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Abstract 

 

Post-Traumatic Stress Disorder (PTSD) and addiction are strongly comorbid. However, the 

underlying neural mechanisms by which traumatic memory recall may increase addiction 

liability are poorly understood. The inability to suppress memory recall related to either stressful 

or rewarding, drug-related experiences may be an underlying neuropsychological feature capable 

of triggering both PTSD or addiction-related behaviours. Our previous research has shown that 

transmission through dopamine (DA) D4 and D1 receptor subtypes (D4R, D1R) within the 

prefrontal cortex (PFC) strongly modulates emotional memory acquisition and recall (Lauzon et 

al., 2009). Using olfactory fear conditioning and morphine conditioned place preference (CPP) 

procedures in rats, combined with molecular protein expression analyses, we examined if 1) 

associative fear memory recall would increase subjects’ sensitivity and vulnerability to morphine 

reward salience; 2) if blocking fear memory recall with intra-PFC D1R stimulation may block the 

potentiation of morphine reward salience; 3) if PFC D4R stimulation would potentiate morphine 

reward salience by modulating the emotional salience of fear memories during memory 

acquisition. Furthermore, we concomitantly examined the underlying PFC molecular signaling 

pathways associated with these behavioural effects. We report that rats receiving supra-threshold 

(0.8 mA) fear conditioning showed strong associative fear memories and heightened morphine 

reward sensitivity (with either systemic or intra-ventral tegmental area [VTA] administered 

morphine). Inhibition of fear memory recall with intra-PFC D1R activation reduced the 

potentiated morphine CPP through cyclic adenosine monophosphate (cAMP) and extracellular-

signal-related kinases 1 and 2 (ERK1/2) dependent molecular pathways. In addition, PFC D1R 

stimulation selectively increased phosphorylation levels of ERK 1/2. In contrast, PFC D4R 

activation bi-directionally controlled fear memory acquisition and morphine CPP behaviours 

through a calcium/calmodulin dependent kinase II (CaMKII)-dependent mechanism wherein 

D4R activation selectively stimulated phosphorylation of PFC CaMKII. Our findings reveal for 

the first time a novel DA-receptor dependent mechanism in the mammalian PFC capable of 

controlling both fear-related associative memory formation and the salience of morphine-related 

reward memories. 
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1. Introduction 

1. 1 Post-traumatic Stress Disorder (PTSD) 

PTSD is classified as an axis I anxiety disorder that can develop after individuals 

experience repeated or singular traumatic events, typically involving the threat of serious injury, 

physical harm or death (Diagnostic and Statistical Manual of Mental Disorders. 5th ed., 2013). 

PTSD remains one of the most frequent neuropsychiatric disorders, with a lifelong prevalence in 

the US estimated at 8.3%. Approximately 1 in 12 adults will experience PTSD-related symptoms 

during their lives (Breslau et al., 1998; Schöner, Heinz, Endres, Gertz & Kronenberg, 2017). 

Some professions, such as soldiers, first responders (police, firefighters, etc), are at higher risk of 

trauma exposure and subsequently developing PTSD. The symptoms of this disorder are a 

complex constellation of symptoms including hyperarousal (sleep disturbances, difficulty 

concentrating), behavioural avoidance (diminished participation in activities to avoid people 

and/or places that are associated with the traumatic experience), emotional numbing, and re-

experiencing phenomena. The hallmark of PTSD symptoms is characterized by intrusive 

memory recall of the traumatic event, triggered by exposure to the related cues, typically 

associated with intense and prolonged anxiety (DSM 5th Ed, 2013). For example, a veteran could 

link the sound of a lawn mower to the sound of a helicopter in the battle field, which in turn 

triggers the stressful memory recall and feelings of anxiety.  This extreme and sustained 

maladaptive response to the stressful events may persist for years, and is often associated with 

significant disability and distress (Schöner et al., 2017). The types of stressors can also influence 

the likelihood of developing PTSD, as well as the severity of the symptoms. Depending on the 

nature of the traumatic event, longer exposure and greater intensity of the experience can 

increase the risk for the subsequent development of PTSD. Stressor severity was also the 

strongest predictor of symptoms at both 3 and 12 months after trauma exposure (Wolfe, Erickson, 

Sharkansky, King & King, 2000). Experiences related to interpersonal assaults, such as rape or 

violent combat, have a greater likelihood of causing PTSD compared to events like natural 

disasters and/or traffic accidents (Breslau et al., 1998). However, not all individuals that 

experience traumatic events will go on to develop PTSD. Brewin, Andrews and Valentine (2000) 

summarized the risk factors associated with the later development of PTSD: trauma severity, 
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previous trauma history (such as childhood abuse), comorbid mental disorders, gender, lower 

education, introverted personalities, the availability of post-traumatic support services, are all 

contributing factors to the development and prognosis of the disorder.   

The etiology of PTSD is complex and multifactorial; and the symptoms of PTSD have 

been linked to a variety of underlying neuropathological mechanisms (Brewin et al., 2000; 

Pizzimenti & Lattal, 2015). Over the past several decades, research has largely shifted attention 

from the potential role of the endocrine system, to specific neural circuits which are involved in 

fear memory regulation. Currently, PTSD is generally conceptualized as a neural disorder related 

to abnormal memory extinction. For example, a significant body of neuroimaging studies have 

revealed that PTSD patients show hyperactivity in the amygdala, hypoactivity in the medial 

prefrontal cortex (mPFC), and abnormal hippocampal function, when processing stimuli with 

negative emotional valence. Due to the inhibitory nature of the PFC projection to the amygdala, 

it has been proposed that the re-experiencing of traumatic memories could result from a lack of 

inhibition from the PFC to the amygdala (Shvil, Rusch, Sullivan & Neria, 2013; Tipps, Raybuck 

& Lattal, 2013). In the review of Shvil et al. (2013), the authors summarized several pieces of 

evidence regarding the etiology of PTSD. The authors pointed out that PTSD patients show 

deficiencies in processing danger-safety related contextual information compared to trauma 

exposed non-PTSD individuals. With the persistent re-experiencing of traumatic memories, 

PTSD individuals not only reconsolidate the stressful events, but also maintain the physiological 

hyperarousal state which leads to the dysfunction of other physiological systems. Indeed, Shvil et 

al. (2013) also pointed out that PTSD patients have distinct abnormal psychophysiological 

features, such as heightened resting heart rate, persistent elevated heart rate during exposure to 

traumatic stimuli, which is an indication of weakened regulation of psychophysiological 

responses. Due to these constant states of anxiety (both psychological and physiological), it is 

perhaps not surprising that PSTD patients will often self-medicate with drugs of abuse in an 

attempt to relieve their symptoms (Bradizza, Stasiewicz & Paas, 2006). 

1. 2 Opiate Addiction 

Across the wide range of drugs of abuse, opiate-class drugs represent the most addictive 

by producing potent rewarding effects in the early stages of exposure, and the formation of 

potent associative memories linked to the drug-taking experience (Hyman, Malenka & Nestler, 
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2006). While the initial/early drug exposure phase is generally controlled and voluntary; 

compulsive and uncontrolled drug taking is maintained due to the euphoric effects of drugs 

combined with a need for withdrawal symptoms alleviation (Everitt et al., 2008). This stage is 

concomitant with neurobiological changes in various brain regions, including the prefrontal 

cortical areas and subcortical areas, such as the mesolimbic DA system, which in turn can 

modify drug-seeking behaviours (Everitt & Robbins, 2005). After repeated drug exposure, full-

blown addiction and dependence develops, along with a wide variety of associated 

neurobiological and behavioural changes (Everitt et al., 2008).  At this stage, drugs exert 

controlling power over behaviours, characterized by compulsive drug taking and/or obsessive 

craving for the drug of abuse (Hyman et al., 2006). Repeated drug use also results in molecular 

and pharmacological neuroadaptions involving tolerance to the drugs rewarding effects, leading 

to greater and greater consumption levels in order to achieve the desired hedonic state of reward 

(Nestler & Aghajanian, 1997). 

Current theories point out the importance of learning and memory dysregulation during 

the addiction process, involving maladaptive forms of Pavlovian and instrumental learning 

(Hyman et al., 2006). As mentioned previously, drugs of abuse hijack the neural mechanisms 

involved in emotional memory formation, such as the mPFC, which controls executive functions 

and emotional memory processing (Hyman et al., 2006). Importantly, addicted individuals 

usually associate drugs and their euphoric effects with specific, associative environmental cues. 

Re-encountering these cues can then elicit drug-related memories, which in turn can trigger 

compulsive drug seeking behaviours and relapse.  

Opioids are currently the most effective analgesics for clinical pain management. 

Nevertheless, there is currently a national and international opioid addiction epidemic due to the 

wide spread availability of both prescription and illicit forms of opiate-class compounds and a 

concomitant dramatic rise in opioid-related overdose deaths (Popova, Patra, Mohapatra, Fischer 

& Rehm, 2009). According to the International Narcotic Control Board (2006), Canada ranked 

first (in per capita use) for consumption of hydromorphone, second in morphine and oxycodone 

use and third in hydrocodone use. In 2003, there were an estimated 321,000-914,000 abusers of 

non-medical prescription opioids. This number has increased 24% from 2002 to 2005 (Popova et 

al., 2009). Based on the OPICA study conducted in five Canadian cities (Vancouver, Toronto, 



4 
 

 
 

Montreal, Edmonton and Quebec City, Fischer et al., 2005), 48.9% of addicts are non-medical 

prescription opioid users, 27.8% are using illicit heroin, and 23.2% combine opioid drugs with 

other classes of drugs. However, recreational opioid abuse is most likely underestimated due to 

the clandestine nature in which these drugs are consumed and reported, both in Canada and 

globally (Fischer et al., 2005; Popova et al., 2009).   

Opioid drugs produce potent euphoric effects and have exceptionally high abuse liability. 

Long term exposure results in both psychological and physical dependence. Withdrawal leads to 

emotional and motivational symptoms, such as anhedonia, dysphoria and craving. Unlike other 

classes of drugs, such as psychostimulants, opioid withdrawal also results in a series of physical 

symptoms: hypertension, abdominal pain, flu-like symptoms, tremor and possibly death (Hyman 

et al., 2006).  

A tremendous body of research has identified many of the neuronal mechanisms involved 

in opioid addiction. Endogenous and exogenous opioid molecules bind the mu opioid receptor 

subtype (MOP), which are widely spread in the brain and highly concentrated in the ventral 

tegmental area (VTA, Fields & Margolis, 2005), which is the origin of mesocorticolimbic 

dopamine (DA) pathway (Missale, Nash, Robinson, Jaber & Caron,1998). The MOP is 

inhibitory in nature and usually located on the terminals of GABA interneurons in the VTA; 

once activated by opioids, the VTA MOR can inhibits GABA inhibitory effects on DA neurons 

in the VTA (Fields & Margolis, 2005). In other words, MOP activation disinhibits the inhibitory 

effects of GABA neurons on VTA DA neurons, thereby indirectly increasing activity of the 

mesocorticolimbic DA pathway. Since increased VTA DA activity is associated with the 

processing of reward-related motivational information, one potential mechanism underlying the 

rewarding and addictive properties of opioids is by increasing DA transmission to other limbic 

areas during drug use (Everitt et al., 2008; Fields & Margolis, 2005; Hyman et al., 2006). 

Substantial research has demonstrated the critical role of the VTA in opioid addiction. For 

example, Olmstead and Franklin (1997) have reported that intra-VTA morphine administration 

elicited drug seeking behaviours, but this effect was not observed following morphine infusions 

into other brain regions, such as the amygdala and hippocampus. Blocking the MOP in the VTA 

has been shown to impair drug seeking behaviours and mice with MOP gene knock-out in the 

VTA show impaired heroin conditioned place preference (CPP, Zhang et al., 2009).  
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Although the VTA is believed to mediate the initial rewarding effects of opioids, it is not 

responsible for the perception of craving during the withdrawal period. Rather, the increased DA 

activity in the PFC has been proposed to encode drug relate associative memory and other 

emotional salient information (Lauzon, Bishop & Laviolette, 2009; Laviolette, Lipski & Grace, 

2005; Sun et al., 2011)  

1.3 PTSD is highly comorbid with addiction   

The high rate of comorbidity between PTSD and addiction was first reported in the early 

80s with the study of veterans. Kulka et al. (1988) and Keane and Kaloupek (1997) reported that 

in Vietnam veteran PTSD patients, 64-84% of them met life time criteria for alcohol abuse and 

40%-44% were comorbid with other drugs of abuse. In the following decades, similar results 

were also detected in civilian populations. Jacobsen et al. (2001) reviewed and summarized 

recent epidemiological studies in the general PTSD population, in which the life time prevalence 

of addiction at 22%-43%, was far higher than the prevalence of substance abuse disorder alone 

(8.1%-24.7%). Vice versa, whereas the prevalence of PTSD in the general population is 8.3%, 

this reaches 36%-50% when patients are sampled from substance abuse treatment centers. 

Addiction comorbid with PTSD predicted faster relapse rates and worse treatment outcomes of 

substance abuse, with the severity of re-experiencing symptoms as a significant predictor of 

relapse (Bradizza et al., 2006). Pre-clinical animal research has found similar effects and shown 

that various type of stressors, such as food restriction, social stress or foot shock, can increase 

the consumption of heroin, morphine and alcohol tested in self-administration and CPP 

paradigms (Edwards et al., 2013; Ribeiro Do Couto et al., 2006; Shalev, 2012). 

Thus, both clinical and pre-clinical evidence demonstrates that subjects experiencing 

PTSD-related symptoms are at higher risk of developing a substance use disorder and more 

likely to relapse to drug abuse. Drug abusing individuals have a reported elevated risk to develop 

PTSD when encountering traumatic experiences as compared to non-addicted individuals 

(Bradizza et al., 2006; Brady et al., 2009; Jacobsen et al 2001; Pizzimenti & Lattal, 2015; 

Steward, Pihl, Conrod & Dongier, 1998). Stewart et al. (1998) and Brady et al. (2009) 

summarized the possible reasons for the high comorbidity between PTSD and addiction. First, it 

is possible that the influence of drugs increases the probability of experiencing trauma (such as, 

higher traffic accident rates during alcohol intoxication). Second, chronic drug abuse or 
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withdrawal may lead to elevated anxiety levels, which predisposes individuals for the 

development of PTSD when exposed to traumatic events. Third, PTSD patients are more likely 

to abuse drugs in order to relieve the symptoms, such as avoiding the vivid reoccurrences of the 

traumatic experiences. For example, CNS depressants such as heroin or alcohol acutely relieve 

the anxiety arousal symptoms. Fourth, drug abuse may exacerbate and prolong the PTSD 

symptoms by interfering with neuronal circuits regulating associative emotional memory 

processing. Fifth, some drug withdrawal symptoms may overlap with the PTSD symptoms; for 

example, withdrawal from alcohol is accompanied with increased anxiety, sleep disturbance and 

irritability, all of which resemble certain PTSD symptoms. In this case, patients may misinterpret 

the withdrawal symptoms as a sign of anxiety, thus further increasing the arousal level and 

attempts to self-mediate with drugs of abuse. Lastly, stress and anxiety may modulate the 

rewarding salience of drugs, thereby influencing relapse to drug taking in drug-dependent 

individuals (Liu & Weiss 2002). 

Behaviourally, both disorders are characterized by the inability to suppress and 

extinguish persistent associative memories linked to either catastrophic events in the case of 

PTSD or drug-related rewarding experiences in addiction. In either case, the spontaneous 

memory recall related to these experiences maybe an underlying neuropsychological feature 

triggering anxiety in the case of PTSD, or relapse/drug seeking in addiction (Lauzon et al., 2013). 

In addition, both traumatic and addiction-related associative memories are extremely resistant to 

extinction. The recall of the memory is usually associated with specific environmental triggers, 

suggesting that abnormal encoding and recall of emotional memory is a key component 

underlying the neurobiological etiology of both PTSD and addiction (Pizzimenti & Lattal, 2015). 

As noted above, the high comorbidity and symptom overlap between addictive 

behaviours and PTSD would suggest a common neurobiological mechanism responsible for the 

aberrant memory processing in PTSD and addiction. Indeed, as will be discussed next, research 

targeting emotional associative memory neural circuits has yielded a wide body of compelling 

evidence, identifying the mammalian PFC as a critical neural region underlying the pathology of 

both PTSD and addiction (Pizzimenti & Lattal, 2015, Sun et al., 2011, Lauzon et al., 2013).  

1.3a Role of the prefrontal cortex (PFC) in emotional memory regulation 
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Converging clinical and pre-clinical evidence has identified the PFC as a brain region 

that plays a key role in the acquisition, encoding, recall and extinction of aversive and rewarding 

emotionally salient associative learning and memory (Laviolette et al., 2005; Lauzon et al., 2009; 

Morgan, Romanski & LeDoux, 1993; Shin & Liberzon 2010; Sun et al., 2011). For example, 

stimulation of the DA receptors directly in the mPFC during fear-related memory encoding and 

recall stages impaired rats’ ability to acquire and express associative fear memories (Lauzon et 

al., 2009). In vivo electrophysiological evidence has also indicated that at the single neuron level, 

neurons in the mPFC processed and encoded associative learning of olfactory cues and aversive 

stimuli. Laviolette et al. (2005) reported that mPFC neurons show associative responding to fear-

related cues, both in terms of increased associative firing and bursting rates following fear-

related cue presentations. Earlier studies using mPFC lesions and more recent 

electrophysiological studies have revealed the vital importance of this area in fear extinction. For 

example, PFC lesioned rats showed impaired extinction of conditioned fear (Morgan et al., 1993); 

Milan and Quirk (2002) reported increased PFC neuronal activity during extinction learning to 

auditory cues previously paired with foot shocks. Inhibition of the PFC attenuated the recall of 

conditioned fear and subjects with lesion in the same brain area took significantly longer to 

extinguish fear memories and recovered faster when the cue was paired with the aversive stimuli 

again (Quirk, Likhtik, Pelletier, & Paré, 2003; Quirk, Russo, Barron & Lebron, 2000). Similar 

results have been found in human subjects. For example, one fMRI study found activation of 

ventromedial PFC during the extinction phase of fear conditioning, with this regional activation 

positively correlated with memory extinction magnitude (Milad et al., 2007).  

In the context of addiction, the mPFC is crucially involved in processing drug related 

rewarding memory and activation of neuronal circuits in this area elicits drug craving and drug 

seeking in humans and other animals (Daglish et al., 2001; Sun et al., 2011, Gholizadeh et al. 

2013; Rosen et al., 2016). In vivo electrophysiological evidence from Sun et al. (2011) reported 

significant increase of associative mPFC neuronal firing rates during the memory acquisition 

phase of morphine CPP. Luo et al. (2004) found that heroin priming injection induced blood 

oxygen level-dependent (BOLD) signal changes primarily in the PFC region in rats. Similar 

evidence has been reported from human research showing that the presence of drug related cues 

elicited subjective craving in abstinent individuals, with a concomitant strong increase in PFC 

BOLD signal activity (Daglish et al., 2001; Langleben et al., 2008; Yang et al., 2009). Goldstein 

https://www-ncbi-nlm-nih-gov.proxy1.lib.uwo.ca/pmc/articles/PMC4633496/#B18
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and Volkow (2002) summarized that, in human studies, most results showed the activation of the 

PFC at the drug intoxication stage, associated with the subjective perception of intoxication. 

These authors also reported increased levels of brain activation, such as glucose metabolism, in 

the PFC during drug abstinence, and the changes significantly correlated with exposure to drug 

cues. Therefore, proper recall and extinction of rewarding and aversive memories requires 

optimal PFC function and malfunction of the PFC could impair the extinction of drug-related 

memories, resulting in persistent and inappropriate memory recall. 

The experiencing of trauma does not fully explain the occurrence of PTSD, in fact, the 

exposure and vivid re-experiencing of the catastrophic events may trigger a cascade of 

neurobiological sequelae that ultimately lead to the development of PTSD (Segman et al., 2002). 

Increasing evidence from animal and human research has shown that stress exposure leads to 

malfunction of the PFC with disrupted neuronal functions, accompanied by morphological 

abnormalities of the PFC in PTSD patients (Knox, Perrine, George, Galloway & Liberzon, 2010; 

Richert, Carrion, Karchemskiy & Reiss, 2006; Wang et al., 2016). Rauch et al., (2003) reported 

patients with phobia have increased cortical thickness compared to healthy controls. Furthermore, 

Richert et al. (2006) revealed significantly increased gray matter volume in middle and ventral 

PFC, but decreased volume in dorsal PFC, which was correlated with increased functional 

impairment in PTSD patients. Wang et al. (2016) reported that PTSD patients have hypoactivity 

in the dorsal mPFC; but hyperactivity in the ventral mPFC, which corresponds to the grey 

matter volume changes in the previous study. In a review by Shin and Liberzon (2010), the 

authors pointed out that compared to healthy subjects, PTSD patients showed reduction of PFC 

activities during emotional word retrieval.  

Brady et al. (2009) pointed out that addiction, PTSD and traumatic brain injury (TBI) 

often occur simultaneously, and it is especially true in veterans, which suggests that 

neurobiological deficits associated with one disorder may predispose individuals to the other. 

Another study found that TBI increases the probability of relapse to alcohol abuse and that the 

neurotoxic effects of alcohol interact with TBI, which in turn predicted worse recovery outcomes 

(Jorge et al., 2005).  

The mammalian PFC regulates higher levels of cognitive function, such as decision 

making, behavioural flexibility and emotional regulation. PFC damage is associated with poorer 
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executive performance and less behavioural inhibitory control. Drug abuse is known to impair 

PFC function (Goldstein & Volkow 2002). For example, Liu, Matochik, Cadet and London 

(1998) and Franklin et al. (2002) reported decreased PFC volume and reduction of grey matter in 

cocaine, alcohol and heroin abusers. In an animal study, Robinson et al. (2001) reported that 

psychostimulant abuse was associated with increased numbers of dendritic branching and 

dendritic spine density in the PFC. During states of drug withdrawal, lower brain metabolism 

was detected in the PFC region in cocaine and alcohol abusers compared to healthy controls 

(Goldstein & Volkow 2002). To summarize, the impairment of PFC function further interferes 

with the ability to regulate emotional memory, and to assign appropriate emotional salience to 

incoming environmental stimuli. This cascade of events may lead to a pathological cycle, 

thereby increasing susceptibility to the development of other psychiatric disorders, such as PTSD 

or depression. 

1.3b Dopamine transmission in PTSD and addiction  

The neurotransmitter DA has received considerable research attention due to its vital role 

in the control of emotion, cognition, locomotion, reinforcement, as well as neuroendocrine 

secretion. There are two types of DA receptor: the D1 like receptor, which includes D1 (D1R) and 

D5 (D5R) subtypes; the D2 like receptor type, which includes D2 (D2R), D3 (D3R) and D4 (D4R) 

subtypes. Each type of receptor is involved in different functions, as well as interacting with 

other neurotransmitter systems (Messale et al., 1998). D1R is the most widespread DA receptor 

in the brain, whereas the D4R is primarily expressed in the frontal cortex, amygdala and 

hippocampus. The experiments conducted in this project, the role of DA in emotional memory 

regulation is studied with a focus on the mesocorticolimbic pathway, comprising DAergic 

projections from the VTA to the nucleus accumbens and PFC. Pharmacologically, my 

experiments focus selectively on the D1R and D4R since our lab has previously implicated their 

roles in the modulation of emotional associative learning and memory and opiate addiction 

(Lauzon et al., 2009; 2013; Lauzon & Laviolette, 2010; Sun et al., 2011). 

In the context of addiction, the mesocorticolimbic DA pathway mediates the initial 

hedonic effects of drugs by increasing DA transmission in the VTA and associated regions like 

the nucleus accumbens and PFC (Fields & Margolis 2005; Volkow, Fowler, Wang, Baler & 

Telang, 2009). VTA DA cells are activated in response to emotionally salient stimuli and drugs 
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of abuse will thereby increase attention and arousal as well as facilitate conditioned learning and 

motivation associated with the drug taking experience. Chronic drug use results in higher levels 

of DA transporter activity and increases the thresholds required for dopamine cells to fire, which 

leads to a reduced rewarding salience of natural reinforcers as well as escalated levels of drug 

abuse to compensate the anhedonia and dysphoric conditions associated with dependence and 

withdrawal (Volkow, Fowler, Wang & Goldstein, 2002). This DAergic hypoactivity is believed 

to contribute to impaired PFC functions, thus leading to less behavioural inhibition, poor 

decision making and dysregulated emotions. Drug-related cue exposure triggers craving and 

increases DA transmission in the PFC, which increases the motivation to pursue drugs (Volkow 

et al., 2009). Pre-clinical research has indicated the importance of DA transmission in addiction; 

for instance, D1R gene knock out mice did not reinstate cocaine self-administration after drug 

priming; similarly, blocking mPFC D1R impaired recall of morphine rewarding memory in the 

CPP paradigm. In contrast, mPFC D2 receptor activation enhanced cocaine self-administration 

and alterations in the expression and function of D1R and D2R were found in the PFC and 

amygdala of chronic heroin exposed rats (Caine et al., 2007; Lauzon et al., 2013; Rosen et al., 

2016; Self, Barnhart, Lehman, & Nestler, 1996). Compared to wild type controls, D4R gene 

knock out mice showed locomotor super sensitivity to major psychostimulants and ethanol but 

decreased reward sensitivity to methamphetamine and amphetamine (Katz et al., 2003; 

Rubinstein et al., 1997; Thanos et al., 2010).  

Current theories have suggested that D1R transmission is important in memory 

preservation and recall over temporally delayed periods (Seamans & Yang, 2004). Zahrt, Taylor, 

Mathew and Arnsten (1997) and Lauzon et al. (2009) showed that pharmacological supra-

stimulation of mPFC D1R blocked the ability of rodents to recall fear memories and impaired 

spatial working memory without interfering the encoding and acquisition of the memory. 

Interestingly, blockade of mPFC D1R, but not D2R, impaired the ability to use spatial cues in a 

previously learned spatial memory task (Seamans, Floresco & Phillips, 1998). Therefore, the 

function of mPFC D1R produces an inverted U shape, with either hypo or hyper stimulation 

resulting in malfunction in memory recall and PFC dysfunctions. Thus, optimal levels of mPFC 

D1R activity are required to regulate emotional memory and adaptive behavioural responses to 

environmental stimuli (Seamans & Yang, 2004; Zahrt et al., 1997).  



11 
 

 
 

The D4R is very well characterized from a behavioural and pharmacological perspective 

and considerable evidence has indicated that the function of D4R is associated with the 

acquisition and encoding of emotionally salient memory (Lauzon et al., 2009; Lauzon & 

Laviolette, 2010). For example, in fear conditioning procedures, local mPFC infusion or 

systemic injection of a D4R antagonist produced anxiolytic effects, and prevented the association 

of cues paired with foot shocks, as well as impaired the acquisition of aversive associative 

memories (Inoue, Tsuchiya & Koyama, 1994; Shah, Sjovold & Treit, 2004). Recent research has 

further illustrated that mPFC D4 transmission bi-directionally controls associative fear memory 

learning depending on the salience of emotional conditioning stimuli (Lauzon et al., 2009). 

Specifically, within the hypoactive mPFC (during states of low PFC neuronal activity), D4R 

activation potentiated the acquisition of normally non-salient fear conditioning stimuli; while in 

the hyperactive mPFC (during states of high PFC neuronal activity), D4R activation impaired the 

acquisition of normally supra-threshold fear conditioning stimuli. This finding demonstrated that 

D4R regulates the learning and encoding of emotionally relevant sensory input from the 

environment, as well as processing the emotional amplitude of incoming sensory information 

(Lauzon & Laviolette, 2010). As mentioned above, PTSD and addiction are both characterized 

by being unable to inhibit emotional memory recall, which might implicate the involvement of 

cortical DA transmission in both disorders.  

In terms of DA abnormalities in PTSD, early studies reported higher levels of urinary and 

plasma DA in PTSD patients (Hamner & Diamond, 1993; Yehuda, Southwick, Giller, Ma & 

Mason, 1992). Genetically, Comings, Muhleman and Gysin (1996) found that carrying the D2 

A1 allele significantly increases the susceptibility to the development of PTSD after trauma 

encounters in veterans, as well as being positively correlated with symptom severity. 

Interestingly, the high prevalence of the D4R genotype was also detected in alcohol abusers, and 

associated with the severity of alcoholism (Coming, Muhleman, Ahn, Gysin & Flanagan, 1994). 

More recent studies have reported that a variable number tandem repeat (VNTR) polymorphism 

found in the DA transporter gene is frequently associated with PTSD patients compared to non-

PTSD trauma survivors (Segman et al., 2002). Dragan and Oniszczenko (2009) reported that the 

longer repetition (7-8 repeat) of a VNTR polymorphism located on the exon III of D4R gene was 

frequently associated with more intense PTSD symptoms and an over-sensitivity to negative 

emotional stimuli. Interestingly, this long repetition polymorphism was also detected exclusively 

https://www-ncbi-nlm-nih-gov.proxy1.lib.uwo.ca/pubmed/?term=Southwick%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1583475
https://www-ncbi-nlm-nih-gov.proxy1.lib.uwo.ca/pubmed/?term=Mason%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=1583475
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in opiate dependent individuals based on patient samples from China and Israel (Kotler et al., 

1997; Li et al., 1997). Shao et al. (2006) further reported that D4 VNTR long allele carriers 

displayed higher levels of craving for heroin after exposure to drug-related cues, as well as with 

severe physical dependence; early onset and higher levels of craving in alcohol abusers (Hill, 

Zezza, Wipprecht & Neiswanger 1999; Hutchison, McGeary, Smolen, Bryan & Swift, 2002). 

Together, this evidence may suggest a common genetic abnormality of the DA D4R system 

associated with both PTSD and opiate addiction vulnerability. 

1.3c Downstream molecular pathways of DA receptor transmission involved in PTSD and 

addiction  

D1R stimulation links to the activity of an important downstream signaling molecule, 

cyclic adenosine monophosphate (cAMP), which is critically involved in major intracellular 

signalling pathways. Ligand binding to D1R activates the receptor’s G-protein, which then 

converts ATP to cAMP. cAMP next activates the protein kinase A (PKA) phosphorylation 

process, ultimately leading to the phosphorylation of various intracellular proteins and regulation 

of downstream neurobiological responses which in turn can modify a number of behaviours 

(Dwivedi & Pandey 2008). 

Interestingly, over the last several decades, several studies have found linkages between 

cAMP activity states and both PTSD and addiction. For example, one clinical study (Lerer, 

Ebstein, Shestatsky, Shemesh & Greenberg, 1987) found PTSD patients have lower levels of 

cAMP, suggesting that abnormal cAMP levels may serve as a bio-marker for the diagnosis. 

Similarly, in rodents, cAMP inhibition in the amygdala or the mPFC blocked fear memory 

consolidation and interfered with long term memory formation tested in an auditory fear 

conditioning paradigm (Schafe & Ledoux 2000). Lauzon et al (2012) reported that the effects of 

PFC D1R activation on the attenuation of fear or reward memory recall is cAMP dependent and 

that inhibition of this pathway reversed the effects of PFC D1R stimulation on memory recall. 

Similar effects were also observed in cocaine self-administration and lever pressing for food in 

rats; in both paradigms, inhibition of cAMP/PKA in the nucleus accumbens (NAc) attenuated 

lever pressing for rewards; while activation of cAMP facilitated these behaviours (Baldwin, 

Sadeghian, Holahan & Kelley, 2002; Self et al., 1998).  Furthermore, the effects of cAMP on 

reward memory processing are not limited to the recall phase, but also the acquisition of the 
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reward memory. Beninger, Nakonechny and Savina (2003) and Sutton, McGibney and Beninger 

(2000) have reported that cAMP inhibition during the conditioning phase attenuated the learning 

of amphetamine associated rewarding effects and amphetamine-induced locomotion. 

D1R activation is also closely linked to the extracellular-signal-related kinases 1 and 2 

(ERK1/2), which is a neuronal molecular pathway highly involved in several types of synaptic 

plasticity, learning and memory and the processing of drug-related reward behaviours (Rosen, 

Sun, Rushlow & Laviolette, 2015; Valjent, Pagès, Hervé, Girault & Caboche, 2004) as well as 

aversive memory processing (Cestari, Rossi-Arnaud, Saraulli & Costanzi, 2014). Recent PTSD 

research has revealed several roles for the ERK pathway in emotional memory processing 

(Cestari et al., 2014). For example, Ardi, Ritov, Lucas and Richter-Levin (2014) and Jeon et al. 

(2012) reported that rats re-exposed to a stress-related environment showed significantly higher 

ERK activation levels, and PTSD-like symptoms, suggesting that the ERK pathway is involved 

in conditioned fear memory recall. Furthermore, the ERK pathway is critical for memory 

extinction and consistent increases in phosphorylated ERK2 (pERK 2) levels in the PFC have 

been detected during fear extinction learning in mice (Cestari et al., 2014; Matsuda et al; 2015); 

similarly, Fischer et al. (2007) have reported that ERK1/2 shows increased phosphorylation 

levels in fear memory extinction trials. Thus, ERK signaling is required for the acquisition, recall 

and extinction of cue-related conditioned fear and is similarly involved in processing drug 

related reward memory (Gholizadeh et al; 2013; Lysons et al., 2013; Rosen et al., 2015 & 2016).  

ERK is an important molecular substrate by which drugs may exert their effects by 

modulating the phosphorylation of ERK through a D1R transmission-dependent mechanism 

(Valjent, Corbille, Bertran-Gonzales, Herve & Girault, 2006; Valjent et al., 2004). For example, 

an in vitro study using SH-SY5Y cells revealed that acute treatments with morphine or other 

opioids stimulated the phosphorylation of ERK1/2. However chronic opiate exposure was shown 

to reduce these phosphorylation levels (Bilecki et al., 2005). Antagonizing D1R transmission 

reverses the effects of several drugs, such as ethanol and cocaine, on ERK phosphorylation in the 

mPFC and the NAc (Acquas et al., 2010; Fricks-Gleason & Marshall, 2011; Ibba et al., 2009). In 

addition, D1R activation increased phosphorylation of ERK1/2 in the mPFC and striatum which 

demonstrated a close functional connection between D1R transmission and ERK signalling 

during substance abuse (Xue, Mao, Jin & Wang, 2015). ERK is also highly associated with the 
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formation and the consolidation of associative morphine reward memory. For example, mice 

with ERK gene knock out exhibit deficient reactions to morphine and inhibition of ERK was 

shown to attenuate previously formed morphine CPP memories (Mazzucchelli et al., 2002; 

Valjent et al., 2006). Gholizadeh et al. (2013) have demonstrated that ERK inhibition in the 

basolateral amygdala (BLA) or the mPFC blocked recent and remote morphine reward memory 

recall, accompanied by a reduction of pERK in the BLA and increased pERK in the PFC 

following chronic opiate exposure (Lyons et al; 2013; Rosen et al., 2016).  

As discussed previously, D4R- mediated transmission in the PFC regulates emotional 

memory acquisition, and this process requires the participation of calcium/calmodulin dependent 

kinase II (CaMKII, Lauzon et al., 2012), a molecule critically involved in synaptic plasticity, as 

well as learning and memory (Frankland, O'Brien, Ohno, Kirkwood & Silva 2001; Silva, Paylor, 

Wehner & Tonegawa 1992). In vitro studies have shown that activation of PFC D4R bi-

directionally regulates the levels of CaMKII. Specially, during high cortical neuronal activity 

states (corresponding to states of high emotional arousal/salience), D4R activation induced 

dramatic reductions in local CaMKII activity. This mechanism requires the reduction of protein 

kinase A (PKA), leads to increased protein phosphotase-1 (PP1) levels and ultimately 

dephosphorylates and reduces the activity of CaMKII (Gu & Yan, 2004). Whereas during low 

neuronal activity states (corresponding to low emotional arousal/salience), D4 activation 

stimulates phospholipase C, which results in an increased intracellular calcium (Ca2+) 

concentration, subsequently promoting calmodulin to bind the kinase and phosphorylate CaMKII 

to its activated state, phosphorylated CaMKII (pCaMKII, Gu & Yan, 2004). In vivo studies 

examining the role of CaMKII have reached agreement with the previous in vitro research. For 

example, Lauzon et al. (2012) reported that in subthreshold fear conditioning, which resembles 

the lower baseline neuronal activities, CaMKII inhibition reverses the effects of D4R activation 

on facilitation of fear memory learning. While in supra-threshold fear conditioning, which is the 

analogy of higher neuronal activity states, blocking CaMKII activity by stimulation of 

PKA/inhibition of PP1 rescues the effect D4R stimulation on attenuating conditioned fear 

acquisition.  

CaMKII expression is more concentrated in the forebrain; once activated, it is 

translocated to post synaptic sites concomitant with increasing AMPA and decreasing NMDA 
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receptor activity though a D4-dependent mechanism (Gu, Jiang, Yuan & Yan, 2006; Wang, 

Zhong & Yan, 2003). Given the well-established role of AMPA and NMDA receptors in 

learning and memory, as well as their involvement in psychiatric disorders, such as 

schizophrenia, it is not surprising that aberrations in CaMKII signalling is correlated with various 

behavioural and neurobiological impairments (Lauzon & Laviolette, 2010). Indeed, in vivo 

research has shown that mice with a CaMKII gene knock out display deficiencies in spatial 

learning and long term spatial memory retrieval (Silva et al 1992). CaMKII gene deficient mice 

also showed slower learning of foot shock and lower behavioural responses to fear-related cues 

(Chen, Rainnie, Greene & Tonegawa, 1994). CaMKII transduction also dynamically affects the 

ability of subjects to attribute reward learning at different drug exposure stages. In drug-naïve 

subjects, consolidation of morphine reward memories required BLA CaMKII signaling whereas 

the recall of long term opiate rewarding memory involves PFC CaMKII signaling (Gholizadeh et 

al., 2013). Chronic exposure or withdrawal to opiates was shown to cause a dramatic reduction in 

BLA CaMKII-α levels concomitant with increasing CaMKII-α levels in the mPFC (Lyons et al., 

2013; Rosen et al., 2016). Thus, CaMKII signaling linked to the D4R, is involved importantly not 

only in fear-related memory processing, but also in the opiate addiction and memory formation 

process. 

1.4 Pre-clinical animal modelling of PTSD 

PTSD is a devastating disorder with high prevalence and considerable functional 

disability. Thus, there is an urgent need for a better understanding of the underlying 

neurobiological mechanisms of PTSD. Over several decades, a rich variety of pre-clinical rodent 

models have been developed to help gain further insights into this disorder (Schöner et al, 2017). 

The establishment of an effective pre-clinical animal model should follow 3 criteria, as proposed 

by Willner (1984):  first, face validity: the probed symptoms should resemble those of the 

modelled disorder. Second, construct validity: the animal model should mimic similar underlying 

neurobiological mechanisms as those observed in the human patient. Third, predictive validity: 

the animal model should enable the researcher to make accurate predictions about the treatment 

effects. 

In terms of pre-clinical animal PTSD models, this paradigm should have a fear stimulus, 

which generates stressful behaviours similar to the symptoms of PTSD. The stressor induced 
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PTSD-like symptoms should be acute and intensive instead of mild and chronic (Yehuda & 

Antelman, 1993). More importantly, the hall mark of PTSD is the re-experience symptom 

associated with traumatic memories and therefore the stress related cues/environments should be 

able to elicit anxiety and cause memory recall of the traumatic experience. Today, the most 

accepted pre-clinical animal model for modelling PTSD-like symptoms is the fear conditioning 

assay (Ross et al., 2017). In terms of construct validity, the neural circuitries involved in fear and 

anxiety in rodent and the etiology of PTSD in humans are similar, and are highly conserved 

throughout evolution, including brain areas like the PFC and amygdala (Ross et al., 2017). 

However, the neurobiological underpinnings of PTSD are far from being understood, and there 

are currently no effective pharmacological treatments for PTSD, making it difficult to establish 

clear construct and predictive validities (Schöner et al, 2017).  

Associative fear conditioning using foot shock as a proxy for a traumatic experience, has 

been wildly employed to study anxiety disorders and PTSD in pre-clinical research, primarily 

using rodents (Van Dijken, Van der Heyden, Mos & Tilders, 1992). In general, this simple, 

Pavlovian conditioning paradigm requires confining the animal in an inescapable chamber where 

foot shock can be delivered, allowing for variation in the duration and the intensity of the 

stimulus. Foot shock models elicit long lasting behavioural effects and associative memories 

persisting up to 3 weeks (Van Dijken et al, 1992), and it can induce core symptoms of PTSD, 

such as anxiety, avoidance and hyperarousal, as foot shocked rodents will demonstrate long 

lasting increased immobility, decreased rearing and grooming behaviours in various tests, such 

as open field and the elevated plus maze (Pynoos, Ritzmann, Steinberg, Goenjian & Prisecaru, 

1996; Van Dijken et al, 1992). One advantage of foot shock fear conditioning models is that they 

enable researchers to model the re-experiencing symptoms by associating shocks with 

associative cues (such as tone, context, lights or odours) during the memory acquisition, while 

presenting the cues alone (without the shock) later during the test phase to elicit the recall of the 

associative fear memory and evoke PTSD-like anxiety behaviours (Pynoos et al., 1996; Van 

Dijken et al, 1992; Lauzon et al., 2009). Thus, consistent with the extant literature, my studies 

employed a well-established model of olfactory fear conditioning in rats combined with 

morphine reward conditioned place preference, in order to simultaneously model both PTSD and 

addiction-like behaviours. 
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1.5 Research Objectives and Hypotheses  

The role of D1R and D4R transmission within the mammalian PFC, as well as their associated 

downstream molecular signaling pathways in fear-related and opiate rewarding associative 

memory processing have been previously identified (Lauzon et al., 2009, 2012, 2013; Rosen et 

al., 2016). However, the possible relationship between intra-PFC DAergic modulation of fear-

related memory and how this may modulate reward-related memory processing has not 

previously been investigated. Although previous research has suggested that stress itself can 

reinstate drug taking behaviours, it does not fully explain the high comorbidity between PTSD 

and opioid addiction phenomena and does not explain how the recall of a traumatic memory 

might influence sensitivity to reward-related, drug-induced memory formation. Our overarching 

hypothesis is that DAergic transmission within the PFC, by modulating the salience and recall 

of traumatic, fear-related associative memories, may similarly modulate the ensuing increased 

sensitivity to opiate-related reward salience and represent a mechanistic link between PTSD 

and drug addiction comorbidity. More specifically, we hypothesized that PFC D4R stimulation, 

by selectively increasing the emotional salience of normally non-salient fear memories during 

memory acquisition, may simultaneously increase sensitivity to the rewarding effects of opiates, 

measured in conditioned place preference procedures. In contrast, PFC D1R stimulation, by 

selectively blocking the recall of previously acquired associative fear memories, might 

simultaneously block the potentiation of morphine reward salience. For this thesis, my specific 

experimental AIMS were the following: 

1) Determine whether fear memory recall potentiates sensitivity to morphine’s 

rewarding effects; and if so: 

2) Determine the selective roles of intra-PFC D1 and D4 receptor transmission during 

the acquisition vs. recall phases of associative fear memory formation.  

3) Determine if intra-PFC D1 vs D4 modulation of associative fear memory formation 

modulates sensitivity to the rewarding effects of morphine. 

4) Determine the downstream molecular pathways associated with intra-PFC D1R vs. 

D4R modulation of fear memory and morphine reward sensitivity, focusing on the 

cAMP, ERK 1/2 and CaMKII signaling pathways. 
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2. Materials and Methods  

This project involved 20 independent experimental groups, each consisting of 6-10 adult 

male Sprague-Dawley rats (Charles River, Canada). This section describes the materials and 

methods including surgery and drug treatment, behavioural and western blot protocols, and 

histology and data analysis.  

2.1 Animals and surgery  

Male Sprague Dawley rats (weight 300 g to 350 g) were purchased from Charles River 

Laboratories and housed in temperature-controlled (21 °C) room with free access to food and 

water through out the duration of the experiments. Animals were pair housed before the surgery; 

and were individual housed after the surgery and during entire experiments in clear Plexiglas 

cages covered with rat bedding; cages were changed on weekly basis by animal care staff. All 

procedures were performed at the University of Western Ontario (London, Ontario, Canada) and 

adhered to regulations outlined by the Canadian Council on Animal Care. The animals were 

anesthetized using a mixture of ketamine (100 mg/mL) and xylazine (20 mg/mL) administered 

intraperitoneally (115mg/kg, [i.p.]), and subsequently placed on a stereotaxic device. Stereotaxic 

coordinates were based on the atlas published by Paxinos and Watson (2005). Two stainless-steel 

guide cannulae (22 gauge, Plastics One, Roanoke, VA, USA) were implanted bilaterally into the 

medial prefrontal cortex (mPFC) or the ventral tegmental area (VTA) using the following 

stereotaxic coordinates: bilateral mPFC (15° angle): anteroposterior (+2.9 mm from bregma), 

lateral (-1.9 mm from bregma), and ventral (-3.0 mm from dural surface). Bilateral VTA 

placements (10° angle): anteroposterior (-5.0 mm from bregma), lateral (-2.3 mm from bregma), 

and ventral (-8.0 mm from dural surface). Jeweler’s screws and dental acrylic were used to 

secure the cannulae. The animals had at least 7 days to recover from the surgery, and wet food 

was placed to the bottom of housing cages to speed up the weight during the first 3 post surgery 

days. 

2.2 Drug administration  

Stainless-steel guide cannulae (22 gauge) were implanted bilaterally into the mPFC or the 

VTA, and drugs were infused through 28-gauge microinfusion injectors (Plastics One), which 

were cut 1.0 mm longer than the guide cannulae. The 1.0 µL microsyringes (Hamilton Co., Reno, 
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NV, USA) were connected to the injector by a polyethylene tube. All microinfusions were 

performed at a constant rate of 1.0 µL/min (0.5 µL/hemisphere), injectors remained in place for 

an additional 1 min to allow diffusion. All drugs were dissolved in physiological saline (pH 7.4). 

The ERK inhibitor U0126 was dissolved in 50% dimethyl sulfoxide. Full D1R agonist SKF 

81297 (10 or 100 ng/0.5uL [Tocris, United Kingdomng]), ERK1/2 inhibitor U0126 (1.0 

µg/0.5uL [Tocris]), and filtered saline vehicle were infused immediately before the fear memory 

test phase. The selective D4R agonist PD 168077 (5 or 50 ng/0.5µL [Tocris]), CaMKII inhibitor 

autocamtide-2-related inhibitory peptide (AIP, 500 ng/0.5µL [Tocris]), and filtered saline vehicle 

were infused immediately before the fear conditioning phase. Morphine (0.05 mg/kg, morphine 

hydrochloride, [MacFarlane Smith, Edinburgh, Scotland]) and saline vehicle were injected (i.p.) 

immediately before morphine and saline conditioning, respectively. In the VTA experiments, 

bilateral intra-VTA microinjections of morphine (250 ng/0.5µL) were infused immediately 

before morphine conditioning. Filtered saline was infused into the VTA immediately before 

saline conditioning. 

2.3 Olfactory fear conditioning 

Olfactory fear conditioning was used to test the ability of the animals to recall a fear 

memory formed by pairing an olfactory cue with foot shocks. Based on experimental purposes, 

either subthreshold (0.4 mA) or supra-threshold (0.8 mA) foot shocks were delivered to test 

whether a certain drug treatment could potentiate or block the associative fear memory. Previous 

studies have reported that subthreshold (0.4 mA) foot shocks fail to elicit conditioned freezing 

behaviour, and that supra-threshold foot shocks produce robust fear responses (Lauzon et al., 

2009). On day 1 (habituation phase), the animals were transported from the housing room to a 

sound-attenuated room, and were habituated to the new environment for 30 min. The animals 

were then removed from their cages and placed into one of two well-ventilated, identical size (30 

inch × 30 inch) plexiglass conditioning chambers. Each chamber had a distinct background: 

chamber A had white background with black stripes; chamber B had a white background with 

black dots. One of the chambers was equipped with a metallic grid-shock floor that could be 

removed during the test phase. The other chamber had a smooth plexiglass floor. The rats were 

habituated to each environment for 30 min and were returned to their home cages for 5 min 

between switching environments. On day 2 (conditioning phase), conditioning occurred in one of 
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the two distinct environments, and counter-balanced within groups. The resources of the 

olfactory cues were the almond or peppermint extract oil, which was contained in two separated 

sealed vials and each vial was connected by the in-flow and the out-flow polyethylene tubes. The 

animals were placed in the previously assigned shock environment and allowed to explore for 1 

min. The olfactory cue (either peppermint or almond [counter-balanced within groups]) was then 

administered for 19 s, followed by a foot shock (1 s), either 0.4 mA or 0.8 mA. The procedure 

was repeated 5 times at 4-min intervals (animals were remained in the conditioning chamber). 

The animals were then removed from the conditioning chamber 100 s after the final foot shock 

and returned to the home cages. On day 3 (test phase), subjects were tested in the previously 

assigned test environment (where they did not previously receive foot shock). Before presenting 

the olfactory cue, animals were allowed to explore the environment for 1 min, and baseline level 

of activity was observed. Odor cues were then presented for 5 min and the length of freeze time 

was recorded using ANY-maze software (Stoelting Co, Wood Dale, IL, USA). The data were 

analyzed as percentage of freeze (time spent freezing [s] divided by 300 s), represented as 

freezing % in the graphs. Freezing was defined as a complete lack of movement other than 

respiratory-related movement.   

 2.4 Conditioned place preference  

Pavlovian conditioned place preference (CPP) was used to train the animals to form 

rewarding memory related to morphine’s rewarding effects by pairing morphine injection with a 

specific environment. All rats were conditioned using an unbiased, fully counter-balanced CPP 

procedure as described previously (Laviolette, Nader & van der Kooy 2002). Conditioning 

occurred in two distinct environments (both 15 inch × 15 inch) differing in colour, texture, and 

scent. One environment was white, with a wire mesh floor and covered with wood chips. The 

other environment was black with a smooth plexiglass floor, wiped with 2% acetic acid solution 

before each conditioning session and test. Rats display no baseline preference for either 

environment (Laviolette and van der Kooy, 2003). Treatments received (saline or morphine) in 

each of the two environments were counter-balanced within the group. For example, 4 animals 

received morphine injection paired with the white box environment; the other 4 animals received 

morphine injection paired with the black box. Before olfactory conditioning habituation, the 

animals were placed in the gray plexiglass boxes for a 30-min habituation period to minimize 
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stress during future conditioning. Morphine conditioning took place immediately after the fear 

recall phase in order to temporally probe how fear memory recall may or may not influence 

morphine reward sensitivity. Subjects received i.p. injections of morphine (0.05 mg/kg) or 

bilateral intra-VTA morphine microinfusions of morphine (250ng/0.5µL). Previous reports have 

shown that these morphine treatments are sub-reward threshold and do not normally produce a 

rewarding CPP effect (Lintas et al., 2012). Immediately after the injections, the rats were placed 

in the previously assigned morphine environment for 30 min. Twenty-four hours later, they 

received saline vehicle i.p. injections or intra-VTA saline vehicle microinfusions, followed by 30 

min conditioning in another environment. The animals received one drug-environment and one 

saline-environment conditioning session. At the drug-free test, the rats were placed in a grey 

narrow zone that separated the two environments, and time spent in each environment over a 10-

min period was recorded using two stopwatches. To be scored, the animals had to have their 

front paws and heads located in one environment. Increased time spent in the drug-paired 

environment indicated the expression of drug-related rewarding memory, which served as a 

measure of morphine’s rewarding effects or increased motivational state for the drug. The data 

were analyzed as time spent (s) in each environment. The behavioural protocol for this project is 

depicted in Figure 1. 
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Figure 1. Behavioural procedures flow chart.  

Note: fear memory test and morphine conditioning took place in the same day; after the 5-min 

fear recall phase, subjects were returned to their home cage for 5 minutes and received 

morphine in their housing rooms. Whereas saline conditioning took place 24h after morphine 

conditioning session.  
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2.5 Western blot protocol  

Western blotting was used to detect changes in phosphorylation and total levels of 

ERK1/2 (pERK 1/2, tERK 1/2) and CaMKII (pCaMKII, tCaMKII). Three groups of animals 

received intra-mPFC saline vehicle, the selective dopamine D4 receptor (D4R) agonist PD 

168077 (50 ng/0.5 µL), or full dopamine D1 receptor (D1R) agonist SKF 81297 (100 ng/0.5 µL) 

microinfusions in their housing room. Five minutes after the microinfusions, the animals were 

euthanized. Brains were removed and stored on dry ice for 5 min, then transferred to the -20°C 

freezer. The mPFC regions were sectioned into coronal slices (100 μm), and micropunches of the 

mPFC tissue were obtained. The mPFC tissue samples were then homogenized using a Dounce 

homogenizer. RIPA lysis buffer (pH 8.0) containing a protease inhibitor tablet (Mini complete 

tablets, Roche, USA) and phosphatase inhibitors (phosphatase inhibitor cocktail 4 [Calbiochem, 

San Diego, CA, USA]; phosphatase inhibitor cocktail 2 [Sigma-Aldrich, St Louis, MO, USA]), 

was used for protein isolation. The sample was then centrifuged for 1.5 h to remove debris, then 

mixed with an equal volume of 2 × Laemmli loading buffer heated to 95°C for 5 min, then stored 

in at -20°C for future use.  

Protein samples from the saline vehicle or treatment groups (D1R and D4R agonists) were 

loaded onto 10% denaturing sodium-dodecyl sulfate (SDS) polyacrylamide gels and 

electrophoresed (125 V for 75 min) using a Western blotting apparatus (Mini Protean 3, Bio-Rad, 

Hercules, CA, USA) filled with Tris/glycine/SDS buffer. After electrophoresis, protein was 

transferred from the gels to nitrocellulose membranes (Bio-Rad) using a Mini Trans-Blot 

apparatus (Bio-Rad) filled with a tris/glycine/methanol solution covered with ice at 75 V for 75 

min. The nitrocellulose membranes were then blocked in 5% non-fat skim milk (NFSM) tri-

buffered saline and Tween 20 (TBS-T) solution for 1 h at room temperature with rocking. The 

membranes were then incubated in 5% NFSM TBS-T with the appropriate primary antibodies 

(Table 1) directed against the proteins of interest overnight at 4°C on a rocker. The membranes 

were then washed in TBS-T three times at room temperature (10 min each time on the rocker). 

Subsequently, the membranes were incubated in the NFSM TBS-T solution containing 

secondary antibody (alpha tubulin: donkey anti mouse 680RD, 1:1000 [LI-COR, Lincoln, NB, 

USA]; donkey anti rabbit 800CW, 1:1000 [LI-COR]) for 1 h at room temperature on a rocker. 

The membranes were then washed with TBS-T two times (10 min each time with rocking) and 
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once in tri-buffered saline (TBS, 10 min with rocking). The membranes were then scanned 

(Odyssey Nitrocellulose Membrane Scanner, LI-COR Bioscience). Imagine Studio Lite version 

5.2 (LI-COR Bioscience) was used to separate the protein blot and alpha-tubulin images, which 

were then stored as separate TIF files for densitometry measurements using Molecular Imaging 

software (Kodak, Rochester, NY, USA). Data were analyzed using Excel (Microsoft Corporation, 

Redmond, WA, USA). 
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Table 1 

Name Source Dilution Species 

alpha tublin Sigma-Aldrich 1:100000 Mouse 

tERK1/2 Cell Signalling 

Techonology 

1:2000 Rabbit 

pERK1/2 Cell Signalling 

Techonology 

1:1000 Rabbit 

tCaMKII Cell Signalling 

Techonology 

1:1000 Rabbit 

pCaMKII Cell Signalling 

Techonology 

1:1000 Rabbit 
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2.6 Histology  

After the experiments were completed, the animals were injected (i.p.) with 1.0 mL 

sodium pentobarbital (240mg/mL, Euthanyl, BI-MEDA Animal Health Inc, Cambridge, ON, 

Canada) perfused with isotonic saline, then 10% formalin. Brains were removed and stored in 

formalin (10%) for 24 h, then transferred to a 10% formalin/25% sucrose solution for at least 3 

days, and stored at 4°C. The brains were then sectioned into coronal slices (40 μm) using a 

cryostat, and stained using Cresyl violet, and mounted. The cannulae placements for the mPFC 

and the VTA were verified under a light microscope. Animals that had cannulation sites outside 

the anatomical boundaries of the PFC and VTA areas (defined by Paxinos and Watson [2005]) 

were excluded from data analysis.  

2.7 Data analysis  

All data were analyzed using one- or two-way ANOVA, or the Student’s t test, followed 

by Tukey post hoc test or Student’s t test where appropriate. In the graphical representations of 

the data, the vertical bars on the group means represent the standard error of the mean, asterisks 

(*) indicate a level of significance of < 0.05, and double asterisks (**) indicate a level of 

significance of < 0.01. 

 3 Results 

3.1 Recall of associative fear memory increases sensitivity to morphine’s rewarding effects 

To investigate the effects of fear memory expression on morphine sensitivity, 3 groups of 

animals (n=8 in each group) were recruited. Two groups were conditioned to supra-threshold 

fear conditioning (0.8 mA foot shock); however, 1 of these groups was not presented with cue 

during the test phase. The third group was included as a control, which did not receive foot shock. 

Bilateral intra-mPFC microinfusions of saline vehicle for all subjects were administered before 

the test stage. Systemic injections of the subthreshold dose of morphine (0.05 mg/kg) and saline 

were administered before the morphine and the saline conditioning phase, respectively. The 

representative microphotograph of bilateral intra-mPFC microinjector tip placements is 

illustrated in Figure 2A. A schematic representation of bilateral intra-mPFC injector tip 

placements for the representative groups is presented in Figure 2B. 
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Figure 2 

Presentation of intra-mPFC guide cannulae placements 

(A) Microphotograph of the representative bilateral intra- mPFC guide cannulae and injector 

tip placement.  

(B) Schematic representation of bilateral intra-mPFC injector tip placements. ○= no fear group, 

⌂= fear no recall group, ●= fear recall group, □= SF81297 100ng/0.5ul, filled ⌂= Veh control 

group (sub-threshold fear conditioning), ■= PD168077 50ng/0.5ul  
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The results of fear conditioning recall testing revealed that groups that were conditioned 

with supra-threshold fear conditioning showed increased freezing levels relative to the no shock 

control group. However, relative levels of freezing were much higher in the group receiving the 

cue presentation during testing (~ 70%), as opposed to the no cue presentation group (~20%; 

Figure 3A). However, in the subsequent morphine CPP test phase, only rats previously receiving 

the cue presentation during the fear memory recall test showed a significant morphine CPP 

(Figure 3B).  

In terms of fear memory recall, one-way ANOVA revealed a significant main effect of 

group (no shock, fear no cue, fear with cue: F (2, 23) = 170.399, p<0.01) on freezing behaviours. 

Post hoc analysis indicated that experiencing foot shock (fear no cue, fear with cue) displayed 

significantly increased freezing relative to the no fear control group (p<0.01). However, rats 

receiving the cue presentation during the recall testing displayed dramatically increased freezing 

relative to rats that had experienced foot shock conditioning, but were not presented with the 

associative cue at testing (p< 0.01).  Two-way ANOVA analysis of the CPP test revealed a 

significant main effect of group (no shock, fear no cue, fear with cue: F (2, 21) = 21.936; p<0.01), 

environment (morphine, saline: F (1, 21) = 181.237; p<0.01), and a significant group*environment 

interaction (F (2, 21) = 106.803; p<0.01). Post hoc analysis indicated that the fear with cue group 

exhibited increased morphine preference compared with the corresponding saline environment 

(p<0.01). Comparing only the time spent in the morphine environment, fear groups exhibited 

significant preference in the morphine environment relative to the no shock and no cue groups 

(p<0.01). 

Thus, these findings demonstrate that the selective recall of an associative fear memory, 

dramatically increases sensitivity to the rewarding effects of a normally non-rewarding 

conditioning dose of morphine (0.05 mg). Neither rats receiving no shock during conditioning, 

nor rats that experienced foot shock conditioning (but were not presented with a conditioned cue 

to trigger the fear memory recall), showed a significant morphine CPP. 
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Figure 3. Behavioural effects of supra-threshold foot shock and fear memory expression on 

conditioned fear response and morphine sensitivity.  

(A) In the no shock group, no demonstrable conditioned fear response was observed. Supra-

threshold foot shock (0.8 mA) induced a weak fear response in the fear no cue group and a 

robust and strong fear memory response in the fear with cue group.  

(B) Only the fear with cue group exhibited significant morphine preference relative to saline-

associated context in the conditioned place preference (CPP) test. Comparing only the time 

spent in the morphine environment, the fear with cue group also spent a significantly longer time 

in the morphine context compared with the other 2 groups. 

 

 



32 
 

 
 

 

 

 

 

 

 

 

 



33 
 

 
 

3.2 Activation mPFC D1R inhibited fear memory expression and blocked potentiated 

morphine CPP 

To further investigate the influence of fear memory expression on morphine sensitivity, it 

was then decided to test whether inhibition of memory expression could decrease the potentiated 

morphine sensitivity observed in the previous experiment. Research has shown that mPFC D1 

transmission regulates memory expression (Lauzon et al., 2009); thus, the effects of D1R super 

stimulation on both fear and rewarding memory recall were challenged. The experiment included 

2 groups, which received different doses of the D1R agonist SKF81297 (10 ng/0.5 µL [n=8] or 

100 ng/0.5 µL [n=8]) immediately before the test stage, followed by i.p. morphine injections 

administered before morphine conditioning. The no shock group was included in the data 

analysis and graphs for comparative purposes.  

Results showed that bilateral mPFC SKF81297 infusion dose-dependently blocked the 

expression of fear memory as well as decreased the potentiated morphine preference (Figure 4 A 

and B).  One-way ANOVA revealed a significant treatment effect (no shock, SKF81297 [10 

ng/0.5 µL], SKF81297 [100 ng/0.5 µL]) on freezing behaviour: (F (2, 23) = 27.143; p<0.01). Post 

hoc analysis revealed that the higher dose (100 ng/0.5 µL) of SKF81297 fully blocked fear 

memory recall. The freezing percentage was not different compared with animals in the no shock 

group (p>0.05); whereas the lower dose (10 ng/0.5 µL) failed to attenuate aversive memory 

expression. The animals exhibited significant higher levels of freezing compared with the higher-

dose and no shock groups (p<0.01). Two-way ANOVA analysis of the CPP tests revealed a 

significant main effect of environment (morphine, saline: F (1, 21) = 9.805; p<0.01). Post hoc tests 

revealed no morphine preference in the no shock and high dose groups (p>0.05), and animals in 

lower-dose group spent a significantly longer time in the morphine context compared with the 

saline environment (p<0.01). 
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Figure 4. Behavioural effects of bilateral medial prefrontal cortex (mPFC) dopamine D1 

receptor (D1R) activation on fear memory expression and morphine induced place preference.  

(A) Animals in the no shock group and those receiving bilateral mPFC infusion of the higher 

dose of D1R agonist (SKF81297 [100 ng/0.5 µL]) exhibited no conditioned fear response. 

Treatment with the lower dose of SKF81297 (10 ng/0.5 µL) failed to block the expression of 

aversive fear memory because subjects exhibited a significantly higher percentage of freezing. 

(B) Animals in the no shock and higher-dose D1R agonist group exhibited no significant 

morphine preference. Animals receiving the lower dose of SKF81297 (10 ng/0.5 µL) spent 

significantly more time in the morphine-paired environment. 
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3.3 Inhibition of cAMP reversed the effects of mPFC D1R stimulation on aversive memory 

expression but had no impact on rewarding memory expression 

To further examine the role of mPFC D1 transmission on memory expression and its 

associated molecular pathways, a reversal experiment was performed with cAMP inhibition, 

given that previous research has demonstrated mPFC D1 transmission is associated with cAMP 

activity (Lauzon et al., 2013). Animals in two groups received bilateral mPFC co-administration 

of the effective dose of SKF81297 (100 ng/0.5 µL) and different doses of the cAMP inhibitor 

Rp-cAMP (100 ng/0.5 µL; 500 ng/0.5 µL [n=8 in each group]), before the fear test stage. The 

following protocols were identical to those previously described. The SKF81297 (100 ng/0.5 µL) 

group from the previous experiment was included in the data analysis and figures for comparison.     

Results indicated that bilateral mPFC Rp-cAMP infusion dose dependently reversed the 

effect on D1R activation on fear memory expression, while cAMP inhibition had no effect on 

regulation of morphine sensitivity and rewarding memory expression (Figure 5 A and B). One-

way ANOVA revealed a significant main effect of treatment (SKF81927 [100 ng/0.5µL] alone, 

co-administration with Rp-cAMP [100 ng/0.5 µL and 500 ng/0.5 µL] on freezing response (F (2, 

23) = 11.199; p<0.01). Post hoc analysis indicated that, compared with SKF81927 infusion alone, 

the lower dose of Rp-cAMP (100 ng) failed to reverse its effect on fear memory blocking 

(p>0.05); animals in this group spent the same amount of time freezing. However, the higher 

dose of Rp-cAMP (500 ng) fully reversed the effect of D1R activation, and the freezing 

percentage was significantly higher compared with agonist alone and co-administration with 

lower-dose Rp-cAMP groups. Two-way ANOVA analysis of the CPP tests revealed a significant 

main effect of environment (morphine, saline: F (1, 21) =23.929; p<0.01) and 

treatment*environment interaction (F (2, 21) = 3.757; p<0.05). Post hoc analysis indicated that 

both co-administration groups exhibited significant increased morphine preference compared 

with their corresponding saline environments (p<0.01), which reflects that, although cAMP 

mediated fear memory expression, it is not the lynchpin mechanism for morphine sensitivity and 

rewarding memory expression.  
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Figure 5. Behavioural effects of bilateral medial prefrontal cortex (mPFC) cAMP inhibition on 

dopamine D1 receptor (D1R) stimulation in the regulation fear memory expression and morphine 

sensitivity.  

(A) Rp-cAMP dose- dependently reversed the effect of D1R activation on fear memory expression. 

Animals receiving SKF81297 alone, and those receiving co-administration of the lower dose of 

Rp-cAMP (100 ng/0.5µL) did not exhibit significant fear response. The group receiving co-

administration of the higher dose of Rp-cAMP (500 ng/0.5µL) exhibited significant increases in 

freezing percentage.  

(B) cAMP inhibition failed to block potentiated morphine conditioned place preference (CPP). 

Both groups received co-administration of SKF81297 and Rp-cAMP spent significantly more 

time in the morphine environment compared with the saline-paired context. Only SKF81297 

infusion alone blocked morphine CPP. 
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3.4 mPFC D4 transmission bi-directionally regulated the acquisition of fear memory and 

sensitivity to morphine’s rewarding effects 

Previous research has reported that D4 transmission mediates the acquisition of memory, 

and its effects are bidirectional and depend on baseline neuronal activities (Gu & Yan, 2004; 

Lauzon et al., 2013). To further investigate the effect of aversive memory recall on morphine 

sensitivity regulation, the effects of mPFC D4 transmission on the modulation of associative fear 

and rewarding memory were then examined. First, the effect D4 transmission in lower baseline 

neuronal activity was examined; thus, subthreshold fear conditioning was used. Lauzon et al 

(2009) demonstrated that receiving subthreshold foot shocks (0.4 mA) did not induce significant 

fear response in rodents. In this experiment, the effect of the D4R agonist PD168077 on aversive 

and the rewarding memory acquisition was tested. Three groups were used: saline (Veh [n=9]); 

PD169077 (5 ng/0.5 µL [n=6]); and PD169077 (50 ng/0.5 µL [n=9]). Intra-mPFC infusions were 

administered immediately before the fear conditioning stage. Twenty-four hours later, they were 

tested for fear memory recall and followed by morphine conditioning. Saline conditioning 

occurred 24 h after morphine conditioning, as previously described.   

  Results indicated that subthreshold foot shock failed to elicit a strong fear response in 

both the Veh and lower-dose agonist (5 ng/0.5 µL) groups; however, treating with higher doses 

(50 ng/0.5 µL) before the acquisition stage potentiated the salience of a subthreshold fear 

stimulus, animals in this group demonstrated an increased level of fear behaviours during the test 

(Figure 6 A). This group also exhibited potentiated morphine preference in the CPP; however, 

the Veh and lower-dose groups did not demonstrate increased morphine sensitivity (Figure 6 B). 

 One-way ANOVA test for fear expression revealed a significant main effect of treatment 

(Veh, PD169077 [5 ng/0.5 µL], and PD169077 [50 ng/0.5 µL] on freezing percentage (F (2, 23) = 

29.817; p<0.01). Post hoc analysis indicated that the group receiving 50 ng/0.5 µL of the D4R 

agonist exhibited significantly increased freezing percentage compared with the Veh and lower-

dose groups (p<0.01). The freezing percentage was not different between the Veh and lower-

dose group (p>0.05). Two-way ANOVA analysis of the CPP test indicated significant main 

effects of treatment (Veh, PD169077 [5 ng/0.5 µL], and PD169077 [50 ng/0.5 µL]: F (2, 21) = 

5.764; p<0.05), environment (morphine, saline: F (1, 21) = 18.799; p<0.01), and 

treatment*environment interaction (F (2, 21) = 5.788; p<0.05). Post hoc tests revealed that time 
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spent in the morphine environment in the PD168077 (50 ng/0.5 µL) group was significantly 

longer compared with saline (p<0.01), and compared with the time spent by the Veh group in the 

morphine environment (p<0.05) and the lower-dose groups (p<0.01). The other two groups 

failed to exhibit potentiated morphine sensitivity in the CPP test (p>0.05). 
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Figure 6. Behavioural effects of bilateral medial prefrontal cortex dopamine D4 receptor (mPFC 

D4R) activation on fear response and morphine conditioned place preference (CPP) in 

subthreshold fear conditionings. 

(A) In subthreshold fear conditioning, both the vehicle (Veh) and lower-dose PD168077 (5 

ng/0.5 µL) treatments failed to induce strong associative fear memory. The higher dose of 

PD168077 (50 ng/0.5 µL) potentiated the salience of subthreshold fear stimuli; hence, animals 

in this group exhibited significant increased freezing percentage.    

(B) Bilateral mPFC D4R activation in subthreshold fear conditioning subsequently increased 

morphine preference in the higher-dose agonist group.  
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Next, we examined the effects mPFC D4R activation on memory acquisition of in the 

supra-threshold fear conditioning, which assembles the higher baseline neuronal activity. In this 

experiment, the Veh and the treatment groups (n=8 in each group) received saline vehicle and the 

effective dose of PD168077 (50ng/0.5 µL) before receiving supra-threshold foot shocks (0.8 

mA). The following fear memory test and CPP conditioning tests procedures were identical as 

previously described. 

In supra-threshold fear conditioning, bilateral mPFC D4R activation attenuated the 

acquisition of salient fear stimuli because the treatment group did not exhibit elevated freezing 

percentage compared with the Veh. In the CPP test, both groups exhibited significant morphine 

preference (Figure 7 A and B). Student’s t test for fear conditioning indicated that the Veh group 

exhibited significantly higher freezing percentage compared with the treatment group (p<0.01). 

Two-way ANOVA of CPP test results revealed a significant main effect of environment 

(morphine, saline: F (1, 14) = 21.385; p<0.05). Post hoc indicated both the Veh and treatment 

groups spent a significantly longer time in the morphine-paired context. 
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Figure 7. Behavioural effects of bilateral medial prefrontal cortex dopamine D4 receptor (mPFC 

D4R) activation on the acquisition of supra-threshold fear stimulus and morphine sensitivity.  

(A) In supra-threshold fear conditioning, bilateral mPFC D4R activation attenuated the learning 

of an emotional salient fear stimulus; animals receiving PD168077 (50 ng/0.5 µL) demonstrated 

a significantly lower freezing percentage compared with the vehicle (Veh) group.  

(B) Morphine conditioned place preference (CPP) tests revealed that both the Veh and treatment 

groups spent significantly more time in the morphine-paired environment. 
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3.5 Bilateral mPFC D4R and D1R co-activation control the acquisition and expression of 

aversive and rewarding memory 

After investigating the role of D4 and D1 transmission, an attempt was made to link their 

functions. Using subthreshold fear conditioning, it was tested whether D1R activation at the 

recall stage could block the expression of strong fear memory potentiated by D4R stimulation 

during the conditioning stage, and if co-activation of both receptor systems could affect the 

animals’ sensitivity to morphine. Two groups of animals both received the effective dose of D4R 

agonist (PD168077 [100 ng/0.5 µL,]) before conditioning. The Veh group (n=8) received saline, 

and the treatment group (n=7) received the effective dose of D1R agonist SKF81297 (100 ng/0.5 

µL) before the fear test stage. CPP procedures were identical to those described previously.  

  Results revealed that bilateral mPFC D4R activation at the conditioning phase potentiated 

the salience of subthreshold fear stimuli in the Veh group; mPFC D1R activation at the recall 

phase was able to block the expression of potentiated fear memory. The CPP tests indicated that 

D1R agonist treatment also blocked the expression of morphine preference (Figure 8 A and B). 

Student’s t test revealed a significant decrease in freezing percentage in the treatment group 

compared with the Veh group (p<0.05). Two-way ANOVA of the CPP test revealed no 

significant effect. The Student’s t test was used to analyze differences in the time spent in the 

morphine- and the saline-paired environments. In the Veh group, the animals spent significantly 

more time in the morphine-associated environment.  
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Figure 8. Behavioural effects of bilateral medial prefrontal cortex dopamine D4 receptor (mPFC 

D4R) and dopamine D1 receptor (D1R) co-activation in subthreshold fear conditioning and 

morphine preference test.  

(A) Activation of mPFC D4R facilitated the acquisition of emotionally non-salient fear stimuli 

because the vehicle (Veh) group exhibited higher freezing percentages. Animals receiving the 

D1R agonist SKF81297 (100 ng/0.5 µL) before the test phase blocked the expression of 

potentiated fear memory.  

(B) The SKF81297 (100 ng/0.5 µL) group spent an equal length of time in the morphine- and 

saline-paired environments; the Veh group exhibited a strong morphine preference. 
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3.6 mPFC D4R and D1R stimulation increased phosphorylation of CaMKII and ERK1/2  

There is substantial literature suggesting that D4 and D1 transmissions are closely linked 

to the activities of CaMKII and ERK1/2. To further investigate the molecular pathways 

associated with D4 with D1 transmission, western blot analysis were performed to examine 

phosphorylation levels of CaMKII- and ERK1/2 following D4R and D1R stimulation. Three 

groups of animals received bilateral intra-mPFC infusion of saline (Veh [n=6]), SKF81297 (100 

ng/0.5 µL [D1R activation] [n=6]), and PD168077 (50 ng/0.5 µL [D4R activation] [n=5]), 

followed by brain extraction as described in the previous section. 

Results indicated that D1R stimulation significantly increased phosphorylation levels of 

both ERK 1 and 2. Total ERK1 level was not affected by D1R stimulation; however, total ERK 2 

(tERK 2) was increased by SKF81297 infusion. Both pERK1/ tERK1 and pER2/ tERK2 were 

increased following D1R stimulation (Figure 9, Figure 10). 

One-way ANOVA revealed a significant main effect of treatment (saline Veh; SKF81297 

[100 ng/0.5 µL]; PD168077 [50 ng/0.5 µL]) on pERK1 levels: (F (2, 17) = 4.10136; p<0.05) and 

pERK2: (F (2, 17) = 5.44336; p<0.05). Post hoc tests indicated that, compared with the Veh group 

and D4R activation, D1R stimulation led to a significant increase in pERK1 levels (p<0.05); the 

same trend was also observed in pERK2 post hoc analysis (p<0.01 vs Veh; p<0.05 vs PD168077 

[50 ng/0.5 µL]). 

One-way ANOVA revealed no significant change in tERK1 levels; however, a significant 

main effect of treatment on tERK2 level (saline Veh; SKF81297 [100 ng/0.5 µL]; PD168077 [50 

ng/0.5 µL]: F (2, 17) = 6.00827; p<0.05). Post hoc tests indicated that, compared with the Veh 

group, both D1R and D4R activation led to a significant reduction in tERK 2 levels (p<0.05 vs 

SKF81297; p<0.01 vs PD168077). 

The ratios of pERK1 to tERK1, and pERK2 to tERK2, were also analyzed. One-way 

ANOVA revealed a significant main effect of treatment (saline Veh; SKF81297 [100 ng/0.5 µL]; 

PD168077 [50 ng/0.5 µL]) on pERK1/tERK1: (F (2, 17) = 3.645; p<0.05) and pER2/tERK2 (F (2, 17) 

= 5.271; p<0.05). Post hoc analysis indicated that both pERK1/tERK1 and pERK2/tERK2 ratios 

were significantly elevated in the SKF81297 (100 ng/0.5 µL) group compared with the Veh 

group. 
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Figure 9. Western blot analysis of ERK1 following bilateral microinfusions of saline, dopamine 

D4 receptor (D4R) agonist PD168077 (50 ng/0.5 µL)) and D1R agonist SKF81297 (100 ng/0.5 

µL) in to the medial prefrontal cortex (mPFC).  

(A) Representative western blot for tERK1and pERK1 expression.  

(B) The ratio of pERK1/tERK1 was increased in the group receiving SFK81297.  

(C) Densitometry analysis revealed significant increase of pERK1 expression following D1R 

activation.  

(D) Densitometry analysis revealed no significant change in tERK1expression following D1R 

activation.  
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Figure 10 Western blot analysis of ERK2 following bilateral microinfusions of saline, dopamine 

D4 receptor (D4R) agonist PD168077 (50 ng/0.5 µL)) and D1R agonist SKF81297 (100 ng/0.5 

µL) in to the medial prefrontal cortex (mPFC).  

(A) Representative western blot for tERK2 and pERK2 expressions.  

(B) The ratio of pERK2/tERK2 was increased in group received SFK81297.  

(C) Densitometry analysis revealed significant increase of pERK2 expression following D1R 

activation.  

(D) Densitometry analysis revealed a significant reduction in tERK2 expression following D1R 

and D4R activation compared to the Veh group.  
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Following PFC D4R stimulation, pCaMKII- was significantly increased without 

changing the tCamKII- expression level (Figure 11). One-way ANOVA revealed a significant 

main effect of treatment (saline vehicle, SKF81297 [100ng/0.5 µL], PD168077 [50ng/0.5 µL]) 

on pCaMKII- expression (F (2, 14) = 6.56259, p<0.05). Post hoc tests indicated that compare to 

Veh group, D4R activation led to significant increase of pCaMKII- level (p<0.01). One-way 

ANOVA revealed no significant change in tCaMKII- level and pCaMKII-/ tCaMKII- ratio. 
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Figure 11 Western blot analysis of CaMKII- following bilateral microinfusions of saline, 

dopamine D4 receptor (D4R) agonist PD168077 (50 ng/0.5 µL)) and D1R agonist SKF81297 

(100 ng/0.5 µL) in to the medial prefrontal cortex (mPFC).  

(A) Representative western blot for tCaMKII- and pCaMKII- expression.  

(B) The ratio of pCaMKII-/tCaMKII- was not changed in all treatment groups. 

(C) Densitometry analysis revealed a significant increase of pCaMKII- expression following 

D4R activation.  

(D) Densitometry analysis revealed no significant change in tCaMKII- expression following 

D4R activation.  
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3.7 ERK1/2 inhibition reversed the effect of mPFC D1R stimulation on fear memory 

expression and potentiation of morphine sensitivity 

It was demonstrated that mPFC D1R activation increased phosphorylation levels of 

ERK1/2, as well as attenuating both fear and rewarding memory expression at the behavioural 

level. It was then decided to test whether inhibition of ERK activity could affect the ability of D1 

to regulate fear and rewarding memory. In this experiment, two groups of rats received supra-

threshold fear conditioning: one group received the ERK inhibitor U0126 (1000 ng/0.5 µL); the 

other group received co-administration of U0126 (1000 ng/0.5 µL) and SKF81297 (100 ng/0.5 

µL). Bilateral intra-mPFC infusions were performed immediately before the fear recall phase. 

Two other groups, fear with cue and SKF81297 (100 ng/0.5 µL), were included in data analysis 

and figures for the purpose of comparison, all groups consisted of 8 animals. 

  Results demonstrated that bilateral mPFC D1R activation with SKF81297 alone inhibited 

the aversive and morphine-related rewarding memory expression compared with the fear with 

cue group. U0126 alone had no effect on fear response and rewarding memory expression 

compared with the fear with cue group. Co-administration of ERK inhibitor and D1R agonist 

reversed the effect of D1 activation on aversive and rewarding memory blocking (Figure 12 A & 

B).  

One-way ANOVA analysis of fear tests revealed a significant treatment effect (fear with 

cue; SKF81297 [100 ng/0.5 µL]; U0126 [1000 ng/0.5 µL]; and U0126 [1000 ng/0.5 µL] + 

SKF81297 [100 ng/0.5 µL]) on freezing percentage (F (3, 31) = 55.704; p<0.05). Post hoc tests 

indicated that U0126 infusion alone had no effect on freezing behaviour compared with the fear 

with cue group (p>0.05). Animals in this group exhibited a significantly strong fear response 

after receiving 0.8 mA foot shocks compared with the SKF81297 infusion alone (p<0.01) and 

co-administration groups (p<0.01). Co-administration with SKF81297 fully reversed the effect 

of D1R activation on memory expression: the animals exhibited significantly elevated levels of 

fear response compared with SKF81297 infusion alone (p<0.01), and no change in freezing 

percentage compared with the fear recall control group (p>0.05). Two-way ANOVA analysis of 

CPP tests revealed significant main effects of treatment (fear with cue, SKF81297 [100 ng/0.5 

µL], U0126 [1000 ng/0.5µL], U0126 [1000 ng/0.5 µL] + SKF81297 [100 ng/0.5 µL]: F (3, 30) = 

6.311; p<0.01), environment (morphine, saline: F (1, 30) = 103.499; p<0.01), and 
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treatment*interaction (F (3, 30) = 34.985; p<0.01). Post hoc analysis indicated that U0126 infusion 

alone had no effect on morphine preference compared with the saline environment (p>0.05). Co-

administration with SKF81297 reversed the effect of D1R activation on morphine CPP blockade. 

Animals in this group spent significantly more time in the morphine-paired context (p<0.01). 

Compared with the morphine environment time-spent alone, the fear with cue group spent 

significantly more time in the morphine environment compared with the other 3 groups (p<0.01). 
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Figure 12. Behavioural effects of bilateral medial prefrontal cortex (mPFC) ERK1/2 inhibition 

on dopamine D1 receptor (D1R) activation in supra-threshold fear conditionings and morphine 

conditioned place preference (CPP).  

(A) In supra-threshold fear conditioning, the fear with cue group, U0126 treatment alone, and 

co-administration group, exhibited a strong fear response. SKF81297 infusion alone blocked 

fear memory recall, and the effect was reversed by co-infusion with U0126 (1000 ng/0.5 µL) 

because the co-administration group demonstrated significant higher freezing percentage 

compared with SKF81297 infusion alone.  

(B) CPP tests revealed significant morphine preference in fear with cue and co-infusion groups. 

Animals in the fear with cue group spent more time in the morphine-paired environment 

compared with the other 3 groups. 
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3. 8 CaMKII inhibition reversed the effects of mPFC D4R activation on fear memory 

acquisition and decreased potentiated morphine sensitivity 

Western blot results indicated increased levels of CaMKII- phosphorylation following 

D4R activation. It was then examined whether inhibition of CaMKII activity in the mPFC could 

reverse the effect of D4R activation on fear and rewarding memory regulation. In this experiment, 

two groups of animals received subthreshold fear conditioning: the first group (n=8) received the 

CaMKII inhibitor AIP (500 ng/0.5 µL); the other group (n=8) received co-administration of AIP 

(500 ng/0.5 µL) and PD168077 (50 ng/0.5 µL). Bilateral mPFC infusions were performed 

immediately before the conditioning phase. The two other groups from the subthreshold fear 

conditioning experiment (Veh control and PD168077 [50 ng/0.5 µL]) were included in data 

analysis for comparative purposes.  

The fear conditioning results indicated that PD168077 infusion alone potentiated the 

acquisition of subthreshold fear stimuli and sensitivity to morphine’s rewarding effects, AIP 

infusion alone had no effect on fear acquisition and morphine preference compared with the Veh 

group. Co-infusion of AIP and PD168077 reversed the effect of mPFC D4R stimulation on the 

learning of non-saline fear stimuli because animals in this group failed to exhibit a strong fear 

response in comparison. This treatment also blocked potentiated morphine CPP (Figure 13 A 

and B).  

One-way ANOVA test for fear recall indicated a significant main effect of treatment 

(Veh; PD168077 [50 ng/0.5 µL]; AIP [500 ng/0.5 µL]; and AIP [500 ng/0.5 µL] + PD168077 

[50 ng/0.5 µL]) on freezing behaviour (F (3, 33) = 21.417; p<0.01). Post hoc analysis revealed that, 

compared with the Veh group, only PD168077 infusion alone elicited a significant increase in 

freezing percentage (p<0.01). Moreover, the amount of elevated fear response was significantly 

higher compared with the AIP infusion alone and co-infusion groups (p<0.05). Two-way 

ANOVA analysis of CPP results revealed a significant main effect of environment (morphine, 

saline: F (1, 30) = 22.425; p<0.01) and significant treatment*environment interaction (F (3, 30) = 

3.607; p<0.05). Post hoc tests revealed that PD168077 infusion alone significantly increased 

morphine preference compared with the saline environment (p<0.05). The time spent in the 

morphine environment in this group was also significantly longer than the other 3 groups 

(p<0.05). 
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Figure 13 Behavioural effects of bilateral medial prefrontal cortex (mPFC) CaMKII inhibition 

on dopamine D4 receptor (D4R) activation in subthreshold fear conditionings and morphine 

conditioned place preference (CPP).  

(A) In subthreshold fear conditioning, the Veh group, the group received AIP alone and the co-

administration group failed to show strong fear response; PD168077 (50ng/0.5 µL) infusion 

alone potentiated the acquisition of subthreshold fear stimuli.  

(B) CPP tests revealed significant morphine preference only in groups received PD168077 alone, 

animals in this group spent more time in the morphine-paired environment compared with the 

other 3 groups. 
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3.9 VTA mediates potentiated morphine sensitivity in a post-traumatic stress disorder rat 

model 

Research in past decades has established the role of the VTA in regulating the rewarding 

effects of addictive drugs such as morphine and heroin. An attempt was made to investigate 

whether the VTA is also the brain region that regulates potentiated morphine sensitivity after the 

animals recall an associative fear memory. Four groups of animals were recruited, all of which 

underwent quartet cannulations: bilateral in the mPFC; and bilateral in the VTA. In these two 

experiments, bilateral intra-VTA morphine infusions (250 ng/0.5 µL) were performed before 

morphine conditioning, instead of i.p. administration of morphine; bilateral intra-VTA saline 

infusions were given before the saline conditioning sessions.  

Two groups were included in supra-threshold fear conditioning: the Veh control group 

(n=7) received saline; and the treatment group (n=6) received the D1R agonist SKF81297 (100 

ng/0.5 µL). Bilateral intra-mPFC infusions were administered before the fear test phase. The 

remaining two groups were included in subthreshold fear conditioning. Intra-mPFC infusions 

were administered before the fear conditioning stage, in which the Veh control group (n=7) 

received saline and the treatment group (n=8) received the D4R agonist PD 168077 (50 ng/0.5 

µL). A representative microphotograph of bilateral intra-VTA microinjector tip placements is 

presented in Figure 14 A. A schematic representation of bilateral intra-VTA injector tip 

placements is shown in Figure 14 B.  
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Figure 14 Presentation of intra-VTA guide cannulae placements 

(A) Microphotograph of a representative bilateral intra- VTA guide cannulae and injector tip 

placement.  

(B) Schematic representation of bilateral intra-VTA injector tip placements. ○= Veh control 

group (sub-threshold fear conditioning), ●= PD168077 50ng/0.5ul, □= Veh control group 

(supra-threshold fear conditioning), ■= SF81297 100ng/0.5ul 
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In supra-threshold fear conditioning, bilateral infusions of intra-mPFC SKF81297 

decreased expression of a strong associative fear memory compared with the Veh group. 

Bilateral intra-VTA infusions of morphine following aversive memory recall potentiated 

morphine preference only in the Veh group but not the treatment group (Figure 15 A and B). In 

subthreshold fear conditioning, bilateral infusions of mPFC PD168977 potentiated the salience 

of subthreshold fear stimuli; the animals exhibited heightened fear response compared with the 

Veh group. Intra-VTA morphine infusions potentiated the rewarding effects of subthreshold-

dose morphine, animals in the treatment group exhibited a strong morphine preference in the 

CPP test (Figure 15 C and D). 

Student’s t test results for supra-threshold fear recall demonstrated a significantly 

decreased freezing percentage in the treatment group (p<0.01). Two-way ANOVA revealed a 

significant main effect of environment (morphine, saline: F (1, 11) = 12.157; p<0.01). Post hoc 

tests indicated that the Veh group spent significantly more time in the morphine-paired 

environment than the saline environment (p<0.01). Student’s t test results for subthreshold fear 

recall revealed significant increases in freezing percentage in the treatment group (p<0.01). Two-

way ANOVA analysis of the CPP test indicated a significant main effect of environment 

(morphine, saline: F (1, 13) = 20.612; p<0.01) and a significant treatment (saline: PD168077 [50 

ng/0.5 µL]) * environment interaction (F (1, 13) = 8.542; p<0.05). Post hoc analysis revealed that 

in the treatment group, the animals spent significantly more time in the morphine-paired 

environment compared with the saline environment (p<0.01), as well as compared with time 

spent by the Veh group in the morphine environment (p<0.01).  
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Figure 15 Behavioural effects of bilateral intra-VTA morphine infusions follow medial 

prefrontal cortex (mPFC) dopamine D1 receptor (D1R) or dopamine D4 receptor (D4R) 

activation in the supra-threshold or the subthreshold fear conditioning. 

(A) Bilateral mPFC infusions of D1R agonist, SKF81297 (100ng/0.5 µL), fully blocked the fear 

memory recall; compared to the Veh group, the treatment group displayed significant less 

freezing percentage.  

(B) Bilateral intra-VTA morphine infusions followed fear memory recall potentiated morphine 

sensitivity and preference only in the Veh group. 

(C) Bilateral mPFC infusions of D4R agonist, PD168077 (50ng/0.5 µL), potentiated the 

acquisition of subthreshold fear stimuli; compared to the Veh group, the treatment group 

displayed significant higher freezing percentage.  

(D) Bilateral intra-VTA morphine infusions followed fear memory recall potentiated morphine 

sensitivity and preference in the treatment group. 
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4 Discussion 

Disturbances in mesocorticolimbic dopamine (DA) transmission are well-established 

features of comorbid neuropsychiatric disorders involving pathological memory processing, such 

as post-traumatic stress disorder (PTSD) and opioid addiction. Transmission through PFC DA D4 

receptors (D4R) has been shown to potentiate the emotional salience of normally non-salient 

emotional memories whereas transmission through PFC DA D1 receptors (D1R) has been 

demonstrated to selectively block the recall of either reward or aversion-related associative 

memories.  In the present study, using a combination of fear conditioning and opiate reward 

place conditioning in rats, we examined the role of PFC D4R/D1R signaling during the 

processing of fear-related memory acquisition and recall as well as subsequent sensitivity to 

opiate reward memory formation. We report that PFC D4R activation potentiates the salience of 

normally subthreshold fear conditioning memory cues and simultaneously strongly potentiates 

the rewarding properties of sub-reward threshold systemic or intra-ventral tegmental area (VTA) 

morphine conditioning cues. In contrast, selectively blocking the recall of salient fear memories 

with intra-PFC D1R activation, blocks the ability of fear memory recall to potentiate systemic or 

intra-VTA morphine reward salience. These effects are dependent upon dissociable PFC 

phosphorylation activation states of either calcium-calmodulin-kinase II (CaMKII-) or 

extracellular-signal-related-kinase 1/2 (ERK 1/2), following intra-PFC D4R or D1R activation, 

respectively. Together, these findings reveal critical new insights into how aberrant PFC 

DAergic transmission and downstream molecular signaling pathways may modulate fear-related 

emotional memory encoding and recall, and how these effects may increase opioid addiction 

liability during emotional memory recall in traumatic memory disorders such as PTSD. 

In summary, the present thesis links the processing of associative fear and rewarding 

memory to a common, DA D1 and D4 transmission directly in the PFC; and demonstrates 

dynamic interactions between cue-triggered fear memory recall and the potentiation of morphine 

reward salience. In addition, our results revealed novel roles for D1R and D4R-linked signaling 

through the cAMP, ERK 1/2 and CaMKII pathways, in the context of PFC DAergic regulation of 

fear and morphine-related reward memory processing.  
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4.1 Fear memory recall strongly regulates opiate reward salience 

Using olfactory fear conditioning combined with morphine CPP, a novel connection 

between fear memory recall and the perception of morphine rewarding salience was identified. 

Specifically, while subthreshold conditioning doses of morphine did not induce morphine 

preference in rats that were not exposed to associative, fear-related recall cues, the cue-induced 

recall of a previously established associative fear memory induced a robust morphine reward 

CPP. It is known that various types of stressors, such as social defeat, food restriction, predator 

threat are capable of reinstating drug taking behaviours in rats (Edward et al., 2013; Do Couto et 

al., 2006; Shalev 2012). Here, we demonstrated that fear memory recall alone is sufficient to 

potentiate the reward salience of normally non-rewarding conditioning doses of morphine.  

Chronic or acute stress leads to alterations in brain function especially in the mPFC 

region, including abnormal signal transduction in the mPFC-amygdala pathway (Edwards et al., 

2013; Knox et al., 2010; Milad & Quirk 2002). Furthermore, cue-triggered fear memory recall 

also alters activities in various brain regions, such as the PFC, amygdala and hippocampus 

(Milad et al., 2007). Nevertheless, the PFC is a vital brain region regulating inhibitory control as 

well as executive and cognitive functions and is influenced by DA transmission in the 

mesocorticolimbic DA pathway.  

In the present thesis, I found that increasing mPFC D1 transmission inhibited fear 

memory recall as well as blocked the potentiation of morphine CPP reward memories. 

Functionally, mPFC D1R- mediated transmission increases the excitability of inhibitory GABA 

interneurons, which in turn may decrease the excitatory tone of PFC pyramidal neurons, 

increasing feedforward inhibition, which blunts the recall of the associative emotional memories 

(Lauzon et al., 2013; Seamans, Gorelova, Durstewitz & Yang, 2001). Similar results have been 

reported previously wherein stimulation of mPFC D1R impairs the recall of aversive fear 

memories (Lauzon et al., 2009). Thus, mPFC D1 receptors play a vital role in emotional memory 

recall. While there is currently direct clinical evidence for PFC D1R abnormalities in PTSD 

clinical populations, one possibility is that chronic PTSD leads to long-term abnormalities in 

cortical D1R activation states (or downstream signaling pathways such as cAMP or ERK), 

leading to abnormal recall of either trauma or addiction-related associative memories.  
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D1R- mediated transmission is functionally linked to downstream cAMP activity (Lauzon 

et al., 2013). In the present thesis, I found that cAMP inhibition fully reversed the effects of 

mPFC D1R on aversive memory blockade, but interestingly, had no effect on morphine reward 

memory recall, suggesting a dissociation in the molecular substrates controlling aversion 

memory recall vs. reward-related memory recall, directly in the PFC. Previous evidence has 

demonstrated that the ability of mPFC D1 transmission block memory recall is due to 

downstream adenosine cyclase activity, increasing cAMP and protein kinase A (PKA) levels, 

which in turn increase cortical GABA interneuron activity levels (Lauzon et al., 2013; Seamans 

et al., 2001). Given the fact that PFC neurons store associative memories linked to emotionally 

salient events, increasing cAMP/PKA levels through D1R activation might increase levels of 

feedforward inhibition on PFC pyramidal neurons, thereby attenuating the ability to recall an 

associative fear memory.  Interestingly, in contrast to the present findings, Lauzon et al. (2013) 

reported that PFC cAMP inhibition blocked the recall of morphine CPP following a standard 8- 

day morphine CPP conditioning experiment. However, these differences may be due to 

experimental paradigm differences. First, Lauzon et al. (2013) used a longer term (8 day) 

morphine CPP paradigm with a supra-threshold conditioning dose of morphine (5 mg/kg) and 

rats did not go through a fear conditioning procedure prior to CPP training. In addition, as we 

have demonstrated in our first experiment, recalling fear memory potentiated morphine reward 

salience, which in turn may make morphine reward CPP memory more resistant to recall 

inhibition. In addition, the novel behavioural paradigm we used in this project examined the 

direct connection between a fear memory and morphine sensitivity, it is possible that the input of 

other molecular activities is required in this behavioural model. Interestingly, Lauzon et al. (2013) 

also reported that cAMP inhibition failed to block a morphine priming induced CPP memory 

recall (only spontaneous memory recall), which is indeed, consistent with the present findings 

showing that cAMP signaling may be only partially responsible for morphine-related memory 

processing. 

DA D1 and D4 transmission in the PFC is known to produce biphasic effects. Thus, 

whereas D1 transmission increases intrinsic inhibitory tone, D4 transmission increases the 

excitability of PFC neurons and feedforward output (Seamans et al., 2001). In our experiments, 

we observed similar results, demonstrating that in the subthreshold fear conditioning condition, 

increased PFC D4 transmission potentiated the salience of normally non-salient fear stimuli, as 
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well as potentiated the rewarding salience of the sub-threshold conditioning dose of morphine. 

Given the fact that D4Rs are found on both interneurons and the pyramidal neurons, with a 

preferential location on the GABA interneurons in the mPFC, it is not surprising these receptors 

are functionally positioned to modulate neuronal activity by mediating local interneuron 

feedforward levels (Seamans et al., 2001; Wang et al., 2003). Specifically, D4R activation has 

been shown to reduce GABA interneurons activity, causing a net decrease in the inhibitory 

interneuron output as well as potentiation of PFC pyramidal neurons activity levels concomitant 

with increasing AMPA receptor expression levels (Yuen & Yan 2009). Given the well-

established role of AMPA receptor-mediated transmission in learning and memory as well as 

synaptic plasticity, it is perhaps the ability of PFC D4R activation to potentiate AMPA PFC 

transmission and/or modulate the magnitude of excitatory inputs from other brain areas, such as 

the VTA and BLA is responsible for the potentiation of associative emotional stimuli salience. 

Thus, increasing PFC D4R activities might facilitate the acquisition of both aversive and 

rewarding associative memories, as suggested by the present findings. Using in vitro and in vivo 

techniques Onne, Wang, Lin and Grace (2005) and Laviolette et al. (2005) both reported that 

blocking D4R results in alterations in PFC pyramidal neuron activity levels through GABA 

transmission, as well as blocking the formation of associative memory related to cue-paired foot 

shock.  

In contrast with our findings with subthreshold fear learning, we found that PFC D4R 

stimulation resulted in blunting the learning of a salient fear stimuli during supra-threshold fear 

conditioning but did not interfere with the potentiation of morphine CPP. Some possible reasons 

for this might due to the ability of D4 transmission to decreased CaMKII phosphorylation levels 

in higher neuronal activity states, which in turn might block formation of normally salient 

associative fear memories as previously reported (Lauzon et al., 2009). Interestingly, we found 

that D4R activation induced blocking of supra-threshold fear memory did not block the 

potentiation of morphine reward salience. In this experiment, we observed potentiated morphine 

rewarding salience even though the formation of the fear memory had been blocked by D4R 

activation. The reasons for this dichotomy are not clear, however one possibility is that given 

that supra-threshold fear conditioning would expect to induce a state of high PFC neuronal 

activity and inhibition of CaMKII levels, the presence of exogenous opioid molecules may have 

increased mesocorticolimbic DA transmission, thus overriding the effects of decreased CaMKII 
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levels in the PFC. Alternatively, morphine-induced increased DA transmission to other brain 

areas (e.g. the BLA or nucleus accumbens) may be able to compensate for the effects of PFC 

CaMKII reduction associated with the blockade of fear memory formation, allowing for the 

formation of associative opiate reward memories, independently of fear memory processing. 

Regardless, this data, similar to the findings observed with concomitant cAMP inhibition and 

D1R activation, suggests a functional dissociation between PFC D4R activation and the 

potentiation of morphine reward salience, in the context of supra-threshold fear conditioning. 

Future studies are required to more precisely delineate the underlying mechanisms responsible 

for these dissociable effects. 

4.2 mPFC D1R and D4R transmission: functional links to ERK1/2 and CaMKII activity 

states 

A series of western blot analyses were conducted to explore the possible effects of D1R 

or D4R activation on total and/or phosphorylation state changes in the ERK1/2 or CaMKII- 

signaling pathways directly in the PFC. First, we found that intra-PFC D1R activation 

significantly increased phosphorylation levels of ERK1/2, as well as the pERK/tERK ratio. 

These findings are consistent with previous reports showing that D1R agonist activation with 

SKF81297 can increase ERK1/2 phosphorylation in the striatum and the mPFC, whereas D2R 

activation has no effect (Xue et al., 2015). Research has also shown that psychostimulants which 

act as indirect DA agonists, such as cocaine or amphetamine, potently increase ERK1/2 

phosphorylation levels in the mPFC as well as other brain areas, such as the striatum. (Fumagalli 

et al., 2009; Mao et al., 2013; Valjent et al., 2004). Thus, ERK1/2 phosphorylation states are 

known to be modulated through a D1R-dependent pathway. We therefore examined the possible 

mechanistic role of ERK signaling in our observed behavioural effects of D1R activation to 

determine if inhibiting ERK1/2 signaling may reverse the effects of D1R activation on aversive 

memory recall and morphine reward sensitivity. Interestingly we found that pharmacological 

ERK1/2 inhibition with U0126, fully reversed the effects of mPFC D1R stimulation on both 

rewarding and aversive memory recall inhibition, such that co-administration with the ERK 

inhibitor blocked D1R mediated suppression of fear memory recall and the subsequent formation 

of a morphine reward CPP, demonstrating a functional role between intra-PFC D1R activation 

and control of both aversive or rewarding memory recall effects. We also observed that ERK1/2 

inhibition alone was able to partially restore the recall of fear-related memory, but had no effect 
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on the processing of morphine-related reward memory. These findings are consistent with 

previous behavioural pharmacological studies. For example, Valjent et al. (2006) reported that 

administration of the ERK1/2 inhibitor U0126 blocked the recall of previously robust cocaine 

reward CPP. Gholizadeh et al. (2013) further illustrated that intra- BLA and intra- mPFC local 

inhibition of ERK1/2 blocked the recall of recent and remote morphine CPP, respectively. In 

addition, research has reported that ERK1/2 regulates fear memory processing, as stress-related 

cues induce hyper-phosphorylation of ERK1/2 whereas blocking ERK1/2 was shown to inhibit 

the behavioural manifestation of conditioned fear responses (Cestari et al., 2013; Yang, Huang & 

Hsu, 2004). Thus, given the fact that the ERK1/2 pathway is involved in both reward and fear 

memory processing, it is not surprising that blocking this pathway impaired subject’s ability to 

retrieve emotional memory as observed in both fear and reward conditioning processes. In 

contrast to our observed effects on ERK 1/2 phosphorylation states, both PFC D1R and D4R 

activation produced slight, but significant decreases in total levels PFC ERK 2, while D4R 

activation caused a slight but significant decrease in PFC ERK 1 expression levels. Nevertheless, 

changes in total ERK 1/2 expression levels mediated by PFC D4R signaling do not appear to 

modulate ERK 1/2 phosphorylation states as we observed no concomitant changes in PFC D4R-

mediated ERK 1/2 phosphorylation levels. While beyond the scope of the present thesis, future 

studies are required to more fully explore the possible functional effects of D4R activation on 

total ERK 1/2 expression levels within the PFC. 

In addition to our findings with the ERK 1/2 pathway, we observed significant increases 

in CaMKII- signaling selectively following mPFC D4R stimulation. Specifically, we observed a 

significant and selective increase in PFC expression levels of pCaMKII-with no corresponding 

changes in total CaMKII- expression level.Pharmacological inhibition of the phosphorylation 

process by treatment with a selective CaMKII phosphorylation inhibitor, AIP, reversed the 

effects of D4R activation in the subthreshold fear conditioning and morphine CPP paradigms. 

Based upon the ability of D4R activation to increase pCaMKII- during subthreshold fear 

conditioning, the present results suggest that CaMKII is a plausible molecular mechanism 

underlying D4R- mediated potentiation of non-salient fear and rewarding stimuli. Notably, 

treatment with the CaMKII inhibitor alone failed to potentiate fear and rewarding memory 

acquisition, which suggests that pCaMKII itself is not sufficient to facilitate the acquisition of 
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emotional memory; rather, consistent with in vitro work from Gu & Yan (2004), intra-mPFC 

CaMKII signaling is believed to depend upon the functional input of D4R substrates for the 

regulation of perceived emotional memory salience.  

4.3 Role of the VTA in PFC-mediated modulation of fear and reward memory processing  

Given the importance of connectivity between the PFC and VTA in the mediation of both 

fear and reward-related associative memory (Lauzon et al., 2009; Bishop, Lauzon, Bechard, 

Gholizadeh & Laviolette, 2011), we examined if our observed modulation of PFC D1R and D4R 

transmission on opiate reward sensitivity may be mediated directly in the VTA. Decades of 

research have established the important role of the mesocorticolimbic DA system in processing 

the initial rewarding effects of opioid drugs (Fields & Margolis, 2015). Similar to the effects of 

systemically administered morphine, we found that infusions of a subthreshold conditioning dose 

of morphine directly in the VTA, was similarly modulated by intra-PFC D1R and D4R 

transmission. Thus, activation of PFC D1R transmission blocked the recall of an aversive fear 

memory and prevented the potentiation of sub-reward threshold morphine directly in the VTA. 

In contrast, potentiating the emotional salience of non-salient fear conditioning stimuli with PFC 

D4R activation potentiated the normally non-reward effects of intra-VTA morphine, 

demonstrating the importance of the PFC-VTA pathway in DAergic modulation of opiate-related 

reward salience. Previous work in our lab has demonstrated the important functional connectivity 

between the PFC and VTA in modulating opiate-related reward salience. For example, Bishop et 

al., (2011) found that pharmacological blockade of NMDA receptor signaling in the rat PFC was 

able to strongly potentiate sub-reward threshold conditioning doses of intra-VTA morphine. In 

addition, as previously noted, neuronal sub-populations within the PFC are capable of encoding 

the associative morphine rewarding memory during CPP conditioning (Sun et al., 2011). 

Nevertheless, future experiments are required to more precisely characterize how DAergic 

transmission modulation of fear-related associative memories in the PFC can directly modulate 

sub-cortical DAergic reward sensitivity in the VTA. For example, how does PFC D1R or D4R 

activation modulate either VTA inputs to the PFC or by contrast, the control of descending PFC 

to VTA projections? Alternatively, future studies are required to explore how intra-PFC D1R or 

D4R modulation regulate functional outputs from the VTA to other reward-related brain 

processing regions, such as the BLA or nucleus accumbens.  



77 
 

 
 

4.4 Implications for understanding PTSD and addiction comorbidity  

The present series of experiments reveals several novel mechanisms by which intra-PFC 

transmission through the D4R or D1R can simultaneously modulate the recall and salience of 

emotionally traumatic associative fear memories, and concomitantly regulate sensitivity to the 

rewarding salience of opiates. Overall, an important implication for these findings is that the PFC 

requires an optimal level of DA signal transduction in order to appropriately regulate both the 

salience and recall of emotionally salient memories, regardless of reward or aversion valence. 

Aberrant mPFC D1 transmission may result in disruptive and spontaneous memory recall 

associated with catastrophic events or euphoric drug experiences, serving as a possible common 

mechanism underlying the pathology of PTSD and addiction. Interestingly, PTSD has been 

extensively studied with clinical populations and several reports have indicated abnormally high 

level of urinary and plasma DA metabolites as well as abnormal levels of cAMP, suggesting that 

abnormalities in DAergic transmission may be a common clinical feature in PTSD (Hamner & 

Diamond, 1993; Lerer et al., 1987; Yehuda et al., 1992). PFC D1 transmission is highly 

implicated in rewarding memory and addiction behaviours and behavioural neuroscience 

research has demonstrated a unique role for mPFC D1 signaling in drug-related learning and 

memory (Self et al., 1996). Notably, Lauzon et al. (2013) indicated that in the context of both 

aversive and rewarding associative memory, the ability of mPFC D1 transmission is limited to the 

recall stage of memory formation without impacting the stability of the original memory trace. 

Thus, abnormal memory expression linked to either traumatic experiences or addiction-related 

reward experiences may share a common link to aberrant cortical D1R transmission and 

downstream signaling through the ERK 1/2 molecular cascade. 

In contrast to the effects of D1R transmission in the recall phase of memory processing, 

the present study confirmed the functional role of PFC D4R transmission during the acquisition 

phase of emotional memory formation. Considerable research has highlighted the role mPFC D4 

transduction and its downstream signalling pathway, CaMKII, in various neuropsychiatric 

disorders, such as PTSD, addiction, schizophrenia and ADHD (Lauzon & Laviolette, 2010). The 

role of intra-PFC D4R transmission in these neuropsychiatric disorders is believed to be due to 

the ability of cortical D4R transmission to potently modulate the emotional salience of incoming 

sensory information and associative memory formation. Abnormal signalling through PFC D4R 
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substrates has been shown to lead to the misinterpretation of emotional meaning and salience of 

sensory information resulting in the amplification of normally non-salient emotional stimuli and 

improper assignment of motivational salience to associative memory cues. In other cases, 

hyperactive mPFC D4 transduction leads to an inability to form associative memory which are 

vital for survival and/or proper cognitive functions. More importantly, mPFC D4 and CaMKII 

mediate the appropriate categorization of sensory information and cues based upon their 

emotional salience, enabling the individual to accurately recognise the meaning of associative 

cues and to respond appropriately to the environment. In the case of PTSD and addiction, the 

above processes become aberrant, with patients inappropriately assigning emotional salience to 

normally neutral/unimportant cues causing misguided attention, pathological ideation and 

abnormal behavioural output. Thus, consistent with previous findings, the present data suggests 

that cortical D4R transmission during the acquisition/encoding phase of either aversion or 

reward-related associative memory, may be a functional mechanism underlying the emotional 

memory pathology present in both PTSD and addiction. 

4.5 Future Directions 

Although the present series of studies revealed critical new roles for cortical PFC D1R 

and D4R transmission in the acquisition and recall of both fear and reward-related memory 

formation, there are several important questions that remain to be answered.  

First, we found dissociations both between the effects of cAMP signaling and D1R 

transmission in terms of modulation of fear memory recall and the subsequent regulation of 

morphine reward sensitivity. Importantly, future experiments should address how and why 

cAMP appears to selectively modulate the recall of fear (trauma)-related memory, but is 

independent of the modulation of reward-related memory. Interestingly, we found that ERK 1/2 

phosphorylation was capable of regulating the recall of both fear and morphine-reward related 

memory formation, suggesting that D1R transmission via the ERK 1/2 signaling pathway may 

transcend and control the processing of both aversion and reward-related emotional memory 

formation. Future studies may focus specifically on examining the potential mechanistic links 

between D1R, cAMP and ERK 1/2 signaling in the context of both fear and reward-related 

memory processing.  
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The current study demonstrated that fear memory recall leads to heightened sensitivity to 

morphine’s rewarding effects, revealed in a robust CPP to a dose of morphine that normally 

produces no rewarding effects. Since the CPP tests took place 24h after the last conditioning 

phase, which examined only temporally recent morphine reward memory formation, it is not 

clear how long lasting and/or persistent these potentiated morphine-related associative memories 

may be. Thus, it would be interesting in future studies to perform extinction memory tests to 

explore the memory decay curves of morphine-related associative reward memories, in order to 

gain deeper insight regarding the comorbidity between PTSD and addiction and how traumatic 

memories may modulate addiction related memory processing and resistance to abstinence over 

the longer term.  In addition, possible dynamic interactions between fear and rewarding memory 

extinction curves would be of interest for future studies to gain better insight into how traumatic 

and/or reward-related associative memories may interact with one another in a temporal manner 

following initial memory formation.  

In terms of opiate exposure states and their relevance to addiction-related memory 

formation, a limitation of the present study is that experiments used only drug naïve subjects to 

test their sensitivity to subthreshold morphine reward salience. Thus, it would be very 

informative to investigate if and how opioid dependent rats react to sub-reward conditioning 

doses of morphine differently than opiate-naïve subjects. Since opioid dependent states produce 

different impacts on neural substrates, including D1, D2 and ERK 1/2 and CaMKII signaling 

pathways (Lyons et al., 2013; Rosen et al., 2016), further research should be done in opiate-

dependent subjects during long-term withdrawal/abstinence periods.  

5. Conclusions 

The findings in this thesis reveal several important new insights regarding how the recall 

of emotionally traumatic memories may directly impact upon vulnerability to the rewarding 

effects of drugs of abuse. Specifically, the data in this thesis provides novel information 

regarding how alterations in cortical DAergic transmission through D1R-ERK 1/2 or D4R-

CaMKII signaling mechanisms may not only strongly modulate the acquisition and recall of 

associative fear-related memory, but how these mechanisms may simultaneously regulate 

sensitivity to opiate-related drug reward salience. Given the high comorbidity observed between 

PTSD and drug abuse liability, particularly, opioid abuse, these findings reveal unique and 
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promising new directions for the future development of pharmacological and molecular 

interventions that might be able to target the neurobiological links between PTSD emotional 

memory pathology and addiction liability. 
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