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Abstract 

 
Background: A single unprovoked seizure occurs in up to 10% of the population. Some 

develop epilepsy, but the majority do not. Brain network changes are observed in people with 

epilepsy, but it is unknown if they are present after this first seizure. This study examines 

network connectivity after the first seizure to determine if any changes exist. 

 

Methods: Twelve patients after a single unprovoked seizure and twelve age- and sex-matched 

healthy controls were recruited.  All underwent 7T resting-state fMRI scanning.  Whole brain 

and limbic, default mode and salience network connectivity were analyzed with graph theory. 

 

Results:  Baseline characteristics were similar between groups. No network connectivity 

differences were observed between groups. 

 

Conclusions: No network connectivity differences were found between patients and controls.  

This suggests that there are not inherent connectivity differences predisposing an individual 

to seizures; however, the small sample size and considerable variability could prevent 

realization of small group differences.  

 

Keywords: first seizure, resting-state fMRI, graph theory, functional connectivity, epilepsy 
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Preface 

 

This thesis is submitted in a manuscript form, with chapter 2 constituting a publication-ready 

manuscript of this research. Chapters 1 and 3 provide additional background information and 

discussion not required for a single publication, and Appendix A also has additional 

information regarding some of the fMRI pre-processing methods. 

 

Appendix B represents an analysis performed at the request of my advisory committee, and 

did not form part of the main research project. The data had been previously collected, and I 

used what was available as an analysis-validation procedure. This analysis was intended to 

assist in determine whether the negative results seen in the study population (first seizure) 

were truly negative, or merely a result of the analysis pipeline. It was assumed that given the 

pathology seen in temporal lobe epilepsy, analysis of this data should translate into 

significant differences between groups and suggest that the negative results in my study 

population were, in fact, real.



 1 

Chapter 1  

Introduction 

 
Epilepsy is one of the most common chronic neurological diseases, with 1 in every 26 people 

experiencing epilepsy at some point in their lifetime1. The hallmark feature of epilepsy is 

recurrent unprovoked seizures. Many other cognitive and psychological features can be 

prominent in people with epilepsy (PWE). However, the occurrence of a single seizure does 

not impart a diagnosis of epilepsy.   

 

1.1 Seizures and Epilepsy 

 
Up to 10% of the general population will have a single unprovoked seizure in their lifetime2, 

but less than half of these individuals will have recurrent seizures fulfilling a diagnosis of 

epilepsy3. After a second seizure, the risk of having a third seizure increases to 76%4. 

Seizures must occur greater than 24 hours apart, as multiple seizures within a 24 hour time 

period does not increase the risk of developing epilepsy5.   

 

It is also important to distinguish unprovoked seizures from provoked seizures, which occur 

in the presence of an acute identifiable cause, which can include toxins, medications, or 

metabolic disturbances such as hyponatremia, hypoglycaemia or hypomagnesemia, to name 

just a few3. These factors can decrease the seizure threshold, making an individual more 

prone to have a seizure. Seizures occurring in this context are not considered epilepsy as they 
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do not have the same risk of recurrence: although they may recur in a similar context, in the 

absence of this provoking feature, the person is not considered to be at higher risk of 

unprovoked seizures3. Acute symptomatic seizures, which occur in the context of an acute 

brain injury, such as stroke, intracerebral haemorrhage, central nervous system infection or 

trauma, also have a different natural history.  These patients have an increased risk of 

mortality in the first 30 days following the seizure, compared to individuals with a single 

unprovoked seizure, but long-term recurrence risk and mortality were lower for the acute 

symptomatic group compared to the unprovoked group6. 

 

1.1.1 Diagnosis of Epilepsy 

Epilepsy is typically diagnosed after a person has two unprovoked seizures7 due to the very 

high risk of further seizures (76%)4. However, if a person has a greater than 60% chance of 

seizure recurrence within the next 10 years, a diagnosis of epilepsy may be given after a 

single seizure7. This typically occurs if an epilepsy syndrome can be diagnosed clinically or 

if the ancillary investigations, usually electroencephalogram (EEG) and brain magnetic 

resonance imaging (MRI) demonstrate epileptogenic abnormalities. However, the presence 

of interictal epileptiform discharges (IEDs) on EEG or an epileptogenic lesion on MRI does 

not automatically meet criteria for a diagnosis of epilepsy, and other circumstances should be 

considered before making a diagnosis of epilepsy7. 
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1.1.2 Classification of Epilepsy 

There are many different types of epilepsy, all with different symptoms, disease trajectories 

and prognosis.  The International League Against Epilepsy (ILAE) has recently updated their 

classification of seizures and epilepsy. Seizures can be generalized, originating in both 

cortical hemispheres, focal, where a limited area of cortex is involved in generating the 

seizure, or of unknown onset8. Similarly, the type of epilepsy a person has can be 

generalized, focal, generalized and focal, or unknown. This epilepsy type may be further 

classified into a particular epilepsy syndrome, such as Temporal Lobe Epilepsy (TLE), 

Sleep-Related Hypermotor Epilepsy9, or genetic generalized epilepsy (GGE)7. A select group 

of GGE can also be referred to as idiopathic generalized epilepsy (IGE)8. Numerous 

etiologies of epilepsy should also be considered in the classification, and include structural, 

metabolic, autoimmune, genetic, infectious and unknown8. 

 

1.1.3 Treatment of Epilepsy  

Once epilepsy is diagnosed, the standard of treatment is antiseizure medications to 

prevent recurrent seizures. As not everyone who has a single unprovoked seizure will 

develop epilepsy, treatment is not generally started until a diagnosis of epilepsy is 

made.  Although early treatment after a single seizure increases the time to seizure 

recurrence, it does not change chances of seizure freedom over the long term10.  

Treatment with antiseizure medications is not without risks, and there are both short 

and long term side effects that should be considered before prescribing medication 
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after a single seizure. Seven to 31% of people will experience side effects from 

antiseizure medications, and while most of the time are mild, they can be more severe10. 

This is particularly important to consider when the cause is unknown, at the seizure 

recurrence risk in these patients is only 17% at 20 months11. 

 

1.1.4 Epilepsy Comorbidities 

In addition to recurrent, unprovoked epileptic seizures, epilepsy is also recognized to have 

neurobiological, cognitive, psychological, and social effects12, which can significantly impact 

someone’s life. Some of the most common psychiatric comorbidities include mood disorders, 

with up to 60% of people experiencing depression13 and concomitant anxiety disorders may 

occur in 73% of people with depression and epilepsy14. Cognitive difficulties are also 

prevalent, particularly with childhood onset epilepsy, and even occur in children with benign 

epilepsies that they grow out of15. Certain types of epilepsy, such as Lennox-Gastaut 

syndrome, have more significant cognitive impairments. Their cognitive outcomes 

sometimes depend on the age of onset of epilepsy, with younger age of onset often resulting 

in greater cognitive difficulties13. Memory deficits are the most commonly reported cognitive 

impairments; however, deficits have also been demonstrated in language, executive function, 

intelligence and visuospatial function16. Children with epilepsy can also have impaired social 

development, and adults with epilepsy can suffer from significant social consequences, such 

as unemployment, lower socioeconomic status and isolation15. 

 

In one study after a single unprovoked seizure, no differences in quality of life between these 

patients and those with well-controlled epilepsy or hypertension were found17. After one year 
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of follow-up, a large number of patients still were fearful of having another seizure (17%) or 

felt that the one seizure had a moderate to extreme impact on their quality of life17. These 

patients also had greater healthcare utilization, with increased number of visits to their 

primary care providers, not including visits required for testing17.  

 

1.2 Functional MRI 

 
Functional MRI (fMRI) relies on the blood oxygen level dependent signal (BOLD) as a 

surrogate measure of neuronal function. The BOLD response results from the magnetic 

properties of haemoglobin: oxygenated haemoglobin is diamagnetic whereas deoxygenated 

haemoglobin is paramagnetic18. This variable property results in temporal changes to the 

magnetic field that can be imaged. This was first exploited to image the brain while 

performing tasks.  Cerebral blood flow increases to areas of increased activity, and thus 

changes to concentration of deoxygenated haemoglobin can be visualized. Cerebral blood 

flow increases greater than the consumption of oxygen or cerebral metabolic rate (CMRO2), 

and as such areas that are activated by a particular task actually show a decrease in the 

amount of deoxyhaemoglobin as a result of the increased cerebral perfusion of the activated 

area18. In task-based fMRI, the subject is provided with a stimulus, and then performs a task, 

typically motor or cognitive, based on the stimulus19.  The fluctuations in BOLD signal 

temporally related to the task represent cortical activations required to complete the task19. 
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1.2.1 Resting-state fMRI 

The field of resting-state fMRI (rs-fMRI), or task-negative fMRI, was born when low 

frequency fluctuations (<0.1 Hertz) noted in task-based fMRI studies were first described in 

1995 as having potential physiologic bases20. These low frequency fluctuations corresponded 

in morphology to those generated by a task, and believed to relate to functional connectivity. 

Strong physiological fluctuations were also observed in areas now referred to as the default 

mode network (DMN) at rest, but deactivated during tasks20,21. The DMN consists of the 

posterior cingulate cortex/precuneus, medial frontal lobes, inferior lateral parietal cortex and 

medial temporal lobes21. Since the initial studies, the field has exploded and these 

fluctuations are well accepted to be physiological in origin. 

 

Resting-state fMRI is performed while the subject is at rest, rather than performing a 

particular task. The subject will lie awake in the scanner with the eyes open or closed, and is 

asked not to think of anything in particular. An fMRI sequence is obtained during this time, 

and generally lasts between five and seven minutes, but increasing duration results in 

improved reliability22. 

 

1.3 Applying Network Theories to Neuroscience 

 

Neuroscience has classically been thought of a field where discrete brain areas perform 

distinct functions23.  However, over time and with greater understanding of the brain, distinct 

brain areas are thought to work in concert with other areas in a more dynamic and integrative 

manner, like a network.  Despite this predominating sentiment, early neuroscientists have 
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been proponents of a network theory of brain function, particularly Ramón y Cajal, whose 

microscopy techniques proposed that neurons were distinct cells that contacted others via 

close synaptic connections24. 

 

Regions in the brain are both structurally and functionally connected. While structural 

connections have been studied for many years through tract-tracing pathology studies, animal 

models, cortical thickness analyses and diffusion tensor imaging (DTI), functional networks 

are just beginning to be explored. Different brain areas communicate with each other, 

combining information from each of these areas to assist with complex cognitive tasks.25 

These functional communications form the basis of functional connectivity analyses. 

Functional connectivity (FC) is the temporal dependency between neurophysiological events 

that are spatially distant25. With rs-fMRI, FC analyses reflect the relationships of BOLD 

activations of spatially distinct areas.  Other means of studying functional networks include 

magnetoencephalography (MEG), EEG, and combined EEG-fMRI12. 

 

One of the simplest, and most frequently used methods of measuring FC is with seed-based 

correlational analysis25. In this method, a brain region, or seed, is chosen, and the fMRI time 

course is correlated with all other areas of the brain.  If there is a high correlation between the 

seed region and another region, they are said to be functionally connected. 

 

Many other methods have emerged to provide additional analyses of brain network data, 

moving towards more hypothesis free, data-driven analysis as well as analysis of the overall 

topology of the brain network25. Independent component analysis (ICA) is one frequently 
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used to isolate different brain regions that are functionally connected. ICA determines 

spatially independent component that are linear combinations of the original fMRI signal25. 

 

1.3.1 Brain Networks 

A number of consistent resting-state networks have been identified. These anatomically 

distinct areas show strong FC during rest. Many of these correspond to known functional 

networks, such as motor, auditory, visual, and executive control25 . A salience network 

consisting of anterior insula, dorsal anterior cingulate and dorsomedial thalamus has also 

been identified, which is thought to be involved in processing of emotional information26. 

However, the main network identified, and subsequently studied, is the DMN21.  

 

1.4 Graph theory 

 
Graph theory is a powerful method of analysing brain networks.  Graph theory has only been 

applied to neuroscience over the last 20 years, and can be applied at any level of study from a 

microscopic cellular level, to a macroscopic cortical areas level24.  The fundamental tenets of 

graph theory are that graphs can be represented as nodes and edges.  Any network can be 

conceptualized as a graph, with the nodes representing the areas being analyzed (e.g. 

neurons, cortical regions) and edges representing the connections between nodes. This 

provides a simple and elegant, yet mathematically robust means of characterizing complex 

networks such as the brain. 

 

In fMRI, nodes may be defined based on structural landmarks, such as cytoarchitecture or 

macroscopic landmarks (such as the motor cortex, sensory cortex, frontal eye fields, etc.), 
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voxels or random parcels of the same size24.  Once the nodes of a network have been defined, 

a connectivity matrix of the network27 is computed using the correlation coefficient between 

nodes.   

 

1.4.1 Thresholding 

Once the connectivity matrix has been formed, it is typically then thresholded.  Brain graphs 

have been found to be not fully connected28,29, and thresholding attempts to decrease the 

number of spurious connections in the connectivity matrix24. The connectivity matrix is often 

binarized prior to performing network calculations, as this provides a simpler analysis27. 

Many measures can then be employed to determine the network connectivity. 

 

The most common means of thresholding a connectivity matrix is weight-based, where a 

threshold, τ, is selected and all values below τ are given a value of zero24.   

 

Thresholding is also often commonly performed using cost, which is also referred to as 

connection density. Cost (k) is defined as  

 𝑘 =
ℇ𝜏

𝑁(𝑁−1)

2

;   0 ≤ 𝑘 ≤ 1       (1) 

where ℇ𝜏 is the number of edges at threshold τ and N is the number of nodes in the 

network30.  
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1.4.2 Graph Theory Measures  

Graph theory provides measures of both functional segregation, or the ability of the brain to 

perform specialized processing within densely interconnected brain regions, and functional 

integration, or the ability to combine this specialized information from different brain 

regions27. Measures of functional segregation include local efficiency and clustering 

coefficient and measures of functional integration include global efficiency and path length. 

 

The most basic measure in graph theory is degree.  Degree refers to the number of 

connections a node has, defined as 

  ki= ∑ aijj∈N         (2) 

where N is the set of nodes (n) within a network, aij portrays whether a link is present (aij=1) 

or absent (aij=0)27.  

 

Degree is one of many measures of centrality. Centrality refers to the importance of a node 

within a network, and important nodes will have many connections with other nodes, or high 

centrality. Betweenness centrality is one of the more sensitive measures of centrality and 

refers to the fraction of all the shortest paths in a network that travel through a particular 

node27. Nodes with high betweenness centrality often link distant parts of a network27. 

Betweenness centrality (b) can be calculated as 

  𝑏𝑖 =
1

(𝑛−1)(𝑛−2)
 ∑

𝜌ℎ𝑗(𝑖)

𝜌ℎ𝑗
ℎ,𝑗∈𝑁

ℎ≠𝑖,𝑖≠𝑗,𝑗≠ℎ

     (3) 

where 𝜌ℎ𝑗 is the number of shortest paths between nodes h and j and 𝜌ℎ𝑗(𝑖) determines the 

paths of 𝜌ℎ𝑗(𝑖) which also pass through node i. 
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Shortest path length, from which the characteristic (average) path length is derived, refers to 

the shortest geodesic distance (gi ↔j) between two nodes27. 

   𝑑𝑖𝑗 = ∑ 𝑎𝑢𝑣𝑎𝑢𝑣∈𝑔𝑖↔𝑗
       (4) 

The average path length (L) can then be calculated as follows: 

 𝐿 =
1

𝑛
∑ 𝐿𝑖𝑖∈𝑁 =

1

𝑛
∑

∑ 𝑑𝑖𝑗𝑗∈𝑁 𝑗≠𝑖

𝑛−1𝑖∈𝑁       (5) 

Where Li is the average distance between node i and all the other network nodes27. 

 

Global efficiency (E), or the total efficiency of a network, is the inverse of the characteristic 

path length27, or 

 𝐸 =
1

𝑛
∑ 𝐿𝑖𝑖∈𝑁 =

1

𝑛
∑

∑ 𝑑𝑖𝑗
−1

𝑗∈𝑁 𝑗≠𝑖

𝑛−1𝑖∈𝑁      (6) 

 

The number of triangles (t) is required to determine clustering coefficient.  This refers to a 

group of adjacent nodes that are connected to each other and form a triangle27. 

 𝑡𝑖 =
1

2
∑ 𝑎𝑖𝑗𝑗,ℎ∈𝑁 𝑎𝑖ℎ𝑎𝑗ℎ      (7) 

The clustering coefficient (C), measuring how well connected a particular node is to 

surrounding nodes, can then be calculated27 

 𝐶 =
1

𝑛
∑ 𝐶𝑖𝑖∈𝑁 =

1

𝑛
∑

2𝑡𝑖

𝑘𝑖(𝑘𝑖−1)𝑖∈𝑁      (8) 

where Ci = 0 for ki < 2. 

 

 

 



 12 

Local efficiency (Eloc), or regional efficiency of a subset of network nodes, is similar to the 

inverse of the clustering coefficient 

 𝐸𝑙𝑜𝑐 =
1

𝑛
∑ 𝐸𝑙𝑜𝑐 𝑖𝑖∈𝑁 =

1

𝑛
∑

∑ 𝑎𝑖𝑗𝑎𝑖ℎ[𝑑𝑗ℎ(𝑁𝑖)]−1
𝑗,ℎ∈𝑁 𝑗≠𝑖

𝑘𝑖(𝑘𝑖−1)𝑖∈𝑁   (9) 

where 𝑑𝑗ℎ(𝑁𝑖) is the shortest path distance between j and h which only contains neighbours 

of i. 

 

These measures can be applied for each node within the network, referred to as nodal-level 

measures, or to the brain or network of interest as a whole, where the measures for each node 

are averaged across the whole brain. 

 

1.5 Epilepsy and Networks  

 

The concept of epilepsy being a network disease is not new31,32, with the classic 

representation of seizures being an abnormal state of hypersynchronization in a circuit of 

neurons33. Previously, epilepsy was dichotomized into generalized or focal types, 

representing a generalized or localized process by which seizures arose34. More modern 

classifications of the epilepsies recognize the network nature of the disease and define focal 

epilepsies as originating in networks localized to one hemisphere and generalized epilepsies 

as originating in bilateral networks34. This classification recognizes network concepts in 

epilepsy that have emerged over the last 20 years as network theories become more broadly 

applied within neuroscience.  

 



 13 

Many different types of epilepsies have been explored with network analyses of functional 

connectivity, most commonly TLE35–39, but also GGE40–44, extratemporal focal epilepsies45–

47, epileptic encephalopathies such as Lennox-Gastaut syndrome48 and benign childhood 

epilepsies, such as Benign Epilepsy with Centro-Temporal Spikes49,50. The types of 

connectivity alterations differ depending on the type of epilepsy, but functional connectivity 

changes have been seen in all populations with epilepsy.  

 

Focal epilepsy is the most frequently studied group of epilepsies, and amongst the focal 

epilepsies, TLE is the most frequently studied disease.  Although the GGEs are also 

common, they are not studied as frequently as TLE, possibly because they are usually well 

controlled with medications.  However, GGE represents an important classification of 

epilepsy, and is distinct from focal epilepsies. The IGE’s of JME, childhood absence epilepsy 

(CAE) and generalized epilepsy with tonic-clonic seizures only are the most common GGEs 

studied. The network studies outlined below will focus on these two entities. 

 

1.5.1 Network Changes in Temporal Lobe Epilepsy 

1.5.1.1  Functional Connectivity Measures 
 

As TLE is the most common focal epilepsy, the most research has been performed in this 

population. Findings have not all been in agreement as to the distinct abnormalities found in 

TLE, but there are a wide variety of methodologies and modalities used. Hemispheric 

connectivity has been found to be altered depending on the laterality of the temporal lobe of 

onset.  For example, one study of patients with right mesial TLE found that functional 
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connectivity was decreased in the ipsilateral (right) hemisphere, but increased in the 

contralateral (left) hemisphere51. The findings of decreased functional connectivity ipsilateral 

to the seizure focus are fairly stable across studies, which have mostly performed seed-based 

correlational analyses of the mesial temporal structures22,52. These changes may be more 

severe in patients with left compared to right TLE53. It has been suggested that the increased 

connectivity found in the contralateral hemisphere may reflect compensatory mechanisms54. 

 

On a network level, a variety of different resting-state networks have been found to be altered 

in TLE, including the default mode, limbic, sensorimotor and thalamic networks22. In 

particular, the DMN has been found to have decreased connectivity51,55, particularly the 

hippocampi55. Component maps of the DMN generated from patients with TLE using ICA 

demonstrated smaller or absent clusters in the medial and lateral temporal cortex ipsilateral to 

the seizure focus40. 

 

1.5.1.2  Graph Theory Measures  
 

As with FC analyses, the results from graph theory studies of TLE have been quite variable.  

There was a meta-analysis of graph theory studies in patients with TLE included studies on 

both functional and structural networks: three rs-fMRI, three EEG, two MEG, two diffusion 

tensor imaging (DTI) and two based on cortical thickness of structural MRI. This meta-

analysis demonstrated an increased average path length (nine studies) and clustering 

coefficient (12 studies) in the TLE group when analyzing the whole brain network56. Other 

graph theory measures were not explored in this analysis. Since this meta-analysis, additional 

studies have also examined additional graph theory measures and found decreased local 
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efficiency57, and decreased centrality on a variety of measures35,57,58. In particular, one study 

found the precuneus and posterior cingulate cortex (PCC) were weaker hub regions 

compared to controls57. Unlike the meta-analysis, two recent studies found decreased 

clustering coefficient in patients compared to controls35,58.  

 

1.5.2 Network Changes in Idiopathic/Genetic Generalized Epilepsies 

1.5.2.1 Functional Connectivity Measures 

  
In the IGEs, abnormalities have principally been demonstrated in thalamocortical 

connections, particularly with the prefrontal cortex42,59, which agrees with the traditional 

concept that IGEs result from abnormal cortico-thalamic connections60.  

Connectivity between the thalamus and prefrontal cortex was decreased in these studies42,59.  

Another study in CAE performed a seed-based analysis with seeds located in the thalamus 

and medial occipital cortex42. The functional connectivity map from the seed in the thalamus 

was less extensive in the patients than controls, but greater for patients than controls when 

the seed was placed in the medial occipital cortex. 

 

DMN abnormalities have also found to be prominent in IGE. In one study CAE, decreased 

connectivity was found in the DMN, cognitive control network and affective network61. The 

DMN abnormalities seen are similar to those in seed-based analyses, with decreased 

connectivity seen in the medial prefrontal cortex61,62.  The DMN changes are greater in 

patients with TLE compared to those with IGE44. 
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1.5.2.2  Graph Theory Measures 
 

Idiopathic generalized epilepsies have not been extensively studied with graph theory. 

Patients with CAE demonstrated decreases in many network level measures including global 

and local efficiency, and absolute connection strength and clustering coefficient63.  

Corresponding nodal measures, particularly in the orbitofrontal areas, were also decreased in 

patients with CAE. In patients with JME, no global network differences were found between 

patients and controls, but on the nodal level, nodal efficiency was increased in the left 

postcentral gyrus43.  Another study in patients with generalized tonic-clonic seizures only 

found a decreased clustering coefficient for the whole network64. 

 

1.5.3 Network Changes and Duration of Epilepsy 

 

In general, the extent of network changes occurring in PWE worsens with the duration of 

disease, as well as frequency of seizures. This was demonstrated in people with TLE65,66 and 

idiopathic generalized epilepsy41,62.  In TLE, cross-hemispheric connections were decreased 

with increased duration of seizures, starting approximately 5 years after diagnosis in one rs-

fMRI functional connectivity study66. Another MEG FC study found that whole-brain 

connectivity was decreased in patients as a function of time in both patients with TLE and 

extratemporal lobe epilepsy65. In generalized epilepsy, results are not consistent between 

studies, but seed-based analyses demonstrated decreased functional connectivity with 

increasing duration of disease in between the PCC and frontal cortex62, the right medial 

frontal cortex and bilateral prefrontal areas, left medial prefrontal area and right dorsal 

prefrontal area41. Additionally there were also areas of increased functional connectivity with 
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increasing duration of disease in the PCC and bilateral anterior temporal lobes62 and left 

prefrontal cortex and left supplementary motor area41. 

 

1.5.4 Network Changes after a First Seizure  

There is only one study of FC after a first seizure, which found that there were differences in 

FC between those who went on to develop epilepsy and those who did not67. This EEG-based 

study demonstrated that patients who developed epilepsy had increased synchronization 

likelihood, an EEG measure of FC, in the theta band.  When this activity was combined with 

the presence of IEDs, the overall classification accuracy was 75%, with a specificity of 91% 

and sensitivity of 58%67. The classification accuracy deteriorated to a specificity of 70%, 

sensitivity of 58% and overall accuracy of 61% when EEGs with IEDs were excluded and 

only changes in the theta-band were present.  The decrease in sensitivity, specificity and 

accuracy found with the exclusion of IEDs is not surprising, as these patients are more likely 

to develop epilepsy, and based on the newest ILAE definition of epilepsy, would now be 

considered to have epilepsy7. As many of the abnormalities in epilepsy are paroxysmal, their 

absence could be thought to influence results; however, a recent EEG-fMRI study 

demonstrated that network alteration in BOLD signal did not significantly differ with and 

without the presence of IEDs68, suggesting these network abnormalities exist even in the 

absence of abnormal brain activity during the scan. 

 

No other study of network connectivity has been published in the first seizure population. 

One rs-fMRI has been performed in this population69; however, a network analysis was not 

performed. This study recruited patients from a first seizure clinic, and performed rs-fMRI in 
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patients with at least one confirmed seizure as well as healthy controls.  They included both 

patients after a first seizure, and those in whom epilepsy could be diagnosed at the initial 

clinic visit. Resting-state functional connectivity using fractional amplitude of low frequency 

fluctuations (fALFF) was found to be altered in patients with newly diagnosed epilepsy 

compared to patients after a first seizure and healthy controls. The fALFF method of analysis 

is a power spectral analysis of low frequency oscillations. The time series is Fourier 

transformed into spectral bands between 10-250 mHz. These low frequency oscillations are 

thought to represent neuronal activity, but is not completely understood, and their sensitivity 

is not clear at this time69. In this group, seven patients in the first seizure group subsequently 

developed epilepsy, and four of them appeared to have these altered oscillations in the slow-3 

(73-198 mHz) subband.  The authors thus proposed that fALFF could be a biomarker used to 

help identify seizure recurrence69. This study also performed a regional homogeneity (ReHo) 

analysis, which did not produce any significant results.  ReHo is a data-driven approach that 

compares the similarity between neighbouring voxels, assuming that voxels in close 

proximity are similar, and this similarity may be altered in a disease state69. 

 

In looking specifically at the single seizure patients versus controls, an overall increase in 

fALFF was found in patients, but did not reach statistical significance69. The authors noted 

there was a step-wise increase in the fALFF values at the slow-3 frequency from healthy 

controls to single seizure to new-onset epilepsy. Of note, only 35% of patients in the single 

seizure group had increased fALFF values. 
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1.6 Motivation for Current Study 

 

A single unprovoked seizure is common, and a significant source of anxiety in individuals 

and family members following its occurrence. People generally want to know the cause of 

the seizure, and in the absence of abnormalities on the EEG or structural MRI, clinicians are 

unable to provide a satisfying answer. Functional MRI may provide another diagnostic 

avenue to pursue to determine abnormalities that may lead to a diagnosis of epilepsy, or to 

reassure patients that there in nothing “wrong” functionally in their brain. 

 

This study attempts to address the question of whether there are any functional network 

alterations that occur in patients following the first unprovoked seizure using a graph 

theoretical approach. It is performed using the 7 Tesla MRI in order to take advantage of the 

increased signal-to-noise ratio while investigating a population where changes, if present, 

could be subtle and more difficult to detect with lower field imaging. 
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Chapter 2  

2.1 Abstract 

 

Background: Epilepsy is characterized by recurrent unprovoked seizures, and is one of the 

most common neurological disorders. However, a single unprovoked seizure occurs in 10% 

of the general population, and not all of these people develop epilepsy. While many changes 

in brain network connectivity have been observed in people with epilepsy, it is not known if 

they are present in individuals who have experienced a single seizure. 

 

Methods: Patients who have experienced a single, unprovoked, generalized tonic-clonic 

seizure and are between the ages of 16 and 65 were recruited and age- and sex matched with 

healthy controls. Patients could not have known EEG or neuroimaging abnormalities. 

Participants underwent MRI neuroimaging at 7 Tesla, acquiring structural and resting-state 

functional images. Data were pre-processed, thresholded and analyzed using graph theory 

measures.  

 

Results: Twelve patients and healthy controls were recruited. There were no differences in 

baseline characteristics. Network-level measures were not different between groups for 

whole brain, default mode, salience and limbic networks. No consistent nodal-level network 

changes were observed. 

 

Conclusions: No previous study has compared network connectivity after a single 

unprovoked seizure to controls. No network-level differences were found between people 
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who have had a single seizure and those who have not. This suggests that changes in network 

connectivity seen in people with epilepsy are not present after a single unprovoked seizure, 

and occur with disease progression and recurrent seizures. There are not inherent differences 

in network connectivity predisposing people to a single seizure. However, the small sample 

size and considerable variability could prevent realization of small, but significant, group 

differences.  
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2.2  Introduction 

 

A single epileptic seizure occurs in up to 10% of the general population1. An epileptic seizure 

occurs when there are transient clinical manifestations due to abnormally excessive or 

synchronous neuronal activity2. Some, but not all, of these people will go on to develop 

epilepsy. Epilepsy is typically diagnosed after two unprovoked seizures, but based on the 

most recent International League Against Epilepsy (ILAE) definition, it may be diagnosed 

after a single seizure if the person has a greater than 60% recurrence risk over ten years, 

which is similar to the recurrence risk after two or more unprovoked seizures2. This high 

recurrence rate occurs if the EEG demonstrates epileptiform discharges, the MRI shows an 

epileptogenic lesion, or an epilepsy syndrome can be diagnosed clinically2. In patients who 

do not fulfill a diagnosis of epilepsy after the first seizure, predicting which of these 

individuals will develop epilepsy is difficult. Overall, the risk of a second seizure is 42% at 

five years, but the recurrence risk is greatest early after the seizure with the risk being 24% at 

six months and 32% at one year1. 

 

Brain networks can be studied with modern neuroimaging techniques such as functional 

magnetic resonance imaging (fMRI). Resting-state fMRI (rs-fMRI), which determines brain 

functional connectivity (FC) in the absence of a task, is particularly useful in this regard. 

Several networks have been identified in resting-state studies and include motor, visual, 

frontal, and default mode3. Of particular interest is the default mode network (DMN), which 

is active primarily in the absence of tasks. The DMN functionally links the posterior 

cingulate cortex, precuneus, mesial frontal region, inferior parietal area, hippocampus and 

parahippocampal regions4. 
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There are many methods of analyzing network data, and graph theory has emerged as a 

powerful and eloquent way of modeling brain networks. Complex networks such as the brain 

can be represented as graphs and graph theory measures subsequently used to determine 

connections between different regions.  In graph theory, graphs are broken down into 

components called nodes and edges, which in functional neuroimaging represent brain 

regions and connections, respectively5. The number of edges associated with a node is called 

degree, and the relative importance of a node in the network is called betweenness 

centrality5. Global and local efficiency are measures of functional integration and 

segregation, respectively6. The clustering coefficient is similar to local efficiency, and 

represents the probability that neighbouring nodes are connected, whereas path length is 

similar to global efficiency, reflecting the distance travelled from one node to another7. Local 

and global efficiency are inversely related to clustering coefficient and path length, 

respectively, and thus a higher local efficiency results in a lower clustering coefficient. 

 

Graph theory has been applied to studying epileptic networks with a variety of methods, 

including rs-fMRI. In temporal lobe epilepsy, a meta-analysis including 12 studies (three 

using rs-fMRI) demonstrated an overall regularization of brain networks, reflecting less 

efficient network functioning compared to a healthy person8.  This was reflected through an 

increased clustering coefficient and average path length. 

 

Many studies have demonstrated network connectivity decreases with longer duration of 

epilepsy, as well as with increased frequency of seizures9–11. However, there has only been 
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one study looking at network connectivity following a single unprovoked seizure12.  This 

study examined synchronization likelihood, an EEG measure of functional connectivity, after 

a single unprovoked seizure and compared those who developed epilepsy to those who did 

not. Patients who developed epilepsy had increased synchronization likelihood in the theta 

band.  When this activity was combined with the presence of interictal epileptiform 

discharges (IEDs), the overall classification accuracy for developing epilepsy or not was 

75%, with a specificity of 91% and sensitivity of 58%12. It is worth noting, that with the 2014 

ILAE definition of epilepsy2, the patients with IEDs would now likely be considered to have 

epilepsy based on those EEG findings. When the patients with IEDs were excluded the 

specificity of the increased theta band synchronization likelihood to predict development of 

epilepsy became 70%, sensitivity 58% and overall accuracy 61%12.   

 

Recently, the first paper using rs-fMRI in patients after consultation in a first seizure clinic 

was published13. This study used rs-fMRI in patients with at least one confirmed seizure.  

They included both patients after a first seizure, and those in whom epilepsy could be 

diagnosed at the initial clinic visit. The fractional amplitude of low frequency fluctuations 

(fALFF) was found to be altered in patients with newly diagnosed epilepsy compared to 

patients after a first seizure and healthy controls13. The fALFF method of analysis is a power 

spectral analysis of low frequency oscillations. These low frequency oscillations are thought 

to represent neuronal activity, but is not completely understood, and their sensitivity is not 

clear at this time13. In the single seizure group, seven patients in the first seizure group 

subsequently developed epilepsy, and four of them appeared to have these altered 
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oscillations13.  The authors thus proposed that fALFF could be a biomarker used to help 

identify seizure recurrence13. 

 

As there is only one study of network connectivity following a single unprovoked seizure, 

this remains a largely untapped area of research in which additional information to predict 

development of epilepsy would be helpful. Previous studies have demonstrated that network 

changes occur early after the development of epilepsy, but not whether they are present at the 

beginning of the disease, or even before a diagnosis of epilepsy is made. Additionally, it is 

not known if there are any differences between people who have a single unprovoked seizure 

and those who have never had a seizure, or those who eventually develop epilepsy. 

 

2.3 Materials and Methods 

 

2.3.1 Subjects 

Patients having experienced a single, unprovoked, generalized tonic-clonic seizure, as 

determined by a neurologist, with no other significant medical comorbidities were recruited 

for the study. Participants were excluded if they had experienced a previous seizure, 

regardless of cause; therefore, no person with a remote provoked or febrile seizure was 

included. Patients in whom a diagnosis of epilepsy could be made at the initial clinic visit or 

with ancillary testing (epileptogenic MRI lesion or epileptiform discharges on EEG) were 

also excluded. Patients were age- and sex-matched with healthy controls. Patients were 

followed for development of epilepsy. 
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2.3.2 Imaging Protocol 

All participants underwent neuroimaging using a 7 Tesla MR scanner (Siemens Medical, 

Erlangen, Germany). High-resolution 3D T1-weighted sagittal anatomical images were 

obtained with a gradient echo (MP2RAGE) sequence with a 6000 ms repetition time (TR), 

2.83 ms echo time (TE), 4° flip angle, 240 mm field of view (FoV), 0.8 mm isotropic, and 

208 contiguous slices. The flat-divided T1-weighted images were used for analysis. Two 

resting-state fMRI sessions were acquired with an echoplanar imaging sequence (1250 ms 

TR, 20 ms TE, 208 mm FoV, 45° flip angle), 2 mm isotropic, 60 slices, 300 volumes, with 

multiband acceleration factor of 3, GRAPPA acceleration factor of 3 and 7/8 phase partial 

Fourier. Participants were instructed to remain awake with their eyes closed for the resting 

state sequences.  

 

2.3.3 Image Processing 

Images were pre-processed using SPM12 (UCL, UK) within the CONN toolbox14. 

Functional and structural images were realigned and normalized. The functional images 

were realigned using a 6-parameter rigid body spatial transformation.  Additional pre-

processing steps to improve functional connectivity analyses included ART-based 

scrubbing for motion correction and anatomical component-based noise correction method 

(aCompCor) to correct for noise. The ART-based scrubbing technique allows for additional 

artefact detection that improves the validity of RSFC analyses, as motion artefact has been 

shown to result in spurious RSFC changes14. In addition, aCompCor improves both the 

validity and sensitivity and specificity of FC analyses14. This is achieved through modelling 
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the influence of noise as a voxel-specific linear combination of multiple noise sources 

estimated from the variability in BOLD responses within noise ROIs14.  

 

Structural and functional images were co-registered, then registered to standard MNI space. 

The data was smoothed using a Gaussian smoothing kernel of 4 mm full width half 

maximum. Each participant’s images were segmented into 100 regions of interest (ROIs) 

using the Harvard-Oxford Atlas, and mean time courses for each ROI were extracted using 

the CONN toolbox14. Network-specific ROIs were also created using the CONN network 

ROI template, which consists of coordinates derived from ICA analyses performed with 

CONN of 497 subjects from the Human Connectome Project. Eight common resting-state 

networks are identified through these ROIs (DMN, salience network, sensorimotor network, 

frontoparietal network, dorsal attention network, visual network, and cerebellar network).  

We used the ROIs for the DMN and salience networks for our analyses, as these have been 

shown to be altered in people with epilepsy15,16. A limbic network was also created using 16 

ROIs from the Harvard-Oxford atlas, which consisted of the ROIs for bilateral hippocampus, 

anterior and posterior parahippocampal gyrus, anterior and posterior cingulate, orbitofrontal, 

insula, thalamus and nucleus accumbens. These three networks were analyzed separately and 

combined as one. The combined network was created to decrease the variability of the 

smaller parcellations17 while still limiting the analysis to the networks of interest. 

 

2.3.4 Data Analysis 

Group analyses were performed for the first seizure and control subjects using graph theory 

measures.  Local efficiency, global efficiency, average path length, clustering coefficient and 
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betweenness centrality were determined for each group using the CONN toolbox14. To 

calculate these measures, the correlation coefficient between each pair of ROIs was 

determined to create a connectivity matrix. Adjacency matrices were obtained at a variety of 

thresholds, as there is no standard threshold accepted in the literature. We applied thresholds 

of 0.15 to 0.8 in increments of 0.01 to the adjacency matrices. Each adjacency matrix was 

used to obtain graph theory measures of functional connectivity.  

 

Adjacency matrices were also calculated using cost, where the matrix is determined based on 

a fixed number of edges. As many graph theory network measures are dependent on the 

number of edges in a graph, this analysis ensures graphs patient and control group graphs are 

of equal density18. It has been shown that there can be differing intrinsic levels of 

connectivity between individuals and patient groups, which can lead to unequal comparisons 

and possible spurious results18. Cost adjacency matrices were also thresholded at costs of 

0.15 to 0.8. Cost and degree were not calculated for these adjacency matrices, as these 

measures are used to determine the thresholding of the network. 

 

All measures were determined on a network and nodal level. For nodal level results, only the 

whole brain and combined networks were analyzed as the smaller networks are more prone 

to fragmentation. 

 

The two resting state sequences were analyzed separately. The first resting state sequence 

used for initial analysis, and then compared to second for validation of results. 
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2.3.5 Statistical Analysis 

All patient characteristics and graph theory measures were compared between groups using a 

two-sample t-test to determine differences between groups. Corrections for multiple 

comparisons were performed using the false-discovery rate (FDR). For network level results, 

the FDR was calculated with each measure (7) and threshold (65). For nodal level results, 

FDR was calculated for each measure, threshold and network node (100 for whole brain, 27 

for combined networks). Standard deviation was calculated and plotted for the graph theory 

results, and effect sizes were calculated for any significant results. 

 

The Network-Based Statistic (NBS)19 was also calculated for the whole brain and combined 

networks. The NBS is a complementary tool to correct for family-wise error in network 

analysis. It makes the assumptions that there are connections between regions, and thus 

provides increased power to detect differences between groups19. 

 

2.4 Results 

 

Twelve patients and twelve age- and sex-matched healthy controls were enrolled in the study 

between August 2016 and May 2017 (Table 2.1). There were no between group differences in 

demographic information. All patients participated in the study within 47 days of the seizure 

(mean 28 days). One patient developed epilepsy, which was diagnosed after a second EEG 

demonstrated generalized epileptiform discharges. The average duration of follow-up was 6.9 

months. 
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Table 2.1 Group Characteristics 

 First Seizure (n = 12) Control (n = 12) p 

Age (years, range) 30.3 (18-56) 32.2 (21-59) 0.58 

Female (%) 6 (50%) 6 (50%) 1 

Epilepsy 1   

Time from seizure to 

MRI (days) 

28  (6-47)   

Time since seizure 

(months, range) 

6.9 (2-11)   

 

2.4.1 Global Connectivity Measures 

Global measures of whole-brain network connectivity were not different between patients 

and controls on any measure (Figure 2.1, Figure 2.2).  On a functional network level, no 

significant differences occurred in the DMN, limbic or salience networks individually or 

combined (Figure 2.3, Figure 2.4). Additionally, no differences between groups were 

detected with the NBS. 
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Figure 2.1: Network connectivity of the whole brain for the first resting-state sequence using correlation 

coefficient (A) and cost (B) to threshold. 
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Figure 2.2: Network connectivity of the whole brain for the second resting-state sequence using correlation 

coefficient (A) and cost (B) to threshold. 
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Figure 2.3: Network connectivity of the combined DMN, limbic and salience networks for the first resting-state 

sequence using correlation coefficient (A) and cost (B) to threshold. 
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Figure 2.4: Network connectivity of the combined DMN, limbic and salience networks for the first resting-state 

sequence using correlation coefficient (A) and cost (B) to threshold. 
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2.4.2 Nodal connectivity measures 

Four individual nodal measures were significant after correction for multiple comparisons; 

however, most of these were limited to a single resting-state scan. Clustering coefficient and 

local efficiency were the only measures that were significantly different between patients and 

controls (Table 2.2). When examining these results more closely, clustering coefficient and 

local efficiency could not be calculated for most of the individual patients. After each node 

reached a threshold of approximately 0.4, multiple subjects had a degree of zero at the nodes 

with statistical significance (Figure 2.5). When the degree is zero, no connections exist 

between a node and a neighbouring node. Given that the majority of the subjects had a 

degree of zero after a threshold of 0.4, the statistically significant results obtained at higher 

thresholds are likely to be spurious. 

 

Table 2.2 Significant nodal level results for the whole brain network. All significant results were calculated 

with weight-based thresholding. 

Node Measure Threshold p-unc p-FDR 
Scan 1 

   Right Lingual Gyrus Local Efficiency 0.63 <0.0001 <0.0001 

 
Clustering Coefficient 0.61, 0.63 <0.0001 <0.0001 

Scan 2 
   Left Hippocampus Local Efficiency 0.74-0.79 <0.0001 <0.0001 

 
Clustering Coefficient 0.74-0.79 <0.0001 <0.0001 

Left Lingual Gyrus Local Efficiency 0.6-0.61 <0.0001 <0.0001 

 
Clustering Coefficient 0.6-0.61 <0.0001 <0.0001 

Right Amygdala Local Efficiency 0.64 <0.0001 <0.0001 

 
Clustering Coefficient 0.64 <0.0001 <0.0001 
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Figure 2.5: Degree of nodes with significant clustering coefficient/local efficiency for patients (o) and controls 

(+), After thresholds of approximately 0.4, degree is zero in most subjects. Colours represent individual 

subjects. 

 

2.5 Discussion 

 

On a whole-brain level, no significant differences were seen between individuals after a first 

seizure or healthy controls. This suggests that there are no global alterations following a 

single unprovoked seizure.  There were also no differences between groups in the combined 

networks.  These networks were selected to be analyzed together as they are involved in 

epilepsy, and the combined analysis provided less fragmented graph theory measures over a 



 46 

wider range of thresholds as more nodes were included in the analysis. The absence of 

differences suggests the interaction of these networks is not disturbed after a first seizure. 

 

At the nodal level, a few nodes had significantly different clustering coefficient and local 

efficiency, but they lacked reproducibility, as they were different between resting-state scans.  

In addition, no significant differences were found between groups when using cost-based 

thresholding. Though statistically significant, many of the individual subject networks were 

fragmented in these analyses. Network fragmentation occurs when nodes within the network 

are disconnected and the network no longer functions as a unit20. Since no connections exist 

between some nodes, measures such as clustering coefficient and path length become 

infinity21. Network fragmentation typically occurs with very sparse networks, with low cost 

or high correlational thresholds. Fragmented nodes are excluded from the statistical analysis, 

and therefore a smaller number of subjects were analyzed in these sparse networks. There 

were only a few subjects whose clustering coefficient and local efficiency could be 

calculated at the significant thresholds. This makes between group comparisons difficult, as 

in some cases only one patient or control was being compared with one or two subjects from 

the other group, and could lead to falsely significant results. 

 

Since only one patient developed epilepsy during the study, analyses were not performed on 

this individual, as any differences seen may result from individual differences alone. Single 

subject variability has been shown to be most significant in the frontoparietal control network 

and attentional networks, with moderate variability in the DMN and minimal variability in 

the visual and sensorimotor networks22. This study demonstrated that brain areas associated 
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with higher order functions were associated with more single subject variability.  This 

suggests that applying this analysis, particularly as the networks of interest in epilepsy are 

primarily higher order networks, could produce spurious results based solely on this one 

subject’s individual variability. 

 

The lack of global alterations in network connectivity after a first seizure could also reflect 

that changes in network connectivity are not present in the approximately 60% of the 

population who experiences a single unprovoked seizure but does not go on to develop 

epilepsy. This suggests there is no inherent predisposition to seizures in these individuals, 

and network abnormalities may occur as the result of recurrent seizures. The Douw et al12 

study on functional connectivity following a single unprovoked seizure did not have a control 

group of people who have not had a seizure, and compared first seizure patients who did and 

did not develop epilepsy. We are unable to find similar significant differences in 

connectivity, as our group comparisons were different (first seizure vs. no seizure or first 

seizure with epilepsy vs. no epilepsy). If more patients develop epilepsy our patient group, a 

similar comparison may be able to be done. 

 

The other first seizure study by Gupta et al.13 did not look at functional connectivity, but 

rather BOLD frequency fluctuations. They found higher fluctuations in patients with new 

onset epilepsy compared to those with a single unprovoked seizure or healthy controls, which 

has been suggested to reflect a facilitation process of epileptic activity13. Similar to our 

results, there was no difference in patients with a single seizure compared to controls. In their 

cohort, seven patients developed epilepsy after the initial scan, and four of these had 
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increased fluctuations compared to the reference value. This should be explored further, and 

this group of patients may also have changes in functional connectivity, which could be used 

as a biomarker for subsequent development of epilepsy. 

 

As epilepsy and recurring seizures are characterized by paroxysmal events, it is possible that 

network abnormalities may only occur in the presence of the abnormal IEDs or seizures. 

However, a recent EEG-fMRI study demonstrated that network alteration in BOLD signal 

did not significantly differ with and without the presence of IEDs23, suggesting network 

abnormalities exist even in the absence of abnormal brain activity. This allows the inference 

of any network changes seen in people with epilepsy to be a result of the disease, rather than 

the presence of IEDs. Additionally, absence of IEDs during a scan should not make results 

less reliable in detecting network abnormalities. 

 

The small sample size of this study may preclude detection of any possible differences 

between groups. The two groups are likely quite similar, with minimal, if any, pathology in 

the patient group. This would require a large sample size to determine what is likely a small 

effect between groups. Other types of analyses, such as structurally based analysis using 

diffusion tensor imaging or voxel-based morphometry, among others, may also provide 

insight into this matter. 

 

There was considerable variability between the two resting state scans, which limits 

reproducibility. However, it is well known that resting state networks are highly variable 

within and between subjects22,24. It has been suggested that averaging inter-session 
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fluctuations across individuals allows for improved comparisons24. Increasing the length of 

the resting-state scan may also improve reliability in determining resting-state functional 

connectivity25. However, the length of an individual sequence has to be balanced with the 

subject’s ability to remain still and awake. 

 

The ultimate question as to whether we can use rs-fMRI as a biomarker for the development 

of epilepsy after a first seizure was not answered in this study. Although a large number of 

the patients had at least six months of follow-up, only approximately 24% of patients will 

develop epilepsy at this time point. Further patient recruitment to increase the sample size, as 

well as longer follow-up may assist in answering this question more clearly. Enrolling 

patients who do go on to develop epilepsy will be an important step in order to determine if 

there are any changes that can distinguish between those who will or will not develop 

epilepsy. This has important clinical, social and psychological impacts.   

  

2.6 Conclusions 

 

We present the first study comparing network connectivity in patients after a single 

unprovoked seizure and healthy controls. This study demonstrates that no generalized 

changes in network connectivity occur after the first seizure. This suggests that there are no 

intrinsic brain connectivity differences predisposing an individual to a single unprovoked 

seizure. However, between-group differences in this population may be small, and difficult to 

detect with such a small sample size. Additional, larger studies would be helpful in 

elucidating this further.  
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Chapter 3  

Discussion 

 

This is the first study of global network connectivity of patients after a single unprovoked 

seizure compared to healthy controls. It adds valuable information to the spectrum and 

development of network abnormalities in individuals experiencing seizures, whether it be a 

single unprovoked seizure or the eventual diagnosis of epilepsy. It also provides insight into 

possible timelines of epileptogenesis after a single seizure in people without any other 

seizure risk factors.  

 

3.1 Network level results 

 

The main finding of this study is the lack of network connectivity differences between 

individuals after a single unprovoked seizure and healthy controls on a whole-brain level. 

This suggests that there are no differences in brain function predisposing an individual to a 

seizure, or occurring as a result of the seizure.   

 

The process of epileptogenesis, or the development of tissue capable of generating 

spontaneous seizures, plus the continued progression of disease and development of 

epilepsy1, is still poorly understood. There are many animal models of epileptogenesis, but 

all of them begin with an inciting factor to produce the seizure, and thus have not studied the 

spontaneous development of seizures such as that seen in non-lesional cases of epilepsy.  The 

presence of a latent period after an epileptogenic lesion develops is a well-described 
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phenomenon. In patients, common examples of this include the development of TLE many 

years after experiencing febrile seizures or another neurological insult as a young child2 or 

development of epilepsy after a stroke or traumatic brain injury. It also occurs commonly 

with malformations of cortical development, which are due to abnormal neuronal migration, 

organization or proliferation3. Unless the malformation is extensive, seizures do not begin at 

birth, and the average age of seizure onset is usually approximately five years4, but has been 

reported as late as 61 years5. It has now been well documented that patients with epilepsy 

have network alterations6–12; therefore, the process of epileptogenesis may produce 

widespread abnormalities that allow the spontaneous generation of seizures and the other 

associated effects. The lack of abnormalities in network connectivity after the first seizure 

could suggest that epileptogenesis has not taken hold at this time. This may not be the case 

with the one patient in this who was diagnosed with epilepsy, as the diagnosis was that of 

IGE whose etiology is believed to be genetic13. Due to the variability of single subject data 

(discussed further below), this could not be further explored. Alternatively, current imaging 

methods may not be sensitive enough to detect any changes occurring this early in the 

disease, or after only a single seizure. One study found that decreased FC was not noted until 

five years after epilepsy diagnosis; however, the minimum duration of epilepsy in this study 

was four years14. 

 

The first seizure population studied here is at the lowest risk of recurrence, as no additional 

risk factors for developing epilepsy were present.  It has been suggested that in this 

population, the risk of recurrence in 20 months is only 17%15, but this is still significantly 

higher than the general population risk of developing epilepsy, which is 3.8%16.  
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3.2 Nodal Level Results 

 

The findings on a nodal level are highly variable depending on which of the two resting-state 

scans were used, and which analysis technique was performed. This could be due to a 

number of reasons, such as excessive fragmentation, inter- and intra-subject variability 

between scans, which are discussed further below. No stable result was found on the nodal 

level, suggesting that there are no reliable differences between patients and controls on any 

measure. 

 

3.3 Methodological Considerations 

 

In any functional connectivity study, there are many methodological decisions to be made 

regarding the analysis. There is not currently a gold standard of evaluation, and the ground 

truth of FC is not known, only inferred from functional imaging studies. Furthermore, more 

advanced mathematical theories such as graph theory are being applied to FC analyses as 

recognition that the brain behaves similarly to other networks with known properties 

increases. Applying these methods to neurosciences invokes some unique challenges17. 

 

3.3.1 Parcellation Scheme and Scaling 

Determining nodes for brain network analysis at the macrosystem level is variable, and 

influences the validity of the results17. There are two related factors to be considered in 

determining the size of a network: the parcellation scheme, or location and boundaries of a 
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node, and the scale, or number of nodes in the network18. There is no standard means of 

creating nodes19, and variety of techniques have been used based on structural, functional, 

voxel-based or random parcellation schemes17. Parcellations can also be created from ICA 

analyses of the data, where components derived from ICA are used for analysis20. The size of 

the parcellation can affect results, as the number of voxels can vary between ROIs, which can 

affect connectivity estimates, as they are based on mean time series of the ROI19. With larger 

ROIs, small, highly connected networks will be lost within the large ROI19. Recently, a 

multi-modal parcellation of 180 regions per hemisphere was created using information from 

T1-weighted/T2-weighted myelin content maps, cortical thickness, task-based fMRI and rs-

fMRI, in which a machine-learning classifier was able to accurately detect 96.6% of new 

subject brain areas21.  

 

Parcellation scheme also influences the scale of the network, with finer parcellations creating 

larger scale networks. The topological properties of a network varies significantly with its 

scale18. Large scale networks have less variance than networks with a smaller number of 

nodes17. Comparisons between networks of small and large scale can be quite different, with 

a network of 90 nodes having a discrepancy of 95% with a network created with 4000 

nodes18. However, there are also concerns with increasing the number of nodes, as it was 

found that rs-fMRI analyses with high parcellation schemes had an increased signal-to-noise 

ratio19. The overall topological features of the graphs remained the same regardless of the 

parcellation scheme19, suggesting that the overall topology, such as whether the network 

exhibits small-world properties, may not be affected by scale, but most other measures are18. 
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Small-worldness is a measure of overall efficiency of the network, characterized by efficient 

information transfer over short distances19.  

 

In this study, nodes for the main analysis were created on an anatomical scale using the 

Harvard-Oxford Atlas. From this atlas, 100 ROIs of cortical and subcortical grey matter were 

chosen, excluding the white matter, CSF and hemispheric labels.  Smaller network sizes, 

particularly the DMN and Salience network, which each had fewer than ten nodes, are 

difficult to analyze with graph theory, and as such individual analyses were not pursued. In 

order to maintain evaluation of networks that have been shown to be altered in epilepsy, we 

chose to perform a combined analysis of these networks, as the larger number of ROIs 

provide a larger number of nodes, which is slightly better suited for evaluation with graph 

theory. The Harvard-Oxford atlas is a standard atlas segmented into 48 cortical and 21 

subcortical areas created from manually segmented regions in MNI space 

(http://www.cma.mgh.harvard.edu/fsl_atlas.html).  There are several other atlases used for 

analyses, but the most common one is the Automated Anatomical Labelling (AAL) atlas22. 

The AAL atlas is similar to the Harvard-Oxford atlas, and contains 90 cortical and 

subcortical regions.  

 

3.3.2 Thresholding 

Another early decision to be made when applying graph theory analyses to fMRI data regards 

thresholding. Most studies perform some sort of thresholding in their analysis as the raw 

connectivity matrix may harbour false or noisy connections23. Neural connectomes are 

sparse, that is, not all nodes are connected in some way to every other node. However, the 

http://www.cma.mgh.harvard.edu/fsl_atlas.html
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ideal threshold for performing analyses is unknown, and most studies employ a range of 

thresholds to test for the ideal connectivity matrix24. Connection densities have been 

estimated in a few species, and range from 6% in the nematode Caenorhabditis elegans25, to 

66% in a macaque monkey26. It has been suggested that brain graphs have connection 

densities of less than 0.5, with a model density of approximately 0.324. Many studies of brain 

networks in epilepsy have simply used a range of thresholds27–31 in an attempt to find the 

most suitable one. 

 

One method of thresholding is by using a weight-based approach where a threshold value is 

applied to the raw connectivity matrix. Values that are above this threshold remain as part of 

the connectivity matrix, and the remainder are set to zero23. Intrinsic connectivity differences 

between patient populations can make this method of thresholding challenging if there are 

between group differences in baseline connectivity, as the majority of network measures are 

affected by the number of edges in the network32. 

 

This can be addressed using a density-based approach, where the connection density (also 

called network density or cost) is fixed33.  Density-based thresholding will result in 

connectivity matrices with a fixed number of edges, but different values for τ23. This method 

also has limitations as a network with a low average connectivity may retain spurious edges 

to obtain the specified connection density32. 

 

The most appropriate means of generating the connectivity matrix itself has been 

debated34,35, but most studies use Pearson correlation coefficients to determine correlations 
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between mean timeseries of each ROI. Partial correlation, which is similar to Pearson 

correlation, but adjusts for the presence of other nodes in the network, has also been used 

with rs-fMRI data to generate connectivity matrices. A partial correlation derived matrix 

overall performed better than the Pearson correlation matrix in one study; however, once the 

simulated network reached 50 nodes, Pearson correlation performed better34. Another study 

using rs-fMRI data (parcellated into 90 nodes) instead of simulated data found Pearson 

correlation provided more reliable topological properties than partial correlation35. This 

likely occurs because as the size of the network increases, the overall fraction of indirect 

connections decreases, and there is greater adjustment in the partial correlation from an 

increased number of nodes potentially creating a larger effect on the signal34. 

 

This study uses both weight-based and density-based methods of thresholding, 

acknowledging the limitations of both methods. There is pronounced variation between 

individuals in their connectivity matrices (Figure 3.1A), but appear quite similar when 

averaged (Figure 3.1B). Once the matrix has been binarized and thresholded, the differences 

between subjects become more obvious (Figure 3.2).  
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Figure 3.1: Unthresholded connectivity matrices for individual subjects (A) and averaged across patients and 

healthy controls (B). 
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Figure 3.2: Binarized connectivity matrices using a weight-based approach for individual subjects (A), and 

averaged across patient and healthy control groups. 

 

3.3.3 Network Integrity 

Brain graphs are inherently fragmented, as they do not have a connection density of 

100%, as previously noted with C. elegans25 and the macaque monkey26. This 

fragmentation suggests that there are multiple networks within the brain23. However, there is 

a critical point for these networks to be functional, after which they become over-fragmented 

and non-meaningful. In nodal-level analyses, network measures are calculated for each node 

independently, and some nodes can be disconnected from the network. When this happens, 

the average path length becomes infinity, making calculations of additional metrics 

problematic24. Measures such as local efficiency help with this matter, as it provides a 
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measure of fault-tolerance of the network24, or its ability to withstand losing edges. Defining 

the threshold at which fragmentation occurs is still challenging, as the true values of graph 

theory measures are not known. 

 

3.4 Intra- and Inter-Subject Variation 

 

It is well known that there is structural variation in brain structure across individuals36. 

Differences in volume, surface area and cortical thickness are often found to vary 

significantly between individuals, and this variance occurs in a coordinated fashion where 

certain brain regions have similar differences to others36. This has also been found to be true 

with functional neuroimaging studies37,38, including the current study. 

 

One MEG based study looking at the sensorimotor, auditory and visual networks found that 

there was significant variability across subjects37. A spatial similarity of 0.7 or greater 

between patients was found in 58% of the sensorimotor maps, 29% of the visual maps and 

14% of the auditory maps. In the intra-subject analysis, the sensorimotor and auditory 

networks were found to be robust, with the visual network somewhat more variable, and 

similarities between networks varied within individuals. The authors also suggested that there 

is an interaction between inter- and intra-subject variability because there was variability 

within subjects, but it was fairly predicable variations between subjects. The spatial 

similarities between and within subjects improved when optimized seed regions were used, 

rather than atlas based. Inter-subject variability also decreases when networks with larger 

scale (smaller parcellations) are used19. 
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Another study using rs-fMRI identified the inter-subject variation within seven resting-state 

networks and a set of seed ROIs38. The resting state networks included the frontoparietal 

control, ventral attention, dorsal attention, default mode, limbic, sensorimotor, and visual 

networks. A large degree of variation was noted in all networks; however, the sensorimotor 

and visual networks were the most robust, with an inter-subject variability of approximately 

0.57. The frontoparietal control network, followed by the ventral attention network had the 

most variability, and the DMN and dorsal attention networks also had variability of greater 

than 0.6. These networks with the highest variability are ones of higher cognitive functions. 

These are also the networks that are most prominently affected in PWE and are of primary 

interest in this study. 

 

3.4.1 Duration of fMRI Timeseries 

The duration of the resting-state scan has also been found to influence reliability of results, 

with studies reporting various optimal scan lengths. One early study which helped determine 

scan length for rs-fMRI studies found that for seed-based FC analyses, spurious FC 

connections in individual subjects decrease through the timeseries approximately 

proportionally to the square root of the sampling time39. After approximately 5-6 minutes of 

sampling time these spurious connections are close to asymptotic39. However, a more recent 

study suggested that a scan length of 9-13 minutes was required to improve FC estimates and 

test-retest reliability within a subject40. Specifically, increasing the scan length from six to 12 

minutes resulted in a 20% increase in the reliability40. This study also found that reliability of 

runs within the same scanning session was greater than the reliability of runs from different 
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scanning sessions40. For functional connectivity and ICA analyses, approximately 13.2 

minutes of scanning was required to attenuate the effects of temporal dynamics on 

sensitivity, specificity, reproducibility, reliability and accuracy by at least 80%41. However, if 

individual subject identification is important, 15-25 minutes or more may be required to 

obtain reliable classification accuracies42. In order to become a useful biomarker for 

neurological disease, rs-fMRI must be able to distinguish affected individuals from 

unaffected ones to provide personalized information to a particular patient, which makes this 

longer scan length extremely relevant. 

 

Graph theory measures seem to reach stabilization more quickly than seed-based ROI or ICA 

methods41,43, and shorter scan lengths may be sufficient to generate reliable results. In one 

study, measures of small-worldness, global efficiency and local efficiency were measured at 

costs of 0.1-0.5 and found to be stable after as little as 1.5-2 minutes of scanning time43. 

Another study found that the accuracy and sensitivity of the graph theory measure of local 

functional connectivity density converged around five minutes, specificity at 1.8 minutes and 

reproducibility at two minutes41. Overall, approximately 4.5 minutes of scanning was 

required to attenuate the effects of the temporal dynamics on the measure of local functional 

connectivity density for accuracy, sensitivity, specificity, reliability and reproducibility by at 

least 80%41. 

 

This study used two resting state sequences of six minutes 40 seconds duration, and found 

variability between the two scans on a group and individual level (figures 2.1 and S1). These 

scans were analysed separately to assess for validity of the single scans, rather than 
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concatenated to an approximately 14 minute timeseries. Based on previous studies41,43, this 

scan length should be long enough to produce reliable results when doing a graph theoretical 

analysis.  Network-level results were reasonably stable, with no significant differences 

between groups on any measure or either scan: these changes were only noted with the 

nodal-level results. Current studies on scan length have not addressed nodal-level results in 

graph theory specifically, and given the finding here, nodal-level results may benefit from the 

longer scan length similar to that required to obtain reliable FC measures. Additionally, these 

studies have all been performed at 3T, which may have different reliability measures than at 

7T.  

 

3.5 7T Dataset 

 

One unique feature of this study is the use of the 7T MRI for data acquisition.  Resting-state 

fMRI data is not commonly obtained at 7T in patient populations, with only two studies in 

patient populations currently published44,45. Imaging at 7T provides many advantages over 

lower field strengths, but the improved signal-to-noise ratio and shorter T2* relaxation time 

are particularly valuable in fMRI studies. However, the higher field strength also has greater 

interference by physiological noise and is more sensitive to motion artefact46–49. In particular, 

motion associated with respiration such as head movement and alteration in the magnetic 

field, can interfere with image quality46. Acquisition of high-resolution images can improve 

the temporal SNR above what would ordinarily be expected for a particular field strength46. 

Additional motion-correction techniques and acquisition parameters can also help improve 

the SNR at higher field strengths46,47. 
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3.6 Statistical Testing 

 

In graph theory, the problem of multiple comparisons is considerable. For example, in this 

study, networks consisted of 100 nodes, for each of which 5-7 graph theory measures were 

calculated at 65 different thresholds. Additionally, these values are not likely to be 

completely independent of each other23, compromising the validity of commonly used 

correction procedures such as the false-discovery rate (FDR) or Bonferroni correction. In 

particular, the FDR, which is a less stringent procedure for corrections allowing fewer false 

positives, may still be too conservative when dealing with brain network data23. It is therefore 

possible that a statistically significant result could be lost due to this procedure for correcting 

for multiple comparisons. The NBS attempts to overcome this issue by assuming that there 

are connections present in the data, and use them to improve the statistical power from what 

is possible with independent comparisons50. However, it does this at the cost of providing 

weaker control of the family-wise error, and cannot detect significance in individual 

connections, only network-level connections50. 

 

3.7 Future Directions 

 

A larger sample size would be ideal to determine if the absence of differences between 

groups is true or a function of an inadequate sample size. It may be worthwhile to consider an 

analysis with smaller parcellations, as this might provide more sensitive results. Quantitative 

analysis of the structural data with DTI, voxel-based morphometry, and cortical thickness 
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analyses may also provide insight into pathophysiology. In particular, DTI can provide 

information on structural connections between different brain areas, and thus more direct 

measures of connectivity can be calculated. 

 

With these negative results, it could be interesting to study brain connectivity in people after 

a provoked seizure. Although the cause for the seizure is iatrogenic or metabolic and seizures 

will not recur providing the cause does not return, different people will become symptomatic 

at different levels of provocation. Thus, the seizure threshold in each individual is different, 

and could reflect individual connectivity differences, but this has not been explored. 

 

Additionally, further follow-up of these patients may allow for the development of a 

biomarker for the development of epilepsy, if enough patients are recruited so that analyses 

can be performed comparing people who only have a single seizure compared to those who 

go on to develop epilepsy. 

 

3.8  Conclusions 

 

No differences in whole brain network connectivity were seen between patients after a single 

unprovoked seizure and healthy controls. This suggests that no inherent connectivity 

differences predisposing an individual to seizures are present between individuals who 

experience a single seizure and those who do not. However, these could be small and this 

study did not have the power to detect them. 
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Appendix A  

Supplemental Methods 

 

Additional information is provided on noise correction techniques. 

 

A.1 ART-based scrubbing  

(www.nitrc.org/projects/artifact_detect/) 

The quality assurance and artefact rejection software (ART), also developed by the same 

authors as the CONN toolbox, is integrated into CONN for correction of head-motion 

artefacts1. ART identifies maximum outliers in head movement and saves them as a matrix 

which can subsequently be used as confounding variables when denoising the data1. The 

scrubbing procedure implemented by ART in CONN identifies motion outliers and 

effectively removes them from the original timeseries through the addition of dummy-coding 

regressors to maintain the continuity of the timeseries. 

 

A.2 Anatomical Component-Based Noise Correction 

The anatomical component-based noise correction (aCompCor) method for noise correction 

was first described in 20072. The underlying assumption in the aCompCor method is that the 

signal found in noise voxels, such as CSF or white matter, can be used to model 

physiological fluctuations in grey matter2. BOLD fluctuations representing neural activity 

only originate from grey matter, thus any fluctuations from CSF and white matter should 

represent physiological noise, such as respiratory and cardiac signals. Voxels containing CSF 

http://www.nitrc.org/projects/artifact_detect/


 77 

or white matter determined from anatomical information, and then principal components 

analysis (PCA) is applied to further characterize the noise voxels.  

 

The CSF and white matter masks applied for aCompCor are created through principal 

component decomposition during functional and structural segmentation steps of the SPM 

preprocessing. 

 

A general linear model for grey matter voxels was applied with principal components 

determined from the noise timeseries being applied as regressors. This was found to 

accurately model physiological artefacts when compared to another noise correction 

algorithm, RETROICOR2. The application of aCompCor decreased the temporal standard 

deviation of the BOLD timeseries by 20% compared to no correction2. 

 

A.3 References 
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correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125-141. 

doi:10.1089/brain.2012.0073. 

2.  Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method 

(CompCor) for BOLD and perfusion based fMRI. Neuroimage. 2007;37(1):90-101. 

doi:10.1016/j.neuroimage.2007.04.042. 
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Appendix B  

 

B.1 TLE Data 

As a methodological validation, data previously collected from TLE patients was analyzed. 

As this patient population has been shown to have network abnormalities, it was used to 

determine if the negative results obtained from the first seizure group was a true negative 

result, or the result of a methodological flaw.  Eleven patients with TLE and healthy controls 

were selected for this analysis. 

 

B.2 Imaging Protocol 

The functional images were acquired on the Agilent 7T magnet (Santa Clara, CA, USA).  

Resting-state functional images were acquired with a repetition time of 2500 ms. One 

hundred twenty volumes were obtained.  Structural T1-weighted images were acquired with 

a MPRAGE sequence with 8.1 ms TR, 2.8 ms TE, flip angle 11°, 1 mm isotropic. 

 

The preprocessing and analysis techniques used were identical to those described for the first 

seizure group, as discussed in chapter 2.   

 

B.3 Results 

No significant differences were seen between TLE patients and healthy controls on any 

network-level measure (figure A1.1 & A1.2). On a nodal level, weight based, but not cost-

based thresholding found a significantly decreased average path length and local efficiency in 
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the left parahippocampal gyrus in the combined networks analysis (p<0.0001). This occurred 

at thresholds of 0.60-0.67.  

 

No significant results were found when using the Network Based Statistic in either the whole 

brain or combined networks. 
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Figure B.1: Network connectivity of the whole brain in TLE patients vs. healthy controls using correlation 

coefficient (A) and cost (B) to threshold. 
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Figure B.2: Network connectivity of the combined limbic, salience and default mode networks in TLE patients 

vs. healthy controls using correlation coefficient (A) and cost (B) to threshold. 
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B.4 Discussion 

In the analysis of networks most relevant in people with TLE, there was decreased 

connectivity in the left parahippocampal gyrus. This region is important in TLE, as most 

temporal lobe epilepsy involves the mesial temporal regions, of which the parahippocampal 

gyrus is a part, but particularly the hippocampus1,2. It has been shown that there is atrophy of 

extrahippocampal structures, including the parahippocampal gyrus, that correlates with the 

degree of atrophy in the hippocampus3. The parahippocampal gyrus along with the entorhinal 

cortex has been implicated in verbal memory decline following a temporal lobectomy4. 

These results reproduce previous findings of involvement of the parahippocampal in patients 

with TLE.  
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