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Abstract: 

Aberrant phosphorylation and pathological deposition of the microtubule associated protein tau 

(tau protein) is associated with toxicity and cellular death in a number of neurodegenerative 

diseases (tauopathies). Specific phosphorylation sites are of interest in the processes leading to 

tau protein toxicity. One site of interest on tau protein is Thr175 (pThr175), which has been 

identified in diseased brain tissue from individuals with amyotrophic lateral sclerosis with 

cognitive impairment (ALSci) and Alzheimer’s disease. In vitro, pseudophosphorylation at this 

residue has been shown to induce the formation of pathological tau fibrils and, apoptotic cell 

death. 

 In my thesis, I have investigated the mechanism of cellular toxicity following 

phosphorylation of tau protein at Thr175. After showing that Thr175 pseudophosphorylation alone 

is insufficient to initiate tau protein fibrillization, I demonstrated that tau phosphorylation at 

Thr175 directly leads to the induction of kinase glycogen synthase kinase-3β (GSK3β) which in 

turn phosphorylates tau protein at Thr231.  Both of these steps are necessary for the cytotoxicity 

of pThr175 tau to be manifest. I have shown that the pharmacological inhibition of this process 

leading to Thr231 phosphorylation prevents both fibril formation and cell death.  To determine the 

extent to which this pathological process of Thr231 phosphorylation was applicable across the 

tauopathies in general, I characterized the presence of pThr175, activated GSK3β, pThr231tau and 

oligomeric tau formation across multiple tauopathies.  In doing so, I demonstrated that this 

pathway may play an integral role in the generation of pathological tau deposition beyond that 

discovered for ALSci. 

 I then characterized pThr175 tau protein pathology in the trauma-associated 

neurodegenerative disease chronic traumatic encephalopathy (CTE) and CTE with amyotrophic 
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lateral sclerosis (CTE-ALS), demonstrating the presence of pThr175 tau protein in pathology 

associated with these diseases as well. In order to determine whether the induction of 

pathological pThr175 tau was a primary event in the induction of this neuropathology, I used a rat 

model of moderate traumatic brain injury in which I demonstrated that after a single cortical 

impact, phosphorylation of endogenous tau protein at Thr175 was persistently elevated. pThr175 

tau was present in axonal pathology as well as tau protein fibrillar neuronal pathology. 

 In order to definitively prove that pThr175tau was sufficient to induce tau pathology in 

vivo, I undertook somatic gene transfer of a rAAV9 construct expressing pseudophosphorylated 

human pThr175 tau (Thr175-Asp tau) in young adult rat hippocampus. I observed that one year 

following the stereotactic inoculation of this modified viral vector, rats developed tau pathology 

in construct-expressing hippocampal neurons along with caspase-3 cleavage. While the construct 

was similarly expressed in control rats, including empty vector and wild-type human tau, none of 

these latter rats developed pathology. 

 These findings indicate that phosphorylation of human tau at Thr175 triggers the 

pathological phosphorylation of tau protein at Thr231 through activation of GSK3β, and that this 

cascade leads to pathological fibril formation in vitro and in vivo. I have further demonstrated 

that this pathological process may have broader applicability than to the pathogenesis of ALSci, 

and includes a broad range of tauopathies in addition to CTE and CTE-ALS. 

 

Keywords: Microtubule associated protein tau, phosphorylation, glycogen synthase kinase 3β, 

tauopathy, amyotrophic lateral sclerosis, chronic traumatic encephalopathy, frontotemporal 

dementia, Alzheimer’s disease, neurotoxicity. 
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Epigraph: 

We are here to add what we can to life, not to get what we can from life – William Osler 
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Chapter 1: Introduction 

 

1.1 Tau protein 

The microtubule associated protein tau (tau protein) is highly expressed in neurons where 

it localizes mainly to the axon, acting as a microtubule binding protein. Human tau protein is 

expressed as 6 isoforms encoded by a single gene encoded by 16 exons on chromosome 17 at 

band position 17q21. The 6 isoforms of tau protein are the result of alternative splicing of exons 

2, 3, and 10 (Andreadis, 2005; Goedert et al., 1989; Himmler, 1989; Himmler et al., 1989). 

Although exon 1 is transcribed, it encodes for the promoter and is not translated (Andreadis et 

al., 1996). Exons 2 and 3 encode for 29 amino acid inserts that incorporate a cassette which adds 

to the N terminus of the protein. While exon 3 cannot be encoded without the inclusion of exon 

2, exon 2 can be included in the absence of exon 3 (Andreadis2005). Exon 10 encodes a fourth 

microtubule-binding repeat (MPR) domain. The nomenclature of tau protein isoforms is based 

on the number of N terminal inserts (either absent (0N) or encoded by exons 2 and 3 (1N and 2N, 

respectively) and MPR domains (either 3 or 4 (3R or 4R, respectively), the latter originating 

from expression of exon 10) expressed in that isoform, giving 0N3R, 1N3R, 2N3R, 0N4R, 

1N4R, and 2N4R isoforms (Buee and Delacourte, 1999). These are commonly referred to by 

group as the 3R or 4R tau proteins.  

These tau protein isoforms have characteristic molecular weights and isoelectric points, 

making them differentiable by Western blot (Figure 1.1 A). In the healthy adult brain, the 

expressed 3R:4R tau protein ratio is approximately 1:1 (D'Souza and Schellenberg, 2005).  
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Figure 1.1: Tau protein isoforms and structure. A) Tau protein isoform is composed of 6 distinct 
isoforms. Western blot for total tau protein isolated from human temporal pole. B) 2N4R tau 
protein primary structure. C) 2N4R tau protein hairpin conformation. 
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 Tau protein exhibits very little secondary structure and is natively unfolded (Schweers et 

al., 1994). The primary structure consists of an N-terminal acidic portion with an isoelectric 

point of 3.8, a proline rich region followed by a series of 3 or 4 imperfect repeat regions which 

functionally constitute the MPR domains, and a C-terminal basic tail (Figure 1.1 B) with an 

isoelectric point of 10.8 (Sergeant et al., 2008). This primary structure makes tau protein a dipole 

and which is crucial for interactions with binding partners and secondary structure. 

Posttranslational modification of tau protein can modify this dipole, dramatically changing tau 

protein secondary structure and its interaction with other proteins (Mietelska-Porowska et al., 

2014; Sergeant et al., 2008). 

Although little secondary structure has been observed, a series of FRET and NMR studies 

have shown that tau protein does in fact have a preferential secondary structure when in solution 

in the form of a “global hairpin conformation” whereby the C-terminus folds over the 

microtubule binding domain and the N-terminus folds over the C-terminus (Figure 1.1 C) 

(Jeganathan et al., 2006). It is thought that this secondary structure is important in preventing tau 

protein self-association when soluble such that any alteration to this structure is thought to 

impact tau protein solubility, predisposing tau protein to self-associate and form fibrillar 

structures (Bibow et al., 2011; Jeganathan et al., 2008b). Mutations (discussed in section 1.5.2.1) 

and post translational modifications (section 1.4) have been shown to interfere with tau protein’s 

ability to maintain the hairpin conformation and as a result this may be associated with tau 

protein dysfunction (Bibow et al., 2011; Jeganathan et al., 2008a). 

Functionally, tau protein’s N-terminal domain projects off the microtubule allowing tau 

protein to interact with other proteins such as other cytoskeletal proteins or plasma membranes 

(Figure 1.2) (Pooler and Hanger, 2010). The most extreme N-terminal domain of tau protein 
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contains a 17 amino acid segment (aa 2-18) which has been implicated in fast axonal transport 

through activation of a protein phosphatase-1 (PP1) - GSK3 mediated pathway (Section 1.2.1). 

This segment has been termed the phosphatase activating domain (PAD) (Kanaan et al., 2011).  

  



5 

 

 
 

 

Figure 1.2: Tau protein-microtubule binding. A) Tau protein interacts with microtubules through 
its microtubule binding domain while the N-terminus projects away from microtubules. B) 
Imperfect repeat sequence of the microtubule binding domains. Amino acids in red indicate 
conservation across all four repeats. 
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The MPR domains of tau protein are encoded by exons 9-12, and consist of imperfectly 

repeated stretches of 18 highly conserved residues, separated by 13-14 amino acid spacers (Kar 

et al., 2003) (Figure 1.2). The 18 amino acid repeats bind microtubules through a flexible series 

of weakly attracted sites distributed through the binding domains (Butner and Kirschner, 1991). 

4R tau protein promotes microtubule assembly more actively than 3R tau protein (Goedert and 

Jakes, 1990). As such, adult brain tau protein, which consists of both 3R and 4R tau protein is 

more effective at polymerizing microtubules than fetal rat brain tau protein which consists of 

0N3R tau protein only (Kosik et al., 1989). The most potent microtubule polymerization region 

is the inter-region between R1 and R2 (275KVQIINKK 280) which exists in 4R tau protein only, 

making it much more potent than 3R tau protein (Goode and Feinstein, 1994). This inter-region 

is directly competed for by microtubules and protein phosphatase 2A (PP2A), with the preferred 

interaction being between microtubules and the inter-region domain. Hence, when bound to 

microtubules, this domain cannot be dephosphorylated by PP2A (Sontag et al., 1999). Therefore, 

tau protein phosphorylation on the MPR and microtubule binding are mutually exclusive, as is 

dephosphorylation of this domain, which requires tau protein to be off the microtubule to take 

place. 

Two MAPT  gene haplotypes have been described (H1 and H2) (Baker et al., 

1999)resulting from an inversion of a 900 kb region spanning the entire MAPT gene (Stefansson 

et al., 2005) but no change in amino acid sequence. The difference between haplotypes exists in 

a set of single nucleotide polymorphisms (SNPs) and a 238 bp deletion in intron 9 in H2 (Koolen 

et al., 2008). The H1 haplotype is associated with increased tau protein expression levels, 

increased 4R tau protein relative to 3R and tauopathy (Caffrey and Wade-Martins, 2007) while 

H2 haplotype is associated with decreased tau protein expression levels and is thought to be 
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protective (Myers et al., 2007). Further analysis has linked a subhaplotype (H1c) to tauopathies 

(Myers et al., 2007). It has been suggested that pathogenic effects associated with the H1 

haplotype may be due to differences in transcription, splicing, posttranscriptional modifications, 

transcript stability or localization, or rates of translation (Wolfe, 2012). 

1.2 Physiological function 

1.2.1 Microtubule binding protein 

Tau protein was initially described as a microtubule binding protein (Weingarten et al., 

1975) and most of the research on its function has focused on this. As a microtubule binding 

protein, tau protein localization within the neuron is overwhelmingly axonal in healthy adult 

neurons (Binder et al., 1985). Microtubules are important for cell morphogenesis, cell division, 

and intracellular trafficking where they provide a road for axonal transport (Morris and 

Hollenbeck, 1995). Both anterograde (toward the synapse) and retrograde (toward the cell body) 

axonal transport occur along the microtubule. Transport is carried out by motor proteins such as 

kinesin (plus end directed) and dynein (minus end directed). 

The microtubule is a cytoskeletal component whose function is to maintain neuronal 

polarity and to act as a scaffold for motor protein based transport of cargo along the axons. 

Composed of α and β tubulin dimers, the microtubule is itself a polarized structure which 

undergoes dynamic instability. Microtubules are in constant turnover balanced by regulation of 

polymerization and depolymerization, reviewed in (Conde and Caceres, 2009). Polymerization 

occurs in the direction of the “plus end” of the microtubule while depolymerization occurs at the 

opposite end, termed the “minus end”. The state of more depolymerization than polymerization 

occurring in the microtubule is termed “catastrophe” while “rescue” is the state of 
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polymerization occurring at a faster rate than depolymerization (Sept, 2007). Tau protein 

supports microtubule polymerization by binding with tubulin through the imperfect repeat 

regions of its microtubule binding domains, stabilizing the microtubule structure itself while 

inhibiting katanin-induced severing of microtubules (Qiang et al., 2006). 

Physiologically, tau protein may detach cargo from kinesin, modulating anterograde 

transport by regulating the number of kinesin motors attached to cargo (Vershinin et al., 2007). 

Tau protein has been shown to inhibit anterograde fast axonal transport (FAT) but not retrograde 

FAT. This function has been shown to require an extreme N-terminal domain of the protein 

termed the phosphatase activating (PAD) domain (Kanaan et al., 2011). Through a process by 

which tau protein directly activates a protein phosphatase 1 (PP1) and glycogen synthase kinase-

3 (GSK) dependent pathway, tau protein initiates a process contributing to phosphorylation of 

kinesin light chains (KLCs). GSK3β mediated phosphorylation of KLCs detaches calsyntenin-1, 

the scaffold protein which binds to the KLCs and vesicles thereby stopping axonal transport 

(Morfini et al., 2009; Vagnoni et al., 2011). 

It has been suggested that abnormal exposure of the N terminus of tau protein leads to a 

toxic inhibition of axonal transport (Morfini et al., 2009). In fact, tau protein-mediated 

dysregulation of anterograde transport along microtubules has been shown to slow exocytosis 

and may also lead to mitochondrial clustering near the microtubule organizing center (MTOC) 

(Ebneth et al., 1998). The absence of mitochondria in the peripheral regions of axons can cause a 

decrease in glucose metabolism and ATP synthesis leading to neuronal dysfunction (Schwarz, 

2013) 
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1.2.2 Non-microtubule functions 

Beyond its role in the axonal transport and microtubule stabilization, tau protein has also 

been shown to localize to the cytosol, plasma membrane, dendrites, and nucleus in much lower 

amounts than its axonal concentration (Loomis et al., 1990; Papasozomenos and Binder, 1987). 

These other localizations of tau protein suggest that it serves a function in neurons beyond 

microtubule binding and related functions (Morris et al., 2011). Furthermore, its function may be 

modified across development as isoform composition has been described to shift in the 

developing brain where only the ON3R isoform is expressed compared to the adult brain where 

all 6 isoforms are expressed (Kosik et al., 1989). 

Overall, tau protein has been shown to interact with three types of non-microtubule 

substrates which can be classified as other cytoskeletal elements (F-actin, neurofilament), 

signaling molecules (Growth factor receptor based protein 2, P85α) and lipids 

(phosphatidylinositol, phosphatidylinositol bisphosphate) (Flanagan et al., 1997; Reynolds et al., 

2008; Surridge and Burns, 1994). The other cytoskeletal element binding exhibited by tau 

protein plays a role in maintaining a cytoskeletal network consisting of microtubules and other 

elements such as actin filaments (Farias et al., 2002).  

The role of tau protein in signaling could have widespread implications for cell function. 

For instance, the proline-rich domain of tau protein binds to SH3 domains through any of 7 

PXXP motifs contained within this region (Lau et al., 2016). One SH3 domain containing protein 

is Fyn kinase, which is important in protein trafficking, and may be linked to NMDA receptors 

(Zhang et al., 2016a). Increased NMDA receptor activation has been linked to increased GSK3β 

activation, which is associated with widespread signaling changes including toxicity (De et al., 
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2006). Additionally, tau protein interaction with Fyn kinase has been shown to promote neurite 

outgrowth, which is critical in nervous system development (Klein et al., 2002). Tau protein 

interaction with lipid molecules may also relate to neurite outgrowth, as the association of the N-

terminus (including the insert) of tau protein with plasma membrane phospholipids has been 

shown to enhance growth cone formation in cell culture (Brandt et al., 1995). The role of tau 

protein in lipid binding likely relates to widespread signaling as well, and many lipid binding 

partners of tau protein are signaling lipids. For example, tau protein interacts with 

phosphatidylinositol bisphosphate (PIP2) which is largely related to cytoskeletal dynamics (van 

and Jalink, 2002), potassium channel modulation (Huang et al., 1998), as well as exocytosis 

(Kabachinski et al., 2014).  Furthermore, it has been suggested that tau protein may act as a 

scaffold protein for signaling complexes and that tau protein binding can activate or inhibit 

several enzymes (Morris et al., 2011).  

As tau protein appears to have a role in many cellular molecular networks, dysfunction of 

tau protein in any way could have widespread effects on the cell through any of these 

mechanisms. Importantly, many of these functions are likely to occur through N-terminal 

activities of tau protein, which is increased when global hairpin conformation is lost as observed 

in several species of phosphorylated or mutated tau protein (Bibow et al., 2011; Jeganathan et al., 

2008a).  

1.3 Tau protein in the stress response 

When exposed to different kinds of physiological stress (ie: heat, osmotic stress, UV 

radiation), neurons undergo a wide array of changes in transcription, translation and cell 

signaling known as the stress response. One of the main objectives of the stress response is to 

maintain homeostasis (Valenzuela et al., 2016). The balance of protein expression in the cell is 
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closely regulated in a process known as proteostasis. Under stress conditions, the endoplasmic 

reticulum (ER) can be overloaded by increased translation and misfolding of proteins leading to 

ER stress, as observed in many neurodegenerative diseases (AD, PD, ALS). Additionally, ER 

stress is observed after neuronal injury in traumatic brain injury.  

To recover proteostasis after ER stress the unfolded protein response (UPR) is activated, 

This occurs through proteins in the ER lumen, including inositol requiring enzyme-1 (IRE1), 

protein kinase R-like endoplasmic reticulum kinase (PERK), activating transcription factor-6 

(ATF6) (Schroder and Kaufman, 2005). The UPR stops translation of many proteins, increases 

translation of chaperone proteins to increase proper protein folding, and activates protein 

degradation pathways. One such protein degradation pathway is the ubiquitin-proteasome 

pathway which tags and targets specific proteins for degradation and which is implicated in 

clearing misfolded proteins in many neurodegenerative diseases. Aggregated tau protein has 

been shown to inhibit proteasome activity through direct inhibitory binding of the 20S core 

particle of the proteasome, slowing protein clearance and reducing the efficiency of the UPR 

(Keck et al., 2003). When the UPR is active for a sustained period of time it can induce cellular 

apoptosis (Fribley et al., 2009). 

In addition to protein clearance in the stress response, priority is given to molecular 

chaperone and repair enzyme synthesis, while translation of most mRNAs is paused until stress 

conditions have passed. In this state, the mRNA is stored for future use within structures known 

as stress granules (Anderson and Kedersha, 2006). Several proteins are associated with stress 

granule formation and maintenance including Staufen, G3BP and TIA-1 (Anderson and 

Kedersha, 2006) as well as RNA binding proteins such as Tar-DNA binding protein of 43 kDa 

(TDP-43) and fused in sarcoma (FUS) (Aulas and Vande, 2015). Tau protein has been connected 
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to the stress granule process through several means. First, tau protein may interact with RNA 

species themselves and may serve a RNA binding function (Kampers et al., 1996). Second, tau 

protein has been shown to interact with TIA-1, and may affect TIA-1 distribution in the cell as 

well as its ability to interact with binding partners affecting stress-response dynamics at the stress 

granule level (Vanderweyde et al., 2016). Furthermore, it has been shown that TIA-1 and tau 

protein act synergistically to promote the formation of stress granules as well as the formation of 

tau protein fibrils in primary hippocampal neurons (Vanderweyde et al., 2016). 

There is evidence suggesting that the stress response is capable of inducing pathological 

tau protein processes. Firstly, osmotic stress has been shown to induce caspase-3 cleavage of tau 

protein, a process which is observed in AD and is associated with tau protein aggregate 

formation and toxicity (Chong et al., 2006; Olivera-Santa et al., 2016). Additionally, abnormal 

tau protein phosphorylation, another change associated with tau protein in disease can be induced 

by the stress response when ER stress response pathways activate c-Jun N-terminal kinase and 

other cell signaling cascades which may directly phosphorylate tau protein (Su et al., 2010; 

Zhang et al., 2016b). 

All of these data suggest that tau protein and the stress response are closely related and 

dependent on each other to some degree for “normal” responses to stress. Abnormally long or 

severe stress responses may initiate abnormal tau protein metabolism, while abnormal tau protein 

metabolism may initiate neuronal stress responses. 

1.4 Posttranslational modification 

Tau protein activity is regulated by post-translational modification, and tau protein is 

subject to at least 12 distinct types of post-translational modification (summarized in Table 1.1). 
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These modifications can affect tau protein physiological function, tau protein toxicity to the cell, 

and tau protein localization. Modifications may compete with one another, enhancing or 

reducing other types of post-translational modification. These are described in detail below with 

a specific focus on phosphorylation.
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Table 1.1: Tau protein post translational modifications 

Modification Definition Function to tau Relation to tau 
phosphorylation 

References 

Phosphorylation Adds a phosphate group to Thr, Ser, or Tyr 
residue. 

Regulates microtubule interaction and 
cellular processes. Implicated in toxicity 
and aggregation. 

Can increase further 
phosphorylation. 

(Ihara et al., 1986; 
Lindwall and Cole, 
1984) 

Glycation Sugar added to any amino acid. Reduce tau-microtubule interactions. 
Enhances fibrillization. 

Unknown. (Wang et al., 1996; 
Yan et al., 1994) 

O-glycosylation Adds a sugar to oxygen on Ser or Thr (multiple 
subtypes depending on type of sugar added). 

May inhibit tau phosphorylation 
competing with Ser and Thr. 

Reduces phosphorylation. (Robertson et al., 
2004) 

N-glycosylation Sugar added to Asn residue nitrogen. May promote tau phosphorylation. Enhances phosphorylation. (Liu et al., 2002c) 
Ubiquitination Ubiquitin added to protein at Lys residue. Tag for proteasomal degradation. Follows pathological 

phosphorylation. Clears 
tau. 

(Bancher et al., 1991) 

SUMOylation Small Ubiquitin-like Modifier protein covalently 
attached to the protein at Lys residue.  

Nuclear-cytosolic transport,  
transcriptional regulation, apoptosis, 
protein stability, response to stress, and 
progression through the cell cycle. 
Competes for ubiquitin binding sites. 

Follows pathological 
phosphorylation. Reduces 
tau clearance. 

(Luo et al., 2014) 

Nitration Addition of nitro group to protein. Conformational changes affecting 
microtubule binding. May affect 
aggregation. 

Unknown. May occur as 
consequence of cellular 
damage. 

(Horiguchi et al., 
2003) 

Methylation Addition of methyl group to Lys and Arg 
residues. 

Makes protein more alkaline. May 
prevent/ reduce aggregation. 

Unknown. (Funk et al., 2014) 

Acetylation Addition of acetyl group. Decreases proteasomal tau degradation. Reduces tau clearance. (Min et al., 2010; Min 
et al., 2015) 

Polyamination Covalently links glutamine and lysine residues. 
Lysine dependent. 

Promotion of protein cross-linking in 
aggregate formation. 

Occurs after 
phosphorylation. 

(Wang et al., 2008) 

Prolyl 
isomerisation 

Converts cis to trans isomers of petide 
bonds neughbouring Pro residues. 

Enables PP2A to dephosphorylate tau at 
Thr231. 

Reduces phosphorylation 
by making Thr231 accessible 
to phosphatases. 

(Nakamura et al., 
2012) 

Truncation Cleavage of the protein into smaller fragments. Involved in degradation but may also 
produce toxic cleavage products. 

Occurs after 
phosphorylation. 

(Ferreira and Bigio, 
2011) 
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1.4.1 Phosphorylation 

Tau protein phosphorylation is balanced by kinase activity (addition of phosphates) and 

phosphatase activity (removal of phosphates). Under physiological conditions tau protein is 

phosphorylated as a means of modulating its activity, the most well studied being microtubule 

binding. Sites of phosphorylation are referred to by the amino acid number in the longest tau 

protein isoform (2N4R, 441 amino acids long). 

Tau protein phosphorylation has been its most widely studied posttranslational 

modification. Tau protein has 85 possible sites of phosphorylation and in the healthy adult brain 

has a molar ratio of phosphates to tau protein of 3-4:1. In the fetal brain, the molar ratio of 

phosphates to tau protein is much higher at 8:1 (Kenessey and Yen, 1993), indicating a 

physiological role of phosphorylation in development, likely related to neurite outgrowth and 

remodeling/ formation of synaptic connections (Esmaeli-Azad et al., 1994). The phosphorylation 

of tau protein has an important role in regulating the interactions between it and microtubules, 

with particularly relevant phosphorylation sites being those sites within the MPR domain and in 

the adjacent N-terminus region (Jenkins and Johnson, 1999; Lin et al., 2007). 

The 8:1 ratio of phosphates to tau protein in the fetal brain is mirrored in pathological 

tauopathies where it is termed hyperphosphorylation (Kenessey and Yen, 1993). In the fetal 

brain, many phosphoepitopes that have been considered pathologically associated with tauopathy 

in the adult brain are observed as well (Hanger et al., 1998; Hanger, 2017; Reynolds et al., 2000). 

It is important to note that the fetal brain only expresses one isoform of tau protein (0N3R) that 

lacks the N-terminal inserts. Additionally, at this point the degree of phosphorylation is being 

directed by developmental processes, so hyperphosphorylation is a physiologically “intended” 
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state. In pathological states the balance of phosphorylation and dephosphorylation is 

dysregulated, often with a shift towards the hyperphosphorylation typical of fetal tau protein. 

Dysregulated (aberrant) tau protein phosphorylation has been shown to alter tau protein 

global hairpin conformation. This conformation is thought to protect both the N-terminal domain 

and the MPR domains from abnormal interactions. For example, the AT8 combination of 

phosphorylation (Ser199/Ser202/Thr205) reduces folding of the N terminus over the rest of tau 

protein, preventing global hairpin conformation (Jeganathan et al., 2006). This conformational 

change affects tau protein solubility and interaction behaviour. 

Studying the effects of tau protein phosphorylation directly in vitro has proven to be a 

challenge. A common method used to investigate the effects of tau protein phosphoepitopes is 

the use of pseudophosphorylation (Chang et al., 2011; Haase et al., 2004; Lin et al., 2007). In this 

process, mutant constructs are generated in which the amino acid (Thr, Ser or Tyr) which would 

be phosphorylated is mutated to an Asp or Glu, which have large and bulky, negatively charged 

subgroups, mimicking a permanent, irreversible phosphorylation at this residue. These amino 

acids only have a total charge of -1 compared to the -3 charge on an actual phosphate group. 

Additionally, steric forces are different between phosphorylated amino acids and 

phosphomimics. Despite these differences, a recent study showed that for the investigations of 

tau protein pathological processes such as aggregation, pseudophosphorylation does in fact 

mimic phosphorylated tau protein in terms of the aggregate products formed (Prokopovich et al., 

2017). 
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1.4.1.1 Relevant individual sites of phosphorylation 

1.4.1.1.1 MPR domain phosphorylation 

Although there are 85 possible sites of phosphorylation on tau protein, and 

hyperphosphorylation is associated with disease in the adult brain, individual sites of 

phosphorylation may be important physiological regulators and mediators of pathogenicity on 

their own when phosphorylation is dysregulated. A table of all currently known tau protein 

phosphorylation sites has been compiled by Diane Hanger (Hanger2017). Here I will highlight 

several phosphorylation sites that have significance to physiologic function and pathology 

mediated by tau protein. 

An important series of phosphoepitopes associated with a dramatic reduction in tau 

protein ability to bind microtubules and associated with tau protein fibrillization includes Ser262, 

Ser293, Ser324 and Ser356. These sites are located in equivalent positions in each of the four MPR 

domains (Drewes et al., 1995). Due to their location on the MPR domain, phosphorylation is 

likely to directly inhibit tau protein-microtubule interactions, and enhance self-association. 

Phosphorylation at these sites is predicted to directly impair microtubule binding and mimic tau 

protein mutations in these regions associated with disease (discussed in section 1.5.2.1). 

1.4.1.1.2 Thr231 

A physiologically and pathologically relevant phosphoepitope on tau protein is Thr231 

(Luna-Munoz et al., 2005; Sengupta et al., 1998). Phosphorylation at this site is observed in fetal, 

adult diseased brains, as well as adult control brain (Hanger et al., 1998; Reynolds et al., 2000). 

The presence of pThr231 in both fetal and adult control brains suggests a physiological role in tau 

protein regulation. Indeed, it has been shown that phosphorylation at this site alone is capable of 
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preventing tau protein binding to microtubules, and that phosphorylation at this site causes the 

N-terminus of the protein to push away from the C-terminus (opening the hairpin), allowing for 

further access of the MPR domains by tau protein kinases (Lin et al., 2007). More recently, it has 

been shown that Thr231 phosphorylation induces a salt bridge with Arg230 which directly inhibits 

microtubule interaction (Schwalbe et al., 2015). Due to this potent inhibition of tau protein-

microtubule interaction, under reversible circumstances phosphorylation of Thr231 is a highly 

effective switch by which to remove tau protein from the microtubule or direct it back. 

An effective means of modulating tau protein-microtubule interactions such as pThr231 

would be crucial in physiological conditions when microtubules must be remodeled such as in 

situations of neuronal damage, axon growth, or other plastic mechanisms. If enhanced, or locked 

in place, however, phosphorylation at Thr231 could become pathological and has been proposed 

to result in further phosphorylation of tau protein in the microtubule binding domain (Lin et al., 

2007). Furthermore pThr231 tau protein has been shown to be toxic in transiently transfected 

CHO cells (Alonso et al., 2010). The state of phosphorylation at Thr231 has been shown to reduce 

PP2A interaction with tau protein, possibly permitting an increased phosphorylation state of tau 

protein by reducing phosphate removal (Sontag et al., 2012). 

Thr231 phosphorylation is commonly observed at the same time as phosphorylation of 

Ser235 which is considered to be a key site which, when phosphorylated, primes tau protein for 

phosphorylation by GSKβ (Cho and Johnson, 2004). With respect to pathological processes, 

pThr231 tau protein has been shown to be an early phosphoepitope in aggregate formation and 

may be part of an initiating cascade of phosphorylation sites in this process (Luna-Munoz et al., 

2007). 
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1.4.1.1.3 pThr175 

Of particular relevance to this thesis, phosphorylation at Thr175 has been observed in both  

Alzheimer’s disease and amyotrophic lateral sclerosis with cognitive impairment (discussed in 

section 1.5.5) (Hanger et al., 1998; Reynolds et al., 2000; Strong et al., 2006; Yang and Strong, 

2012). The observation that pThr175 is not present in fetal brain tissue (Hanger et al., 1998; 

Reynolds et al., 2000) suggests that this phosphoepitope may be a key contributor to adult onset 

tauopathy. Consistent with this, our lab had previously demonstrated that pThr175, expressed in 

vitro as a pseudophosphorylation construct, is toxic (Gohar et al., 2009). 

Pseudophosphorylation of tau protein on the proline rich domain has been shown to open 

the global hairpin conformation (Jeganathan et al., 2006). This is relevant for pThr175 and pThr231 

as both sites lie in this region. 

1.4.1.2 Kinases involved in tau protein phosphorylation 

There are at least 37 kinases that have been implicated in tau protein phosphorylation and 

tau protein pathology (Hanger et al., 2009). Among these, mitogen activated protein kinase 

(MAPK), glycogen synthase kinase-3 (GSK3), cyclin dependent kinase-5 (Cdk5), and casein 

kinase-1 (CK1) have been robustly shown to be involved in tau protein phosphorylation, have 

different substrate recognition motifs, and have been shown to phosphorylate many residues 

(Table 1.2) (Hanger2017). GSK3β and Cdk5 have been determined as the likeliest candidate 

kinases to contribute to pathological tau protein phosphorylation (Flaherty et al., 2000). As the 

focus of my studies have been primarily amyotrophic lateral sclerosis, GSK3β was the kinase of 

interest (discussed in section 1.5.5) and will be the only tau protein associated kinase discussed 

in detail here. 
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Table 1.2: Main kinases involved in tau protein phosphorylation 

Kinase Preferred recognition 
motif 

No. of 
phosphorylation 

sites on tau 

pThr 175? pThr231? 

Mitogen activated 
protein kinase family 
(MAPK) 

Pro-X-Ser/Thr-Pro 22 Yes Yes 

Glycogen synthase 
kinase 3 (GSK3) 

Ser/Thr-XXX-Ser/Thr(p) 37 Yes Yes 

Cyclin dependent 
kinase 5 (cdk5) 

Ser/Thr-Pro-X-Lys/Arg 12 No Yes 

Casein kinase 1 (CK1) Ser(p)-XX-Ser 39 No No 
Protein kinase A (PKA) Arg-XX-Ser/Thr 27 No Yes 
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Glycogen synthase kinase 3 (GSK3) is a kinase consisting of 2 isoforms encoded by 2 

separate genes sharing 85% similarity overall and 95% similarity within the catalytic domain 

(Woodgett, 1990). The isoforms, GSK3α and GSK3β are regulated differently, expressed in 

different cell populations and localize to different regions of the cell (Lau et al., 1999; Takahashi 

et al., 1994; Uzbekova et al., 2009). GSK3β also has a higher expression level in the brain than 

GSK3α (Lau et al., 1999; Yao et al., 2002). As such, they have different substrates and functions 

despite their shared structure (Wang et al., 1994). GSK3β is a proline-directed kinase which 

preferentially phosphorylates a Ser/Thr-XXX-Ser/Thr(p) motif for primed phosphorylation at the 

former site (Lu et al., 2011). While enhanced by primed phosphorylation, its function does not 

rely on this. Additionally, GSK3β can phosphorylate tau protein at Ser or Thr residues 

irrespective of whether or not they are followed by a Pro residue, but prefers those residues 

located N-terminally to a neighbouring Pro. GSK3β can phosphorylate tau protein at 37 sites 

including Thr231 and Thr175. GSK3β has been implicated in abnormal tau protein phosphorylation 

in neurodegenerative diseases including Alzheimer’s disease. Interestingly, tau protein may be 

able to activate GSK3β, as the PAD domain activates the PP1-GSK3 pathway (Kanaan et al., 

2011). PP1 increases GSK3β activity by removing an inhibitory phosphate at Ser9 (McManus et 

al., 2005). Therefore tau protein can directly induce GSK3 activity. 

1.4.1.3 Phosphatases involved in tau protein dephosphorylation  

The principal phosphatase involved in tau protein dephosphorylation is protein 

phosphatase 2A (PP2A). PP2A is able to dephosphorylate abnormally phosphorylated tau protein 

at residues Ser46, Ser199, Ser202, Ser396, and Ser404, but not Ser235 (Gong et al., 1994). Activity of 

PP2A is inhibited by GSK3β, the activity of which can be enhanced by tau protein directly (Liu 
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and Gotz, 2013). Additionally, endogenous inhibitor of PP2A (I2
PP2A) is upregulated and 

translocated from the nucleus to the cytosol in Alzheimer’s disease. 

1.4.2 Other forms of posttranslational modification 

In addition to tau protein phosphorylation, there are a plethora of other posttranslational 

modifications that tau protein can undertake. These affect tau protein function directly, and many 

also have implications for tau protein phosphorylation. Notably, some are associated with 

increased phosphorylation, decreasing phosphorylation, or occur downstream of phosphorylation 

in pathogenic processes. 

1.4.2.1 Posttranslational modifications associated with tau protein phosphorylation 

 A number of posttranslational modifications have been associated with increased tau 

protein phosphorylation status. These may act through decreasing tau protein clearance, such as 

SUMOylation and acetylation, such that there is an increased retention of phosphorylated tau 

protein which may become further phosphorylated by active kinases (Cohen et al., 2011; Guo et 

al., 2017; Min et al., 2010). N-glycosylation reduces the rate of dephosphorylation (Liu et al., 

2002b) and enhances phosphorylation of tau protein by GSK3β (Liu et al., 2002a). Truncation is 

associated with phosphorylated tau protein but appears to occur downstream of phosphorylation 

events (Mondragon-Rodriguez et al., 2008; Rametti et al., 2004).   

1.4.2.2 Posttranslational modifications reducing tau protein phosphorylation 

A series of modifications are associated with reduced tau protein phosphorylation. These 

include prolyl isomerisation, in which phosphate group orientation about a Ser/Thr-Pro bond 

from cis to trans. Peptide-prolyl cis/trans isomerase NIMA-interacting 1 (PIN-1) isomerizes tau 

protein from cis to trans conformation at pThr231 making tau protein accessible to PP2A for 
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dephosphorylation (Zhou et al., 2000). Ubiquitination of tau protein results in increased 

clearance of aberrantly phosphorylated tau protein by the ubiquitin-proteasome system reducing 

cellular phosphorylated tau protein (David et al., 2002; Keller et al., 2000). Finally, O-

glycosylation may be protective against tau protein phosphorylation (Li et al., 2006; Liu et al., 

2004). O-glcosylation occurs on Ser and Thr residues sterically hindering the addition of 

phosphate groups to tau protein (Arnold et al., 1996). 

1.4.2.3 Posttranslational modifications with unknown effect on tau protein phosphorylation 

 There are several types of posttranslational modification with unknown effect on tau 

protein phosphorylation. Glycation, nitration and polyamination are all enhancers of aggregation 

(Necula and Kuret, 2004; Wilhelmus et al., 2012; Zhang et al., 2005), while methylation appears 

to decrease tau protein aggregation (Funk et al., 2014). These modifications may play a role in 

the disease process but have yet to be described in greater detail.
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Table 1.3: Neuropathology of tauopathies (modified from Kovacs 2015) 

Disease Pathology region Pathology 
cell type 

Pathology phenotype Isoform 
composition 

Phosphorylation References 

AD Entorhinal, cortical, 
hippocampal, deeper 
subcortical, late stages 
widespread 

Neuronal NCI, NFT, DNs 68, 64, 60 kDa 
(major) 
72 kDa (minor) 
PHF motif 

45 sites shown (Braak et al., 2006; 
Hanger2017; Wang et al., 
2013) 

FTDP-17 
 

Frontal, temporal, 
hippocampus, caudate 
nucleus, putamen 

Neuronal, 
glial 

Variable Variable Thr181, Ser202, Thr205, 
Thr212, Ser214, Thr231, 
Ser235, Ser262, Ser356, 
Ser404, Ser422 

(Ingram and Spillantini, 
2002) 

PSP Variable cortical and 
subcortical 

Neuronal, 
glial 

NFT, NCIs, DNs, coiled 
bodies, tufted astrocytes 

64 and 68 kDa 
bands (4R 
isoforms) 

Ser46, Thr181, Ser202, 
Thr217, Thr231, Ser235, 
Ser396, Ser400, Thr403, 
Ser404 

(Dickson et al., 2011; 
Wray et al., 2008) 

CBD  Variable cortical and 
subcortical 

Neuronal, 
glial 

Astrocytic plaques, NFTs, 
NCIs, DNs, coiled bodies, 
astrocytic plaques 

64 and 68 kDa 
bands (4R 
isoforms) 

Ser202, Thr205, Ser396, 
Ser404, Thr231 

(Dickson et al., 2011; 
Feany et al., 1995) 

Pick’s 
disease 

Frontal and temporal 
cortex 

Neuronal, 
glial 

Pick bodies, ramified 
astrocytes 

60 and 64 kDa 
bands (3R 
isoforms) 

Thr231, Ser235, Ser202, 
Thr205, Thr181, Ser396, 
Ser404  

(Buee and Delacourte, 
1999; Dickson et al., 2011; 
Irwin et al., 2016; Probst 
et al., 1996) 

AGD Temporal, entorhinal 
cortex, hippocampus, 
amygdala 

Neuronal, 
glial 

NCI, coiled bodies, granular 
astrocytic immunoreactivity 

63, 68 kDa 
bands (4R 
isoforms) 

Thr181, Ser202, Thr205, 
Thr231, Ser253, Ser356, 
Ser396, Ser262, Ser404 

(Tolnay et al., 1997; 
Tolnay and Clavaguera, 
2004) 

DLBD  Prefrontal, temporal 
parietal cortices, ACC, 
subcortical 

Neuronal, 
glial 

NFT, thorny astrocytes, 
coiled bodies 

3R+4R 
(neuronal) 
4R (glial) 

Ser202, Thr205,Thr231, 
Ser235, Ser202, Ser404, 
Ser396 

(Howlett et al., 2015; Iseki 
et al., 2003; Ishizawa et 
al., 2003) 

MSA Internal capsule, 
putamen 

Neuronal, 
glial 

Granular neuronal, glial 
cytoplasmic inclusions (GCI) 

4R Ser202, Thr205 (Nagaishi et al., 2011) 
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PART Temporal cortex, 
hippocampus basal 
forebrain, brainstem, 
olfactory 

Neuronal, 
glial 

NFT, DNs, coiled bodies, 
thorny astrocytes 

68, 64, 60 kDa 
(major) 
72 kDa (minor) 
PHF motif 

Ser202, Thr205 (Crary et al., 2014) 

ALS 
(cognitive 
impaired) 

Frontal, temporal, 
entorhinal cortex, 
hippocampus, 
amygdala, ACC, 
substantia nigra, basal 
ganglia 

Neuronal, 
glial 

NFT, threads, diffuse NC IR, 
coiled bodies 

All 6 pThr175, Thr231, 
Thr181, Thr199, Ser202, 
Ser205, Thr217, Ser396, 
Ser404, Ser208, Ser210 

(Strong et al., 2006; Yang 
and Strong, 2012) 

CTE Entorhinal, cortical, 
perivascular/ 
periventricular, spinal 
cord, brainstem 
 

Neuronal, 
glial 

NFT, DNs, NCI, NC IR 
astrocytic tangles, thorny 
astrocytes, tufted astrocytes 

3R + 4R Ser202, Thr205, Ser396, 
Ser404 

(McKee et al., 2009; 
McKee et al., 2010; 
McKee et al., 2013) 

 

Abbreviations used: NCI= neuronal cytoplasmic inclusion, NFT= neurofibrillary tangles, DNs= dystrophic neurites, NC IR= diffuse neuronal 
cytoplasmic immunoreactivity, GCI= glial cytoplasmic inclusions, ACC= anterior cingulate cortex, AD= Alzheimer’s disease, FTDP-17= 
frontotemporal dementia with Parkinsonism linked to chromosome 17, PSP= progressive supranuclear pasly, CBD= corticobasal denegeration, 
AGD=  argyrophilic grains disease, DLBD= diffuse Lewy body dementia, MSA= multiple system atrophy, PART= primary age-related tauopathy, 
ALS= amyotrophic lateral sclerosis, CTE= chronic traumatic encephalopathy
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1.5 Tau protein in neurodegenerative diseases 

Tau protein pathology has been observed in a host of different neurodegenerative 

diseases collectively, collectively termed “tauopathies” (Spillantini et al., 1997a). Primary 

tauopathies such as FTDP-17 are diseases in which tau protein metabolism dysfunction is 

thought to be the initial insult causing neuronal toxicity whereas secondary tauopathies are 

neurodegenerative diseases where tau protein metabolism dysfunction is thought to be the result 

of some other insult leading to tau protein dysfunction. Regardless, tau protein dysfunction 

appears to be toxic when it occurs, and it is likely that once induced, tau protein pathology is 

self-perpetuating and contributes to neuronal death (Guo and Lee, 2013). 

1.5.1 Alzheimer’s disease 

The neurofibrillary tangle (NFT), consisting primarily of phosphorylated tau protein was 

identified by Alois Alzheimer in his initial description of Alzheimer’s disease (AD) (Alzheimer 

et al., 1995) and has been a disease defining pathology since (Hippius and Neundorfer, 2003). 

Tau protein pathology in AD is primarily neuronal and is observed in the form of 

neurofibrillary tangles, neuronal cytoplasmic inclusions, threads and dystrophic neurites. By 

electron microscopy, the ultrastructure of the 8-20 nm wide filamentous inclusions of NFTs in 

AD forms a regular helical turn at 85-nm intervals known as the paired helical filament (Wischik 

et al., 1988). A second morphology of the inclusions in AD is the straight filament, which lacks 

the helical regularity of the PHF and is approximately 15 nm wide (Crowther, 1991). Aggregated 

tau protein in AD consists of both 3R and 4R tau protein isoforms and when isolated and run on 

a western blot reveals bands at 68, 64, and 60 kDa with a minor band at 72 kDa. This triplet 

motif is known as the paired helical filament motif (PHF). 
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Tau protein phosphorylation has been observed as the major distinguishing modification 

to tau protein in the AD tauopathic process (Crowther et al., 1989; Goedert et al., 1992; 

Grundke-Iqbal et al., 1986; Hanger et al., 2009). Indeed, tau protein is hyperphosphorylated in 

AD, showing a shift in molar ratio from ~2:1 to ~9:1 (Kopke et al., 1993). To date, tau protein 

has been shown to exhibit phosphorylation at 45 sites in this disease state (Hanger et al., 2009; 

Hanger2017) many of which are shared with fetal tau protein (Hanger2017; Morishima-

Kawashima et al., 1995; Reynolds et al., 2000). 

1.5.2 Frontotemporal lobar dementia 

Frontotemporal lobar dementia (FTLD) is a neuropathologically diagnosed group of 

neurodegenerative disorders characterized by neuronal death primarily in the frontal and 

temporal lobes. FTLD therefore is an umbrella term for a number of neurodegenerative diseases 

which are defined by the underlying neuropathology. The location of pathology and neuronal 

death determines the clinical manifestation of the underlying disorder, known as frontotemporal 

dementia, which may present as behavioural disinhibition, semantic dementia, nonfluent aphasia, 

Parkinsonism, or motor system dysfunction (Neary et al., 1998). Broadly FTLD is subdivided 

into 2 main classifications, FTLD-U (50%) and FTLD-Tau (40%). FTLD-U is characterized by 

tau-negative, ubiquitin positive inclusions composed primarily of TAR DNA binding protein of 

43 kDa (TDP-43). Therefore it is referred to as FTLD-TDP. The group of FTLDs comprising 

FTLD-Tau is further subdivided based on the molecular nature of the tau pathology observed 

into 3R, 4R and 3R/4R tauopathies. 3R FTLD tauopathies include Pick’s disease and some cases 

of FTDP-17 while 4R tauopathies include corticobasal degeneration (CBD), progressive 

supranuclear palsy (PSP), argyrophilic grains disease (AGD) and some cases of FTDP-17. 3R/4R 

tauopathies include FTDP-17. Depending on the subtype of FTLD-Tau, tau pathology inclusions 
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are variable in morphology and cell type. The characteristics of tau pathology of the FTLD 

subtypes are summarized in Table 1.3. 

1.5.2.1 Frontotemporal dementia with Parkinsonism linked to chromosome 17 

The discovery of causal tau gene mutations in Frontotemporal dementia with 

Parkinsonism linked to chromosome 17 (FTDP-17) in 1998 (Hutton et al., 1998) lead to an 

unequivocal link between tau protein metabolism dysregulation induced toxicity and 

neurodegenerative disease. Clinical manifestations are variable but include dementia, speech or 

language impairments, behavioural changes, and Parkinsinism (Neary et al., 1998). 

To date there have been 53 mutations in tau protein linked to FTDP-17 reviewed in 

(Ghetti et al., 2015). These mutations can be separated into two main categories: First, mutations 

reducing microtubule interactions microtubule (R5H, R5L, K257T, G272V, S320F, V337M, 

K369I, G398R, R406W, P301L and P301S) many of which have a reduced ability to report 

microtubule polymerization (Hasegawa et al., 1998). Second are mutations affecting exon 10 

splicing (Intronic +3, +11, +12, +13, +14, +16, as well as exonic N279K, L284L, N296N, S305N 

and S305S) which typically display altered ratio of 4R:3R tau protein with a higher proportion of 

4R tau protein (Liu and Gong, 2008). Additionally there are three mutations that appear to affect 

both exon splicing and microtubule binding (N296H, E342V, and ∆K280) (Ingram and 

Spillantini, 2002).  

The tau protein pathology associated with mutations in FTDP-17 is extremely variable 

and a detailed summery can be found in (Ghetti et al., 2015). Regions frequently affected include 

frontal and temporal cortices, hippocampus, amygdala, caudate nucleus and putamen (Ghetti et 

al., 2015). Both neurons and glia can be affected though this appears to be related to the mutation 
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in question, and glial pathology in the absence of neuronal pathology is not a feature of these 

disorders (Ghetti et al., 2015). Furthermore, the isoform composition of inclusions and inclusion 

morphological phenotype varies according to tau protein mutations in these disorders (Ghetti et 

al., 2015; Ingram and Spillantini, 2002). 

1.5.3 Parkinson’s related diseases 

Parkinson’s disease (PD) is not generally associated with tau protein deposition as a 

major distinguishing neuropathological factor. However, tau protein interaction with α-

synuclein, including its presence in Lewy Bodies which consist mainly of α-synuclein 

(Spillantini et al., 1997b) has shown a strong link between tau protein and Parkinson’s disease, 

particularly when extramotor symptoms are involved, as in the case of Lewy body dementia 

(Arima et al., 1999; Moussaud et al., 2014). The tau pathology associated with PD is similar to 

that observed in Lewy body dementia, but less pronounced (Jellinger and Attems, 2006). To this 

point, dementias associated with PD are generally tau protein positive (Dickson, 2012). In 

addition to Parkinson’s disease and Lewy body dementia, multiple system atrophy (MSA) is 

another α-synuclein positive neurodegenerative disease characterized by autonomic dysfunction, 

ataxia and Parkinsonism in which tau protein pathology is a pathological component (Nagaishi et 

al., 2011). 

1.5.4 Primary age-related tauopathy 

Primary age related tauopathy (PART) is a recently described neurodegenerative disease 

associated with cognitive impairment driven by predominantly Alzheimer’s- like tau protein 

pathology in the absence of amyloid-beta pathology (Crary et al., 2014; Jefferson-George et al., 

2017). It is notable, however that PART as a disease entity is contentious with some authors 
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suggesting that it may simply be an early manifestation of preclinical Alzheimer’s disease with 

low levels of amyloid beta pathology (Duyckaerts et al., 2015). 

1.5.5 Amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by 

progressive upper and lower motor neuron death causing paralysis (Ludolph et al., 2015). While 

ALS is not typically associated with tau protein pathology there are notable exceptions from 

several Pacific Island populations and sporadic case reports. The most well-known population of 

ALS with tau pathology is the Guamanian ALS-Parkinsonism complex (ALS-PDC) also known 

as Lytico-Bodig. This disease was up to 100 fold higher than the worldwide rate of ALS in the 

1950s, but has decreased to similar rates to worldwide of approximately 3/100, 000 presently 

(Plato et al., 2003). While this was strongly indicative of an environmental factor shifted by 

cultural changes, leading to several hypotheses of disease origin, the cause remains speculative 

(Plato et al., 2003). ALS-PDC was characterized by tau protein pathology throughout the central 

nervous system in the form of neurofibrillary tangles in the temporal lobe especially prominent 

in the hippocampus and entorhinal cortex (Guiroy et al., 1987; Hirano et al., 1961; Ito et al., 

1991; Wakayama et al., 1993). A very unique aspect of this disease was the tau protein 

deposition in the motor neurons of the anterior horn of the spinal cord (Ito et al., 1991; Schmidt 

et al., 2001b; Umahara et al., 1994). Tau in ALS-PDC has been shown to be phosphorylated at 

Thr181, Thr231, Ser262, Ser396, Ser404, and Ser422 (Mawal-Dewan et al., 1996).  

Similar to the Guamanian ALS-PDC, a set of two separate populations on the Kii 

peninsula of Japan (Muro disease) (Kuzuhara and Kokubo, 2005) and another population in New 

Guinea showed a similar disease with an elevated rate of occurrence (Okumiya et al., 2014). 

Finally, sporadic case reports consistently appear with tau protein deposition throughout the 
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brain and even in motor neurons (Dobson-Stone et al., 2013; Nakamura et al., 2014; Orrell et al., 

1995; Soma et al., 2012). Recently, studies have reported elevated phosphorylated and truncated 

tau protein in both hippocampus and spinal cord in different ALS populations (Gomez-Pinedo et 

al., 2016; Vintilescu et al., 2016). 

Beyond the aforementioned exceptions, the most consistent observation of tau protein 

pathology in a Western ALS population have been those observed in the frontal and temporal 

lobes of patients with ALS with cognitive impairment (ALSci). ALSci is associated with 

neuronal degeneration in both the frontal and temporal cortex, and is pronounced in the anterior 

cingulate cortex (Wilson et al., 2001). ALSci is defined as a variant of ALS in which patients 

perform at or below the 5th percentile on at least 2 cognitive tasks, but not meeting the full 

criteria for frontotemporal dementia (Strong et al., 2009; Strong et al., 2017). In ALS, cognitive 

impairment occurs in upwards of 50% of ALS cases (Ringholz et al., 2005).  

Tau protein pathology in ALSci was first observed as Gallyas silver staining (Yang et al., 

2003). Tau protein was then observed to be phosphorylated at a series of epitopes that had been 

previously observed in other tauopathies. However tau protein deposits in ALS consisted of all 6 

isoforms, suggesting that it is distinct from the Alzheimer’s disease associated PHF motif 

(Strong et al., 2006). Tau protein deposition in ALSci is not simply a function of aging (Yang et 

al., 2005). It was subsequently demonstrated that the tauopathy of ALSci was associated with an 

upregulation of active GSK3β activation (Yang et al., 2008). Due to the relatively uninvestigated 

nature of phosphorylated Thr175, an epitope that had been previously identified in 

phosphopeptide mapping studies of AD tissue (Hanger et al., 1998; Reynolds et al., 2000), our 

lab conducted in vitro studies that demonstrated that tau protein pseudophosphorylated at Thr175 

was prone to form fibrils in both HEK293T cells and Neuro2A cells (Gohar et al., 2009). It was 
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further shown that phosphorylation of Thr175 was associated with cell toxicity and apoptotic cell 

death (Gohar et al., 2009). 

Following this a more detailed characterization of tau protein pathology in ALSci was 

conducted in which tau protein pathology in the anterior cingulate and superior frontal cortices 

along with entorhinal cortex, hippocampus, amygdala, basal ganglia and substantia nigra was 

observed (Yang and Strong, 2012). The major distinguishing feature from ALS was tau protein 

pathology in the frontal cortex and anterior cingulate cortex of ALSci. Pathology was observed 

in neurons and astrocytes as NFTs, neuropil threads and diffuse neuronal cytoplasmic 

immunoreactivity. The observations of tau pathology, phosphorylated at Thr175 in ALS and 

ALSci were more recently demonstrated in 50% of cases studied in a separate cohort (Behrouzi 

et al., 2016). One genetic study of a family in which ALS and FTD were both present, and the 

only case in which cognitive impairment was present was that driven by a MAPT mutation 

driving tau protein pathology in which the authors suggested that a critical driver of the cognitive 

elements was tau dysfunction (King et al., 2013). 

1.5.6 Chronic traumatic encephalopathy 

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with 

of repeated head trauma (McKee et al., 2009). CTE is associated with rapid cognitive decline and 

neurobehavioral disturbances. In about 10% of cases, motor neuron dysfunction develops in a 

manner consistent with ALS.  In this case, it is, termed chronic traumatic encephalomyelopathy 

with amyotrophic lateral sclerosis (CTE-ALS) (McKee et al., 2010; Meyers et al., 1974).  

It is thought that dementia pugilistica (DP), a clinically diagnosed disease associated with 

neurodegeneration after repeated head trauma (Martland, 1928) is the same disease. However, no 
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neuropathological assessment under the CTE diagnostic criteria has been conducted on cases 

prior to 2013 (McKee et al., 2013). As such, this means that much of the literature of dementia 

pugilistica may or may not represent CTE, as dementia pugilistica may involve different 

neurodegenerative diseases without the hallmarks of CTE, such as AD, PD, ALS or 

combinations of these diseases without meeting the criteria for CTE. Notably, one account of 

dementia pugilistica (Schmidt et al., 2001a) makes the case for AD type tau pathology, but this 

was undertaken before the detailed classification of CTE was described. 

CTE is defined by phosphorylated tau protein pathology located at the depths of the sulci, 

periventricular and perivascular regions preferentially.  In late stages, this pathology is observed 

in a more widespread manner. CTEM differs from CTE by the additional presence of tau protein 

pathology in both motor neurons and astrocytes in the ventral and lateral horn of the spinal cord 

(McKee et al., 2009; McKee et al., 2010; McKee et al., 2013). The isoform composition of 

insoluble tau protein is in the form of 3R and 4R tau but has not been described in detail (McKee 

et al., 2013). No known mutations are currently associated with CTE. 

1.6 Experimental paradigms used in the study of tauopathy 

1.6.1 Human tissue and tau antibodies 

 The study of tissue from human tauopathy cases has been the gold standard in the 

understanding and characterization of tau protein abnormalities in neurodegenerative disease. 

Immunohistochemical and biochemical analysis of human brain tissue have been critical in 

determining isoform composition, tau protein pathological distinctions, cell type and regional 

specificity, as well as posttranslational modifications associated with the disease processes 

themselves. Additionally, any discovery made in vivo or in vitro must be validated in human 
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disease to be meaningful for future disease understanding or therapeutic potential. A host of tau 

protein conformation and phosphorylation specific antibodies have been developed which enable 

the assessment of human tissue without requiring full sequencing and phosphopeptide mapping 

by mass spectrometry (Table 1.4). Double labeling experiments are particularly useful for 

determining more specific information such as dual protein contribution to inclusions, or 

isoform, truncation product, and phosphoepitpe co-occurrence which can be insightful to 

validation of disease mechanisms. 
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Table 1.4: Commonly used tau antibodies and their epitopes 

Antibody name Epitopes 
AT270 pThr181 
AT8 pSer202/pThr205 
AT180 pThr231/pSer235 
PHF1 pSer396/pThr205 
AT100 pSr212/pThr214 
CP13 pSer202 
CP9 pThr231 
T22 Soluble tau protein oligomer 
TG3 pThr231 
PG5 pSer404 
T14 aas 141-149 
Tau46 aas 404-441 
HT7 aas 159-163 
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1.6.2 Tau protein polymerization assays 

Tau protein is frequently studied for its propensity to form fibrillar aggregates in vitro. 

Pseudophosphorylation studies have shown that in the absence of external modifiers, tau protein 

phosphorylated or mutated at various sites, especially within the C-terminal can form fibrillar 

aggregates much more effectively than unmodified tau protein, and in some studies, differential 

sites of pseudophosphorylation have shown different effects on aggregate propensity in different 

tau protein isoforms (Abraha et al., 2000; Combs et al., 2011; Sun and Gamblin, 2009). Tau 

protein pseudophosphorylated at Thr175 did not show increased aggregation propensity, but 

Thr231 tau protein did (Haase et al., 2004). Additionally, tau protein phosphorylated at Thr231 

showed reduced ability to promote microtubule polymerization by this assay (Kiris et al., 2011). 

1.6.3 Cell culture 

 Tau protein has been studied in cell culture models using a variety of immortalized cell 

lines and primary neuronal cultures. These studies have used human tau protein isolated from 

disease cases (Santa-Maria et al., 2012), expression of tau protein constructs displaying genetic 

mutations associated with neurodegenerative disease (Alonso et al., 2010), and tau protein 

constructs displaying pseudophosphorylation at residues or sets of residues identified in human 

disease states including Thr175 and Thr231 (Alonso et al., 2010; Cho and Johnson, 2004; Fath et 

al., 2002; Lin et al., 2007). In most cases tau protein is observed to be toxic to cells and display 

reduced microtubule interaction when modified in any way associated with disease, or when 

expressed at sufficient levels. The primary benefit of cell culture studies is their utility in 

studying cause and effect of individual protein modifications rapidly and at low cost. They do 

not, however provide insight into organ-level changes where multiple cell types are present.  
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1.6.4 Rodent models of tauopathy 

Mutant mouse models expressing G272V, P301L, P301S, V337M, K369I and R406W 

mutatiuons causing FTDP-17 have been studied (Ittner et al., 2008; Santacruz et al., 2005; 

Schindowski et al., 2006; Tanemura et al., 2001; Zhang et al., 2004). A rat model using 

adenoviral (AAV9) expression of P301L mutant human tau protein showed that expression of 

mutant tau protein in adult brain could induce tau protein pathology and behavioural changes 

(Mustroph et al., 2012). Depending on location, cell type, and the specific mutation or 

pseudophosphorylated variant expressed, differing behavioural and pathological phenotypes are 

observed and mimicry of all elements of the disease is never accomplished (Pankevich et al., 

2013; Richardson and Burns, 2002). In particular, driving tauopathy appears to be challenging in 

the absence of tau mutation expression. The cause of this may be in the difference in human and 

rodent tau protein expression, whereby rodent tau protein is more difficult to drive to 

pathological processes. Mice only express 3 tau protein isoforms, while rats do express 6 

isoforms, however 4R isoforms are expressed at much higher levels (Hanes et al., 2009). In fact, 

Thr175 in the rodent brain is neighboured by a second Thr residue rather than a Pro residue, 

making phosphorylation by proline directed kinase much more difficult, making Thr175 less 

likely to be phosphorylated and unable to exert toxicity. However, studies have shown that tau 

protein isolated from neural tissue of neurodegenerative disease cases and injected into rodent 

brain is able to induce propagating tau protein pathology in the brain which is capable of 

spreading (Lasagna-Reeves et al., 2012). 

1.7 Abnormal tau protein metabolism is a source of neuronal toxicity 

 Tau protein has been associated with neurodegenerative disease and pathology in many 

different states and forms, and has been implicated as both a primary cause and a secondary 
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contributor to these states (Iqbal et al., 2016). The hypothesis of tau protein being causative to 

disease etiology was confirmed with the discovery of FTDP-17 causing mutations (Hutton et al., 

1998). Existing evidence supports both toxic gain of function changes along with loss of function 

associated toxicity (Trojanowski and Lee, 2005). It is likely however that tau protein loss of 

function is not sufficient to induce neurodegenerative disease as MAPT knockout mice are viable 

(Dawson et al., 2001; Harada et al., 1994). It is possible that at least in the total absence of tau 

protein, other microtubule associated proteins are capable of maintaining microtubule function. It 

is notable, however that when the ability of tau protein to bind to the microtubule is inhibited, it 

may become toxic to the cell (Patrick et al., 1999). Moreover, microtubule binding may be 

essential to reduce a pool of unbound tau protein which may contribute to other toxic activities in 

the cell (Ballatore et al., 2007; Kuret et al., 2005). 

 The hypothesis that tau protein itself gains toxic function is supported by the 

observation that expression of FTDP-17-associated MAPT mutations or pseudophosphorylation 

at epitopes observed in tauopathies induces neuronal dysfunction and cell death (Alonso et al., 

2010; Combs et al., 2011; Fath et al., 2002; Gohar et al., 2009; Mustroph et al., 2012). 

Additionally, tau protein isolated from neurodegenerative disease tissue can induce tau protein 

pathology, neuronal dysfunction, and neuronal death in both cultured cells and rodent brains 

(Lasagna-Reeves et al., 2012; Santa-Maria et al., 2012). This has lead to hypotheses surrounding 

the uptake of tau protein by neurons from the interstitium, and tau protein seeding to promote 

spread of pathology. This is not, however consistent with prion biology in which a pathological 

prion protein is capable of autocatalyzing a conformational shift from a healthy isoform to 

pathological prion in another protein of the same type (Baskakov and Breydo, 2007). It is more 

likely that pathological tau protein exerts toxicity to the cell via cell-wide molecular signaling 
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changes induced by uncontrolled N-terminal interactions with other proteins including the kinase 

GSK3β, which then result in cell stress-induced tau protein pathology, introducing a cycle of 

aberrant stress response ultimately resulting in cellular apoptosis. If tau protein can induce 

increased activation of tau-phosphorylating kinases, however, it is possible that it could induce a 

positive feedback loop whereby tau protein becomes increasingly toxic to cells, ultimately 

inducing neuronal death. This would be consistent with the slowly developing nature of many 

tauopathies lacking mutations or other external stressors. 

The question of what the toxic species may be in tauopathies has also been asked, and 

whether the fibrillar aggregates themselves are toxic or if some other form of tau protein is toxic. 

While fibrillar tau protein has been shown be associated with toxicity, this may be a result of the 

toxic process itself (Cowan and Mudher, 2013). It has been suggested that it is likely the soluble 

tau protein oligomer that constitutes the toxic species (Lasagna-Reeves et al., 2012) which goes 

along with the concept that tau protein may exert toxicity through aberrant signaling, which it 

can do while still soluble rather than in an aggregate sink. Importantly, tau protein oligomerizes 

on its way to forming aggregates (Cisek et al., 2014), and as such the fibrils themselves are an 

indicator of toxicity (Bandyopadhyay et al., 2007). 

 Regardless of the toxic species, aberrant, uncontrolled tau protein phosphorylation 

is a common factor in many neurodegenerative diseases, leading to tau-mediated toxicity, tau 

protein fibril formation and neuronal death. That Thr175 phosphorylation is unique to 

pathological disease states, present in 2 tauopathies (uninvestigated in others), and demonstrates 

toxicity when expressed in cell culture, warrants further investigation. That pThr175 tau protein 

does not form aggregates alone suggests that further modification to tau protein is required for 

this to occur. Thr231 phosphorylation alone has been shown to regulate tau protein structure, and 



40 

 

 
 

if driven further than normal may be able to drive tauopathy. Given that this site has been shown 

to be phosphorylated by GSK3β and that tau protein has been shown to be capable of activating 

GSK3β-dependent pathways, it is conceivable that these two phospho-epitopes and kinase are 

closely related to one another as mediators of phospho-tau toxicity. 

1.8 Hypothesis 

pThr175 tau protein is implicated in the neurodegenerative process through a toxic 

pathway dependent on downstream activation of GSK3β and further phosphorylation at pThr231 

which is critical for fibril formation and cell death. 

1.9 Thesis overview 

The focus of the studies presented in this manuscript is the pathogenesis of tau protein 

phosphorylated at amino acid Thr175. 

 In Chapter 2, I show that pThr175 tau protein when unmodified by further 

phosphorylation does not have an increased propensity to self-aggregate, but that when further 

phosphorylated at Thr231 in a sequence of events dependent on pThr175-mediated enhancement of 

GSK3β activation, pThr175 tau protein induces fibril formation and cell death. Inhibition of 

GSK3β reduces tau protein fibril formation and cell death associated with pThr175 tau protein 

expression. 

In Chapter 3, I show that pThr175 tau protein pathology is not unique to ALSci or 

Alzheimer’s disease but that it can be observed in 8 other tauopathies, and that it is associated 

with Thr231 phosphorylation and tau protein oligomerization in pathological inclusions. I also 

show that pThr175 tau protein is not observed in non-pathological human brain tissue. 
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In Chapter 4, I show that pThr175 tau protein pathology is present in chronic traumatic 

encephalopathy and in chronic traumatic encephalomyelopthy in both hippocampal and spinal 

cord neuronal pathology. This was associated with pThr231 and activated GSK3β in human 

tissue. In a rat model of moderate traumatic brain injury I show that after a single head trauma 

pThr175 tau protein can be induced along with tau protein pathology. 

In Chapter 5, I show that pThr175 tau protein induces tau pathology in adult rat 

hippocampus when expressed by an adenoviral vector. 
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2.1 Abstract:  

We have previously shown that amyotrophic lateral sclerosis with cognitive impairment (ALSci) 

can be characterized by pathological inclusions of microtubule associated protein tau (tau 

protein) phosphorylated at Thr175 (pThr175) in association with GSK3β activation. We have now 

examined whether pThr175 induces GSK3β activation and whether this leads to pathological fibril 

formation through Thr231 phosphorylation. 72 hours after transfection of Neuro2A cells with 

pseudophosphorylated GFP-tagged 2N4R tau protein (Thr175Asp), pGSK3β (active GSK3β) 

levels were significantly increased as was pathological fibril formation and cell death. Treatment 

with each of 4 GSK3β inhibitors or shRNA knockdown of GSK3β abolished fibril formation and 

prevented cell death. Inhibition of Thr231 phosphorylation (Thr231Ala) prevented pathological tau 

protein fibril formation, regardless of Thr175 state while Thr231Asp (pseudophosphorylated at 

Thr231) developed pathological tau protein fibrils. Ser235 mutations did not affect fibril formation, 

indicating an unprimed mechanism of Thr231 phosphorylation. These findings suggest a 

mechanism of tau protein pathology by which pThr175 induces GSK3β phosphorylation of Thr231 

leading to fibril formation, indicating a potential therapeutic avenue for ALSci. 
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2.2 Introduction: 

Amyotrophic lateral sclerosis (ALS) is the most common adult onset neurodegenerative disorder 

of the motor system with a lifetime risk of 1:300 and a survival of 2-5 years after diagnosis 

(Factor-Litvak et al., 2013). Over 50% of patients with ALS develop a cognitive (ALSci), 

behavioural (ALSbi) or dysexecutive syndrome consistent with that of frontotemporal 

dysfunction, including a frontotemporal dementia (FTD) (Ringholz et al., 2005; Strong et al., 

2009). The frequent co-existence of  ALS and FTD has led to the postulate that both are two 

states along one disease continuum (Robberecht and Philips, 2013). Importantly, patients with 

frontotemporal dysfunction have a reduced survival compared to other ALS cases (Elamin et al., 

2011; Elamin et al., 2013; Hu et al., 2013; Olney et al., 2005). We have previously shown that 

ALSci is typically associated with frontotemporal atrophy with superficial linear spongiosis 

affecting the frontal cortex (Wilson et al., 2001), accompanied by both neuronal and glial 

inclusions of microtubule associated protein tau (tau protein) (Yang et al., 2003; Yang and 

Strong, 2012). This finding is significantly greater than observed as a function of age (Yang et 

al., 2005).  

Tau protein is a cytoskeletal stabilizing protein, which binds to microtubules in the 

axonal processes, helping to prevent microtubule breakdown and providing structural support by 

maintaining space between microtubules and other cytoskeletal elements or the cell wall (Chen 

et al., 1992; Weingarten et al., 1975). In the diseased states known as tauopathies, tau protein 

relocates from its normal localization in the axon to the cell body where it forms aggregates 

(Kowall and Kosik, 1987). In ALSci cases, tau protein is found in the form of fibrillar inclusions 

and is phosphorylated at Thr175 ; a phenomenon not observed in Alzheimer’s tau protein 

inclusions (Strong et al., 2006) and to a much greater extent than that observed in ALS with no 
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cognitive impairment (Yang and Strong, 2012). In solution, tau protein isolated from ALSci 

patients has a greater propensity to aggregate, while in both HEK293T and Neuro2A cells, tau 

protein pseudophosphorylated at Thr175 was found to form fibrillar aggregates to a much larger 

extent than wild type (WT) tau protein, regardless of the isoform (Gohar et al., 2009). In these 

latter experiments, pathological fibril formation was associated with increased cell death. We 

also observed that pathological tau protein inclusions in ALSci co-localize with phosphorylated 

kinase glycogen synthase kinase 3 beta (pGSK3β- the active isoform of GSK3β) (Yang et al., 

2008). Because GSK3β is a proline-directed kinase capable of exhibiting primed and unprimed 

phosphorylation of tau protein (Cho and Johnson, 2003) (Cho and Johnson, 2003)and because 

GSK3β has been strongly implicated as a major contributor to tau protein pathology (Cho and 

Johnson, 2003; Cho and Johnson, 2004a; Cho and Johnson, 2004b; Hernandez et al., 2013; 

Lucas et al., 2001; Pei et al., 1997; Sahara et al., 2008; Sato et al., 2002), we postulated that 

GSK3β activation would also be key to pathological tau protein fibril formation in ALSci. We 

have also postulated that phosphorylation of Thr231 will be key to pathological tau protein fibril 

formation. 

Thr231 is a tau protein phosphorylation site which, when phosphorylated, causes a 

conformational change in which tau protein’s ability to bind to microtubules is reduced (Lin et 

al., 2007). Thr231 is a known substrate of GSK3β (Alonso et al., 2010; Cho and Johnson, 2004b; 

Sahara et al., 2008; Sengupta et al., 1998). It is neighbored by a proline, and also fits the Ser/Thr-

XXX-pSer/pThr motif required by GSK3β for primed phosphorylation if the site at Ser235 is 

phosphorylated first. It is therefore a likely site of synergistic modification to tau protein in its 

pathology along with phosphorylation of Thr175.  
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In this study, we demonstrate that phosphorylation of tau protein at Thr175 leads to the 

activation of GSK3β, which then phosphorylates tau protein at Thr231 and which in turn leads to 

pathological fibril formation. Inhibition of GSK3β, pharmacologically and by small hairpin RNA 

(shRNA) knockdown prevents toxic pathological tau protein fibril formation, and prevents cell 

death. Phosphorylation at Thr231 is critical to this process, although independent of Ser235 

phosphorylation status. 

 

2.3. Methods: 

2.3.1. Cell culture and transfection: 

Because we had previously shown that Thr175Asp induces pathological tau protein fibril 

formation in Neuro2A and HEK293T cells, we performed all studies using the 2N4R tau protein 

isoform in Neuro2A cells (Gohar et al., 2009). Neuro2A cells were grown on 10 cm plates in 

Dulbecco’s Modified Eagle medium (DMEM; Gibco, Burlington ON, Canada) enriched with 

10% fetal bovine serum (Gibco, Burlington On. Canada) and 50 µg/mL Penicillin/Streptomycin 

(Gibco, Burlington, On. Canada). Cells were maintained at 37˚C and 5% CO2. Transfections for 

all survival and aggregation studies were performed using Lipofectamine 2000 (Invitrogen, 

Burlington On. Canada) with appropriate amounts of DNA for the plate size at a 3:1 ratio (µL 

Lipofectamine: µg DNA). Liposome-DNA complex was added to cells in serum free medium 

and transfected for 3 hours at 37˚C. Due to the increased number of cells required to yield 

sufficient amounts of protein for lysate analysis, the calcium phosphate method of transfection 

(Jordan et al., 1996) was used for western blot studies. Cells were incubated for 18 hours at 37˚C 

and 5% CO2 in the presence of 10 µg DNA and a mixture of CaCl2 and HEPES buffered serum. 
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Medium was changed to end all transfections. All analyses were conducted 72 hours after 

transfections were ended. 

 

2.3.2. Thioflavin S assay for Tau aggregation: 

GST fusion variants of WT and Thr175Asp 2N4R tau protein were generated and expressed in 

Escherichia Coli (E. coli) BL21 cells via pGEX vector using the GST spintrap purification 

module (General Electric Healthcare NJ, USA). E. coli was grown in YTA medium for 3-5 hours 

at 37 ˚C with vigorous agitation. E. coli was then pelleted by centrifugation, resuspended in PBS 

and then lysed by sonication. Tau protein was purified from the resulting homogenate as 

previously described (Gohar et al., 2009), and the ability to form pathological fibrils assayed by 

in vitro thioflavin S assay (Friedhoff et al., 1998; Taniguchi et al., 2005). 100 µL purified protein 

sample containing 0.35 to 10.0 µg/µL was brought to a total volume of 300 µL with a final 

concentration of 3 µM thioflavin S (Sigma-Aldrich, Oakville, ON, Canada) in 20 mM 3-(N-

morpholino) propanesulfonic acid (MOPS; Sigma-Aldrich, Oakville, ON, Canada), pH 6.8. 

Samples were analyzed with or without 5 µM heparin (Sigma-Aldrich, Oakville, ON, Canada). 

The assembly of tau protein into fibrils is enhanced by heparin, a polyanion, which acts as a 

positive control for this assay (Pickhardt et al., 2005; von Bergen M. et al., 2000). Thioflavin S 

fluorescence was read at 22˚C with a SPECTRmax M5 ROM (Fischer Scientific, Pittsburgh, PA, 

USA) set at 440 nM excitation and 521 nM emission. Background fluorescence and light 

scattering of a negative control sample containing only thioflavin S was subtracted from the 

values obtained. All experiments were performed in triplicate. 
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2.3.3. Fibril quantification: 

Cells were transfected with GFP-tagged mutant tau protein and visualized live by fluorescence 

microscopy on a Zeiss LSM 510 Meta NLO multiphoton confocal microscope in confocal 

microscopy dishes at 63x magnification. Plates were divided into 4 quadrants and a minimum of 

25 transfected cells from random fields in each quadrant were counted and categorized into a) 

cells containing fibrillar aggregates or b) cells containing no fibrillar aggregates. Consistent with 

our previous studies, fibrillar aggregates were defined as discrete, dense, thickened, curvilinear 

cytosolic structures in contrast to the fine filamentous threads observed in WT tau protein 

transfected cells (Supplemental figure 2.1) (Gohar et al., 2009). The percentage of cells 

containing aggregates was defined as the number of GFP- tau protein expressing cells counted 

containing fibrils. All experiments were performed in triplicate after plates were blinded to the 

observer (AJM) by a separate party. 
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Supplemental figure 2.1: Phenotype of Thr175Asp tau fibrils in Neuro2A cells. 
GFP-tagged tau protein was imaged by live cell confocal microscopy 72 hours after transfection.  
A) Both wild-type and Thr175Ala transfected cells demonstrated fine, filamentous fibril formation 
typical of that expected for cytosolic tau protein.  B) Fibrillar tau protein pathology in Thr175Asp 
tau protein transfected cells. In contrast to the wild-type and Thr175Ala transfected cells, cells 
transfected with Thr175Asp formed thick, curvilinear tau protein inclusions. Additional bundling 
along the periphery of the cell was also commonly observed. Images taken at 63x magnification. 
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2.3.4. GSK3β Inhibitors: 

Four GSK3β inhibitors that act through different mechanisms were used at their respective IC50 

values in fibril and survival experiments.  These included: lithium chloride (LiCl; Sigma-

Aldrich, St. Louis MO, USA), IC50 5 mM, which acts through a Mg2+ competitive mechanism; 

AR-A014418 (Sigma-Aldrich, St. Louis MO, USA), IC50 104 nM (Bhat et al., 2003), which acts 

through an ATP competitive mechanism; Tideglusib (Sigma-Aldrich, St. Louis MO, USA), IC50 

60 nM (Dominguez et al., 2012), which acts through a non-ATP competitive mechanism; and, 

TWS-119 (BioVision, Milpitas CA, USA), IC50 30 nM (Ding et al., 2003), which acts through a 

non-ATP competitive mechanism. Toxicity was assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay prior to use in fibril studies to demonstrate that the 

inhibitors would not be lethal to Neuro2A cells at their IC50. Inhibitors were administered in 

fresh medium at their IC50 concentration at the end of transfection when medium was changed. 

 

2.3.5. Site-directed mutagenesis and mutant constructs used: 

Site-directed mutagenesis was used to create mutant GFP-tagged tau protein from plasmid 

constructs in pEGFP-C1 vector as previously described (Gohar et al., 2009). Based on our 

previous observations, all studies performed here utilized the 2N4R tau protein isoform (with a 

green fluorescent protein (GFP) tag on the N terminus) as the template for all double mutants. To 

assess the effect of phosphorylation of Thr175, the following constructs were used: wild type 

2N4R tau protein, a Thr175Ala mutant (cannot be phosphorylated at Thr175), and a Thr175Asp 

mutant (mimics phosphorylation at Thr175). Agilent technologies QuickChange lightening site-

directed mutagenesis kit (Agilent Technologies, Mississauge On, Canada) was used to generate 6 

double mutant GFP-tagged tau protein constructs containing Thr231 mutants (1: WT Thr175 
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/Thr231Ala, 2: WT Thr175 /Thr231Asp, 3: Thr175Ala /Thr231Ala, 4: Thr175Ala /Thr231Asp, 5: 

Thr175Asp /Thr231Ala, 6: Thr175Asp /Thr231Asp). Full length primers for Thr231Ala mutants were: 

forward (5’-GCA GTG GTC CGT GCT CCA CCC AAG TCG-3’) and reverse (5’-CGA CTT 

GGG TGG AGC ACG GAC CAC TGC-3’). Full length primers for Thr231Asp mutations were: 

Forward (5’-GCA GTG GTC CGT GAT CCA CCC AAG TCG-3’) and reverse (5’-CGA CTT 

GGG TGG ATC ACG GAC CAC TGC-3’). 

An additional series of 6 GFP-tau protein mutants containing Ser235 mutations was 

created to test the requirement of a primed phosphorylation mechanism at Thr231. These mutants 

were (1: WT Thr175 /Ser235Ala, 2: WT Thr175 /Ser235Asp, 3: Thr175Ala /Ser235Ala, 4: Thr175Ala 

/Ser235Asp, 5: Thr175Asp /Ser235Ala, 6: Thr175Ala /Ser235Asp). Full length primers for Ser235Ala 

mutants were: Forward (5’-CCC AAG GCG CCG TCT TCC GCC-3’) and reverse (5’-GGC 

GGA AGA CGG CGC CTT GGG-3’). Full length primers for Ser235Asp mutants were: Forward 

(5’-CCC AAG GAC CCG TCT TCC GCC-3’) and reverse (5’-GGC GGA AGA CGG GTC 

CTT GGG-3’).  

All mutants were sequenced to confirm presence of mutations of interest. 

 

2.3.6. MTT survival assay: 

Cells were grown and transfected in 96 well plates. 72 hours post transfection, 20µL 5mg/mL 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma-Aldrich, St. Louis 

MO, USA) was added to each well and then incubated for 1 hour at 37˚C and 5% CO2. After 

incubation, cells from one well per treatment group were resuspended in 100 µL fresh DMEM, 

and transferred to a 1.5 mL microcentrifuge tube. 10 µL was then loaded onto a hemocytometer 

(improved Neubauer, Hausser scientific, Horsham PA) and purple (live) and white (dead) cells 
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were counted. Cell death was expressed as dead cells/total cells counted. All experiments were 

performed in triplicate. 

 

2.3.7. Trypan blue assay: 

Cells were grown and transfected in 96 well plates. 72 hours post transfection, cells from one 

well per treatment group were resuspended in 100 µL fresh DMEM and transferred to a 1.5 mL 

microcentrifuge tube. 100 µL 0.4% trypan blue stain (Gibco, Burlington, On. Canada) was then 

added and cells were incubated at room temperature for 1 min. 10µL was then loaded onto a 

hemocytometer and white (live) and blue (dead) cells were counted. Cell death was expressed as 

dead cells/total cells counted. All experiments were performed in triplicate. 

 

2.3.8. Western blot: 

Cells were lysed on ice 72 hours after transfection in NP40 lysis buffer (50 mM Tris, 100 mM 

NaCl, 1 mM EDTA, 1% NP40, 10% glycerol) containing protease (cOmplete, Roche 

Diagnostics, Indiapolis, IN, USA) and phosphatase inhibitors (Phosstop, Roche Diagnostics, 

Indiapolis, IN, USA). Lysate protein content was quantified using a DC protein assay kit (Bio-

Rad, Hercules, CA, USA). Samples were suspended in sample buffer (100 mM Tris-HCl, 4% 

SDS, 0.02% bromophenol blue, 20% glycerol, 200 mM DTT) and denatured for 5 minutes in a 

hot water bath at 95˚C. 20 µg protein was run on a 10% sodium dodecyl sulfate polyacrylamide 

gel and transferred to a nitrocellulose membrane. To assess transfection efficiency, gels were 

probed for GFP using a rabbit anti-GFP antibody (1:5000 titer; Life Technologies Eugene, OR, 

USA). GSK3β activation was assessed using a mouse anti-pTyr216 GSK3β (1:10 000 titer; BD 

Biosciences, Mississauga, On. Canada). To fully investigate activation status relative to overall 
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levels of kinase, total GSK3β was examined by stripping blots (2%SDS, 62.5 mM Tris-HCl, 100 

mM β- mercaptoethanol, pH 6.8) and re-probing with mouse anti-total GSK3β (1:10 000 titer; 

BD Biosciences, Mississauga, On. Canada). Nitrocellulose membranes were probed with 

primary antibody overnight at 4˚C. Blots were then washed in Tris-buffered saline with 0.2% 

Tween (TBS-T) before probing with horseradish peroxidase tagged secondary antibody (Goat 

anti-Mouse IgG (1:5000 titer; Bio-Rad, Hercules, CA, USA) or Swine anti-rabbit (1:1000 titer; 

Dako, Burlington, On. Canada) for 1 hour at room temperature. Densitometry was conducted 

using open source ImageJ software (NIH). GSK3β activation was normalized for overall 

expression and transfection efficiency by the equation (pTyr216/Total GSK3β)/(GSK3β/GFP). All 

experiments were performed in triplicate. 

For shRNA knockdown efficacy studies, total GSK3β was normalized to α-tubulin by 

densitometry using mouse anti-α-tubulin (1:2500 titer, Abcam, Toronto, On. Canada). GSK3α 

was assessed using mouse anti-GSK3α (1:1000 titer, Abcam, Toronto, On. Canada), and 

normalized to α-tubulin by densitometry. 

 

2.3.9. shRNA: 

A small hairpin RNA (shRNA) specific to GSK3β was designed according to a previously 

reported sequence (Yu et al., 2003) shown to specifically knock down GSK3β in Neuro2A cells 

while leaving GSK3α unaffected (Garrido et al., 2007). The shRNA sequence was modified to 

have a hairpin sequence specific to the pSuper plasmid vector into which it was inserted via 

BglII and HindIII restriction digest and ligation with T4 DNA ligase. Sequence primers were, as 

described by Yu et al 2013: Forward (5’-GAT CCC CGA TCT GGA GCT CTC GGT TCT TTC 

AAG AGA AGA ACC GAG AGC TCC AGA TCT TTT TA-3’) and Reverse (5’-AGC TTA 
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AAA A GA TCT GGA GCT CTC GGT TCT TCT CTT GAA AGA ACC GAG AGC TCC AGA 

TCG GG-3’). 

shRNA plasmid was transfected into Neuro2A cells with lipofectamine 2000 and GSK3β 

expression analysed at 24 and 96 hours post transfection to investigate the efficacy and 

sustainability of GSK3β knockdown.  

For knockdown studies, 24 hours before transfection with GFP-tau plasmid, shRNA or 

pSuper vector was transfected into cells so that expression of GSK3β would be reduced at the 

time of tau plasmid transfection. Fibril quantification was then conducted as above. 

 

2.3.10. Nocodazole experiments: 

Cells were transfected with GFP-tagged wild type tau or Thr175Asp tau with Lipofectamine as 

above in confocal dishes. 72 hours after transfection cells were exposed to 500 nM nocodazole 

(Sigma-Aldrich, Oakville, ON, Canada) for 1 hour which has previously been reported to 

effectively reduce microtubule dynamics (Vasquez et al., 1997). Cells were imaged live by 

confocal imaging after 1 hour incubation at 37˚C. 

 

2.3.11. In vitro β-tubulin co-localization: 

N terminal mCherry-tagged β-tubulin constructs were created by inserting β-tubulin (isolated 

from human muscle tissue) into a pmCherry-N1 vector (Clontech, Mountain View, CA, USA) 

using HindIII and SalI cleavage sites incorporated into forward and reverse primers respectively: 

Forward (5’-CGA AGC TTA TGA GGG AAA TC-3’) and Reverse (5’-AAG TCG ACC CGG 

CCT CCT CTT CGG C-3’). 
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Neuro2A cells were co-transfected with both GFP-tagged Thr175Asp tau protein and 

pmCherry-tagged β-tubulin. Live cell confocal imaging was conducted at 72 hours post 

transfection. To compare the differential effects on tau protein and tubulin formations, half of the 

plates were exposed to 500 nM nocodazole for 1 hour before live cell confocal imaging.  

 

2.3.12 Statistical analysis: 

Statistics were conducted using Sigmaplot 10.0 software. Following a Shapiro-Wilk test for 

normality, a one-way analysis of variance (ANOVA) was conducted (or Kruskal-Wallis 

ANOVA on ranks for z non-normal data) and Tukey’s post-hoc test was conducted. Results were 

considered to be significant when p<0.05. 

2.4. Results:  

 

2.4.1. Thr175 phosphorylation alone is insufficient to induce fibril formation: 

WT, Thr175Asp, and Thr175Ala 2N4R tau protein was isolated from E. coli and the extent to 

which each would form fibrils, in the presence or absence of heparin, determined using the 

Thioflavin S assay (Figure 2.1). No difference was detected between the individual constructs. 

This suggested that phosphorylation at Thr175 is not sufficient to induce pathological fibril 

formation by itself. 
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Figure 2.1: Phosphorylation at Thr175 alone is not sufficient to induce aggregation. GST 
fusion variants of WT and Thr175Asp 2N4R tau protein was isolated from E. coli BL21 cells. 
Extent of fibril formation was then assayed by in vitro Thioflavin S assay with and without 
heparin. No difference was detected between Thr175Asp GST-fusion tau protein compared to WT 
GST-fusion tau protein with or without heparin. Values are representative of three independent 
experiments. 
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2.4.2. GSK3β activation is increased in cells transfected with Thr175Asp tau: 

Given our previous observation of co-localization between tau protein aggregates and activated 

GSK3β in ALSci, we characterized GSK3β activation status in Neuro2A cells transfected with 

each tau protein construct. In cells transfected with Thr175Asp tau protein, the level of pTyr216 

was elevated relative to all other transfection groups (Figure 2.2). Relative to the GFP control, 

WT tau protein transfected cells had 1.13±0.16 times as much pGSK3β (mean±SEM), and 

Thr175Ala tau protein had 1.12±0.13 times as much pGSK3β. Neither were significantly different 

relative to each other, or to the GFP control. Only Thr175Asp tau protein transfected cells had a 

significant increase in pGSK3β (1.81±0.14) relative to GFP transfected cells after Kruskal-

Wallis one-way ANOVA on ranks (p=0.002, F=8.684). This indicates that pThr175 tau protein 

induces increased expression of the active form of GSK3β. This in turn may further modify tau 

protein, giving rise to pathological changes necessary for tau protein fibril formation. 
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Figure 2.2: GSK3β activation increases in Neuro2A cells transfected with Thr175 
phosphomimic tau protein. A) Representative western blot for active GSK3β (pTyr216) in 
untransfected (Ctrl), wild type tau protein (WT), unphosphorylated (Thr175Ala) and 
phosphomimic (Thr175Asp) transfected Neuro2A cells 72 hours after transfection. B) 
Densitometric analysis of western blots probed for pTyr216 GSK3β and then normalized against 
total GSK3β, and transfection efficiency by the equation (pTyr216/Total GSK3β)/(GSK3β/GFP). 
Values are representative of three independent experiments. 
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2.4.3. Fibril formation is abolished by pharmacologic inhibition of GSK3β: 

In keeping with previous studies (Gohar et al., 2009), GFP-tau protein fibril formation occurred 

to some extent in all tau construct transfection groups but to a much greater extent in Thr175Asp 

tau transfected cells (Figure 2.3). 

Prior to pharmacological studies, all four inhibitors were tested on untransfected 

Neuro2A cells over a range of concentrations focused around their respective IC50. Survival was 

assessed by MTT assay (described below) after 72 hours of exposure. None of the inhibitors was 

toxic to the cells at their reported IC50. 

Upon analysis of fibril formation, Thr175Asp tau transfected cells exhibited increased 

levels of fibril formation relative to all other groups (p<0.001 Tukey’s post-hoc test after one 

way ANOVA with p<0.001, and F=7.905) (Figure 2.3, Supplemental table 2.1). 

All four inhibitors administered at their respective IC50 concentrations were able to 

reduce fibril formation in Thr175Asp tau transfected cells to baseline levels (Supplemental table 

2.1, Figure 2.3). This indicates that the increased GSK3β activity observed in Thr175Asp mutant 

tau protein is necessary for the increased fibril formation observed. 
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Figure 2.3: Fibril formation is reduced to baseline when GSK3β is pharmacologically 
inhibited. A) 5 mM LiCl. B) 104 nM AR-A014418. C) 60 nM Tideglusib. D) 30 nM TWS-119. 
GFP= GFP transfected group, WT= wild type tau, Thr175Ala= unphosphorylated mutant, 
Thr175Asp= phosphomimic. TWS= TWS119 treated group, Tide= Tideglusib treated group, 
LiCl= LiCl treated group, ARA= AR-A014418 treated group. * denotes p<0.05 compared to all 
other groups by post hoc test after one way ANOVA. Values are representative of three 
independent experiments. 
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Supplemental Table 2.1: Thr175Asp tau fibril formation is increased compared to all treatment 
groups and constructs. Untreated= no GSK3β inhibitor used, WT= wild type tau, Thr175Ala= 
unphosphorylated mutant, Thr175Asp= phosphomimic. TWS= TWS119 treated group, Tide= 
Tideglusib treated group, LiCl= LiCl treated group, ARA= AR-A014418 treated group. Values 
represent mean±SEM % of GFP-tau protein expressing cells exhibiting fibrils. * denotes 
increased fibril formation in comparison to all groups (treated and untreated) p<0.001 Tukey’s 
post-hoc test after one way ANOVA (p<0.001, F=7.905). 
 

Group Untreated 5 mM LiCl 104 nM AR-
A014418 

60 nM 
Tideglusib 

30 nM TWS-
119 

WT 22±2 26±1 25±3 25±6 22±2 
Thr175Ala 23±2 24±3 26±2 24±1 24±2 
Thr175Asp 52±2 * 24±3 24±1 25±2 25±2 
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2.4.4. shRNA knockdown of GSK3β abolishes fibril formation: 

Although the evidence thus far suggests GSK3β is the downstream kinase responsible for further 

tau protein phosphorylation and toxicity leading to fibril formation, a separate isoform (GSK3α) 

shares 95% similarity in its catalytic domain and 85% similarity overall (Woodgett, 1990). 

Although there are shared substrates, GSK3α and GSK3β are encoded by 2 separate genes; they 

are differentially expressed in different tissues (Lau et al., 1999; Uzbekova et al., 2009); they are 

differentially regulated in the brain (Takahashi et al., 1994) with GSK3β having a higher overall 

expression in the brain (Lau et al., 1999; Yao et al., 2002); and, they show different substrate 

affinity (Wang et al., 1994). Therefore, a shRNA was developed to selectively knock down 

GSK3β. Western blots for GSK3β and GSK3α were quantified by densitometry, and 

standardized relative to that of an untransfected control. At 24 hours, levels of GSK3β expression 

(standardized against untransfected control) were: pSuper vector 76.9±8.8% and shRNA 

50.8±3.0% (p<0.05 after significant ANOVA with p=0.002 and F=21.177). At 96 hours, relative 

levels of GSK3β expression were: pSuper vector 123.5±3.3% and shRNA 67.7±6.7% (p<0.05 

after significant ANOVA on ranks with p=0.004). GSK3α levels were unaffected by shRNA 

transfections. 

Using this shRNA, tau construct transfected cells were assessed for fibril formation as in 

previous experiments (Figure 2.4). As previously noted, Thr175Asp tau transfected cells showed a 

significant increase in fibril formation when contrasted to WT-tau transfected cells (52±2% vs. 

26±2%, Thr175 vs. WT-tau respectively). Cotransfection with pSuper vector had no effect on 

fibril formation (54±4% vs. 25±2%, Thr175 vs. WT-tau respectively). In contrast, cells 

cotransfected with GSK3β specific shRNA showed a complete inhibition of fibril formation 
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(24±0% vs. 27±1, Thr175 vs. WT-tau respectively) (p<0.001 after significant ANOVA with 

p<0.001 and F=50.339).  

  



83 

 

 

 

 

Figure 2.4: shRNA knockdown of GSK3β abolishes pathological fibril formation. A) 
Representative western blots for GSK3β and GSK3α at 24 and 96 hours post-transfection. B) 
Densitometric quantification of GSK3β and GSK3α expression relative to untransfetced control 
cells. Values were expressed as the ratio of GSK:α-tubulin before comparison. C) Fibril 
formation in shRNA expressing cells was abolished relative to empty vector (pSuper) and cells 
only transfected with tau protein. WT= wild type tau, Thr175Asp= phosphomimic * denotes 
p<0.001 compared to all other groups by post hoc test after significant one way ANOVA. All 
values are representative of three independent experiments. 
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2.4.5. Thr175Asp tau induced cell death is prevented by GSK3β inhibition: 

After 72 hours, Thr175Asp transfected cells showed increased death relative to GFP, WT tau, or 

Thr175Ala tau transfected cells, consistent with previous studies (Figure 2.5, Supplemental table 

2.2) (Gohar et al., 2009). This was also increased relative to all GSK3β inhibitor treatment 

groups (p<0.05 Tukey’s post-hoc test after one way ANOVA). The same observations were 

made using the Trypan blue experiments across all inhibitors (Supplemental figure 2.2). These 

data suggest that fibril formation is accompanied by cell death, and inhibiting fibril formation 

prevents cell death. 



85 

 

 

 

 

Figure 2.5: Thr175Asp induced tau cell death is alleviated by GSK3β inhibition. A) 5 mM 
LiCl. B) 104 nM AR-A014418. C) 60 nM Tideglusib. D) 30 nM TWS-119. GFP= GFP 
transfected group, WT= wild type tau, Thr175Ala= unphosphorylated mutant, Thr175Asp= 
phosphomimic. TWS= TWS119 treated group, Tide= Tideglusib treated group, LiCl= LiCl 
treated group, ARA= AR-A014418 treated group. * denotes p<0.05 compared to all other groups 
by post hoc test after one way ANOVA. Values are representative of three independent 
experiments. 
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Supplemental figure 2.2: Thr175Asp induced tau cell death is prevented by GSK3β inhibition as 
determined by trypan blue assay. A) 5 mM LiCl. B) 104 nM AR-A014418. C) 60 nM Tideglusib. 
D) 30 nM TWS-119. GFP= GFP transfected group, WT= wild type tau, Thr175Ala= 
unphosphorylated mutant, Thr175Asp= phosphomimic. TWS= TWS119 treated group, Tide= 
Tideglusib treated group, LiCl= LiCl treated group, ARA= AR-A014418 treated group. * 
denotes p<0.05 compared to all other groups by post hoc test after one way ANOVA. Values are 
representative of three independent experiments. 
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Supplemental Table 2.2: pThr175 induced cell death is prevented by GSK3β inhibition. 
Untreated= no GSK3β inhibitor used, Treated= GSK3β inhibitor administered. GFP= GFP 
transfected group, WT= wild type tau, Thr175Ala= unphosphorylated mutant, Thr175Asp= 
phosphomimic. TWS= TWS119 treated group, Tide= Tideglusib treated group, LiCl= LiCl 
treated group, ARA= AR-A014418 treated group. Values represent mean±SEM % cell death. * 
indicates p=0.002, ** indicates p<0.001 compared to all other groups in each treatment row after 
significant ANOVA. 
 

Treatment GFP WT Thr175Ala Thr175Asp 
Untreated Treated Untreated Treated Untreated Treated Untreated Treated 

5 mM LiCl 10±2 10±1 10±0 9±1 9±0 8±1 20±2** 8±1 
104 nM AR-

A014418 
4±3 8±0 10±1 6±1 7±2 5±1 22±4** 7±1 

60 nM 
Tideglusib 

9±1 9±1 10±0 9±0 8±1 8±1 15±2** 10±1 

30 nM TWS-
119 

10±1 10±1 8±1 8±1 7±0 8±2 18±3* 8±2 
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2.4.6. Thr231 phosphorylation is necessary for Thr175 mediated fibril formation: 

To test if Thr231 is a downstream mediator of Thr175Asp induced pathological fibril formation, we 

constructed GFP-tagged double mutant tau protein with either a Thr231Ala or Thr231Asp 

mutation, with or without Thr175Asp. A total of 6 constructs were tested. All constructs formed 

fibrils to a baseline extent as previously observed in other constructs (Supplemental table 2.3, 

Figure 2.6). However, those containing the Thr231Ala mutation did not form increased fibrils, 

regardless of Thr175 phosphorylation state, while all Thr231Asp mutants formed increased fibrils 

relative to baseline regardless of Thr175 phosphorylation status (increased relative to others with 

p<0.001 tukey’s post-hoc test after one way ANOVA  with p<0.001, and F=60.087). This 

suggests that phosphorylation at Thr231 is key to pathological fibril formation. 
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Figure 2.6: Thr231 phosphorylation is required for pathological fibril formation in Thr175 
mutant tau. WT= wild type tau; Thr175Ala= unphosphorylated mutant; Thr175Asp= 
phosphomimic; Thr175 /Thr231Ala= phosphorylation inhibited only at Thr231; Thr175 /Thr231Asp= 
phosphomimic only at Thr231; Thr175Ala /Thr231Ala= phosphorylation prevented at Thr175 and 
Thr231; Thr175Ala /Thr231Asp= phosphorylation prevented at Thr175 but phosphomimic at Thr231; 
Thr175Asp /Thr231Ala= phosphomimic at Thr175 but phosphorylation prevented at Thr231; 
Thr175Asp /Thr231Asp= phosphomimic at both Thr175 and Thr231. * denotes p<0.001 post hoc 
after one way ANOVA. Values are representative of three independent experiments. 
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Supplemental Table 2.3: Tau fibril formation in Thr231 mutant containing constructs. WT 
Thr175= wild type tau at Thr175; Thr175Ala= unphosphorylated mutant at Thr175; Thr175Asp= 
phosphomimic at Thr175. WT Thr231= wild type tau at Thr231; Thr231Ala= unphosphorylated 
mutant at Thr231; Thr231Asp= phosphomimic at Thr231.Values represent mean±SEM % of GFP-
tau expressing cells exhibiting fibrils. * denotes p<0.05 tukey’s post-hoc test after one way 
ANOVA (p<0.001, F=60.087). 
 

Group WT Thr231 Thr231Ala Thr231Asp 
WT Thr175 28±1 28±1 52±2 * 
Thr175Ala 24±2 28±1 59±2 * 
Thr175Asp 53±3 * 29±0 53±2 * 
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2.4.7. Thr175Asp mediated phosphorylation of Thr231 is not dependent on primed 

phosphorylation at Ser235: 

To test if Ser235 phosphorylation is necessary to prime phosphorylation of Thr231 in response to 

Thr175Asp, site directed mutagenesis was used to create GFP-tagged tau protein with Ser235Ala 

and Ser235Asp mutations. A total of 6 mutants were made, each having a combination of Thr175 

mutations as discussed previously. Ser235Ala mutations did not prevent fibril formation in 

Thr175Asp mutant transfected cells (increased relative to all others with p<0.001 Tukey’s post-

hoc test after one way ANOVA with p<0.001, and F=70.537), indicating that the mechanism of 

primed Thr231 phosphorylation is not necessary for the downstream pathology after Thr175 

phosphorylation (Figure 2.7, Supplemental table 2.4). Ser235Asp mutations did not increase fibril 

formation in the absence of Thr175 phosphomimic, indicating that its presence is not permissive 

to fibril formation either. 



92 

 

 

 

 

Figure 2.7: Ser235 phosphorylation is not required for Thr175 mediated fibril formation. . 
WT= wild type tau; Thr175Ala= unphosphorylated mutant; Thr175Asp= phosphomimic; Thr175 
/Ser235Ala= phosphorylation inhibited only at Ser235; Thr175 Ser235/Asp= phosphomimic only at 
Ser235; Thr175Ala /Ser235Ala= phosphorylation prevented at Thr175 and Ser235; Thr175Ala 
/Ser235Asp= phosphorylation prevented at Thr175 but phosphomimic at Ser235; Thr175Asp 
/Ser235Ala= phosphomimic at Thr175 but phosphorylation prevented at Ser235; Thr175Asp 
/Ser235Asp= phosphomimic at both Thr175 and Ser235. * denotes p<0.001 post hoc after one way 
ANOVA. Values are representative of three independent experiments. 
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Supplemental Table 2.4: Tau fibril formation in Ser235 mutant containing constructs. WT 
Thr175= wild type tau at Thr175; Thr175Ala= unphosphorylated mutant at Thr175; Thr175Asp= 
phosphomimic at Thr175. WT Ser235= wild type tau at Ser235; Ser235Ala= unphosphorylated 
mutant at Ser235; Ser235Asp= phosphomimic at Ser235.Values represent mean±SEM % of GFP-tau 
expressing cells exhibiting fibrils. * denotes p<0.001 tukey’s post-hoc test after one way 
ANOVA (p<0.001, F=70.537). 
 

Group WT Ser235 Ser235Ala Ser235Asp 
WT Thr175 26±1 31±1 27±1  
Thr175Ala 28±2 30±1 28±2  
Thr175Asp 54±2 * 53±1 * 54±2 * 
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2.4.8. Tau fibrils persist after nocodazole exposure 

After 1 hour exposure to nocodazole, live cell confocal imaging showed that GFP-tau protein 

fibril structures were still present in cells transfected with both wild type GFP-tau protein and 

Thr175Asp tau protein (Supplemental figure 2.3). This effect was observed in co-transfected cells 

even when β-tubulin structures were lost and there was a lack of co-localization with tau protein 

fibrils (Supplemental figure 2.4).  
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Supplemental figure 2.3: Thr175Asp induced tau fibrils persist after 1 hour nocodazole 
treatment. Cells were treated with 500 nM nocodazole for 1 hour prior to live cell confocal 
imaging. WT= wild type tau, Thr175Asp= phosphomimic. Images shown are live cells transfected 
with tau constructs. This experiment was performed once as a proof of concept. Images taken at 
63x magnification. 
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Supplemental figure 2.4: β-tubulin co-localization with tau protein is lost in nocodazole treated 
cells. Untreated= double-transfected cells without nocodazole. 500 nM nocodazole= cells treated 
with 500 nM nocodazole for 1 hr. GFP-Thr175Asp= Tau protein phosphomimic. pmCherry β-
tubulin= β-tubulin. Overlay= both tau and tubulin channels. Images shown are live cells 
transfected with both tau and β-tubulin constructs. This experiment was performed once as a 
proof of concept. Images taken at 63x magnification.   
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2.4.9. Tau fibrils are not composed of β-tubulin 

Co-localization of β-tubulin and tau protein was observed in cellular processes extending from 

cell bodies. This was in stark contrast to the fibrils within the soma of the cell, which were 

visibly composed of tau protein, but lacked β-tubulin in their composition (Figure 2.8). This 

effect was especially clear when nocodazole treated cells showed the persistence of tau fibrils, 

but not the extending processes consisting of both proteins (Supplemental figure 2.4). 
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Figure 2.8: β-tubulin does not co-localize with tau protein in fibrils. Representative confocal 
micrograph depicting tau protein fibril in cell body (arrowhead) lacking tubulin co-localization. 
Co-localization occurs in the processes extending out from the cell (arrow). GFP-Thr175Asp= 
Tau protein phosphomimic. pmCherry β-tubulin= β-tubulin. Overlay= both tau protein and 
tubulin channels. Images shown are live cells transfected with both tau protein and β-tubulin 
constructs. This experiment was performed once as a proof of concept. Images taken at 63x 
magnification. 
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2.5. Discussion: 

We have demonstrated that phosphorylation of Thr175 induces pathological fibril formation by 

inducing GSK3β activation, which in turn leads to unprimed Thr231 phosphorylation. The latter 

step is both necessary and sufficient for the formation of pathological fibrils. Inhibition of this 

event using any of a panel of GSK3β inhibitors resulted in reduced fibril formation, and reduced 

cell death. To address the inability of these inhibitors to differentiate between GSK3α and 

GSK3β, we used shRNA studies to confirm that GSK3β knockdown was able to prevent fibril 

formation. 

The role of Thr231 in mediating a conformational change in tau protein has been 

previously described (Lin et al., 2007) and shown to have functional implications on tau 

protein’s microtubule binding ability. Of note is its proximity to a bend in what has been 

proposed as tau protein’s soluble global hairpin structure (Jeganathan et al., 2006). In this 

structure, the N-terminus of tau protein folds over the C-terminus, effectively sheltering it from 

further modification and interaction with other proteins. It is possible that phosphorylation at this 

site opens up the hairpin, exposing normally sheltered sections of tau protein, conferring the 

ability to self-interact, effectively seeding insoluble aggregates with itself beginning with 

dimerization through cross linking of β pleated sheets located within the microtubule binding 

domains which are normally sheltered by the C- and N-termini (von Bergen M. et al., 2000). 

Because GSK3β activity is enhanced by tau protein priming where an amino acid at the 

n+4 site has already been phosphorylated and because Ser235 is commonly found to be 

phosphorylated in conjunction with Thr231 (Cho and Johnson, 2004b), it was expected that Ser235 

phosphorylation would enhance the observed pathology. However, we observed no impact of 

Ser235 phosphorylation on the extent of tau protein fibril formation, suggesting that GSK3β acts 
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on Thr231 in the absence of priming in response to pThr175. This is not completely unexpected as 

GSK3β is known to phosphorylate tau protein through unprimed mechanisms as well (Cho and 

Johnson, 2003) and activated GSK3β is known to be capable of phosphorylating substrates 

through both primed as well as unprimed mechanisms (Doble and Woodgett, 2003). That GSK3β 

does not depend on any other kinases to phosphorylate Thr231 is consistent with the finding that 

other kinases known to phosphorylate tau protein do not show increased activity in the ALSci 

brain (Yang et al., 2008). 

The increased GSK3β activation induced tau protein pathology is consistent with 

previous reports of GSK3β overexpression-induced neurodegeneration in transgenic mice (Lucas 

et al., 2001). Of specific importance to this study, GSK3β activity is also associated with 

phosphorylation at Thr231 (Cho and Johnson, 2004b; Sato et al., 2002; Sun and Gamblin, 2009) 

in cell culture models. It has also been suggested that early, but not late administration of GSK3β 

inhibitors such as LiCl may be able to prevent tauopathy (Hernandez et al., 2013), as done in this 

study. Further investigations using this model can be used to assess the efficacy to abolish fibrils 

after they have formed. 

GSK3β has been heavily implicated as a kinase responsible for tau protein 

phosphorylation, and its expression profile in the central nervous system through development 

has been shown to closely follow that of tau protein phosphorylation status (Takahashi et al., 

1994). Although closely related, GSK3β and GSK3α have differences in substrate specificity 

(Wang et al., 1994). Although there is evidence for tau protein phosphorylation by GSK3α 

(Maurin et al., 2013), we have established that in our model there is no role for GSK3α in the 

pathological phosphorylation of tau protein downstream of Thr175 phosphorylation. This is in 

keeping with previous reports of the modulation of GSK3α and GSK3β activity. While GSK3β 
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can be highly upregulated, with increases in expression and activity, GSK3α is relatively 

consistently expressed across the lifespan (Takahashi et al., 1994) and therefore may not be tied 

as closely to the disease state. In fact, GSK3β has been shown to follow a level of expression 

proportional to the level of tau protein phosphorylation in normal development, as well as 

increased expression in the diseased state when tau protein phosphorylation is increased (Pei et 

al., 1997; Yang et al., 2008).  

In this study, only the 2N4R isoform of tau protein was assessed. Of note, it has been 

shown that differential phosphorylation patterns have can have different, or even opposite effects 

on different tau protein isoforms with regards to aggregation propensity. This phenomenon has 

been suggested to explain differential isoform expression in insoluble aggregates in different 

tauopathies (Combs et al., 2011). One example of this differential isoform expression is that the 

triplet isoform motif (1N4R, 1N3R, and 0N3R) in the western blot of the sarkosyl insoluble 

fraction in brain tissue from Alzheimer’s disease (Buee et al., 2000; Strong et al., 2006). This is 

in stark contrast with the inclusion of all 6 tau protein isoforms in the insoluble fraction from 

ALSci brains (Strong et al., 2006). The expression of all 6 isoforms in ALSci insoluble tau 

protein is consistent with the observation that Thr175Asp tau protein induced aggregation in cells 

transfected with all 6 tau protein isoforms equally (Gohar et al., 2009). Therefore, the analysis of 

only the longest tau protein isoform in this study may be justified, and these results extended to 

the other 5 isoforms found in the human brain, although further studies would have to confirm 

this. 

The finding that Thr231 phosphorylation is necessary and sufficient for the induction of 

fibril formation after Thr175 phosphorylation does not rule out the possibility that other sites are 

also being phosphorylated downstream, or that this may be part of a series of sites that may all be 
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critically phosphorylated and work synergistically for this process to occur, as suggested by 

others (Alonso et al., 2010; Sengupta et al., 1998; Sun and Gamblin, 2009). However, it does 

imply that without this site, the others are not capable of inducing fibril formation in this model. 

In order to further characterize the fibrils observed in these studies, β-tubulin co-

localization studies and nocodazole studies were conducted to determine if these observations 

were a result of tubulin bundling, a commonly described artifact of tau protein overexpression 

(Liu et al., 2012). The persistence of fibrils in the presence of nocodazole (a tubulin polymer 

destabilizing agent), paired with the lack of co-localization of tubulin with tau protein in these 

structures suggests that this is an independent phenomenon from tubulin bundling, and that it is 

in fact a result of pathological tau protein modification in these experiments. 

 

2.6. Conclusions: 

These findings represent the first time a cascade-like sequence of phosphorylation events 

underpinning the induction of pathological tau protein aggregates in ALSci has been described. 

The focus of these studies was on the downstream effects of Thr175 phosphorylation. How this 

site is phosphorylated will be the subject of future investigations, and sequence analysis searches 

using the kinase phosphorylation prediction tool KinasePhos has suggested that likely candidates 

are MAPK and cdc2. Our studies also suggest a potential therapeutic avenue through the 

inhibition of GSK3β activation. Further studies using in vivo models of Thr175Asp expression are 

currently in progress. 
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3.1 Abstract: 

Microtubule associated protein tau (tau protein) deposition is associated with a spectrum of 

neurodegenerative diseases collectively termed tauopathies. We have previously shown that 

amyotrophic lateral sclerosis (ALS) with cognitive impairment (ALSci) is associated with tau 

protein phosphorylation at Thr175 and that this leads to activation of GSK3β which then induces 

phosphorylation of tau protein at Thr231. This latter step leads to dissociation of tau protein from 

microtubules and pathological tau protein fibril formation. To determine the extent to which this 

pathway is unique to ALS, we have investigated the expression of pThr175 tau protein and 

pThr231 tau protein across a range of frontotemporal degenerations. Representative sections from 

the superior frontal cortex, anterior cingulate cortex (ACC), amygdala, hippocampal formation, 

basal ganglia, and substantia nigra were selected from neuropathologically confirmed cases of 

Alzheimer’s disease (AD; n=3), vascular dementia (n=2), frontotemporal lobar degeneration 

(FTLD; n=4), ALS (n=5), ALSci (n=6), Parkinson’s disease (PD; n=5), corticobasal 

degeneration (CBD; n=2), diffuse Lewy body dementia (DLBD; n=2), mixed DLBD (n=3), 

multisystem atrophy (MSA; n=6) and Pick’s disease (n=1) and three neuropathologically-normal 

control groups aged 50-60 (n=6), 60-70 (n=6) and 70-80 (n=8). Sections were examined using a 

panel of phospho-tau protein antibodies (pSer208,210, pThr217, pThr175, pThr231, pSer202 and T22 

(oligomeric tau)). Across diseases, phospho-tau load was most prominent in layers II/III of the 

entorhinal cortex, amygdala and hippocampus. This is in contrast to the preferential deposition of 

phospho-tau protein in the ACC and frontal cortex in ALSci. Controls showed pThr175 tau 

protein expression only in the 7th decade of life and only in the presence of tau protein pathology 

and tau protein oligomers. With the exception of DLBD, we observed pThr175 co-localizing with 
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pThr231 in the same cell populations as T22 positivity. This suggests that this pathway may be a 

common mechanism of toxicity across the tauopathies.   

3.2 Introduction: 

Microtubule associated protein tau (tau protein) is a cytoskeletal stabilizing protein involved in 

microtubule maintenance, fast axonal transport, and other physiological functions in neurons. 

Tau protein deposition is a characteristic of many neurodegenerative diseases that are 

collectively referred to as tauopathies. It has been shown that pathological species of tau protein 

are abnormally phosphorylated at multiple residues (Goedert et al., 1994) and that this is linked 

to a decrease in tau protein’s ability to bind to and stabilize microtubules (Bramblett et al., 1993; 

Lin et al., 2007) with accompanying cytotoxicity (Bandyopadhyay et al., 2007). While the 

isoform composition of insoluble tau protein deposits and the structural formation of the protein 

aggregates differs, there are several phosphorylation sites that are thought to be universally 

important in induction of a tauopathy.  

One potentially important phosphorylation site that has gone relatively unstudied is 

threonine175 (Thr175). First identified in Alzheimer’s disease as a phosphoepitope (Hanger et al., 

1998), it was then determined that this site could be phosphorylated by multiple kinases linked to 

tau protein pathology including GSK3β, JNK, ERK2, and p38 (Reynolds et al., 2000). pThr175 

tau protein was then identified in amyotrophic lateral sclerosis with cognitive impairment 

(ALSci) (Strong et al., 2009) and characterized in further detail in the context of this disease 

(Behrouzi et al., 2016; Strong et al., 2006; Yang et al., 2003; Yang et al., 2008; Yang and Strong, 

2012). Importantly, pThr175 tau protein has been shown to induce tau protein fibril formation and 

cell death in vitro (Gohar et al., 2009). Unlike other widely accepted pathological 
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phosphorylation sites on tau protein, such as pThr231 and pSer202, pThr175 has not been observed 

in the fetal brain where tau protein is hyperphosphorylated (Brion et al., 1993; Kenessey and 

Yen, 1993; Watanabe et al., 1993), suggesting that this site may be uniquely associated with 

pathological processes. pThr175 tau protein has been shown to induce GSK3β activation in cell 

culture, and may therefore act as a destabilizing event resulting in enhanced phosphorylation of 

tau protein at other residues, resulting in dissociation from microtubules and neuronal toxicity 

(Moszczynski et al., 2015). In order to understand the extent to which this pathway of pThr175 

mediated tau protein aggregate formation underlies a broad range of tauopathies, we have used a 

panel of phospho-specific antibodies to characterize tau protein pathology with specific interest 

in the expression of pThr175 tau protein across a broad range of tauopathies. 

3.3 Methods:  

Diseases studied included Alzheimer’s (AD; 3 cases), vascular dementia (VD; 2 cases), ALS (5 

cases), ALSci (6 cases), dementia with Lewy Bodies (DLBD; 2 cases), DLBD with mixed 

pathology (mDLBD; 3 cases including 2 with DLBD/VD and 1 with DLBD/AD)), 

frontotemporal lobar dementia (FTLD-TDP; 3 cases including one with a pathological C9orf72 

hexanucleotide expansion with Type B pathology; a single case with Type A pathology and a 

single case with Type B pathology, FTLD-Tau; 1 case with familial history and no known 

mutations) (Mackenzie et al., 2011), multiple system atrophy (MSA; 6 cases), Parkinson’s 

disease (PD; 5 cases), Pick’s disease (1 case), and corticobasal degeneration (CBD; 2 cases) 

(Table 3.1). The institutional research ethics board approved the protocol and consent was given 

for use of all tissue used in this study. All neuropathological diagnosis were performed by a 

neuropathologist (RH, LCA). For all comparisons, we grouped the staining according to ALS 

(n=5), ALSci (n=6), or other tauopathy (n=22). 
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To assess the extent of pThr175 tau protein, pThr231 tau protein and tau protein oligomer 

pathological inclusions as a function of ageing, three groups of controls were studied, 

encompassing the 6th (n=6), 7th (n=6), and 8th (n=8) decades of life (Table 3.1). Hippocampal 

sections from each group were stained for pThr175 tau protein, pThr231 tau protein and oligomeric 

tau protein (T22). These cases have been previously characterized in a study examining age-

dependant tau protein deposition in the frontal and entorhinal cortices and were shown to be free 

of neurodegenerative disease (Yang et al., 2005). 
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Table 3.1: Case demographics 

Neuropathological 
diagnosis 

Age n  
(n Male) 

AD 72±8 3 (2) 

VD 78±11 2 (1) 

ALS 56±16 5 (4) 

ALSci 64±11 6 (5) 

DLBD 68±1 2 (2) 

mDLDB 83±6 3 (3) 

FTLD 64±9 4 (1) 
MSA 69±12 6 (3) 

PD 77±2 5 (4) 

Pick’s 70±2 2 (2) 
CBD 71±1 2 (1) 

Control 1 55±2 4 (3) 

Control 2 64±2 4 (3) 

Control 3 75±3 4 (2) 

 

AD: Alzheimer’s disease, VD: Vascular dementia, ALS: amyotrophic lateral sclerosis, ALSci: 
ALS with cognitive impairment, DLBD: diffuse Lewy body dementia, mDLBD: Lewy body 
dementia with mixed pathology, FTLD: frontotemporal lobar dementia, MSA: multiple system 
atrophy, PD: Parkinson’s disease, Pick’s: Pick’s disease, CBD: corticobasal degeneration. 
Control 1: 6th decade control group, Control 2: 7th decade control group, Control 3: 8th decade 
control group.  
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Five to six micrometer paraffin-embedded sections from the superior frontal gyrus, 

anterior cingulate (ACC), hippocampus, entorhinal cortex, dentate gyrus, amygdala, basal 

ganglia and substantia nigra were used for all immunohistochemical analyses. 

Cases were stained by haematoxylin and eosin (H&E) and Gallyas silver stain for routine 

histological analysis and overall pathology characterization. Immunohistochemistry was 

conducted using a series of antibodies (Table 3.2) previously characterized in ALSci (Yang and 

Strong, 2012), consisting of PHF tau protein (AT8; Thermo Fischer IL, Canada), pThr175 tau 

protein, pSer208,210 tau protein, pThr217 tau protein (antibodies generated and designed in house 

(Yang and Strong, 2012), pThr175 commercially available through 21st Century, MA, USA). 
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Table 3.2: Antibodies used 

Antibody Clone Titer Antigen retrieval Epitope Company 
Tau pThr175 Rabbit, 

polyclonal 
1:1000 1 pThr175 21st Century 

Tau pThr217 Rabbit, 
polyclonal 

1:1000 1 pThr217 21st Century 

Tau pSer208, 210 Rabbit, 
polyclonal 

1:1000 1 pSer208, 210 21st Century 

PHF (AT8) Mouse, 
monoclonal 

2.5 ug/ml No pSer202 Thermo 
Fischer 

Tau pThr231 Rabbit, 
polyclonal 

1:1000 2 pThr231 Thermo 
Fischer 

T22 Rabbit, 
polyclonal 

1:500 2 Tau 
oligomer 

EMD 
Millipore 

Alexa Fluor 
488 

Goat anti-
rabbit 

1:200 2 Secondary Life 
Technologies 

 

1) Boil in 10mM sodium citrate, 0.05% Tween 20 pH 6.0 for 2 min. 

2) Pressure cooker (2100 Retriever; Aptum Biologics, UK) 10mM sodium citrate, 0.05% Tween 
20 pH 6.0 for 15 min. 
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Antigen retrieval was conducted as necessary (Table 3.2). Endogenous peroxidase was 

quenched with 3% hydrogen peroxide (BDH Chemicals, VWR, On, Canada). Primary antibody 

incubation was performed at 4˚C overnight in blocking buffer (5% BSA, 0.3% Triton-X 100 in 1 

X PBS). After washing, secondary antibody (1:200 biotinylated IgG) incubation was performed 

for 1 hour at room temperature in blocking buffer. Antigen:antibody complex was visualized 

with either horseradish peroxidase or alkaline phosphatase according to the manufacturer’s 

instructions (Vectastain ABC kit, Vector Laboratories CA, USA), followed by substrate 

development with either DAB plus NiCl2 or AP substrate kit III (Vector Laboratories). 

Counterstaining was performed using haematoxylin or nuclear fast red. The extent of pathology 

was described topographically and semi-quantitatively as previously reported (Yang and Strong, 

2012). Representative images were captured with a 20x lens under light microscopy (Olympus 

BX45) and subsequently used for semi-quantitative analysis. The semi-quantitative scale was 

manually applied for each type of pathology by an evaluator blinded to the underlying diagnosis 

(WY) (neuronal, neuritic, or glial) separately as follows: ‘-’ = none; ‘±’ = less than 5 inclusions; 

‘+’ = less than 10 inclusions; ‘++’ = more than 20 inclusions with scattered distribution; ‘+++’ = 

more than 20 inclusions but with locally dense distribution; ‘++++’ = more than 20 inclusions 

with a diffuse distribution. Additionally, the case positive ratio was defined for each antibody 

used and brain region investigated as the number of cases showing any pathology (± or more) 

compared to the total number of cases stained. 

3.3.1 Oligomeric tau and pThr231 staining: 

Rabbit anti T22 (EMD Millipore CA, USA) and rabbit anti tau pThr231 (Thermo Fischer) were 

used to probe tau protein inclusions for the presence of oligomeric tau protein (T22) and for 

phosphorylation at Thr231. Tau protein oligomeric species are currently hypothesized to be more 
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toxic to neurons than the fibrillar inclusions themselves (Ward et al., 2012), and pThr231 is 

thought to be a key site in the regulation of tau protein folding and ability to interact with 

microtubules (Lin et al., 2007; Schwalbe et al., 2015). Double labeling was performed on 

hippocampus from one case each from AD, ALSci, FTD, MSA, DLDB, and mDLDB. Tau 

protein was probed for pThr175 using rabbit primary antibody (1:1000) overnight at 4˚C and 

Alexa Fluor goat anti-rabbit 488nm secondary (1:200, Thermo Fischer) for 1 hour at room 

temperature. Rabbit anti tau pThr231 antibody was then labeled using a Zenon primary antibody 

labeling kit with Alexa Fluor 555nm dye (Thermo Fisher) and probed for 1 hour at room 

temperature. Slides were stored overnight at 4˚C and visualized within 24 hours of labeling by 

confocal imaging on a Zeiss LSM 510 Meta NLO multiphoton confocal microscope. 

3.4 Results: 

3.4.1 Tau antibody staining: 

3.4.1.1 Neuronal tau: 

ALS: Consistent with our earlier reports, we observed tau protein pathology in multiple brain 

regions in ALS, although to a lesser degree than either ALSci or the remaining tauopathies. 

Neuronal tau protein inclusions were most consistently observed in the entorhinal cortex, 

hippocampus, and amygdala. All antibodies were immunoreactive with neuronal tau protein 

inclusions in multiple brain regions (Table 3.3). Frontal and anterior cingulate pathology was 

limited in both load and case-positive incidence. In all regions studied, inclusions took the form 

of punctate cytosolic inclusions or tangles (Figure 3.1). Deposition was mainly restricted to the 

superficial cortical layers in the entorhinal cortex but restricted to deeper layers in the ACC and 

superior frontal cortex when present. 
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Table 3.3: ALS pathology 

Stain Frontal Cingulate Hippocampus Dentate Entorhinal Amygdala BG SN 
Neuronal         
pThr175 ± (1/5) ± (1/4) ± (1/5) ± (1/5) ± (2/4) ++ (1/2) -(0/5) - 

(0/5) 
PHF ± (1/5) ± (1/4) ± (3/5) ± (2/5) ±-++ (5/5) +++ (1/1) ± 

(1/4) 
± 
(3/4) 

pSer208,210 - (0/5) ++ (1/4) ± (1/5) - (0/4) ± (1/2) ++ (1/2) - 
(0/5) 

- 
(0/5) 

pThr217 + (1/5) ± (1/4) ± (1/5) - (0/4) ±-++ (3/4) ++ (1/2) ± 
(1/4) 

± 
(2/5) 

Glial         
pThr175 ++ (1/5) - (0/5) - (0/4) - (0/5) - (0/2) ± (1/2) + 

(1/5) 
- 
(0/5) 

PHF ± (1/5) ± (1/4) ± (1/5) - (0/5) + (1/5) ++ (1/1) - 
(0/4) 

- 
(0/4) 

pSer208,210 - (0/5) - (0/4) - (0/5) - (0/4) ± (1/2) ++ (1/2) ++ 
(2/5) 

- 
(0/5) 

pThr217 +++ 
(1/5) 

+++ (1/4) + (1/5) - (0/4) +++ (1/4) ++ (1/2) ++ 
(2/4) 

- 
(0/5) 

Neuritic         
pThr175 - (0/5) - (0/5) ± (1/4) - (0/4) ± (2/5) ++ (1/2) - 

(0/5) 
± 
(1/5) 

PHF ± (2/5) ± (1/4) ± (3/5) - (0/5) +-++ (5/5) ++ (1/1) ± 
(1/4) 

± 
(3/4) 

pSer208,210 - (0/5) ± (1/4) - (0/5) - (0/4) ± (1/2) - (0/2) + 
(1/5) 

+ 
(2/5) 

pThr217 ± (1/5) - (0/4) ± (1/5) - (0/4) ±-++ (3/4) ± (1/2) +-++ 
(2/4) 

+-++ 
(3/5) 
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Figure 3.1: Representative pThr175 tau pathology in each neurodegenerative disease. A) AD 

Frontal cortex, B) ALS amygdala, C) ALSci amygdala, D) ALSci hippocampus neuritic plaque, 

E) CBD entorhinal cortex, F) DLBD amygdala, G) mDLBD entorhinal cortex, H) FTLD 

putamen, I) MSA amygdala, J) PD amygdala, K) Pick’s entorhinal cortex, L) VD anterior 

cingulate cortex. Nuclear fast red or hematoxylin counterstain used. Original images taken at 

100x. Scale bar= 20 µm. 
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ALSci: Tau protein pathology (Figure 3.1, supplemental figures 3.1, 3.2, 3.3) in the form of 

tangles, skein-like inclusions, and punctate staining was observed to a greater extent in ALSci 

than ALS, especially in the ACC and superior frontal cortex. The load of pathology was 

increased in amount and distribution and the case positive ratio was higher than ALS in all brain 

regions studied (Table 3.4). As observed in ALS, pathological tau protein neuronal inclusions 

were observed predominantly in the superficial layers of the entorhinal cortex and within deeper 

cortical layers in the ACC and superior frontal cortex. However superficial layer involvement 

was noted in both the ACC and superior frontal cortex in ALSci, indicating a greater distribution 

across cortical layers in ACC and frontal cortex, further differentiating ALSci from ALS. Of 

note, Thr175 tau and PHF tau identified pathology to different extents in different brain regions. 

Notably, pThr175 tau and pThr217 tau identified a higher case positive ratio than PHF in the 

superior frontal cortex. 
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Supplemental Figure 3.1: Representative PHF tau pathology in each neurodegenerative disease. 
A) AD hippocampus, B) ALS amygdala, C) ALSci superior frontal cortex, D) ALSci superior 
frontal cortex astrocytic tau E) CBD entorhinal cortex, F) DLBD amygdala, G) mDLBD 
entorhinal cortex, H) FTLD entorhinal cortex, I) MSA amygdala, J) PD entorhinal cortex, K) 
Pick’s amygdala, L) VD anterior cingulate cortex. Nuclear fast red or hematoxylin counterstain 
used. Original images taken at 100x. Scale bar= 20 µm. 
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 Supplemental Figure 3.2: Representative pSer208,210 tau pathology in each neurodegenerative 
disease. A) AD substantia nigra, B) ALS amygdala, C) ALSci entorhinal cortax, D) ALSci ACC 
neuritic plaque, E) CBD entorhinal cortex, F) DLBD entorhinal cortex, G) mDLBD amygdala, 
H) FTLD superior frontal cortex, I) MSA amygdala, J) PD entorhinal cortex, K) Pick’s 
entorhinal cortex, L) VD superior frontal cortex. Nuclear fast red or hematoxylin counterstain 
used. Original images taken at 100x. Scale bar= 20 µm. 
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 Supplemental Figure 3.3: Representative pThr217 tau pathology in each neurodegenerative 
disease. A) AD anterior cingulate cortex, B) ALS entorhinal cortex, C) ALSci hippocampus, D) 
ALSci superior frontal cortex astrocytic plaque, E) CBD entorhinal cortex, F) DLBD 
hippocampus, G) mDLBD amygdala, H) FTLD amygdala, I) MSA amygdala, J) PD entorhinal 
cortex, K) Pick’s entorhinal cortex, L) VD entorhinal cortex. Nuclear fast red or hematoxylin 
counterstain used. Original images taken at 100x. Scale bar= 20 µm. 
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Table 3.4: ALSci pathology 

Stain Frontal Cingulate Hippocampus Dentate Entorhinal Amygdala BG SN 
Neuronal         
pThr175 ±  

(4/5) 
±  

(2/5) 
±  

(5/5) 
+  

( 1/5) 
+  

(4/4) 
+ 

 (1/1) 
- 

(0/5) 
-  

(0/3) 
PHF +  

(2/4) 
±  

(3/3) 
±-+  
(4/4) 

±-+ 
(2/4) 

±-++  
(4/4) 

±-++ (2/2) -  
(0/5) 

± 
(2/2) 

pSer208,210 ±  
(2/5) 

±  
(3/5) 

±-++ 
 (4/5) 

±  
(1/5) 

±-++ 
 (3/4) 

+  
(1/1) 

-  
(0/5) 

-  
(0/3) 

pThr217 ±  
(5/5) 

±-+  
(3/5) 

±-++  
(5/5) 

±-++ 
(3/5) 

±-++  
(5/5) 

+  
(1/1) 

-  
(0/5) 

±-+ 
(2/2) 

Glial         
pThr175 ±-++ 

(2/5) 
±-++ 
(2/5) 

-  
(0/5) 

-  
(0/5) 

±  
(1/4) 

-  
(0/1) 

±-+ 
(2/5) 

-  
(0/3) 

PHF ±-++ 
(4/4) 

±-++ 
(2/3) 

-  
(0/4) 

-  
(0/4) 

-  
(0/4) 

+ 
 (1/2) 

± 
(3/5) 

- 
(0/2) 

pSer208,210 ++ 
(4/5) 

++  
(2/5) 

- 
 (0/5) 

- 
 (0/5) 

±  
(1/4) 

 
- (0/1) 

±-+ 
(4/5) 

± 
(1/3) 

pThr217 ++-+++ 
(5/5) 

+++  
(2/5) 

++  
(2/5) 

-  
(0/5) 

±  
(1/5) 

-  
(0/1) 

+-++ 
(5/5) 

-  
(0/2) 

Neuritic         
pThr175 ±-+ 

(3/5) 
±-+  
(2/5) 

±-+  
(3/5) 

±-++ 
(4/5) 

±-++  
(4/4) 

-  
(0/1) 

± 
(4/5) 

± 
(1/3) 

PHF ±-+ 
(2/4) 

±-+  
(3/3) 

±-+  
(3/4) 

±  
(3/4) 

±-++  
(4/4) 

±-++ (2/2) ± 
(2/5) 

± 
(2/2) 

pSer208,210 ±-+ 
(2/5) 

±  
(3/5) 

±  
(4/5) 

±  
(2/5) 

±-++  
(4/5) 

+  
(1/1) 

± 
(1/5) 

± 
(1/3) 

pThr217 ±-++ 
(5/5) 

±-++ 
(2/5) 

±-+ 
 (4/5) 

++  
(2/5) 

+-+++ 
(5/5) 

+  
(1/1) 

± 
(3/5) 

±-++ 
(2/2) 
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Tauopathies: Within the tauopathies and consistent with the literature, we observed tau protein 

neuronal pathology across multiple regions (Table 3.5). pThr175 tau protein was present in all 

disease states where tau protein pathology was prominent. In Alzheimer’s disease (AD), all tau 

antibodies showed robust neuronal pathology as neurofibrillary tangles and punctate cytoplasmic 

deposition in all brain regions studied. Across all cortical regions studied, neuronal pathology 

was present across all cortical layers but was most prominent in deeper layers (IV-VI). Amongst 

the tauopathies, the most prominent pThr175 tau protein immunostaining was observed in AD. 

This included more prominent expression of pThr175 tau protein than observed in ALSci. 
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Table 3.5: Tauopathies pathology 

Stain Frontal Cingulate Hippocampus Dentate Entorhinal Amygdala BG SN 
Neuronal         
pThr175 ±-++ 

(10/27) 
±-++ 

(10/25) 
±-+++ 
(20/26) 

±-++ 
(8/28) 

±-+++ 
(21/28) 

±-+++ 
(19/23) 

±-+ 
(10/29) 

± 
(3/23) 

PHF ±-++++ 
(13/27) 

±-+++ 
(16/24) 

±-++++ 
(28/29) 

±-++++ 
(18/29) 

±-++++ 
(28/29) 

±-++++ 
(21/21) 

±-++ 
(13/28) 

±-++ 
(7/23) 

pSer208,210 ±-+++ 
(12/27) 

±-+++ 
(12/25) 

±-+++ 
(25/29) 

±-++ 
(10/28) 

±-+++ 
(23/28) 

±-+++ 
(23/28) 

±-++ 
(9/28) 

±-+ 
(5/23) 

pThr217 ±-+++ 
(15/27) 

±-+++ 
(14/24) 

±-+++ 
(23/29) 

±-++ 
(12/29) 

±-+++ 
(24/29) 

±-+++ 
(19/21) 

±-+ 
(6/27) 

± 
(7/23) 

Glial         
pThr175 ±-+++ 

(6/27) 
±-++ 
(6/25) 

±-+ 
(4/29) 

± (1/28) ± (2/28) ±-++ (3/24) ±-++ 
(16/29) 

± 
(3/23) 

PHF ±-++++ 
(8/27) 

±-+++ 
(7/24) 

±-+ 
(5/29) 

-  
(0/29) 

±-+++ 
(8/29) 

±-+++ 
(12/21) 

±-++++ 
(11/28) 

-  
(0/23) 

pSer208,210 +-++ 
(2/28) 

±-+++ 
(3/25) 

++ 
(3/29) 

++ 
(1/28) 

±-++  
(3/27) 

±-+++ 
(3/22) 

±-++ 
(10/28) 

-  
(0/23) 

pThr217 ±-+++ 
(7/26) 

±-+++ 
(7/24) 

±-+++ 
(3/29) 

-  
(0/29) 

++-+++ 
(2/29) 

±-+++ 
(4/21) 

±-+++ 
(15/27) 

-  
(0/23) 

Neuritic         
pThr175 ±-++ 

(10/27) 
±-++ 
(9/25) 

±-+++ 
(20/28) 

±-++ 
(6/28) 

±-+++ 
(21/28) 

±-+++ 
(16/24) 

±-+ 
(12/28) 

±-++ 
(10/23) 

PHF ±-++++ 
(14/27) 

±-++++ 
(15/24) 

±-++++ 
(24/29) 

±-+ 
(11/29) 

±-++++ 
(28/29) 

±-++++ 
(17/21) 

±-+++ 
(16/28) 

±-
++++ 

(13/23) 
pSer208,210 ±-++++ 

(18/27) 
±-+++ 
(9/25) 

±-++ 
(18/29) 

±-+ 
(6/28) 

±-+++ 
(22/28) 

±-+++ 
(18/23) 

±-++ 
(11/28) 

±-++ 
(11/23) 

pThr217 ±-++++ 
(15/27) 

±-++++ 
(14/25) 

±-++ (21/29) ±-+ 
(11/29) 

±-+++ 
(24/29) 

±-++++ 
(18/23) 

±-+++ 
(11/27) 

±-++ 
(11/23) 
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As in AD, VD exhibited tau protein deposition as tangles and punctate cytoplasmic 

inclusions in all brain regions studied. This followed the same trend as AD with pathology being 

most prominent in deep cortical layers. In CBD, balloon neurons were observed and tau 

pathology was prominent in all brain regions as punctate inclusions and neurofibrillary tangles. 

Notably, PHF tau staining was more intense than pThr175 tau in all regions, both in case positive 

ratio and in semiquantitative pathological load. In both DLBD and mDLBD, a similar degree of 

tau pathology was observed in the form of cytoplasmic punctate deposition and neurofibrillary 

tangles. Pathology within the dentate gyrus, basal ganglia and substantia nigra was present to a 

much greater extent in mDLBD than DLBD. In FTLD, tau pathology was observed as punctate 

inclusions and tangles in all brain regions investigated. In general, pThr175 tau protein was less 

prominent than PHF tau protein, except in the frontal and cingulate cortex where it was more 

prominent on a case positive basis and the pathological load observed. In MSA, tau protein 

pathology in the form of tangles and punctate inclusions was present in all brain regions studied 

although frontal and ACC pathology was sparse. In Parkinson’s disease, tau protein pathology 

was observed in all brain regions except the substantia nigra. Pathological tau protein expression 

was equivalent across all antibodies. In Pick’s disease, all brain regions investigated exhibited 

tau protein pathology in the form of tangles, punctate inclusions and Pick bodies. Notably, PHF 

tau protein pathology was greater than the other antibodies including pThr175 tau. 

3.4.1.2 Neuritic tau  

ALS: No neuritic plaques were observed in ALS. Neuritic pathology in the form of dystrophic 

neurites was observed to a limited extent in all brain regions studied and with a pattern of 

distribution mimicking that described above for neuronal pathology. Basal ganglia neuritic 

pathology was observed to a larger extent in the putamen than the globus pallidus by all tau 
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protein antibodies but pThr175 tau. Neuritic tau protein pathology within the substantia nigra was 

immunoreactive against all antibodies employed in the analysis. 

ALSci: Neuritic tau protein pathology was observed predominantly as dystrophic neurites 

assuming a short curvilinear morphology. This was consistently observed in both cortical and 

subcortical tissues. Contrary to the superficial localization of frontal and ACC neuronal 

pathology, frontal neuritic pathology was observed mainly in deep layers as short curved 

neurites. Entorhinal neuritic pathology was observed mainly in the superficial layers in proximity 

to tau protein inclusion bearing neurons. Neuritic plaques were observed in the entorhinal cortex 

by all antibodies with the exception of the pThr175 tau antibody. Neuritic plaques within the 

amygdala were observed by PHF tau antibody labeling only. Neuritic plaques and tau protein 

positive neurites were observed in the hippocampus and were immunoreactive to all antibodies. 

Coiled bodies were observed throughout the basal ganglia. 

Tauopathies: Neuritic pathology was prominent across all the tauopathies and typically mirrored 

the presence of tau protein immunoreactive neuronal pathology. Neuritic plaques were observed 

in AD as small atypical plaques and typical plaques in deeper layers (IV/V) more frequently than 

in superficial layers (II/III). No antibody identified neuritic plaques in basal ganglia or substantia 

nigra. Like neuronal tau ptotein, all cortical neuritic pathology was most prominent in deeper 

layers (IV-VI). All antibodies recognized neuritic pathology, most commonly in deeper cortical 

layers near tau protein positive neurons as short and curved, or long, straight neurites. Neuritic 

pathology was also observed to a lesser extent in white matter in frontal, ACC, and entorhinal 

cortices. 



128 

 

 

 

Similar to AD, neuritic pathology in VD was present as tau protein positive neurites and 

neuritic plaques in all brain regions studied except the substantia nigra. Also similar to AD, 

neuritic pathology followed a tendency to be most prominent in regions of prominent neuronal 

tau protein pathology and in particular in the deeper cortical layers. In CBD, neuritic plaques 

were only observed in the ACC and substantia nigra, and then, only using the PHF tau antibody. 

Neuritic pathology, as dystrophic neurites, was present in all brain regions investigated and 

mirrored the distribution of neuronal pathology. This was most evident in the entorhinal cortices 

where dystrophic neurites were most evident in superficial cortical layers. In contrast, dystophic 

neurites were most prominent in deep subcortical regions of the superior frontal cortex and ACC.  

In DLBD, no frontal, ACC, dentate gyrus or basal ganglia neuritic pathology was 

observed. All other regions studied were positive for neuritic tau protein pathology, but no 

plaques were observed. Entorhinal neuritic pathology was most prominent in DLDB in layers 

II/III. In mDLBD, neuritic plaques were observed in all regions except for the substantia nigra. 

All regions studied exhibited neuritic pathology. In both FTLD and MSA, neuritic plaque 

pathology was not frequent and usually observed by PHF tau only. pThr175 tau protein neuritic 

pathology was not as prominent as that observed using other tau protein antibodies. However, 

neuritic tau protein pathology was observed in all brain regions studied as with neuronal 

pathology. In PD, neuritic plaques were not observed, but tau protein positive neurites were 

observed in a similar distribution to neuronal pathology in all brain regions studied. In Pick’s 

disease, neuritic pathology was identified mainly by PHF tau in all but the dentate gyrus. 
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3.4.1.3 Glial tau 

ALS: Glial tau protein pathology was observed in all brain regions except the dentate gyrus, and 

substantia nigra (Table 3.3). Where present, glial pathology presented as astrocytic tangles and 

astrocytic plaques as previously described(Yang and Strong, 2012). The distribution was rare and 

followed that of neuronal and neuritic tau protein as described above and was similar in case 

positive ratio, although higher in semiquantitative load than neuronal and neuritic pathology in a 

single case.  

ALSci: Glial pathology was present in ALSci (Figure 3.1, Supplemental Figures 3.1-3.3) to a 

similar degree as in ALS, but was more frequent in terms of regional distribution, case positive 

rate, and pathological load (Table 3.4). Frontal and ACC glial pathology was increased in both 

case positive incidence and pathological load. 

Tauopathies: In the tauopathies, the extent of glial pathology was highly dependant on the 

underlying disease (Table 3.5). In AD, glial pathology was rare, and when present was usually 

observed only in the amygdala and basal ganglia. No glial pathology was observed in VD. 

Consistent with the literature, CBD contained astrocytic plaques throughout the grey and white 

matter across multiple brain regions. Additional astrocytic staining and tau protein positive 

microglia were observed. Glial pathology in CBD was identified to a far greater extent by PHF 

than the pThr175 tau antibody. In DLBD, minimal glial pathology was observed in frontal cortex 

and basal ganglia, and when present, only as punctate astrocytic inclusions. In contrast to the 

limited glial pathology observed in DLBD, mDLBD showed much more frequent glial pathology 

across multiple brain regions, pathology that was less evident with the pThr175 tau antibody. In 

FTLD, glial pathology was observed in all brain regions except the dentate gyrus and substantia 
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nigra. Notable in this disease, pThr175 tau identified glial pathology to a greater extent than PHF 

tau by both case positive incidence and increased load. In MSA, glial pathology was largely 

absent, being present only in the entorhinal cortex, amygdala and basal ganglia by multiple 

antibodies. Interestingly, the basal ganglia contained astrocytic inclusions in the putamen 

identified by all antibodies whereas in the globus pallidus they were only identified by pThr175 

tau. In Parkinson’s disease, glial pathology was present in all regions except the dentate gyrus 

and substantia nigra. Notably, the PHF tau antibody identified astrocytic plaques in the frontal 

cortex while tufted astrocytes were observed in the amygdala. In Pick’s disease, glial pathology 

was observed in multiple brain regions using the PHF antibody mainly, although in the 

entorhinal cortex pThr175 tau was also positive for glial pathology. 

3.4.2 pThr231 tau and T22 staining: 

We examined the presence of oligomeric tau protein (recognized by the T22 antibody) and 

pathological tau protein phosphorylation at Thr231 using sections from the hippocampus of a 

single case each of AD, ALSci, FTD, MSA, DLBD, and mDLB.  Cases were selected on the 

basis of the pathology described earlier. In each case, tau protein neuronal inclusions were 

recognized by both antibodies (Figure 3.2, Figure 3.3). Only DLBD showed notably reduced T22 

pathology which, when present, was in the dystrophic neurites (Figure 3.3). Glial pathology was 

not observed with either antibody, regardless of diagnosis. 

AD neuronal pathology was observed as fibrillar and punctate inclusions by pThr231 tau 

antibody but only as fibrillar/ tangles with T22. Neuritic pathology in the form of short and long 

torsional and dystrophic neurites was observed. pThr231 tau, but not T22, recognized plaques 

consisting of dystrophic neurites. 
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Similar to AD, ALSci neuronal pathology was observed by pThr231 tau and T22 as 

fibrillar and punctate staining. However additional solitary cytoplasmic inclusions were observed 

in neurons with the T22 antibody. Neuritic pathology was observed using both the pThr231 tau 

and T22 antibodies. Neuritic plaques were identified by both the pThr231 tau and T22 antibodies.  
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Figure 3.2: Representative hippocampal pThr231 tau pathology. A) AD, B) ALSci, C) DLBD, D) 
mDLBD, E) FTLD, F) MSA. Counterstained with hematoxylin. Original images taken at 100x. 
Scale bar= 20 µm. 
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Figure 3.3: Representative hippocampal tau oligomer (T22) pathology. A) AD, B) ALSci, C) 
DLBD, D) mDLBD E) FTLD F) MSA. Counterstained with hematoxylin. Original images taken 
at 100x. Scale bar= 20 µm. 
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FTLD pathology was distinct from AD and ALSci in that pThr231 tau protein neuronal 

pathology was observed as a dense nuclear ring staining around abnormally folded nuclei, and 

solitary cytosolic inclusions on homogenously stained cytosol. While T22 neuronal cytoplasmic 

pathology was observed, neuritic pathology was observed as frequent short dystrophic neurites 

by both antibodies. No neuritic plaques were observed. 

MSA pathology resembled AD and ALSci. Neuronal pathology was observed as tangles 

and punctate inclusions by both the pThr231 tau and T22 antibodies. In addition, pThr231 tau 

antibody diffuse cytoplasmic immunostaining was observed. Neuritic pathology was observed by 

both antibodies, although T22 immunoreactive neurites demonstrated a punctate staining pattern.  

DLBD tau protein pathology was observed only faintly by pThr231 tau as punctate 

cytosolic deposition. While neuritic pathology was observed using the pThr231 tau antibody, no 

pathology was observed by T22 other than a few sporadic neurites. Conversely, mDLBD 

pathology was observed by both pThr231 tau and T22. pThr231 tau protein pathology was 

observed as tangles and punctate staining accompanied by dystrophic neurites and other neuritic 

pathology. No neuritic plaques were observed. T22 pathology however was observed as punctate 

cytosolic staining and dystrophic neurites. 

Having confirmed that both T22 and pThr231 tau protein immunoreactive pathology was 

present, although as described to varying degrees, we next sought to confirm whether pThr175 tau 

protein and pThr231 tau protein co-localized using confocal imaging (Figure 3.4). Co-localization 

within neuronal tau protein inclusions was observed between pThr175 tau protein and pThr231 tau 

protein in each disease state except for DLBD. Co-localization was also observed in neuritic 

plaques in AD. No pThr175 tau protein immunoreactivity was observed in the absence of pThr231.   
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Figure 3.4: Co-localization of pThr175 and pThr231 tau in hippocampal neuronal inclusions. AD: 
Alzheimer’s disease. ALSci: amyotrophic lateral sclerosis with cognitive impairment. FTLD: 
frontotemporal lobar dementia. mDLBD: mixed diffuse dementia with Lewy bodies. MSA: 
Multiple system atrophy. Co-localization stains were performed in one case per disease. Scale 
bar represents 5 µm.
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3.4.3 Hippocampal pThr175, pThr231 and oligomeric tau deposition as a function of aging:  

Consistent with our previous report, we observed an increase in tau protein immunoreactive 

pathology beginning in the 7th decade of life (Yang et al., 2005). In contrast, no immunoreactive 

inclusions were observed to either the pThr175 tau protein or oligomeric tau protein (T22 

immunoreactivity) in the 6th decade (Figure 3.5). pThr231 tau protein immunoreactivity was 

observed in each of the 6th, 7th and 8th decades within the hippocampus. In distinction to the 

pathological tau protein deposition observed in both ALSci and the tauopathies, neuronal Thr231 

tau protein immunoreactivity was diffuse and localized to otherwise healthy appearing neurons 

and axonal processes. In the 7th decade, T22 immunoreactive neuronal cytoplasmic inclusions 

were observed minimally and when present were within the same regions in which we observed 

punctate pThr175 immunoreactivity. All but one case demonstrated pThr231 tau protein 

immunoreactivity, and importantly this case was negative for all three tau epitopes. In all cases, 

neuritic pathology was minimal or nonexistent, while neuronal positivity was mainly punctate 

tau protein expression. 

In the 8th decade, we observed a marked increase in pThr175 tau, pThr231 tau and T22 

immunoreactivity. In this decade, each antibody revealed tau protein immunoreactive punctate 

staining of neurons, neurofibrillary tangles, dystrophic neurites, and neuritic plaques. Across all 

three decades, T22 pathology was present in all cases and in regions where pThr231 tau protein 

and pThr175 tau protein was present, and was only positive in cases with prominent pThr175 tau 

protein positive cells and pathology. 
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Figure 3.5: Age dependent tau pathology increases in the hippocampus of controls and is 
associated with pThr175 tau pathology in the 8th decade of life. Large images taken in the CA2 
region of the hippocampus at 10x magnification, inset is same region at 40x magnification. 
Images are representative of 4 cases per age group. Scale bar large image= 100 µm, inset= 50 
µm.  
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3.5 Discussion: 

In undertaking these studies, we were specifically interested in determining whether the 

pathogenic phospho-tau protein species recognized by antibodies against pThr175 tau protein and 

pThr231 tau protein as well as oligomeric tau ptotein (T22) were expressed across a broad range 

of tauopathies. We were also interested in determining whether these pathological tau 

proteinspecies were co-localized in ALS and ALSci. It is known that the phosphorylation of tau 

protein at Thr231 is of both physiological and pathological significance in mediating the 

dissociation of tau protein from microtubules (Lin et al., 2007; Schwalbe et al., 2015; Sengupta 

et al., 1998). Thr231 is phosphorylated by activated GSK3β physiologically and in pathological 

states (Alonso et al., 2010; Cho and Johnson, 2004; Luna-Munoz et al., 2005; Sahara et al., 2008; 

Sengupta et al., 1998). We have previously shown that pThr175 tau protein induces GSK3β 

phosphorylation and that this in turn leads to Thr231 tau protein phosphorylation resulting in tau 

protein fibril formation, and cell death in vitro (Moszczynski et al., 2015).  

Although the number of cases studied here is limited, the intent was not to undertake a 

detailed topographic analysis of tau protein deposition across all tauopathies, but rather to 

determine whether the proposed pathway of pThr175 tau protein mediated induction of pThr231 

tau protein with its attendant pathological tau fibril formation (as recognized by T22) was 

evident.  It is noteworthy therefore that we observed that in each tauopathy studied, pThr175 tau, 

pThr231 tau and T22 immunoreactivity co-localized to the same inclusion-containing neuronal 

populations.  In each case, neuronal pThr175 tau protein co-localized with pThr231 tau protein. 

This, paired with prior identification of pThr175 tau protein in AD brain tissue but not controls 

(Hanger et al., 2007) and the lack of identified pThr175 in fetal tau protein (Kenessey and Yen, 

1993; Watanabe et al., 1993) suggests that pThr175 is a key point in pathological tau protein 
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metabolism, as it is not a physiologically utilized site involved in the regulation of tau protein 

function during development or microtubule reorganization. This suggests that the downstream 

events triggered by pThr175 tau protein, including toxic oligomer formation, are common to each 

of these diseases. 

To further assess the pathogenicity of pThr175 and pThr231, we investigated each epitope 

in the hippocampus of control cases across three decades of life where tau protein pathology has 

been shown to increase with age (Yang et al., 2005). We observed no pThr175 tau protein 

pathology in the 6th decade with minimal immunoreactive neuronal inclusions in the 7th decade.  

pThr175 tau immunoreactivity was most prominent in the 8th decade. In each case in which we 

observed pThr175 tau immunostaining, we also observed T22 immunoreactivity. Similarly, we 

never observed T22 immunoreactivity in the absence of either pThr175 tau protein or pThr231 tau 

protein immunoreactivity. In contrast, pThr231 tau protein immunoreactivity was frequently 

observed in the absence of either pThr175 tau protein or T22 staining in younger individuals and 

when present, was within healthy appearing neurons and axonal processes. pThr175 and T22 did 

not show pathology in hippocampal regions spared from pThr231 pathology, and T22 was only 

positive in cases showing prominent pThr175 pathology. 

Glial pathology was recognized to a greater degree by pThr217 tau and PHF tau than by 

the pThr175 tau antibody, suggesting that different pathological processes are at play in these 

cells. This is supported by the lack of identifiable glial pathology by pThr231 tau and T22. This 

paired with the low frequency of pThr175 tau protein glial pathology further strengthens the 

correlation between pThr175 and pThr231 in the induction of neuronal pathology and provides 

evidence that this pair of phosphorylation sites may be exerting specific neuronal toxicity in the 

disease process across multiple tauopathies. 
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Although limbic regions universally presented tau protein pathology, frontal and ACC tau 

protein pathology was present mainly in AD, VD, ALSci, FTLD, mDLBD and MSA. This paired 

with the deeper layer pathology in this region may indicate that tau protein pathology did not 

originate here but instead propagated from other regions. If tau originates in limbic structures, 

propagating along the Papez circuit, it is possible that it would arrive in ACC through thalamic 

projections to layer IV and V which could act as a hub for propagation to other brain regions 

such as frontal cortex through this well connected region. Regardless of the induction cause or 

place, tau protein toxicity is undeniable once initiated (Gomez-Ramos et al., 2006; Ward et al., 

2012), and must be considered when attempting to understand the underlying biology of many 

neurodegenerative diseases. This hypothesis also implies that disease entities such as primary 

age-related tauopathies (PART) (Crary et al., 2014) may be in fact not age-related, but neuronal 

stress related, as increasing age would indicate longer time periods for normal mechanical stress 

on neurons to become pathological through stochastic processes (Kagias et al., 2012). Therefore, 

tau protein deposition should not be considered a simple function of normal ageing, but ageing 

should be considered a risk factor for tauopathy among a plethora of neuronal stresses. Of note 

as well is the frontal involvement in ALSci, which can be concluded is not likely a result of 

PART, which spares the neocortex by definition (Crary et al., 2014; Yang et al., 2005). We 

cannot conclude, however if the layer distribution of tau pathology resembles PART, as this was 

not described in the consensus report. 

3.6 Conclusions: 

These findings implicate a toxic axis of phosphorylation events beginning with Thr175 

phosphorylation, dependent on further phosphorylation at Thr231, which appears to be neuron 

specific and which may be common to the tauopathies. It may therefore be a contributor to 
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neuronal death in these diseases, and may be a point of intervention capable of slowing disease 

progression resulting from tau protein toxicity. 
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4.1 Abstract:  

Chronic traumatic encephalopathy (CTE) and chronic traumatic encephalopathy with 

amyotrophic lateral sclerosis (CTE-ALS) are neurodegenerative diseases associated with 

traumatic brain injury (TBI) characterized by pathological microtubule associated protein tau 

(tau protein) deposition. Common features of many tauopathies include: the pathological 

phosphorylation of tau protein at Thr175 (pThr175 tau protein), GSK3β activation, the induction of 

tau protein phosphorylation at Thr231 (pThr231 tau protein) and pathological tau protein 

oligomerization. To investigate whether CTE and CTE-ALS share these features, we 

characterized pGSK3β, pThr175 tau protein and pThr231 tau protein expression in human cases of 

CTE and CTE-ALS. To determine if GSK3β activation and pathological tau protein 

phosphorylation were a consequence of traumatic brain injury we analyzed these markers in a rat 

model of TBI. Tau protein isoform expression was assayed by western blot in 6 stage III CTE 

cases. We also used immunohistochemistry to analyze 5 cases each of CTE, CTE-ALS, and 5 

controls for the expression of pGSK3β, pThr175 tau protein, pThr231 tau protein and oligomerized 

tau protein (T22) within spinal cord tissues and hippocampus. Using a rat model of moderate 

TBI, we assessed tau neuronal pathology and pGSK3β expression at 3 months post-injury. Both 

CTE and CTE-ALS are characterized by the presence of all 6 tau protein isoforms in both 

soluble and insoluble tau protein isolates. pGSK3β, pThr175 tau protein, pThr231 tau protein and 

oligomerized tau protein expression was observed in hippocampal neurons and in spinal cord. 

We also observed tau neuronal pathology (fibrillar inclusions and axonal damage) and increased 

levels of pThr175 tau and activated GSK3β in moderate TBI rats.  Pathological phosphorylation 

of tau at Thr175 and Thr231, and activation of GSK3β are characteristic features of the tauopathy 

of CTE and CTE-ALS, a feature that can be replicated in an animal model of moderate TBI. 
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4.2 Introduction: 

Chronic traumatic encephalopathy (CTE) and chronic traumatic encephalomyelopathy 

(CTE-ALS) are fatal neurodegenerative diseases that are closely associated with traumatic brain 

injury (TBI) (McKee et al., 2009). While typically associated with elite athletes, participants in 

recreational sport are experiencing increased rates of traumatic brain injury and the majority of 

TBI occurs as a result of non-sport related accidents, meaning the impact of traumatic brain 

injury are more widespread than just accidents and elite athletes (Coronado et al., 2015; Langlois 

et al., 2006) . Additionally, there is an increasingly evident relationship between TBI and 

neurodegenerative disease processes such as Alzheimer’s disease (AD) Parkinson’s disease (PD) 

and amyotrophic lateral sclerosis (ALS) (Bazarian et al., 2009; Chen et al., 2007). Therefore, an 

understanding of the molecular changes and biochemistry associated with the neuropathology of 

protein aggregation and neuronal death in CTE and CTE-ALS may lead to a better understanding 

of pathophysiology of these disorders. 

Both CTE and CTE-ALS share the pathological hallmark of neuronal and glial 

intracellular aggregates of microtubule associated protein tau (tau protein), placing these 

disorders amongst the tauopathies and thus potentially sharing a pathophysiology with AD, PD 

and ALS with cognitive impairment (ALSci) (McKee et al., 2009; Moszczynski et al., 2017; 

Tartaglia et al., 2014).  Pathological tau protein phosphorylation at threonine 231 (pThr231 tau 

protein) is considered to be a critical event leading to reduced interaction between microtubules 

and tau protein. The increased level of unbound tau protein promotes the formation of soluble 

pathogenic tau protein oligomers that further aggregate into insoluble pathological tau protein 

fibrils (Lasagna-Reeves et al., 2012; Lin et al., 2007; Nakamura et al., 2013; Ward et al., 2012). 

To date, there have been no detailed studies of the phosphorylation state of tau protein in either 
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CTE or CTE-ALS and thus it is unknown if the tauopathy of these disorders is homologous to 

that of related tauopathies. 

We have recently described a sequence of phosphorylation events leading to tau protein 

toxicity in ALSci whereby tau protein phosphorylation at Thr175 (pThr175 tau protein), that alone 

is insufficient to induce fibril formation, promotes further phosphorylation of tau protein at 

Thr231 by activated GSK3β (Moszczynski et al., 2015). We subsequently extended this 

observation to a broad range of tauopathies (Moszczynski et al., 2017). In this sequence, pThr231 

tau protein is the critical mediator of toxicity downstream of pThr175 tau. Importantly, pThr175 

has only been observed in pathological states thus far while phosphorylation of tau protein at 

Thr231 appears to be a crucial physiological regulator of tau protein function (Lin et al., 2007; 

Schwalbe et al., 2015). Given the widespread applicability of this sequence in tauopathies, we 

have examined post mortem archival tissues from CTE and CTE-ALS patients to determine 

whether tau protein is pathologically phosphorylated at Thr175 and Thr 231 and whether this is 

associated with increased levels of the active isoform of GSK3β (pGSK3β) and tau protein 

oligomerization. We have also examined whether this process is also triggered by moderate TBI 

in a rodent.  

4.3 Methods: 

4.3.1 CTE and CTE-ALS studies: 

All studies were conducted in accordance with the institutional ethics board standards at 

University Hospital (London, ON, Canada) and Boston University (Boston MA, USA). 

Microscope slides with 6 µm thick hippocampal and spinal cord sections from fifteen cases (5 

CTE, 5 CTE-ALS, and 5 Control; cases MSL1-MSL15) were used for immunohistochemical 
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studies. An additional 6 cases (cases 1-6) were obtained as frozen tissue from anterior cingulate 

and temporal pole. All tissue and slides were obtained from the Boston University CTE brain 

bank and were diagnosed as stage III CTE (McKee et al., 2013). Demographic data is 

summarized in supplemental table 4.1. 
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Supplemental Table 4.1: Case demographics 

Case Slide/ 
Tissue 

CTE/CTE-ALS/Ctrl Sex Decade 

1 Tissue CTE M 25 
2 Tissue CTE M 58 
3 Tissue CTE M 46 
4 Tissue CTE M  71 
5 Tissue CTE M 84 
6 Tissue CTE M 69 
7 Slides CTE-ALS M 49 
8 Slides CTE-ALS M 31 
9 Slides CTE-ALS M 41 
10 Slides CTE-ALS M 67 
11 Slides CTE-ALS M 62 
12 Slides CTE M 82 
13 Slides CTE M 73 
14 Slides CTE M 56 
15 Slides CTE M 75 
17 Slides CTE M 50 
18 Slides Ctrl M 83 
19 Slides Ctrl M 61 
20 Slides Ctrl M 61 
21 Slides Ctrl M 55 
22 Slides Ctrl M 81 
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4.3.1.1 Tau fractionation and Western blot:  

Tau protein was isolated from the anterior cingulate gyrus and the temporal pole of 6 

stage III CTE cases and a single Alzheimer’s case as a control for the tau fractionation. Tau 

protein isolation, fractionation, and dephosphorylation was conducted as previously reported 

(Hanger et al., 1998; Strong et al., 2006). Tissue was homogenized in 1 ml of MES buffer (pH 

6.5) and centrifuged at 27,000 x g for 60 minutes at 4˚C. The supernatant was then removed and 

centrifuged at 95,000 x g for 60 minutes at 4˚C. The supernatant containing the soluble tau 

protein fraction was saved and stored at -80˚C. The pellet containing the insoluble tau protein 

fraction was solubilized in 150 µl 4 M guanidine HCl for 1 hour at room temperature with a brief 

sonication and then dialyzed against 50 mM Tris-HCl, (pH 7.5, 1 mg/ml PMSF) overnight at 

4oC. The following day the dialysate was centrifuged at 15,000 x g for 60 minutes at 4oC. The 

supernatant containing the insoluble tau protein was boiled at 100oC for 10 minutes and then 

centrifuged at 15,000 x g for 30 minutes at 4oC. Supernatant volume was then brought to 

approximately 3.0 ml in 50 mM Tris-HCl, 1.35 g ammonium sulphate added, and then cooled on 

ice for 15 minutes. Precipitated proteins were collected after centrifugation at 15,000 x g for 30 

minutes at 4˚C and resuspended in 150 µl 50 mM Tris-HCl (pH 7.5). The suspension was 

dialyzed against 50 mM Tris-HCl (pH 7.5, 1 mg/ml PMSF) overnight at 4oC and the dialysate 

clarified by centrifugation at 15,000 x g for 30 minutes at 4oC. 

Dephosphorylation of tau protein was conducted on aliquots of the soluble or insoluble 

tau protein in 50 mM Tris-HCl (pH 7.5) were incubated with lambda alkaline phosphatase (20 

U/µl, Sigma, Oakville ON, Canada) for 6 hours at 30oC (Strong et al., 2006). Reactions were 

stopped by the addition of 2x electrophoresis buffer (100 mM Tris-HCl, 4% SDS, 0.02% 

bromophenol blue, 20% glycerol, 200 mM DTT). 
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After fractionation and dephosphorylation with lambda alkaline phosphatase, equal 

aliquots of supernatant from dephosphorylated and non-dephosphorylated samples were run on 

7.5% SDS-PAGE gels and electrophoretically transferred to a nitrocellulose membrane. Gels 

were probed for total tau protein with rabbit anti tau T14/T46 antibodies (1:1000 and 1:3000 

titers, respectively; Thermo-Fischer, Burlington, Canada). After blocking with 10% bovine 

serum albumin (BSA) in tris-buffered saline with 0.2% tween (TBS-T) for 1 hour at room 

temperature, nitrocellulose membranes were probed with primary antibody overnight at 4˚C. 

Blots were then washed in TBS-T before probing with horseradish peroxidase tagged secondary 

antibody (Goat anti-Mouse IgG (1:5000 titer; Bio-Rad, Herculese, USA). Blots were visualized 

using enhanced chemiluminescence (Perkin Elmer, Waltham, USA). 

 

4.3.1.2 Immunohistochemistry (IHC):  

Six µm paraffin-embedded sections from the hippocampus and spinal cord were analyzed 

for all cases.  Immunohistochemistry was conducted using a series of antibodies that recognized 

pThr175 tau protein (1:1000 titer, antibody generated and designed in house, now commercially 

available through 21st Century, MA, USA), pThr231 tau (1:1000 titer, Thermo Fischer) and 

oligomeric tau protein (1:500 titer, T22; EMD Millipore CA, USA) and activated GSK3β (1:50 

titer, pTyr216; BD Biosciences, Mississauga, Canada). Antigen retrieval (10 mM sodium citrate, 

0.05% Tween 20 pH 6.0) was conducted for all antibodies using a pressure cooker (2100 

Retriever; Aptum Biologics, UK, Supplemental table 4.2). Endogenous peroxidase was quenched 

with 3% hydrogen peroxide (VWR, Mississauga, Canada). Primary antibody incubation was 

performed at 4˚C overnight in blocking buffer (5% BSA, 0.3% Triton-X 100 in 1 X PBS). After 

washing, secondary antibody (1:200 biotinylated IgG) incubation was performed for 1 hour at 
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room temperature in blocking buffer. Antigen:antibody complex was visualized with horseradish 

peroxidase according to the manufacturer’s instructions (Vectastain ABC kit, Vector 

Laboratories CA, USA), followed by substrate development with DAB. Counterstaining was 

performed using Harris haematoxylin.  
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Supplemental Table 4.2: Antibodies used 

Antibody Clone Titer Epitope Utility Company 
Tau pThr175 Rabbit, polyclonal 1:1000 pThr175 WB, IHC 21st Century 
Tau pThr231 Rabbit, polyclonal 1:1000 pThr231 IHC Thermo- Fischer 
T22 Rabbit, polyclonal 1:500 Tau 

oligomer 
IHC EMD Millipore 

T14 Mouse, monoclonal 1:3000 Tau aa’s 
141-178 

WB, IP Thermo-Fisher 

T46 Mouse, monoclonal 1:1000 Tau aa’s 
404-431 

WB Thermo-Fisher 

Total tau Rabbit polyclonal 1:5000 Tau aa’s 
384-397 

WB Abcam 

GSK3β Mouse, monoclonal 1:10,000 GSK3β 
aa’s 1-160 

WB BD Biosciences 

GSK3β pTyr216 Mouse, monoclonal 1:50 (IHC) 
1:10,000 (WB) 

pTyr216 WB, IHC BD Biosciences 

Alexafluor 488 Goat anti-rabbit 1:200 Secondary IHC Life 
Technologies 

Alexafluor 633 Goat anti-mouse 1:200 Secondary IHC Life 
Technologies 

WB: western blot, IHC: immunohistochemistry, IP: immunoprecipitation 
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The extent of pathology was described semi-quantitatively as previously reported using 

visualization with a 20x objective under light microscopy (Olympus BX45) (Moszczynski et al., 

2017; Yang and Strong, 2012). The semi-quantitative scale was applied as follows: ‘-’ = none; 

‘±’ = less than 5; ‘+’ = less than 10; ‘++’ = more than 20 with scattered distribution; ‘+++’ = 

more than 20 but with locally dense distribution; ‘++++’ = more than 20 with a diffuse 

distribution. Additionally, the case positive ratio was defined for each antibody used as the 

number of cases showing any pathology (± or more) compared to the total number of cases 

stained. Spinal cord pathology was assessed by a binary scale due to the sparse nature of 

pathology where ‘+’ = pathology present and ‘-’ = pathology absent. 

4.3.1.3 Co-localizations and fluorescence staining:  

Double labeling was performed on sections from the hippocampus from one case per 

double label experiment. Tau protein was probed with pThr175 or oligomeric tau (T22) rabbit 

primary antibody overnight at 4˚C and Alexafluor goat anti-rabbit 488 nm secondary (1:200, 

Thermo Fischer) for 1 hour at room temperature. Rabbit anti-tau pThr231 antibody was then 

labeled using a Zenon primary antibody labeling kit with Alexafluor 555 nm dye (Thermo 

Fisher) and probed for 1 hour at room temperature. Slides were visualized within 24 hours of 

labeling by confocal imaging on a Zeiss LSM 510 Meta NLO multiphoton confocal microscope. 

For co-localizations with phospho-GSK3β (pGSK3β), staining was performed with mouse anti-

pTyr216 GSK3β antibody (1:50 titer, BD Biosciences) followed by secondary labeling with goat 

anti-mouse Alexafluor 633nm (Invitrogen). 
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4.3.2 In vivo studies 

All protocols for these experiments were approved by the University of Western Ontario 

Animal Care Committee in accordance with the policies established in the guide to Care and Use 

of Experimental Animals prepared by the Canadian Council on Animal Care. Twelve (12) adult 

female Sprague-Dawley rats were subjected to a left-sided 5 mm diameter craniotomy followed 

by a single moderate head trauma (3.5 m/s, 2 mm deep, with dwell time of 500 ms) using a 

cortical impactor (Precision systems model TBI 0310) (moderate TBI). After 3 months, all rats 

were euthanized by trans-cardiac perfusion with ice cold saline after intraperitoneal injection 

with a lethal dose of Euthanyl. Six (6) brains were drop-fixed in ice cold Bouin’s fixative 

(Thermo-Fisher) for IHC analysis while 6 were frozen on dry ice for neurochemical analysis. 

Bouin’s fixative was used to reduce artefactual tau pathology (Planel et al., 2004; Trojanowski et 

al., 1989). After 24 hours of fixation, tissue was embedded in paraffin.  

4.3.2.1 Western blots:  

Immunoblots were also performed using isolates from 6 moderate TBI rats and 4 age 

matched controls. Brain tissue was homogenized in RIPA buffer (1% NP40, 10% glycerol, 137 

mM NaCl, 2mM EDTA) containing protease inhibitors (cOmplete; Roche Diagnostics, 

Indianapolis, USA) and phosphatase inhibitors (Phosstop, Roche Diagnostics) using a 

Brinkmann Polytron PT 3000 (Kinetamica, Bohemia, NY, USA). Protein concentration was 

determined by modified Bradford assay (BioRad). 

  Immunoprecipitations (IP) were performed on 1 mg of brain lysate protein using mouse 

anti-total tau (T46) in order to isolate all tau protein isoforms from the rat brain homogenates. 

The entire IP yield was then run on a 10% SDS-PAGE gel and probed with rabbit anti pThr175 
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tau (1:1000). Gels were stripped (2% SDS, 1M Tris, 7 µl/ml β-mercaproethanol) for 30 min at 

50˚C and reprobed with rabbit anti-total tau (1:5000, Abcam ab24230). pGSK3β studies were 

performed on total brain lysate with mouse anti GSK3β pTyr216 (1:10,000) followed by 

reprobing with mouse anti total GSK3β (1:10,000, BD Biosciences). Blots were visualized by 

enhanced chemiluminescence (Perkin Elmer) (BioRad Chemidoc MP imaging system and 

acquired with ImageLab 5.2.1 software). Densitometry was conducted in imageJ. 

4.3.2.2 Immunohistochemistry:  

6 moderate TBI and 3 age-matched control rat brains were cut to 5-6 µm thickness and 

stained for pThr175 tau, pThr231 tau protein and pTyr216 GSK3β using the same antibodies and 

protocol used in human cases. GFAP staining was also conducted. 

4.3.2.3 Statistical analysis:  

Statistical analyses were conducted using SigmaPlot 10.0 software. A one way analysis 

of variance (ANOVA) was conducted following a Shapiro-Wilk test for normality. Post-hoc 

Tukey’s test was conducted and a p value of 0.05 or lower was considered significant.  

4.4 Results: 

4.4.1 Western blot of human CTE: 

 Insoluble tau protein isolated from CTE cases contained all 6 isoforms. This was evident 

in both phosphorylated and dephosphorylated samples. This was in contrast a control 

Alzheimer’s disease case in which the insoluble fraction consisted of mainly three isoforms 

constituting the paired helical filament motif as previously reported (Figure 4.1) (Strong et al., 

2006). 
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Figure 4.1: Representative Western blot of CTE-derived fractionated tau protein showing all 6 
tau protein isoforms in the insoluble fraction in distinction to the 3 isoform motif which was 
observed in Alzheimer’s disease. Images representative of 6 CTE cases and 1 Alzheimer’s case. 
(Probed with mouse anti-T14/T46 total tau antibody; blots shown are from the same case on 2 
separate blots). 
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4.4.2 Immunohistochemistry in CTE cases:  

We observed immunoreactivity to pThr175, pThr231 and T22 within the hippocampal 

formation in all cases of CTE and CTE-ALS (Table 4.1, Figure 4.2a).  This included tau protein 

immunoreactive tangles and dystrophic neurites throughout the CA1-4 regions and extending 

into the entorhinal cortex in all cases. Consistent with the limited pThr175 tau protein non-

neuronal pathology observed previously (Moszczynski et al., 2017), oligodendroglial tau protein 

immunoreactivity was observed to a limited extent in 5 cases only (Moszczynski et al., 2017). 

When present in control cases (3/5), tau protein immunoreactivity was observed only as faint 

immunoreactive punctate neuronal staining in the absence of tangles (Figure 4.2b). No neuritic 

pathology was observed in controls. 
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Table 4.1: Hippocampal and spinal cord pathology summary 

Antibody CTE CTE-ALS Ctrl 
Hippocampus semi quantitation (case positive ratios) 

pThr175 ++++ (5/5) +++-++++ (5/5) +-++ (3/5) 
pThr231 ++++ (5/5) +++-++++ (5/5) ±-+ (3/5) 
T22 ++++ (5/5) ±-+++ (5/5) ±-+ (3/5) 

Spinal cord pathology case positive ratios 
pThr175 3/5 3/5 0/5 
pThr231 4/5 4/5 2/5 
T22 4/5 1/5 0/5 
Semi-quantitative scale was applied under 20x objective for neuronal pathology as follows: ‘-’ = 
none; ‘±’ = less than 5 inclusions; ‘+’ = less than 10 inclusions; ‘++’ = more than 20 inclusions 
with scattered distribution; ‘+++’ = more than 20 inclusions but with locally dense distribution; 
‘++++’ = more than 20 inclusions with a diffuse distribution. 
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Figure 4.2 A 
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Figure 4.2 B 

 

Figure 4.2: Tau pathology in hippocampus and ventral horn in CTE and CTE-ALS. A) Low 
magnification (4 x objective) composites of whole hippocampus stained for pThr175 tau protein 
in CTE and control (inlay is CA2 region taken with 40 x objective, scale bar = 50 µm). DG = 
Dentate gyrus, CA1 = CA1 region, CA3 = CA3 region, sub = subiculum (composite image based 
on images taken with a 4x objective). Note the presence of prominent tau protein 
immunoreactivity in CA1 through CA4, extending into the entorhinal cortex.  B) Representative 
tau protein pathology observed in both the hippocampus (CTE case) and ventral horn of the 
spinal cord (CTE-ALS) when probed by rabbit anti-pThr175 tau, rabbit anti-pThr231 tau, or rabbit 
anti-T22 (tau oligomer) antibodies. Images taken with 100x objective (scale bar= 20 µm). 
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We also observed pathological tau protein deposition within the spinal cord regardless of 

the tau protein phosphoepitope studied (Figure 4.2b). The presence of tau protein pathology was 

independent of whether the underlying pathological diagnosis was CTE or CTE-ALS (Table 4.1) 

and consisted of sparsely distributed neurofibrillary tangles in motor neurons and dystrophic 

neurites. In all cases, pathological inclusions were minimal in number relative to a more diffuse 

immunoreactivity to pThr231 tau and pThr175 tau. No pThr175 tau staining was observed in control 

motor neurons. pThr231 tau protein was observed but only as diffuse perikaryal staining of motor 

neurons when present. Lipofuscin staining was also observed in some controls. 

We also noted a significant alteration in the immunoreactivity towards pGSK3β from a 

primarily nuclear to a diffusely cytosolic pattern of immunoreactivity (Supplemental Figure 4.1). 

This pattern was observed in both hippocampal CA2 and spinal cord motor neurons in all CTE 

cases while only being present in occasional isolated cells in controls. 
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Supplemental Figure 4.1: Activated GSK3β (pGSK3β) localization in hippocampus of CTE 
and control.  A redistribution of pGSK3β is observed in CTE and CTE-ALS cases in which 
immunoreactivity is prominent in both the nuclear and cytosolic compartments whereas in 
control cases, immunoreactivity is restricted to the nuclear compartment. Tissue stained with 
mouse anti-GSK3β pTyr216. Images taken from hippocampal CA4 region with 100x objective. 
Scale bar= 20 µm.  
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Double-immunolabeling of the hippocampus demonstrated that pThr175 tau and pThr231 

tau co-localize consistently such that pThr175 always co-occurred with pThr231 immunoreactivity. 

However, as observed previously (Moszczynski et al., 2017), pThr231 tau immunoreactivity could 

occur independently of pThr175 tau suggesting that a subset of pThr231 tau pathology is pThr175 

positive (Moszczynski et al., 2017). Additionally, we observed co-localization of pThr231 tau and 

T22, suggesting that oligomeric tau was a component of pThr231 tau pathology. Due to the nature 

of the antibodies, it was not possible to test for co-localization of pThr175 with T22 (oligomerized 

tau protein) as they were raised in the same species, not purified and not compatible with the 

primary antibody labeling system available to us. We can therefore only infer that pThr175 tau 

protein co-localizes with oligomeric tau protein as well. We did however observe pThr175 co-

localization with active GSK3β (Figure 4.3). 
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Figure 4.3: Co-localization of pThr175 tau and pThr231 tau was observed in hippocampal neurons 
of CTE (upper panels).  The presence of pathological tau protein oligomers (T22 
immunoreactivity) was co-localized to pThr231 tau protein immunoreactive neurons in CTE 
(middle panels).  Consistent with a role in activation of GSK3β in inducing pathological tau 

protein deposition, we observed the co-localization of pThr175tau protein with the active pGSK3β 
immunoreactivity (lower panel). Tissues were immunolabelled with rabbit anti-pThr175 tau 
protein, rabbit anti-pThr231 tau, rabbit anti-T22 antibody and mouse anti GSK3β pTyr216 
antibody. For double-labeled tissue, red channel antibodies were labeled directly with Alexafluor 
555. Co-localization stains were performed in one case per antibody combination. Scale bar = 5 
µm.  
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4.4.3 pThr175 and pThr231 expression in moderate TBI:  

Both pThr175 and pThr231 tau neuronal immunoreactivity was observed in moderate TBI 

rat brains (Figure 4.4). Of note, pThr175 positive neuronal staining was observed in regions 

distant to the injury site mainly as axonal staining; however, no fibrillar inclusion type pathology 

was observed in regions distant from the injury site. While pThr175 tau protein was significantly 

elevated within the hemisphere ipsilateral to the injury, the contralateral hemisphere also showed 

a trend to increased pThr175 tau protein expression when normalized against total tau protein 

(p=0.05 and 0.065 respectively after one way ANOVA with p=0.008 and F= 5.757). Diffuse 

pThr231 staining was observed in healthy neurons. Pathology-bearing pThr231 tau protein was 

only observed near the site of injury. GFAP staining did not show inclusions at site of injury 

indicating that pathology was a protein specific phenomenon. Additionally previous studies in 

our lab have shown the specificity of the pThr175 antibody to tau protein using peptide blockers 

(Yang et al 2012). 
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Figure 4.4 A 
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Figure 4.4: pThr175 tau pathology is recapitulated in an in vivo model of moderate TBI at 3 
months post injury. A) Composite images of whole brain sections stained for pThr175 tau protein. 
Images were taken with a 4 x objective. Inlay image taken with 40 x objective. Arrow denotes 
site of injury. DG= Dentate gyrus, CA1= CA1 region, CA3= CA3 region. Scale bar= 50 µm. B) 
High magnification images with moderate TBI showing neuronal and neuritic pathology. Images 
were taken with 100 x objective. Scale bar = 20 µm. C) Western blots of pThr175 tau protein and 
total tau protein in ipsilateral and contralateral brain injuries. D) densitometry of western blots 
probed for pThr175 tau protein and total tau protein (pThr175/total tau). E) pTyr216 GSK3β and 
total GSK3β (pTyr216/ total GSK3β) in ipsilateral and contralateral brain injuries. F) 
densitometry of western blots probed for pTyr216 GSK3β and total GSK3β. * represents p < 0.05. 
Ipsi: ipsilateral injury hemisphere, contra: contralateral injury hemisphere. Data are 
representative of 6 rats (TBI; IHC and western blot), or 4 rats (control; western blot), or 3 rats 
(control; IHC).  
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We investigated tau protein phosphorylation and GSK3β activation by western blot 

(Figure 4.4c). pTyr216 GSK3β was also significantly elevated in ipsilateral and contralateral 

hemispheres relative to uninjured controls (p=0.005 and 0.001 respectively after one way 

ANOVA with p<0.001 and F=13.928) when normalized against total GSK3β (Figure 4.4). 

Finally, we observed the same change in localization of pGSK3β in moderate TBI rat brains as in 

CTE cases. This was quantified by blinded counts in which we observed a significant increase in 

diffuse expression of pTyr216 GSK3β in the injured hemisphere compared to uninjured control 

rats (p= 0.01 by Tukey post hoc test after one way ANOVA p= 0.004 and F= 7.559 ; 

Supplemental figure 4.2). 

  



171 
 

 

 

 

Supplemental Figure 4.2: Quantification of cytosolic active GSK3β in both injured and 
uninjured rats. Bar graph showing ratio of cells with widespread pTyr216 GSK3β compared to 
cells showing predominantly nuclear pTyr216 GSK3β. Values represent counts from 3 rats 
(control) or 6 rats (TBI). * represents p < 0.05.  
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4.5 Discussion: 

We have observed that both CTE and CTE-ALS are tauopathies in which pathological 

tau protein aggregates contain aberrantly phosphorylated tau protein with immunoreactivity to 

both pThr175 tau and pThr231 tau.  The presence of T22 immunoreactivity (recognizing 

oligomeric tau protein) is consistent with a pivotal role for phosphorylation at Thr175 in the 

pathogenesis of CTE and CTE-ALS. The inference can be made on the basis of our previous 

study which showed that pThr175 tau protein pathology only occurs in pathological conditions 

and that the expression of pThr175 tau protein coincides with oligomerized tau protein in the same 

neuronal populations (Moszczynski et al., 2017). This was observed at the same time as pThr231 

tau protein was observed in pathological inclusions. This continues therefore to be consistent 

with the postulated role of pathological tau protein phosphorylation across a broad range of 

tauopathies (Moszczynski et al., 2017). Uniquely, we have also observed that this pathological 

process of tau protein phosphorylation can be triggered experimentally in an in vivo model of 

moderate TBI. The finding that the tauopathy of CTE, CTE-ALS consists of the expression of all 

6 tau protein isoforms in both the soluble and insoluble tau protein isolates further suggests that 

this process is biochemically distinct from the tauopathy of AD.   

Consistent with our previous reports, pThr175 tau staining was only observed when other 

pathological tau protein markers were also present (Moszczynski et al., 2017) and as such, 

pThr175 tau positive staining in controls was restricted to mainly those individuals with advanced 

age where some tau protein pathology is expected in the hippocampal formation (Yang et al., 

2005). Therefore beyond its role in toxicity itself, pThr175 also appears to also be an indicator of 

toxicity and neuronal damage. Because of this, pThr175 tau protein may be useful as a biomarker 

of tauopathy, being more specific than other tau protein phosphoepitopes that have been 
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investigated previously as CSF biomarkers of disease (Mattsson et al., 2009). If this proves true 

for general tauopathies, it may be useful to investigate the ratios of pThr175 tau protein and other 

proteins that have previously been investigated such as14-3-3 (Foote and Zhou, 2012), and 

neurofilament proteins (Li et al., 2016) in CSF or blood of CTE and CTE-ALS patients. 

The tau protein isoform composition profile observed in CTE in this study and previously 

in ALSci (Strong et al., 2006) in which all 6 tau protein isoforms are observed in the soluble and 

insoluble tau protein isolates is in distinction to that observed in a number of tauopathies, 

including AD (in which the pathogenic tau protein marker is the PHF triplet), CBD and PSP (4R 

tauopathies) and Pick’s disease (3R tauopathy) (Buee, V et al., 1996; Delacourte et al., 1996; 

Delacourte et al., 1998). This could be interpreted as indicative that the tauopathy of CTE, CTE-

ALS and ALSci is a “secondary event” which is triggered in response to a primary neuronal 

injury. In both CTE and CTE-ALS, this can be postulated to be directly due to the traumatic 

brain injury itself, a hypothesis that is strongly supported by the in vivo moderate TBI 

experimental paradigm. While it is less clear what the ‘trigger’ for the tauopathy of ALS may be, 

it is clear that once initiated, the induction of phosphorylation at Thr175 leads to a cascade of 

events that culminates in neuronal death in vitro (Gohar et al., 2009; Moszczynski et al., 2015). 

At this time, it is unknown whether or not pThr175 tau protein pathology is capable of 

transneuronal propagation as has been posited with regards to other neurodenegeration related 

proteins. It may be that a longer time than the three months in this study is required for this to 

occur from a state of no disease to sufficient changes and pathological load necessary for 

propagation. 

In relationship to our understanding of the pathophysiology of ALS, upwards of 10% of 

CTE cases also develop motor symptoms consistent with ALS (CTE-ALS), a rate much higher 



174 
 

 

 

than the incidence of ALS (2-3 per 100,000) observed in the general population (McKee et al., 

2010). Unique to the motor neuron degeneration associated with CTE-ALS is tau protein 

pathology in the spinal cord. The only other instance of a disseminated tauopathy in association 

with motor neuron degeneration is that which was observed in the previously hyper-endemic 

Western Pacific variant of ALS; a variant of ALS increasingly recognized to be at the 

intersection of an environmental insult in an at risk population (Garruto, 1991; Hirano et al., 

1961). While we have observed pathological tau protein phosphorylation in the spinal cords of 

both CTE and CTE-ALS patients in this study, the variability observed warrants investigation on 

a larger cohort of cases with regional stratification. The resources available to us in this study did 

not allow for regional stratification due to the random nature of tissue selection (cervical, 

thoracic, or lumbar for different cases, but not all) and thus we were not able to discern whether 

there was a correlation between motor symptom progression and regional tau protein deposition. 

However, the failure to observe tau protein deposition in the spinal cords of individuals afflicted 

with sporadic ALS suggests that the spinal motor neuron tauopathy of CTE-ALS is not an 

incidental finding or secondary to the primary neuronal injury of ALS. It is possible that tau 

protein phosphorylation and pathology begins early in the neurodegenerative process in CTE or 

CTE-ALS, in which case spinal cord pathology would be expected to precede symptom onset in 

patients that would otherwise develop motor impairment. 

 To conclude, we report the presence of all 6 tau protein isoforms in the insoluble fraction 

of tau protein isolated from CTE and CTE-ALS, and have observed pThr175 tau, in conjunction 

with pThr231 tau, oligomerized tau, and changes in active GSK3β localization are consistent with 

a pathological tauopathy driven by the aberrant phosphorylation of Thr175 tau protein. The 

observation that this pathway can be triggered following a single moderate TBI suggests that 
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brain trauma itself can drive this process directly. Understanding how moderate TBI drives 

phosphorylation at Thr175 is the topic of current studies. However, given our previous findings 

that this pathological cascade of tau protein phosphorylation can be fully inhibited, and that this 

inhibition abolishes pThr175 tau protein induced neuronal death suggests that both CTE and CTE-

ALS may be amenable to pharmacological inhibition of GSK3β activation. 
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5.1 Abstract 

 Aberrant phosphorylation of the microtubule associated protein tau (tau protein) is associated 

with multiple neurodegenerative diseases (collectively known as tauopathies) where it is a critical 

contributor to toxicity in neurons. An individual phosphorylation site at Thr175 (pThr175) has been 

observed in multiple tauopathies and has been shown to exert toxicity when expressed as a 

pseudophosphorylated tau construct (Thr175Asp) in vitro. This toxicity is exerted through activation 

of GSK3β and further phosphorylation of tau protein at Thr231. In this study, we used a recombinant 

adenoviral expression vector (rAAV9) to express a GFP-tagged Thr175Asp tau protein construct in 

adult female Sprague-Dawley rat hippocampus to assess the ability of pThr175 tau protein to exert 

toxicity in vivo. 10 rats per group were injected with rAAV9 vectors encoding either GFP, wild type 

GFP-tagged tau protein, Thr175Ala tau protein or Thr175Asp tau protein. 12 months post-injection all 

rats were euthanized and investigated by immunohistochemistry for GFP (extent of vector 

expression), pThr231 tau protein, activated GSK3β, and caspase-3 cleavage. Thr175Asp tau protein 

inoculated neurons showed tau protein pathology in the form of axonal beading, fibrils, and 

neurofibrillary tangles. Caspase-3 cleavage was observed in the Thr175Asp tau protein group but not 

others. These results indicate that pThr175 tau protein is capable of exerting toxicity in vivo and that 

this may be a therapeutic intervention in neurodegenerative diseases exhibiting this pathological 

phosphoepitope.   
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5.2 Introduction 

Over 50% of ALS cases present with, or develop, cognitive impairment in the form of a 

frontotemporal dysfunction (Strong et al., 2009; Strong et al., 2017). These neuropsychological 

deficits are also associated with shorter patient survival and an increased caregiver burden (Chio 

et al., 2010; Govaarts et al., 2016). Previous studies have demonstrated the presence of 

pathological intracellular inclusions of the microtubule associated protein tau (tau protein) in the 

subgroup of cognitively impaired ALS patients known as ALS with cognitive impairment 

(ALSci). Tau protein in ALSci is associated with neuronal and glial tau protein inclusions and is 

phosphorylated at Thr175 (pThr175 tau) (Strong et al., 2006; Yang et al., 2003; Yang and Strong, 

2012). Further study revealed that the presence of neuronal cytoplasmic inclusions of tau protein 

in ALSci is associated with activated GSK3β, a kinase that has been clearly demonstrated to 

phosphorylate tau protein in other tauopathies (Yang et al., 2008). In vitro studies using 

pseudophosphorylated tau protein constructs to mimic pThr175 (Thr175Asp) showed that this 

phosphoepitope induces tau protein aggregate formation and increased cell death in vitro (Gohar 

et al., 2009). This was then shown to be reliant on increased GSK3β activity and further 

phosphorylation of tau protein at Thr231 (Moszczynski et al., 2015). In order to determine 

whether this pathway leading to pathological tau phosphorylation could be applied to the 

tauopathies, we evaluated a larger cohort of ALS cases (in collaboration with the Mann group) 

(Behrouzi et al., 2016) and a broad range of neuropathologically confirmed tauopathies 

(Moszczynski et al., 2017b). Critically, in the latter study, we observed that the presence of 

pThr175 tau protein inclusions was also associated with GSK3β activation and the induction of 

pThr231 tau protein with associated pathological tau protein oligomerization (recognized by the 

antibody T22) (Lasagna-Reeves et al., 2012). In our most recent studies, we have shown that this 

pThr175 tau protein is present within tau neuronal cytoplasmic inclusions in both hippocampal 



181 

 

 

 

neurons and motor neurons in chronic traumatic encephalopathy (CTE) with or without an 

associated motor neuron degeneration (CTE-ALS) (Moszczynski et al., 2017a). Of importance to 

future mechanistic studies, a remarkably similar pathology inclusive of both pThr175 tau protein 

and pThr231 tau protein can be induced by traumatic brain injury (TBI) in a rodent model of 

moderate TBI (Moszczynski et al., 2017a). 

The role of pThr175 tau protein in the induction of a tauopathy seems therefore to have 

wide applicability to a range of neurodegenerative processes, including ALSci, CTE and CTE-

ALS. However, the effects of pThr175 tau protein have not been investigated in vivo. The purpose 

of this study was to investigate the effects of expressing pseudophosphorylated tau protein 

(Thr175Asp tau protein) in a rat model to characterize its capacity to induce tau protein 

fibrillization and toxicity as it does in vitro. 

5.3 Methods:  

All experimental protocols were approved by the University of Western Ontario Animal 

Care Committee (AUP #2013-008) in accordance with the policies established in the guide to 

Care and Use of Experimental Animals prepared by the Canadian Council on Animal Care. 

5.3.1 Somatic gene transfer: 

A previously described (Mustroph et al., 2012) somatic gene transfer technique was used 

to express recombinant adeno-associated virus (rAAV9) vectors: rAAV9 tau (wt-human tau), 

rAAV9 Thr175Alanine-tau (phosphorylation inhibition), rAAV9 Thr175Asp tau protein 

(phosphorylation mimic), rAAV9 EGFP (control) into both hippocampus of adult, wild-type 

female Sprague Dawley rats. 
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5.3.2 Surgical procedures: 

Two-month old wild type female Sprague-Dawley rats (Charles River Canada) were 

housed in pairs prior to surgery and randomly assigned to an experimental or control group. Food 

and water were provided ad libitum. Ten rats were used per inoculum; thus a total of 40 rats 

underwent surgery. Each rat weighed approximately 250 g at the time of surgery. 

All surgical procedures were conducted at level 2+, in a biosafety cabinet. Rats were 

weighed, anesthetized under an induction dose of 5% isofluorane and 2 L/min oxygen, and 

shaved at the top of their head. With a stereotaxic apparatus, each skull was immobilized using 

ear bars and a mouth-piece. A plastic mask covered the nose and delivered a maintenance dose 

of 2-3% isoflurane anesthetic with 1% oxygen. Eye lubricant was applied to the eyes to prevent 

eye damage during the procedure. The shaved area of the head was disinfected using a three-

stage preparation: rub with soap, then isopropyl alcohol, and finally iodine. Body temperature 

was maintained by placing a 37˚C isothermal pad beneath the rat for the duration of the 

procedure. A rostrocaudal incision was made along the midline of the scalp, and the 

subcutaneous tissue and periosteum were elevated to expose the underlying bone. The head was 

leveled using Bregma and Lambda as reference points. Four small holes (1mm) were bored into 

the skull using an electric drill. Injections of the rAAV9 vectors were conducted using 

stereotactic coordinates, with Bregma as the reference point. Four inoculations per animal were 

conducted at two sites per side (3 µL per site), all within the hippocampus at the following 

coordinates: A/P: -5.5 mm, M/L: ±4.6 mm with D/V: -3.2 mm, and M/L: ±6.0 with D/V: -6.0 

mm. Using a Hamilton syringe, a total volume of 12 µL (3 µL per site) was injected over the 

course of 20 minutes (5 minutes per site) for a total of 1.32 x 1010 vector genomes (2 injections 

each hippocampus). After injection, the syringe tip remained in place for 2 minutes, before 
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withdrawal. The vector volume was adopted from previously reported studies utilizing 

adenoviral vectors to express tau protein in hippocampus (Mustroph et al., 2012). 

Rats were then sutured and administered 0.1 mL/100 g Baytril, and 0.1 mL/100 g 

Meloxicam subcutaneously. After surgery, rats were placed in a recovery cage under a heat lamp 

until fully recovered from the anesthesia. Rats were then singly housed for 1 week to allow for 

the incision to close, and then were housed in pairs. 

5.3.3 Behavioural and imaging analysis: 

 All rats underwent Morris water maze testing, startle box testing, as well as open field 

testing as part of a behavioural battery, and neuroimaging on a 9.4 T magnetic resonance 

imaging (MRI) scanner for structural and diffusion tensor imaging analysis. These were 

conducted as the focus of separate graduate theses. Hence, the details of these methods and 

results will not be considered in detail for this chapter, given that my thesis focused on the 

pathological analysis. 

5.3.4 Immunohistochemistry: 

At 12 months post injection, 4 rats per group were sacrificed by trans-cardiac perfusion 

with heparinized saline (10 units heparin/ mL, 9% NaCl) followed by perfusion fixation with 4% 

formaldehyde (pH 7.4) after intraperitoneal injection with a lethal dose of Euthanyl. Brains were 

removed and stored in 4% formaldehyde for 24 hours before tissue processing and embedding in 

paraffin wax. Tissue was then serially sectioned at 4-6 µm thick sections and mounted to 

microscope slides.  

Immunohistochemistry was conducted using a series of antibodies that included rabbit 

anti-GFP (1:750 titer, Life Technologies, OR, USA) and rabbit anti-pThr231 tau (1:7500 titer, 
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Thermo Fischer). Antigen retrieval (10 mM sodium citrate, 0.05% Tween 20 pH 6.0) was 

conducted for all antibodies using a pressure cooker (2100 Retriever; Aptum Biologics, UK). 

Endogenous peroxidase was quenched with 3% hydrogen peroxide (VWR, Mississauga, 

Canada). Primary antibody incubation was performed at 4˚C overnight in blocking buffer (5% 

BSA, 0.3% Triton-X 100 in 1 X PBS). After washing, secondary antibody (1:200 biotinylated 

IgG) incubation was performed for 1 hour at room temperature in blocking buffer. 

Antigen:antibody complex was visualized with horseradish peroxidase according to the 

manufacturer’s instructions (Vectastain ABC kit, Vector Laboratories CA, USA), followed by 

substrate development with DAB. Counterstaining was performed using Harris haematoxylin. 

5.3.5 GFP expression and pathology mapping: 

 Every tenth slide from the serially sectioned brain was stained with rabbit anti-GFP and 

analyzed for expression. For analysis, the hippocampus was divided into dentate gyrus, CA4, 

CA3, CA2, CA1, subiculum and fimbria. Expression in each region was graded as present 

(positive) or absent (negative) for each animal, regardless of how many positive cells were 

present or expressing pathology. The percentage of animals expressing the GFP construct or 

pathological tau inclusions was documented. Thalamus, cerebellum and brainstem were used as 

negative controls. 

 For each GFP expressing region, the extent of tau protein deposition and pathology was 

mapped by probing for GFP and pThr231 tau protein separately, and then expressed according to 

the same hippocampal breakdown and positive or negative criteria in each animal for all GFP-

expressing regions. One slide per animal was selected for a detailed analysis based on presence 

of GFP construct expression in the region of interest. The evaluator (AM) remained blinded to 

the grouping of the rodents until all aspects of the analysis had been completed. 
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5.3.5 Co-localization and fluorescence staining:  

Tau protein was probed with chicken anti-GFP (1:500, Abcam, MA, USA) in conjunction 

with rabbit anti-pThr231 tau protein (1:1000, Thermo Fischer), rabbit anti-cleaved (Asp175) 

caspase-3 (1:200 titer, Cell signaling, MA, USA) or mouse anti-pTyr216 GSK3β (1:50 titer, 

pTyr216; BD Biosciences, Mississauga, Canada) primary antibodies overnight at 4˚C and 

Alexafluor goat anti-chicken 488 nm and goat anti-rabbit 555nm or donkey anti-mouse 565 nm 

secondary (all used at 1:200, Thermo Fischer) for 1 hour at room temperature. Rabbit anti-tau 

protein pThr231 antibody was then labeled using a Zenon primary antibody labeling kit with 

Alexafluor 555 nm dye (Thermo Fisher) and probed for 1 hour at room temperature. Slides were 

visualized within 24 hours of labeling by confocal imaging on a Zeiss LSM 510 Meta 

multiphoton confocal microscope. For co-localizations with phospho-GSK3β (pGSK3β), 

staining was performed with mouse anti-pTyr216 GSK3β antibody (1:50 titer, BD Biosciences) 

followed by secondary labeling with goat anti-mouse Alexafluor 633nm (Invitrogen). 

5.3.6 Quantification and Statistical analysis: 

 Randomly selected fields within the GFP-expressing CA2 hippocampal pyramidal layer 

were photographed by confocal microscopy with a 25x objective in GFP-expressing CA2 regions 

for each animal. The total number of GFP-expressing cells, and the number of cleaved Caspase-3 

positive, GFP-expressing cells were counted and expressed as Caspase-3/total cells. Statistical 

analyses were conducted using SigmaPlot 10.0 software. A one way analysis of variance 

(ANOVA) was conducted following a Shapiro-Wilk test for normality. Post-hoc Tukey’s test 

was conducted and a p value of 0.05 or lower was considered significant.  
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5.4 Results: 

5.4.1 Behavioural and imaging:  

 Although the results of the behavioural and neuroimaging studies are the topic of 

independent thesis projects, it was noteworthy that no overt differences were observed between 

groups by any method of behavioural analysis or imaging at any time in this study. Fifteen rats 

developed mammary (Wild type human tau protein n= 2 rats, Thr175Asp tau protein n= 4 rats, 

Thr175Ala tau protein n= 3 rats, GFP n= 2 rats) or pituitary tumours (Thr175Asp tau protein n= 2 

rats, Thr175Ala n= 2 rats) and were sacrificed or died prior to the 12 month timepoint. This extent 

of benign tumour development was unexpected but upon literature review, it has been 

documented that the development of tumours can occur spontaneously in up to 50% of rats in the 

Sprague-Dawley line after the age of 6 months (Giknis and Clifford, 2013).To increase the 

number of rats for statistical power for imaging and behavioural studies, fifteen additional 

surgeries were performed to replace the missing rats from each group. None of these rats were 

used in histological analyses given that I was specifically interested in pathology at the 12 month 

time interval. 

5.4.2 GFP construct expression in the hippocampus: 

Hippocampal GFP expression was observed in all groups throughout the anterioposterior 

axis of the hippocampus (Figure 5.1). The CA2 subregion revealed GFP positive staining in 

pyramidal neurons as well as in projections within the radiatum layer and cell bodies within the 

oriens layer in all animals regardless of group, suggesting consistent long term expression of the 

adenoviral vector across all inoculums. In regions outside of the CA2, we observed variability in 

the extent of GFP expression within each construct-expressing group. Staining in non-CA2 

regions was never as intense as the positive staining in the CA2 region. Cortical GFP neuronal 
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expression was also observed in the subcortical white matter just superficial to the hippocampus. 

Extrahippocampal staining was observed in the cortex superficial to the hippocampus only, and 

was not observed in control regions studied including the thalamus, cerebellum and brainstem. 

  



 

 

Figure 5.1 A 
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Figure 5.1 B 

  

Figure 5.1: AAV9-mediated GFP construct expression. A) We observed adenoviral construct 
expression (GFP immunoreactivity) throughout the rostrocaudal axis of the hippocampus. B) The 
most consistent expression was observed within the CA2 region (red) of all animals regardless of 
the rAAV9 construct with varying degrees of expression throughout the remaining aspects of the 
hippocampus. % score represents percentage of animals with GFP-positive immunoreactivity in 
each region. DG=dentate gyrus, SUB= subiculum. Images are composites of photographs taken 
with a 10 x objective. Data are representative of 3-4 rats per group. 
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5.4.3 Activated GSK3β expression: 

In the CA2 pyramidal neurons of all animals, activated GSK3β was observed in both the nucleus 

and cytosol. No difference in the GSK3β localization or apparent expression could be detected 

between groups, although we were unable to reduce the degree of nonspecific background 

immunoreactivity (Figure 5.2).  
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Figure 5.2: Activated GSK3β is expressed in all groups. Nuclear and cytosolic GSK3β 
expression was observed in GFP-expressing hippocampal neurons in all construct-bearing 
groups. No inter-group differences were observed. Scale bar = 20 µm. Data are representative of 
3 rats per group.  
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5.4.4 Tau protein pathology expression in vivo: 

Tau immunoreactive neuronal cytoplasmic inclusions were observed exclusively in the 

Thr175 Asp tau protein expressing rats in all hippocampal regions expressing GFP constructs. 

This was evident using either the rabbit anti-GFP (recognizing tau constructs, Figure 5.3) or the 

pThr231 tau antibody (Figure 5.4) and could be characterized as axonal beading, fibrils, and 

tangles (see Figure 5.3 for examples as observed using anti-GFP immunohistochemistry). In 

addition to this, pThr231 staining revealed fibrillar neuronal inclusions and glial positive cells in a 

phenotype resembling coiled bodies (Figure 5.4). 

We observed some degree of axonal beading in all groups within GFP-immunoreactive 

processes, suggesting that this was a nonspecific feature of the inoculation itself.  However, no 

other pathology was observed outside of that found in Thr175 Asp tau protein expressing rats. 
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Figure 5.3 A 
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Figure 5.3 B 

 

  

Figure 5.3: Thr175 Asp tau protein pathology. A) GFP probing by immunohistochemistry 
reveals GFP-tau protein pathology expression in the form of axonal beading (white arrow), 
fibrils (black arrow) and tangles (black arrowhead). B) Pathology was expressed in Thr175 Asp 
tau protein expressing rats to a greater extent than all other groups. % score represents 
percentage of pathology-positive animals in each region. DG=dentate gyrus, SUB= subiculum, 
Fimb= fimbria. Images taken with a 100x oil immersion objective. Data are representative of 3-4 
rats per group. Scale bar= 20 µm. 
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Figure 5.4 A 

 

 

  



196 

 

 

 

Figure 5.4 B 

 

Figure 5.4: pThr231 tau protein pathology. A) pThr231 tau protein probing by 
immunohistochemistry reveals GFP-tau protein pathology expression in the form of neuronal 
fibrils (white arrow) and glial coiled body-like inclusions (black arrow). B) Pathology was 
expressed in Thr175 Asp expressing rats to a greater extent than all other groups. % score 
represents percentage of pathoplogy-positive animals in each region. DG=dentate gyrus, SUB= 
subiculum, Fimb= fimbria. Image taken with a 100x oil immersion objective. Data are 
representative of 3-4 rats per group. Scale bar= 20 µm.  
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5.4.5 pThr231 tau protein co-localizes with tau protein fibrils in vivo: 

Consistent with the known physiological role of pThr231 in modulating microtubule/tau 

protein interactions, I observed similar degrees of pThr231 immunoreactivity across all animal 

groups, regardless of construct expressed. Uniquely within Thr175 Asp tau protein expressing 

neurons in which tau protein fibrils were observed, pThr231 tau protein immunoreactivity co-

localized in fibrils (Figure 5.5). In Thr175 Asp tau protein expressing neurons where GFP-positive 

fibrils were present, pThr231 positive staining was always present. Conversely, no pThr231 

positive fibrils occurred in the absence of GFP suggesting that the presence of pThr231 

immunoreactive fibrils was dependant on the expression of the pathological human tau construct. 
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Figure 5.5: pThr231 tau protein is expressed in hippocampal neurons and co-localizes with 
GFP-tau protein pathology. No difference in pThr231 tau protein immunoreactivity was 
detected between groups. pThr231 tau protein co-localized to pathological inclusions Thr175 Asp  
tau protein expressing neurons (white arrows). Scale bar = 100 µm for low magnification images 
and 10 µm high magnification images. Images are representative of 4 rats per group. 
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5.4.6 Thr175Asp tau protein expressing cells are positive for cleaved caspase-3: 

The number of GFP-positive cells expressing cleaved caspase-3 was calculated as a proportion 

of the total number of GFP-positive cells in the field of randomly photographed GFP-expressing 

CA2 region taken by confocal microscopy with a 25x objective. Representative high 

magnification GFP-expressing neurons are shown in Figure 5.6A. While all groups exhibited 

some level of caspase-3 positive staining (WT tau protein: 4.9 ± 3.5%, Thr175Asp tau protein: 

38.5 ± 9.7%, Thr175Ala tau protein: 6.3 ± 1.7%, GFP: 3.8 ± 1.7%) showed that Thr175Asp tau 

protein positive neurons expressed a higher proportion of cleaved caspase-3 expressing cells than 

all other groups (p=0.004 vs GFP, p= 0.003 vs WT tau protein and p= 0.005 vs Thr175Ala tau 

protein after one way ANOVA with p= 0.002 and F= 10.518; Figure 5.6B). 
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Figure 5.6 A 
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Figure 5.6 B 

 

Figure 5.6: Caspase-3 cleavage occurs in Thr175Asp tau protein-expressing hippocampal 
neurons. A) Thr175Asp tau protein inoculated brains exhibited caspase-3 positive GFP-
expressing neurons to a greater extent than all other groups. Scale bar = 20 µm. B) Blinded 
counts revealed that Thr175Asp tau protein-expressing neurons express cleaved caspase-3 
significantly more than all other groups. *denotes p<0.05 by Tukey’s post hoc test after 
significant one-way ANOVA. Data are representative of 4 rats per group. 
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5.5 Discussion: 

 We have shown that the expression of Thr175Asp tau protein, a pseudophosphorylated 

construct mimicking pThr175 tau protein, in the adult rodent hippocampus is capable of inducing 

fibrillar tau protein pathology. Furthermore, this is associated with induction of pThr231 

immunoreactive neuronal cytoplasmic inclusions, which may be occurring through activated 

GSK3β which is ubiquitously expressed through the cytosol in GFP-expressing neurons. 

Thr175Asp tau protein expression was associated with increased markers of apoptosis. 

That pThr175 toxicity is evident in this animal model builds on our previous in vitro 

observation of pThr175 tau mediated neurotoxicity and confirms that this phosphoepitope on tau 

protein is directly responsible to setting off a cascade of phosphorylation events that are toxic in 

an intact brain (Moszczynski et al., 2015). Additionally, it shows that onset of expression in the 

adult brain will lead to pathological fibril formation as well as apoptotic cell death. Therefore the 

pThr175 pathology observed in those neurodegenerative diseases that we have thus far 

investigated, including ALSci, CTE, and CTE-ALS suggests a common mechanism of tau 

mediated neurotoxicity across a broad range of tauopathies (Moszczynski et al., 2017a; 

Moszczynski et al., 2017b). 

Although the animal model we utilized in this study did express pathology, it was 

localized to the discrete region bearing the GFP-tau construct. Most specifically, tau pathology in 

this experimental model was limited to the hippocampal region CA2, a region for which the 

behavioural testing paradigm was insensitive.  Moreover, it is also quite likely that the load of 

tau deposition and the extent of neuronal death or dysfunction was insufficient for a phenotype to 

be expressed.  A similar argument can be made for the failure to observe pathology using high 
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resolution MRI.  To address this, future behavioural studies will employ testing paradigms that 

are more sensitive to deficits in CA2 (such as social memory) in evaluating Thr175Asp tau 

protein-mediated behavioural changes (Hitti and Siegelbaum, 2014). With respect to the 

neuroimaging studies, it is known that ex vivo imaging methods have a much higher resolution 

than the in vivo imaging used in these studies (Dyrby et al., 2011). As such, future studies using 

this model will require more sensitive measures of behaviour and imaging.  

Alternatively, using a genetic model with more widespread expression of Thr175Asp tau 

protein may be a useful tool now that the pathogenicity of this tau protein construct in vivo has 

been confirmed. This may be the more useful tool for assessing therapeutic potential due to the 

possibility of a more aggressive pathology and behavioural phenotypes that will be more easily 

measured over time. 

To varying degrees, we observed axonal damage in all 4 groups, likely a result of the 

invasiveness of surgery. That Thr175Asp tau protein expressing brains had more axonal pathology 

and was the only group showing fibrillar tau protein inclusions with a widespread nature in every 

animal indicates that the results are due to the expressed construct. This is consistent with our 

previous in vivo studies of Thr175Asp tau protein constructs which also demonstrated increased 

fibril formation relative to other groups (Gohar et al., 2009; Moszczynski et al., 2015). Finally, 

the induction of caspase-3 cleavage indicates apoptotic cell death which was only observed in 

this group. This is consistent with our previous reports that Thr175Asp tau protein expression in 

vitro leads to caspase-3 cleavage (Gohar et al., 2009). 

Given the evidence of toxicity and the known mechanism by which this is exerted 

downstream of Thr175 tau phosphorylation, the inhibition of GK3β may be a useful therapeutic 
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strategy in neurodegenerative diseases bearing pThr175 tau protein pathology. The potential 

efficacy of GSK3β inhibition will be the focus of future studies in animal models of pThr175 

toxicity. There is already evidence of GSK3β inhibition reducing tau protein based pathological 

processes in vitro (Hong et al., 1997; Moszczynski et al., 2015) and in vivo (Noble et al., 2005). 

Additionally, evidence from bipolar disorder patients on Lithium treatment suggests that chronic 

Lithium administration is associated with reduced rates of Alzheimer’s disease, indicating 

therapeutic potential as a strategy of preventing tau protein phosphorylation-based pathological 

processes (Kessing et al., 2010; Nunes et al., 2007). 

5.6 Conclusions: 

Taken together, these data suggest that pThr175 tau protein is capable of inducing fibril 

formation, tau protein-based pathology, neurotoxicity and death in vivo. Further investigation 

using GSK3β inhibitors will determine therapeutic potential to inhibit pThr175 based tau protein 

toxicity in a complete physiological system and whether this may be effective in human 

tauopathies. 
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Chapter 6: Discussion 

6.1 Summary of results 

Thr175 tau which has been implicated in the pathogenesis of cognitive impairment in ALS 

is toxic and capable inducing tau aggregates both in vitro and in vivo. This toxicity is mediated 

through increased activation of GSK3β and is dependent on phosphorylation at Thr231 in a 

process which can be fully prevented in vitro by inhibition of GSK3β pharmacologically or 

through molecular knock-down. 

In this thesis, I have expanded the relevance of Thr175 phospho-tau and the cascade 

triggered by pThr175 tau protein in the induction of pathogenic tau fibrils from ALSci and 

Alzheimer’s disease to other tauopathies. I have proposed that this pathway of pathological tau 

protein fibril formation may represent a common mechanism of toxicity in these disease 

processes. Most critically, Thr175 tau is phosphorylated only in diseased states and appears to be 

a specific indicator of pathological tau, unlike other phospho-tau variants. The pThr175 containing 

pathology is associated primarily with neuronal cells and not glial cells. Notably in all of these 

diseases, Thr175 tau phosphorylation is always associated with Thr231 tau phosphorylation and tau 

oligomerization, further emphasizing the importance of this pathway. 

Although the initiating mechanism is unknown, I have shown that Thr175 tau 

phosphorylation and pathology can be induced by traumatic brain injury in a rat model of mild 

traumatic brain injury. This pathology is observed in human CTE and CTEM in hippocampal 

and motor neuron populations, and is associated with activated GSK3β as well as tau 

oligomerization. In this model, pThr175 tau protein and pathology can be induced by a single 

traumatic brain injury in wild type rats and persists 3 months after injury. In traumatic brain 
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injury and CTE, GSK3β activity appears to shift from a primarily nuclear to an even distribution 

through nucleus and cytosol. 

6.2 Implications 

6.2.1 Mechanism of toxicity 

The toxicity observed downstream of Thr175 phosphorylation relies on increased 

activation of GSK3β beyond baseline levels of activity. There are three potential mechanisms by 

which this may be induced by tau protein, all of which rely on tau functional changes, likely 

promoted by a conformational shift from its global hairpin structure. Firstly, opening of the 

hairpin may simply provide increased substrate for GSK3β by exposing more Ser and Thr 

residues on tau protein for phosphorylation by GSK3β. It has been shown that increasing 

substrate availability can increase the activity of kinases including GSK3β (Frame et al., 2001). 

Secondly, opening of the hairpin may expose the proline-rich domain, allowing for tau 

interactions with other signaling molecules. These occur through SH3 homology domains which 

have been shown to interact with Fyn kinase (Klein et al., 2002). This in turn has been 

demonstrated to phosphorylate GSK3β at Tyr216, enhancing its activity, leading to increased tau 

phosphorylation in vitro (Lesort et al., 1999). Finally, opening of the tau protein hairpin 

conformation may expose the N-terminal phosphatase activating domain (PAD), consisting of 

amino acids 2-18. The PAD domain has been shown to directly activate GSK3β related pathways 

(Kanaan et al., 2011). While each of these possibilities is dependent on opening of the hairpin 

loop structure, it is unknown whether the effect of Thr175 phosphorylation can directly cause an 

opening of the global hairpin conformation or if this is mediated by a downstream effect. 

However the location of this phosphoepitope on the Pro-rich domain/ hinge region of the hairpin 
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suggests that this is possible based on previous reports of phosphorylation in the proline rich 

domain (Jeganathan et al., 2006; Jeganathan et al., 2008). 

The trigger for Thr175 phosphorylation remains unknown. However, the upstream cascade 

of kinase activation that would lead to the phosphorylation of Thr175 tau was not the focus of this 

thesis; rather it was to determine whether pThr175 tau was a pathogenic post-translational 

modification, and if so, how. In future studies, it will be key therefore to use the rat model of 

mild traumatic brain injury to understand this process further (discussed in future directions 

section). It is interesting to note however that Thr175 tau protein has been shown to be 

phosphorylated in situ by several kinases including MAPK, JNK/SAPK, GSK3β, and LRRK2; 

hence, there are several candidates (Atzori et al., 2001; Hanger et al., 1998; Hanger, 2017; 

Reynolds et al., 2000). Of note, the MAPK family of kinases, specifically JNK has exhibited 

increased activity after traumatic brain injury (Tran et al., 2012), in which case it is a strong 

candidate. In fact, JNK inhibition has been previously reported to reduce tau pathology after 

traumatic brain injury in a rodent model (Tran et al., 2012). 

One possible means of tau phosphorylation by activated JNK is spatial proximity (Zeke 

et al., 2016). Neuronal injury requires microtubule remodeling (Kleele et al., 2014; Tang and 

Chisholm, 2016; Tang-Schomer et al., 2010). This would be a circumstance in which tau protein 

must disengage the microtubule to enable microtubule disassembly before re-polymerization. 

While unbound, large proportions of tau could be re-localized to the soma. Here tau may be 

situated in proximity to stress-activated JNK, which could phosphorylate tau by this stochastic 

process. If this happens to occur at Thr175, the downstream pathogenic process of GSK3β 

activation and Thr231 phosphorylation would lead to an inability of tau to return to the 

microtubule, and fibril formation. It is also possible that phosphorylation of Thr175 can occur 
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through different pathways. For example LRRK2-induced phosphorylation in Parkinson’s 

disease linked to mutations in LRRK2 (Shanley et al., 2015) or already elevated GSK3β activity 

in Alzheimer’s disease (Guerreiro et al., 2016). Given this, it is reasonable to propose that there 

may be multiple pathways of Thr175 tau phosphorylation, with varying degrees of generalizability 

to cellular injury response or disease specificity. This may explain the heterogeneity of diseases 

associated with pThr175 tau. 

6.2.2 Pathology vs. physiology 

An important observation is that pThr175 tau was only observed in pathological or injured 

states. As mentioned above, the likely pathways to Thr175 induction are all abnormal and may 

occur in “primed cells”. It is possible then that pThr175 represents a tipping point in pathological 

tau metabolism and further study of the regulation of pThr175 dephosphorylation is required to 

establish whether it is a reversible event. The pathological state specificity of pThr175 implies that 

beyond its direct role in toxicity itself, pThr175 tau appears to also be an indicator of toxicity and 

neuronal damage. Because of this, pThr175 tau may be useful as a biomarker of tauopathy, being 

more specific than other tau phosphoepitopes that have been investigated previously as CSF 

biomarkers of disease such as pThr181 (Mattsson et al., 2009). If this proves true for general 

tauopathies, it may be useful to investigate the ratios of pThr175 tau and other proteins that have 

previously been investigated such as14-3-3 (Foote and Zhou, 2012), and neurofilament proteins 

(Li et al., 2016) in CSF or blood. These ratios may provide utility in distinguishing between 

different neurodegenerative diseases or stratifying patients with the same clinical diagnosis as 

candidates based on molecular pathology for specific interventions or combinations of 

interventions. The utility of combination therapy for treatment of neurodegenerative disease is 

discussed further in the Future Directions section. 
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The pathological specificity of pThr175 was in contrast to pThr231 tau which may be of 

both pathological as well as physiological significance. As mentioned above, it has been shown 

that microtubule dynamics are more plastic after axonal damage (Kleele et al., 2014), in which 

case tau protein would need to disengage the microtubule. This physiological response may be 

regulated by Thr231 phosphorylation (Cho and Johnson, 2004; Lin et al., 2007; Schwalbe et al., 

2015; Sengupta et al., 1998). As such, Thr231 phosphorylation must be carefully regulated by the 

cell as anything leading to dysregulation, such as incorrect isomerisation about the phosphate 

group (causing inability of dephosphorylation) can cause cell toxicity (Nakamura et al., 2013). If 

kinase activity is enhanced and Thr231 phosphorylation is driven by an external factor, it may be 

that it is phosphorylated at a faster rate than it can be dephosphorylated, leading to an inability to 

return to the microtubules, further tau phosphorylation, and tau-mediated toxicity culminating in 

apoptotic cell death. This dysregulation may be mediated by pThr175 making the pathogenic state 

of Thr231 phosphorylation dependent on Thr175 phosphorylation, even though pThr231 normally it 

is an innocuous epitope due to tight regulation. 

That tau pathology is inducible by traumatic brain injury brings into question the origin 

of tau pathology in tauopathies as a whole. In instances where disease is induced by tau protein 

mutations such as FTDP-17 it clear that tau protein is the primary cause of the disease. In other 

states such as Alzheimer’s disease where tau tangles are observed concomitantly with other 

pathologies, it is much more difficult to discern what the origin of neuronal toxicity may have 

been. In the case of CTE it is thought that tau pathology is induced by shear forces and axonal 

injury brought about by traumatic brain injury (Gavett et al., 2011). The same may be true of 

progressive age related tauopathy (PART). Beginning in the entorhinal cortex, tau tangles have 

been observed to increase with age in patients without overt dementia, and it has recently been 
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shown that the burden of tau pathology in PART post-mortem correlates strongly with rate of 

cognitive decline displayed in life (Jefferson-George et al., 2017). It is possible that in the 

absence of other pathological processes, tauopathy induced by stress over time is a slowly 

developing cognitive deficit. Tau deposition can therefore be thought of not as a function of 

normal ageing, but as a toxic byproduct of wear and tear on the brain over the lifespan. There is 

nothing physiological about tau deposition as it is a departure from homeostasis. 

6.2.3 Affected cell populations 

The pathology associated with Thr175 tau was contained primarily within neuronal cells 

suggesting that there may be divergent toxic processes responsible for tau pathology in neuronal 

and glial cell populations and is consistent with the hypothesis that glial tau pathology is a 

separate process influenced by the cellular environment within glia, which is distinct from the 

neuronal cellular environment due to differential protein expression (Kahlson and Colodner, 

2015). Indeed, it has been suggested that neuronal and glial tauopathic processes are driven by 

separate mechanisms and kinases (Ferrer et al., 2001). One example of differential kinase 

expression affecting tau pathology is casein kinase 1 (CK1). Although the δ isoform of CK1 has 

been implicated in tau pathology in multiple neurodegenerative diseases, this isoform is not 

expressed in glial cells (Lohler et al., 2009). It is thus not surprising that CK1 associated tau 

pathology is not observed in glial cells (Li et al., 2004; Schwab et al., 2000). Additionally, glial 

and neuronal cells have been shown to exhibit opposite responses in MAPK activation after 

exposure to external signals such as cAMP due to differential B-raf receptor expression (Dugan 

et al., 1999). Of note, the B-raf signaling cascade has been shown to induce JNK activity when 

activated, and inhibition of this pathway reduces JNK activation (Park et al., 2005). Additionally, 

kinases that have been shown to phosphorylate tau protein such as CaM kinase II have much 
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lower expression in glia than neurons (Ferrer et al., 2001). If Thr175 phosphorylation is a 

stochastic process driven by cellular stress, it is conceivable that differential kinase activation or 

expression patterns would have a completely different likelihood for Thr175 phosphorylation. 

This may explain the disparity in phosphorylated residues between glial tau and neuronal tau. 

The preferential layer pathology expression between superficial layers in the entorhinal 

cortex and deeper layers in frontal and anterior cingulate cortex (ACC) suggests an origin in 

entorhinal cortex which spreads along connections to the ACC. Superficial deposition throughout 

the entorhinal cortex with preferential localization to layer III may indicate that this is driven by 

mechanical cellular stress as observed in CTE. The occurrence of tau in superficial regions in 

CTE has brought about the hypothesis of a “wear and tear” source of origin due to mechanical 

disturbance to the neurons. This has also been suggested in hippocampal sclerosis of ageing 

(Nelson et al., 2013) and PART (Crary, 2016). Superficial neurons are characterized by more 

laterally oriented projections connecting neighbouring cortical columns. If tau protein spread 

occurs trans-synaptically as has been suggested, (Wang and Mandelkow, 2016) it is plausible 

that this process would spread laterally through the entorhinal cortex between columns remaining 

largely in layer III, with a lower likelihood of spread to other regions. Tau protein deposition in 

deep layers however, is more likely to spread inter-regionally. It is possible therefore that there is 

a critical mass of tau pathology needed to be reached before the spread will occur to other layers 

by chance and then to other regions. Layer IV and V neurons in the ACC receive inputs from the 

perforant pathway via thalamic hubs. These ACC neurons then send projections to distant brain 

structures, providing a route for tau spread to distant structures. Therefore, once tau protein 

accumulation in deep layers begins, it is possible for this process to perpetuate itself further in a 
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seemingly random process. That tau is consistently observed in the entorhinal cortex and other 

limbic structures, and then next most commonly in the ACC, is consistent with this finding.  

ACC pathology was most frequently observed in diseases associated with cognitive 

impairment and has been observed to a greater extent in ALSci than ALS (Yang and Strong, 

2012). Indeed, dysfunction of the ACC has been implicated in cognitive impairment in ALS 

through multiple studies (Ambikairajah et al., 2014; Byrne et al., 2012; Kew et al., 1993; 

Mohammadi et al., 2009; Van Deerlin et al., 2008). This region has been linked to language 

processing, emotion (Bush et al., 2000), motor imagery (Grezes and Decety, 2002), motor 

function (Basha et al., 2013), pain processing (Naro et al., 2015), error detection (Hyman et al., 

2013; Wang et al., 2005) and conflict monitoring (Kerns et al., 2004; Wang et al., 2005). This 

may imply that the variability of frontal symptom progression in ALSci could result from 

differential ACC regional involvement. Furthermore, the ACC is also a highly connected region 

of the brain with the midcingulate cortex (MCC) subregion alone having cortical projections 

with amygdala, parietal cortex, insula, dorsolateral prefrontal cortex (dlPFC) (Vogt, 2016) and 

direct connections to spinal motor neurons (Dum and Strick, 1991).  

Of further interest to neuronal pathology of the ACC, there are two unique classes of 

neurons known as spindle neurons and fork cell neurons which may be linked to social behavior 

localized specifically to the ACC and insula. These neurons appear to be affected preferentially 

in frontotemporal dementia (FTD) (Kim et al., 2016; Santillo et al., 2013; Seeley et al., 2006). 

Fork cells and spindle neurons are large neurons, localized to layer V of the anterior cingulate 

cortex, analogous to pyramidal upper motor neurons (Kim et al., 2016). It may be no coincidence 

then that ALS and FTD share such pathology and comorbidity. They show physical similarities 

(size), similar predisposition to pathological processes, and are contained within structurally 
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connected regions. If neurodegenerative disease is even partially stochastic in nature, the link 

shared by these cell populations would suggest that a higher than expected number of cases 

should develop both diseases especially in diseases bearing more aggressive pathology. 

In the case in both Guamanian ALS as well as CTE, which bear intense tau pathology 

through the brain and spinal cord, the critical mass hypothesis may be relevant. The reduced 

frequency of tau pathology in spinal cord in other variants of ALS and tauopathies may be 

because motor neurons have a different molecular sequalae making tau inclusions harder to drive 

in them even though tau dysfunction can occur. In fact it has been suggested that neurofilament 

may serve as a phosphorylation sink in spinal motor neurons which may hold off tau pathology 

resulting in a higher “barrier to entry” (Nguyen et al., 2001). Nevertheless, animal models of 

tauopathy and even SOD1  (Nguyen et al., 2001; Spittaels et al., 1999) have been shown to 

exhibit abnormal tau protein metabolism and pathology in the spinal cord, suggesting that there 

is a possible role of tau in these neurons as well when dysfunction does occur in motor neurons. 

The spinal cord tau pathology I observed in CTE cases that did not exhibit motor impairment 

may indicate an early stage of tau pathology with phosphorylation preceding sufficient neuronal 

death to initiate clinical findings. It has been observed in ALS-Parkinsonism dementia complex 

(ALS-PDC) of Guam that spinal cord pathology was present even in 35% of cases with 

Parkinosnism without motor symptoms (Rodgers-Johnson et al., 1986). Tau dysfunction 

therefore may be relevant to motor neuron toxicity in diseases bearing a heavy tau burden to a 

much greater extent than those with relatively limited tauopathy. It is possible that it is one of the 

key toxic mediators of motor neuron degeneration in these cases. 
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6.2.4 Recognition of tauopathy 

I noted divergence between AT8 and pThr175 tau pathology in the frontal cortex. Whereas 

AT8 only recognized frontal tau pathology in Alzheimer’s cases selected on the basis of late 

stage tauopathy, pThr175 recognized tau pathology in the frontal cortex in 80% of ALSci cases 

studied. This is notable because AT8 is a primary antibody used in neuropathological study and 

the detection of phosphorylated tau protein in tauopathies. If tau can be toxic without 

phosphorylation at Thr202 (the AT8 epitope), AT8 may miss tau pathology resulting in false 

negative reporting. This highlights a need for sensitive methods to detect tau pathology in non-

AD neurodegenerative diseases, using antibody panels or other methods. 

Alternatively to antibody specificity, the thinness of paraffin embedded tissue sections 

routinely used for neuropathological analysis presents an additional limitation of tau detection. 

One method that has been applied recently to both Pick’s disease (Irwin et al., 2016) and FTD-

TDP (Brettschneider et al., 2014) is to use 70 µm sections (Feldengut et al., 2013) allowing for 

more detailed anatomical characterization. However, this technique also has a higher false 

negative rate as more cells and structures are present on each slide. Braak staging has been used 

since 1991 (Braak and Braak, 1991) as the gold standard in staging of neurofibrillary pathology 

related to AD. Recently (Irwin et al., 2016), a series of Pick’s disease cases were stained using 

the thick section method. Their traditionally identified thin section Braak stage was a maximum 

of I/II, corresponding with what is considered to be a mild tau pathology which may be 

associated with ageing. However, upon further inspection using this sensitive technique it was 

apparent that tau pathology was widespread and found in regions spanning from limbic and 

frontal structures, to visual cortex. This paired with our finding that tau pathology may be 
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underestimated by one tau antibody, or silver staining alone, indicates that thorough investigation 

may be required before writing off tau pathology as a contributing factor to disease. 

6.2.5 Tau as a central player in NDGs 

 Tau protein phosphorylation can be induced as an initiator of or response to a stressor. 

Thr175 phosphorylation is observed in neuronal pathology in all tauopathies investigated thus far 

and may play a role in the toxicity of tau protein. It may be that Thr175 phosphorylation can be 

induced by multiple factors such as axonal stress, other protein-induced stress, or other cellular 

dysmetabolism. In fact, it has been suggested that within neurodegenerative disease, the rate of 

mixed pathologies and number of combined neuropathological substrates may be very high 

(Rabinovici et al., 2017; Rahimi and Kovacs, 2014). Therefore, aberrantly phosphorylated tau 

protein may be one part of a pathological network of disease-related proteins capable of re-

enforcing pathology in each other, propagating the toxic processes underlying neuronal death. 

Tau protein may therefore be a central player in many neurodegenerative disorders, contributing 

to pathology and toxicity. It is possible that it interacts with other components of this 

pathological network in a synergistic manner. This is discussed further in the Future Directions 

section. 

6.3 Caveats 

The results from my studies have shown that pThr175 tau protein is pathogenic and 

associated with multiple disease states. However, these studies do not shed light on the induction 

of this process. That traumatic brain injury was capable of inducing this pathology suggests that 

other forms of cellular stress may be capable of inducing it as well. This suggests that Thr175 

phosphorylation happens downstream of cellular stress, raising the issue of whether or not this is 
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a cause or consequence of neurodegenerative disease. Regardless, it may be a specific marker of 

neurodegeneration and it is a clear contributor to toxicity which may require intervention even if 

other contributors to toxicity are present in the diseased brain. Alternatively it may be an aberrant 

response to stress representing a tipping point, driving a physiological stress response to a 

pathological, out of control, toxic state of cellular dysfunction. 

Another limitation of these studies is the inability to determine the order of 

phosphorylation of Thr175 and Thr231. The cell culture and rat model expresses a construct 

mimicking pThr175, and we therefore were only able to determine the downstream changes 

required for toxicity. It is possible that Thr175 phosphorylation locks pThr231 into place, or pushes 

equilibrium of phosphorylation to dephosphorylation in the favour phosphorylation as it is likely 

that Thr231 would be phosphorylated already as tau may need to be off the microtubule to be 

phosphorylated at Thr175. Future studies in the TBI model can be used to shed light on this 

sequence of events. 

The lack of behavioural or imaging correlate in the in vivo studies of pThr175 

pathogenicity appeared to be related to insufficient levels and regional spread of expression. This 

suggests that a different mechanism of delivery or a longer period of time is required to induce 

widespread pathological effects. In other words, pThr175 requires more time to induce pathology 

in the brain and needs to be expressed in multiple areas at higher levels to induce behavioural or 

large-scale changes. It may very well be that multiple hits are required, and that the toxicity of 

pThr175 tau is made worse by another contributor. This will be the focus of future studies. 
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6.4 Future directions 

One current study is addressing the synergistic toxicity of tau protein and transactive 

response DNA binding protein of 43 kDa (TDP-43). I am using the same somatic gene transfer 

as in chapter 5 to express 1) Thr175Asp-tau, 2) wild-type human tau, 3) rAAV9-GFP in the 

hippocampus of either wild-type or transgenic rats expressing human mutant TDP-43 (NEF-

tTA/TRE-TDP-43M337V) (Huang et al., 2012; Zhou et al., 2010). Interactions between these two 

pathological proteins may be synergistic in the neurodegenerative process, as individual 

pathology is rarely observed, and comorbid pathologies are frequent (Amador-Ortiz et al., 2007; 

Josephs et al., 2014a; Josephs et al., 2014b; Smith, 2017). The association of TDP-43 pathology 

to ALS and ALS-FTD spectrum diseases is well described (Neumann et al., 2006) and comorbid 

TDP-43 pathology is frequent in tauopathies such as AD and CTE (Josephs et al., 2014a; Josephs 

et al., 2014b; McKee et al., 2010). Both TDP-43 and tau protein may contribute to neuronal 

death in ALSci, and tau protein toxicity has previously been shown to act synergistically with 

other neurodegeneration-associated toxic proteins (Zabrocki et al., 2005). It is possible that one 

pathological process primes the other, in which case the toxicity of Thr175Asp expression may be 

enhanced by the coexpression of TDP-43 serving as a second hit to the CNS. 

The induction of pThr175 by traumatic brain injury in wild type rats provides an 

opportunity to study the upstream events leading to Thr175 phosphorylation. A time series study 

where pathological analysis is conducted at the time of injury, hours, days, and weeks after 

injury would allow for the characterization of tau fibrillization relative to phosphorylation status. 

Investigating this along with kinase activation status and co-localizing phospho-tau with these 

kinases would allow for the characterization of underlying kinases. Administering inhibitors of 

the identified kinases at the time of injury and following injury could be utilized to confirm 
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mechanistic involvement as well as determine the efficacy in blocking fibrillization of tau in this 

model. Additionally, GSK3β inhibition should be conducted in this model to characterize its 

therapeutic potential for blocking pThr175 toxicity as observed in vitro. This is particularly 

attractive as lithium is currently used in the treatment of psychological disorders (Geddes et al., 

2004) and would therefore be easily repurposed for clinical use, expediting therapeutic use if 

they prove efficacious. 

A detailed characterization of pThr175 in the tauopathies would elaborate further on my 

findings. This should be extended to tau mutation carriers including spicing modifying mutants 

and MPR affecting mutations. A more detailed account of the types of inclusions and pathology, 

as well as a further quantification with a larger cohort for each disease would shed light on the 

extent of pThr175 pathology in the disease process. 

The mechanism by which pThr175 tau induces GSK3β activity remains unknown. As 

mentioned above, it is possible that this occurs through opening of the hairpin conformation of 

tau protein to expose the PAD domain. Expressing a pThr175 construct lacking the first 18 amino 

acids of tau should therefore abolish the upregulation of GSK3β activity and should not lead to 

fibril formation, cell death, or Thr231 phosphorylation. 

The redistribution of activated GSK3β likely represents changes in the location and 

homogeneity of GSK3β activity in the cell. This warrants further, detailed investigation, and 

assays of GSK3β activity should be conducted. In situ activity assays of GSK3β in the presence 

and absence of pThr175 could be used to further delineate the nature of tau based GSK3β 

activation, (whether it is direct or indirect). Cellular fractionation could be used to investigate the 

activation status of GSK3β in multiple organelles. Finally, GSK3β isolation from different states 
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(injured/ uninjured) and organelles could be used to assay catalytic activity of the kinase in each 

subcellular region. 

Tau protein pathology has been observed in a plethora of neurodegenerative diseases. 

Regardless of whether tau is a primary or secondary cause of disease, the clear demonstration of 

tau protein toxicity in many in vitro and in vivo models suggests that once tau pathology is 

induced, it is a contributor to neuronal death. Therefore, tau protein based toxicity may need to 

be considered for future attempts at effective therapeutic interventions for neurodegenerative 

disease. It is also therefore likely that effective therapies will need to be based on individual 

molecular contributors possibly recognized through in vivo imaging of different pathological 

markers to account for co-morbid underlying molecular diseases. Therapies attempted thus far 

have failed, possibly due to multiple contributing sources of toxicity not being addressed in 

strategies attempted. Future attempts may require one inhibitor per molecular contributor. The 

concept of combination therapy has been applied with great success to treatment of cancer 

(Bayat et al., 2017) and has been suggested as a possible path for neurodegenerative disease 

(Bredesen and John, 2013; Schmitt et al., 2004). 

6.5 Conclusions 

pThr175 tau protein is toxic and may play a role in neurodegeneration. The extent to which 

this phosphoepitope is involved in tauopathies appears widespread and requires further 

investigation. Thr175 phosphorylation and tau pathology is induced by traumatic brain injury. 

This warrants further investigation to examine the upstream mechanism underlying pThr175 

phosphorylation as well as whether other stressors can induce this event. Therapeutic 
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intervention may be effective in mitigating this source of toxicity, and may be required in 

conjunction with other toxicity blockers for comorbid pathologies. 
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Chapter 9 
 
 
 
 

Cortical Manifestations in 
Amyotrophic Lateral Sclerosis  

 
A.J. Moszczynski, M.J. Strong   
Western University, London, ON, Canada 
 
 
 
BACKGROUND  
 
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neurode-
generative disease of the motor system. Although the earliest clinical descrip-
tion of ALS appeared in the thesis of Aran (1850), it was Charcot J.M. and 
Joffroy A (1869) who coalesced the findings of progressive degeneration of 
both upper (descending supraspinal) and lower motor neurons into a single 
diagnostic entity. The net effect of this degeneration is a progressive loss of 
motor function, culminating in paralysis and death generally within 3–5 years 
of symptom onset (Strong, 2003).  

Although neuropsychological changes in ALS were historically considered 
to be rare (Hudson A.J., 1993), the contemporary view is that 45–55% of 
patients with ALS will develop a neuropsychological syndrome reflective of 
frontotem-poral dysfunction, including a frontotemporal dementia (FTD), 
behavioral or cognitive impairment (ALSbi and ALSci, respectively), 
language impairment, or deficits in social cognition (Abrahams, Newton, 
Niven, Foley, & Bak, 2014; Elamin et al., 2011; Montuschi et al., 2015; Oh et 
al., 2014; Strong et al., 2009; Strong, Grace, Orange, & Leeper, 1996). The 
presence of a neuropsychological syndrome in ALS is prognostically relevant 
because affected patients will have a significantly shorter survival than if ALS 
occurs in isolation (Elamin et al., 2011; Hu et al., 2013). 

 
NEUROPSYCHOLOGICAL MANIFESTATIONS OF 
FRONTOTEMPORAL DYSFUNCTION IN 
AMYOTROPHIC LATERAL SCLEROSIS  
 
The neuropsychological manifestations of ALS can range from impairments in 
cognition or behavior, deficits in social cognition or theory of mind (ToM), or as 
an FTD consistent with either the Neary or Hodges criteria (Hodges & Miller, 
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2001; Neary et al., 1998; Strong, 2008; Strong et al., 2009). Rare presentations 
can include progressive nonfluent aphasia or semantic dementia, suggesting a 
continuum with FTD. Approximately 2–4% of patients who have ALS will 
develop concomitant Alzheimer disease (AD) (Consonni et al., 2013).  

Impairments in language, including deficits in naming, comprehension, and 
spelling, occur in upwards of 35% of patients (Abrahams et al., 2014). Defi-cits 
can be further subdivided into impairment in action verbs but not cognitive verbs, 
with the former showing a positive association with impairments in exec-utive 
functioning (York et al., 2014). These latter findings are associated with 
significant gray matter atrophy in the left precentral gyrus, left cingulate gyrus, 
and right medial frontal gyrus. As will be discussed, these observations begin to 
highlight the regional selectivity of the frontotemporal dysfunction in ALS.  

Impairments in verbal fluency are commonly observed. In a meta-analysis 
of published studies, Raaphorst and colleagues observed that among those 
indi-viduals with cognitive impairment, impairments in verbal fluency, visual 
mem-ory, and immediate verbal recall each had a significant effect size 
(Raaphorst, De, Linssen, De Haan, & Schmand, 2010).  

Behavioral dysfunction has been observed in upwards of 40% of patients with 
ALS and can include apathy, behavioral disinhibition, irritability, loss of 
sympathy/empathy, perseverative or stereotypic behavior, or changes in eat-ing 
behavior (Abrahams et al., 2014; van der Hulst, Bak, & Abrahams, 2014; Lomen-
Hoerth et al., 2003). An increased incidence of psychotic symptoms has been 
observed in those individuals with ALS-FTD (Lillo, Garcin, Hornberger, Bak, & 
Hodges, 2010). Deficits in ToM have been described in a significant proportion of 
patients who have ALS and are characterized as an inability to represent others’ 
intentions and beliefs and thus the ability to predict others’ behavior by attributing 
independent mental states to them (Adenzato, Cavallo,  
&  Enrici, 2010). These deficits can be observed even in the absence of overt 
evidence of dementia (Meier, Charleston, & Tippett, 2010). Consistent with 
pathology of the orbitofrontal cortex, impairments range from apathy through to 
greater difficulty in identifying emotional expression or reductions in emotional 
attributions while sparing intentional attributions (and thus a reduced ability to 
recognize others’ emotional states) (Cerami et al., 2014). ToM deficits cor-relate 
with diffuse cortical atrophy [determined by magnetic resonance imaging (MRI)] 
with a specific accentuation in the left superior precentral gyrus, left paracentral 
gyrus, and right precentral gyrus (Agosta et al., 2012). 

 
MOLECULAR, CLINICAL, AND NEUROPATHOLOGICAL 
CORRELATES OF FRONTOTEMPORAL DYSFUNCTION 
IN AMYOTROPHIC LATERAL SCLEROSIS  
 
Approximately 10% of ALS cases are genetic in origin (Al-Chalabi et al., 2012; 
Renton, Chio, & Traynor, 2014) (Table 9.1). Although the mechanism(s) by which 
many of these mutations induce neuronal degeneration are uncertain, 
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TABLE 9.1   Genes Associated With Amyotrophic Lateral Scleros is and Their Overlap With Frontotemporal Dementia   
 
   Functional     PLS/  

Protein  Gene OMIM Changes  FTD ALS  ALS-FTD  Other  References  

Superoxide SOD1 147450 Oxidative stress  +  + (SBMA, Rosen et al. 
dismutase 1       PMA) (1993) 

Senataxin SETX 608465 DNA/RNA  +  + Chen et al. 
   processing     (2004) 

Spastin SPAST 604277 NFL,  +  + Munch, 
   cytoskeleton,     Rolfs, and 
   microtubule     Meyer, 2008; 
   deficits     Wharton et al. 
        (2003) 

Fused in sarcoma FUS 137070 Cell death + + +  Mackenzie, 
   (closely related     Rademakers, 
   to TDP)     and Neumann, 
        2010; Vance 
        et al. (2009) 

Vesicle-associated VAPB 605704 Altered axonal  +  + (SMA) Nishimura 
membrane protein–   transport     et al. (2004) 
associated proteins         
B and C         

Angiogenin, ANG 105850 DNA/RNA  + + + (PBP) van Es et al. 
ribonuclease,   processing     (2009) 
ribonuclease A         
family         

        Continued  
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TABLE 9.1   Genes Associated With Amyotrophic Lateral Scleros is and Their Overlap With Frontotemporal Dementia—c ont’d   
 
   Functional     PLS/  

Protein  Gene OMIM Changes  FTD ALS  ALS-FTD  Other  References  
         

TAR DNA binding TARDBP 605078 DNA/RNA + + +  Davidson 
protein (TDP-43)   processing     et al. (2007), 

        Sreedharan 
        et al. (2008) 

Factor-Induced FIG4 609390 Cell death/  +  + Chow et al. 
gene 4 (FIG4)   protein     (2009) 
homolog, SAC1   degradation      
lipid phosphatase         
domain containing         
(Saccharomyces         
cerevisiae)         

Optineurin OPTN 602432 Cell death/  +  + (PDB) Maruyama 
   protein     et al. (2010) 
   degradation      

Ataxin 2 ATXN 2 601517 Oxidative stress  +  + (SCA2) Elden et al. 
        (2010) 

Valosin-containing VCP 601023 Protein + + + + Forman 
protein   degradation     et al. (2006), 

        Johnson et al. 
        (2010), Weihl, 
        Pestronk, 
        and Kimonis 
        (2009) 

Ubiquilin 2 UBQLN2 300264 Protein + + +  Gellera et al. 
   degradation     (2013), Ugwu 
        et al. (2015) 
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Sigma nonopioid SIGMAR1 601978 Ion channel  + –  Al-Saif,  
 

intracellular   regulation     Al-Mohanna,  
 

receptor 1        and Bohlega  
 

        (2011), Belzil 
 

        et al. (2013)  

          

Profilin 1 PFN1 176610 NFL, + +   Smith et al. 

tions

 

   cytoskeleton,     (2015), van  

         

   microtubule     Blitterswijk  
 

   deficits     et al. (2013)  
 

Chromosome 9 open C9orf72 614260  + + +  Renton et al.  
 

reading        (2011) 
 

frame 72         
 

        
 

Charged CHMP2B 609512 Vesicle + +   Cox et al.  

    

multivesicular body   trafficking     (2010)  
 

protein 2B          
 

Unc-13 homologue UNC13A 609894 Synaptic + + +  Shatunov et al. 
 

elega ns)   releas e     

(2010) 
 

A (Caenorhabditis   neurotransmitter     

Scle
rosis

 

d-amino-acid DAO 124050 Oxidative stress  +   Mitchell et al.  

     

oxidase        (2010)  
 

Dynactin 1 DCTN1 601143 Altered axonal  +  + (Perry Farrer et al. 

pter

 

   transport    syndrome) (2009), Munch  

        

        et al. (2004)  
 

Neurofilament, NEFH 162230 NFL,  +   Al-Chalabi 
 

heavy polypeptide   cytoskeleton,     et al. (1999)  

        

   microtubule      
 

   deficits      
 

          
  

Continued 
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TABLE 9.1   Genes Associated With Amyotrophic Lateral Scleros is and Their Overlap With Frontotemporal Dementia—c ont’d   
 
   Functional     PLS/  

Protein  Gene OMIM 
a Changes  FTD ALS  ALS-FTD  Other  References  

Peripherin PRPH 170710 NFL,  +   Corrado et al. 
   cytoskeleton,     (2011) 
   microtubule      
   deficits      

Sequestome 1 SQSTM1 601530 Protein + + + + (PDB) Le Ber et al. 
   degradation     (2013) 

TAF15 RNA TAF15 601574 DNA/RNA  +   Hand et al. 
polymerase II, TATA   processing     (2002) 
box binding protein         
(TBP)–associated         
factor, 68 kDa         

Spastic SPG11 610844 DNA damage  +  + (HSP) Daoud et al. 
paraplegia 11   repair     (2012) 

Elongator ELP3 612722 Projection  +   Simpson et al. 
acetyltransferase   neuron     (2009) 
complex subunit 3   maturation       
 
ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; HSP, hereditary spastic paraplegia; NFL, neurofilament; OMIM, Online Mendelian Inheritance in Man; 
PBP, progressive bulbar palsy; PDB, paget disease of bone; PLS, primary lateral sclerosis; PMA, progressive muscular atrophy; SBMA, spinal-bulbar muscular atrophy; 
SCA2, spinocerebellar ataxia type 2; SMA, spinal muscular atrophy; TAR, transactive response; TDP, TAR DNA-binding protein. 
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there are three general themes including the induction of oxidative stress (eg, 
mutations in SOD1, ATXN2, DAO), alterations in the cytoskeleton and/or 
impairments in axonal transport (eg, VAPB, SPAST, DCTN1, NEFH, PRPH), 
and alterations in RNA metabolism (eg, TARDP, ANG, FUS, and pathological 
hexanucleotide expansions of C9orf72). However, a group of genetic 
mutations cannot be readily bundled into these potential mechanisms 
including genes thought to directly give rise to ALS and those thought to be 
genetic modifi-ers (CHMP2B, VCP, UBQLN2, SIGMAR1, PFN1, UNC13A, 
SQSTM1, TAF15, SPG11, ELP3). Ultimately, however, there are few clinical 
features that are unique to any of the genes associated with ALS, suggesting 
that the motor degeneration and potentially the neuropsychological deficits are 
syndromic or, in the latter, reflective of specific neural network dysfunction 
that is indepen-dent of the underlying pathological mutation.  

The theme of ALS being syndromic is supported by neuropathological 
studies. Consistent with the primary manifestation as a progressive loss of 
motor function, the hallmark of ALS is a loss of both spinal and bulbar motor 
neurons with degeneration of descending supraspinal innervation pathways. 
Affected motor neurons demonstrate a range of nuclear and cytoplasmic neu-
ronal inclusions (NNIs and NCIs, respectively). In a blinded analysis of both 
sporadic and familial ALS motor neuron pathology, it was not possible to 
identify (by light microscopy) a “signature” pattern of neuronal inclusions of 
either cytoskeletal proteins or RNA-binding proteins that would allow 
differentiation amongst individual genotypes of ALS (Keller et al., 2012). The 
exception to this was SOD1 mutations. The presence of frontotemporal 
dysfunction in ALS is typically indistinguishable from that occurring as an 
isolated FTD in which diffuse frontal and anterior temporal atrophy is accom-
panied by a vacuolar appearance consistent with superficial linear spongiosis 
throughout affected regions (Wilson, Grace, Munoz, He, & Strong, 2001). 
Somewhat in contrast to the pathology of affected motor neurons in ALS, 
cortical and subcortical neurons in cases with a syndrome of frontotemporal 
dysfunction tend to display an increase in transactive response DNA-binding 
protein 43 (TDP-43) cytosolic expression and a range of both NCIs and NNIs 
(Neumann et al., 2006).  

Although an up-regulation of TDP-43 expression can also be seen as a 
response to neuronal injury (Moisse et al., 2009), the presence of both an 
increased expression of neuronal TDP-43 and TDP-43 immunoreactive NNIs 
and NCIs as major neuropathological features of both ALS and FTD suggests 
a common pathogenic process across the two diseases. TDP-43 has a range of 
activities that map to the regulation of gene expression, including such diverse 
functions as anchoring of chromatin, participation in splicing and RNA 
granule formation, the regulation of RNA translation, and participation in 
RNA deg-radation through the Dicer complex (Droppelmann, Campos-Melo, 
Ishtiaq, Volkening, & Strong, 2014). 
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The hypothesis of a continuum encompassing both ALS and FTD has been 

further reinforced by the discovery of a pathological expansion of a hexa-
nucleotide repeat (GGGGCC) in C9orf72 in both familial and sporadic ALS 
(DeJesus-Hernandez et al., 2011; Renton et al., 2011). The RNA associated 
with this expansion undergoes a unique type of repeat-associated non–ATG-
initiated translation to give rise to dipeptide repeat proteins that can function 
as sinks for a range of RNA-binding proteins, effectively sequestering them 
from participating in RNA metabolism (Ash et al., 2013; Souza, Pinto, & 
Oliveira, 2015). It remains to be fully clarified as to whether the pathological 
RNA alone or the presence of dipeptides alone, or a combination of both, are 
sufficient to induce cell death (Hukema et al., 2014; Mizielinska et al., 2014). 
The neurodegeneration associated with pathological hexanucleotide expan-
sions in C9orf72 is typically more symmetrical than that observed with other 
variants of FTD and includes frontal and temporal cortices and the hippocam-
pus, as well as deeper structures such as the striatum and thalamus (Mahoney 
et al., 2012).  

No single pathological inclusion describes all variants of frontotemporal 
dysfunction in ALS. Indeed, there is increasing evidence to suggest the coexis-
tence of several pathological protein inclusions within the same case, including the 
presence of both C9orf72 and TDP-43 (Mackenzie et al., 2013) or C9orf72 and the 
microtubule-associated protein tau in pathological inclusions (Bieniek et al., 
2013). In lumbar spinal motor neurons, the coexistence within the same inclusion 
of the RNA-binding proteins TDP-43, fused in sarcoma/translocated in 
liposarcoma, and Rho guanine nucleotide exchange factor has been described 
(Keller et al., 2012). The critical point here is that although there is a tendency to 
describe the various neurodegenerative syndromes using nomenclature that 
reflects either the underlying genetic basis or the preponderance of a single pro-
teinaceous inclusion, upon critical evaluation the syndromic nature of ALS and its 
associated frontotemporal syndromes is evident.  

The clinical expression of pathological expansions of C9orf72 is heteroge-
neous, ranging from a rapidly progressive variant with marked neuropsycho-
logical abnormalities to an atypically slow progression that may last decades 
(Chester et al., 2013; Kandiah et al., 2012; Khan et al., 2012). Such a range of 
survival is not only consistent with the syndromic nature of ALS, but also sug-
gests that the phenotypic expression of a pathological expansion of C9orf72 
can be modified either by the presence of a second genetic mutation (the basis 
of oligogenic inheritance) or alternatively by either exogenous or 
environmental factors.  

Perhaps the most controversial aspect of the pathogenesis of frontotem-
poral dysfunction in ALS is whether or not alterations in the metabolism of tau 
are present. However, distinct from the presence of a tauopathy among the 
previously hyperendemic focus of ALS in the Western Pacific, we have 
observed that tau immunoreactive glial and neuronal inclusions are a signifi-
cant feature of ALSci (Yang, Sopper, Leystra-Lantz, & Strong, 2003; Yang & 
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Strong, 2012). Tau isolated from the frontal cortex of patients with ALSci is 
typically insoluble with (in contrast to AD tau) all six tau isoforms being 
expressed in the insoluble fraction and abnormally phosphorylated at threo-
nine 175 (pThr175-tau) (Strong et al., 2006). Both the pattern of tau deposi-
tion and this phosphorylation state render the tau deposition of ALSci different 
from primary age-related tauopathy (Crary et al., 2014; Jellinger et al., 2015) 
and from normal tau deposition as a function of aging (Yang, Ang, & Strong, 
2005). Moreover, pseudophosphorylated tau mimicking pThr175-tau forms 
pathological intracellular inclusions in vitro and leads to cell death (Gohar et 
al., 2009; Moszczynski et al., 2015).  

These observations suggest that the phenotypic expression of both the 
motor neuron and cortical or subcortical neurodegeneration of ALS can be 
driven by a wide range of pathological processes, sometimes occurring as 
isolated meta-bolic syndromes or at times as a confluence of metabolic 
derangements. If this is the case, then the motor neuron phenotype would be 
expected to be uniform across all biological variants because there is a limited 
phenotypic reserve with which to manifest motor neuron dysfunction, 
specifically as a loss of motor function. The converse cannot be held for the 
neuropsychological manifesta-tions because the phenotypic reserve upon 
which to draw for the clinical expres-sion of a specific pathological process 
will be considerably greater. However, these latter manifestations are not 
limitless and, as discussed, are reflected in a discrete number of well-defined 
syndromes of frontotemporal dysfunction. As will become evident, our 
postulate is that these syndromes do in fact draw on a limited phenotypic 
reserve, but in this case, the reserve is defined by neural networks. 

 
NEUROIMAGING CORRELATES OF IMPAIRED NEURAL 
NETWORK FUNCTION AS THE BASIS OF FRONTOTEMPORAL 
DYSFUNCTION IN AMYOTROPHIC LATERAL SCLEROSIS  
 
The postulate that the frontotemporal syndromes of ALS are based on perturba-
tions in neural networks finds support across a number of neuroimaging modali-
ties, but most specifically resting state functional MRI (RS-fMRI) and diffusion 
tensor imaging (DTI) (see Chapter 3). RS-fMRI correlates brain regions that are 
activated concomitantly and has been used to compare functional network alter-
ations in ALS and the behavioral variant of FTD (bvFTD) (Trojsi et al., 2015). 
This latter study highlighted the involvement of three major neural networks in 
both ALS and bvFTD: the salience network (SN), the default mode network 
(DMN), and the central executive network (CEN) (Fig. 9.1).  

To visualize the networks more directly and, more specifically, to assess 
the integrity of neuronal pathways, DTI can be applied. The basis of DTI is 
the measurement of the diffusion of water along neuronal projections. Given 
the narrow diameter of neuronal tracts, water is more able to diffuse along the 
tract than across it, having an anisotropic motion, which when measured, 
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FIGURE 9.1  Three major networks affected in 
amyotrophic lateral sclerosis (ALS) and frontotem-
poral dementia (FTD). Red nodes have been shown to 
be dysfunctional in FTD. (A) Default mode net-work 
(DMN) areas affected in FTD include the medial 
prefrontal cortex (mPFC) and medial tem-poral (MT) 
lobes, whereas the posterior cingulate cortex (PCC), 
ventral precuneus (VP), and parietal cortex (PC) are 
less commonly implicated. The dashed circle 
indicates that the PC is superficial to the contained 
structures. (B) Salience network (SN) nodes including 
the anterior cingulate cortex (ACC), insula (In), and 
prefrontal cortex (PFC) are all implicated in FTD-
related dementia processes.  
(C) Central executive network (CEN) areas 
affected include the dorsolateral prefrontal cortex 
(dlPFC), whereas the posterior parietal cortex is 
less com-monly implicated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
allows for an approximation of the tract direction to be generated. More 
myelination of tracts increases the signal because of higher water content. 
Therefore a reduced signal is likely to indicate reduced integrity of the connec-
tive pathways. Although not yet applied to understanding the frontotemporal 
dysfunction of ALS, DTI is being applied to understanding the degeneration 
of the corticospinal tracts as part of the neural network subserving motor func-
tion (Brettschneider, Petzold, Sussmuth, Ludolph, & Tumani, 2006; Hendrix 
et al., 2015; Karlsborg et al., 2004).  

The concept that neural networks mediate not only the phenotypic expres-
sion of the neurodegenerative process but also can serve as “highways of 
disease propagation” has been supported by staging the spread of either tau 
protein or α-synuclein pathosis in AD and Parkinson disease (Braak & Braak, 
1995; Braak et al., 2003). These observations suggest that whereas network 
connectivity may be affected as a whole, there are specific patterns of vulner-
ability within these networks. This approach to the study of neural networks 
has provided insight into the dysfunctional network systems in a variety of 
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disease states in which syndrome-specific patterns of dysfunction are observed 
(Seeley, Crawford, Zhou, Miller, & Greicius, 2009). Extending these 
methodol-ogies to evaluate the integrity of white matter tracts within the brain 
(structural network imaging), mathematical models in conjunction with fMRI 
has yielded the capacity to evaluate differences in activated brain areas 
comprising nodes in these networks (functional network imaging) and to 
ascribe differences to individual disease states (Zhou et al., 2010).  

The understanding of neural networks gained through such studies can be 
applied to understanding the neuroanatomical origins of the frontotemporal syn-
dromes observed in ALS. The DMN consists of regions in the medial temporal 
lobe (memory), medial prefrontal cortex (involved in ToM), posterior cingulate 
cortex, ventral precuneus, and medial, lateral, and inferior parietal cortices. The 
DMN is active largely during periods of wakeful rest, while the patient is not 
focusing on anything occurring in the outside world (ie, daydreaming) (Yan et al., 
2009). Importantly, the DMN has been implicated in social cognition (Schilbach, 
Eickhoff, Rotarska-Jagiela, Fink, & Vogeley, 2008). The SN has been implicated 
in a number of psychotic disorders (Palaniyappan & Liddle, 2012). In cases of 
young-onset FTD, many are first diagnosed as psychotic disorders up to 5 years 
before FTD because of the similarity of presentation (Velakoulis, Walterfang, 
Mocellin, Pantelis, & McLean, 2009). It is noteworthy then that increased 
psychotic symptoms have been observed in ALS with FTD (Lillo et al., 2010). 
The SN is thought to act as a switch between the DMN and the CEN (Menon & 
Uddin, 2010; Sridharan, Levitin, & Menon, 2008), allow-ing for the focus of 
attention to the external world and one’s inside thoughts to be prioritized and 
maintained. This network consists of the anterior cingu-late, insula, and prefrontal 
cortices. The CEN is implicated in executive control (D’Esposito, 2007; Koechlin 
& Summerfield, 2007). The CEN (also referred to as the frontoparietal network) 
consists of the dorsolateral prefrontal cortex and posterior parietal cortex, with 
particular activity along the intraparietal sul-cus. Importantly, the DMN and CEN 
have anticorrelated activations such that activation of one leads to inhibition of the 
other (Fox et al., 2005). Supporting dysfunction in these networks in ALS, the 
presence of protein inclusions in the anterior cingulate cortex paired with the signs 
of both ToM (van der Hulst et al., 2014) and executive control dysfunction (York 
et al., 2014) may indicate an SN abnormality because there are dysfunctions across 
all three network activities that may indicate a switching and control abnormality. 
Consistent with this, both ALS and FTD brains have reduced SN functioning, 
whereas patients with AD have an enhancement in this network and a reduction in 
activity of the DMN (Zhou et al., 2010). 

 
Beyond describing the basis of the neuropsychological manifestations of ALS, 

the analysis of neural networks has provided insight into neural network 
dysfunction in ALS before the detection of executive dysfunction (Trojsi et al., 
2015). When both ALS and bvFTD were compared with controls, reduced right 
supramarginal gyrus connectivity (reflecting CEN dysfunction) and decreased 
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medial prefrontal cortex and insular activation (reflecting SN dysfunction) was 
observed in both ALS and bvFTD, although it occurred in bvFTD more than 
in ALS. Of note, divergence between disease states was observed, because 
ALS cases showed reduced posterior cingulate connectivity (reflecting DMN 
dysfunction), whereas bvFTD cases showed an increase in connectivity of this 
region along with decreased connectivity in the frontal regions of this 
network, indicating more widespread connectivity changes when the cognitive 
phenotype was present. The convergence in network dysfunction may indicate 
common processes at work in these separate phenotypes. Conversely, the 
divergence in DMN activity, along with more severe deficits in other network 
connectivity may be responsible for the lack of change in social cognition in 
some patients with ALS.  

Additional network connectivity studies in patients with bvFTD have 
shown a reduced connectivity throughout the brain, including the anterior cin-
gulate cortex, temporal poles, frontal gyri, and insular cortices (Agosta et al., 
2013). This reduced connectivity has been determined to represent a reduction 
in connection efficiency and may represent a reduced ability to transfer and 
therefore process information (Agosta et al., 2013). Additionally, white matter 
integrity is compromised in the same regions as major gray matter loss, with 
extension to other regions with no measured gray matter atrophy (Mahoney et 
al., 2012). A reduction in the overall connectivity of the uncinate fasciculus 
has been implicated in bvFTD in distinction from other dementias, namely 
AD, which shares some network connectivity–change overlap with bvFTD 
(Mahoney et al., 2012).  

Apart from the cognitive involvement, structural brain network imaging 
studies of patients with ALS has revealed a motor network dysfunction that 
correlates with the severity of disease to a larger extent than total measured 
atrophy (Verstraete et al., 2014). Expansion of these deficits is seen with 
disease progression, suggesting a spread of pathosis reminiscent of the spread 
of protein inclusions (reviewed in Jucker & Walker, 2013). Such a postulate 
would also explain a progressive diversification of symptoms, implying that 
this spread of dysfunctional activity along brain network paths is a key 
component of the disease process. 

 
MODELS OF NEUROPSYCHOLOGICAL DYSFUNCTION 
IN AMYOTROPHIC LATERAL SCLEROSIS  
 
Whereas a number of models of the motor dysfunction of ALS have been iden-
tified, there are very few that recapitulate the neuropsychological dysfunction 
described, and essentially none that address the integrity of neural networks. Thus 
although the most commonly utilized murine model for ALS harbors the G93A 
SOD1 mutation seen in familial ALS, little is known regarding its impact on cog-
nitive function in the mouse, although these mice do possess shorter dendrites in 
the prefrontal cortex and have reduced fear extinction (Sgobio et al., 2008). 
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The latter precedes the development of motor deficits. Mice harboring the 
G37R SOD1 mutation have spontaneous alternation deficits on a T maze task 
(Filali, Lalonde, & Rivest, 2011).  

Murine models of TDP-43 pathology have been developed, including the 
overexpression of wild-type TDP-43 (Wils et al., 2010). These mice develop 
spinal and cortical TDP-43 pathosis reminiscent of ALS-FTD. In a separate 
study, the overexpression of human wild-type TDP-43 in mice led to memory 
deficits in the Morris water maze as well as fear conditioning tasks (Tsai et al., 
2010). The expression of mutant TDP-43 (A315T) induces both cortical and 
spinal motor neuron death in mice in the absence of pathological cytoplasmic 
TDP-43 aggregates (Wegorzewska, Bell, Cairns, Miller, & Baloh, 2009). To 
attempt to more precisely reflect the human disease state, Swarup and col-
leagues designed mouse models of human wild-type TDP-43 as well as 
A315T and G348C mutants that expressed TDP-43 at levels that more closely 
resemble that in the human CNS (Swarup et al., 2011). They found that along 
with motor deficits, mice developed cytoplasmic TDP-43 pathosis resembling 
that of ALS-FTD. Affected mice developed learning deficits on the Barnes 
maze test, indica-tive of cognitive abnormalities.  

The discovery of C9orf72 is relatively recent, and thus the development of 
models of cognitive dysfunction lags behind that of SOD1 and TDP-43 models. 

 
THERAPEUTIC STRATEGIES  
 
Given the relatively recent increase in our understanding of both the incidence 
of frontotemporal dysfunction in ALS and its probable phenotypic basis in 
dysfunction of neural networks seemingly independent of the underlying pro-
teinopathy, little is known regarding its treatment. Indeed, at this time, there 
are no studies that have specifically addressed pharmacotherapies for this 
aspect of the disease process. 

 
CONCLUSIONS AND FUTURE DIRECTIONS  
 
ALS is a clinical presentation of a group of pathologies that happen to affect 
the same cells through potentially different mechanisms. When patients 
exhibit dysexecutive syndrome, it is the result of specific network activity 
malfunc-tion, such as the insula in the SN. Spread of pathosis through these 
networks is likely to be responsible for disease progression. Further insight 
into the appar-ent selective vulnerability of the motor and frontal cortical 
neurons will also be important in determining the etiology of the disease. 
Patient imaging with molecule-specific ligands and genotypic analysis to 
determine which patholo-gies are the most likely causes of the phenotype will 
be crucial for developing strategies to stop disease progression in individual 
patients and stratify cases based on possible mechanisms of cell death such as 
oxidative, RNA processing, or cytoskeletal abnormalities. 
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