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ABSTRACT 

With increasing food insecurity in the populated world, the number of people affected by chronic 

undernourishment is also increasing. Alone, protein energy malnutrition is linked to 6 million 

deaths annually. Despite being a good source of protein and dietary fibre, the quality of bean 

protein is limited because of sub optimal levels of essential sulfur amino acids: methionine and 

cysteine. Levels of cysteine and methionine in developing seeds have an inverse relationship 

with the non-protein sulfur amino acid S-methyl-cysteine (S-methylCys) and dipeptide -

glutamyl-S-methyl-cysteine (-Glu-S-methylCys).  

One of the strategies to improve protein quality in bean is to redirect sulfur from S-methylCys 

and -Glu-S-methylCys to the cysteine pool. In this thesis, elucidation of the unknown 

biochemical pathway of S-methylCys synthesis was accomplished using 13C and 15N labelled 

serine and cysteine, and revealed serine as the precursor of S-methylCys biosynthesis. Feeding 

developing seeds with 13C and 15N labelled methionine also suggested a role for methionine in S-

methylCys biosynthesis. In the cytosol, methanethiol released during hydrolysis of methionine 

condensed with O-acetylserine to form S-methylCys. BSAS4;1, a -substituted alanine synthase 

family member plays a key role in this reaction. BSAS4;1 is a cysteine synthase that utilizes O-

acetylserine as a carbon backbone donor and methionine as a methyl donor to synthesize S-

methylCys. In the case of -Glu-S-methylCys, another pathway seems more active, whereby 

homoglutathione is transformed into S-methylhomoglutathione and -Glu-S-methylCys is 

synthesized in the presence of a carboxypeptidase. This study identifies BSAS4;1 and 

methionine -lyase (MGL) as candidate enzymes for S-methylCys biosynthesis in common bean. 

According to the Canadian Food Inspection Agency, only the label “Good source of protein” can 

be used for beans and other legumes. In future, silencing of the S-methylCys pathway candidate 

genes or development of TILLING lines with high cysteine and methionine levels may change 

bean from a good source to an “excellent source of protein”. Ultimately, the findings of this 

thesis could provide a helping hand to overcome the food insecurity in the growing world. 
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 CHAPTER ONE - GENERAL INTRODUCTION 

Approximately 870 million of the world’s population suffer from chronic undernourishment. 

Protein energy malnutrition (PEM) is the most prevalent form of undernourishment (Habicht, 

2008). In the year 2010 alone, approximately six million deaths were attributed to protein energy 

malnutrition (http://www.fao.org/hunger/en/). Increasing food insecurity with escalating 

population and number of malnourished people has demanded an alternative solution to deal 

with quality and quantity of protein in human diet.  

To deal with PEM, human diet not only requires enough protein but also supply of some of the 

amino acids that our body cannot synthesize. These indispensable amino acids are known as 

essential amino acids. These essential amino acids include lysine, phenylalanine, valine, 

threonine, tryptophan, methionine, leucine, isoleucine and histidine. In animals another sulfur 

amino acid, cysteine is derived from methionine and has sparing effect on methionine when 

included in the diet (Ball et al., 2006). Cysteine is also among conditionally essential amino 

acids which can be limited under special pathophysiological conditions (Iqbal et al., 2006; 

Riedijk et al., 2007). Nutritional quality of a protein source is considered as good for humans 

when it covers the requirements for nitrogen and essential amino acids. The nutritional quality of 

protein differs widely depending on their essential amino acid composition and digestibility 

(Schaafsma, 2005). 

On a global basis, about 80% of food energy and about 65% of food proteins are supplied by 

plant foods. Among plant foods legumes are referred to as poor man’s meat due to their high 

protein content (Deshpande, 1992). Though plants are a good source of protein, their quality is 

affected due to deficiency or suboptimal levels of some essential amino acids (Young and Pellett, 

1994). Cereals are deficient in lysine while legumes have suboptimal levels of S amino acids: 

methionine and cysteine. Protein quality could be assessed adequately by expressing the content 

of the first limiting essential amino acid in a test protein as a percentage of the content of the 

same amino acid in a reference pattern of essential amino acids (Schaafsma, 2005; Millward et 

al., 2008) (Table 1). 

http://www.fao.org/hunger/en/
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𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 (%)  =
𝑚𝑔 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑖𝑛 1 𝑔 𝑡𝑒𝑠𝑡 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑋 100

𝑚𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑖𝑛 1 𝑔 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
 

Table 1.1 presents the amino acid requirements of different age groups provided by Food and 

Agriculture Organization/World Health Organization (FAO/WHO). Subsequently, the protein 

quality is corrected to true digestibility and presented as the Protein Digestibility-Corrected 

Amino Acid Score (PDCAAS) (Schaafsma, 2005) 

PDCAAS (%)  =
𝑚𝑔 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑖𝑛 1 𝑔 𝑡𝑒𝑠𝑡 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑋 𝑡𝑟𝑢𝑒 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (%) 𝑋 100

𝑚𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑖𝑛 1 𝑔 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
 

Values provided by FAO/WHO for the concentration of essential amino acids are used to 

calculate the amino acid score in the food proteins (Table 1.1). An amino acid score of 1 is 

related to optimal amount of essential amino acids in the food while a score smaller than 1 points 

towards a suboptimal level or deficient level (Millward, 2012).  
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Table 1.1: Required amino acid quantity (mg per g of protein) in different age group 

provided by FAO/WHO to calculate amino acid score  

Amino acids Preschool child (1-2 y)* School child (3-10 y)* Adult* 

Histidine 18 16 15 

Isoleucine 31 30 30 

leucine 63 61 59 

lysine 52 48 45 

Methionine+ 

Cysteine 

25 23 22 

Phenylalanine 

+Tyrosine 

46 41 38 

Threonine 27 25 23 

Tryptophan 7 7 6 

Valine 41 40 39 

Total 310 291 277 

*Requirement values (mg per g of protein). Preschool children (1-2 years); School child  

(3-10 years). 
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1.1 Common bean- A good source of protein 

Among all the legumes produced in the world, Phaseolus vulgaris or common bean is the most 

important edible food legume and considered as one of the best for human consumption 

(Broughton et al., 2003). It contributes 50% of the total grain legumes consumed worldwide. 

Fifteen percent of the world protein requirement is fulfilled by common bean (Kalavacharla et 

al., 2011). Common bean contributes 36% of total protein requirement of people from African 

and American regions. In some countries such as Mexico and Brazil, beans are the primary 

source of protein in human diets (Broughton et al., 2003). In the African and Latin American 

region around 300 million are dependent on bean as staple food, representing 65% of total 

protein consumed and 32% of energy (Blair et al., 2010). Along with protein, it is a major source 

of fibre (Geil and Anderson, 1994; De Ron et al., 2015). Apart from macronutrients, beans are 

rich in several important micronutrients, including potassium, magnesium, folate, iron, and zinc. 

Due to its health benefits and disease prevention properties common bean has secured its place in 

human diet (Messina, 2014; Petry et al., 2015). Health benefits from a common bean rich diet 

includes reduced risk of obesity, diabetes, cardiovascular diseases, and colon, prostate and breast 

cancer (Correa, 1981; Friedman, 1994; Hangen and Bennink, 2002; Thompson et al., 2009). 

1.2 Storage proteins 

Dried seeds of P. vulgaris are a good source of protein and their nutritional value is largely 

determined by its seed storage and other seed proteins. Common bean protein is constituted of 

three kinds of storage proteins. Globulins constitute >50% of common bean storage proteins with 

11-20% albumins and 2-4% prolamins. Globulins play a major role as protein storage sink, other 

seed proteins like lectins and cysteine-rich peptides protect the seed against pathogens or 

herbivory, while others like the lipoxygenases may impact flavor profile of beans (War et al., 

2012). Lectins, an albumin type protein, are the second most abundant seed proteins accounting 

for 5-10% of total protein (Vitale and Bollini, 1995). Lectins include erythroagglutinating 

phytohemaggutinin (Pha-E), leucoagglutinating phytohemagglutinin (Pha-L), α-amylase 

inhibitor and α-amylase inhibitor-like protein (Mirkov et al., 1994). 



 

 

5 

Storage protein globulins are comprised of two main families of storage proteins based on their 

sedimentation coefficients (S20.w): 7S or vicilin-type globulins (commonly known as vicilins) 

and the 11S or legumin-type globulins (legumins). Phaseolin, a 7S globulin is the most abundant 

seed protein in common bean which accounts for 35 to 50% of total seed nitrogen (Sathe, 2002) 

with characteristic low levels of the 11S globulin legumin, accounting approximately for 3% of 

seed protein (Muhling et al., 1997). Common bean proteins are rich in essential amino acids 

except S-amino acids. S-amino acids methionine and cysteine contribute differently to these 

storage proteins. Albumins are richer in cysteine than globulins. Among globulins phaseolin has 

a correlation with methionine concentration while cysteine resides in the non-phaseolin fraction 

(Gepts and Bliss, 1984).  

1.3 Protein quality and metabolites 

While high levels of protein, complex carbohydrate, fibre and minerals have defined common 

beans’ importance in the human diet, sub-optimal protein quality due to a low level of sulfur 

amino acids, methionine and cysteine requires a dedicated scientific approach for improvement. 

The sum of methionine and cysteine is considered a parameter to define protein quality (FAO, 

2013). Major seed proteins in common bean, 7S globulin, phaseolin and lectin 

phytohaemagglutinin, are low in methionine and cysteine which contributes to low amino acid 

score for S amino acids. On the other hand, common bean accumulates a non-protein amino acid, 

S-methylCys, up to 0.3% of total seed dry weight mainly in the form of γ-Glu dipeptide. This -

Glu dipeptide accounts for about 35% of total S-methylCys in common bean (Giada et al., 1998; 

Taylor et al., 2008). S-methylCys is a non-proteinaceous amino acid and cannot substitute for 

methionine or cysteine in the diet (Padovese et al., 2001). Another S-amino acid derivative S-

methylhomoglutathione which was previously reported in Vigna radiata also accumulates in 

common bean but at very low levels (Kasai et al., 1986; Liao et al., 2013). Chemical structures 

of the major sulfur amino acids and their derivatives reported in common bean is presented in 

Figure 1.1.  
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Figure 1.1: Chemical structures of major sulfur containing metabolites (amino acids and S-

derivatives) present in P. vulgaris. 
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1.4 Overview of sulfur metabolism in plants 

Sulfur metabolism in plants is extensively discussed in Arabidopsis and can be divided in two 

major steps: cysteine biosynthesis and cysteine catabolism. 

1.4.1 Sulfate to Cysteine 

Sulfate is the primary form of sulfur for the plants. Assimilation of sulfate in plant metabolism is 

a complex process which can be divided into three steps: (1) Entry and activation of sulfate; (2) 

Reduction of sulfate; (3) Synthesis of cysteine.  

1.4.1.1 Entry and activation of sulfate 

Entry of sulfur inside the cell is mediated by sulfate transporters (Takahashi et al., 2011b). In 

Arabidopsis twelve genes are identified which encode sulfate transporters (Takahashi et al., 

1996; Takahashi, 2010; Takahashi et al., 2011a). Sulfate transporters are divided into four 

groups based on their affinity and transporting compartment, such as low affinity transporters, 

high affinity transporters, vacuole transporters and plastid transporters (Buchner et al., 2004). 

While high and low affinity transporters help in entry of sulfate in plant tissue, compartment 

specific transporters maintain local transport within the cell. 

In a first reaction, in presence of ATP, sulfate is activated to adenosine 5'-phosphosulfate (APS) 

with the help of sulfate adenylyltransferase (ATPS, EC 2.7.7.4). Further APS can be 

phosphorylated and produce adenosine 3'-phosphate 5'-phosphosulfate (PAPS) by an APS kinase 

(APSK, EC 2.7.1.25) (Mugford et al., 2009) or reduced to sulfite (Figure 1.2A). 

1.4.1.2 Reduction of sulfate to sulfide 

Reduction of sulfate to sulfide occurs exclusively in plastids in a two-step reaction.  In the first 

reaction, APS reductase (APR) converts APS to sulfite using glutathione (GSH) as a reductant 

providing two electrons. Ferredoxin-dependent sulfite reductase (SIR) subsequently serves for 

the second step of reaction where sulfite is reduced to sulfide. (Leustek et al., 2000) (Figure 

1.2A). The equation summarizes reduction of sulfate to sulfide. 
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SO4
2- + ATP + 8e- + 8 H+ → S2- + 4 H2O + AMP + PPi 

1.4.1.3 Synthesis of cysteine  

In the final step of sulfur assimilation sulfide is incorporated in cysteine. During cysteine 

biosynthesis, the amino acid backbone is provided by serine metabolism while sulfur comes from 

sulfide. This reaction involves two enzymes: a serine acetyltransferase (SERAT, EC 2.3.1.30) 

and an O-acetylserine (thiol) lyase (OAS-TL, EC 4.2.99.8) (Figure 1.2A). SERAT catalyzes 

conversion of serine to O-acetylserine using acetyl-CoA. Second enzyme OAS-TL incorporates 

sulfur in O-acetylserine carbon backbone. Cysteine synthase complex is a heterooligomeric 

macromolecular assembly which coordinates cysteine biosynthesis along with sulfur 

assimilation. Cysteine synthase complex contains one SERAT hexamer and and two OAS-TL 

dimers. Formation of cysteine synthase complex increases SERAT activity while its dissociation 

increases OAS-TL activity (Hell et al., 2002; Bonner et al., 2005)  

OAS-TL, a cysteine synthase subfamily member, belongs to a large family of enzymes, the β-

substituted alanine synthases (BSASs). The BSAS family is comprised of true cysteine synthase 

(CS/OAS-TL) or cysteine synthase like enzymes. These cysteine synthases like enzymes are 

classified in another subfamily of BSAS known as cyanoalanine synthase (CAS). CAS subfamily 

members are involved in formation of the non-protein amino-acid β-cyanoalanine by using 

available cysteine and toxic cyanide, with the release of sulfide (Hatzfeld et al., 2000; Hell et al., 

2002). In Arabidopsis, SERAT and BSAS gene families are composed of multiple genes 

encoding isozymes that are localized in cytosol, plastids and mitochondria, where Cys 

biosynthesis can be regulated in a subcellular compartment-specific manner (Figure 1.3) (Heeg 

et al., 2008; López-Martín et al., 2008; Watanabe et al., 2008a; Watanabe et al., 2008b; Birke et 

al., 2015).  

1.4.2 Fate of Cysteine 

Cysteine assimilates available sulfur and provides an organic form which is further used as a 

precursor for several sulfur containing metabolites. Because of this, cysteine is considered as the 

major source of reduced sulfur for the nutrition of mammals and humans. Some of the fates of 
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assimilated sulfur in cysteine are methionine, glutathione, iron-sulfur clusters, molybdenum 

cofactors, vitamins (coenzyme A, lipoic acid, thiamine and biotin) and secondary compounds 

such as camalexin, glucosinolates and phytochelatins (Noctor et al., 2011; Hell and Wirtz, 2011; 

Takahashi et al., 2011b) (Figure 1.2 B, C).  

1.4.2.1 Cysteine to methionine 

Cysteine plays an important role in methionine biosynthesis as sulfur donor that is the reason 

why cysteine biosynthesis was targeted to improve methionine availability in human diet. 

Cystathionine--synthase (CGS) catalyzes the first committed step which is considered rate-

limiting for methionine biosynthesis. A condensation reaction takes place between O-

phosphohomoserine and cysteine to synthesize cystathionine. -Cleavage of cystathionine in the 

presence of cystathionine--lyase (CBL, EC 4.4.1.8) leads to homocysteine production. The last 

step of methionine biosynthesis is catalyzed by methionine synthase (MS, EC 2.1.1.14). 

Homocysteine is converted to methionine using N5-methyltetrahydrofolate as methyl donor. 

Although MS is present in the cytosol as well as in the chloroplast, the downstream product of 

methionine, S-adenosylmethionine (SAM) is reported to be synthesized in the cytosol and then 

transported to plastids by a carrier-mediated facilitated diffusion process (Ravanel et al., 2004). 

Only 20% of synthesized methionine contributes to synthesis of proteins, and the remaining 80% 

is accounted for SAM biosynthesis (Giovanelli et al., 1985). SAM acts as a universal methyl 

donor for transmethylation reaction. SAM also enters in methionine recycling by entering in the 

Yang cycle (Sauter et al., 2013). Another form of methionine derivative is S-methylmethionine 

(SMM) which is exclusive to higher plants (Ranocha et al., 2001). SMM is a mobile form of S 

transported from vegetative to reproductive organ via phloem and is involved in regeneration of 

methionine using homocysteine methyltransferases (HMTs) and methionine methyltransferase 

(MMTs) (Lee et al., 2008) (Figure 1.2B). The SMM cycle plays a vital role in defining methionine 

levels in seeds (Cohen et al., 2017a). Regulation of methionine biosynthesis differs from cysteine 

regulation which presents a challenge for improvement of S amino acid content in plants (Hesse 

et al., 2004; Galili and Amir, 2013).  
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1.4.2.2 Cysteine to glutathione 

Apart from methionine another fate of cysteine is glutathione (GSH; γ-Glu-Cys-Gly) which is a 

tripeptide and regarded as a modified form of cysteine to avoid oxidation of the sulfhydryl 

groups. The presence of glutamate and glycine at the side of cysteine results in a shift in redox 

potential for the cysteine residue and protects the sulfhydryl group against oxidation (Meyer and 

Hell, 2005; Meyer, 2008). In legumes, glutathione is present as homoglutathione (hGSH; Glu-

Cys-Ala) (Yi et al., 2010). GSH plays a critical role in homeostasis and cellular defense, 

including redox status, signal transduction and detoxification (Hell and Wirtz, 2011; Noctor et 

al., 2011). Glutathione biosynthesis takes place via γ-glutamylcysteine (γ-Glu-Cys) formed by γ-

glutamyl cysteine ligase (GCL, EC 6.3.2.2) (Leustek, 2002; Hell and Wirtz, 2011). In the second 

step, glutathione synthetase (GS; EC 6.3.2.3.) catalyzes the addition of glycine to γ-Glu-Cys to 

yield glutathione (Figure 1.2C) (Galant et al., 2011). Glutathione is a storage tripeptide which 

can be further used for synthesis of phytochelatins (PC) (Klapheck et al., 1995) (Figure 1.2C). 

Phytochelatins (PCs) are cysteine rich polypeptides which bind to heavy metals. The general 

structure of PCs is (γ-Glu-Cys)nGly where n is 2-11 (Zenk, 1996). Synthesis of PCs is catalyzed 

by phytochelatin synthase (Vatamaniuk et al., 1999). In cytosol PCs act as scavengers of toxic 

metal ions and form complexes with them. Subsequently these complexes are transported into 

the vacuole to rescue the plant cells from deleterious effect of heavy metals (Oven et al., 2001; 

Yadav, 2010). 

Apart from these metabolites some plant species also accumulate S-amino acid derivatives which 

connect back to cysteine biosynthesis. These derivatives might act as a storage sink for 

assimilated sulfur. Some of those derivatives are listed in Table 1.2. 
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Figure 1.2: General sulfur amino acid metabolism in plants. 

The area colored yellow represents cysteine biosynthesis while the two green areas represent the 

fate of cysteine. Multiple arrows represent more than one step reaction. a) Entry, activation and 

reduction of sulfate. b) Methionine biosynthesis. c) Glutathione biosynthesis. Abbreviations are 

as follows. ATP sulfurylase (ATPS): ATP:sulfate adenylyltransferase; APS reductase (APSR): 

adenosine 5'-phosphosulfate reductase; PAPS: 3'-phosphoadenosine 5'-phosphosulfate; APS 

kinase (APSK): adenosine 5'-phosphosulfate kinase; SiR: sulfite reductase; SERAT: serine 

acetyltransferase; OAS-TL: O-acetylserine thiol lyase; CGS: Cystathionine--synthase; CBL: 

Cystathioniine--lyase; MS: methionine synthase; HMT: Homocysteine methyltransferase; 

MMT: methionine methyltransferase; GCL: glutamate cysteine ligase; GS: glutathione synthetase; 

PCS: Phytochelatin synthase 
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Figure 1.3: Compartment specific role of SERAT and BSAS isoforms in sulfur metabolism. 

Cysteine biosynthesis takes place in three compartments: cytosol, plastids and mitochondria. Isoforms of SERAT and BSAS family 

members characterized in Arabidopsis are italicized. Multiple arrows represent more than one step reaction. Dotted arrows represent 

entry from outside the cell. Abbreviation- SO42-: sulfate, S2-: sulfide, Ser: serine, OAS: O-acetylserine, Cys: cysteine, Met: 

methionine, SAM: S-adenosylmethionine, SMM: S-methylmethionine, GSH: Glutathione. 



 

 

13 

Table 1.2: Sulfur amino acid derivatives reported in different plant species 

Amino acid derivatives Plant species References 

S-methylCys Phaseolus vulgaris, Vigna unguiculata, and 

Vigna radiata 

(Baldi and Salamini, 1973;Evans and Boulter, 

1975) 

S-methylCys sulfoxides Brassica species (Fales et al., 1987; Marks et al., 1992) 

γ-Glu-S-methylCys P. vulgaris, V. unguiculata, and V. radiata (Kasai et al., 1986; Giada et al., 1998) 

γ-Glutamyl-methionine Vigna mungo (Otoul et al., 1975) 

γ-Glu-S-ethenylcysteine Vicia narbonensis (Arias et al., 2005; Sanchez-Vioque et al., 2011) 

S-Alk(en)yl-cysteine 

sulfoxides 

Allium species (Jones et al., 2004; Rose et al., 2005; Yoshimoto 

et al., 2015b) 

S-Methylhomoglutathione V. radiata and P. vulgaris (Kasai et al., 1986; Liao et al., 2013) 
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1.5 Strategies to improve protein quality in legumes 

Legumes have high potential for nutritional quality improvement and S-amino acids occupy a 

central position in improvement strategies. The primary focus has been hitherto to improve 

cysteine and methionine content in seed storage proteins by transgenic development, synthetic 

protein synthesis or traditional breeding. 

Traditional breeding approaches rely on mutant lines where storage protein deficiency is 

compensated through a mechanism of proteome rebalancing, resulting in improvement of 

essential amino acid levels (Herman, 2014; Wu and Messing, 2014). The maize opaque-2 mutant 

provides such an example where the mutation affected expression of -zeins but a two fold 

increase was observed in lysine, a limiting amino acid in grains (Gibbon and Larkins, 2005). 

opaque-2 mutants are key players in the development of “Quality Protein Maize” for better 

nutritional quality maize in developing countries. In the case of soybean, a mutant line resistant 

to ethionine had 20% improvement in methionine and cysteine levels (Imsande, 2001). In 

soybean QTLs associated with sulfur amino acids methionine and cysteine were identified 

(Panthee et al., 2006a; Panthee et al., 2006b) which were later used to identify QTLs related to 

protein and oil content of soybean seeds (Van and McHale, 2017). 

Transgenic approaches focus on either creating an additional storage sink by expressing a protein 

rich in sulfur amino acids and/or manipulation of amino acid biosynthesis pathways (Amir and 

Tabe, 2006; Shewry, 2007; Ufaz and Galili, 2008; Tabe et al., 2010; Nguyen et al., 2012). For 

example, transgenic expression of Brazil nut 2S albumin (Townsend and Thomas, 1994) or 15 

kDa δ-zein has increased methionine and cysteine concentration in soybean (Dinkins et al., 

2001). In common bean, the expression of Brazil nut 2S albumin increased methionine 

concentration by 20% (Aragão et al., 1999). In Vicia narbonensis, co-expression of Brazil nut 2S 

albumin with a bacterial feedback-insensitive asparagine kinase increased methionine and 

cysteine concentrations by 100% and 20%, respectively. The increase in cysteine and methionine 

was as a result of decreases in the concentration of γ-Glu-S-ethenyl-Cys and free thiols, 

particularly γ-Glu-Cys and glutathione (Demidov et al., 2003). However, allergenic properties of 
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Brazil nut 2S albumin make it a non-preferred agent for seed protein improvement (Nordlee et 

al., 1996). Recently a synthetic protein MB-16 was produced in soybean, which resulted in an 

increase in methionine and cysteine, by 16.2 and 65.9%, respectively (Zhang et al., 2014). In 

order to manipulate the biosynthetic pathway a seed specific transgenic expression of 

Arabidopsis plastidic SERAT in lupin resulted in an increased concentration of free cysteine but 

no change in free methionine concentration, leading to a hypothesis of separate regulation of 

methionine and cysteine biosynthesis (Tabe et al., 2010). In soybean, constitutive over-

expression of a cytosolic form of O-acetylserine thiol lyase (OAS-TL), led to sustained 

enzymatic activity at the late stages of seed development and resulted in a 70% increase in total 

cysteine concentration in mature seed (Kim et al., 2012). This remarkable increase in total 

cysteine content was associated with enhanced levels of the Bowman–Birk protease inhibitor. 

Expression of methionine-insensitive form of Arabidopsis cystathionine γ-synthase (AtD-CGS), 

a first committed enzyme of methionine biosynthesis in soybean led two fold increase in 

methionine content (Song et al., 2013).  

Undoubtedly extensive knowledge of sulfur metabolism, its regulation and QTL related S-

metabolism helped to develop strategies to improve protein quality in legumes. In the near future 

shifting S-pool from non-proteinaceous S-derivatives to S-amino acids could be an effective 

strategy to improve protein quality of legumes. One such target metabolite in common bean can 

be S-methylCys. 

1.6 S-methylCys as an analogue to S-amino acids - A potential target for protein quality 

S-methylCys is a cysteine derivative which shares lower homology with methionine. Being an 

analogue to cysteine and methionine it replaces cysteine and methionine as substrate in various 

enzymatic reactions in animal and plant metabolism. In nature, it is present as S-methylCys and 

its sulfoxide and is reported to be present in Leguminosae, Brassicaceae and Alliaceae family 

members (Maw, 1982; Padovese et al., 2001; Taylor et al., 2008; Edmands et al., 2013; Kodera 

et al., 2017). A selenium derivative of cysteine, Se-methylselenocysteine was also reported in the 

genus Astragalus and is analogous to S-methylCys (Sors et al., 2005; Sors et al., 2009). In 

legumes, S-methylCys and its dipeptide -Glu-S-methylCys are present in relatively large 
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quantities as compared with other families. In P. vulgaris around 10-15 mol/g S-methylCys was 

reported in dry seeds (Zacharius, 1970; Evans and Boulter, 1975) which is higher than any other 

legumes. Taxonomic analysis of presence of S-methylCys reveals that all Phaseolus and several 

Vigna species except black gram (Vigna mungo) and adzuki bean (Vigna angularis) synthesize 

S-methylCys (Baldi and Salamini, 1973; Kasai and Larsen, 1980; Kasai et al., 1986). Along with 

pipecolic acid, S-methylCys was reported as a biomarker of common bean rich diet in human and 

mouse studies (Perera et al., 2015) 

S-MethylCys and -Glu-S-methylCys are non-proteinaceous amino acids, and accumulate 

exclusively in the seeds (Watanabe et al., 1971). Reviews on S-methylCys and its sulfoxide have 

discussed potential antidiabetic, anti-carcinogenic and antioxidant effect of S-methylCys on 

animals (Edmands et al., 2013; Akash et al., 2014; Hsia and Yin, 2015). Human bronchial 

epithelial cells treated with S-methylCys had reduced ROS generation when treated with H2O2 

which helped in maintenance of glutathione redox cycle in cells (Hsia and Yin, 2015) . On the 

other hand, many earlier studies have reported anti-nutritional effects of S-methylCys 

(Benevenga et al., 1976; Case and Benevanga, 1976; Padovese et al., 2001). Rats fed with casein 

and S-methylcys supplemented diets had reduced food intake and weight gain which was 

associated with enlargement of the kidney (Benevenga et al., 1976; Padovese et al., 2001). 

In common bean, S-methylCys and -Glu-S-methylCys content share inverse relationship with 

cysteine and methionine content. Two genetically related lines SMARC1-PN1 and SMARC1N-

PN1 are deficient in major storage proteins, phaseolin and lectin while SARC1 has a variant of 

arcelin-1 (Osborn et al., 2003). Storage protein deficiency is correlated with increased cysteine 

and methionine content in SMARC1-PN1 and SMARC1N-PN1. In these genetically related 

lines, increases in cysteine and methionine by 70% and 10%, respectively, were observed at the 

expense of the non-protein amino acid S-methylCys (Taylor et al., 2008). 

Despite recent progress towards elucidating the biosynthetic pathway of cysteine and its fate in 

plant tissue, little is known about the biosynthesis of S-methylCys or -Glu-S-methylCys. Allium 

genus members, onion (Allium cepa) and garlic (Allium sativum) accumulate S-methylCys as a 

sulfoxide and biosynthesis is initiated by S-alkylation of GSH (Turnbull et al., 1980; Lancaster et 
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al., 1989; Jones et al., 2007; Yoshimoto et al., 2015a; Yoshimoto et al., 2015b). Production of S-

methylCys in Arabidopsis cell cultures was reported to be associated with methionine catabolism 

(Giovanelli et al., 1980; Re´beille et al., 2006). In radish, the relatively high recovery of 

radioactivity in methyl cysteine sulfoxide after radiolabelled cysteine or methyl-labelled 

methionine application indicated that S-methylCys is formed by direct methylation of cysteine 

(Thompson and Gering, 1966). In Astragalus species the synthesis of Se-methylselenocysteine is 

activated by Se-methyltransferase (SMT) by using either S-adenosylmethionine (SAM) or S-

methylmethionine (SMM) as methyl sources (Sors et al., 2009). 

1.7 Candidate genes for S-methylCys biosynthesis in common bean 

Liao et al. (2012) published a detailed comparative gene expression analysis between SARC1 

and SMARC1N-PN1 lines. Up-regulation of SERAT1;1 and -1;2 gene expression in SMARC1N-

PN1 revealed an activation of cytosolic O-acetylserine biosynthesis for cysteine synthesis, while 

down-regulation of plastidic SERAT2;1 in SMARC1N-PN1 suggested a spatial separation of 

cysteine and S-methylCys biosynthesis in the cytosol and plastid, respectively (Figure 1.2). This 

analysis shed some light on candidate genes involved in S-methylCys biosynthesis in common 

bean seeds. Another comparative transcriptome profiling of sulfur metabolism related genes in P. 

vulgaris and V. mungo, pointed out some candidate genes associated with S-methylCys (Liao et 

al., 2013). In this study, expression of the cytosolic SERAT1;1 and -1;2 was antagonistic to 

predicted plastidic SERAT2;1, which was similar to the previous analysis (Liao et al., 2012). 

Transcript levels of SERAT1;1 and -1;2 were four-fold higher in P. vulgaris, while expression of 

the SERAT2;1 was two-fold higher in V. mungo. Among BSAS family members, BSAS4;1 and 

BSAS3;1 were more highly expressed in P. vulgaris than in V. mungo. The expression of 

BSAS3;1 encoding a -cyanoalanine synthase (Watanabe et al., 2008a) was nine fold higher in P. 

vulgaris than V. mungo. Recently, published RNA-Seq based gene expression atlas also 

identifies BSAS3;1 and BSAS4;1 as seed specific -cyanoalanine synthases (O’Rourke et al., 

2014). Based on these transcriptome profiling data I predicted a possible role of BSAS family 

members in S-methylCys biosynthesis in common bean seeds.  
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1.8 Objectives of Study 

My long-term objective of this study is to introduce candidate gene(s) for high cysteine synthesis 

into common bean cultivars and improve nutritional quality of bean. In common bean the 

suboptimal level of essential sulfur amino acids, methionine, and cysteine is predicted due to a 

shift of sulfur from the cysteine pool to the non-protein amino acid, S-methylCys. The major aim 

of this study is to understand S-methylCys biosynthesis in common bean developing seeds. 

Previously, efforts were made to fully understand sulfur metabolism in Arabidopsis and some 

other crops but no such effort was made to decode sulfur metabolism in common bean. In 

today’s world, due to the advent of next generation sequencing, the genome of common bean has 

been fully sequenced and extensively annotated (Schmutz et al., 2014; Vlasova et al., 2016). 

This provides us an extra edge to understand key pathway enzymes of sulfur metabolism in 

common bean.  

Therefore, the objectives of this study are as follows:  

1. To study the common bean BSAS family to determine its role in cysteine 

biosynthesis. Further, investigate the role of cysteine synthase family members in S-

methylCys biosynthesis. 

This study will include an evolutionary relationship of common bean BSAS family 

members with Arabidopsis and soybean, characterization of seed specific cysteine 

synthases and their role in S-methylCys biosynthesis and, investigate subcellular 

localization of candidate cysteine synthases to learn about the role of subcellular 

compartmentation in S-methylCys biosynthesis  

2. To elucidate the biochemical pathway of S-methylCys synthesis in developing seeds 

of common bean. 

This study will focus on identifying the precursor amino acid for S-methylCys by using 

isotope tracking method. A combination of targeted and non-targeted high resolution 

mass spectrometry (HRMS) will be used to track movement of labelled carbon (13C) and 

labelled nitrogen (15N) in developing common bean seeds.  

3. To characterize the function of gene(s) and enzyme(s) responsible for the 

biosynthesis of S-methylCys in common bean 
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Based on S-methylCys pathway elucidation from isotopic label tracking, the function of 

candidate genes and enzymes in S-methylCys biosynthesis will be determined by 

performing recombinant enzyme assays and using precursor(s) as substrate(s). 
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 CHAPTER TWO - CHARACTERIZATION OF Phaseolus vulgaris 

BSAS3;1 AND ITS POSSIBLE ROLE IN S-METHYLCYSTINE 

BIOSYNTHESIS 

2.1 Introduction 

In nature, sulfur is present in both inorganic and organic forms. Sulfur enters plant metabolism in 

the form of inorganic sulfate; the primary organic acceptor molecule is O-acetylserine, which 

yields the amino acid cysteine. Cysteine is the central metabolite of S-metabolism pathway and is 

used for synthesis of various S-containing metabolites. Free cysteine content in plants is reported 

to be very low but its flux is quite high. High flux of cysteine in the plant cell summarizes quick 

utilization of cysteine in cell for the methionine, glutathione and protein biosynthesis (Leustek et 

al., 2000; Hell and Wirtz, 2011). Cysteine biosynthesis takes place in the various compartments 

of the plant cell where O-acetylserine provides the carbon backbone while sulfur is provided in 

the form of sulfide. Integration of sulfide into the carbon skeleton requires two reactions. In first 

step biosynthesis of O-acetyl serine is catalyzed by (SERAT; EC 2.1.3.30) by utilizing serine and 

acetyl coenzyme A. Subsequently a β-replacement reaction is catalyzed by O-acetylserine (thiol) 

lyase (OAS-TL) [β-substituted alanine synthase (BSAS); EC 2.5.1.47] which replaces acetyl 

moiety with sulfide forming cysteine. 

Cysteine synthases (CS/OAS-TL) constitute a subfamily of β-substituted alanine synthase 

(BSAS) family (Hatzfeld et al., 2000). β-Substituted alanine synthase (BSAS) family members 

contain the characteristic pyridoxal-5'-phosphate (PLP) cofactor (Alexander et al., 1994). In 

plants, various isoforms of OAS-TL are present and are involved in cysteine biosynthesis. Some 

of the BSAS family members are cysteine synthase-like proteins but are not involved in cysteine 

biosynthesis. One such member is β-cyanoalanine synthase (CAS), which utilizes cysteine to 

detoxify cyanide synthesized in the cell during ethylene biosynthesis, and forms a separate 

subfamily of BSASs (Yu et al., 2012). Apart from these two major reactions BSAS isoforms are 
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also involved in some secondary reactions depending on developmental stage and light 

conditions (Burandt et al., 2001). 

One important characteristic which plays a major role in defining the activity of BSAS family 

members is subcellular compartmentation. Cysteine biosynthesis in a plant cell is reported to be 

under compartment-specific regulation (Heeg et al., 2008). Cysteine biosynthesis takes place in 

three compartments within the cell; plastid, mitochondria and cytosol (Watanabe et al., 

2008a;Birke et al., 2013). Among all BSAS family members Arabidopsis BSAS1;1, BSAS2;1, 

and BSAS2;2 which are localized in cytosol, plastids, and mitochondria respectively, were 

reported as major CSases for cysteine biosynthesis (Hell et al., 1994; Wirtz et al., 2004). Using 

reverse genetics approach, redundancy of three SERAT and OAS-TL was reported in 

Arabidopsis which suggests traffic between these compartments for sulfide, O-acetylserine and 

cysteine (Watanabe et al., 2008a; Watanabe et al., 2008b; Lee et al., 2013a). In combination with 

the corresponding SERAT, BSAS isoforms perform different reactions, depending on 

environmental pH and availability of H2S within the compartment (Romero et al., 2014).  

The cytosol is the prime compartment for cysteine biosynthesis. In Arabidopsis, various BSAS 

family members perform cysteine synthase activity by forming a cysteine synthase complex with 

SERAT family members, and regulate cysteine biosynthesis which is limited by O-acetylserine 

availability rather than sulfide (Wirtz and Hell, 2006; Romero et al., 2014). In Arabidopsis while 

cytosolic AtBSAS1;1 was reported be the most contributing cysteine synthase in roots and 

leaves, other cytosolic CS AtBSAS4;1, AtBSAS4;2 and AtBSAS4;3 had less contribution in 

cysteine biosynthesis (Watanabe et al., 2008a). These BSAS family members were recently 

shown to encode cysteine desulfhydrases (DES, EC 4.4.1.1) in the cytosol. To maintain cysteine 

homeostasis Cys desulfhydrase catalyzes the degradation of cysteine to pyruvate, ammonia, and 

sulfide (Álvarez et al., 2010). 

In plastids which are the exclusive compartment for sulfate reduction, AtBSAS2;1 was reported 

to be responsible for cysteine synthesis (Jost et al., 2000;Birke et al., 2012). However, another 

BSAS member in plastids, AtBSAS5;1 encodes sulfocysteine synthase activity and is essential for 

chloroplast activity and redox regulation (Bermúdez et al., 2010;Birke et al., 2015). The 
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sulfocysteine synthase activity of BSAS family member acts as a protective protein sensor to 

detect the accumulation of thiosulfate. Formation of thiosulfate in the plant cell is not very well 

understood but predicted to be catalyzed by a sulfurtransferase from sulfite and persulfide 

(Krüßel et al., 2014). Under excess light conditions, thiosulfate produced due to the presence of 

reactive oxygen species becomes a substrate for S-sulfocysteine synthesis catalyzed by 

AtBSAS5;1 in plastids. This reaction triggers protection mechanisms of the photosynthetic 

apparatus and S-sulfocysteine can be metabolized by reductive conversion to cysteine and sulfate 

(Bermúdez et al., 2010).  

In mitochondria, due to excess accumulation of cyanide during ethylene production (Yang and 

Hoffman, 1984;Yip and Yang, 1988;Seo et al., 2011), one of the BSAS family members plays a 

major role in cyanide detoxification rather than cysteine biosynthesis (Hatzfeld et al., 

2000;Yamaguchi et al., 2000). Another AtBSAS2;2 acts as CS in mitochondria. In the case of 

Arabidopsis, spinach (Warrilow and Hawkesford, 1998) and soybean (Yi and Jez, 2012), a CAS 

subfamily member, BSAS3;1, catalyzes quenching of cyanide molecule by cysteine and 

synthesis of -cyanoalanine (Garcia et al., 2010). -cyanoalanine is channelled back to amino 

acid synthesis pathway via asparagine (Asn) biosynthesis (Castric et al., 1972) or conjugated to 

synthesize -glutamyl--cyano-alanine in Arabidopsis and cyanogenic plants such as Vicia and 

Lathyrus species (Ressler, 1962; Watanabe et al., 2008a).-Glutamyl--cyano-Ala as a dipeptide 

serves as storage molecule in the case of Arabidopsis, while in the case of Vicia sativa and 

Lathyrus sylvestris it was reported as a possible neurotoxin (Harper and Arscott, 1962; Ressler et 

al., 1969) 

Apart from these known capabilities of BSAS family members, BSAS enzymes can utilize other 

substrates in supplementary reactions and synthesize other S-amino acid derivatives (Table 1.2). 

As discussed in Section 1.1 common bean (Phaseolus vulgaris) and several Vigna species 

accumulate S-methyl-cysteine (S-methylCys) and its dipeptide γ-glutamyl-S-methylCys (γ-Glu-

S-methylCys). To gain understanding of S-methylCys biosynthesis in P. vulgaris, a comparative 

transcriptome analysis was performed between P. vulgaris and Vigna mungo. Compared to 

V.mungo which does not accumulate γ-Glu-S-methylCys, P. vulgaris had two BSAS family 
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members upregulated. In P. vulgaris BSAS3;1 was highly expressed with approximately nine 

fold more ESTs than V. mungo (Liao et al., 2013). In Arabidopsis and soybean, BSAS3;1 was 

reported as a CAS family member involved in cyanide detoxification using a thiol exchange 

reaction (Watanabe et al., 2008a; Yi et al., 2012). My hypothesis was that PvBSAS3;1 can 

catalyze a thiol exchange reaction using methanethiol and cysteine as substrates, forming S-

methylCys. To test this hypothesis, I used phylogenetic, physical and biochemical methods to 

characterize BSAS family members in common bean and their role in S-methylCys biosynthesis.
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Figure 2.1: Various reactions of BSAS family members in three major subcellular compartments. 

Two major substrates for BSAS family members are O-acetylserine (OAS) (reaction 1 and 4) or cysteine (reaction 2 and 3). Products 

of different reactions catalyzed by BSAS family members include cysteine, -cyanoalanine, S-sulfocysteine and pyruvate.
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2.2 Materials and methods 

2.2.1 Plant materials 

Common bean (P. vulgaris) genotype BAT93 and black gram (V. mungo) cultivar Barimash-2 

(Afzal et al., 2002) plants were grown in growth cabinets (Environmental Growth Chambers, 

Chagrin Falls, OH, USA) under 16 h light (300-400 μmol photons m-2 s-1) and 8 h dark at a 

temperature cycling between 18 and 24 ºC as described by Pandurangan et al. (2012). Seeds were 

germinated in vermiculite and 12-day old seedlings were transplanted to pots (17 × 20 cm) 

containing Promix BX soil (Premier Tech Horticulture, Québec, Canada) and regularly fertilized 

with a nitrogen, phosphorous, and potassium (20-20-20) mixture.  

For subcellular localization studies, Nicotiana benthamiana plants were grown in a growth 

cabinet at 22 ºC with a 16 h photoperiod (110 μmol photons m-2 s-1). Seeds were germinated in 

Promix BX soil and after two weeks, plants were transferred to pots (10.5 x 9.0). Plants were 

fertilized once a week with mixture of nitrogen, phosphorous, and potassium (20-20-20) at 0.25 

g/L. Leaves from six-week-old plants were infiltrated for transient expression.  

2.2.2 Phylogenetic analysis 

To identify putative common bean BSAS family enzymes, eight Arabidopsis sequences with 

accession numbers At4g14880, At2g43750, At3g59760, At3g61440, At5g28020, At3g04940, 

At3g03630, and At5g28030 (Watanabe et al., 2008a) were used as query to perform BLASTP-

search of P. vulgaris v2.1 database available at www.phytozome.net. Multiple sequence 

alignment using the eight common bean, 16 soybean and eight Arabidopsis BSASs was prepared 

with CLUSTALW2 and transferred to MEGA7 for phylogenetic analysis (Kumar et al., 2016). 

The evolutionary history was inferred using the neighbor-joining method (Saitou and Nei, 1987; 

Kumar et al., 2016) based on the JTT matrix-based model using 1000 bootstrap value (Jones et 

al., 1992). 

http://www.phytozome.net/
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2.2.3 Cloning of BSAS3;1 for recombinant protein expression  

A truncated form of β-substituted alanine synthase (BSAS) gene was amplified from both 

common bean (P. vulgaris) line BAT93 and black gram (V. mungo) cultivar Barimash-2. RNA 

was extracted from developing seeds as described by Wang and Vodkin (1994), and quantified 

by spectrophotometry with a NanoDrop 1000 (Thermo Scientific, Wilmington, DE, USA). The 

quality of RNA was evaluated from A260/280 ratio and by 1% agarose gel electrophoresis. One µg 

of total RNA treated with amplification-grade DNase I (Life Technologies, Burlington, ON, 

Canada) was used for cDNA synthesis using qScript™ cDNA SuperMix (Quanta Biosciences).  

The coding region of PvBSAS3;1 without the putative signal peptide (the N-terminal 58 amino 

acids, encoded by the first 174 bp from the ATG) was amplified by polymerase chain reaction 

(PCR) using Pfx50 DNA polymerase (Life Technologies, Burlington, ON). To design primers 

for amplification 454 pyrosequencing data available at the Sequence Read Archive (SRA), 

National Center for Biotechnology Information (NCBI) under the accession numbers 

SRS360251 for P. vulgaris and SRS360666 for V. mungo was used (Liao et al., 2013). The 

primer sequences were PvBSAS3;1 (Fw: 5'-

GGTGATGATGATGACAAGACCAATATCAAAAAGCATGTG-3' and Rvs: 5'-

GGAGATGGGAAGTCATTAATCAACTGCTACTGGCTGC-3') and VmBSAS3;1 (Fw: 5'-

GGTGATGATGATGACAAGACAAACATCAAGAAGCATGTG-3' and Rvs: 5'-

GGAGATGGGAAGTCATTAGTCAACTGCTACTGGCTGC-3'), containing the vector-

specific sequences (underlined). The amplification conditions were 94 ºC for 30 s; followed by 

35 cycles of 55 ºC for 30 s, 68 ºC for 60 s. The PCR products were gel purified and subcloned 

into the expression vector, pLATE51 with an N-terminal His-tag as per the manufacturer’s 

protocol [aLICator LIC Cloning and Expression Kit 2 (N-terminal His-tag/EK), #K1251, 

Thermo Scientific]. Positive recombinant clones selected on ampicillin (100 g/mL) plates were 

confirmed by restriction digests (EcoRV and HindIII) and DNA sequencing using the LIC 

sequencing primers. The constructs were then transformed into One Shot BL21 (DE3) cells 

(Invitrogen, cat # C6000-03).  
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2.2.4 Protein purification 

One Shot BL21 (DE3) cells were grown in NZY media with ampicillin (100 g/mL) as antibiotic 

at 37 ºC. At OD of 0.6, cells were induced with 1 mM isopropyl β-D-1 thiogalactopyranoside 

(IPTG) and allowed to grow at room temperature for 14-16 hours. Cells were harvested by 

centrifugation (6,000 × g, 30 min at 4 ºC) and suspended in binding buffer (50 mM sodium 

phosphate, pH 8.0, 300 mM NaCl and 0.01% Tween®-20). Suspended cells were treated with 1 

mg/ml lysozyme for 30 min, lysed with French press and supernatant was collected after 

centrifugation at 18,000 × g for 30 minutes. Supernatant was applied to Cobalt-based 

Dynabeads® His-Tag Isolation & Pulldown beads (Thermo Fisher Scientific) and incubated on a 

roller for 2 h at 4 ºC. Beads were collected after placing the tubes on magnet and supernatant was 

discarded. To remove all unbound protein, beads were washed six times with wash buffer (50 

mM sodium phosphate, pH 8.0, 300 mM NaCl and 0.01% Tween®-20) and His-tagged protein 

was eluted by using 2.5 mL of elution buffer containing 50 mM sodium phosphate pH 8.0, 300 

mM NaCl, 300 mM imidazole and 0.01% Tween®-20. Eluted protein was buffer exchanged with 

50 mM Tris-HCl pH 9.0 using a PD-10 column (GE Healthcare Life Sciences) and concentrated 

using the Amicon Ultra-15 Centrifugal Filter Unit (Millipore, Etobicoke, ON). Purified protein 

was flash frozen using liquid nitrogen with 10% glycerol and stored at -80oC for biophysical and 

biochemical assays.  

2.2.5 Size exclusion chromatography 

Size exclusion chromatography was performed on ÄKTApurifier system (GE Healthcare) using 

HiLoad Superdex 200 prep grade column with FPLC buffer (20 mM Tris-HCl buffer, pH 9.0, 

150 mM sodium chloride). Molecular weight of eluted protein was calculated based on a 

standard curve generated with Gel Filtration Standard (Bio-Rad). The protein quantification was 

performed using the Bio-Rad Protein Assay solution (Mississauga, ON), and bovine serum 

albumin (BSA) as standard. Purified protein was analyzed by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS PAGE) using a 12% polyacrylamide gel, and the 

protein bands were visualized by Coomassie staining as described (Laemmli, 1970). 
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2.2.6 Enzyme assays 

To determine the CAS activity of PvBSAS3;1 and VmBSAS3;1, a reaction mixture of 500 µL 

containing 50 mM Tris-HCl (pH 9.0) buffer, 1 mM cysteine, 2 mM KCN and 50 ng of protein 

was incubated at 25 ºC for 10 min. The reaction was stopped by adding 50 µl of 30 mM FeCl3 in 

1.2 N HCl and 50 µl of 20 mM N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD) in 

7.2 N HCl. Production of methylene blue due to reaction of one molecule of produced H2S with 

two molecules of DMPD was spectrophotometrically determined at 670 nm using PowerWave 

XS plate reader with Gen5.5 software (BioTeK Instruments, Winooski, VT). CAS activity was 

expressed as the amount (moles) of H2S produced by 1 mg protein in 1 sec (katal mg−1). To test 

S-methylCys formation, KCN was substituted with sodium thiomethoxide. To determine the 

kinetic parameters of PvBSAS3;1, various concentrations of substrates including cysteine (0-2 

mM), KCN (0-1 mM) and sodium thiomethoxide (0-1 mM) were used in the enzyme assay 

reaction. Multiple concentrations of Na2S were used to generate a standard curve to determine 

H2S released in the reaction. Steady state kinetic parameters Km and Vmax were determined by 

nonlinear fitting of initial velocity versus substrate concentration to the Michaelis-Menten 

equation. 

2.2.7 Cloning BSAS3;1 for subcellular localization  

For the subcellular localization study, PvBSAS3;1 was amplified by PCR using attB1 and attB2 

site-containing Gateway primers. The band corresponding to PvBSAS3;1 size was purified from 

gel using DNA Gel Extraction Kit (Qiagen, USA). PvBSAS3;1 amplicon with attB1 and attB2 

sites was recombined with the entry vector pDONR-Zeo (Invitrogen, USA) using BP clonase 

reaction mix (Invitrogen, USA) following Gateway cloning methods. The BP reaction product 

was transformed into E. coli XL10 Gold and grown on zeocin (50 µg/mL) supplemented LB 

medium. Colonies were screened by restriction digest. Plasmid DNA with PvBSAS3;1 was 

extracted using High-Speed Plasmid Mini Kit (Geneaid Biotech Ltd, Taiwan) and sent for 

sequencing by using M13 forward and reverse primer. After confirmation of PvBSAS3;1 in 

pDONR-Zeo with restriction digestion and sequencing, a LR recombination reaction was 

performed using entry clone pDONR-Zeo-PvBSAS3;1 and destination vector pEarleyGate101 
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(Invitrogen, USA). E. coli strain XL10-Gold (Agilent Technologies, Mississauga, ON) was used 

to transform cell with destination clone. Cells were grown on kanamycin (50 µg/mL) 

supplemented LB medium and recombinants were screened by restriction digest (PciI). The 

plasmid DNA carrying the ‘destination clone’, pEG101-PvBSAS3;1 was transformed into 

Agrobacterium tumefaciens strain GV3101 for infiltration.  

2.2.8 Plant transformation 

To monitor the transient expression of fused PvBSAS3;1 the construct (pEG101-PvBSAS3;1) in 

A. tumefaciens strain GV3101 was transiently expressed into N. benthamiana leaf epidermal 

cells by infiltration (Sparkes et al., 2006). Briefly, a single colony was used to inoculate a 

medium (LB broth containing 10 mM 2-(N-morpholino) ethanesulfonic acid [MES] pH 5.6, and 

100 µM acetosyringone) supplemented with kanamycin (50 µg/mL), rifampicin (25 µg/mL), and 

gentamycin (50 µg/mL) and grown at 28 ºC with shaking (250 rpm) until the OD600 reached 0.5-

0.6. The culture was centrifuged in a microcentrifuge tube at 3,000 g for 30 minutes at room 

temperature. The pellet was re-suspended in Gamborg’s solution (3.2 g/L Gamborg’s B5 

medium with vitamins, 20 g/L sucrose, 10 mM MES pH 5.6, and 200 µM acetosyringone) to a 

final OD600 equal to 1 and incubated at room temperature for 1 h with gentle agitation to activate 

the virulence gene required for transformation. To verify subcellular localization of PvBSAS3;1 

a translationally fused mitochondrial protein (cytochrome oxidase with CFP) was mixed with 

pEG101-PvBSAS3;1 in a 1:1 ratio and coexpressed in N.benthamiana leaves (Nelson et al., 

2007). 

The leaves of 4-5-week-old N. benthamiana plants were transformed using a 1 mL syringe. 

Bacteria were slowly injected into the abaxial side of the leaf. The infiltrated leaves were 

labelled and plants were returned to the growth room under normal conditions as described in 

section 2.2.1. Protein expression was visualized by confocal microscopy after 48 h. 

2.2.9 Confocal microscopy  

Epidermal cell layers of N. benthamiana leaves were visualized using an OLYMPUS confocal 

microscope. A 60 × water immersion objective was used at excitation wavelengths of 514 and 
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458 nm, and emission spectra of 530-560 nm and 470-500 nm, for YFP and CFP, respectively. A 

‘Sequential Scan Tool’, which records fluorescence in a sequential fashion, was used for 

studying co-localization of PvBSAS3;1 with marker protein. 

2.3 Results 

2.3.1 BSAS family members 

To identify all the members of the BSAS family in P. vulgaris, previously identified Arabidopsis 

(Watanabe et al., 2008b) and P. vulgaris (Liao et al., 2013) sequences were used as a BLAST 

search query against the protein database of P. vulgaris v2.1 available in Phytozome 

(www.phytozome.net). In total, eight PvBSAS genes are present across eleven chromosomes of 

P. vulgaris. Table 2.1 presents detailed information on gene location, gene length and prediction 

of subcellular localization of various BSAS family members in the common bean genome. 

The eight common bean BSASs share greater than 50% amino acid sequence identity with each 

other. These eight members are present on six different chromosomes and predicted to be having 

cysteine synthase or cysteine synthase like activity (Table 2.1). Out of eight PvBSASs, three of 

the members, PvBSAS3;1, PvBSAS2;1 and PvBSAS5;1 contain around 50 amino acid long 

putative transit peptide sequences at the N-termini and are predicted to be localized in subcellular 

organelles. Other five PvBSASs do not have transit peptides and are predicted to be cytoplasmic 

in nature. According to WOLF pSORT prediction (http://www.genscript.com/wolf-psort.html) 

(Horton et al., 2007), PvBSAS2;1, PvBSAS3;1 and PvBSAS5;1 are localized in the chloroplast. 

The theoretical molecular weight of six of the members is around 34 kDa while proteins 

containing transit peptide have molecular weight of 41 kDa. Among all the BSAS family 

members PvBSAS3;1 is predicted to have CAS activity while BSAS4;1 and BSAS4;2 are may 

be bifunctional in nature (both CS and CAS activity).  

All the BSAS family members in common bean are highly conserved and contain the 

characteristic pyridoxal 5'-phosphate (PLP) binding domain. The PLP binding domain has a 

lysine residue which binds PLP through a Schiff base linkage (Bonner et al., 2005;Lai et al., 

http://www.phytozome.net/
http://www.genscript.com/wolf-psort.html
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2009). Sequence alignment of all the BSAS family members reveals the conserved Lys residue at 

position 102 in relation with PvBSAS3;1 sequence (Figure 2.2). 

For cysteine biosynthesis, OAS-TL interacts with SERAT to make the cysteine synthase 

complex. Presence of the 8A-9A loop (Lys217 to Phe230 in AtBSAS1;1) was predicted to be 

potential interaction site for OAS-TL and SERAT interaction (Bonner et al., 2005). In case of 

PvBSAS family this loop is highly conserved. 

 



 

 

42 

Table 2.1: Molecular and genetic characteristics of the Phaseolus vulgaris BSAS gene family 

Gene Name Locus name Gene Location 

Coding 

sequence  

Predicted protein 

molecular weight 

(kDa) 

Subcellular* 

localization Subfamily 

PvBSAS1;1 Phvul.002G045200 Chr02:4196019..4202149 978 34.26 Cytoplasmic CS 

PvBSAS1;2 Phvul.006G099100 Chr06:20983629..20987672 978 34.36 Cytoplasmic CS 

PvBSAS1;3 Phvul.007G057600 Chr07:4847776..4852447 978 34.06 Cytoplasmic CS 

PvBSAS2;1 Phvul.003G060200 Chr03:8251298..8265078 1164 35.11 Chloroplast CS 

PvBSAS3;1 Phvul.008G061100 Chr08:5554616..5558227 1143 34.80 

Mitochondria/ 

Chloroplast CAS 

PvBSAS4;1 Phvul.007G185200 Chr07:30508330..30514006 975 34.51 

Cytoplasmic/ 

Chloroplast CS/CAS 

PvBSAS4;2 Phvul.007G185100 Chr07:30495856..30503923 972 34.31 

Cytoplasmic/ 

Glyoxysomal CS/DES 

PvBSAS5;1 Phvul.001G107500 Chr01:22505318..22510009 1116 35.22 

Mitochondria/ 

Chloroplast 

SCS 

 

*Subcellular localization of isoforms was predicted using WoLF PSORT a protein subcellular localization prediction tool. kDa: kilodalton CS: Cysteine 

synthase, CAS: -cyanoalanine cysteine synthase, DES: cysteine desulfhydrase; SCS: sulfocysteine synthase 
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Figure 2.2: Multiple alignment of deduced amino acid sequences of the common bean BSAS gene family. 

Black shade indicates conserved sequence. Residues in boxes indicate a variation from the highly-conserved sequence. The Lys102 

highlighted in red is required for binding PLP with enzyme. Residues in the PLP binding sites are highlighted in purple while amino 

acid binding sites are highlighted in blue. 
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Table 2.2: Pairwise comparison of deduced amino acid sequences and coding DNA of the P. vulgaris BSAS family 

Amino Acid 

 PvBSAS3;1 PvBSAS5;1 PvBSAS2;1 PvBSAS4;1 PvBSAS1;2 PvBSAS1;1 PvBSAS1;3 PvBSAS4;2 

PvBSAS3;1  51.3 53.4 58.5 60.6 58.8 58.2 56.2 

PvBSAS5;1 58.4  54.6 61.0 62.7 63.3 62.4 63.4 

PvBSAS2;1 60.8 67.3  60.1 69.3 68.6 69.7 59.9 

PvBSAS4;1 61.5 63.6 66.7  58.5 71.8 74.0 77.7 

PvBSAS1;2 63.9 64.3 68.8 72.4  85.5 84.6 71.7 

PvBSAS1;1 60.8 66.4 69.9 70.9 78.5  87.1 71.4 

PvBSAS1;3 61.4 65.8 68.0 71.4 78.6 84.8  72.1 

PvBSAS4;2 60.0 62.9 64.5 78.7 71.1 69.1 70.0  

Nucleotide 

Sequence identity (%) between eight BSAS family members at the amino acid (upper triangle) and nucleotide (lower triangle) levels. Nucleotide sequences 

correspond to the coding region sequences and amino acid sequences, acquired from the phytozome; nucleotide and amino acid sequences were aligned by 

ClustalW and percentage identities were calculated from the subsequent multiple sequence alignment. Protein name and their corresponding accession number 

are listed in Appendix A 



 

 

45 

2.3.1.1 Phylogenetic analysis 

Previously, several studies used phylogenetic analysis of BSAS sequences in diverse plants 

species to predict catalytic activity and localization of CS and CAS enzymes (Hatzfeld et al., 

2000; Jost et al., 2000; Maruyama et al., 2001; Han et al., 2007; Lai et al., 2009). BSAS family 

members of common bean group together with Arabidopsis and soybean BSAS in five separate 

clades. Each clade representing distinct catalytic functions of BSAS subfamilies CS and CAS 

(Figure 2.4). 

Clade 1 contains the extensively studied cytosolic OAS-TL (BSAS1) group from Arabidopsis 

and soybean. Three of the common bean BSAS1 isoforms, PvBSAS1;1, PvBSAS1;2 and 

PvBSAS1;3 are located in this clade. These three PvBSAS1 isoforms share around 80-85% 

identity in amino acid sequence. Duplicated block data of P. vulgaris downloaded from the 

PGDD (http://chibba.agtec.uga.edu/duplication/) (Lee et al., 2013b) with a threshold score 

greater than 300 suggests that PvBSAS1;3 arose from a duplication of PvBSAS1;1. The three 

PvBSAS1 isoforms share greater than 80% identity with cytosolic OAS-TL from Arabidopsis 

and lack N-terminal transit peptide for subcellular localization suggesting that the three BSAS 

isoforms are the major cytosolic OAS-TLs in common bean. 

Clade 2 represents BSAS4 family members which include CS enzymes from Arabidopsis and 

soybean which have an auxiliary function with respect to the major cytosolic OAS-TL (Hatzfeld 

et al., 2000; Yamaguchi et al., 2000). These isoforms were reported to have DES activity during 

high cysteine availability conditions (Álvarez et al., 2010; Yi and Jez, 2012). Two of the 

PvBSAS isoforms, PvBSAS4;1 and PvBSAS4;2 are grouped in this clade and predicted to be 

cytosolic in nature. Duplicated block database reports PvBSAS4;2 as a duplication event from 

PvBSAS1;2 which supports auxiliary function of BSAS4 enzymes as cysteine synthase to 

cytosolic BSAS1 isoforms. 

Clade 3 and 4 represent the enzymes which are located in subcellular compartments like 

chloroplasts and mitochondria. Clade 3 has Arabidopsis BSAS2;1 and BSAS2;2 which are 

reported to be having dominant cysteine synthase activity in plastids and mitochondria 

http://chibba.agtec.uga.edu/duplication/
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respectively (Barroso et al., 1995; Jost et al., 2000; Watanabe et al., 2008a). PvBSAS2;1 is the 

only common bean sequence in this clade. According to WoLF PSORT, PvBSAS2;1 is predicted 

to be in chloroplast. Another plastidic BSAS, PvBSAS5;1 has an N-terminal transit peptide 

sequence like PvBSAS2;1 and is present in clade 4.  ATBSAS5;1 has been reported to have 

cysteine synthase and sulfocysteine activity during H2S exposure (Watanabe et al., 2008a; Birke 

et al., 2015). 

Clade 5 which branches out from the rest of the BSAS family has one Arabidopsis, two soybean 

and one common bean BSAS. AtBSAS3;1 and GmBSAS3;1 are exclusive cyanoalanine 

synthases (CAS) in BSAS family. Presence of PvBSAS3;1 in this clade and transit peptide at the 

N terminal end suggests PvBSAS3;1 is a cyanoalanine synthase in common bean. 

2.3.1.2 Sequence analysis of PvBSAS3;1 and other CASs reported in other crops 

To confirm PvBSAS3;1 as a cyanoalanine synthase, amino acid sequences of known 

cyanoalanine synthases from different crops were compared with the PvBSAS3;1 sequence 

(Figure 2.3). Sequence analysis reveals that this putative CAS contains a highly conserved PLP-

binding domain (P--SV/IKDR) as do other reported CAS members. Compared to AtOAS-TL, all 

CAS members have a 50-60 amino acids long transit peptide. Amino acid residues required for 

SERAT interaction (Lys217, His221 and Lys222 in AtOAS-TL) are not conserved in CAS subfamily 

members when compared to Arabidopsis CS (AtOAS-TL) (Lai et al., 2009). 
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Figure 2.3: Multiple alignment of deduced amino acid sequences of the common bean BSAS3;1 with CASs from other plant 

species. 

AtOAS-TL from Arabidopsis gene family is used as CS for comparison. CASs from other crops include Os: rice, So: spinach, At: 

Arabidopsis, St: potato, Bp: birch, Gm: soybean and Pv: common bean. Black shade indicates conserved sequence. Dotted line 

indicates the absence of a target peptide in AtOAS-TL. The Lys46 residue highlighted in red is required for binding PLP. Conserved 

residues participating in the PLP binding site are marked with a blue line. The green line represents the 8A-9A loop (Lys217 to 

Phe230 in AtBSAS1;1) responsible for interacting with SERAT which is conserved in the plant and bacterial kingdoms. Orange boxes 

represent amino acid residues required for the interaction between SERAT and OAS-TL. 
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Figure 2.4: Evolutionary relationships and gene structure of BSAS isoforms in Arabidopsis, soybean and common bean using 

the neighbor-joining method.  

The percentage of replicate trees in which the associated proteins clustered together in the bootstrap value (1000 replicates) is shown 

next to the branches. CDS coding DNA sequence. Protein name and their corresponding accession number are listed in Appendix A 
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2.3.2 Tissue expression pattern of PvBSAS3;1 

RNA-Seq based gene expression atlas of the common bean published in 2014 revealed that  

PvBSAS3;1 is predominantly expressed in seeds in early developmental stage (O’Rourke et al., 

2014) (Figure 2.5). Based on phylogenetic analysis and expression profile, BSAS3;1 is predicted 

as a CAS which may prefer cysteine and methanethiol as substrates in a secondary reaction and 

produce S-methylCys during seed development stage. 

2.3.3 Biochemical characterization of PvBSAS3;1 

2.3.3.1 Size-exclusion chromatography 

To determine the role of PvBSAS3;1 as CAS, a truncated sequence (without transit peptide) was 

cloned and expressed in E. coli as a His-tagged recombinant protein. Based on comparative 

transcriptomic data, PvBSAS3;1 had higher expression than VmBSAS3;1 in developing seeds. 

To determine the role of PvBSAS3;1 in S-methylCys biosynthesis, a truncated version of 

VmBSAS3;1 was also cloned and expressed in E. coli for recombinant protein production. 

Comparison of the elution profile of PvBSAS3;1 and VmBSAS3;1 with known molecular weight 

markers suggested a homodimeric nature of BSAS3;1 in P. vulgaris and V. mungo (Figure 2.6). 

The denatured protein on SDS gel migrated as a single band of 37 kDa while calculated 

molecular masses of PvBSAS3;1 and VmBSAS3;1 after size-exclusion chromatography were 

approximately 72 kDa. 



 

 

52 

 

 

  



 

 

53 

Figure 2.5: Expression profile of the PvBSAS3;1 in various plant tissues. 

Descriptions of tissues are as follows: YL- Fully expanded 2nd trifoliate leaf tissue; L5- Leaf tissue collected 5 days after rhizobium 

inoculation; LF- Leaf tissue from fertilized plants collected at the same time of LE and LI; LE- Leaf tissue collected 21 days after 

rhizobium inoculation; LI- Leaf tissue collected 21 days after plants were inoculated with ineffective rhizobium; YS- All stem 

internodes above the cotyledon collected at the 2nd trifoliate stage; ST- Shoot tip, including the apical meristem, collected at the 2nd 

trifoliate stage; FY- Young flowers, collected prior to floral emergence; PY- pods containing globular stage embryos (1-4 days after 

fertilization); PH- pods containing heart stage seeds; P1- pods associated with stage 1 seeds (pods only); P2- pods associated with 

stage 2 seeds (pods only); SH- heart stage seeds (ca. 7 mg); S1- stage 1 seeds (ca. 50 mg); S2- stage 2 seeds (ca. 150 mg); RT- Root 

tips; YR- Whole roots, including root tips; R5- Whole roots separated from 5 day old pre-fixing nodules; RF- Whole roots from 

fertilized plants collected at the same time as RE and RI; RE- Whole roots separated from fix nodules collected 21 days after 

inoculation; RI- Whole roots separated from fix- nodules collected 21 days after inoculation; N5- Pre-fixing (effective) nodules 

collected 5 days after inoculation; NE- Effectively fixing nodules collected 21 days after inoculation; NI- Ineffectively fixing nodules 

collected 21 days after inoculation (O’Rourke et al., 2014). 
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Figure 2.6: Physical and spectral properties of PvBSAS3;1 and VmBSAS3;1. 

(A) and (B) SDS– PAGE analysis of uninduced (UI), induced (I) and purified PvBSAS3;1and 

VmBSAS3;1. (C) and (D) Elution profile of Co2+-affinity purified PvBSAS3;1 and VmBSAS3;1 

in size-exclusion chromatography. Molecular weight was calculated based on a standard curve 

shown in the inset. 
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2.3.3.2 Enzymatic activity 

To determine their function, His-tagged purified PvBSAS3;1 and VmBSAS3;1 were used to 

perform CAS enzyme assay. Both PvBSAS3;1 and VmBSAS3;1 were highly active as a CAS, 

using cyanide and cysteine as substrates. The specific activity of PvBSAS3;1 and VmBSAS3;1 

for β-cyanoalanine production was 21.0 × 10-7 katal mg-1 and 19.2 × 10-7 katal mg-1, respectively. 

These enzymes catalyzed a similar thiol exchange reaction using methanethiol and cysteine as 

substrates, forming S-methylCys. The rates of the two reactions were significantly different for 

both enzymes using student’s t-test (Figure 2.7). In the case of PvBSAS3;1 there was 

significantly higher activity with potassium cyanide as well as sodium thiomethoxide than 

VmBSAS3;1. 

After observing significantly higher activity with PvBSAS3;1 kinetic studies were performed for 

this enzyme. Enzyme kinetics data showed that PvBSAS3;1 has a higher affinity for cyanide 

than methanethiol (Table 2.3). The apparent Km value for cyanide was lower than any other CAS 

reported from other crops (Table 2.4). However, the apparent Km value for methanethiol was also 

in the low mM range (Table 2.3). This analysis identifies BSAS3;1 as a putative candidate 

enzyme for the formation of S-methyl-Cys in seeds of common bean. 

2.3.4 Subcellular localization 

According to WoLF PSORT PvBSAS3;1 was predicted to be localized in plastids rather than 

mitochondria. A translational fusion of full-length BSAS3;1 was created with reporter gene YFP 

and expressed transiently in epidermal cells of N. benthamiana leaf. Co-localization of 

PvBSAS3;1 with CFP tagged mitochondrial marker protein confirmed PvBSAS3;1 localization 

in mitochondria (Figure 2.8). 
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Figure 2.7: Specific activity of PvBSAS3;1 and VmBSAS3;1 with 2mM potassium cyanide 

and 2mM sodium thiomethoxide (methanethiol). 1mM cysteine was common substrate in 

both the reactions.  

Substrate concentration of 1 mM cysteine and 2 mM KCN or 2 mM sodium thiomethoxide was 

used in the reaction. (* statistically significant at p ≤ .001; ** p ≤ .0001). 
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Table 2.3: Kinetic parameters of PvBSAS3;1 with different substrates 

Substrate 
Vmax 

(× 10-7 katal mg-1) 
Km (mM) 

Vmax/Km 

(× 10-7 katal mg-1)/mM 

L-Cysteine + Potassium cyanide          β-Cyanoalanine + Hydrogen Sulfide 

Potassium cyanide 21.4 ± 0.3 0.05 ± 0.01 428.0 

Cysteine 41.6 ± 2.9 0.70 ± 0.11 59.4 

 

L-Cysteine + Sodium thiomethoxide             S-methylCys + Hydrogen Sulfide 

Sodium thiomethoxide 18.7 ± 1.5 1.18 ± 0.09 15.9 

Cysteine 15.1 ± 0.2 0.28 ± 0.01 54.1 

All values are expressed as a mean ± SD (n = 3) 
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Table 2.4: Kinetics of CAS reported in other plant species 

Plant species Specific activity Km (mM) Reference 

 moles/min/mg Cysteine KCN  

Blue lupine 21.5 2.5 0.55 (Hendrickson and Conn, 1969) 

Spinach 212 2.3 0.73 (Ikegami et al., 1988b) 

Lathyrus latifolius 132 16 0.51 (Ikegami et al., 1988a) 

Vicia angustifolia NR 3.6 0.5 (Ikegami et al., 1989) 

Cassava 105 2.5 8.0 (Elias et al., 1997) 

Spinach 157 2.14 0.10 (Hatzfeld et al., 2000) 

Arabidopsis 62.1 2.54 0.06 (Hatzfeld et al., 2000) 

Potato 66.2 2.76 0.134 (Maruyama et al., 2001) 

Rice 13.3 0.84 0.27 (Lai et al., 2009) 

Soybean NR 0.81 0.26 (Yi and Jez, 2012) 

P. vulgaris 126 0.70 0.05 This study 

*NR: Not reported 
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Figure 2.8: Subcellular localization of PvBSAS3;1. 

Full length PvBSAS3;1 was translationally fused upstream of the reporter gene YFP, transformed 

into N. benthamiana by A. tumefaciens mediated transformation and visualized in the leaf 

epidermal cells by confocal laser-scanning microscopy. A CFP-tagged mitochondrial marker was 

coexpressed with PvBSAS3;1. A) YFP tagged PvBSAS3;1, B) CFP tagged mitochondrial 

marker (Mt-CFP) and c) Co-localization of PvBSAS3;1 with Mt-CFP. Scale bar indicates 10 μm. 

YFP: Yellow fluorescent protein; CFP, cyan fluorescent protein.  
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2.4 Discussion 

BSAS constitutes a large superfamily of PLP-dependent enzymes comprising CSase (OAS-TL) 

and CASase in plants. In P.vulgaris a genome-wide search led to identification of eight genes 

which encode for CS or CAS activity. These genes are located on six chromosomes and encode 

proteins present in different cellular compartments. Similar to Arabidopsis, cytosolic BSAS1;1 

and plastidic BSAS2;1 are likely major players of cysteine biosynthesis in common bean while 

mitochondrial PvBSAS3;1 is involved in detoxification with CAS activity. PvBSAS3;1 is a 

relatively seed specific CAS in common bean and its expression is high during early 

developmental stages (Figure 2.5). Researchers have reported a role of ethylene biosynthesis 

during seed development (Johnson-Flanagan and Spencer, 1994; Hays et al., 2000; Matilla, 

2000; Matilla and Matilla-Vázquez, 2008). Ethylene biosynthesis gives rise to cyanide which 

should be removed due to its toxicity. High expression of PvBSAS3;1 during seed development 

can be explained in relation to cyanide production. PvBSAS3;1 takes part in detoxification of 

cyanide and production of -cyanoalanine which enters in asparagine biosynthesis. PvBSAS3;1 

is a key candidate in cysteine catabolism in seed tissue. 

Structurally, there are two groups of β-CAS present in different plant species (Hasegawa et al., 

1995). In one group monomeric CAS of 52 kD with one PLP cofactor binding site was reported 

in blue lupine (Akopyan et al., 1975). On the other hand, CAS reported in spinach, cocklebur, 

rice, Lathyrus latifolius, soybean and Arabidopsis is a homodimer with a monomeric unit of 20-

35 kDa and PLP binding domain present in both subunits (Ikegami et al., 1988a; Ikegami et al., 

1988b; Ikegami et al., 1989; Maruyama et al., 1998; Hatzfeld et al., 2000; Maruyama et al., 

2000; Maruyama et al., 2001; Lai et al., 2009; Yi et al., 2012; Yi and Jez, 2012). In my study, 

size-exclusion chromatography and sequence analysis of PvBSAS3;1 and VmBSAS3;1 

suggested them as members of homodimer group of CASs with one PLP binding domain present 

in each subunit.  

BSAS family members are reported to be PLP dependent enzymes that have a lysine residue at 

their active site to bind with PLP covalently through a Schiff base linkage. All BSAS family 

members reported utilize O-acetylserine, serine, or cysteine as the donor of the alanyl group to 
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PLP Schiff base. This binding of alanyl group to PLP Schiff base moiety determines catalytic 

promiscuity of the enzymes (Akopyan et al., 1975; Percudani and Peracchi, 2003; Bonner et al., 

2005). Sequence analysis demonstrates conservation of the lysine residue at the active site in all 

common bean BSAS members, though a few substitutions were noticed in case of PvBSAS3;1 at 

PLP binding and SERAT interaction sites. The “true” OAS-TLs are defined by the ability to 

form a complex with SERAT. Lai et al. (2009) correlated substitutions at the PLP binding and 

SERAT interaction sites with the substrate specificity of β-CAS subfamily for cyanide and 

cysteine. According to sequence alignment (Figure 2.3) PvBSAS3;1 retain such characteristics. 

Our kinetic data for PvBSAS3;1 shows that similar to cyanogenic plants PvBSAS3;1 prefers 

cysteine and cyanide as substrates (Table 2.4). Cyanogenic plants release cyanide while other 

crops such as rice and spinach produce cyanide during seed germination and under stress 

conditions (Machingura and Ebbs, 2014). These kinetic data suggest a key role of PvBSAS3;1 in 

detoxifying cyanides in seed tissue during development and germination. 

Based on the amino acid sequences another difference that can be noted between the β-CAS and 

CS isoforms is the presence of a signal peptide within their sequence for mitochondrial or 

chloroplast targeting, respectively (Saito et al., 1994). Cyanide acts as an inhibitor in electron 

transport chain in the mitochondria as it binds to terminal cytochrome c oxidase (Solomonson, 

1981). Localization of -cyanoalanine formation to quench cyanide suggests the presence of 

BSAS3;1 in mitochondria. In our study, transient expression of PvBSAS3;1 with YFP tag in N. 

banthemiana leaves confirmed PvBSAS3;1 localization in mitochondria in agreement with 

previous studies. Previously conducted organellar fractionation methods and immunogold 

labelling studies also suggested CAS activity to be localized in mitochondria (Akopyan et al., 

1975; Wurtele et al., 1984; Wurtele et al., 1985;Lai et al., 2009).  

Previously, studies have predicted cysteine as a precursor of S-methylCys biosynthesis. In radish 

leaves, recovery of radioactive carbon in S-methylCys was observed when treated with 

radiolabelled cysteine or methionine (Thompson and Gering, 1966). The initial studies of 

cyanoalanine synthesis also demonstrated that the purified β-cyanoalanine synthase could use 

methanethiol, ethanethiol and 2-mercaptoethanol as substrates in vitro (Hendrickson and Conn, 

1969; Akopyan et al., 1975). In the case of blue lupine and spinach, synthesis of S-methylCys 
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was observed when cyanide was replaced by methanethiol as substrate (Hendrickson and Conn, 

1969; Ikegami et al., 1988b). However, the rate of biosynthesis of methylated cysteine was 

reported to be very low for the blue lupine enzyme (Hendrickson and Conn, 1969). In our study, 

PvBSAS3;1 used methanethiol efficiently to produce S-methylCys and the rate of biosynthesis of 

S-methylCys was approximately the same as for -cyanoalanine formation. However, it is 

unlikely that the enzyme catalyzes the formation of S-methylcysteine in vivo. Based on our 

subcellular localization study, PvBSAS3;1 is present in mitochondria. Methionine-ligase 

(MGL) which catalyzes biosynthesis of methanethiol is reported to be present in the cytosol 

(Re´beille et al., 2006). So it is unlikely that BSAS3;1 and MGL can work in coordination to 

produce S-methylCys in developing seeds of common bean. Our in vitro kinetics data suggest 

that although cyanide is a preferred substrate, synthesis of S-methylCys may happen as a side 

reaction by PvBSAS3;1 if methanethiol is present in mitochondria with lower affinity for 

methanethiol vs. cyanide.  

2.5 Conclusion 

With the completed genome sequence of Andean (Schmutz et al., 2014) and Mesoamerican 

(Vlasova et al., 2016) varieties eight BSAS family members were identified to be present in the 

common bean genome. Phylogenetic and synteny analysis of common bean with Arabidopsis 

and soybean BSAS family members helped to predict their function and subcellular localization. 

Physical and biochemical characterization of PvBSAS3;1 has not only revealed the role of 

PvBSAS3;1 in cyanide detoxification but also suggested its possible role in S-methylCys 

biosynthesis. Due to seed-specific expression of PvBSAS3;1 and its pivotal role in cysteine 

metabolism further investigation is required, in planta, to determine whether it can influence 

cysteine and methionine concentration in bean varieties. 
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 CHAPTER THREE - PROBING SULFUR AMINO ACID 

METABOLISM IN SEED OF COMMON BEAN USING ISOTOPE 

LABELLING 

3.1 Introduction 

In plants, the sulfur containing amino acid cysteine plays a central role in sulfur 

metabolism. Apart from incorporation into proteins and synthesis of methionine, an 

essential amino acid, another important usage of cysteine by both plants and animals is the 

biosynthesis of glutathione (GSH), a tripeptide essential to maintain cellular redox 

homeostasis (Noctor et al., 2012). Other fates of cysteine include phytochelatins, iron-

sulfur clusters, vitamin cofactors, and the biosynthesis of multiple secondary metabolites 

(Bonner et al., 2005).  

Protein quality in legumes is compromised due to suboptimal levels of the sulfur amino 

acids, cysteine and methionine. Among all the legumes produced in the world, common 

bean (Phaseolus vulgaris) is considered as one of the best for human consumption 

(Broughton et al., 2003). Major seed proteins present in common bean, such as the 7S 

globulin phaseolin and the lectin phytohaemagglutinin, have a low methionine and cysteine 

content (Sathe, 2002; Montoya et al., 2010). In contrast, common bean accumulates the 

non-protein sulfur amino acid, S-methylcysteine (S-methylCys) and a related dipeptide, -

glutamyl-S-methylcysteine (-Glu-S-methylCys) (Giada et al., 1998; Taylor et al., 2008).  

S-methylCys and its oxide are considered Cinderella phytochemicals due to their medicinal 

and health benefits (Edmands et al., 2013). The presence of S-methylCys and its derivatives 

is widely noted in the Brassicaceae, Alliceae and Fabaceae families (Jones et al., 2004). 

The characteristic aroma and flavor of Allium spp. is due to the S-alk(en)yl-cysteine 

sulfoxides, while members of the Fabaceae accumulate these non-proteinogenic S-amino 

acid derivatives to transport reduced sulfur or act as storage sink for sulfur (Zacharius et al., 

1959; Giada et al., 1998; Taylor et al., 2008). Astragalus bisulcatus which can accumulate 
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high selenium content produces a selenium analogue of S-methylCys to prevent non-

specific incorporation of selenocysteine into proteins or conversion into selenomethionine. 

The seeds accumulate -glutamyl-methyl selenocysteine as a storage compound (Sors et al., 

2005; Sors et al., 2009).  

In the past, scattered reports have come related to the potential benefit or anti-nutritional 

effect of S-methylCys and its oxide on animal and human health. In 1976, S-methyl-L-

cysteine sulfoxide was reported to be ‘kale anemia factor’ having toxic effects on ruminant 

(Whittle et al., 1976). Many animal studies have reported anti-nutritional effects of an S-

methylCys rich diet on animals (Benevenga et al., 1976; Case and Benevanga, 1976; 

Padovese et al., 2001). Potential benefits of S-methylCys and its sulfoxide include 

antidiabetic and antioxidant effects in humans (Akash et al., 2014; Hsia and Yin, 2015). In 

a human dietary intervention study S-methyl-L-cysteine sulphoxide was identified as a 

biomarker of cruciferous vegetable intake (Edmands et al., 2011). Recently, S-methylCys 

along with pipecolic acid were reported as biomarkers for bean rich diet in a controlled 

human feeding and mouse feeding study (Perera et al., 2015). 

In common bean, the concentration of S-methylCys is inversely related to that of cysteine 

and methionine. Three genetically related lines, SARC1, SMARC1-PN1 and SMARC1N-

PN1 were developed that are deficient in major storage proteins (Osborn et al., 2003). A 

proteomic analysis revealed that the deficiency in storage proteins is associated with 

increased cysteine and methionine content. In SMARC1N-PN1, cysteine and methionine 

was increased by 70% and 10%, respectively, at the expense of S-methylCys (Taylor et al., 

2008; Marsolais et al., 2010).  

Despite recent progress towards elucidating the biosynthetic pathway of cysteine and its 

fate in plant tissue, little is known about the biosynthesis of S-methylCys or -Glu-S-

methylCys. Various schools of thought exist for S-methylCys biosynthesis in plants. In 

radish, the relatively high recovery of radioactivity in methyl cysteine sulfoxide after 

radiolabelled cysteine or methyl-labelled methionine application indicated that S-
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methylCys is formed by direct methylation of cysteine (Thompson and Gering, 1966). 

Allium genus members, onion (Allium cepa) and garlic (Allium sativum) accumulate S-

methylCys as a sulfoxide and biosynthesis is initiated by S-alkylation of GSH (Turnbull et 

al., 1980; Lancaster et al., 1989; Yoshimoto et al., 2015b). Production of S-methylCys in 

Arabidopsis cell cultures was reported to be associated with methionine catabolism 

(Giovanelli et al., 1980; Re´beille et al., 2006). In Astragalus species the synthesis of Se-

methylselenocysteine is catalyzed by Se-methyltransferase (SMT) by using either S-

adenosylmethionine (SAM) or S-methylmethionine (SMM) as methyl sources (Sors et al., 

2009). Comparative transcriptome profiling of sulfur metabolism related genes in P. 

vulgaris and Vigna mungo, which accumulates -Glu-Met and not -Glu-S-methylCys, 

found HMTs (methyltransferases) as well as BSAS family members to be candidate genes 

associated with S-methylCys based on differential expression (Liao et al., 2013). 

To identify the precursor(s) of S-methylCys in common bean, the fate of labelled (13C3, 

15N) cysteine or serine was monitored by a combination of targeted and non-targeted high-

resolution mass spectrometry (HRMS). Targeted, liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) was used to obtain product ion spectra of the unlabelled 

compounds which could be involved in the biosynthetic pathway of S-methylCys. Two 

possible pathways of S-methylCys biosynthesis were proposed and isotopologues 

containing 13C3 and 15N were tracked along these proposed pathways. In one pathway, 

methylation of cysteine was proposed as a source of S-methylCys biosynthesis, while in 

another pathway serine was proposed as a precursor of S-methylCys (Figure 3.1). 
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Figure 3.1: Schematic representation of two possible S-methylCys biosynthesis 

pathways. 

A) Upper panel: S-methylCys biosynthesis takes place via cysteine methylation. SMM acts 

as a methyl donor. B) Lower panel: S-methylCys biosynthesis may take place via 

condensation of O-acetylserine with methanethiol. In this scheme methanethiol is produced 

via cleavage of methionine. HSer: O-phospho-L-homoserine, Ser: Serine, OAS: O-

acetylserine, Cys: Cysteine, cysta: Cystathionine, Hcy: Homocysteine, SMM: S-

methylmethionine, CH3SH: methanethiol, SMC: S-methylCys. 
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3.2 Material and methods 

3.2.1 Chemicals 

13C and 15N isotope labelled serine and cysteine were purchased from Cambridge Isotope 

Laboratories (Tewksbury, MA, USA). Other components of growth media were obtained 

from Sigma-Aldrich (Oakville, Ontario, Canada).  

3.2.2 Plant material 

Common bean (Phaseolus vulgaris) genotype BAT93 plants were grown in growth 

cabinets (Environmental Growth Chambers, Chagrin Falls, OH, USA) under 16 h light 

(300-400 μmol photons m-2 s-1) at a temperature cycling between 18 and 24 ºC as described 

by Pandurangan et al. (2012). Seeds were germinated in vermiculite and 12-day old 

seedlings were transplanted to pots (17 × 20 cm) containing Promix BX soil (Premier Tech 

Horticulture, Québec, Canada). 

3.2.3 Embryo culture 

Thirteen to 15 days post fertilization, developing pods were harvested, and surface 

sterilized with 0.5% bleach and soap (Alconox powdered precision cleaner, Alconox, NY, 

USA) for 5 min. Surface sterilization was followed up with three thorough, 5 min 

washings, in sterile distilled water and dissection for seed collection. Every seed was 

weighed and the seed coat was removed. Cotyledon weight was taken before transfer to 25 

mL standard line cell culture flasks (VWR, Mississauga, Ontario, Canada) containing 

culture media. These cell culture flasks had a filtered vent to provide oxygen for the 

developing seeds. Each flask contained six cotyledons from three developing seeds and 2.5 

mL of filter-sterilized culture media in the flasks. 

3.2.4 Culture media 

Culture medium contained 8 mM MgSO4, 10 mM KCl, 3 mM CaCl2, 1.25 mM KH2PO4, 

0.5 mM MnSO4, 0.15 mM ZnSO4.7H2O, 0.1 mM sodium EDTA ferric salt, 0.1 mM 
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H3BO3, 27 μM glycine, 2.5 μM CuSO4.5H2O, 5 μM KI, 1 μM Na2MoO4, 0.1 mM 

CoCl2.6H2O, 4 μM nicotinic acid, 1 μM thiamine-HCl, 0.5 μM pyridoxine-HCl, 0.56 mM 

myo-inositol, 0.1 mM Na2EDTA and 5 mM MES to buffer the final solution to pH 5.8. 

Sucrose and glutamine was provided at levels of 146 mM and 62.5 mM respectively 

(Thompson et al., 1981; Obendorf et al., 1983; Holowach et al., 1984). This basic culture 

medium was supplemented by serine or cysteine based on treatment groups. 

3.2.5 Radiolabelling treatments 

Five groups of treatments were designed based on culture media: labelled serine 

supplementation, non-labelled serine supplementation, labelled cysteine supplementation, 

non-labelled cysteine supplementation and no supplementation. In each treatment group, 

three cotyledons grown in cell culture flasks were kept horizontally at room temperature 

under continuous light and slow shaking (50 rpm). After completion of incubation, seeds 

were washed three times with sterile water to remove any traces of non-absorbed amino 

acids on the surface. Seeds were dried and stored at -80 ºC following flash freezing in liquid 

nitrogen for future experiments. 

3.2.6 Amino acid extraction 

The frozen seeds were homogenized using metal beads in 1.5 ml eppendorf tubes using 

TissueLyser II (Qiagen). The ground seeds were extracted in ethanol: water (70:30), which 

is optimal for sulfur containing -glutamyl dipeptides (Kasai et al., 1986). For mass 

spectrometry analysis dried amino acids were reconstituted in a 500 µl methanol:water 

(50:50) solution and filtered through 1.2 µm filters (Pall Life Sciences, Mississauga, 

Ontario, Canada) into an amber glass HPLC vial. The samples were prepared immediately 

prior to MS analysis. 

3.2.7 HRMS and HRMS/MS 

MS data were acquired with a Thermo® Q-Exactive Orbitrap mass spectrometer coupled to 

an Agilent 1290 HPLC system. Two microliter of sample was injected onto an Agilent 
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Zorbax Eclipse Plus RRHD C18 column (2.1 × 50 mm, 1.8 µM) maintained at 35 ºC. 

Mobile phase A (0.1 % formic acid in LC-MS grade H2O, Thermo Scientific, Fairlawn, NJ) 

was maintained at 100% for 1.25 min. Mobile phase B (0.1 % formic acid in LC-MS grade 

acetonitrile, Thermo Scientific, Fairlawn, NJ) was increased to 50 % over 1.75 min, and 

100 % over 0.5 min. Mobile phase B was held at 100 % for 1.5 min and returned to 0 % 

over 0.5 min. The following heated electrospray ionization (HESI) was optimized for the 

analysis of S-methylCys: spray voltage, 3.9 kV; capillary temperature, 250 ºC; probe heater 

temperature, 450 ºC; sheath gas, 30 arbitrary units; auxiliary gas, 8 arbitrary units; and S-

Lens RF level, 60 %. MS/MS was performed at 17,500 resolution, automatic gain control 

(AGC) target of 1e6, maximum injection time (IT) of 60 ms and isolation window of 1 m/z. 

A top 5 DDA method was comprised of a full MS scan at 35,000 resolution, AGC target of 

3e6, maximum IT of 125 ms, scan range between m/z 70-450 and intensity threshold of 

7.7e5. The DDA scan conditions were identical to the targeted MS/MS method. Normalized 

collision energy of 25 was used for both MS/MS and DDA methods. Data were analyzed 

and all theoretical masses were calculated with Xcalibur™ software. The proportion of 

labelled compound present was calculated by dividing the intensity of the labelled signal 

over the sum of labelled and unlabelled intensity.  

Targeted, liquid chromatography and tandem mass spectrometry (LC-MS/MS) was used to 

obtain product ion spectra of the unlabelled compounds which could be involved in the 

biosynthetic pathway of S-methylCys (Table 3.1). The formula of the major product ions of 

these compounds were determined by accurate mass and used to map MS/MS dissociation 

pathways. High resolution LC-MS/MS was then used to monitor both the unlabelled and 

predicted isotopically labelled compounds listed in Table 3.1.  

3.3 Results 

3.3.1 Determination of optimal incubation conditions for amino acid uptake 

In common bean, free S-methylCys biosynthesis takes place during early seed development 

such as stages III - heart stage, IV and V cotyledon stages (Walbot et al., 1972). Previously, 
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free amino acids were profiled in common bean cultivar BAT93 seeds by HPLC 

(Supplementary data 3.1) (Yi et al., 2012). In early developing stages, S-methylCys 

concentration was equal to 0.40 nmol per mg seed weight while accumulation of Glu-S-

methylCys began later in development from stage VI - maturation to mature seed. To track 

the incorporation of stable isotopes in S-methylCys, I chose to feed the labelled precursors 

to developing seeds at stage IV - cotyledon. Seeds were grown in the presence of 1 mM, 5 

mM and 8 mM concentrations of labelled serine to determine the optimal concentrations for 

the feeding experiments. Amino acid extracts from these seeds were analyzed by LC-

MS/MS to determine the uptake of labelled serine relative to endogenous levels. 

Supplementation of growth media with 8 mM serine for 24 h resulted in sufficient 

incorporation of 13C and 15N in serine pool as well as in downstream metabolites. This 

concentration was then used in a time course experiment in order to determine the optimal 

incubation time. Insufficient incubation time would prevent the detection of important 

intermediates and downstream products while a long incubation time could lead to 

scattering of the labelled isotopes across multiple pathways. Seeds collected after 24 and 48 

h showed efficient incorporation of isotopologues in endogenous serine and cysteine pool 

while incorporation was decreased after 48 h, which indicated its movement into 

downstream products (Figure 3.2). Therefore, the optimal growth conditions of incubating 

seeds in culture media supplemented by 8 mM amino acids were 2 days. Using the 

optimized conditions, 42 seeds in 14 cell line culture flasks and 33 seeds in 11 cell line 

culture flasks was incubated with labelled cysteine and serine respectively. Every flask 

contained three seeds. 



 

 

78 

 

Figure 3.2: Uptake of 13C and 15N labelled serine over time. 

Seeds were cultivated in the presence of 8 mM serine for varying time. Incorporation of 13C 

and 15N isotope in native serine is presented as % incorporation.  
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Following amino acid extraction, 80 ± 4% of the serine content within the 13C3
15N serine 

treatment was labelled. Similarly, 68 ± 15 % of the cysteine content was labelled in the 13C3 

15N cysteine treatment. These data suggested efficient uptake of both serine and cysteine by 

developing seeds from the growth media (Figure 3.3). 

3.3.2 Tracking fate of labelled serine and cysteine 

In order to track the path of isotopes from serine or cysteine to other metabolites and the 

position of isotopes in the metabolite, targeted MS/MS was performed. Accurate mass of 

major S-containing metabolites was used to determine the formula of product ions and to 

map MS/MS dissociation pathways. These dissociation pathways were used to predict the 

number of stable isotopes on the products ions which would be produced if 13C3, 
15N 

cysteine or 13C3, 
15N serine were incorporated. A product ion list was generated for 

unlabelled and labelled product ions (Table 3.1). 

3.3.2.1 O-acetylserine 

In the cysteine biosynthesis pathway, O-acetylserine is known to be the carbon backbone 

donor for cysteine biosynthesis. Serine gets converted to O-acetylserine using acetyl-CoA. 

Among the five carbons of O-acetylserine three are inherited from serine along with 

nitrogen. In the treatment group supplemented with labelled serine, 78 ± 6 % of the O-

acetylserine pool was labelled, while labelled cysteine treated seed showed no 

incorporation of stable isotopes (Figure 3.5). This is in agreement with a previous study 

where O-acetylserine was proven as a precursor of cysteine synthesis (Hell and Wirtz 

2011). 

3.3.2.2 S-methylCys 

To increase the selectivity of detecting incorporation of a labelled amino acid into a 

downstream metabolite, S-methylCys and compounds predicted to be involved in the 

pathway were monitored by MS/MS. The major product ion of protonated S-methylCys 

(C4H10NO2S) is C4H7O2S which occurs following the neutral loss of NH3 (17.0265 Da). 
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Therefore, should either labelled cysteine or serine be the precursor of S-methylCys, the 

product ion formula would be 13C3CH10
15NO2N, and 13C3CH7O2S (122.0262) after losing 

15NH3 (18.0236 Da) (Figure 3.4). A secondary product of S-methylCys is C3H5O2
+ which 

arises following the neutral loss of CH2S. This product ion does not occur in homocysteine, 

which is isobaric to S-methylCys and was used to distinguish S-methylCys from 

homocysteine (Table 3.1). 

Isotopically labelled S-methylCys was not detected in samples treated with non-labelled 

serine, non-labelled cysteine or labelled cysteine. In contrast, labelled S-methylCys was 

clearly detected in seeds grown in the presence of labelled serine (Figure 3.5). The product 

ions observed agree with the expected positions of labelled atoms in S-methyl-Cys which 

used serine as a precursor. These findings strongly support that serine is the precursor of S-

methylCys in the common bean variety of this study and not cysteine. 
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Table 3.1: Product ions tracked for labelled and unlabelled* compounds 

Name Formula m/z m/z* Product ion 1 m/z m/z* Product ion 

2 

m/z m/z* 

Serine C3H7NO3 106.0499 110.057 C2H6ON 60.0451 63.0481 C3H6O2N 88.0397 92.0464 

Homoserine C4H9NO3 120.0655 124.0726 C3H8ON 74.0606 77.0638 C4H8O2N 102.0552 106.0605 

Cysteine C3H7NO2S 122.027 126.0341 C2H6NS 76.0222 79.0253 C3H3OS 86.9904 89.9999 

S-methylCys C4H9NO2S 136.0427 140.0498 C4H7O2S 119.0161 122.0262 C3H5O2 73.029 76.0385 

O-acetylserine C5H9NO4 148.0604 152.0675 C3H8O3N 106.0499 110.057 C3H6O2N 88.0396 92.0464 

Methionine C5H11NO2S 150.0583 154.0654 C4H10NS 104.0531 107.0566 C5H9O2S 133.0316 136.0418 

SMM C6H13NO2S 164.074 168.0811 C6H11O2S 147.0474 150.0575    

Cystathionine C7H14N2O4S 223.0747 227.0818 C4H8O2NS 134.0268 137.0304    

-Glu-S-

methylCys 

C9H16N2O5S 265.0853 269.0924 C4H7O2S 119.0160 122.0262 C4H10O2NS 136.0423 140.0498 

GSH C10H17N3O6S 308.0911 312.0982 C5O3N2SH11 179.0485 183.0556    

hGSH C11H19N3O6S 322.1067 326.1138 C6H13O3N2S 193.0637 197.0712    

S-methylhGSH C12H21N3O6S 336.1224 340.1295 C7H15O3N2S 207.0792 211.0867    
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SAM C15H22N6O5S 399.1445 403.1516 C9H16O7N 250.0928 250.0928 C10H20O7NS 298.0962 298.0961 

SMM- S-methylmethionine; -Glu-S-methylCys: γ-glutamyl-S-methylcysteine; GSH: Glutathione; hGSH: Homoglutathione;  

S-methylhGSH: S-methylhomoglutathione; SAM: S-Adenosylmethionine 
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Figure 3.3: Percentage of isotopically labelled serine and cysteine compounds. 

Left: percentage incorporation of 13C3 
15N1 in serine Right: percentage incorporation of 13C 

and 15N1 in cysteine in labelled cysteine or labelled serine supplementation to the basic 

culture media. Each dot represents a single LC-MS measurement of a three seed sample. 

The percentage incorporation of labelled compound in serine or cysteine were calculated by 

dividing the intensity of the labelled signal over the sum of labelled and unlabelled 

intensity. 
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Figure 3.4: Representative dissociation of protonated unlabelled S-methylCys and 

labelled S-methylCys 

Upper panel: Product ions of unlabelled S-methylCys. Lower panel: Product ions of 

labelled S-methylCys. The percentage incorporation of labelled compound in O-

acetylserine or S-methylCys was calculated by dividing the intensity of the labelled signal 

over the sum of labelled and unlabelled intensity. 
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Figure 3.5: Percentage of isotopically labelled compounds in O-acetylserine and S-

methylCys in labelled cysteine or labelled serine supplementation to the basic culture 

media. 

Each dot represents a single LC-MS measurement of a three seed sample. A) Percentage 

incorporation of 13C3 
15N1 in O-acetylserine. B) Percentage incorporation of 13C and 15N in 

S-methylCys. The percentage incorporation of labelled compound in O-acetylserine or S-

methylCys was calculated by dividing the intensity of the labelled signal over the sum of 

labelled and unlabelled intensity. 
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3.3.2.3 -Glu-S-methylCys  

The dipeptide -Glu-S-methylCys, which accumulates in maturing common bean seed was 

also monitored by LC-MS/MS in order to identify its biosynthetic precursors. -Glu-S-

methylCys (C9H15N2O5S), has m/z of 265.0853 and upon collision induced dissociation, 

two major product ions are produced including a S-methylCys fragment (C4H10O2NS) and 

deaminated S-methylCys (C4H7O2S) (Figure 3.6). Should labelled serine or cysteine be 

incorporated into -Glu-S-methylCys, the precursor ion would have a 13C3C6H16
15NNO5S, 

formula and the product ions would be 13C3CH10
15NO2S and 13C3CH7

1O2S respectively 

(Figure 3.6).  

Interestingly, the percentage of labelled compound incorporation observed in either labeled 

cysteine or serine treatments was similar in both the treatments which suggest more than 

one pathway for -Glu-S-methylCys biosynthesis (Figure 3.7). 
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Figure 3.6: Product ion spectra of protonated unlabelled -Glu-S-methylCys and 

labelled -Glu-S-methylCys.  

Upper panel: Product ions of unlabelled -Glu-S-methylCys. Lower panel: Product ions 

of labelled -Glu-S-methylCys. 

 

  



 

 

88 

 

Figure 3.7: Percentage of isotopically labelled compounds -Glu-S-methylCys in 

labelled cysteine or labelled serine supplementation to the basic culture media. 

Each dot represents a single LC-MS measurement of a three seed sample. The percentage 

incorporation of 13C3 and 15N1 in -Glu-S-methylCys pool was calculated by dividing the 

intensity of the labelled signal over the sum of labelled and unlabelled intensity. 
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Several studies have proposed S-alk(en)yl-L-cysteine sulfoxides are formed in Allium 

family members via GSH and its conjugates (Suzuki et al., 1962; Turnbull et al., 1980). In 

the proposed pathway, GSH is S-alk(en)ylated at the cysteine residue, followed by the 

removal of a glycyl group to form a biosynthetic intermediate, γ-glutamyl-S-alk(en)yl-L-

cysteine. Based on this pathway, we investigated the incorporation of stable isotopes 

derived from either cysteine or serine into other sulfur containing peptides and their 

conjugates. Beside methionine biosynthesis, an important role of cysteine is the formation 

of glutathione and homoglutathione (Galant et al., 2011). -Glutamyl cysteine (–Glu-Cys), 

the precursor of glutathione is synthesized from cysteine by –Glu-Cys ligase (GCL). Seeds 

were grown in media with labelled serine or cysteine containing 13C and 15N labelled –

Glu-Cys. The percent incorporation of 13C and 15N was higher (69 ± 7 %) in labelled serine 

treated seeds compared to labelled cysteine treatment (13 ± 4 %) (Figure 3.8). 

In legumes, GSH accumulates in the form of hGSH, which is present in addition to or in 

place of GSH (Loscos et al., 2008; Yi et al., 2010). hGSH is synthesized from –Glu-Cys 

and based on this in our experiment 62 ± 4 % incorporation of labelled serine compared to 

10 ± 2 % of labeled cysteine follows a similar pattern as in –Glu-Cys (Figure 3.8). 

Previously, Kasai et al. reported the presence of another glutathione conjugate S- 

methylhomoglutathione (S-methyl-hGSH) in Vigna radiata seeds (Kasai et al., 1986). 

Following this, the presence of S-methyl-hGSH in P. vulgaris seeds was also reported (Liao 

et al., 2013). In accordance with our hypothesis, incorporation of 13C and 15N in S-methyl-

hGSH follows a similar pattern as –Glu-Cys and hGSH did in both labelled cysteine and 

serine treatments (Figure 3.9). 
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Figure 3.8: Percentage of isotopically labelled compounds -Glu-Cys and hGSH in 

developing seeds following incubation with labelled cysteine or labelled serine 

supplementation to the basic culture media.  

Each dot represents a single LC-MS measurement of a three-seed sample. Left: percentage 

incorporation of 13C3 15N1 in -Glu-Cys. Right: percentage incorporation of 13C and 15N1 

in hGSH. The percentage incorporation of labelled compound in -Glu-Cys or hGSH were 

calculated by dividing the intensity of the labelled signal over the sum of labelled and 

unlabelled intensity. 
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Figure 3.9: Percentage of isotopically labelled compound S-methyl-hGSH in 

developing seeds following incubation with labelled cysteine or labelled serine 

supplementation to the basic culture media. 

Each dot represents a single LC-MS measurement of a three-seed sample. The percentage 

incorporation of labelled compound in S-methyl-hGSH were calculated by dividing the 

intensity of the labelled signal over the sum of labelled and unlabelled intensity 
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3.4 Discussion 

In the past, several strategies have been developed to understand sulfur amino acid 

metabolism in legumes. In this study, isotope labelling was combined with high resolution 

liquid chromatography-tandem mass spectrometry to decipher S-methylCys biosynthesis in 

common bean. Single stage HRMS is commonly used in biosynthetic studies to monitor 

stable isotope incorporation, however, in the present study, using high resolution MS/MS 

greatly reduced the level of background interference and furthermore, provided evidence to 

the location of the labelled isotopes within the larger molecule itself. In addition to targeted 

LC-MS/MS, a non-targeted data-dependent acquisition (LC-DDA) method was also used to 

provide a dataset which could be mined retrospectively for other compounds which were 

not initially predicted to be involved in biosynthetic pathways. Use of these techniques not 

only helped me to overcome limitations with sulfur containing metabolite detection but also 

to understand complex sulfur metabolism in common bean seeds. 

To simplify our understanding achieved from this study and combine these lessons with 

previous knowledge of sulfur metabolism in other plants, a scheme explaining sulfur amino 

acid metabolism in common bean seeds is proposed and presented in Figure 3.10. 
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Figure 3.10: Proposed pathway of sulfur amino acid metabolism in common bean 

developing seeds. 

Red color is assigned to carbon, blue to nitrogen and yellow to sulfur atoms of the 

metabolite. Hollow circle represents unlabelled carbon, nitrogen or sulfur while solid circle 

represents 13C or 15N incorporation in metabolite. Oxygen and hydrogen atoms present in 

metabolites are not shown in this figure. The reactions which were not confirmed in this 

study are represented with a broken arrow. Reactions involving multiple steps are shown 

with multiple arrows. 
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Sulfur metabolism is a complex system which is governed by subcellular 

compartmentation. While plastids are the only site for sulfate reduction, cysteine and 

methionine biosynthesis takes place in the cytosol, plastids and mitochondria. Differential 

accumulation of 13C and 15N from cysteine or serine to S-amino acids and derivatives 

suggest that metabolic pathways for S-methylCys and -Glu-mehtylCys biosynthesis are 

compartmentalized to cytosol and plastids, respectively, in common bean seeds. In our 

pathway, we propose the entry of exogenous amino acids into the cytosol and plastids. In 

cytosol and plastids serine takes part in biosynthesis of cysteine due to the presence of bona 

fide SERAT and BSAS via O-acetylserine formation. In legumes one fate of cysteine is 

hGSH. hGSH biosynthesis is reported to be governed by a two-step process catalyzed by 

glutamate–cysteine ligase (GCL) and homoglutathione synthetase (hGS). A major portion 

of GCL activity to synthesize -Glu-Cys takes place in plastids and homoglutathione 

production is regulated by GCL (Hell and Bergmann, 1990; Hicks et al., 2007; Galant et 

al., 2011).According to isotope tracking data shown in this study, a similar amount of 

incorporation of isotopes in -Glu-Cys and hGSH in common bean seeds suggests that 

biosynthesis of both compounds occurs in plastids. Another metabolite which follows 

similar isotope incorporation pattern as -Glu-Cys and hGSH is S-methylhGSH which 

suggests S-methylhGSH biosynthesis occurs in plastids. In garlic and onion S-alk(en)yl-L-

cysteine sulfoxides and γ-glutamyl peptides are reported to be stored in the cytosol 

(Lancaster et al., 1989; Yoshimoto et al., 2015a). Following isotopes in our feeding 

experiment also points towards cytosolic biosynthesis of S-methylCys and -Glu-S-

methylCys in common bean. Based on relative incorporation of isotopes in a native pool of 

metabolites, the plastidic pathway is more prominent than the cytosolic pathway in 

common bean. This may be due to preferred movement of exogenous serine or cysteine 

inside plastids than in the cytosol. 

Our feeding experiment with labelled serine and cysteine supports serine as the precursor of 

S-methylCys in common bean seeds. Recently in the anaerobic protozoan parasite 

Entamoeba histolytica cysteine deprivation led to an increase in S-methylCys concentration 
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(Husain et al., 2010). In this study using stable isotope-labelled L-serine and L-methionine, 

O-acetylserine and methanethiol was reported to be precursor of S-methylCys. In common 

bean seeds S-methylCys biosynthesis is also taking place from O-acetylserine. It is possible 

that during seed development SMM is transported from vegetative parts of the plant to the 

developing seeds where it gets converted to methionine via the SMM cycle (Lee et al., 

2008). Excessive methionine in developing bean seeds may induce the release of 

methanethiol. This is similar to pumpkin leaves where an L-methionine-inducible 

enzymatic system is present, which is capable of converting L-methionine into 

methanethiol (Schmidt et al., 1985). The available methanethiol could be condensed with 

O-acetylserine to form S-methylCys. Most likely the enzyme involved in biosynthesis of S-

methylCys is an OAS-TL which can condense O-acetylserine with methanethiol to produce 

S-methylCys. Previously, in Spinacia oleracea an OAS-TL was reported to have the 

capacity to synthesize S-methylCys in presence of O-acetylserine and methanethiol 

(Ikegami et al., 1988b). Unfortunately, we did not observe any incorporation of isotopes in 

methionine and its derivatives but our future plan is to use labelled methionine in an 

experiment to confirm the condensation reaction of O-acetylserine and methanethiol for S-

methylCys biosynthesis. 

Incorporation of labelled 13C and 15N into -Glu-S-metCys in both the treatments suggests 

the presence of more than one pathway for -Glu-S-metCys synthesis in different cellular 

compartments. -Glutamyl-S-methylCys biosynthesis may be taking place via two different 

pathways, one of them involving thiomethylation and the other one involving methylation 

of homoglutathione. One pathway might take place in the cytosol in which methylation 

ofGlu-Cys may form -Glu-S-metCys in the presence of methyltransferases. Another 

one involving methylation might takes place in plastids where homoglutathione synthesizes 

S-methylhGSH. Alanine is then cleaved off from S-methylhGSH catalyzed by 

carboxypeptidase and released in the cytosol. Similar biosynthetic pathways were also 

proposed by Lancaster et al. (1989) after doing pulse chase experiments using radiolabelled 

35SO4
2- in leaves of Allium cepa (onion), A. sativum (garlic) and A. siculum. Based on pulse 



 

 

96 

chase experiment results, it was predicted that glutathione, and -glutamyl peptides act as 

intermediates in the biosynthetic pathway of alk(en)ylcysteine sulphoxide (Lancaster et al., 

1989). Two biosynthetic pathways were proposed for the biosynthesis of alk(en)ylcysteine 

sulphoxide in garlic. One proceeds from alkylation of glutathione through γ-glutamyl 

peptides to yield S-alkyl cysteine sulphoxides while the alternative was direct thioalkylation 

of serine followed by oxidation to the sulphoxide (Granroth, 1970; Lancaster et al., 1989; 

Lawson, 1996). Recently biosynthesis of S-alk(en)yl-L-cysteine sulfoxides via alkylation of 

glutathione was reported to be the major pathway in garlic (Yoshimoto et al., 2015b). 

During the biosynthesis of S-alk(en)yl-L-cysteine sulfoxides, S-alk(en)ylation of 

glutathione is followed by removal of glycine that leads to -glutamyl-S-alk(en)yl-L-

cysteine synthesis. Later γ-glutamyl transpeptidases (GGTs) catalyze removal of γ-glutamyl 

moiety to synthesize S-allyl-L-cysteine in garlic (Lancaster et al., 1989; Lancaster and 

Shaw, 1994; Leustek et al., 2000; Yoshimoto et al., 2015a; Yoshimoto et al., 2015b). 

Based on high recovery of isotope in S-methylhGSH and learning from garlic studies this 

may be the most promising pathway to synthesize -Glu-S-methylCys.  

Another less likely case may involve synthesis of dipeptide by -Glu-Cys synthetase from 

S-methylCys. The mammalian enzyme has substantial in vitro activity with S-methylCys as 

substrate and this could also take place in common bean seeds (Rathbun, 1967b; Sekura 

and Meister, 1977). In the future, designing a pulse chase experiment with metabolic flux 

analysis (MFA) to track the flux of sulfur in the sulfur metabolic pathway will be an 

effective solution to confirm the proposed pathways. 

3.5 Conclusion 

A major outcome from this research is finding a precursor for S-methylCys. Previously, 

several schools of thoughts have indicated that serine, cysteine or glutathione can act as 

precursors for S-methylCys varying from plant to plant. This study supports serine as the 

precursor for S-methylCys in common bean seeds. Furthermore, the results of the isotope 

labelling experiments provided evidence for S-amino acid metabolism producing S 
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metabolites such as -Glu-Cys, hGSH, -glu-S-methylCys and S-methylhGSH which may 

act as storage sinks for sulfur in seeds. Isotope tracking confirms S-methylhGSH as the 

main intermediate in -glu-S-methylCys biosynthesis. Another fate of sulfur can be in the 

form of phytochelatins which needs to be validated with another isotope labelling 

experiment. Based on the finding in this study my next approach will be to identify the 

genes and enzymes responsible for S-methylCys biosynthesis from O-acetylserine. 
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3.7 Supplementary data 

Supplementary Data 3.1: Previously published free amino acid profiles in developing seeds of BAT93 

Day after 

fertilization/ 

seed weight 

(mg)/develo

pmental 

stage 

 

9/8 

III-heart 

 

13/16 

IV-

cotyledon 

15/36 

IV-cotyledon 

18/98 

V-cotyledon 

22/180 

VI-

maturation 

27/288 

VII-

maturation 

33/489 

VIII-

maturation 

163 

Mature/ 

 

Asp 1.2 ± 0.3 1.2 ± 0.1 0.82 ± 0.05 0.55 ± 0.02 0.62 ± 0.04 0.79 ± 0.13 1.16 ± 0.13 0.71 ± 0.07 

Glu 3.0 ± 0.6 3.0 ± 0.2 3.1 ± 0.2 4.0 ± 0.1 1.6 ± 0.1 1.7 ± 0.3 0.91 ± 0.08 0.68 ± 0.07 

Asn 3.9 ± 0.6 3.4 ± 1.2 2.3 ± 0.1 2.3 ± 0.1 0.34 ± 0.02 0.12 ± 0.01 0.32 ± 0.04 n. d. 

Ser 1.3 ± 0.2 1.2 ± 0.1 0.79 ± 0.03 0.53 ± 0.02 0.21 ± 0.01 0.21 ± 0.03 0.18 ± 0.02 0.058 ± 

0.017 

Gln 21 ± 5 15 ± 4 13 ± 1 7.7 ± 0.2 0.49 ± 0.03 0.21 ± 0.03 0.13 ± 0.02 n. d. 

Gly 0.32 ± 0.05 0.24 ± 0.03 0.19 ± 0.01 0.17 ± 0.01 0.11 ± 0.01 0.10 ± 0.01 0.057 ± 0.01 0.12 ± 0.02 

His 0.80 ± 0.22 0.88 ± 0.03 0.64 ± 0.03 0.60 ± 0.02 0.43 ± 0.02 0.083 ± 

0.016 

0.30 ± 0.04 0.95 ± 0.08 

γ-Glu-S-

methylCys 

0.050 ± 

0.01 

0.15 ± 0.06 0.84 ± 0.05 2.4 ± 0.1 2.3 ± 0.1 1.8 ± 0.4 3.2 ± 0.5 9.4 ± 1.0 

Arg 3.4 ± 0.8 3.6 ± 0.6 4.2 ± 0.3 6.0 ± 0.1 0.87 ± 0.05 0.24 ± 0.04 0.57 ± 0.08 4.0 ± 0.4 

Thr 0.72 ± 0.14 0.75 ± 0.05 0.62 ± 0.04 0.51 ± 0.03 0.30 ± 0.02 0.19 ± 0.02 0.27 ± 0.04 0.12 ± 0.01 
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Ala 5.8 ± 1.9 3.5 ± 1.2 1.3 ± 0.1 1.0 ± 0.1 0.33 ± 0.01 0.20 ± 0.01 0.37 ± 0.05 0.50 ± 0.06 

Pro 0.34 ± 0.04 0.31 ± 0.07 0.23 ± 0.01 0.17 ± 0.01 0.080 ± 0.004 0.066 ± 

0.005 

0.20 ± 0.01 0.24 ± 0.11 

γ-Glu-Leu 0.090 ± 

0.015 

0.092 ± 

0.009 

0.092 ± 0.004 0.31 ± 0.02 0.67 ± 0.02 0.73 ± 0.10 0.74 ± 0.08 1.8 ± 0.2 

Tyr 0.041 ± 

0.01 

0.077 ± 0.04 0.069 ± 0.01 0.067 ± 0.02 0.048 ± 0.002 0.035 ± 0.01 0.027 ± 

0.003 

0.051 ± 

0.01 

S-methylCys 0.41 ± 0.15 0.40 ± 0.05 0.41 ± 0.02 0.21 ± 0.02 0.095 ± 0.001 0.067 ± 0.02 0.081 ± 0.01 0.16 ± 0.02 

Val 0.55 ± 0.24 0.84 ± 0.04 0.62 ± 0.03 0.56 ± 0.02 0.23 ± 0.01 0.17 ± 0.02 0.29 ± 0.04 0.20 ± 0.02 

Met 1.8 ± 0.3 1.6 ± 0.3 1.6 ± 0.1 0.87 ± 0.04 0.13 ± 0.01 0.10 ± 0.02 0.040 ± 0.01 0.044 ± 

0.005 

Ile 0.16 ± 0.02 0.41 ± 0.35 0.18 ± 0.01 0.18 ± 0.01 0.16 ± 0.01 0.11 ± 0.01 0.25 ± 0.03 0.14 ± 0.01 

Leu 0.28 ± 0.05 0.44 ± 0.01 1.4 ± 0.1 1.2 ± 0.03 0.13 ± 0.01 0.083 ± 

0.009 

0.15 ± 0.03 0.12 

Phe 0.10 ± 0.01 0.16 ± 0.01 0.12 ± 0.01 0.13 ± 0.01 0.086 ± 0.038 0.052 ± 

0.014 

0.22 ± 0.11 0.73 ± 0.02 

Lys 0.062 ± 

0.017 

0.093 ± 

0.016 

0.17 ± 0.01 0.30 ± 0.02 0.046 ± 0.001 0.030 ± 

0.002 

0.018 ± 

0.004 

0.40 ± 0.03 

Values presented as nmol per mg seed weight; average ± standard deviation; n. d.: not determined 
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Supplementary Data 3.2: Summary of % incorporation of 13C and 15N in metabolites in all the samples 

Experimental group: LC: Labelled cysteine treatment; LS: Labelled serine treatment; NLC: non-labelled cysteine treatment; 

NLS: non-labelled serine treatment, NT: no supplementation 

 

Serine Cysteine O-acetylserine S-methylCys -Glu-S-metCys -Glu-Cys hGSH S-methylhGSH 

Non-labelled 

Fragments 88.0397 76.0222 106.0499 119.0160 119.0160 251.0696 193.0637 207.0792 

Labelled 

Fragments 92.0464 79.0253 110.0570 122.0262 122.0262 255.0767 197.0712 211.0867 

LC1 0.00 86.71 0.00 0.00 1.33 12.73 10.18 9.65 

LC2 0.00 66.83 0.00 0.00 1.15 9.65 9.23 7.72 

LC3 0.00 66.81 0.00 0.00 0.12 8.66 7.97 7.14 

LC4 0.00 74.74 0.00 0.00 0.53 10.47 9.85 9.03 

LC5 0.00 71.50 0.00 0.00 0.26 10.92 8.11 6.36 

LC6 0.00 33.81 0.00 0.00 2.08 11.81 9.68 7.89 

LC7 0.00 63.43 0.00 0.00 0.25 8.96 8.34 7.31 

LC8 0.00 85.73 0.00 0.00 1.17 22.37 12.29 11.10 

LC9 0.00 56.23 0.00 0.00 0.93 13.62 12.80 9.78 

LC10 0.00 84.89 0.00 0.00 1.28 0.00 13.80 12.06 

LC11 0.00 87.69 0.00 0.00 0.36 13.81 13.88 8.45 
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LC12 0.00 86.13 0.00 0.00 0.79 18.81 11.86 11.03 

LS1 90.94 50.37 86.52 4.27 0.70 59.63 51.67 45.04 

LS2 90.29 60.39 85.32 1.28 0.36 73.89 62.93 64.16 

LS3 85.33 75.58 81.73 1.92 0.57 63.60 57.32 60.41 

LS4 84.04 55.50 78.13 2.37 0.76 61.61 53.05 46.50 

LS5 84.28 56.78 78.54 3.52 0.91 60.05 52.71 52.56 

LS6 83.97 62.13 83.78 0.00 0.30 75.52 71.76 69.23 

LS7 75.76 0.00 73.53 12.16 1.47 0.00 0.00 47.00 

LS8 84.91 100.00 74.65 1.74 0.45 71.00 63.64 70.14 

LS9 85.44 78.59 79.17 0.00 0.90 76.29 72.52 71.62 

LS10 85.98 0.00 79.57 0.00 0.46 77.04 74.93 76.84 

NLC1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NLC2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NLC3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NLC4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NLC5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NLS1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NLS2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NLS3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NLS4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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NLS5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NLS6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NT1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NT2 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 

NT3 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.06 

NT4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NT5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NT6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NT7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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 CHAPTER FOUR - EVIDENCE THAT BSAS4;1 UTILIZES A 

METHYL GROUP FROM METHIONINE FOR S-

METHYLCYSTEINE BIOSYNTHESIS IN COMMON BEAN 

(Phaseolus vulgaris) 

4.1 Introduction 

Methionine is a sulfur amino acid and is the most limiting essential amino acid in legumes 

along with cysteine (Galili and Amir, 2013). Cysteine is the first organic compound in 

which inorganic sulfur is assimilated in the plant system. The fate of cysteine lies mainly in 

protein, methionine or glutathione biosynthesis (Hell and Wirtz, 2011). Methionine 

biosynthesis from cysteine leads to the formation of S-adenosylmethionine (SAM), a 

universal methyl donor. SAM not only acts as primary methyl group donor for various 

cellular processes but also plays a major regulatory role in the biosynthesis of biotin, 

polyamines, phytohormones, ethylene, chlorophyll and cell wall polymers (Roje, 2006). 

Another known metabolic fate of methionine is S-methylmethionine (SMM) which is 

unique to higher plants (Bourgis et al., 1999). SMM biosynthesis results from SAM-

dependent methylation of methionine, generating S-adenosylhomocysteine, which cycles 

back to synthesize methionine through the SMM cycle (Ranocha et al., 2001). Catabolism 

of methionine leads to the formation of volatile molecules such as methanethiol, dimethyl 

disulfide, or dimethyl sulfide (Schmidt et al., 1985; Boerjan et al., 1994; Hacham et al., 

2002; Goyer et al., 2007) (Figure 4.1). Several reports of these volatiles are published in 

various crops but till today the physiological significance of these volatiles is yet unknown. 

Methionine--lyase (MGL; EC 4.4.1.11), a pyridoxal 5′-phosphate (PLP) dependent 

enzyme is reported to be involved in the production of these volatiles (Christen and Mehta, 

2001). Taxonomically MGL is present in a vast majority of genera and characterized in 

microbes, protozoa and plants (Inoue et al., 1995; Dias and Weimer, 1998; Manukhov et 

al., 2005; Goyer et al., 2007; Sato and Nozaki, 2009). It catalyzes the conversion of 

methionine to -ketobutyrate, methanethiol and ammonia. Further, -ketobutyrate enters 
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the isoleucine biosynthetic pathway, while the fate of methanethiol is yet to be discovered 

(Joshi and Jander, 2009). Production of methanethiol is a consequence of the high 

accumulation of free methionine in the plant tissue. An MGL knockout mutant accumulated 

high amount of SMM and methionine in leaves, flowers and seeds of Arabidopsis (Saini et 

al., 1995; Goyer et al., 2007; Joshi and Jander, 2009). However, release of methanethiol 

seemed not be the case with Arabidopsis treated with methionine, suggesting entry of 

methanethiol in metabolism (Goyer et al., 2007).  

In various legume crops S-amino acids methionine and cysteine are reported in suboptimal 

levels (Galili et al., 2005). In contrast to this common bean (P. vulgaris) seeds accumulate 

high levels of a non proteinacious S-amino acid S-methylCys which has an inverse 

relationship with methionine and cysteine content (Taylor et al., 2008; Yin et al., 2011). 

Arabidopsis cell culture lines which were grown in methionine rich media have shown 

production of S-methylCys and isoleucine. Production of S-methylCys in these cells was 

predicted to be linked with MGL driven -cleavage of methionine releasing methanethiol 

(Re´beille et al., 2006). 

In Chapter 3, isotopic tracking of labelled serine and cysteine revealed O-acetylserine as a 

precursor of S-methylCys biosynthesis in developing seeds of common bean. To synthesize 

S-methylCys from O-acetylserine one possibility is a condensation reaction between O-

acetylserine and methanethiol. In 1988, Ikegami et al. reported the presence of a cysteine 

synthase (OAS-TL) in Spinacia oleracea that could synthesize S-methylCys using O-

acetylserine and methanethiol as substrates (Ikegami et al., 1988b). The common bean 

BSAS family has eight members that have either cysteine synthase or cysteine synthase like 

activity. Structural and functional analysis of OAS-TL from different plants suggests a two-

step reaction mechanism. In the first half reaction, O-acetylserine reacts with the PLP 

cofactor to yield a reactive -aminoacrylate intermediate. In the second half reaction, this 

intermediate interacts with a sulfur containing moiety to synthesize cysteine (Warrilow and 

Hawkesford, 2002; Bonner et al., 2005). The present study provides lines of evidence for 

the role of a cysteine synthase in S-methylCys biosynthesis. Isotope labeling method was 
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used to track the source of the methyl group in S-methylCys and to characterize seed 

specific cysteine synthase in common bean that is a candidate enzyme for S-methylCys 

biosynthesis. 
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Figure 4.1: Schematic representation of cysteine and methionine fate in plants. 

OAS: O-acetylserine, SAM: S-adenosylmethionine, SMM: S-methylmethionine, GSH: 

Glutathione. Key enzymes for these reactions are SERAT: Serine acetyltransferase; OAS-

TL: O-acetylserine (thiol) lyase and MGL: Methionine--lyase. Multiple arrows represent 

more than one step in that conversion. 
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4.2 Materials and methods 

4.2.1 Chemicals 

13C, 15N isotope labelled methionine, serine and cysteine were purchased from Cambridge 

Isotope Laboratories (Tewksbury, MA, USA). Other components of growth media were 

obtained from Sigma-Aldrich (Oakville, Ontario, Canada).  

4.2.2 Plant materials 

Common bean (Phaseolus vulgaris) genotype BAT93 plants were grown in growth 

cabinets (Environmental Growth Chambers, Chagrin Falls, OH, USA) under 16 h light 

(300-400 μmol photons m-2 s-1) at a temperature cycling between 18 and 24 ºC as described 

by Pandurangan et al. (2012). Seeds were planted and fertilized as described in section 

3.2.2. 

4.2.3 Isotope labelling and embryo culture 

Isotopic labelling and embryo culture was performed in 25 mL standard line cell culture 

flasks (VWR, Mississauga, Ontario, Canada) containing culture media following the 

methods described in section 3.2.3. 

4.2.4 Culture media  

Seeds were grown in a basic culture media with some modifications. (Thompson et al., 

1981; Obendorf et al., 1983; Holowach et al., 1984). Composition of basic media is 

described in section 3.2.4. This basic culture media was supplemented by 8 mM 

methionine, serine or cysteine based on treatment groups. 

4.2.5 Treatments 

Seven groups of treatments were designed based on culture media: labelled 

methionine/serine/cysteine supplementation, non-labelled methionine/serine/cysteine 

supplementation and no supplementation. In each treatment group, three cotyledons grown 
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in cell culture flasks were kept horizontally at room temperature under continuous light and 

slow shaking (50 rpm). After completion of 48 h incubation, seeds were washed three times 

with sterile water to remove any traces of non-absorbed amino acids on the surface. Seeds 

were dried and stored at -80 ºC following flash freezing in liquid nitrogen for future 

experiments. 

4.2.6 Amino acid extraction 

From the frozen seeds amino acids were extracted in ethanol: water (70:30) (Kasai et al., 

1986) and processed for mass spectrometry analysis following the method described in 

section 3.2.6. 

4.2.7 HRMS and HRMS/MS 

MS data were acquired with a Thermo® Q-Exactive Orbitrap mass spectrometer coupled to 

an Agilent 1290 HPLC system. Method described in section 3.2.7 for MS/MS and DDA 

was used to acquire data.  Xcalibur™ software was used to calculate all theoretical masses 

and to analyze data. The proportion of labelled compound present was calculated by 

dividing the intensity of the labelled signal over the sum of labelled and unlabelled 

intensity.  

4.2.8 Expression profile 

Transcript expression profile of BSAS family members in different tissues was recorded 

according to the gene atlas (O'Rourke et al. 2014). A heat map was generated in R using the 

heatmap.2 function from the gplots and RColorBrewer CRAN library. Expression values 

are represented as RPKM (reads per kilobase of transcript per million mapped reads). 

4.2.9 Cloning BSAS4;1 for recombinant protein expression  

A full length β-substituted alanine synthase (BSAS) gene was amplified from common 

bean (P. vulgaris) line BAT93. RNA was extracted from developing seeds as mentioned by 

Wang and Vodkin (1994) and quantified by spectrophotometry with a NanoDrop 1000 



 

 

114 

(ThermoScientific, Wilmington, DE, USA). Quality of RNA was evaluated from A260/280 

ratio and by 1% agarose gel electrophoresis. One microgram of total RNA treated with 

amplification-grade DNase I (Life Technologies, Burlington, ON, Canada) was used for 

cDNA synthesis using qScript™ cDNA SuperMix (Quanta Biosciences).  

A 936 bp long BSAS4;1 was amplified by polymerase chain reaction (PCR) using Pfx50 

DNA polymerase (Life Technologies, Burlington, ON), and the primers designed based on 

the accession number Phvul.008G061100 in P. vulgaris v2.1 available in Phytozome. The 

primer sequences for PvBSAS4;1 (Fw: 5’-

ATTACTGGATCCGAGCCAAAGTGTGCGATTAAGAAG-3’ and Rvs: 5’- 

AGTAATAAGCTTTTAGTCAAATGTCATTTGTTCAGCTTCT-3’) contained the 

vector-specific sequences and restriction sites (underlined). The amplification conditions 

were 94 ºC for 30 s; 30 cycles of 58.5 ºC for 30 s, 68 ºC for 60 s. The PCR product was 

cloned into the pSC-B-amp/kan vector as per the manufacturer’s protocol (StrataClone 

Blunt PCR Cloning Kit, Agilent Technologies) and transformed in Escherichia coli. 

Positive recombinant clones selected on ampicillin plates were confirmed by restriction 

digests (BamHI and HindIII) and DNA sequencing using the M13 sequencing primers and 

checked against the BAT93 genome. Confirmed plasmid DNA was digested with BamHI 

and HindIII and subcloned in the bacterial expression vectors pQE30 (Qiagen, Toronto, 

ON) by restriction enzyme-mediated cloning using BamHI and HindIII restriction 

endonucleases and T4 DNA ligase following manufacturers’ guidelines. The expression 

constructs were transformed in E. coli XL10-Gold (Agilent Technologies, Mississauga, 

ON). 

4.2.10 Protein purification 

XL10-Gold cells were grown in NZY media with ampicillin (100 g/ml) as antibiotic at 37 

oC. At OD of 0.6, cells were induced by 1 mM isopropyl β-D-1 thiogalactopyranoside 

(IPTG) and allowed to grow at room temperature for 14-16 h. Cells were harvested by 

centrifugation (6,000 × g, 30 min at 4 ºC) and suspended in lysis buffer (50 mM sodium 
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phosphate, pH 8.0, 500 mM NaCl and 20 mM imidazole, pH 7.4). Suspended cells were 

treated with 1 mg/mL lysozyme for 30 min, lysed with French press and supernatant was 

collected after centrifugation at 18,000 × g for 45 minutes. After centrifugation, the 

supernatant was purified by immobilized metal affinity chromatography on a 5 mL HisTrap 

Ni2+-Sepharose column using an ÄKTApurifier system (GE Healthcare). The column was 

washed with five column volumes of wash buffer (50 mM sodium phosphate, 500 mM 

NaCl, 40 mM imidazole, pH 7.4) and eluted with a linear gradient varying from 0 to 100% 

of elution buffer (50 mM sodium phosphate, 500 mM NaCl, 500 mM imidazole, pH 7.4). 

Purified protein was desalted in 100 mM MOPSO, pH 7.5 with PD10 column using gravity 

method and later concentrated using Amicon Ultra-15 Ultracel 30 K filter unit (Millipore, 

Billerica, MA). Purified protein was stored at -80 ºC in 20% glycerol (v/v) after flash 

freezing in liquid nitrogen. Protein quantification and sodium dodecyl sulfate poly 

acrylamide gel electrophoresis (SDS-PAGE) were performed as previously described. 

4.2.11 Size exclusion chromatography  

Size exclusion chromatography was performed on ÄKTApurifier system (GE Healthcare) 

using HiLoad Superdex 200 prep grade column with FPLC buffer (20 mM Tris buffer, pH 

7.5, 150 mM sodium chloride). Molecular weight of eluted protein was calculated based on 

a standard curve generated with Gel Filtration Standard (Bio-Rad). The protein 

quantification was performed using the Bio-Rad Protein Assay solution (Mississauga, ON), 

and bovine serum albumin (BSA) as standard. Purified protein was analyzed by SDS-

PAGE on 12% gel, and the protein bands were visualized by Coomassie staining as 

described (Laemmli, 1970). 

4.2.12 Absorption spectroscopy of PvBSAS4;1 protein 

Absorption spectrum of purified recombinant protein was determined using a DU 600 

spectrophotometer (Beckman Coulter, Mississauga, ON). The typical wavelength scan was 

between 250 and 600 nm and used 1.5 mg/ml of purified protein in 25 mM HEPES buffer 

with 100 mM sodium chloride (pH 7.5) 
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4.2.13 Ligand binding assay 

Binding of cysteine and O-acetylserine to PvBSAS4;1 was monitored by using PowerWave 

XS plate reader equipped with Gen5.5 software (BioTeK Instruments, Winooski, VT). 

Change in PLP binding signal was collected from 350 to 600 nm wavelength spectra using 

400 g protein (in 25 mM HEPES, pH 7.5, 100 mM NaCl) and varying concentration of O-

acetylserine (0 - 1.5 mM) and cysteine (0 - 1.5 mM). 

4.2.14 Enzyme assays 

Cysteine synthase activity of PvBSAS4;1 was measured by measuring cysteine 

biosynthesis using acid ninhydrin assay as described previously by Gaitonde (1967). To 

prepare acid ninhydrin reagent 250 mg of ninhydrin was dissolved in a mixture of 6 mL 

acetic acid and 4 mL conc. HCl. The mixture required 30 min continuous mixing at room 

temperature in order to dissolve ninhydrin completely (Gaitonde, 1967). A 250 L reaction 

containing 100 mM MOPSO (pH 7.0), 8 mM O-acetylserine, and 0.75 mM Na2S was 

initiated by adding 80 ng of enzyme. After incubating at 25 ºC for 15 min, the reaction was 

stopped by adding 50 L of 40 mM HCl. Two hundred fifty L of the reaction was mixed 

with an equal volume of freshly prepared acid-ninhydrin reagent. The mixture was heated 

(95 °C) for 5 min and then cooled on ice for 5 min and 500 L of 100% cold ethanol was 

added. Production of cysteine was determined colorimetrically at 546 nm using 

PowerWave XS plate reader. A standard curve of cysteine was developed from 10 M -100 

M. Varied concentration of O-acetylserine (0-8 mM), and Na2S (0-0.75 mM) was used to 

determine steady-state kinetic parameters. For S -methylCys biosynthesis assay, the 

cysteine synthase enzyme assay was used using 2 mM methanethiol and 10 mM O-

acetylserine. Production of S-methylCys was detected by mass spectrometry using 

previously described method (section 3.2.7). In S-methylCys assay 10 M labelled 

methionine was used for isotopic dilution to reduce the matrix effects. 
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To determine the cyanoalanine synthase (CAS) activity of PvBSAS4;1, a reaction mixture 

of 500 µL containing 50 mM Tris HCl (pH 9.0) buffer, 1 mM cysteine, 2 mM KCN and 50 

ng of protein was incubated at 25 ºC for 10 min. The reaction was stopped by adding 50 µL 

of 30 mM FeCl3 in 1.2 N HCl and 50 µL of 20 mM N, N-dimethyl-p-phenylenediamine 

dihydrochloride (DMPD) in 7.2 N HCl. Production of methylene blue due to the reaction of 

one molecule of produced H2S with two molecules of DMPD was colorimetrically 

determined at 670 nm using a PowerWave XS plate reader with Gen5.5 software (BioTeK 

Instruments, Winooski, VT). CAS activity was expressed as the amount (moles) of H2S 

produced by 1 mg protein in 1 sec (katal mg−1). To determine the kinetic parameters of 

PvBSAS4;1, various concentrations of substrates such as cysteine (0-2 mM) and KCN (0-1 

mM) were used in the described enzyme assay reaction. Various concentrations of Na2S 

were used to generate a standard curve to determine released H2S in the reaction. Steady 

state kinetic parameters Km and Vmax were determined by nonlinear fitting of initial velocity 

versus substrate concentration to the Michaelis-Menten equation. 

4.3 Results 

4.3.1 Methyl donor for S-methylCys biosynthesis 

In our previous study, I discovered that serine acts as a precursor for S-methylCys. To 

determine the role of methionine in S-methylCys, common bean seeds were incubated with 

labelled methionine (13C5H10
15NO2S). After 48 h of incubation seeds treated with labelled 

methionine had a 98 ± 4% methionine pool labelled as 13C5
15N methionine, which suggests 

efficient uptake of methionine from media by developing seeds. 

Methionine catabolism by MGL leads to methanethiol, -ketobutyrate and ammonia. In 

common bean if MGL is active and methionine is taking part in isoleucine biosynthesis as 

reported in Arabidopsis, then 15N should be lost as 15NH3 and methanethiol should inherit 

one 13C from methionine. Isoleucine biosynthesis from methionine should lead to the 

inclusion of four isotopic labelled carbons from methionine and the expected m/z is 

136.1153. Our labelled methionine treated common bean seeds showed significantly more 
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m/z 136.1153 ions than any other amino acid treated seeds (Supplementary Data 4.1). These 

data suggest the presence of active MGL in developing seed of common bean which 

hydrolyzes methionine into -ketobutyrate and methanethiol. 

If methionine is the source of methanethiol for S-methylCys biosynthesis, then in labelled 

methionine treated seeds one carbon of S-methylCys (m/z=136.0427) will be labelled and 

parent ion will become 137.0422. Comparing labelled methionine treatment with no 

supplementation treatment 78.4 ± 0.6% of S-methylCys was labelled on one carbon in 

labelled methionine treated seeds. When I compared, labelled methionine treated samples 

with labelled serine or cysteine treated samples, I detected the presence of one carbon 

labelled S-methylCys (13CC3H10NO2S = 137.0422) only in labelled methionine treated 

samples not in the other treatments (Figure 4.2).  

To confirm the position of 13C labelled carbon incorporated from methionine to S-

methylCys MS/MS was performed. The major primary product ion of protonated S-

methylCys (C4H10NO2S) after neutral loss of NH3 (17.0265 Da) is C4H7O2S (119.01644 

m/z). If the methyl group was donated by labelled methionine to S-methylCys, the product 

ion formula would be 13CC3H7O2S (120.0198 m/z) after losing NH3 (17.0264 Da), which is 

what I observed (Figure 4.3). A secondary product of S-methylCys is C3H5O2
+ (73.029 Da) 

which arises following the neutral loss of CH2S. In case of one carbon labelled S-

methylCys, the labelled carbon is lost as the neutral loss of 13CH2S and product ion remains 

C3H5O2 (73.029 Da) and that is what I observed (Figure 4.3). These findings strongly 

suggest methionine as a methyl donor for S-methylCys biosynthesis. 
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Figure 4.2: Comparison of isotopic pattern of S-methylCys in various treatments. 

a) no amino acid supplementation; b) seeds treated with 13C3 and 15N serine; c) seeds 

treated with 13C3 and 15N cysteine; d) seeds treated with 13C4 and 15N methionine. One 

carbon labelled S-methylCys (m/z = 137.04603) is not detectable in seeds treated with 

labelled serine or cysteine but in case of labelled methionine treated samples it is present 

prominently. An unknown peak (m/z=137.02962) was detected no treatment, serine and 

cysteine treated seeds which is not one carbon labelled S-methylCys (m/z = 137.04603).  
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Figure 4.3: Representative dissociation of protonated unlabelled S-methylCys and 

labelled S-methylCys in unlabeled methionine treatment and labelled methionine 

treated seeds. 

Upper panel: product ions of unlabelled S-methylCys in non-labelled methionine 

treatment. Lower panel: product ions of one carbon labelled S-methylCys in labelled 

methionine treatment. The asterisk represents the position of the labelled carbon in S-

methylCys after labelled methionine treatment. 
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To determine whether methionine plays any role in -Glu-S-methylCys biosynthesis, 

another non-proteinaceous S-amino acid in common bean, I followed 13C and 15N labelling 

of methionine. Interestingly, -Glu-S-methylCys also inherits one 13C from methionine, 

which is not the case in any other treatment (Figure 4.4). Upon collision induced 

dissociationof -Glu-S-methylCys (C9H15N2O5S) two major product ions are produced, 

including a S-methylCys fragment (C4H10O2NS) and deaminated S-methylCys (C4H7O2S). 

In case of 13C labelled -Glu-S-methylCys (C9H15N2O5S) these product ions changed to a 

labelled S-methylCys fragment (13CC3H10O2NS) and labelled deaminated S-methylCys 

(13CC3H7O2S) which have m/z 137.04609 and 120.01972 respectively. The product ion of 

m/z 73.029 Da confirms incorporation in the S-methyl group of S-methylCys (Figure 4.5). 

Around 17% of -Glu-S-methylCys had one carbon labelled. Movement of 13C from 

methionine to -Glu-S-methylCys determines the role of methionine in -Glu-S-methylCys 

biosynthesis either via S-methylCys or SAM. During the search of downstream metabolite 

of methionine biosynthesis, I could track isotope label incorporation into SMM, SAM and 

S-methylhomoglutathione (Supplementary Data 4.2 and 4.3). 

Based on this isotope tracking experiment I conclude that methionine catabolism leads to 

methanethiol synthesis which enters the S-metabolism pathway and gets incorporated into 

S-methylCys and -Glu-S-methylCys. Now the question is: what are the key enzymes 

involved in S-methylCys biosynthesis? 
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Figure 4.4: Comparison of isotopic pattern of -Glu-S-methylCys in various treatments. 

a) no amino acid supplementation; b) seeds treated with 13C3 and 15N serine; c) seeds treated with 13C3 and 15N cysteine; d) seeds 

treated with 13C4 and 15N methionine. One carbon labelled -Glu-S-methylCys (m/z= 137.04603) is not detectable in seeds 

treated with labelled serine or cysteine but in case of labelled methionine treated samples it is present prominently. 
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Figure 4.5: Representative dissociation of protonated unlabelled -Glu-S-methylCys and labelled -Glu-S-methylCys in 

unlabeled methionine treatment and labelled methionine treated seeds. 

Upper panel: Product ions of unlabelled -Glu-S-methylCys in non-labelled methionine treatment. Lower panel: Product ions 

of one carbon labelled -Glu-S-methylCys labelled methionine treatment. The asterisk represents position of labelled carbon in 

-Glu-S-methylCys after labelled methionine treatment.  
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4.3.2 Expression profile of PvBSAS family members 

In order to determine the enzyme that can catalyze S-methylCys biosynthesis using O-

acetylserine and methanethiol I looked at eight BSAS family members in the P. vulgaris 

genome. Comparing the expression profile of eight BSAS family members in various 

tissues reveals variation in expression (O’Rourke et al., 2014). Out of all BSAS members 

PvBSAS4;1 is highly expressed in early seed development (Figure 4.6). PvBSAS3;1 is 

another member that is highly expressed in seeds as described in detail in Chapter 2 of this 

thesis. . PvBSAS3;1 prefers cysteine as a substrate while our isotopic labelling suggests O-

acetylserine as precursor of S-methylCys. Based on the expression profile, PvBSAS4;1 is 

predicted to be a cysteine synthase that may use O-acetylserine and methanethiol as 

substrates to produce S-methylCys. 

4.3.3 Sequence analysis of BSAS4;1 for cysteine synthase activity 

To check whether PvBSAS4;1 has all the structural characteristics of a cysteine synthase, 

the PvBSAS4;1 amino acid sequence was compared with the known cysteine synthase 

AtBSAS1;1, and with AtBSAS4;1 and GmBSAS4;1. AtBSAS1;1 acts as a control 

sequence because a lot of studies are available on its crystal structure and cysteine synthase 

activity. 

Sequence alignment among different species suggests that the sequence is conserved across 

the species. Based on Arabidopsis cysteine synthase (AtOAS-TL) crystal structures, for 

cysteine synthase activity Lys should be present at the active site (Bonner et al., 2005). In 

the PvBSAS4;1 active site it is present as Lys48. In AtOAS-TL, Asn77 and Ser269 residues 

form hydrogen bonds with oxygen and nitrogen of the PLP pyridine ring. In PvBSAS4;1 

these residues are conserved. The presence of Thr74 and Ser75 is suggested to be important 

in stabilizing the transition state of the second half-reaction of cysteine synthesis (Bonner et 

al., 2005). To incorporate sulfur in a carbon backbone Thr74, Ser75 and Gln147 play major 

roles (Tai and Cook, 2001; Rabeh et al., 2005) and all of these residues are conserved in 
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PvBSAS4;1 (Figure 4.7). Based on our expression data and sequence alignment we can 

annotate PvBSAS4;1 as cysteine synthase. 
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Figure 4.6: Heatmap of expression profile of the PvBSAS gene family in various plant tissues. 

Values are presented in RPKM. Descriptions of relevant tissues are as follows: YL- Fully expanded 2nd trifoliate leaf tissue; L5- 

Leaf tissue collected 5 days after rhizobium inoculation; LF- Leaf tissue from fertilized plants collected at the same time of LE 

and LI; LE- Leaf tissue collected 21 days after rhizobium inoculation; LI- Leaf tissue collected 21 days after plants were 

inoculated with ineffective rhizobium; YS- All stem internodes above the cotyledon collected at the 2nd trifoliate stage; ST- 

Shoot tip, including the apical meristem, collected at the 2nd trifoliate stage; FY- Young flowers, collected prior to floral 

emergence; PY- pods containing globular stage embryos (1-4 days after fertilization); PH- pods containing heart stage seeds; P1- 

pods associated with stage 1 seeds (pods only); P2- pods associated with stage 2 seeds (pods only); SH- heart stage seeds (ca. 7 

mg); S1- stage 1 seeds (ca. 50 mg); S2- stage 2 seeds (ca. 150 mg); RT- Root tips; YR- Whole roots, including root tips; R5- 

Whole roots separated from 5 day old pre-fixing nodules; RF- Whole roots from fertilized plants collected at the same time as 

RE and RI; RE- Whole roots separated from fix+ nodules collected 21 days after inoculation; RI- Whole roots separated from 

fix- nodules collected 21 days after inoculation; N5- Pre-fixing (effective) nodules collected 5 days after inoculation; NE- 

Effectively fixing nodules collected 21 days after inoculation; NI- Ineffectively fixing nodules collected 21 days after 

inoculation.
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Figure 4.7: Multiple sequence alignment of deduced amino acid sequences of the BSAS4;1 gene from Arabidopsis, 

soybean and common bean. 

Black shade indicates conserved sequence. Residues in the PLP binding site are highlighted by black solid line. The active site 

contains Lys which is highlighted in red. Thr74, Ser75 Gln147 residues highlighted by yellow boxes are important for sulfur 

incorporation. Asn77 and Ser269 residues making hydrogen bonds with oxygen and nitrogen of the PLP pyridine ring are 

highlighted in green. 
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4.3.4 Physical and spectral properties of PvBSAS4;1 

To determine whether PvBSAS4;1 is a functional BSAS, a full-length coding sequence was 

cloned and expressed in E. coli as a His-tagged recombinant protein. The predicted 

molecular mass of the 324-amino acid residue protein is 37 kDa. Comparison of elution 

profile of purified PvBSAS4;1 with known molecular weight proteins using size exclusion 

chromatography suggested PvBSAS4;1 as homodimer with molecular weight 74 kDa 

(Figure 4.9 A, B). 

The spectrum of nickel affinity-purified recombinant PvBSAS4;1 between 250 and 600 nm 

showed a peak at 412 nm which is characteristic of bound PLP (Figure 4.8 C). This 

characteristic peak also points out why purified protein is yellowish green color, suggesting 

that PLP was bound to the enzyme.  

4.3.5 Functional analysis of PvBSAS4;1 

4.3.5.1 Ligand binding assay 

To determine whether PvBSAS4;1 has CS or CAS activity, 400 g protein was incubated 

with 0-1.5 mM O-acetylserine and 0-1.5 mM cysteine. Absorption spectroscopy of ligand 

binding assay showed shift of maximum absorbance of PLP from 412 nm to 470 nm in O-

acetylserine treatment which is associated with formation of an -aminoacrylate 

intermediate (Bonner et al., 2005). In the case of the cysteine assay no such shift was 

observed using any concentration of cysteine. These experiments demonstrate that 

PvBSAS4;1 prefers O-acetylserine over cysteine to form the reaction intermediate -

aminoacrylate (Figure 4.9) which is the intermediate for the first half reaction of cysteine 

synthase. Together sequence analysis and substrate binding analysis characterize 

PvBSAS4;1 as a cysteine synthase in the PvBSAS family. 
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Figure 4.8: Physical and spectral properties of PvBSAS4;1. 

A) SDS– PAGE analysis of purified denatured PvBSAS3;1 B) Elution profile of Ni2+-

affinity purified PvBSAS3;1 in size-exclusion chromatography. Molecular weight was 

calculated based on a standard curve shown in the inset. C) Absorption spectrum of 

PvBSAS4;1. 
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Figure 4.9: Ligand binding assay of PvBSAS4;1. 

A) Change in absorption spectrum of PLP from 412 nm to 470 nm after addition of O-

acetylserine (OAS; 0-1.5 mM). B) No change in absorption spectrum of PLP from 412 nm 

after addition of cysteine (0- 1.5 mM). 
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4.3.5.2 Enzyme assay 

To measure the cysteine synthase activity of PvBSAS4;1, the His-tagged purified protein 

was used to perform enzyme assays (Table 4.1). In the presence of PvBSAS4;1, O-acetyl 

serine and Na2S, cysteine was produced, which was detected by a colorimetric detection 

method using the ninhydrin acid assay. -cyanoalanine activity of BSAS4;1 was also 

detected but was very low compared to cysteine synthase activity (not presented). 

Production of cysteine suggests that PvBSAS4;1 belongs to the cysteine synthase subfamily 

of BSASs. Enzyme kinetics data also showed that PvBSAS4;1 has a high cysteine 

biosynthesis activity. The Km values for Na2S and O-acetylserine were 0.13 mM and 1.91 

mM respectively, which is comparable to other cysteine synthases reported in other crops 

(Hatzfeld et al., 2000; Yamaguchi et al., 2000).  

Along with the Cys synthase activity assays, methanethiol and O-acetylserine were used as 

substrates in another enzyme assay to determine the role of PvBSAS4;1 in S-methylCys 

biosynthesis. LC-MS/MS analysis of reaction mixtures revealed production of S-methylCys 

by PvBSAS4;1. The rate of the reaction was similar to the cysteine synthase reaction. 

Enzyme kinetics data also indicated low Km values for O-acetylserine and methanethiol. Km 

values for methanethiol and O-acetylserine were 1.78 mM and 0.73 mM, respectively, 

which identify PvBSAS4;1 as potential candidate for S-methylCys biosynthesis (Table 4.1).  
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Table 4.1: Kinetic parameters of PvBSAS4;1 with different substrates 

Substrate 

Vmax 

(× 10-7katal mg-1) 
Km (mM) 

Vmax/Km 

(× 10-7katal mg-1)/mM 

O-acetylserine + Na2S                  Cysteine + Sodium acetate 

O-acetylserine 4.47 ± 0.16 1.91 ± 0.13 2.35 

Na2S 4.16 ± 0.30 0.13 ± 0.02 33.44 

 

O-acetylserine + Sodium thiomethoxide             S-methylCys + Sodium acetate 

O-acetylserine 2.41 ± 0.02 0.73 ± 0.15 3.40 

Sodium thiomethoxide 2.86 ± 0.78 1.78 ± 0.83 1.64 

All values are expressed as a mean ± SD (n = 3) 
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4.4 Discussion 

Our study establishes that methionine acts as methyl donor for S-methylCys biosynthesis. 

This is the first report on the role of cysteine synthase in the biosynthesis of S-methylCys in 

common bean developing seeds. The results of isotope labeling experiments conducted in 

this study present a mode of methionine catabolism and S-methylCys biosynthesis in 

common bean (Figure 4.10). Previously, emission of methanethiol was reported for plants 

such as wheat (Triticum aestivum), and grassland and saltmarsh species (Rennenberg, 

1991). Production of methanethiol was also reported in some crops that were exposed to 

excess sulfur. In a feeding experiment of leaf discs of pumpkin with 35S methionine, more 

than 80% of the methanethiol emitted was derived from the labelled methionine. In the 

same experiment methanethiol production also took place when leaf discs were treated with 

S-methylCys but with a slower rate (Schmidt et al., 1985). In these studies, production of 

methanethiol was associated with methionine accumulation in tissues. In tobacco plants, 

suppression of S-adenosyl-methionine synthetase (SAM-S) which is involved in SAM 

production from methionine, led to methanethiol production due to over-accumulation of 

methionine (Boerjan et al., 1994). All these studies reported methanethiol production from 

free methionine but did not explain the physiological or metabolic roles of methanethiol in 

plants. Our isotope labelling results demonstrate a role for methanethiol in common bean S 

amino acid metabolism, specifically, its role in biosynthesis of nonproteinacious S-amino 

acids, S-methylCys and -Glu-S-methylCys. A seed specific cysteine synthase PvBSAS4;1 

can use methanethiol as substrate and synthesize S-methylCys from O-acetylserine. 
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Figure 4.10: Isotopic movement in methionine pathway in common bean seeds. 

Green boxes represent metabolites which acquired label from labelled methionine. Multiple 

arrows represent more than one step involved in metabolite synthesis. *Methanethiol and 

-ketobutyrate could not be detected. MGL: Methionine--lyase; OAS-TL: O-acetylserine 

(thiol) lyase (BSAS4;1); MT: methyltransferase; SAM: S-adenosylmethionine. 
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In Arabidopsis, BSAS4;1 was reported as a cysteine synthase but with low cysteine 

synthase activity (Hatzfeld et al., 2000). In the present study, PvBSAS4;1 which shares 

70% sequence identity with AtBSAS4;1 has been shown to be more active than 

AtBSAS4;1. In case of Arabidopsis the cysteine synthase activity of AtBSAS4;1 was 

reported as 0.2 mol Cys mg-1 protein min-1 (Hatzfeld et al., 2000). In my study 

PvBSAS4;1 activity was equal to 18mol cysteine mg-1 protein min-1 which is 90-fold 

higher than the AtBSAS4;1. Based on our sequence analysis, ligand binding assay, enzyme 

assay and the previously well studied cysteine synthase mechanism of an Arabidopsis 

BSAS family member (Bonner et al., 2005), a reaction mechanism for S-methylCys 

biosynthesis can be proposed as shown in Figure 4.11. As a PLP enzyme, BSAS4;1 exists 

in the in the form of enzyme with an internal Schiff base, as the aldehyde group of PLP 

forms a linkage with the lysine residue on the enzyme (A). The  amino group of O-

acetylserine replaces the bound Lys molecule and forms an unstable external Schiff base 

with the PLP (B). Formation of external Schiff base allows Lys47 to act as a general base in 

the -elimination of acetate from O-acetylserine, similar to other reported cysteine 

synthase reactions (Burkhard et al., 1999; Tai and Cook, 2001; Bonner et al., 2005). This 

elimination leads to formation of an -aminoacrylate intermediate (C) which is a common 

first half reaction intermediate in all enzymatic reactions of BSAS family members (Yi et 

al., 2012). In the second half reaction, the -aminoacrylate is attacked by a nucleophile 

(e.g., CH3S) and forms an external aldimine with a methylated sulfur group attached to it 

(D). Subsequent protonation by Lys helps to release S-methylCys as a product and 

regenerate BSAS4;1 for further reactions (Figure 4.8). In the near future, studying crystal 

structures of PvBSAS4;1 will shed more light on the mechanism of S-methylCys 

biosynthesis. 
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Figure 4.11: Proposed mechanism of S-methylCys in common bean catalyzed by 

PvBSAS4;1. 

Four steps of mechanism involve A) initial Schiff base form of PLP (Amax = 412 nm), B) 

external Schiff base form of PLP with O-acetylserine attached to it (Amax = 412 nm), C) 

-aminoacrylate an intermediate after the first half reaction (Amax = 470 nm), and 

nucleophilic attack (CH3SH) in the second half reaction leading to the D) external aldimine 

(Amax = 418 nm), and release of S-methylCys. 
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Methionine catabolism takes place in the cytosol. MGL is reported to be cytosolic in nature, 

where -cleavage of methionine produces methanethiol, ammonia and -ketobutyrate 

(Re´beille et al., 2006). PvBSAS4;1 predicted to be in cytosol can trap this methanethiol 

and produce S-methylCys. Previous studies could not predict the fate of S-methylCys but in 

my isotope tracking experiment one carbon label was observed in S-methylCys and 

subsequently incorporated in -Glu-S-methylCys, which may be acting as a storage sink for 

sulfur. -Glu-Cys ligase (-GCL) may be the one candidate enzyme which is involved in 

biosynthesis of -Glu-S-methylCys from S-methylCys. Mammalian -GCL has shown 

activity with S-methylCys in vitro (Rathbun, 1967a). Among two -GCL present in the P. 

vulgaris genome (Phvul.002G289200, Phvul.002G157600), Phvul.002G157600 is highly 

seed specific and predicted to be present in cytosol. Co-localization of metabolites, S-

methylcysteine and -Glu-S-methylCys with -GCL enzymes in cytosol supports the 

hypothesis on the role of -GCL in -Glu-S-methylCys biosynthesis. Another candidate 

enzyme γ-glutamyl transpeptidase (E.C. 2.3.2.2; GGT) was reported to catalyze 

transpeptidation of methionine in the presence of γ-glutamyl-p-nitroanilide (GGPNA) in 

onion (Shaw et al., 2005). In the case of common bean, GGTs may be transferring the 

glutamyl group from hGSH to S-methylCys and synthesize -Glu-S-methylCys. 

BSAS4;1 is a cysteine synthase predominantly expressed in seeds and one of the MGLs 

(Phvul.001G082000) is also expressed in the early developing stages of the seed. 

Expression data and subcellular localization of BSAS4;1 and MGL suggest an inverse 

relationship, I suggest an inverse relationship between methionine and S-methylCys levels. 

Combining our tissue expression analysis, isotope labelling with enzyme kinetics results 

suggests a co-ordinated effort among serine acetyltransferases, OAS-TL, and MGL for 

inverse relationship. Based on my results, in developing seeds SMM gets accumulated as 

phloem transport takes place from vegetative tissue to developing seeds. SMM is converted 

to methionine by a seed specific homocysteine methyl transferase (HMT3). While a large 

part of this methionine is incorporated into protein or SAM, excessive methionine serves as 

a substrate for methanethiol production by MGL. A condensation reaction takes place 
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between OAS and methanethiol generating S-methylCys takes place through the function of 

BSAS4;1 in the cytosol.  

In the past, several strategies have been used to improve essential amino content in 

legumes. One of the strategies involves targeting methionine biosynthesis and catabolism 

related genes. Overexpression of cystathionine--synthase (CGS), the first committed 

enzyme for methionine biosynthesis, resulted in 6-15 fold increase in methionine content of 

various crops such as alfalfa (Avraham et al., 2005), potato (Di et al., 2003), Arabidopsis 

(Kim et al., 2002), and tobacco (Hacham et al., 2008). Similarly, catabolism related genes, 

such as SAM synthetase, were silenced in search of high methionine content (Boerjan et 

al., 1994;Goto et al., 2002). In these studies methionine content improved, up to 430-fold, 

but one limitation of this approach was an abnormal phenotype due to the role of SAM in 

essential metabolic reactions. In this study, PvBSAS4;1 was identified as a potential 

candidate for S-methylCys synthesis that shares as inverse relationship with methionine 

content. Since the BSAS family has other members that take part in cysteine synthesis, 

future targeting of PvBSAS4;1 along with MGL could lead to enhance methionine content 

in common bean seed with minimal perturbation to other metabolites. 

4.5 Conclusion 

The main objectives of this study were to identify the S-methyl group donor in the 

biosynthesis of S-methylCys and the enzyme responsible for its synthesis in developing 

seeds of common bean. With the help of an isotope tracking method, the methyl group of S-

methylCys has been shown to originate from methionine. This is a first report of the role of 

methionine catabolism in S-methylCys and -Glu-S-methylCys biosynthesis in common 

bean. In this study, Cysteine synthase BSAS4;1 has been identified to be involved in S-

methylCys synthesis in common bean. Our observation that BSAS4;1 and MGL are 

putative candidates for S-methylCys biosynthesis in common bean seed suggests the 

potential to develop common bean lines with silenced BSAS4;1 and MGL expression for 

higher cysteine and methionine containing bean varieties.  
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4.7 Supplementary data 

 

Supplementary Data 4.1: Comparison of isotopic pattern of isoleucine in various 

treatments. 

a) no amino acid supplementation; b) seeds treated with 13C3 and 15N serine; c) seeds 

treated with 13C3 and 15N cysteine; d) seeds treated with 13C4 and 15N methionine. Four 

carbon labelled isoleucine (m/z= 136.11546) is not detectable in seeds treated with labelled 

serine or cysteine but in case of labelled methionine treated samples it is present 

prominently. 
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Supplementary Data 4.2: Comparison of isotopic pattern of a) SMM and b) SAM in 

methionine treated seeds 

Upper panel: Isotopic pattern in unlabelled methionine treated seeds. Lower panel: 

Isotopic pattern in labelled methionine treated seeds 
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Supplementary Data 4.3: Comparison of isotopic pattern of S-methylhomoglutathione 

in various treatments. 

a) no amino acid supplementation; b) seeds treated with 13C3 and 15N serine; c) seeds 

treated with 13C3 and 15N cysteine; d) seeds treated with 13C4 and 15N methionine.  
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 CHAPTER FIVE - GENERAL DISCUSSION 

5.1 Exploring sulfur metabolome in common bean: A complex affair 

The sulfur metabolic network does not exist in isolation. It is in tight connection with 

carbon and nitrogen metabolism and affects nitrogen and carbon ratio in a plant system 

(Kopriva et al., 2002). Sulfur deprivation, for example, has profound consequences on 

carbon and nitrogen assimilation that ultimately affect the growth, quality and yield of 

crops (Maruyama-Nakashita et al., 2003;Hirai et al., 2004;Nikiforova et al., 

2004;Brychkova et al., 2015;Khan et al., 2016). Sulfur metabolism is important not only 

for plant growth or yield, it also affects quality of primary and secondary metabolites 

(Møldrup et al., 2011). Understanding sulfur metabolism has become very important to 

improve our knowledge of plant metabolism.  

Sulfur metabolism and its regulation differ among members of plant genera (Davidian and 

Kopriva, 2010;Romero et al., 2014;Tavares et al., 2015). In common bean, the sulfur 

metabolome shares another level of complexity due to the presence of S-amino acid 

derivatives S-methylCys, -Glu-S-methylCys and S-methylhomoglutathione. Prior to this 

research these metabolites were reported in common bean and other crops, but their 

biosynthesis was not discussed. This research explores a possible pathway involved in the 

biosynthesis of S-amino acid derivatives and metabolites in common bean seeds (Figure 

5.1).  

Due to the complexity of sulfur metabolism, enzymes involved are present in more than 

one isoform. In the case of Arabidopsis, five isoforms of SERAT and eight isoforms of 

BSAS have been reported, some of which are redundant, but play a significant role in sulfur 

metabolism (Watanabe et al., 2008a; Watanabe et al., 2008b). In common bean, six 

isoforms of SERAT and eight BSAS isoforms (Appendix A and B) are reported, which 

suggests the complex molecular basis of the sulfur metabolome. Plastids are the only site 

for reduction of sulfur from sulfate to sulfide. However, O-acetylserine biosynthesis takes 

place in mitochondria, plastids and cytosol (Lunn et al., 1990; Hell et al., 2002). Studies 
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using Arabidopsis thaliana T-DNA knockout mutants of OAS-TL demonstrated that 

cysteine and its derivatives could be exchanged between compartments, and that 

compartmental regulation plays a role in maintaining this transport (Heeg et al., 2008; 

Watanabe et al., 2008a; Watanabe et al., 2008b). 

In this thesis, evidence was presented that S-methylCys biosynthesis takes place in the 

cytosol where serine acts a precursor. The observation was based on isotopic tracking of 

13C and 15N labelled serine and cysteine. As shown in Figures 3.8 and 3.9, seeds treated 

with isotopic serine had higher 13C and 15N incorporation than labelled cysteine treated 

seeds which points to a role of spatial compartmentation. The compounds that acquired the 

highest amount of 13C and 15N included -Glutamyl cysteine (-Glu-Cys), homoglutathione 

(hGSH) and S- methylhomoglutathione (S-methylhGSH). In Arabidopsis, major portion of 

-Glu-Cys is reported to be synthesized in plastids while hGSH biosynthesis takes place 

both in plastids and cytosol (Galant et al., 2011; Koffler et al., 2011). However, the high 

uniform incorporation of isotopic label in -Glu-Cys and hGSH in common bean seeds 

suggests the same subcellular localization for this group of metabolites. Inheritance of high 

percentage of isotopes in labelled serine treated seeds than labelled cysteine treated seeds 

also suggests that uptake of serine in plastids may be favored over cysteine. The results 

shown in this thesis provide evidence for biosynthesis of S-methyl-hGSH, a methylated 

tripeptide in developing seeds of common bean, which was previously reported in Vigna 

radiata (Kasai et al., 1986). BaHigh incorporation of isotopes in S-methyl-hGSH suggests 

a major role of this methylated tripeptide in movement of sulfur flux in developing seeds. 

In future S-methyl-hGSH could be considered as a possible precursor for -Glu-S- in 

presence of a carboxypeptidase (Figure 5.1). Another possible fate of S-amino acid 

derivatives could be S-methylated phytochelatins which needs to be validated. 

Phytochelatin biosynthesis requires presence of heavy metals (Zenk, 1996; Cobbett, 

2000;Oven et al., 2001). In case of AtPCS1 (Phytochelatin synthase) S-alkylglutathiones 

acts as a substrates for the synthesis of S-alkyl-phytochelatins in the complete absence of 

added heavy metal (Vatamaniuk et al., 2000). This suggests that S-methylated 
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phytochelatins may be acting as a sink for S-methylCys, -Glu-S-methylCys and S-methyl-

hGSH in common bean seeds. Presence of isotopes in S-methylated phytochelatins in an 

isotope tracking experiment could provide evidence for phytochelatins as a reservoir for 

sulfur accumulation. 
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Figure 5.1: A model of sulfur amino acid metabolism in P. vulgaris seeds.  

In common bean seeds sulfur metabolism takes place in three different compartments. 1: ATP sulfurylase 2: APS reductase; 3: 

Sulfite reductase; 4: APS kinase 5: Serine acetyltransferase (SERAT2;1); 6: O-acetylserine (thiol) lyase (BSAS2;1); 7: Serine 

acetyltransferase (SERAT1;1); 8: O-acetylserine (thiol) lyase (BSAS1;1 and BSAS4;1); 9: Homocysteine methyltransferase 

(HMT3); 10: Methylmethionine transferase (MMT); 11: Methionine--lyase (MGL) 12: O-acetylserine (thiol) lyase (BSAS4;1) 

13; -Glutamyl-cysteine ligase (GCL) 14: Methyltransferase (MT); 15: Carboxypeptidase 16: Serine acetyltransferase 

(SERAT2;2) 17: O-acetylserine (thiol) lyase (BSAS2;2) 18: -Cyanoalanine synthase (BSAS3;1). Ser: serine; OAS: O-

acetylserine; Cys: cysteine; Met: Methionine; SAM: S-adenosylmethionine; SMM: S-methylmethionine; SMC: S-methylCys; 

GGSMC: -Glu-S-methylCys; hGSH: Homoglutathione ; SMhGSH: S-methylhomoglutathione; -ketobutyrate. Multiple 

arrow represents more than one steps.  
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5.2 S-methylCys biosynthesis: Cytosolic O-acetyl serine and methionine work 

together 

The natural occurrence of S-methylCys was first reported in 1955 as sulfoxide in cabbage 

leaves (Synge and Wood, 1956). In common bean, the first report of S-methylCys goes 

back to 1956 (Thompson et al., 1956). Due to its aromatic and medicinal properties, this 

metabolite was extensively studied in the Alliaceae, but not in Phaseolus. Reports that the 

amount of S-methylCys shares an inverse relationship with S-amino acid in 2008 have 

widened our view of sulfur metabolism due to its relationship with protein quality of 

legumes. To date no such effort was made to decipher S-methylCys biosynthesis in 

common bean. This study is the first to focus on identifying the precursor for S-methylCys 

biosynthesis. In the case of garlic, glutathione has been reported as the precursor for S-allyl-

cysteine biosynthesis (Yoshimoto et al., 2015a), while cysteine methylation was the 

reaction producing S-methylCys in leaves of radish (Thompson and Gering, 1966). 

Re´beille et al (2006) showed that methionine treated Arabidopsis cells produce S-

methylCys, following methionine catabolism. In my study, I provided several pieces of 

evidences using isotopic tracking, confocal microscopy and enzyme kinetics for the role of 

O-acetyl serine and methionine in S-methylCys biosynthesis. 

5.3 Cysteine biosynthesis is through highway while S-methylCys follows byway 

In common bean, isoforms of SERAT and BSAS are present to perform cysteine 

biosynthesis in the cytosol, plastids and mitochondria (Figure 5.1). Cysteine, the first 

organic form of sulfur is quickly used up to synthesize other metabolites. Our isotope 

tracking and enzymatic assay results demonstrate cysteine biosynthesis as a primary 

reaction in a developing cell and S-methylCys biosynthesis as a side reaction. BSAS4;1 is a 

seed specific cysteine synthase whose primary role is cysteine biosynthesis in the cytosol. 

During the seed developmental stages when excess methionine is catabolized and 

methanethiol produced in the cytosol, BSAS4;1 may help in the biosynthesis of S-

methylCys. 
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5.4 Amino acid catabolism: needs much attention 

Amino acid biosynthesis in plants has been investigated for the past several decades, while 

catabolism of these amino acids has not had much attention. My study points out the 

importance of methionine catabolism in the biosynthesis of S-methylCys, which is 

predicted in Arabidopsis cells grown in methionine rich media (Re´beille et al., 2006). 

Methanethiol is produced from methionine catabolism and is volatile in nature. During 

cysteine deprivation, the anaerobic protozoan parasite Entamoeba histolytica produces S-

methylCys using over accumulated O-acetylserine and methanethiol (Husain et al., 2010). 

My study identifies a similar mechanism of S-methylCys biosynthesis in common bean 

seeds. Seeds grown under high methionine condition had high incorporation of 13C in S-

methylCys compared to other amino acid treated seeds (Figure 4.2). Due to excessive 

methionine accumulation in developing seeds, methionine catabolism plays a major role in 

the biosynthesis of S-methylCys, which acts as a reservoir to store catabolized sulfur. 

Under sulfur starvation this sulfur reservoir may play a major role, and can be targeted to 

improve methionine content in common bean seeds. 

5.5 Isotopic tracking combined with HRMS- An effective tool to explore the sulfur 

metabolome  

This study reflects that isotopic tracking combined with HRMS has considerable untapped 

potential to elucidate unknown biochemical pathways. In the sulfur metabolome, large 

proportions of metabolites are still unassigned, and need re-evaluation (Glaser et al., 2014). 

In addition to targeted LC-MS/MS, samples were also analyzed with a non-targeted LC-

DDA method to provide a dataset which will be helpful to assign identity to unknown 

metabolites. In the future, use of HRMS with combination of 13C, 15N with 34S isotopic ions 

to track sulfur movement in a pathway will widen our horizon regarding sulfur metabolism 

in common bean. One limitation of using 34S in isotopic tracking experiments is that it will 

go everywhere in the plant cell, and this may turn out to be a chaotic system to decipher the 

pathway. 
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5.6 Interdependence of amino acid metabolism 

My analysis reveals how different branches of amino acid metabolism work in close 

relation. This study highlights the interdependency of serine, cysteine, methionine and 

isoleucine pathways in common bean seed. In Arabidopsis the interaction among threonine, 

methionine and isoleucine metabolism was attributed to abiotic stress (Joshi et al., 2010). 

In common bean, the interaction among these pathways plays a major role during seed 

development. SMM travels from vegetative tissue to seeds via phloem (Lee et al., 2008). 

The SMM cycle plays an important function in methionine biosynthesis in seeds (Cohen et 

al., 2017b). Due to high methionine content, seeds produce methanethiol and -

ketobutyrate. -ketobutyrate makes an entry to isoleucine biosynthesis, while methanethiol 

interacts with serine and cysteine metabolism to synthesize S-methylCys (Figure 5.1). This 

study asked for a new prospect to improve protein quality. Due to interdependence, we 

should be very careful in engineering any amino acid metabolism. The best strategy would 

be manipulating genes which create minimum perturbation in another pathway. One such 

pathway can be S-methylCys biosynthesis. BSAS4;1, the enzyme product of which is 

suggested to be responsible for S-methylCys synthesis, could be silenced without disturbing 

other biosynthetic pathways, as other BSAS isoforms present in the cytosol could act in its 

absence for cysteine biosynthesis, as reported in Arabidopsis (Watanabe et al., 2008a). 

5.7 S-amino acid derivatives: a goldmine of nonprotenacious sulfur 

Sulfur amino acid derivatives are reported in Brassicaceae and Alliaceae, where they 

account for taste and aromatic characteristics. In the case of common bean, no such 

characteristics are attributed to them and they may act as a sink for excessive sulfur. S-

methylCys and-Glu-S-methylCys account for 2-3% of the total amino acids, but do not 

contribute to protein biosynthesis. In Arabidopsis, vacuoles are predicted to be the storage 

compartment for S-methylCys (Re´beille et al., 2006). In the case of common bean one 

third of total S-methylCys was recovered as free S-methylCys, mostly as-Glu-S-

methylCys, and the rest was unaccounted (Taylor et al., 2008). In this study incorporation 
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of isotopic labels from serine to hGSH and S-methylhomoglutathione suggests additional 

sulfur reservoirs in common bean seeds, such as S-methylated phytochelatins. Seed storage 

deficiency in common bean is associated with an alteration of the protein deposition 

pathway (Taylor et al., 2008). If we rechannelled sulfur from these reservoirs to storage 

proteins, then we would be able to improve protein quality in common bean. 

5.8 Tracking sulfur flux  

Lack of knowledge of metabolic flux for a metabolite remains the bottleneck for any 

metabolic engineering strategy. Metabolic flux analysis has the potential not only to 

increase the chances of success in metabolic engineering but can also lead to the discovery 

of novel metabolic routes (Libourel and Shachar-Hill, 2008; Schwender, 2008). In my 

thesis, I identified a pathway for S-methylCys biosynthesis and the enzymes involved in it. 

In the future, calculating metabolic flux of this S-metabolic pathway will help us to develop 

an effective metabolic engineering strategy to develop high cysteine and methionine 

containing common bean varieties. 

5.9 Metabolic engineering of common bean with high S metabolites 

In the past, several strategies have been used to improve methionine and cysteine content in 

legumes, including transgenic lines. In common bean, production of transgenic lines is a 

daunting task. Due to low efficiency of the current stable transformation methods, 

characterization of candidate genes in seeds is extremely challenging (Gepts et al., 2008). 

Recently a particle bombardment method was used to produce stable transformants of 

common bean for high folate content (Ramírez Rivera et al., 2016). In the near future, the 

development of effective transformation systems will allow us to silence S-methylCys 

pathway genes and achieve high cysteine and methionine containing bean varieties. 

Development of TILLING (Targeted Induced Local Lesions IN Genomes) mutagenized 

lines can be a good alternative to genetic transformed line.  
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According to the Canadian Food Inspection Agency, the label “Good source of protein” can 

be used for beans and other legumes. In the future silencing of S-methylCys pathway genes 

or development of TILLING lines with high cysteine and methionine levels may change 

bean from a good source to an “excellent source of protein”. Hence my findings provide a 

helping hand to overcome food insecurity in the growing world. 
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 APPENDICES 

Appendix A: BSAS family members and their corresponding accession numbers in, 

P.vulgaris Arabidopsis thaliana and Glycine max genome. 

Protein name Accession number Species 

PvBSAS1;1 Phvul.002G045200 Phaseolus vulgaris 

PvBSAS1;2 Phvul.006G099100 Phaseolus vulgaris 

PvBSAS1;3 Phvul.007G057600 Phaseolus vulgaris 

PvBSAS2;1 Phvul.003G060200 Phaseolus vulgaris 

PvBSAS3;1 Phvul.008G061100 Phaseolus vulgaris 

PvBSAS4;1 Phvul.007G185200 Phaseolus vulgaris 

PvBSAS4;2 Phvul.007G185100 Phaseolus vulgaris 

PvBSAS5;1 Phvul.001G107500 Phaseolus vulgaris 

AtBSAS1;1 At4g14880 Arabidopsis 

AtBSAS2;1 At2g43750 Arabidopsis 

AtBSAS2;2 At3g59760 Arabidopsis 

AtBSAS3;1 At3g61440 Arabidopsis 

AtBSAS4;1 At5g28020 Arabidopsis 

AtBSAS4;2 At3g04940 Arabidopsis 

AtBSAS4;3 At5g28030 Arabidopsis 

AtBSAS5;1 At3g03630 Arabidopsis 

GmBSAS1;1 Glyma.11G005800 Glycine max 

GmBSAS1;2 Glyma.19G242300 Glycine max 

GmBSAS1;3 Glyma.03G244800 Glycine max 

GmBSAS1;5 Glyma.10G247900 Glycine max 

GmBSAS2;1 Glyma.02G138400 Glycine max 

GmBSAS2;2 Glyma.07G206800 Glycine max 

GmBSAS3;1 Glyma.09G258000 Glycine max 

GmBSAS3;2 Glyma.18G234600 Glycine max 
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GmBSAS4;1 Glyma.15G262500 Glycine max 

GmBSAS4;2 Glyma.10G159800 Glycine max 

GmBSAS4;3 Glyma.20G228900 Glycine max 

GmBSAS4;4 Glyma.10G159700 Glycine max 

GmBSAS4;5 Glyma.20G229000 Glycine max 

GmBSAS5;1 Glyma.03G006700 Glycine max 
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Appendix B: SERAT family members and their corresponding accession numbers in 

P.vulgaris genome. 

Protein name Accession number Species 

PvSERAT1;1  Phvul.001G170600 Phaseolus vulgaris 

PvSERAT1;2  Phvul.010G110600 Phaseolus vulgaris 

PvSERAT2;1  Phvul.006G055200 Phaseolus vulgaris 

PvSERAT2;2  Phvul.008G277800 Phaseolus vulgaris 

PvSERAT3;1  Phvul.003G269000 Phaseolus vulgaris 

PvSERAT3;2  Phvul.002G114700 Phaseolus vulgaris 
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