooling to room temperature, samples filtered through a VWR 413 qualitative filter. 

Deionized water was used to rinse the test tube contents into the final test tube and the 

samples were brought down to a final volume of 25 ml. Samples were sent to ALS 

Environmental for ICP-MS analysis. Due to the influence of chelators on iron solubility, 

each of cadmium, copper, zinc and iron were measured. 

3.6 Determination of exuded organic acids in growth medium 

with a LC–ESI–TOFMS system 

3.6.1 Derivatization 

Small volume injection samples (less than 10 µL) as well as low concentration of organic 

acids in solution prevent possible detection with a regular C18 reverse phase 

chromatographic column without performing additional steps. A derivatization procedure 

was required to add benzyl rings to the carboxyl groups in organic acids to use a regular 

C18 column and obtain high robustness and detection levels.  Each 500 µL sample of the 

growth medium was taken at the end of the treatment and transferred into a 1.5 mL 

Eppendorf tube. An internal standard of citric acid adjusted to be 10 µM in the 500 µL 

sample was added to correct for possible instrument inconsistency. Samples were dried in 

a vacuum evaporation system (SpeedVac SC100, Savant) set to medium temperature for 

a period of 24-36 hours. Afterwards, 50 µL of benzyl alcohol and 30 µL of TMS 

(Trimethylsilyl)-chloride were added to the samples, and then the closed Eppendorf tubes 

were first placed in an ultrasonic bath (0°C temperature, 45 minutes) and then in a hot 

water bath (75°C, 45 minutes). The reaction was stopped by adding 150 µL of 0.3 mM 

TMAF (tetramethyl-ammonium-fluoride) and a mixture of 50% acetonitrile and 50% 

water, bringing the final volume to 500 µL.  
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3.6.2 LC–ESI–TOFMS analysis parameters and procedure 

To separate, identify and quantify exudates in the growth medium, samples (8 µl) were 

injected on a Zorbax Extend C-18 column Rapid Resolution HT (3.0×150 mm, 3-µm, 

600 Bar, Agilent Technologies) at 40°C and eluted with a gradient of CH3CN (Solvent B: 

90% CH3CN in H2O, containing 0.1% formic acid: HCOOH) in H2O (Solvent A: 

containing 0.1% HCO2H) as follows. The initial condition was 50% B in A, which was 

held for 2 minutes and sent to waste in order to prevent contamination, this was followed 

by a linear gradient to 95% solution B over 9 minutes, before returning to initial 

conditions. The flow rate was set to 0.350 ml/min, and infused into an Agilent 6230 

TOFMS through a Dual Spray ESI source with a gas temperature of 325°C flowing at 10 

L/min, and a nebulizer pressure of 40 psi. The fragmentor voltage was set to 150 V with a 

capillary voltage of 4000 V and a skimmer voltage of 65 V. The instrument was set in 

positive ESI mode. Automated internal calibration was done by injecting a reference 

mass mix containing purine and 1H,1H,3Htetrafluoropropoxyphosphazene (molecule 

with hydrogen adduct: (M+H+)=121.050873 and 922.009798 Da) continuously intro the 

ESI interface with the reference sprayer. The column was conditioned at 50% B for 8 

minutes between samples, and the organic acids were detected as their Na+ adducts [M + 

Na]+. 

3.7 Modelling 

Visual MINTEQ 3.1 was used as the modelling software. Parameters selected for this 

project are detailed in Chapter 2. Input parameters included pH range, from 6 to 7, 

exogenous chelators (EDTA, HEDTA, NTA and DTPA) and compounds added in 

nutrient solution. Two sets of models were run, one including the previously mentioned 

parameters (nutrient solution and exogenous chelators), and a second one including the 

chelators that were exuded from the plants (malate, malonate, oxalate, citrate, aconitate, 

succinate and fumarate).  

3.8 Statistical analysis 

Data were analyzed using GraphPad Prism 6. The effects of the metals and chelator 

treatments on solution pH were done by using a repeated measures 2-way ANOVA 
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followed by Tukey’s post hoc test. Effects of biomass and metal concentrations on roots 

and shoots (analyzed together) were analyzed by using two-way ANOVA followed by 

Tukey’s post hoc test. The differences between treatments for the correlation of total of 

metal taken up (measured by ICP-MS) to total soluble metal as modelled by Visual 

MINTEQ 3.1 were analyzed by using one-way ANOVA followed by Tukey’s post hoc 

test. 
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Chapter 4  

4 Results 

4.1 pH versus time 

While the pH generally increased over the 15-day experimental period, the variance 

among individuals was high and increased as time went on (Figure 4-1).  

The pH of solution for the treatment with no toxic metals but with a standard dose of iron 

did not vary over time (Figure 4-1). The pH of the solutions increased up to 0.5 pH units 

by day 12 for the cadmium treatment, and 0.3 pH units for the copper and zinc 

treatments, which explains the significant interaction between time and chelator treatment 

(Appendix 2). Since pH 6.0 was the initial value, and the general trend was considered to 

be towards a more basic pH over time, a range of pH 6.0 to pH 7.0 was selected to model 

the effect of chelators on metal solubility. 
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Figure 4-1: pH change over time. Jars with modified Hoagland’s nutrient solution and 

either no metal treatment (blue circle), 10 µM CdCl2 (purple triangle), 10 µM CuSO4 

(green triangle) or 10 µM ZnCl2 (red square). pH differences between treatments were 

analyzed using a repeated measures two-way ANOVA (see Appendix 2) followed by 

Tukey’s post hoc means comparison test. Significant differences are shown only for 

treatments at day 15.  Bars represent the mean ± standard error of the mean. 

4.2 Plant biomass 

The dry weights of plants from the various metal and exogenous chelator treatments are 

shown in Figure 4-2. With only a few exceptions, plants grown with cadmium, copper or 

zinc had less biomass that the plants grown in the solution to which extra metals had not 

been added. 

Among the control samples (i.e., those with no added metal treatment), the plants with no 

exogenous chelators had 50% lower dry weight than all plants that were grown with 

chelators. Biomass of plants control plants that were given EDTA, HEDTA, NTA or 

DTPA did not statistically different from each other. 
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In plants exposed to excess copper, those given HEDTA had a 24-fold weight increase 

over the control plants, a 14-fold increase over plant grown with DTPA, a 5-fold increase 

over NTA-grown plants, and an almost 3-fold increase over EDTA samples. Chelator 

treatments did not affect the biomass of plants subject to either excess cadmium treatment 

or excess zinc treatment.  

 

 

 

Figure 4-2: Plant dry weight.  Radish were grown for 15 days in nutrient solutions 

containing no extra metal (control) or 10 µM of copper, zinc or cadmium, as well as one 

of five exogenous chelator treatments: none, EDTA, DTPA, NTA or HEDTA.  Dry 

weight between plants was compared by using two-way ANOVA followed by Tukey’s 

post hoc means comparison test (See Appendix 2). Different lower case letters indicate 

significant differences (p ≤ 0.05). Bars represent the mean ± standard error of the mean. 
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4.3 Bacterial growth 

No bacterial growth was evident on the Petri dishes with nutrient agar after 48 hours.  

4.4 Organic acids 

Of the seven different organic acids detectable by the LC–ESI–TOFMS system, only 

three were above detection limits (1 M) in the solution: malate, malonate and oxalate. 

Concentrations of exuded organic acid varied depending on the metal treatment (Figure 

4-3). In general, concentrations of exuded malate and malonate were four to five times 

higher than those of oxalate, which remained almost constant at 4 µM. 

In the control plants (Figure 4.3A), exuded malate was present in concentrations that 

ranged between 17 µM (no chelator) and 26 µM (DTPA treatment); however, two-way 

ANOVA found no effect of chelator treatment on malate exudation. Exuded malonate 

was 3-fold higher in concentration for plants from the DTPA and NTA treatments 

compared to the control, and was unaffected by either the EDTA or HEDTA treatment. 

Plants from the zinc treatment (Figure 4-3B) exuded malate into the nutrient solution in 

the range of 16-20 µM, and malate exudation was unaffected by chelator treatment. 

Exuded malonate was about 30% higher from the plants grown without a chelator than 

for plants from the EDTA, NTA and HEDTA treatments. DTPA did not affect malonate 

exudation. Plants from the copper treatment (Figure 4-3C) showed similar results, with 

malate exudation being unaffected by chelator treatments, but the total concentration of 

malate measured in the nutrient solution was as much as 20% lower than that of the 

control plants (Figure 4-3A), topping at a maximum concentration of 21 µM. Malonate 

exuded from plants in the copper treatment was about 25% less in DTPA- and NTA-

treated plants compared to the no-chelator control, and was unaffected by EDTA or 

HEDTA treatment.  

In plants from the cadmium treatment (Figure 4-3D) exudation of malate, malonate and 

oxalate were unaffected by the chelator that was present in the nutrient solution. 

However, the concentration of exuded malate was as much as 25% lower than from 

plants in the other three metal treatments (control, copper and zinc).  
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Figure 4-3: Organic acid exudates. Plants were grown in nutrient solution with A) no 

excess metal (control) or 10 M excess B) zinc, C) copper or D) cadmium. Differences in 

organic acid exudate concentration were analyzed using two-way ANOVA followed by 

Tukey’s post hoc means comparison test (See Appendix 2). Different lower case letters 

indicate significant differences (p ≤ 0.05). Bars represent the mean ± standard error of the 

mean. 
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4.5 Metal uptake 

4.5.1 Concentrations of metals in radish tissue 

The concentrations of metals taken up by radish varied depending on the treatments that 

the plants were subjected to. (Fig 4-4). 

In plants from the treatment with no excess metal (Figure 4-4A), concentrations of 

cadmium, copper and zinc did not vary with chelator treatment.  Plants from the 

treatment with no excess metal grown with the presence of NTA took approximately 75% 

more iron than plants grown with an absence of an exogenous chelator and plants with 

added EDTA. Compared to plants with added HEDTA and DTPA, plants with added 

NTA showed an increase of 110% and 175% uptake of iron respectively. 

For plants from the zinc treatment (10 µM zinc chloride) (Figure 4-4B), concentrations of 

copper did not vary with chelator treatment and concentrations of cadmium were two-

fold higher in plants treated with HEDTA or NTA. The control plants, grown with no 

chelating agent, had 179% higher concentrations of zinc than plants grown in EDTA, a 

449% higher zinc concentration than HEDTA plants and a 237% greater concentration of 

zinc than plants grown with NTA. Zinc concentrations in plants grown with DTPA did 

not differ from those in control plants, but were 148% higher than that of plants grown in 

the presence of EDTA, an almost 5-fold increase over plants grown with HEDTA, and a 

3-fold increase over plants grown with NTA. 

In the copper treatment, concentrations of cadmium and zinc were low across all chelator 

treatments (Figure 4-4C). Control plants, or plants with no chelating agent added to the 

nutrient solution, had a significantly higher uptake of copper per unit of dry mass than the 

rest of plants grown with synthetic chelating agents, having over a 6-fold increase over 

plants grown with EDTA and plants grown with NTA, an almost 24-fold increase over 

plants grown with HEDTA, and an almost 4-fold increase over plants grown with DTPA. 

Plants under cadmium toxicity showed no difference in cadmium uptake among plants 

grown with either no chelating agents, EDTA, HEDTA and DTPA as a chelating agent 
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(Figure 4-4D), however, plants grown with NTA had 30% less cadmium than control and 

EDTA grown plants, and 32% less than plants grown with DTPA in the nutrient solution. 

4.5.2 Total amount of metal taken up by radish  

Metal uptake by radish varied depending on the treatments that the plants were subjected 

to. As expected, cadmium was present in trace amounts in all but the cadmium treatment, 

where it was present in high concentrations (Figure 4-5) 

Plants from the treatment with no excess metal (Figure 4-5A) took up 25% less iron in 

the absence of an exogenous chelator (control) compared to plants with added NTA, but 

contained the same concentration of iron as the plants from the remaining chelator 

treatments. Zinc and copper concentrations remained unchanged regardless of the 

chelators that plants were exposed to. 

Plants from the zinc treatment (10 µM zinc chloride) showed a larger response in zinc 

uptake when they were subjected to either: no exogenous chelator or DTPA (Figure 4-

5B). DTPA-exposed plants had a two-fold increase in zinc uptake over EDTA plants, and 

an almost four-fold increase in zinc uptake over HEDTA and NTA plants. Plants from 

the ‘none’ treatment (plants that did not have access to a chelator) had 40% more zinc 

than EDTA plants, and 250% more zinc than both HEDTA and NTA plants. Iron uptake 

also proved to be higher in plants that were not exposed to exogenous chelators, as well 

as in EDTA and HEDTA plants, when compared to NTA and DTPA plants (over 400% 

more uptake). Total copper taken up was unchanged regardless of the chelator the plant 

was exposed to in the zinc (10 µM zinc chloride) treatment. 

In the copper treatment (10 µM copper sulfate) plants showed no difference in uptake of 

copper when subjected to the presence of different chelators (Figure 4-5C). Zinc uptake 

was similarly unchanged regardless of the exogenous chelator the plant was exposed to. 

Iron uptake, however, was increased by 465% in plants from the HEDTA treatment when 

compared to control. 

Plants under cadmium toxicity conditions (Figure 4-5D) contained very high 

concentrations of cadmium while at the same time showing reduced iron uptake 
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compared to plants from the other metal treatments. EDTA and HEDTA induced a 2- to 

3-fold higher uptake of cadmium compared to plants with no chelator, while the other 

chelators did not affect cadmium uptake. EDTA proved to be superior to the other 

chelators by increasing metal uptake over both NTA and DTPA treatments, by 275% and 

315%, respectively. HEDTA-treated plants also showed a 2-fold increase in cadmium 

uptake over NTA-treated plants, and a 1.5-fold increase over DTPA-treated plants. The 

uptake of the other three metals analysed did not differ among chelator treatments. It is 

important to note, however, that iron uptake was the lowest in the cadmium solution 

treatment among all four different metal treatments. 



36 

 

 

 

Figure 4-4: Concentrations of metals in radish. Plants were grown in nutrient solution 

with A) no excess metal (control) or 10 M excess B) zinc, C) copper or D) cadmium. 

Differences in concentration of metals in radish were analyzed using two-way ANOVA 

followed by Tukey’s post hoc means comparison test (See Appendix 2). Different lower 

case letters indicate significant differences (p ≤ 0.05). Bars represent the mean ± standard 

error of the mean. 
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Figure 4-5: Total metal uptake. Plants were grown in nutrient solution with A) no 

excess metal (control) or 10 M excess B) zinc, C) copper or D) cadmium. Differences in 

total metal uptake in radish were analyzed using two-way ANOVA followed by Tukey’s 

post hoc means comparison test (See Appendix 2). Different lower case letters indicate 

significant differences (p ≤ 0.05). Bars represent the mean ± standard error of the mean. 
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4.6 Visual MINTEQ 3.1 

The modelling software Visual MINTEQ 3.1 (Figures 4-6 to 4-9) did not detect 

differences in metal solubility between the original model and the models that 

incorporated the exudates obtained by LC-MS analysis (compare the left-side panels to 

those on the right side of each figure), with the exception of the copper treatment with no 

chelator in solution (Figure 4-8A-B). While the original model showed solubility of 

copper falling to 50% at pH 6.5, the model with organic acids showed this same result at 

pH 6.9, indicating greatly increased solubility of copper for a wider range of pH. The 

model without added organic acids (Figure 4-8A) also showed copper solubility at pH 7.0 

to be only 7.5% of the total copper provided, mostly due to the formation of copper 

oxides in solution. When taking into consideration exuded organic acids (Figure 4-8B), 

copper solubility increased, with 40.6% of the total copper added being soluble at pH 7.0. 

This was due to the formation of malate-copper, malonate-copper and oxalate-copper 

complexes.   

  



39 

 

 

 

Figure 4-6: Total soluble metals in control solution (solution with no metal 

treatment) as modeled by Visual MINTEQ 3.1. Solutions 6ith each of five chelator 

treatments (A, B) no chelator; (C, D) EDTA; (E, F) HEDTA; (G, H) NTA; (I, J) DTPA, 

were modelled without (on the left) and with (on the right) considering exuded organic 

acids. Points represent total soluble metal in solution.  
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Figure 4-7: Total soluble metals in solution with excess zinc as modeled by Visual 

MINTEQ 3.1. Solutions with each of five chelator treatments (A, B) no chelator; (C, D) 

EDTA; (E, F) HEDTA; (G, H) NTA; (I, J) DTPA, were modelled without (on the left) 

and with (on the right) considering exuded organic acids. Points represent total soluble 

metal in solution.  
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Figure 4-8: Total soluble metals in solution with excess copper as modeled by Visual 

MINTEQ 3.1. Solutions with each of five chelator treatments (A, B) no chelator; (C, D) 

EDTA; (E, F) HEDTA; (G, H) NTA; (I, J) DTPA, were modelled without (on the left) 

and with (on the right) considering exuded organic acids. Points represent total soluble 

metal in solution.  
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Figure 4-9: Total soluble metals in solution with excess cadmium as modeled by 

Visual MINTEQ 3.1. Solutions with each of five chelator treatments (A, B) no chelator; 

(C, D) EDTA; (E, F) HEDTA; (G, H) NTA; (I, J) DTPA, were modelled without (on the 

left) and with (on the right) considering exuded organic acids. Points represent total 

soluble metal in solution.  
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4.7 Metal taken up vs. solubility according to Visual MINTEQ 

3.1 

In order to evaluate the validity of the model, the percentage of total soluble metal 

(modelled by Visual MINTEQ 3.1) that was taken up by the plants (measured by ICP-

MS) was calculated. An even percentage within chelator treatments would indicate that 

the model could predict uptake, while differences between these treatments would 

indicate poor accuracy of the model in this scenario.  Since the focus of this project was 

using modelling software to predict uptake of certain metals under toxic conditions, 

Figure 4-10 shows only the metal of interest for each metal treatment. For the treatment 

with no metal in excess, iron is shown because chelators are known to affect iron 

solubility. In order to perform the calculations, a pH was necessary to model solubility. 

Since the range of pH varied between 6 and 7 during the duration of the experiment, a pH 

of 6.5 was selected. Final results were obtaining by dividing total amount of metal taken 

up by the total amount of soluble metal according to Visual MINTEQ 3.1 at pH 6.5.  

Results showed a higher percentage of HEDTA being taken up when compared to Visual 

MINTEQ 3.1 than the EDTA treatment in the control treatment (no excess metal) (Figure 

4-10A). Calculations for the ‘none’ treatment (no chelating agent) could not be made 

since the model predicted a 0% solubility for iron, while plants took up a certain amount 

of that metal. Results for plants being grown with excess zinc showed statistical 

differences between the DTPA and ‘none’ treatments when compared to the HEDTA and 

NTA treatments (Figure 4-10B), while no statistical difference was found within any 

treatments in plants grown with excess copper (Figure 4-10C). Results for calculations 

made for plants grown with excess cadmium showed a significant increase between 

‘none’, EDTA, HEDTA and NTA when compared to the DTPA treatment.  
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Figure 4-10: Percentage of metal taken divided by total metal solubility at pH 6.5 

according to Visual MINTEQ. Only the results for the metal of interest for each 

treatment is shown. Plants were grown in nutrient solution with A) no excess metal 

(control) or 10 M excess B) zinc, C) copper or D) cadmium. Differences in percentage 

of metal taken up by plants were analyzed using one-way ANOVA followed by Tukey’s 

post hoc means comparison test (See Appendix 2). Different lower case letters indicate 

significant differences (p ≤ 0.05). Bars represent the mean ± standard error of the mean. 

Stars represent calculations that could not be made due to mathematical limitations. 
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Chapter 5  

 

5 Discussion 

5.1 Plant biomass and organic acid exudates 

Plants that were not given chelators (’none’ treatment) should not have access to iron 

under the conditions of this experiment because iron is predominantly present as Fe3+, 

which tends to form insoluble oxides and hydroxides. Chelators are commonly used to 

increase solubility of iron and are widely used in agriculture (Sun et al. 2001) and 

modelling showed an increase in iron solubility when exogenous chelators were added to 

the nutrient solution, especially in plants with added DTPA (Figure 4.6-I,J and 4.9-I,J) As 

seen in Figure 4-2,  plants with no access to chelators in the control (no added metal 

treatment) had less biomass than plants with access to chelators. The reduced biomass 

can partially be explained by reduced iron uptake in the absence of a chelator (Figure 4-

5). The lack of response in biomass of plants from the cadmium treatments to the chelator 

treatments (Figure 4-2) may be a result of near-constant iron solubility in the growth 

solutions across the chelation treatments (Figure 4-5D). The relationships among 

biomass, chelator treatment and iron uptake for plants from the copper and zinc 

treatments were less clear. Other studies have also shown no increase in biomass upon 

addition of chelators (Habiba et al. 2014; Bloem et al. 2017).   

After 15 days of plant growth, malate and malonate were present in the nutrient solution 

in higher quantities than oxalate. Exudation of organic acids by radish has been studied 

by others, but the results have varied between two studies. In one, radish exuded high 

concentrations of succinic, malic and tartaric acid when exposed to phosphorus 

deficiency conditions (Zhang et al. 1997). In another, high concentrations of malic and 

succinic acid were exuded in response to cerium oxide nanoparticles (Zhang et al. 2017). 

The difference in the concentration of these exudates could be explained by different 

exuding responses (e.g., toxicity, improve nutrition). It is believed that the increased 

exudation of certain organic compounds under toxicity conditions may happen due to 
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increased membrane permeability that only occurs on studies with plants under toxicity 

conditions (Zhang et al. 1997) 

While it was expected that plants subjected to metal toxicity would produce higher 

exudate concentrations, control plants were the ones that had higher exudate 

concentrations.  This reduced exudation in response to excess metal could have been a 

result of metal toxicity; above a certain threshold, metals can reduce the production of 

organic exudates (Xie et al. 2013; Montiel-Rozas et al. 2016). Even if the concentrations 

of metals were not enough to induce such toxicity, the reduced biomass caused by metal 

exposure might have been a determining factor in the production of organic acids – 

smaller roots might produce less exudate, however, a correlation between plant size and 

organic acid exudate was not found. It is also possible that the plants were exuding other 

acids not measured by this project. It has been reported that plants can shift towards the 

production of monocarboxylic acids instead of di- and tricarboxylic acids when exposed 

to metal stress (Westergaard Strobel et al. 1999) 

5.2 Modelling and metal uptake 

The addition of exuded organic acids did not affect any of the four metals availability as 

determined by Visual MINTEQ modelling (Figures 4-6 to 4-9) even though organic acids 

such as malate were in concentrations as high as 30 µM (Figure 4-3). However, in some 

cases, treatment with exogenous chelators did affect metal availability. For this project, 

the concentrations of metals in plants (Figure 4-4) is of less interest than the total 

amounts of metal taken up (Figure 4.5) since the main objective was to manipulate 

chelators to maximize total metal uptake. Results from the various metal treatments, 

focusing on total metal uptake, are discussed individually below. 

5.2.1 Control treatment 

Based on plant dry weights (Figure 4-2) chelators increased biomass compared to having 

no chelator, and the DTPA-treated plants had a 20% higher biomass compared to the 

plants from the remaining chelator treatments and a 2.5-fold increase in biomass over the 

control plants.  The model predicted that the nutrient solution with no chelators or with 

exogenous NTA should have had iron (as Fe3+) completely precipitated as hematite 
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(Fe2O3), making iron unavailable for plant uptake (Appendix 3).  Uptake results, 

however, showed NTA to be the most effective chelator for improving iron uptake 

(Figure 4-5A). A possible explanation for this may be that the chemistry near the root 

apex (<1 mm) has different pH and redox conditions, allowing the plant to solubilize iron 

in this region (Williams et al. 2014). 

Several studies (Huang et al. 1997; Vassil et al. 1998; Vadas et al. 2007) have shown that 

plants may be able to take up limited amounts of chelators, which then allow plants to 

translocate metals from roots to shoots more effectively at physiological pH. NTA is the 

smallest molecule of the four chelators that were tested (Figure 3-1), so it is possible that 

higher amounts of NTA-iron complexes were taken up by the plants, allowing them to 

increase their iron uptake.  While plants with added DTPA should have had access to 

soluble iron over the entire 6 to 7 pH range, this was not reflected in the uptake results 

(Figure 4-5A). Again, the large DTPA molecule could be playing a role by chelating iron 

but then blocking uptake by the plant through the apoplastic pathway. 

5.2.2 Copper treatment 

In the copper treatment, plants provided with HEDTA had the largest biomass, which 

may be explained by the results of the ICP-MS analyses results. HEDTA-treated plants 

had a 3-fold higher iron uptake than control and a 4-fold increase in iron compared to 

DTPA-treated plants, which were not statistically different from the plants from the NTA 

and EDTA treatments.  

Exogenous chelators did not increase copper uptake (Figure 4-5C). Wei et al. (2007) also 

showed diminished copper uptake by Chrysanthemum coronarium L when exposed to 

copper toxicity. One possible explanation for the poor performance of chelators in terms 

of increasing copper availability would be if plants preferentially take up free copper ions 

(Degryse et al. 2006). The presence of chelators would reduce the free copper ion activity 

in the solution (Parker et al. 1995).   

In addition, it has been shown that chelators such as ethylenediamine-N,N'-disuccinic 

acid (EDDS) EDDS-Cu can be taken up by the nonselective apoplastic pathway (Tandy 
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et al. 2006). The Casparian strip, a highly suberized band that halts apoplastic flow, acts 

as a barrier and forces metals to cross the cell membranes of the endodermis, which 

prevents the diffusion of metals and metal-chelators from the cortex to the stele 

(Marschner 1989). In order for intact metal-chelator complex to get into the stele, it 

would be necessary for them to find a break in the root endodermis and Casparian strip. 

While it is true that these complexes may find their way around the endodermal barrier 

due to diffusion to adjacent tissues (Lane and Martin 1977), it would still reduce the 

efficiency of chelators in their task of increasing metal uptake.  

5.2.3 Zinc treatment 

For plants in the zinc treatment, DTPA outperformed the remaining chelators as well as 

the control in terms of zinc uptake. It is important to note, however, that iron uptake was 

greatly reduced in DTPA-treated plants when compared to control and EDTA plants. 

Zinc has been shown to interfere with the iron uptake mechanism (Rosen et al. 1977), 

while the possible reduction in catalase activity can interfere with the plant’s ability to 

uptake iron and other micronutrients (Agarwala et al. 1977). Other studies have shown 

higher zinc uptake in soybean (Glycine max L. cv Klaxon) and lettuce (Lactuca sativa 

CV) treated with DTPA  relative to control, and the high stability constant of DTPA 

(Appendix 1) may be aiding the extraction of zinc by these plants (Vadas et al. 2007; 

López-Rayo et al. 2015). The exact mechanism of action of DTPA on zinc uptake is, 

however, still unknown. 

5.2.4 Cadmium treatment 

Both the EDTA and HEDTA treatments increased cadmium uptake by radishes. This is in 

contrast to a study with maize that showed a reduction in cadmium content in shoots 

exposed to a cadmium toxicity treatment, which was proposed to be due to reduced Cd2+ 

activity and increased Cd-EDTA complex activity (Custos et al. 2014). On the other 

hand, a study with wavy saltbush (Atriplex undulata) and quail saltbush (Atriplex 

lentiformis) showed an increase of as much as 117% of cadmium uptake by shoots in 

response to EDTA. NTA- and DTPA-treated plants had a slightly lower biomass when 

compared to the EDTA-and HEDTA-treated plants. This is in accordance with a study 
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showing a reduction of 45% in root and 36% in shoot biomass when plants were 

subjected to EDTA (Eissa et al. 2014), which could then explain lower uptake due to 

decreased plant weight. The higher stability constant of EDTA and HEDTA for cadmium 

when compared to NTA could have played a role in increasing uptake, while the 

cadmium-DTPA stability constant could have been too high, preventing a dissociation of 

cadmium into free Cd2+ ions which are easily absorbed by the roots (Wang et al. 2007). 

5.3 Model and its relation to metal uptake 

Regarding the influence of organic acids in the model, Visual MINTEQ showed no 

effects of exuded malate, malonate and oxalate on the solubility of metals in the nutrient 

solution. Even with the organic acids acting as chelators, and present in their 

deprotonated form, their low stability constants makes it hard for them to compete for 

metals in solution, and hydroxide molecules end up being favored, creating insoluble 

oxides and hydroxides (Fangueiro et al. 2002). It appears that organic acids would have 

had a higher influence at an acidic pH, getting closer to their acid dissociation constant, 

without having to compete for metal ligands with hydroxide molecules.  

Organic acids may play a more important role in metal chelation inside the plant, most 

likely aiding detoxification by binding to metal molecules in the cytosol and transporting 

them to the vacuole. Physiological pH inside a plant cell is around 5.0, increasing the 

affinity of organic ligands for metal molecules (Mathys 1977). Organic acids also play a 

significant role in essential and non-essential nutrient transport inside the plant, with non-

essential metals such as cadmium being chelated, most likely by citrate (Rengel 2002; 

Rascio and Navari-Izzo 2011) Although not fully understood yet, there are indications 

that some toxic metals could even be transported from xylem-to-phloem without being 

unloaded into leaf blades, greatly reducing the toxic properties of these metals (Fujimaki 

et al. 2010). 

One of the most interesting results of this experiments was the low uptake of metals in 

each treatment when compared to the soluble metals that were available according to the 

model (Figure 4-10A-D). Metal uptake was below 2.5% except in the iron treatment, 

where the model predicted low solubility of iron available and plants took up a higher 
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amount than expected. This low uptake could be caused by the selectivity of membrane 

transporters, preventing metals from being taken up, as well by the effect of the 

Casparian strip acting as a physical barrier (Meyers et al. 2008; Verkleij et al. 2009). 

Higher than expected uptake, such as the one obtained in the control treatment, could be 

caused by the aid of phytosiderophores, which have been shown to aid with iron uptake 

(Romheld and Marschner 2017). 

While it is expected that plants given exogenous chelators would take up more metals, 

several studies with different chelators, including the ones analysed in this study, and 

others, including but not limited to hydroxyiminodisuccinic acid (HIDS) and 

ethylenediaminedisuccinic acid (EDDS) have shown this is not always the case (Blaylock 

et al. 1997; Walker et al. 2003; Tandy et al. 2004; Hasegawa et al. 2010). Hasegawa et al. 

(2010) showed that EDTA could increase the uptake of iron (Fe3+) in roots; however, this 

wouldn’t necessarily result in increased uptake in leaves and stems. Since leaves, shoots 

and roots were pooled in order to get enough mass for the ICP-MS analysis in my study, 

there is a possibility that the average plant metal uptake obscured differences that might 

have been found among root or shoot tissues. The production of phytosiderophores, 

which can solubilize ferric compounds for uptake by roots (Romheld and Romheld 

1987), could be responsible for the higher iron uptake than expected in plants that were 

not given chelators. As mentioned in Section 1.5, production of other compounds, 

including phenolics and other amino acids, could explain the iron uptake. 

While exogenous chelators should continue to be used to enhance phytoremediation, my 

results indicate that modelling metal-chelator interactions cannot predictably and 

consistently be used to predict the uptake of metals by plants (Figure 4-10A-D).  Indeed, 

metal uptake was proportional to the predicted amount of soluble metal only for the 

plants subjected to the excess copper treatment. Different uptake/solubility ratios indicate 

poor correlation between the model and the experimental results. While Visual MINTEQ 

3.1 is a good predictor of metal solubility and speciation, the number of interactions in a 

biological system become very difficult to predict. Kinetic uncertainty plays a big role, 

and the 1.1:1 ratio of chelator:metal may have not been enough to ensure a chelator-metal 

bond. Even though a hydroponic setup was utilized in order to reduce the number of 
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factors that could affect metal solubility and uptake by radishes, some potentially 

important variables are not taken into consideration by Visual MINTEQ 3.1. These 

include possible adsorption to the glass jars, possible production of phytosiderophores by 

radishes and how the chelators affect their production, as well as the impact of kinetic 

energy of the constant fluid movement caused by aeration of the nutrient solution. Other 

studies (Epstein et al. 1999; Cajuste et al. 2000; Walker et al. 2003; Menzies et al. 2007) 

have found poor correlations in these types of modelling exercises, with low R2 values for 

chelator concentrations and metal uptake, as well as different results with different agents 

depending on plant, metal and growth conditions. In some scenarios, other studies 

(Athalye et al. 1995; Sahut et al. 2003) have shown that chelators do not have a positive 

effect on metal uptake and, in some cases, they may even reduce metal uptake by 

reducing metal activity in the nutrient solution (Alkorta et al. 2004). 
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Chapter 6  

6 Recommendations, limitations and future work 

6.1 General recommendations 

One of the main differences among the chelators that have been used in this study is their 

degradation potential. NTA is considered “environmentally friendly” due to its capacity 

to be degraded by microbial organisms including Cohnella asacharovorans, 

Chelatobacter heintzii and Agrobacterium radiobacter (Bucheli-Witschel and Egli 2001). 

These organisms are able to utilize aminopolycarboxylic acids (APCAs), the group to 

which NTA belongs, as a sole source of carbon, nitrogen and energy (Bucheli-Witschel 

and Egli 2001). A potential for photodegradation of the Fe(III)-EDTA complex has also 

been shown; however, its persistence in EDTA-contaminated environments suggest that 

this is a slow process (Egli 2001). On the other hand, the high stability constant of DTPA 

prevents any biodegradation and photodegradation, and this complex can remain on site 

for extended periods of time (Sýkora et al. 2001; Sýkora and Pitter 2001). 

Another important factor to consider while utilizing chelators is the concentration that 

will be applied to help with phytoremediation. In hydroponics, 100 µM EDTA can cause 

toxicity and therefore reduce plant biomass (Rengel 2002), and in soil experiments it has 

been shown to cause necrotic lesions on leaves when applying a dose comparable to 550 

kg/ha (Bloem et al. 2017). Since areas where solutes can enter the xylem without crossing 

the plasmalemma membrane are larger in hydroponic roots (Bloem et al. 2017), a higher 

metal uptake is expected to occur in hydroponic conditions. Therefore, it may be 

necessary to use a conservative approach when determining how much chelator is applied 

to detoxify a certain amount of metal contamination. Increasing the chelator:metal ratio 

(for example, 2:1 or 3:1) may be appropriate, especially in hydroponics where metals 

such as zinc and copper are already soluble, but it could be necessary to conduct 

experiments to consider possible toxicity of microelements such as manganese. 

Finally, application of chelators on top of the soil may be sufficient to aid with metal 

extraction. While it may appear intuitive to add any chelator before a crop is planted, the 
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high mobility of chelators due to rain and plant absorption (Bloem et al. 2017) will allow 

them to move from the surface of the soil towards a depth of 90+ centimeters.  

In cases where there is an immediate need to increase metal absorption due to nutrient 

deficiency, foliar application of a metal-chelator would be considered a good option, 

since plants can absorb and export nutrients from the point of application to the point of 

utilization (Kannan 2010). However, this may not be an optimal approach for large 

agricultural fields.  

6.2 Recommendations per metal 

EDTA was shown to be the best chelator to improve cadmium uptake, by increasing 

metal uptake over both NTA and DTPA treatments by 275% and 315%, respectively.  

HEDTA was shown to be the second most effective. EDTA was also superior to HEDTA 

for cadmium uptake by Sesbania drummondii (Rydb.) (Ruley et al. 2006) and sunflower 

(Helianthus annuus (L.)) (Chen and Cutright 2001; Shen et al. 2002), and was more 

effective than NTA in Boehmeria nivea (L.) Gaudich (Yin et al. 2015) and Ricinus 

communis (L.) (Chhajro et al. 2016). However, EDTA was less effective than EDDS 

(S,S-ethylenediaminedisuccinic acid) (Luo et al. 2005; Luo et al. 2014), which was not 

studied in this research project. Based on my results, and the relative cost and availability 

of the different chelators, it would appear that the most effective way to increase 

cadmium uptake in radishes would be by utilizing EDTA as a chelator.  

The results for zinc solubility and uptake are not as conclusive as the cadmium results. 

While plants with exogenous DTPA had a 2-fold increase in zinc uptake over EDTA-

treated plants and a four-fold increase over HEDTA- and NTA-treated plants, this is 

contrary to other studies that showed EDTA to be more effective than DTPA in aiding 

zinc uptake in Agrostis castellana, Corrigiola telephiifolia, Vetiveria zizanioides (Chiu et 

al. 2005) and Zea mays (Pastor et al. 2007). However, my results showed a higher uptake 

of zinc by plants given DTPA, and even by control plants, than for plants given the 

EDTA treatment. These inconsistencies may have been due to the studies being done in 

different conditions (soil vs hydroponics) as well as the different concentrations of 

chelators used, ranging from 0 to 20 mmol per kilogram of soil. The high affinity 
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constant of DTPA may have played an important factor in soil studies, binding it tightly 

to other minerals present in soil, including calcium, and preventing it from being useful 

as a zinc chelator (Karak et al. 2016). In hydroponics, and according to the results of this 

study, DTPA would be a good choice in order to increase zinc update. A discussion about 

recommendations in soil will be presented in Section 6.3.  

Finally, copper solubility did not differ among any of the chelator treatments that were 

conducted. Some other studies have shown EDTA to be effective in increasing copper 

uptake in Agrostis castellana and Corrigiola telephiifolia (Pastor et al. 2007) and lettuce 

(Latuca sativa) (Vadas et al. 2007) whereas others have shown DTPA to increase copper 

uptake in lettuce (Lactuca  sativa) (Gonzalez and Alvarez 2013), and sunflower 

(Helianthus annuus), Chinese cabbage (Brassica campestris), cattails (Typha latifolia) 

and reeds (Phragmites communis) (Yeh et al. 2015). In addition, a study of copper uptake 

in  lettuce sprouts found no significant difference between EDTA and DTPA treatments 

(Inaba and Takenaka 2005). A study comparing the effects of EDTA and NTA treatment 

on copper uptake in Brassica juncea and Lolium perenne showed EDTA to be more 

effective; however, plants treated with NTA showed a high transport of copper from root 

to shoot, matching its EDTA counterpart (Johnson et al. 2009), which could be a desired 

effect when using radishes for phytoremediation. It is possible to assume that EDTA and 

NTA could yield better results for other plants, and with a longer treatment period (> 15 

days) one might see an increase in copper uptake. 

6.3 Limitations and future work 

The main objective of this research project was to determine if a modelling approach 

could be used to predict metal uptake by radishes grown in hydroponic conditions. Visual 

MINTEQ 3.1 was used as a speciation and solubility model to predict metal uptake; 

however, mixed results were found due to several reasons. Some other studies have also 

shown a poor  correlation between predicted metal uptake by using solubility and 

speciation models (Epstein et al. 1999; Cajuste et al. 2000; Menzies et al. 2007), while 

others have shown promising results (Parker et al. 1995; Schwab et al. 2008; Wen et al. 

2016). It has been determined that the pH value of the surrounding medium is the most 

important factor that determines ligand exchange and metal complex formation. Some 
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other factors, such as redox reactions, are of great importance as well for ions that have 

different oxidation states such as Fe2+ and Fe3+ (Curie et al. 2009). While Fe2+ becomes 

soluble and is available for plant uptake, Fe3+ forms precipitates that are unavailable for 

plant uptake. Kinetic factors, such as pumping air into the system, may affect the 

percentage of precipitation of these compounds in the jars. One of the main limitations of 

this research project is the lack of information about other compounds that may be 

exuded from the roots. While pH affects directly the stability of complexes formed due to 

the protonation or deprotonation of molecules, this does not necessarily translate to metal 

uptake due to the role of other molecules in solution such as peptides, including 

phytochelatins and metallothioneins, and humic acids (Freisinger 2008).   

Without knowing the concentrations of the other molecules that could act as chelators in 

solution, the accuracy of the model is reduced. However, even with access to all the 

information from these molecules, it does not guarantee that the model will show a 

perfect correlation between solubility and metal uptake by any plant, including radishes. 

This is because chelators inside the plant play a big role on metal uptake and the 

conditions of pH and redox potential inside the root may determine more accurately what 

is actually happening with the metals after they cross rhizosphere. 

For future work, it may be necessary to keep improving the model by obtaining 

information about some other organic acids such as butyrate and glutamate, which may 

also play a role in metal detoxification. This project was focused mostly on the effects of 

chelators that were exuded to the growth medium; however, the importance of these 

chelators inside the plant, mostly in the plant sap, may also be of great importance for 

increasing metal uptake. The pH inside the plant is generally more acidic than in the 

growth medium and is kept constant, which gives organic acids such as malate and citrate 

greater capacity to chelate metals with more stability and for longer, increasing their 

movement towards the vacuoles and reducing damage caused by the presence of metals 

inside the cytosol.  

In order to give a more accurate recommendation for phytoremediation in soil, it may be 

necessary to conduct an experiment with different ratios of chelator to metal, moving 
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from zero towards a 2:1 or 3:1 range, and then analyze if these chelators behave 

differently under soil conditions. It is expected for soil to produce less mobility of metals 

than hydroponics, therefore metal solubility should remain lower than in the hydroponic 

experiments. In that scenario, maximizing the amount of chelators applied to soil, while 

also avoiding chelator toxicity, would be the main objective. It will also be important to 

assess the frequency at which chelators are applied, especially NTA which is rapidly 

biodegraded (Nancharaiah et al. 2006). Leaching of chelators to below the rooting zone 

will also have to be studied under field conditions; phytoextraction will be enhanced by 

chelation only if the metals stay in close proximity to the roots. 

Although my research project gave different results compared to other studies, the use of 

modelling is an increasingly popular approach when selecting conditions to improve 

phytoremediation, mostly in soil but as well in some hydroponic (greenhouse) conditions. 

With my research results, it is not possible to recommend Visual MINTEQ as the sole 

source for predicting metal uptake by radishes; however, it is still a good aid when 

determining which chelators should be utilized to increase metal uptake.  
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Appendices 

 

Appendix 1: Table of characteristics of chelators. All four chelators used in this 

project are presented, along with their stability constants (Ueno et al. 1992), 

biodegradability (Nörtemann 2005 ), rated from low to high, and the price in $USD per 

ton (Alibaba 2017). 

Chelator characteristics 

Chelator 
Cadmium stability 

constant 
Biodegradability 

Price ($USD per 

ton) 

EDTA 16.46 Low 1500 

HEDTA 13.6 Low 2200 

NTA 9.54 High 1600 

DTPA 19.31 Low 2000 
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Appendix 2: List of statistical results obtained. All the ANOVA results from this 

research project, including their F and P values. 

 

Figure 4-1: pH change over time.  

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 1.692 12 0.141 F (12, 48) = 3.637 P = 0.0007 

Time 1.474 4 0.3686 F (4, 48) = 9.506 P < 0.0001 

Metal 0.6739 3 0.2246 F (3, 12) = 1.439 P = 0.2801 

Subjects (matching) 1.873 12 0.1561 F (12, 48) = 4.026 P = 0.0003 

Residual 1.861 48 0.03877     

Figure 4-2: Plant dry weight. 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 1.44 12 0.12 F (12, 56) = 7.288 P < 0.0001 

Metal 6.596 3 2.199 F (3, 56) = 133.5 P < 0.0001 

Days 1.546 4 0.3866 F (4, 56) = 23.48 P < 0.0001 

Residual 0.9221 56 0.01647     

Figure 4-3A: Organic acid exudates (Control). 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 313.9 8 39.24 F (8, 33) = 1.829 P = 0.1066 

Organic acid 2748 2 1374 F (2, 33) = 64.06 P < 0.0001 

Chelator 425.1 4 106.3 F (4, 33) = 4.956 P = 0.0031 

Residual 707.7 33 21.45     

Figure 4-3B: Organic acid exudates (Zinc). 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 75.01 8 9.376 F (8, 42) = 1.560 P = 0.1664 

Organic acid 2815 2 1408 F (2, 42) = 234.1 P < 0.0001 

Chelator 87.6 4 21.9 F (4, 42) = 3.642 P = 0.0123 

Residual 252.5 42 6.012     

Figure 4-3C: Organic acid exudates (Copper). 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 70.88 8 8.86 F (8, 37) = 2.704 P = 0.0189 

Organic acid 1857 2 928.7 F (2, 37) = 283.4 P < 0.0001 

Chelator 11.25 4 2.813 F (4, 37) = 0.8584 P = 0.4978 

Residual 121.2 37 3.277     

Figure 4-3D: Organic acid exudates (Cadmium). 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 33.61 8 4.201 F (8, 36) = 0.6974 P = 0.6914 

Organic acid 2297 2 1149 F (2, 36) = 190.7 P < 0.0001 

Chelator 21.6 4 5.4 F (4, 36) = 0.8964 P = 0.4762 
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Residual 216.9 36 6.025     

Figure 4-4A: Concentrations of metals in radish (Control). 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 78.91 12 6.576 F (12, 56) = 1.808 P = 0.0690 

Chelator 34.08 4 8.520 F (4, 56) = 2.343 P = 0.0659 

Metal 402.4 3 134.1 F (3, 56) = 36.88 P < 0.0001 

Residual 203.7 56 3.637   

Figure 4-4B: Concentrations of metals in radish (Zinc). 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 4047 12 337.2 F (12, 56) = 8.872 P < 0.0001 

Chelator 2124 4 530.9 F (4, 56) = 13.97 P < 0.0001 

Metal 5471 3 1824 F (3, 56) = 47.98 P < 0.0001 

Residual 2129 56 38.01   

Figure 4-4C: Concentrations of metals in radish (Copper). 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 1162 12 96.86 F (12, 52) = 4.796 P < 0.0001 

Chelator 1263 4 315.8 F (4, 52) = 15.64 P < 0.0001 

Metal 1247 3 415.7 F (3, 52) = 20.58 P < 0.0001 

Residual 1050 52 20.19   

Figure 4-4D: Concentrations of metals in radish (Cadmium). 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 484.5 12 40.37 F (12, 60) = 1.028 P = 0.4362 

Chelator 265.7 4 66.44 F (4, 60) = 1.691 P = 0.1639 

Metal 26377 3 8792 F (3, 60) = 223.8 P < 0.0001 

Residual 2357 60 39.28   

Figure 4-5A: Total metal uptake (Control). 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 78 12 6.5 F (12, 60) = 2.320 P = 0.0164 

Chelator 35.75 4 8.936 F (4, 60) = 3.190 P = 0.0193 

Metal 307.3 3 102.4 F (3, 60) = 36.56 P < 0.0001 

Residual 168.1 60 2.802     

Figure 4-5B: Total metal uptake (Zinc). 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 340.7 12 28.4 F (12, 60) = 4.930 P < 0.0001 

Chelator 85.12 4 21.28 F (4, 60) = 3.694 P = 0.0094 

Metal 651.4 3 217.1 F (3, 60) = 37.70 P < 0.0001 

Residual 345.6 60 5.76     

Figure 4-5C: Total metal uptake (Copper). 

ANOVA table SS DF MS F (DFn, DFd) P value 



74 

 

 

Interaction 15.2 12 1.266 F (12, 60) = 1.252 P = 0.2710 

Chelator 13.9 4 3.475 F (4, 60) = 3.435 P = 0.0136 

Metal 24.69 3 8.229 F (3, 60) = 8.134 P = 0.0001 

Residual 60.7 60 1.012     

Figure 4-5D: Total metal uptake (Cadmium). 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 196.7 12 16.39 F (12, 60) = 3.581 P = 0.0005 

Chelator 84.46 4 21.12 F (4, 60) = 4.614 P = 0.0026 

Metal 868.6 3 289.5 F (3, 60) = 63.26 P < 0.0001 

Residual 274.6 60 4.577     

Figure 4-10A: Percentage of metal taken divided by total metal solubility at pH 6.5 

according to Visual MINTEQ (Control) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Treatment 103948 2 51974 F (2, 9) = 9.054 P = 0.0070 

Residual 51665 9 5741   

Total 155614 11    

Figure 4-10B: Percentage of metal taken divided by total metal solubility at pH 6.5 

according to Visual MINTEQ (Zinc) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Treatment 0.03452 4 0.00863 F (4, 15) = 1.699 P = 0.2024 

Residual 0.07618 15 0.005078   

Total 0.1107 19    

Figure 4-10C: Percentage of metal taken divided by total metal solubility at pH 6.5 

according to Visual MINTEQ (Copper) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Treatment 4.988 4 1.247 F (4, 15) = 11.64 P = 0.0002 

Residual 1.608 15 0.1072   

Total 6.595 19    

Figure 4-10D: Percentage of metal taken divided by total metal solubility at pH 6.5 

according to Visual MINTEQ (Cadmium) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Treatment 2.196 4 0.5489 F (4, 15) = 3.804 P = 0.0250 

Residual 2.164 15 0.1443   

Total 4.36 19    
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Appendix 3: Solubility of iron and amount of finite solids. Solubility was calculated in 

a solution with NTA at pH 6.0 as modeled by Visual MINTEQ 3.1 

 

Component 
% 

dissolved 
% precipitated 

Fe+3 0 100 

Solid Equilibrium amount (mol/l) 

Hematite 5 

MnHPO4(s) 2.42 
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