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Abstract 

 Bacterial pneumonia, one of the leading causes of hospitalization and mortality 

worldwide, is caused by the colonization of invasive bacteria in the airways, leading to 

pulmonary inflammation and lung dysfunction. The development of antibiotic resistant 

bacterial infections has limited the effectiveness of current therapeutics and is particularly 

concerning in the setting of chronic bacterial infections, such as observed in cystic fibrosis 

and ventilator-associated pneumonia. The development of novel therapeutics for the 

treatment of multi-drug resistant bacterial pneumonia is urgently needed. 

 The overall objective of this body of work was the development of a new 

therapeutic compound to treat multi-drug resistant bacterial infections in the lung. It was 

hypothesized that a cathelicidin/exogenous surfactant compound could be developed as a 

novel therapeutic agent for the treatment of bacterial pneumonia. To test this hypothesis, 

we first screened several cathelicidin peptides combined with a commercial exogenous 

surfactant, bovine lipid extract surfactant (BLES), and identified a lead compound (CATH-

2) for further testing. Following this, we investigated three main outcomes: 1) the 

antimicrobial activity of CATH-2 and BLES+CATH-2 against multi-drug resistant, 

clinically isolated bacteria; 2) the immunomodulatory potential of both CATH-2 and 

BLES+CATH-2 in vivo; and 3) the bactericidal activity of BLES+CATH-2 treatment in 

vivo, using two models of bacterial pneumonia. 

 It was discovered that CATH-2 was able to kill bacteria in vitro. In addition, CATH-

2-killed bacteria administered into the lungs of mice did not induce an inflammatory 

response in vivo, and the ability to prevent this inflammation was maintained by 

BLES+CATH-2. Finally, while BLES+CATH-2 is able to kill multi-drug resistant, 
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clinically derived bacteria in vitro, there is little bactericidal activity of BLES+CATH-2 in 

in vivo models of bacterial pneumonia. 

 Overall, we identified the therapeutic potential of BLES+CATH-2 for use as a 

therapeutic treatment for bacterial pneumonia. Despite promising in vitro activity, we were 

unable to show bactericidal activity for BLES+CATH-2 in vivo. Future directions will 

require the optimization of the surfactant-cathelicidin compound in order to develop a 

viable therapeutic for clinical practice. 
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 Every day, approximately 10 000 L of air will flow into and out of the lungs, and 

bring with it foreign particles, such as bacteria, from either the surrounding environment or 

the nasopharynx. Due to the unique branching structure of the lung, some of this 

particulate-filled air will pass into the terminal bronchioles, respiratory bronchioles, and 

alveoli. Over the course of this steady siege, some pathogens are able to circumvent the 

innate immune system, leading to colonization and infection of the lung, known as 

pneumonia. Pneumonia is one of the most common presentations of bacterial infections, 

with millions of people being diagnosed annually (1). It is the leading cause of death due 

to infection; estimates by the World Health Organization suggest that bacterial pneumonia 

is responsible for 15% of all children deaths under the age of 5, and an estimated 3.2 million 

deaths annually (2–5). 

Furthermore, the rate of drug-resistant infections is rapidly escalating, and is 

becoming a large global health concern. Multi-drug resistant infections are currently 

estimated to be responsible for 700 000 deaths per year, with that number expected to rise 

to 10 million per year by 2050 without immediate intervention (6). The high prevalence of 

pneumonia infection and increasing rates of antibiotic resistant infections are two factors 

culminating into a potential global health disaster.  

The purpose of this thesis will be to determine the efficacy of a novel therapeutic 

for the treatment of multi-drug resistant bacterial pneumonia. Here, we investigate the 

development of a potential treatment using a cathelicidin peptide in conjunction with 

exogenous surfactant as a vehicle to improve delivery to the respiratory system. This 

chapter will provide an overview of homeostatic respiratory functions, pathologic 

processes that develop over the course of chronic bacterial respiratory infections in cystic 
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fibrosis or mechanical ventilation, and the morbidities of antibiotic resistance associated 

with these pulmonary infections. Finally, it will provide an overview of both cathelicidins 

and exogenous surfactant, and their therapeutic potential for the treatment of multi-drug 

resistant bacterial pneumonia. 

 

1.1 Lung Structure and Function in Homeostatic Conditions 

The primary function of the lungs is gas exchange. In the lungs, oxygen diffuses 

from the alveoli at the terminal ends of the airways, across epithelia and endothelia, and 

into the deoxygenated blood within the surrounding alveolar capillaries; mirroring this, 

carbon dioxide moves down its concentration gradient from the blood stream into the 

alveoli and is eventually expired out of the body (Reviewed in (7)).   

 The anatomy of the lungs involves a complex branching network, beginning in the 

nasopharynx, to the trachea, and then branching into two primary bronchi.  From there, the 

bronchi will continue to divide into smaller and smaller airways, eventually forming 

terminal bronchioles. These structures are involved in air flow, but do not participate in gas 

exchange. Distal to the terminal bronchioles are respiratory bronchioles, which are 

structurally similar with the exception that they contain budding alveoli that will participate 

in gas exchange. Past these respiratory bronchioles are alveolar sacs, containing groups of 

alveoli, the primary regions of gas exchange. The complex branching structure allows for 

a large surface area at the alveolar level, allowing for rapidly efficient gas exchange with 

the surrounding alveolar capillaries (7). 

 The alveoli themselves are structured by a combination of thin, squamous Type I 

alveolar cells and a smaller number of cuboidal Type II alveolar cells. Type I cells are 
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essential for gas exchange, as their large surface area and thin structure allows for maximal 

diffusion. On the other hand, Type II cells are essential for numerous other functions, 

including replenishing Type I cell populations after injury, and producing pulmonary 

surfactant, a lipoprotein substance that contributes to breathing mechanics (8, 9). Other 

cells within the alveolar space include alveolar macrophages, essential phagocytes tasked 

with patrolling the alveoli, engulfing inhaled pathogens and debris particles, and regulating 

the innate and adaptive immune system (10–12). 

1.1.1 Pulmonary mechanics 

 To facilitate gas exchange, air flows in and out of the lungs by a process known as 

ventilation. This process requires the coordinated contraction of both external intercostal 

muscles and the diaphragm to increase the volume of the thoracic cavity. This increased 

volume causes a decrease in pressure, as predicted by Boyle’s Law, and causes the 

movement of a discrete volume of external air to enter into the lungs, referred to as the tidal 

volume. At rest, exhalation is due to the relaxation of these muscles; the decreased thoracic 

volume then creates a (relatively) high-pressure environment within the lungs, and air 

moves out to the external environment. During exertion, internal intercostals, abdominals, 

and oblique muscles will also contract to reduce thoracic cavity volume with greater force, 

increasing the volume and rate of exhalation (7). 

 In addition to the role of the respiratory muscles, there are numerous other processes 

within the lungs that affect ventilation. One specific measurement of these mechanics is 

lung compliance. Lung compliance refers to the amount of force required to inflate the 

lungs. This is calculated as the volume change per unit of pressure change (7). There are 

two major factors in the lung responsible for compliance – lung elastic tissue, and surface 
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tension within the small airways and alveoli (discussed in section 1.1.2). The elastance of 

the lung is proportional to the structural components of the lungs, specifically the amount 

of elastin and collagen content within the airway interstitium (7). Increased elastin and 

collagen content within the lung leads to reduced compliance, as it increases the force 

required to expand the lungs upon inhalation. The surface tension within the lungs has a 

major effect on lung function, as increased surface tension has a significant impact on lung 

compliance and alveolar stability upon exhalation. Pulmonary surfactant is directly 

responsible for reducing the surface tension within the lung. 

1.1.2 The pulmonary surfactant system 

 As noted above, one of the forces responsible for determining lung compliance is 

surface tension. The surface tension within the lungs is caused by a thin liquid layer lining 

the entire respiratory tract, known as the airway surface liquid (ASL), that begins in the 

nasopharynx and extends down to the alveoli. Within the alveoli, the surface tension 

exerted by water molecules of the ASL produce an elastic force that reduces compliance. 

Pulmonary surfactant is responsible for reducing this force by adsorbing to the air-liquid 

interface of the ASL and acting to reduce surface tension during exhalation and inhalation 

(13, 14). During exhalation, due to the decreasing size of the alveoli, lateral compression 

of the pulmonary surfactant film reduces surface tension to minimal values; this minimizes 

any collapse force on the alveoli (14). By reducing surface tension, the collapse force is 

reduced, making the lungs easier to inflate. Therefore, reducing surface tension is directly 

associated with increased lung compliance. 

Pulmonary surfactant is a lipoprotein complex produced and secreted by type II 

alveolar cells (9). It is found in all mammalian species and has a highly conserved 
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composition (15). It is made up of ~80% lipids by mass, such as phosphatidylcholine (PC, 

80% of lipid subfraction) and phosphatidylglycerol (PG, 10-11% of lipid 

subfraction),~10% neutral lipids, such as cholesterol, and ~10% surfactant associated 

proteins, named SP-A, -B, -C, and -D (16). Upon synthesis of these lipid-protein mixtures, 

type II cells store surfactant in intracellular structures known as lamellar bodies until 

signalled to secrete into the airspace (17, 18). Once secreted, the surfactant will adsorb to 

the air-liquid interface to form a surface-active film, which is further discussed below (19, 

20). The “functional” components of surfactant are experimentally known as the “large 

aggregate”. During repeated cyclic expansions and compressions of the surface film 

(throughout the course of respiration), small surfactant vesicles are generated, and then 

recycled by resident alveolar macrophages and type II cells; this “inactive” surfactant 

component is experimentally referred to as “small aggregate” (21, 22). 

 While true de novo adsorption only occurs during the first breath at birth, surfactant 

secreted into the alveolar liquid lining spreads rapidly along the interface in order to form 

the surface-active film responsible for surface tension reduction upon compression. 

Surfactant-associated proteins SP-B and SP-C promote the breaking of stable phospholipid 

bilayers in the aqueous layer to induce adsorption of lipids to the air-liquid interface. The 

rapid diffusion and spreading of the surfactant film allows for the initial reduction of 

surface tension in the alveoli, improving lung compliance and alveolar stability (19). After 

this first breath, surfactant is cycled into the air-liquid interface over the course of 

respiration with the help of SP-B and SP-C, as inactivated surfactant lipids are recycled 

back to type II cells or degraded by alveolar macrophages (23). 
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Patients with a poorly functioning pulmonary surfactant system, or surfactant 

deficient states, typically exhibit a severe decrease in lung compliance, eventually leading 

to atelectasis (alveolar collapse) and decreased oxygenation. One such example is neonatal 

respiratory distress syndrome (nRDS), where premature infants are born without a fully 

developed pulmonary surfactant system (24). Administration of exogenous surfactant to 

neonates lacking sufficient pulmonary surfactant has been demonstrated to rapidly improve 

compliance, oxygenation, and patient outcomes (25–27). Since its identification as a viable 

therapeutic in the 1980’s, exogenous surfactant administration has become a standard 

treatment for premature infants diagnosed with nRDS (25, 28). Due to its superior clinical 

efficacy and its innate ability to spread throughout the respiratory tract, surfactant has since 

been investigated for numerous other therapeutic functions, such as a vehicle for pulmonary 

therapy distribution (29, 30). 

 

1.2 Chronic Bacterial Lung Infections 

 Bacterial pneumonia is an infection of the respiratory tract, and is one of the leading 

causes of hospitalization (4, 31–34). Over the course of prolonged infection, the continual 

inflammatory environment can precipitate structural changes to the respiratory tract, 

eventually resulting in severe decreases in oxygenation and potentially death (35, 36). 

Chronic infections associated with cystic fibrosis or mechanical ventilation are two major 

examples in which prolonged infections associated with these underlying conditions 

increase the complexity of the disease and increase the rate of mortality (4, 35, 37). Typical 

treatment strategies for these two diseases involve administration of antibiotics to target the 

infection; however, the bacteria are typically incompletely eradicated, and antibiotic use is 
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forced to continue over a prolonged period, or to treat acute exacerbations (38). As such, 

prolonged administration of antibiotics, without the effective clearance of the colonizing 

bacteria, can contribute directly to the high prevalence of antimicrobial resistant infections, 

further complicating treatment strategies.  

1.2.1 Cystic fibrosis 

Cystic fibrosis (CF) is an inherited disease of the cystic fibrosis transmembrane 

conductance regulator (CFTR). The development of this disease has been thoroughly 

investigated since the initial identification of the CFTR gene (39–41). In these patients, a 

non-functioning/hypofunctioning CFTR channel prevents the movement of chloride and 

bicarbonate ions into the air surface liquid. Due to the poor movement of ions across the 

luminal membrane, there is a decrease in osmotic forces into the lumen, and as a result the 

ASL becomes dehydrated and viscous. This highly viscous mucus is unable to properly 

detach from the secretory ducts of submucosal glands after secretion (42). To further 

compound this problem, the cilia on the apical surface of the airway epithelia become less-

functional, meaning that any particles or pathogens trapped in the thickened mucus can no 

longer be cleared from the airways. These individual factors combine to elicit the bacteria-

laden mucus plugs characteristic of cystic fibrosis pulmonary disease (43). Combined with 

the defect in the mucociliary escalator, studies have also shown that there is a severe 

detriment in the innate host defense of recruited cell types as well (44). Decreases in the 

pH of the ASL, likely due to the reduction of bicarbonate movement, has been 

demonstrated to be responsible for lack of bacterial killing induced by the innate factors 

present, including cathelicidins, defensins, and other antimicrobial peptides (44). 
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Interestingly, this acidified environment also appears to have an effect on the viscosity of 

the ASL itself (45). 

The result of these deficiencies allows pathogens to colonize and proliferate, and 

without a functioning clearance system, CF patients develop frequent, spontaneous lung 

infections of Staphylococcus aureus, Pseudomonas aeruginosa, Achromobacter 

xylosoxidans, and other pathogens from birth (46, 47). Failure to clear these pathogens 

eventually leads to a positive feedback loop of neutrophil recruitment, degranulation, and 

ineffective clearance. This can be observed in the bronchoalveolar lavage fluid (BALF), 

where there is a large percentage of neutrophils recovered from these patients, as well as 

increasing concentrations of the chemokine IL-8, correlating with bacterial infection (48). 

Progressive bronchiectasis as a result of this inflammatory cycle, and mucus plugging from 

the hyper-viscous submucosal gland secretions, significantly hampers lung function, as can 

be observed through FEV1PRED measurements (43, 49). This lung disease is the leading 

cause of morbidity and mortality in CF patient populations (42, 43, 47, 50, 51). 

Often, bacteria in CF airways will undergo genetic changes in order to survive the 

harsh inflammatory environment. Some of the more pathogenic bacterial strategies involve 

the development of mucoid phenotypes in P. aeruginosa species, and the formation of 

biofilm production in P. aeruginosa and many other CF-derived species (52, 53). Antibiotic 

treatment strategies will select for mutants with high intrinsic antibiotic resistance, and as 

such, antibiotic resistance will rapidly spread throughout the patient (54). As expected, 

antibiotic resistance rates for CF patients are high, with 15% of patients colonized with 

multi-drug resistant P. aeruginosa, although rates have been reported as high as 30% of P. 

aeruginosa infected patients; drug-resistant S. aureus is observed in ~25% of patients (54–
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56). As a result, some antibiotics have become completely ineffective for CF patient 

therapy, as it was observed in one study that over 70% of P. aeruginosa isolates were 

resistant to amikacin, gentamicin, and fosfomycin, while over 90% of methicillin-resistant 

S. aureus (MRSA) isolates were resistant to both clindamycin and erythromycin (57). 

Eventually, physicians and patients are burdened with severely limited antibiotic options, 

and the chronic lung infections caused by the multi-drug resistant bacteria result in hypoxia, 

respiratory failure, and death (43). 

While the understanding of CF pathophysiology has been well documented through 

the use of various in vitro cell culture models and in vivo animal models that accurately 

model the human course of disease, the development of multi-drug resistant bacterial lung 

infections remains the most challenging clinical problem to manage. However, the ability 

to isolate and culture multi-drug resistant bacteria allows for multiple permutations of in 

vitro testing, including investigating the bactericidal activity of novel antimicrobial 

agents against these clinically-isolated pathogens. 

1.2.2 Ventilator-associated pneumonia 

Ventilator-associated pneumonia (VAP) is the development of lower respiratory 

tract infection >48 h after the initiation of treatment, and is one of the most common 

hospital-acquired infections (58). Similar to the complex pathology associated with CF and 

the development of CF-lung disease, the development of VAP is equally complex. The 

development of VAP has been attributed to multiple different factors, such as damage 

caused by the insertion of the tube leading to a breached epithelial defense layer, ineffective 

host defense systems, and the patients’ impaired ability to swallow respiratory secretions, 

all resulting in spontaneous airway colonization (59). Consistent with this variable disease 
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etiology, the reported percentages of patients that develop VAP also vary widely, with 

reports anywhere between 5-72% of patients receiving mechanical ventilation (60, 61). The 

mortality rates for VAP patients is equally variable, with reports anywhere between 20-

76%, depending on the study (60, 62). Bacterial species commonly associated with these 

infections include S. aureus, P. aeruginosa, Klebsiella pneumonia, and Acinetobacter 

baumii (63). 

Regardless of incidence rates, the pathology of VAP is similar to community-

acquired pneumonia, with the major complication of an endotracheal tube. To complicate 

the treatment of this pneumonia infection, the endotracheal tube acts as a reservoir for 

bacteria, preventing the ability of the host defense system to completely clear the infection 

(59). In addition, bacteria grown in this environment often form a biofilm, which makes 

treatment of the infection even more difficult, as the biofilm acts as a shield to protect the 

bacteria from host defense systems and antibiotic penetration (64).  

Similar to CF patients, the prolonged bacterial colonization leads to rampant 

pulmonary inflammation, eventually resulting in respiratory failure and death. Although 

BALF collected from these patients is typically used to perform bacterial culture analysis, 

analysis of this fluid presents with high rates of neutrophil influx and cytokine production 

(58, 60, 61, 64, 65). Antibiotics are administered to manage these infections, but prevalence 

of antibiotic resistant bacteria is anywhere between 42-69% (63, 66–69). Left untreated, 

oxygenation becomes severely reduced and patients can develop acute respiratory distress 

syndrome, eventually leading to multi-organ failure and death (60). 

Despite the high incidence of multi-drug resistant infections associated with VAP, 

the overall injury is severely understudied. However, there are multiple animal models 
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useful for investigation, and useful physiologic measurements to investigate, such as 

bacterial clearance, as well as oxygenation and inflammatory responses. These animal 

models allow for a controlled environment in order to investigate VAP infections (70). 

Using these models, it is possible to investigate the therapeutic potential of 

antimicrobial/immunomodulatory agents that directly affect three clinically relevant 

outcomes – oxygenation, bacterial clearance, and inflammation. 

 

1.3 Antimicrobial Resistance and the need for novel therapeutics 

As mentioned previously, the typical treatment for prolonged bacterial infection of 

the airways is the administration of antibiotics. However, improper antibiotic usage, or 

prolonged exposure to antibiotics without effective clearance of the bacteria, such as the 

situation observed in cystic fibrosis patients, can lead to the development of drug-resistance 

(71).  

Increasing rates of multi-drug antibiotic resistance are quickly becoming a concern 

in clinical settings, which limits the therapeutic options available to both patients and 

physicians (6, 72–74). Antimicrobial resistance is one of the largest global threats currently 

being faced, which has been caused by 1) the natural selection of drug-resistant bacterial 

strains due to improper antibiotic use, as well as 2) poor stewardship of conventional 

antibiotics and improper administration (75). In addition to intrinsic resistance strategies 

found within the bacteria naturally, spontaneous mutations and horizontal gene transfer can 

cause rapid dissemination of drug resistance, making the antibiotics ineffective against the 

once-susceptible bacterial strains (52, 76). The increasing incidence of drug-resistant P. 

aeruginosa, MRSA, and a variety of other bacterial species, is threatening treatment 
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regimens of pneumonia patients, as therapeutic strategies become limited by the decreasing 

number of effective antibiotics (4). In case of CF and VAP, the situation is more dire, with 

drug-resistant bacteria being responsible for infection in between 9.2 – 26% and  42 - 69% 

of cases, respectively (63, 66–69, 77). 

The rising prevalence of antimicrobial resistance requires investment into the 

development of new antibiotics. However, with fewer pharmaceutical companies investing 

in the discovery of new therapeutics, there is a reduced number of new therapeutics 

currently in development (75, 78). Consequently, a number of research groups have begun 

to investigate the potential of antimicrobial peptides (AMPs) as potential sources of new 

therapeutics (79–86). 

 

1.4 Antimicrobial peptides 

Antimicrobial peptides are a diverse group of endogenous peptides produced as part 

of the innate immune system. They have been identified in almost every plant and animal 

species investigated. A full list of the 2600+ peptides can be found here 

(http://aps.unmc.edu/AP) (87). These peptides can be subdivided into different groups, 

based on their tertiary structures, amino acid composition, or the ability to form disulphide 

bonds through specific cysteine residues (87).  

The two largest families within the antimicrobial peptide class are cathelicidins and 

defensins. For the purpose of this literature review, we will focus solely on the role of 

cathelicidins, and their potential for the treatment of multi-drug resistant bacterial 

infections. 

 

http://aps.unmc.edu/AP
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1.4.1 Cathelicidins: mechanisms of action and therapeutic potential 

Cathelicidins are a diverse family of peptides found in multiple species, including 

(but not limited to) humans (88), rats (89), mice (90), and chickens (91). They are grouped 

together based on a common pro-domain, known as a “cathelin” domain (named due to its 

homology to the cathepsin-L-inhibitor), that is roughly 100 amino acids long (92, 93). The 

full-length, unprocessed peptides contain a short signalling domain on the N-terminus, the 

conserved cathelin domain, and the active cathelicidin peptide at the C terminus (94). The 

N-terminal signal domain is responsible for directing the cathelicidin into storage granules, 

at which point it is proteolytically removed (95–98). Once the secretory granules are 

released, or fused with phagosomes, the active C-terminus is cleaved from the cathelin 

portion by elastase (or proteinase 3, specifically for LL-37), releasing the active 

antimicrobial peptide (96–104). Cathelicidins were first identified in leukocytes and 

myeloid cells, but have since been identified in almost all epithelial and immune cells, 

adding evidence for their important role in innate immunity (94, 105–111). Recently, 

cathelicidin expression levels in circulating immune cells was investigated, which showed 

highest levels of cathelicidin expression in neutrophils, followed by monocytes, and then 

lymphocytes (112). Their expression and release can be both constitutive or upon 

stimulation, either through activation by microbial products such as lipopolysaccharide 

(LPS), or through stimulation by inflammatory cytokines, such as IL-1α (110, 113, 114). 

In humans and primates, induction of cathelicidin production is regulated by vitamin D 

receptor activation, not direct NF-κB regulation (115). Instead, toll-like receptor activation 

induces cathelicidin production indirectly, via upregulation of the vitamin D receptor (116). 
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1.4.2 Antibacterial activity 

Initial interest in these peptides was due to their bactericidal properties (117). 

Despite being phylogenically ancient, these peptides have maintained potent antimicrobial 

activity with very few species of bacteria presenting with intrinsic resistance towards them. 

The efficacy of these evolutionarily old peptides is due in part to the multiple mechanisms 

of bactericidal activity (100, 118).  

Upon their release from the secretory granules, the positively charged cathelicidins 

interact with the negatively charged phospholipids found on the bacterial plasma 

membrane, as well as components of the outer membrane, including lipoteichoic acid 

(LTA) or LPS (119). These electrostatic interactions account for the selection of bacterial 

cell membranes over the neutrally charged eukaryotic membranes (79). After the 

interaction with the cell membrane, cathelicidins have been shown to function through two 

methods (Figure 1.1). The first is solely through the cell membrane interactions, where the 

peptides will permeabilize bacterial membranes through either carpet-, barrel stave-, or 

toroidal pore-models, depending on the peptide in question (which varies due to each 

cathelicidin’s structure, shape, and amino acid composition) leading to loss of membrane 

integrity and bacterial death (100, 120–122). While it is possible for bacteria to undergo 

major membrane neutralization to prevent cathelicidin binding, these changes often lead to 

an evolutionary disadvantage once the selective pressure is removed. Additionally, 

bacterial membrane neutralization appears to be limited, and the membrane changes are not 

enough to completely prevent cathelicidin activity (123, 124).  

In the second method, after binding and insertion into the bacterial membrane, the 

peptide will move into the cell and interact with negatively charged molecules within 
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(including DNA and RNA, amoung others) to prevent transcription, translation, and other 

necessary bacterial survival activities (125). These multiple mechanisms of action make 

rapid development of resistance very difficult for bacteria, and explains why these 

phylogenetically ancient peptides still remain effective antimicrobials (124).  

In multiple studies, cathelicidins have repeatedly been shown to effectively kill 

Gram-positive, Gram-negative bacteria (108, 126), mycobacteria (104), as well as fungi 

(127), and to neutralize membrane-enveloped viruses (128, 129), all of which are the 

sources of clinically relevant infections in the airways. However, while their bactericidal 

role has been well established in vitro, there are concerns about the activity of these peptides 

within physiologically relevant settings. Travis et al. showed that, while all cathelicidins 

investigated had potent bactericidal activity in the absence of salt, only two peptides 

(SMAP-29 from sheep and CAP-18 from rabbits) showed similar bactericidal activity at 

“high” salt concentrations (100mM NaCl) (130), which is still lower than physiologically 

relevant conditions found within the lung (131). Other peptides, however, have been shown 

to have salt-insensitive activity, such as CATH-2 (101, 132). However, various 

modifications can affect bactericidal activity in these high salt conditions, as Veldhuizen et 

al. demonstrated that shortening of cathelicidins, particularly through truncations to the C-

terminal of the peptide, tends to lead to increased salt sensitivity with respect to 

antimicrobial activity. They postulated that α-helix stability was one of the factors behind 

the disparity in activity (133).  

Regardless of the controversy surrounding their direct bactericidal role in vivo, 

cathelicidins have been repeatedly shown to have direct anti-infective functions in 

clinically relevant models of infection. They were first identified as key members of 
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immunity in mouse models of Group A S. pyogenes skin infection, where loss of mCRAMP 

expression via knockout led to reduced clearance of the bacteria and an increase in the 

necrotic tissue area at the site of infection (134). This was one of the earliest studies to 

provide direct evidence of cathelicidin function in vivo, which initiated the investigation of 

these peptides in other disease models, including respiratory infections. 

In CF, despite the failed bacterial clearance by the immune system, there are 

significantly elevated levels of LL-37 within the sputum, which correlates with disease 

severity (135). However, sputum samples that were treated with lipopolysaccharide-

binding protein (LBP) and DNase in vitro were able to reduce bacterial load, presumably 

by releasing the AMPs within the sputum from LPS and DNA/F-actin that may have been 

binding to and masking the peptide’s direct bactericidal functions (136, 137). Loss of 

endogenous cathelicidin expression in vivo has been shown to significantly reduce bacterial 

clearance in infection models using K. pneumoniae and P. aeruginosa, again demonstrating 

the important role of cathelicidins in the innate immune response towards bacterial 

infections (138). 

Despite the vast amount of research investigating the potential of cathelicidin 

peptides as exogenous therapies, administration of exogenous cathelicidins and 

cathelicidin-derivatives to directly treat bacterial lung infections in vivo have shown much 

more modest results to date. A recent study by Mardirossian et al showed that, despite 

efficacy in vitro and peptide tolerability in naïve animals, intratracheal instillation of 

BMAP-27 and its peptide derivatives was unable to significantly reduce P. aeruginosa 

bacterial load 24 hours after treatment (139). Using a similar model, Beaumont et al showed 

that intratracheal administration of LL-37 after P. aeruginosa infection aids in the bacterial 
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clearance, but via augmentation of the endogenous host defense system, not through direct 

bactericidal activity (140). 

Taken together, these studies provide evidence of the disparity in cathelicidin 

activity between individual peptides with respect to direct bactericidal activity. The lack of 

translational activity between in vitro studies and actual effects observed after in vivo 

administration highlight the need for thorough investigation of various cathelicidins in 

order to identify an optimal peptide which maintains salt-insensitive, in vivo bactericidal 

activity, in order for further development of a clinical therapeutic agent.  
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Figure 1.1. a) A cartoon ribbon model of two α-helix structured cathelicidin peptides; 

CATH-2 (blue), and LL-37 (red). b) Cathelicidins have been found to be endogenously 

released by both macrophages (light blue), neutrophils (purple), and epithelial cells (not 

shown) after induction of inflammatory signalling, at which point the peptide is now free 

to interact directly with the bacterial membrane to begin bactericidal activities. The three 

proposed mechanisms of bactericidal activity via pore formation are c) barrel-stave model, 

where the neutrally-charged portion of the cathelicidin interacts with the lipid tail groups 

of the bacterial cell membrane, eventually forming a pore; d) the toroidal pore model, in 

which the positively-charged portions of the peptide interact with the negatively-charged 

phospholipid head groups by inserting into the bacterial membrane, forcing the membrane 

to fold inwards as well; e) carpet model, in which the peptides orient in parallel to the 

bacterial membrane, and upon reaching a “critical” concentration, form micelle-like 

structures and lyse the cell membrane. f) Mechanisms of intracellular activity, which 

include inhibition of DNA, RNA, and protein synthesis. 
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1.4.3 Cathelicidin immunomodulatory activity 

As a result of the unclear nature of cathelicidins’ bactericidal activity in vivo, some 

research groups have begun testing cathelicidin immunomodulatory activity (83, 141–143). 

It has been well documented, both in vitro and in vivo, that cathelicidins are able to 

modulate inflammatory signalling, by either eliciting a pro-inflammatory or anti-

inflammatory signal, which appears to be dependent upon microbial stimulation and 

microbial by-products initiating the signal (140, 144, 145). 

The presence of the human cathelicidin LL-37 has been shown to skew 

differentiating monocytes towards M1 (pro-inflammatory) macrophages (146). However, 

LL-37 has been shown to be able to reduce pro-inflammatory cytokine production from 

these M1 macrophages if co-administered with LPS or LTA at physiologically relevant 

levels, without affecting macrophage phagocytic activities (82). There is evidence that LL-

37 appears to inhibit cytokine expression of stimuli activating the toll-like receptors TLR 

2 and TLR 4 (LTA and LPS, respectively) (144). However, this anti-inflammatory activity 

appears to be very specific, as cytokine production after stimulation by of TLR2/1 via the 

synthetic lipopeptide PAM3, or TLR2/6 via ZymA is not affected by administration of LL-

37 (82, 146).  

Asides from LL-37, other cathelicidins have been shown to have similar activity 

across several distinct species. Murine CRAMP has been shown to act similarly to LL-37, 

inducing macrophage polarization and reducing cytokine production upon microbial 

stimulation by LPS, LTA, as well as bacterial flagellin (a TLR 5 agonist) (147). Chicken 

cathelicidins CATH-1, -2, and -3 have been shown to similarly block LPS-induced cytokine 
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production from mouse macrophage cell lines, which importantly indicates cross-species 

activity (101, 132, 148). 

However, the anti-inflammatory properties of cathelicidins are not as straight-

forward as initially suspected. Both LL-37 and CATH-2 have been shown to be involved 

in the association of DNA complexes that activate TLR 9 and increase inflammatory 

signalling (149, 150). Similarly, mCRAMP-knockout (CAMP-/-) mice showed a reduced 

ability to respond after CpG DNA injection through a reduction in inflammatory cytokine 

production (TNF-α, IL-6), while it was shown at the same time that mCRAMP is 

responsible for complexing with CpG DNA and TLR 9 in the endolysosome of murine 

macrophages (151). 

 Adding to their immunomodulatory properties, many cathelicidins have also been 

documented to act as chemoattractant agents. LL-37 has been shown to induce chemotaxis 

in monocytes, neutrophils (152), eosinophils (153), and T-cells (154). Similar neutrophil 

chemotactic activities have been found for additional peptides, such as mCRAMP, PR-39 

(155), and chicken CATH-1 (156), while mononuclear cell recruitment appears to be less 

universal. The chemotactic functions of these peptides appears to be regulated through the 

formyl peptide receptor 2/formyl peptide receptor-like 1 (FPR2/FPRL1) (152). Similar 

receptor interactions have been identified for other species, such as mCRAMP and the 

murine homologue of FPR2 (157). For mast cell specific mobilization and activation, LL-

37 has been able to act through the MrgX2 receptor specific to mast cells (158). There is 

also some evidence of LL-37 acting as a direct ligand for the CXCR2 chemokine receptor 

found on neutrophils, where interaction induces calcium influx in a dose-dependent manner 

(159). 
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Independent of their direct chemotactic activity, cathelicidins are also able to 

upregulate the production of chemokines from other cell types. Macrophages stimulated 

with LL-37 produced significantly higher levels of MCP-1, a key chemokine for the 

recruitment of monocytes, natural-killer cells, and T-cells, however LL-37 incubation with 

LPS inhibited the release of MCP-1 from airway epithelia. Additionally, stimulation with 

LL-37 alone produced IL-8, a neutrophil chemokine, in a dose dependent manner (160). 

This IL-8 production appears to be through the interaction of these peptides with both the 

P2X7 receptor and epidermal growth factor receptor, and has been shown to be produced 

from epithelial cells, fibroblasts, and macrophages (161–163). LL-37 binding with GAPDH 

from monocytes also induces the production of CXCL1, another neutrophil chemokine 

(145). 

Based on the studies of immunomodulatory activities described above, cathelicidins 

have become attractive therapeutic targets as immune system adjuvants. Summation of the 

data presented above suggests that cathelicidins have the ability to maintain a complex 

inflammatory balance within an infection environment. This capability to balance the 

immune system, ensuring a sufficient inflammatory response to eliminate invading 

pathogens while preventing excessive host responses, suggests that cathelicidins are 

extremely promising as therapeutics for many chronic lung diseases, and especially CF 

lung disease where excessive pro-inflammatory activation often leads to collateral tissue 

damage and remodelling. The use of a cathelicidin peptide that possesses antibacterial 

activity in vivo, while being able to modulate inflammatory responses, would be an ideal 

therapeutic for this type of disease. 
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1.4.4 Chicken cathelicidin CATH-2 

CATH-2 is one of four cathelicidins found in chickens (91). Produced almost 

exclusively by heterophils (chicken homologue of human neutrophils), the active CATH-2 

peptide is cleaved from its pro-piece by serine proteases and released upon immune system 

stimulation, such as LPS activation (164). Once released, the peptide can exert its potent 

broad-spectrum microbicidal activity (127, 132). CATH-2 shows antimicrobial activity 

against a wide variety of both chicken and human pathogens, generated minimum 

inhibitory concentration (MIC) values between 0.6-5.3 µM. Unlike other cathelicidin 

peptides, this antimicrobial activity appears to be unaffected by increasing salt 

concentrations (101, 132, 165). CATH-2 appears to kill through multiple mechanisms of 

action, depending on peptide concentration, including direct membrane permeabilization, 

as well as interacting with intracellular components, although the exact target is unknown 

(166). 

In addition to this salt-insensitive broad-spectrum activity, CATH-2 has also been 

shown to have strong immunomodulatory activity. It has been shown to directly bind to 

multiple immunostimulatory products, such as LPS (132, 166, 167). Interactions of CATH-

2 with LPS, as well as the gram-positive endotoxin LTA, are able to significantly reduce 

TNF-α production from macrophages in vitro, while interactions with CpG DNA increases 

TNF-α production, consistent with observations from other cathelicidin peptides (151, 

167).  

In vitro, CATH-2 has demonstrated the unique ability to kill a broad-spectrum of 

human pathogens, maintains bactericidal activity within physiologically relevant salt 

concentrations, and is able to modulate inflammatory responses in vitro across multiple 
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different stimulatory molecules, in both chickens, as well as mouse cell lines. Based on 

both its bactericidal and immunomodulatory effects, CATH-2 is a highly promising 

cathelicidin of interest for further investigation. However, the use of CATH-2 in in vivo 

models, and its bactericidal activity against multi-drug resistant human pathogens, is yet 

unknown. 

 

1.5 Cathelicidins in clinical trials  

Due to their multiple mechanisms of bactericidal activity, cathelicidins are ideal 

peptides for next generation antibiotics due to their low propensity for the development of 

bacterial resistance. Despite the bacterial development of protease secretion and 

membrane/exotoxin post-translational modifications as possible resistance mechanisms, 

the fact that these peptides retain broad-spectrum activity against a variety of human 

pathogens reinforces their clinical potential in future therapies (124). 

According to ClinicalTrials.gov, there are currently approximately 80 trials 

involving cathelicidins, as well as other antimicrobial peptides, either through direct 

administration of exogenous antimicrobial peptides, through treatments aimed to increase 

endogenous cathelicidin pool sizes within patients (through the administration of butyrate, 

vitamin D, or their alternative forms), or through treatments aimed at the inhibition of 

cathelicidin production for diseases of peptide over expression. In addition, there is a large 

field of research involving pre-clinical studies investigating multiple cathelicidin peptides 

in many infection and disease states (141). 

However, despite the therapeutic promise of cathelicidin peptides, very few have 

been developed through all stages of clinical trials. Obstacles to development often involve 
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either toxicity towards eukaryotic cells, which can be observed at high doses (101), or the 

poor stability of cathelicidin peptides to endogenous proteases found in the gastrointestinal 

tract, serum, and even bronchoalveolar lavage fluid (83, 139). Therefore, optimal 

cathelicidin therapy for pulmonary infections would require a) a peptide that is functional 

in the pulmonary, high salt, environment, b) a method to protect the peptide from 

degradation, limited toxicity, and c) a method to deliver it directly to the injured location.  

 

1.6 Delivery of therapeutics to the airways 

During treatment of lower respiratory tract infections, adequate 

antibiotic/antimicrobial site concentrations are imperative for the clearance of infection. 

This is made difficult by the unique branching structure of the lung (168). Despite this, the 

delivery of antibiotics directly to the site of infection within the lung, which is currently 

limited to aerosolized administration, has numerous benefits over current systemic 

administration routes, including increased local concentrations of antibiotics, and enhanced 

microbial clearance. Furthermore, there is a reduced risk of systemic toxicity which is 

common in numerous conventional antibiotics (29, 169–171). However, aerosolized 

administration of antibiotics is typically found to accumulate in the central airways, with 

large volumes of antibiotics required to reach adequate concentrations at the distal sites of 

infection (30, 172, 173). Therefore, to optimize delivery of therapeutics to the lungs, other 

drug delivery vehicles must be identified. 

1.6.1 Exogenous pulmonary surfactant as a vehicle for therapeutic delivery 

In order to overcome these delivery issues, many groups have investigated the 

potential of pulmonary surfactant as a delivery vehicle (29, 169, 170, 174–177). Pulmonary 
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surfactant is a lipoprotein mixture, endogenously produced by type II alveolar cells within 

the lung, composed of approximately 80-85% phospholipids, 5-10% neutral lipids, and 5-

10% surfactant specific proteins (9, 13). Exogenous clinical surfactants, derived from 

animals including bovine and porcine sources, have been used over the past 35 years as a 

treatment for neonatal respiratory distress syndrome, which is characterized in premature 

infants as a lack of sufficient endogenous surfactant (19, 178, 179). Surfactant acts by 

adsorbing and spreading at the air-liquid interface within the alveoli and acts to reduce 

surface tension, thereby improving lung compliance and preventing alveolar collapse upon 

exhalation (14). 

The spreading capabilities of surfactant has been investigated as a potential 

mechanism of distributing therapeutics to distal airways (29). The benefits of surfactant 

spreading were first demonstrated by Kharasch et al., who showed that surfactant 

administration was superior to aqueous solution administration with regards to lung tissue 

distribution (30). They demonstrated that surfactant was able to disperse more uniformly 

throughout the lungs, in comparison to saline solution, which tended to localize to the 

central lung regions (30). Surfactant distribution rates are also far superior to current 

practices involving aerosolized administration, which only achieves ~10% deposition in 

small airways (180, 181). 

Based on the promise of these initial distribution studies, several groups began 

investigating the potential of utilizing surfactant as a respiratory vehicle, with the purpose 

of increasing concentrations of therapeutics at the infection site and reducing toxicity risks 

of systemically administered antibiotics (29, 30, 170, 176). Van’t Veen et al. were able to 

show that the combination of surfactant with the antibiotic tobramycin was able to 
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significantly improve survival in mice infected with K. pneumoniae compared to animals 

receiving surfactant alone, or tobramycin alone (176). The same group was then able to 

show that the in vivo administration of a surfactant preparation with cyclosporine A 

suspended in ethanol had no impact on surfactant function (177), and were able to reduce 

inflammation and acid sphingomyelinase activity after “fortification” of surfactant with a 

NF-κB inhibitor (182). 

As mentioned previously, pulmonary surfactant has been used as a clinical therapy 

from 1980 for the treatment of neonatal respiratory distress syndrome (25). While the use 

of surfactant for the treatment of adult respiratory distress syndrome failed to show 

significant clinical improvement, it has repeatedly been demonstrated to be a safe 

therapeutic (183). However, more recent studies have begun investigating the potential of 

surfactant as a mucokinetic agent, which would act to improve clearance of mucus plugging 

(184). Studies by Al-Saiedy et al. demonstrated that the addition of the exogenous 

surfactant BLES to an in vitro mucus plug system was able to improve mucus “velocity” 

over the course of ventilation (185).  

Along with its potential as a respiratory vehicle, the multifunctionality of a 

combined surfactant/antimicrobial peptide compound to distribute therapeutics throughout 

the airways, reduce mucus plugging, and eliminate multi-drug resistant bacteria would be 

of major therapeutic benefit as a treatment for many different respiratory diseases, 

including cystic fibrosis and ventilator-associated pneumonia. However, as demonstrated 

by van’t Veen et al., this combination must be able to maintain the innate functions of each 

of its parts, as some antibiotics have demonstrated a loss of activity after instillation with 

surfactant, and surfactant inactivation would compromise lung function (175). 
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1.7 Summary, objectives, and hypothesis 

 Over the course of respiration, the lung is constantly bombarded with pathogenic 

bacteria. In some cases, these bacteria are able to circumvent the natural host defense 

systems and develop into an airway infection. Left untreated, these infections can lead to 

severe tissue damage in the lungs, resulting in inefficient gas exchange, poor oxygenation, 

respiratory failure, and eventually death. Normally, treatment of these infections involves 

a simple course of antibiotics, resulting in clearance of the pathogen. However, ineffective 

antibiotic stewardship combined with a lack of pharmaceutical investment has cumulated 

into a global healthcare “perfect storm” with the increasing emergence of antibiotic 

resistant bacteria. There is a dire need for the development of novel therapeutics for 

the treatment of antibiotic resistant bacterial infections. 

 To develop these new therapeutics, we have investigated the potential of 

cathelicidin peptides. Their direct antimicrobial activity, coupled with their 

immunomodulatory functions, are theoretically ideal for the treatment of infection, as they 

present the ability to directly kill colonized bacteria while downregulating the inflammatory 

response associated with bacterial death. In addition to cathelicidins, we have investigated 

an exogenous pulmonary surfactant, BLES, as a vehicle for these cathelicidin peptides, in 

order to improve therapeutic administration into the peripheral airways of the lung.  

 However, interaction between cathelicidin peptides and exogenous pulmonary 

surfactant is currently unknown. In Chapter 2, we investigated the proof-of-principle of 

a cathelicidin/surfactant compound, and select an optimal cathelicidin for therapeutic 

use. This investigation was performed by assessing the biophysical and antimicrobial 
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activities of multiple cathelicidin peptides in combination with exogenous surfactant in 

order to select an ideal peptide/surfactant combination for future therapeutic study. Once 

identified, we tested the safety of this therapeutic after intratracheal administration in naïve 

animals.  

 After identifying the optimal cathelicidin/surfactant combination, and performing 

safety studies, Chapter 3 investigated the immunomodulatory activity of the selected 

cathelicidin, CATH-2, using administration of killed P. aeruginosa. Bacteria were 

killed via three separate mechanisms, and intratracheally instilled into mouse lungs in order 

to study the inflammatory response elicited. The ability of CATH-2 to kill bacteria in an 

immunogenically “silent” manner, as well as the ability of CATH-2 to down-regulate the 

inflammatory response of other killed-bacteria were investigated. 

 Following the investigation of CATH-2’s immunomodulatory activity, Chapter 4 

focused on the bactericidal and immunomodulatory properties of BLES+CATH-2 

against multi-drug resistant clinical isolates obtained from CF patients. Similar to 

previous methodology, we investigated the in vitro bactericidal activity of BLES+CATH-

2, and investigated the immunomodulatory activity of BLES+CATH-2 upon instillation in 

vivo with heat-killed bacteria. 

 Finally, in Chapter 5 we investigated the bactericidal and immunomodulatory 

activity of BLES+CATH-2 in two distinct models of pneumonia. To test this, two 

models - a mouse model of bacterial pneumonia, and a rat model of ventilator-associated 

pneumonia - were used to assess the bactericidal activity of BLES+CATH-2 treatment in 

vivo in clinically relevant models of respiratory infections. 
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The overall objective of this thesis was to develop an antibiotic-alternative, novel 

therapeutic for the treatment of multi-drug resistant respiratory infections. The overall 

hypothesis is that the administration of a cathelicidin/surfactant compound will improve 

clinically relevant outcomes in the treatment of bacterial pneumonia.  
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2.1 Introduction 

The emergence of highly resistant strains of bacteria currently represents a 

significant public health issue for patients due to the pervasive use of antibiotics on a global 

scale. Patients with acute or chronic pulmonary infections where antibiotic use is 

widespread, such as in case with cystic fibrosis and ventilator-associated pneumonia, 

antimicrobial resistance is particularly problematic and is a strong predictor of poor 

outcomes (1). Furthermore, the distinct structure of the lung, combined with the potential 

of inaccessible areas due to collapse and edema arising from infections, significantly 

impairs effective antimicrobial drug delivery in this organ. New, innovative therapeutic 

approaches to combat lung infections are desperately needed. 

Antimicrobial peptides (AMPs) form part of the innate immune system and are 

evolutionarily conserved across a wide variety of organisms including humans (2). One 

class of antimicrobial peptides, cathelicidins, possess antimicrobial function through a 

variety of mechanisms including direct interaction with bacterial cell membranes and 

interference of intracellular bacterial targets (2). The net positive charge of these peptides 

ensures they are more likely to interact with the negative cell walls of bacteria than the 

neutral cellular membranes of eukaryotic cells. Importantly, it has been demonstrated that 

they remain functional against microbes with antibiotic resistance, and considering their 

mechanism of action, it is less likely that resistance will develop due to the changes in 

membrane structure that would be required for effective resistance (2). It has been shown 

in vitro that AMPs can induce transient resistance, but there is no evidence that this occurs 

in vivo (3). Based on these properties, antimicrobial peptides have received a lot of attention 

as alternatives to antibiotics, particularly for topical therapies (4). Utilization for pulmonary 
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infections has been investigated but is complicated by delivery issues and to date has not 

been successful in clinical trials (5–7). 

To address the pulmonary delivery issue, exogenous surfactant has been proposed 

as carrier for a variety of biological agents (8). Exogenous surfactant is derived from 

endogenous pulmonary surfactant, a lipoprotein complex naturally produced by type II 

alveolar cells, that is made up of approximately 80-85% phospholipids, 5-10% neutral 

lipids (including cholesterol), and 10% proteins (9). The main function of surfactant is to 

reduce surface tension at the air-liquid interface of the alveoli. To accomplish this goal, 

surfactant adsorbs and spreads rapidly to form a surface film consisting or lipid-condensed 

and lipid-expanded regions at the air-liquid interface which upon lateral compression forms 

a stable multilayer structure capable of reducing surface tension values to near 0 mN/m (10, 

11). Through its ability to spread throughout the lung and open up collapsed lung areas, 

exogenous surfactant therapy has been shown to reduce mortality of premature infant 

afflicted with neonatal respiratory distress syndrome (12). 

The general characteristics of surfactant and positive findings of exogenous 

surfactant therapy led to a number of laboratory studies to investigate the possibility of 

exogenous surfactant as a pulmonary delivery vehicle for other drugs (13–17). The 

rationale for this approach is that the spreading properties of surfactant would improve 

therapeutic distribution throughout the lung, while opening of collapsed lung regions to 

improve drug availability directly at the site of an infection (8). Imperative for this approach 

is that the drug of choice does not impact surfactant's ability to spread throughout the lung 

and reduce surface tension, and, vice versa, that surfactant does not interfere with the 

therapeutic efficacy of the drug.  
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Based on this information our objective was to evaluate the spreading, biophysical 

capabilities, and bactericidal function of four cathelicidin peptides, CATH-1, CATH-2, 

mCRAMP, and LL-37, combined with a clinical exogenous surfactant, bovine lipid-extract 

surfactant (BLES). Maintenance of respective surfactant and cathelicidin functions when 

the two compounds are combined would provide a first proof-of-principle toward the 

hypothesis that a combination treatment of cathelicidins with an exogenous surfactant 

vehicle would be effective in treating antibiotic resistant lung infections. 
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2.2 Materials and Methods  

Surfactant/Peptide Compounds 

 BLES (BLES Biochemicals, London, ON, Canada) is a commercially available 

clinical preparation, stored in 100 mM sodium chloride and 1.5 mM calcium chloride with 

a phospholipid concentration of 27 mg/ml. BLES contains natural phospholipids found in 

bovine surfactant, along with surfactant-specific proteins SP-B and SP-C and a small 

percentage of cholesterol.   

Antimicrobial peptides were synthesized using Fmoc solid-phase synthesis as 

described previously (18). All peptides were purified to a minimum purity of 95% by 

reverse phase high-performance liquid chromatography prior to biological testing. The 

sequences of the peptides used in this study are shown in Table 2.1. Four AMPs were 

tested in this experiment: chicken cathelicidin-1 and 2 (CATH-1, CATH-2), mouse 

cathelicidin CRAMP, and human cathelicidin LL-37. All peptides were suspended in 

non-buffered sterile saline. BLES and peptide were mixed to concentrations of 10 mg/ml 

BLES, and 10/40/100/200 µM for the peptides. 

 

  



60 

 

 

 

Peptide Amino Acid Sequence Net 

Charge 

CATH-1 RVKRVWPLVIRTVIAGYNLYRAIKKK +8 

CATH-2 RFGRFLRKIRRFRPKVTITIQGSARF +9 

mCRAMP GLLRKGGEKIGEKLKKIGQKIKNFFQKLVPQPEQ +6 

LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES +6 

 

Table 2.1 Amino acid sequence and charge of cathelicidins investigated. 
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Spreading 

 Adsorption of BLES and the various peptides were measured using the Wilhelmy 

probe and FilmWare 2.51 software of the Langmuir balance. A petri dish with a diameter 

of 100 mm, and surface area of 78.54 cm2 was used. It was filled with 25 ml of 10% sucrose, 

with a 15 ml layer of ddH2O layered on top. The probe of the Langmuir balance was placed 

on the surface of the ddH2O sub-phase, and 50 µl of each peptide-surfactant sample was 

pipetted into the water phase. The surface tension was recorded over the subsequent 600 

seconds. 

 

Minimal surface tension over multiple compression-expansion cycles 

 To investigate the minimum achievable surface tension over ten compression-

expansion cycles, a constrained sessile drop surfactometer (CDS) (BioSurface Instruments, 

HI) was used (19–21). A ten microliter drop of sample was placed upon the drop pedestal, 

and using an external stepper motor, the drop was cyclically compressed-expanded for 10 

cycles at a rate of 5 seconds/cycle, and a compression ratio of approximately 27%. Images 

of the droplet were recorded at a rate of one image per second, and were analyzed. The 

image with the lowest surface tension throughout each cycle was determined to be the 

minimum surface tension (MST) for that cycle. Minimum surface tensions for all 10 cycles 

were measured. 

 

AFM imaging of surface films  

In order to examine the effect of peptides on the surfactant surface films, Langmuir-

Blodgett films were prepared using a Kibron™ Trough SE (Helsinki, Finland). Briefly, 
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films were spread by depositing droplets of surfactant samples uniformly throughout the 

air–water interface. Deposits were taken at surface pressure of 30 mN/m on freshly-cleaved 

mica. Topographical atomic force microscope (AFM) images were obtained using a 

Nanoscope III scanning force multimode microscope (Digital Instruments, Santa Barbara, 

CA). Samples were scanned with a J-type scanner using contact mode in air. A silicon 

nitride cantilever with a spring constant of 0.12 N/m was used. Image analysis was 

performed using the Nanoscope III software (version 5.12r3). All AFM images were 

subjected to quantitative analysis using ImageJ Software (National Institute of Health) to 

determine the surface area of condensed domains. At least 9 AFM images were used for 

each sample and the results are shown as averages and standard error. 

 

Antimicrobial assays 

 An overnight culture of either Methicillin-resistant Staphylococcus aureus WKZ-2, 

or Pseudomonas aeruginosa VW178 (isolated from a cystic fibrosis patient) were diluted 

1/1000 in tryptic soy broth (TSB) and left to incubate for three hours at 37°C in order to 

reach exponential growth phase. The optical density was measured, and bacteria were 

further diluted in PBS to reach an initial concentration of approximately 2x106 CFU/ml. 

From there, 25 µl of peptides at various concentrations, with or without BLES, were added 

to polypropylene coated round-bottom 96 well plates, along with 25 µl of bacteria, and 

incubated at 37°C for three hours with no shaking. Subsequently, 200 µl of minimal media 

was added, and the colonies were serially diluted 10-1000-fold. After the serial dilution, 

100 µl of each dilution were plated on tryptic soy agar (TSA) plates and left to incubate 

overnight at 37°C. Following overnight incubation, the colonies on the plates were counted. 
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Minimum bactericidal concentrations (MBC) were defined for these experiments as the 

concentration of surfactant/peptide compound at which less than 10 colonies were counted 

at the highest dilution, corresponding to less than 100 CFU/ml. 

 

In vivo analysis of safety and tolerability of BLES+CATH-2 treatment 

 Male C57Bl/6 mice (Charles River, Sherbrooke, Qc, Canada), weighing 22-30 g, 

were used for this experiment. All animal procedures were approved by the Animal Use 

Subcommittee at the University of Western Ontario, and followed the approved guidelines 

described by the Canadian Council of Animal Care. Mice were anesthetized by 

intraperitoneal injection of a ketamine (100 - 125 mg/kg body weight) and 

dexmedetomidine (0.5 mg/kg BW) mixture, and then intubated using a 20 G catheter, with 

the aid of a fiber-optic stylet (BioLite intubation system for small rodents, BioTex, Inc., 

Houston, Texas, USA). Once intubated, the mice were instilled with 50 µl of one of five 

treatments: a) air bolus, b) sterile saline, c) BLES (10 mg phospholipid/ml), d) CATH-2 

(100 µM, suspended in sterile saline), or e) BLES+CATH-2 (10 mg phospholipid/ml, 100 

µM peptide).  Mice were extubated following successful instillation and were subsequently 

injected with the reversal agent for dexmedetomidine, Antisedan, and allowed to breathe 

spontaneously for the following four hours. After four hours, the mice were euthanized by 

intraperitoneal (IP) injection of sodium pentobarbital (110 mg/kgBW) and dissection of the 

descending aorta. The animals were placed on a FlexiVent© in order to measure 

physiologic parameters, such as lung capacity, compliance, and airway resistance. 

Following these measurements, whole lung lavage was collected by 3 x 1 ml aliquots of 

sterile saline. The whole lung lavage was immediately centrifuged at 150 x g at 4°C, and 
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the pellet was collected for cell analysis, while the supernatant was used to measure protein 

and IL-6 content. Differential cell analysis of the cells obtained in the lavage was done as 

previously described (22). Protein content within the lavage fluid was measured using a 

Micro BCA protein assay kit (Pierce, Rockford, Ill., USA), according to manufacturer’s 

instructions. IL-6 levels were measured using an enzyme-linked immunosorbent assay 

(ELISA) kit (BD Biosciences, San Diego, Calif., USA), according to manufacturer’s 

instructions. 

 

Statistical Analysis 

 The effect of various cathelicidin peptides on BLES’ surface tension reducing 

capabilities, and adsorptive properties, were calculated by one-way measure analysis of 

variance (ANOVA) followed by a Dunnett post-hoc test using BLES as the control group. 

Analysis of in vivo assays were performed by one-way ANOVA followed by Tukey post-

hoc test. Means are reported ± SEM and values were considered significantly different at a 

probability value < 0.05.  
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2.3 Results 

Surface Tension after 600 seconds 

 Initial assessment involved an analysis of the ability of the surfactant plus peptides 

to form a surface film on a clean air-water interface. This data reflects the “spreadability” 

of the surfactant which, extrapolating to a clinical scenario, is an important indicator of the 

ability of this material to distribute throughout the lung and reach the distal airways and 

alveoli. Each sample was allowed to form a film for 600 seconds and surface tension 

reached was recorded. As shown in Figure 2.1, there were no significant differences in the 

end surface tensions between any of the surfactant/cathelicidin mixtures at 10 µM 

concentrations and BLES (control). However, at a cathelicidin concentration of 40 µM, a 

significant decrease in the surface tension at the end of 600 seconds of spreading was 

observed for BLES+CATH-1 (p<0.01) and BLES+CATH-2 (p<0.05) mixtures compared 

to BLES (control) indicating improved spreading characteristics. All four 

surfactant/cathelicidin mixtures tested resulted in significantly lower surface tension at the 

end of 600 seconds spreading at 100 µM concentrations compared to BLES controls. 
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Figure 2.1 
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Figure 2.1. Adsorption assay of exogenous surfactant BLES in mixture with cathelicidin 

peptides. a) CATH-1, b) CATH-2, c) mCRAMP, and d) LL-37 at concentrations of 0, 10, 

40, and 100 µM. Values are mean surface tension ± SEM after 600s. (n=3) *p<0.05 vs. 

BLES (Control), **p<0.01 vs. BLES (Control). 
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Minimum surface tension over multiple compression cycles 

 In order to examine the surface tension reducing function of the peptide/surfactant 

mixtures, the samples underwent ten cyclic compressions at a rate of five seconds/cycle via 

the CDS, as a physiologically relevant model of multiple expansion-contraction cycles 

during respiration. Minimum achievable surface tension (MST) values were recorded for 

ten cycles, as a marker of surfactant activity which, in the in vivo situation, would reflect 

the ability of this material to stabilize the alveoli and allow for ease of inflation. BLES 

alone was able to reach MST values of ~2.5 mN/m consistently over all ten cycles. It was 

observed that all concentrations of BLES+CATH-2 had a robust surface tension reducing 

activity, consistently reaching MST values below 4 mN/m. BLES+CATH-2 only showed 

significantly higher MST values at cycles 8, 9, and 10 at a concentration of 10 µM 

compared to BLES (control). BLES+CATH-1 mixtures at 40 and 100 µM concentrations 

showed significantly higher MST values compared to BLES (control) at cycles two through 

ten (Figure 2.2a), increasing slightly from 4 mN/m to MST of roughly 5 mN/m at the end 

of the ten compressions. BLES+mCRAMP mixtures had consistently higher MSTs of 

approximately 4.5 mN/m over all cycles at 40 and 100 µM compared to BLES alone (Figure 

2.2c). BLES+LL-37 mixtures had significantly increased MSTs between 4.5-5.5 mN/m 

over all cycles versus BLES (control), but only significantly different at concentrations of 

10 and 40 µM (Figure 2.2d). Minimum surface tensions of BLES+LL-37 mixtures at 100 

µM were not statistically different from the BLES (control). Mixtures of BLES+CATH-2 

were the only surfactant/cathelicidin mixture to show no significant difference versus 

BLES (control) at 40 and 100 µM concentrations. 
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Figure 2.2 

BLES+CATH-1

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8














Cycle (#)

M
in

im
u

m
 S

u
rf

a
c

e
 T

e
n

s
io

n

(m
N

/m
)

BLES+CATH-2

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8
BLES (Control)

10 M

40 M

100 M





Cycle (#)

M
in

im
u

m
 S

u
rf

a
c

e
 T

e
n

s
io

n

(m
N

/m
)

BLES+CRAMP

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

         

Cycle (#)

M
in

im
u

m
 S

u
rf

a
c

e
 T

e
n

s
io

n

(m
N

/m
)

BLES+LL-37

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8
BLES (Control)

10 M

40 M

100 M











  

Cycle (#)

M
in

im
u

m
 S

u
rf

a
c

e
 T

e
n

s
io

n

(m
N

/m
)

a. b.

c. d.

Figure 2.2. Measurement of minimum surface tension during cyclic compressions of 

exogenous surfactant BLES in mixture with cathelicidin peptides. a) CATH-1, b) CATH-

2, c) mCRAMP, and d) LL-37 at concentrations of 0 (open circle), 10 (triangle), 40 

(diamond), and 100 µM (circle). Values are mean minimal achievable surface tension ± 

SEM. (n=3-5) α = 10 µM <0.05 vs. BLES (Control), β = 40 µM < 0.05 vs. BLES (Control), 

δ = 100 µM <0.05 vs. BLES (Control). 
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Atomic force microscopy images  

 To assess the influence of peptides on surfactant film structure, AFM images were 

analyzed focusing specifically on the formation of liquid condensed domains, as these 

domains have been suggested to be important in surfactant function (11). Characteristic 

AFM topographic images of BLES films in the absence and presence of 100 µM peptides 

(CATH-2, CATH-1, LL-37 and mCRAMP) are shown in Figure 2.3. The brightness in 

these images is proportional to the height.  Phase separation, as indicated by the presence 

of lighter, condensed domains, is evident in all samples at surface pressure of 30 mN/m 

(Figure 2.3 a-e). Quantitative analysis of these images shows that addition of CATH-1 and 

CATH-2 to BLES leads to a change in its lateral organization.  More specifically, addition 

of CATH-1 and CATH-2 to BLES leads to an increase in the number of condensed domains 

and a decrease in the average surface area of the individual domains (Figure 2.4). Addition 

of LL-37 and mCRAMP to BLES has no significant effect on average surface area of 

condensed domains at surface pressure 30 mN/m (Figure 2.4). 
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Figure 2.3 

 

Figure 2.3. Characteristic AFM topographic images showing the effect of peptide addition 

on the lateral organization of BLES monolayers. The scan area is 20 x 20 µm2. All films 

were deposited at a surface pressure of 30 mN/m. (a) BLES; (b) BLES + 100 µM CATH-

1; (c) BLES + 100 µM CATH-2; (d) BLES + 100 µM mCRAMP and (e) BLES + 100 µM 

LL-37. 
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Figure 2.4 
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Figure 2.4.  Quantification results showing the effect of peptide addition (CATH-1, CATH-

2, mCRAMP, and LL-37) on the size (i.e. surface area) of the condensed domains in BLES 

monolayers at surface pressure 30 mN/m. These results were obtained from four unique 

AFM topographic images of different samples. (n=2-24) 
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Antimicrobial assays 

 In order to determine the bactericidal properties of the surfactant/cathelicidin 

mixtures, bactericidal assays of each peptide were performed in both the presence and 

absence of BLES. CATH-1, CATH-2, and LL-37 in PBS were found to have MBC values 

of 5 µM, reducing CFU/ml values of MRSA by more than four log units (Figure 2.5a,b,d), 

while mCRAMP reduced levels by three log units at 40 µM concentrations (Figure 2.5c). 

In the presence of BLES (Figure 2.5), CATH-2 had a MBC of 200 µM, but had considerable 

antimicrobial activity resulting in a two-log reduction of viability counts at 50 µM. CATH-

1 reduced CFU/ml levels by two log units at 200 µM, while mCRAMP and LL-37 mixtures 

resulted in either a one log reduction, or no reduction at 200 µM concentrations in the 

presence of BLES. 

Similar results were seen against P. aeruginosa, where CATH-1, CATH-2, and LL-

37 peptides (in the absence of BLES) had MBC values from 5-10 µM (Figure 2.6), while 

mCRAMP reduced bacterial viability by three log units at 40 µM (Figure 2.6c). In the 

presence of BLES, CATH-2 again had a MBC of 200 µM, and a three-log reduction at 50 

µM. CATH-1 reduced P. aeruginosa viability by three log units at 200 µM. mCRAMP and 

LL-37 showed negligible bactericidal activity in BLES up to 200 µM concentrations. 
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Figure 2.5 
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Figure 2.5. Antimicrobial activities of cathelicidins against MRSA. a) CATH-1, b) CATH-

2, c) mCRAMP, and d) LL-37 in the absence (square, solid line) and presence (triangle, 

dotted line) of 10 mg/ml BLES against Methicillin-resistant Staphylococcus aureus WKZ-

2 in PBS after 3h at 37°C. (n=3) 
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Figure 2.6 

 

Figure 2.6. Antimicrobial assay of cathelicidin peptides against P. aeruginosa. a) CATH-

1, b) CATH-2, c) mCRAMP, and d) LL-37 in the absence (square, solid line) and presence 

(triangle, dotted line) of 10 mg/ml BLES against Pseudomonas aeruginosa VW178 in PBS 

after 3 h at 37°C. (n=3) 

  

CATH-1 P. aeruginosa

0 5 10
1

2

3

4

5

6

7
CATH-1

BLES+CATH-1

20 40 60 100 150 200

Concentration (M)

L
o

g
 C

F
U

/m
l

CATH-2 P. aeruginosa

0 5 10
1

2

3

4

5

6

7
CATH-2

BLES+CATH-2

20 40 60 100 150 200

Concentration (M)

L
o

g
 C

F
U

/m
l

CRAMP P. aeruginosa

0 5 10
1

2

3

4

5

6

7
CRAMP

BLES+CRAMP

20 40 60 100 150 200

Concentration (M)

L
o

g
 C

F
U

/m
l

LL-37 P. aeruginosa

0 5 10
1

2

3

4

5

6

7
LL-37

BLES+LL-37

20 40 60 100 150 200

Concentration (M)
L

o
g

 C
F

U
/m

l

a. b.

c. d.



75 

 

 

 

In vivo analysis of BLES+CATH-2 treatment 

The results of the experiment testing safety and tolerability are shown in Figure 2.7. 

The experiment focused on CATH-2 and included two control groups (air and saline 

instilled groups) and three experimental groups (CATH-2, BLES + CATH-2 and BLES 

instilled groups). Analysis of lung physiology included lung compliance and airway 

resistance (Figure 2.7a-b) which showed no significant difference among the groups. Mice 

that were instilled with CATH-2 alone had significantly higher protein content within the 

bronchoalveolar lavage fluid (BALF) versus animals in other treatment groups, and had 

significantly increased IL-6 levels versus animals treated with BLES alone (Figure 2.7c-d). 

BLES+CATH-2 treated animals showed no significant difference in protein or IL-6 levels 

when compared with air, saline, or BLES controls. Cell count analyses found no significant 

difference in total cell counts (Figure 2.7e) or neutrophil recruitment (Figure 2.7f) for any 

treatment group. 
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Figure 2.7 
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Figure 2.7. From in vivo tolerance model, a) compliance of the respiratory system, and b) 

airway resistance, as measured by FlexiVent; c) protein content, d) IL-6 content, e) total 

immune cells, and f) total number of recruited neutrophils obtained from animal BALF 

samples. (n=5-6) *p < 0.05. 
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2.4 Discussion 

The goal of the current study was to investigate the biophysical and antimicrobial 

properties of four novel surfactant/cathelicidin mixtures and to determine whether 

combining such elements together impacts native function. Four cathelicidin peptides were 

tested in combination with an exogenous surfactant, BLES. The presence of all cathelicidin 

peptides accelerated surface film formation of BLES as indicated by the spreading 

capabilities of BLES plus peptides over 600 seconds. While all other cathelicidin peptides 

decreased the ability of BLES to achieve low surface tensions during cyclic compressions 

on the CDS, the addition of CATH-2 to BLES had a minimal effect on the biophysical 

function of the exogenous surfactant even at high concentrations. AFM images suggested 

that the peptides did incorporate into the film and were capable of altering the film structure. 

Although there was mitigation of the bactericidal capabilities of BLES+CATH-2 when 

compared to CATH-2 activity alone, the BLES+CATH-2 compound could consistently 

reduce bacterial CFUs to below detectable levels, unlike all other surfactant/cathelicidin 

mixtures, which showed either a large decrease or complete loss of bactericidal function in 

the presence of BLES. Lastly, when intratracheally instilled into naïve mice, 

BLES+CATH-2 showed no effect on animal physiology, lung edema (as measured by 

protein leak), or IL-6 inflammatory response. Taken together, we conclude that it would be 

feasible to develop a surfactant/cathelicidin compound that is capable of maintaining 

surfactant and AMP properties and that, among the current peptides tested, BLES+CATH-

2 appears to be the most promising candidate for future studies to investigate the efficacy 

of this therapy as an antimicrobial treatment in vivo. 
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The overall rationale for our study was that surfactant can assist in the delivery of 

an antimicrobial peptide into the lung, thereby overcoming some of the limitations of local 

delivery of drugs in pulmonary bacterial infections. For such compounds to be effective, a 

direct interaction between the surfactant and the peptide would be essential to facilitate co-

distribution of the two compounds when delivered to the lung. Our data, including the AFM 

images of surfactant films and experiments related to the spreading of the surfactant 

indicate that such direct interaction occurs, as observed by the definitive changes in 

microdomain size and formation, particularly for CATH-1 and CATH-2 addition. The 

peptide-surfactant interaction is likely related to the amphipathic, cationic nature of 

cathelicidins, and their ability to interact with negatively charged phospholipids. 

Pulmonary surfactant contains approximately 10-15% acidic phospholipids, mainly 

phosphatidylglycerol (PG), with which the cathelicidins could electrostatically interact 

(23). Although surfactant composition is more complex than simple lipid mixtures, the idea 

of the interaction with PG is supported by studies by Sevcsik et al (24). This group utilized 

binary lipid mixtures to investigate interactions between lipid mixtures and LL-37, and 

found that even in binary mixtures the interaction between the cathelicidin and lipid mixture 

is dictated by one of the lipids present. Although the lipid ratios in their experimental model 

and those found within pulmonary surfactant are different, it is still reasonable to conclude 

that the interaction observed is between the cathelicidin peptides and PG since it appears 

this interaction with negatively charged phospholipids contributes to its basic mechanism 

of antimicrobial activity (2). We suggest that the interaction occurring between the 

surfactant phospholipids and cathelicidin peptides are affecting the individual properties of 
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each component, such as the surface tension reducing functions of BLES, and bactericidal 

capabilities of the cathelicidin peptides. 

Whereas the above discusses a general mechanism of interaction between 

cathelicidins and surfactant, we observed substantial variations among the peptides in terms 

of their behavior when mixed with surfactant. Specifically, marked differences were 

obtained when analyzing the antimicrobial activity when peptides were combined with 

BLES, with only CATH-2 maintaining a relatively robust activity. Differences were also 

observed in the microdomain shape and size via AFM when CATH-1 or CATH-2 were 

added to BLES, but this was not observed for mCRAMP or LL-37. Although those 

differences did not correlate with surfactant activity, these changes do provide evidence of 

direct interaction, and possibly incorporation, of the peptides in the surfactant film. Other 

studies have also found different lipid interactions among various AMPs. Studies by 

Neville et al (25) demonstrated that the addition of LL-37 to a monolayer of DPPG caused 

monolayer collapse at high surface pressures, but that addition of SMAP-29, a sheep 

cathelicidin, actually improved DPPG stability upon compression. This group suggested 

that this was due to the differences in peptide structures and hydrophobicity, and that 

SMAP-29 was more likely to interact with the head groups of the phospholipids, while LL-

37 was more likely to insert into the fatty acid groups of the lipid monolayers. This may 

help explain the differences observed within our study, as the peptides tested here have 

different structures. It is possible that CATH-2 interacts with PG similarly to SMAP-29, 

allowing CATH-2 to maintain its activity as more cationic residues are exposed to the 

external environment and able to interact with bacterial membranes. Other peptides, where 

the residues may be shielded by the interaction with the monolayer, would be less readily 
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available to interact with the targeted bacteria, and therefore have reduced bactericidal 

capabilities. One interesting feature of CATH-2 that could be related to this difference in 

activity is the presence of a proline residue at amino acid position 14 that forms a kink 

region between the two alpha-helical segments of the CATH-2 peptide. This kink is not 

present in the other tested AMPs. It was shown previously that this hinge region is essential 

for antibacterial activity since substitution of the proline residue, straightening the peptide, 

resulted in highly reduced activity (26, 27). Whether this structural difference between 

CATH-2 and the other AMPs is the basis of the observed differences in activity would be 

an interesting future investigation, and could potentially lead to the development of 

improved designer peptides for use in surfactant mixtures. 

It has been repeatedly shown that intratracheal surfactant administration results in 

better pulmonary distribution than aerosol and saline administration (28, 29). Exogenous 

surfactant has been shown to enhance the pulmonary delivery and bioavailability of other 

potential therapeutic agents such as anti-oxidants, antibiotics, corticosteroids and 

adenoviral vectors (8, 30). Similar to the current experiments, several studies have 

investigated the bactericidal and biophysical functions of antibiotics in the presence of 

exogenous surfactant. In general, it was found using in vitro techniques that some, but not 

all, of the antibiotics tested were inhibited in the presence of surfactant (31). A subsequent 

in vivo study in Klebsiella pneumoniae infected mice demonstrated that intratracheal 

administration surfactant with the antibiotic tobramycin had significantly reduced mortality 

compared to surfactant or tobramycin alone (32). These studies provide support for the 

concept of surfactant as a vehicle for drug delivery, including in the setting of bacterial 

infection. Our concept of utilizing AMP-based surfactant expands on these studies, as 
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cathelicidin peptides have the added advantage of lacking microbial resistance towards 

them, while maintaining broad-spectrum bactericidal functions against drug-resistant 

bacteria (2). 

Whereas the main focus of our in vitro experiments was the maintenance of 

surfactant and antimicrobial activities of potential AMP-based surfactant preparations, it 

should be noted that it has also been reported that AMP can have cytotoxic effects towards 

mammalian cells (26, 33, 34). Such effects could potentially limit the therapeutic 

applicability of this approach. Our in vivo experiment tested this issue for the most 

promising AMP-surfactant preparation, BLES+CATH-2, by instilling a therapeutic dose in 

healthy mice and assessing lung physiology and inflammation.  Consistent with the 

reported effects for AMP, instillation of CATH-2 by itself did result in slightly elevated 

lavage protein levels and IL-6 concentrations, indicative of mild pulmonary edema and 

inflammation. Importantly, no such deleterious effects were observed by administration of 

BLES+CATH-2. This data suggests that BLES+CATH-2 is well tolerated and safe when 

instilled in a healthy lung and that mild negative side-effects of the instillation of a high 

dose of CATH-2 by itself are mitigated by co-administration with surfactant. 

Although our main interpretation of our spreading data was that peptides did not 

inhibit this property of surfactant, it was interesting to note that the addition of all 

cathelicidin peptides actually improved the adsorptive function of surfactant, as seen by a 

reduced surface tension after 600 seconds, representing more surface-active material 

available at the air-liquid interface. Addition of all four peptides to exogenous surfactant 

led to significantly lower surface tension values reached after 600 seconds. It is possible 

that these findings are related to the ability of cathelicidin peptides to penetrate bacterial 
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membranes. In the context of surfactant this would imply that the peptides act as “bilayer 

breakers” thereby enhancing the ability of surfactant lipids to adsorb to the interface. This 

is similar to the proposed mechanisms by which the two hydrophobic surfactant proteins, 

SP-B and SP-C, are thought to enhance surfactant adsorption (35, 36). Interestingly, 

isolated SP-B has been reported to have antimicrobial activity as well (37). Although this 

activity was completely mitigated by the interaction with surfactant lipids, the finding does 

support the concept that there may be shared biophysical properties between AMPs and 

surfactant properties in terms of lipid interaction (38). 

In conclusion, our results support the proof of concept that AMP-based surfactant 

can be utilized for the therapy of bacterial infections. It appears that the interaction between 

cathelicidins and surfactant varies and among the four peptides tested, CATH-2 would be 

optimal for further testing. The current observations have been limited to in vitro studies, 

and in vivo safety studies.  Future studies are required to test the efficacy of this compound, 

by itself as well as in combination with other drugs, in an animal model of bacterial 

pneumonia. 
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Chapter 3: Administration of Pseudomonas aeruginosa 

killed by chicken cathelicidin-2 prevents lung 

inflammation in vivo   
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3.1 Introduction 

Pseudomonas aeruginosa is an opportunistic gram-negative bacteria, which is 

commonly found in patients with cystic fibrosis (CF), non-CF bronchectasis, ventilator-

associated pneumonia, or patients that are immunocompromised due to various underlying 

comorbidities (1–4). Treatment of P. aeruginosa airway infections, particularly in chronic 

disease states such as CF, are made difficult due to the emergence of antibiotic resistance 

(1, 5–7). Chronic infection by P. aeruginosa can lead to tissue injury, ultimately resulting 

in progressive lung dysfunction, respiratory failure, and death (8–12). Due to the increasing 

prevalence of antibiotic resistance, and the lack of new therapeutics being produced in the 

pharmaceutical pipeline (13), the development of novel antimicrobials to combat these 

infections are desperately needed. 

To address this issue, cathelicidins, a family of host defense peptides with direct 

antimicrobial activity, are being explored as potential alternatives for antibiotics. These 

peptides, which are endogenously produced by multiple cell types, including epithelial 

cells, macrophages, monocytes, and neutrophils, have a broad spectrum bactericidal 

activity and are less susceptible to classical mechanisms of bacterial resistance (14).  

Furthermore, cathelicidins exhibit a variety of immunomodulatory functions, which may 

provide additional benefits in their use to combat pulmonary infections (15).   

One specific cathelicidin, the chicken cathelicidin CATH-2, has previously been 

identified as a strong candidate for therapeutic use. This peptide has been demonstrated to 

kill P. aeruginosa in physiologically relevant conditions (16) and was shown to retain 

significant antimicrobial function when combined with a pulmonary surfactant vehicle for 

lung targeted delivery (17). Recent in vitro studies have demonstrated that the killing of 
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bacteria by CATH-2 can occur without inducing a marked inflammatory response (18, 19). 

This “silent killing” activity was demonstrated by incubating a macrophage cell-line with 

either CATH-2-, heat-, or antibiotic-killed Escherichia coli, or Salmonella enteritidis (19). 

Macrophages exposed to the bacterial products from either heat- or antibiotic-killed 

bacteria responded by producing high levels of inflammatory mediators such as IL-6 and 

TNF-α; as compared to the CATH-2-killed bacteria, which elicited minimal inflammatory 

cytokine production. Based on the clinical observations that chronic maladaptive 

inflammatory responses can lead to indiscriminate tissue damage and expedited lung injury, 

as observed in CF patients (19–22), this silent-killing property of CATH-2 may further 

extend its clinical potential.  

To date, silent killing by CATH-2 has only been observed in vitro. The in vivo 

environment within the lung is more complex as inflammation will involve multiple cell-

types, cell migration and activation, physiologic lung dysfunction, and a local inflammatory 

environment that may vary between different airways and alveoli. Therefore, the objective 

of the current study was to determine the role of CATH-2 in dampening the inflammatory 

response induced by killed bacteria in vivo. It is hypothesized that CATH-2-killed bacteria 

will elicit a reduced inflammatory response after in vivo intratracheal instillation as 

compared to heat and antibiotic killed bacteria. 
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3.2 Materials and Methods 

Preparation of killed bacteria for in vivo analysis 

An overnight culture of P. aeruginosa ATCC 27853 was diluted 1/10 in tryptic soy 

broth (TSB). The optical density was measured, and bacteria were further diluted in sterile 

saline to reach an initial concentration of approximately 2x106 CFU/ml. Subsequently, the 

bacteria were killed by CATH-2 (20 µM at 37°C for one hour), heat (90°C for one hour), 

or gentamicin (1 mg/ml gentamicin at 37°C for one hour). In a subset of bacteria killed by 

heat or gentamicin, 20 µM CATH-2 was added to the bacterial mixture before instillation. 

After intratracheal instillation, part of the bacterial solutions was plated via spot plating on 

tryptic soy agar (TSA), and incubated overnight at 37°C. The plates were examined the 

following morning to ensure complete bacterial killing. 

 

In vivo analysis following administration of killed bacteria 

Male C57Bl/6 mice (Charles River, Sherbrooke, Qc, Canada), weighing 23-32 g, 

were used for this experiment. All animal procedures were approved by the Animal Use 

Subcommittee at the University of Western Ontario, and followed the approved guidelines 

described by the Canadian Council of Animal Care. Mice were anesthetized by 

intraperitoneal (IP) injection of ketamine (100 – 125 mg/kg body weight) and 

dexmedetomidine (0.5 mg/kg BW), and then intubated using a 20G catheter with the aid of 

a fiber-optic stylet (BioLite intubation system for small rodents, BioTex, Inc., Houston, 

Texas, USA). Once intubated, mice were randomized into treatment groups and instilled 

with 50 µl of a) CATH-2-killed bacterial preparations, b) heat-killed bacteria, c) heat-killed 

bacteria supplemented with CATH-2, d) gentamicin-killed bacteria, e) gentamicin-killed 
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bacteria supplemented with CATH-2, or f) instilled with an air bolus (naïve controls). Mice 

were extubated following successful instillation and were allowed to breathe spontaneously 

for six hours. After six hours, the mice were euthanized by IP injection of sodium 

pentobarbital (110 mg/kgBW) and dissection of the descending aorta. The animals were 

placed on a FlexiVent© in order to measure lung compliance and elastance. Following 

these measurements, whole lung bronchoalveolar lavage fluid (BALF) was collected by 3 

x 1 ml aliquots of sterile saline. The whole lung lavage was immediately centrifuged at 400 

x g at 4°C for 10 minutes, and the pellet was collected for cell analysis, while the 

supernatant was collected and used to measure protein content, and cytokine analysis. A 

sample of the supernatant was centrifuged at 40 000 g at 4°C for 15 minutes, in order to 

separate pulmonary surfactant subfractions. Pulmonary surfactant concentrations were 

determined using a modified Duck-Chong assay as previously described (23). Total cell 

counts and differential cell analysis of the cells obtained in the lavage was done as 

previously described (24). Protein content of the lavage fluid was measured using a Micro 

BCA protein assay kit (Pierce, Rockford, Ill., USA), as per manufacturer’s instructions. 

Concentrations of mouse cytokines were measured using multiplexed immunoassay kits 

according to the manufacturers’ instructions (R&D Systems, Minneapolis, MN). A Bio-

Plex 200 readout system was used (Bio-Rad), which utilizes Luminex® xMAP fluorescent 

bead-based technology (Luminex Corporation, Austin, TX). Cytokine levels (pg/ml) were 

automatically calculated from standard curves using Bio-Plex Manager software (v. 4.1.1, 

Bio-Rad). 

 

Statistical Analysis 
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Analysis of the inflammatory response induced by killed bacteria were performed by one-

way measure analysis of variance (ANOVA) followed by Tukey post-hoc test.  Means were 

reported ± standard error of the mean.  Values were considered statistically significant at a 

probability value < 0.05. 
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3.3 Results 

Effect of killed bacteria administration on respiratory function 

 Six hours after receiving intratracheal instillation of killed bacteria, lung physiology 

was measured via FlexiVent. There was no significant difference between any of the 

treatment groups in any lung function measurements, including lung compliance, elastance, 

or total lung capacity (Table 3.1). Bronchoalveolar lavage fluid volumes were not 

significantly different between treatment groups (Table 3.2). Protein concentrations from 

lung lavage of animals receiving gentamicin-killed bacteria supplemented with CATH-2 

were significantly increased compared to naïve controls, but there was no significant 

difference among the other treatment groups (Table 3.2). 
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Treatment Group Weight (g) 

Lung Function 

Total Lung 

Capacity (ml) 

Compliance 

(ml/cmH2O) 

Elastance 

(cmH2O/ml) 

Naïve 29.5 ± 0.66 0.794 ± 0.041 0.0578 ± 0.0029 17.54 ± 0.92 

CATH-2-Killed 28.0 ± 1.40 0.752 ± 0.048 0.0529 ± 0.0041 19.41 ± 1.62 

Heat Killed 27.8 ± 0.72 0.777 ± 0.056 0.0558 ± 0.0033 18.14 ± 1.18 

Heat+CATH-2 27.8 ± 0.91 0.812 ± 0.034 0.0557 ± 0.0023 18.09 ± 0.73 

Gentamicin Killed 28.9 ± 0.65 0.862 ± 0.068 0.0581 ± 0.0031 17.51 ± 0.93 

Gent+CATH-2 27.8 ± 0.57 0.845 ± 0.031 0.0588 ± 0.0025 17.11 ± 0.71 

 

Table 3.1 Weight and lung function measurements of mice that were intratracheally 

administered killed bacteria. Values are expressed as mean ± SEM. (n=5-6) 
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Treatment 

Group 

Lavage 

Volume (ml) 

Surfactant Analysis 
Protein Content 

(mg/kgBW) Total Surfactant 

(mgPL/kg BW) 

Small Aggregate 

(mgPL/kg BW) 

Large Aggregate 

(mgPL/kg BW) 

Naïve 2.82 ± 0.07 8.82 ± 0.71 5.17 ± 0.45 3.23 ± 0.57 14.04 ± 0.72 

CATH-2 

Killed 
2.75 ± 0.09 8.82 ± 0.82 5.65 ± 0.34 3.14 ± 0.49 21.60 ± 3.72 

Heat Killed 2.88 ± 0.06 7.85 ± 0.22 3.87 ± 0.25 2.53 ± 0.35 14.44 ± 1.38 

Heat+ 

CATH-2 
2.66 ± 0.12 9.72 ± 1.04 5.17 ± 0.26 2.94 ± 0.77 16.63 ± 2.21 

Gentamicin 

Killed 
2.88 ± 0.07 9.12 ± 1.24 4.67 ± 1.04 3.24 ± 0.63 15.74 ± 2.53 

Gent+ 

CATH-2 
2.68 ± 0.14 7.94 ± 1.12 3.89 ± 0.58 2.73 ± 0.20 34.47 ± 9.56a 

 

Table 3.2 Lavage volume, surfactant analysis, and protein content from BALF of mice 

instilled killed bacteria. Values are expressed as mean ± SEM. (n=5-6) 

ap < 0.05 vs. naïve treatment group. 
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CATH-2-killed bacteria elicit reduced total cell counts and reduced neutrophil influx 

 Instillation of either heat-killed or gentamicin-killed bacteria caused a significant 

inflammatory response, with significant increases in total cells in the BALF compared to 

naïve animals (Figure 3.1). Pseudomonas aeruginosa killed by 20 µM of CATH-2 elicited 

a reduced inflammatory response. The number of cells recovered from the BALF of 

animals instilled with CATH-2-killed bacteria was a significantly reduced compared to 

gentamicin-killed bacteria. There was also a reduction in cell recruitment induced by 

CATH-2-killed bacteria compared to heat-killed bacteria that did not reach statistical 

significance.   

In addition to reducing total cell influx, the percentage of neutrophils in the BALF 

was also significantly reduced in animals treated with CATH-2-killed bacteria compared 

to both heat-killed and gentamicin-killed bacterial treatments (Figure 3.2).   

 

Addition of CATH-2 to heat-killed bacteria downregulates cell influx 

 Heat-killed P. aeruginosa that was supplemented with 20 µM CATH-2 after 

bacterial killing decreased the inflammatory response induced by heat-killed bacteria alone. 

There was a trend for reduced cellular influx between heat-killed and heat-killed+CATH-

2 treated animals (Figure 3.1), and the total cell counts for animals administered heat-killed 

bacteria + CATH-2 were similar to naïve treatment groups. Supplementation of CATH-2 

to gentamicin-killed bacteria did not have the same anti-inflammatory effect. There was no 

significant difference in total cell counts between gentamicin-killed bacteria and 

gentamicin-killed+CATH-2 treatment groups. 
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Similarly, the supplementation of CATH-2 to heat-killed bacteria induced a 

significant reduction in percentage of neutrophils in the BALF compared to heat-killed 

bacteria alone, reducing levels to the values observed in animals administered CATH-2-

killed bacteria (Figure 3.2). The percent of neutrophils recovered from gentamicin-

killed+CATH-2 treated animals were not reduced compared to gentamicin-killed bacteria 

(Figure 3.2). 
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Figure 3.1 
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Figure 3.1.  Total cells recovered from whole lung BALF of mice instilled killed bacteria. 

(n=5-6) *p < 0.05. 
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Figure 3.2 
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Figure 3.2. Percentage of neutrophil cells recovered from whole lung BALF of mice 

instilled killed bacteria. (n=5-6) *p<0.05; **p<0.01. 
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CATH-2-killed bacteria elicited reduced inflammatory cytokine release 

   Bacteria killed by CATH-2 induced significantly less cytokine release compared 

to both heat-killed and gentamicin-killed bacteria. Levels of TNF-α, IL-6, and KC were 

significantly reduced in the BALF of animals receiving CATH-2-killed bacteria compared 

to animals receiving either heat- or gentamicin-killed bacteria, and IL-12p70, G-CSF, MIP-

2, IL-23p19, and MMP-9 were significantly reduced compared to animals administered 

gentamicin-killed bacteria alone (Figure 3.3). 

 Similar to cellular influx data, the addition of CATH-2 to heat-killed bacteria was 

able to reduce the inflammatory cytokine production induced by heat-killed bacteria. 

Levels of TNF-α and KC were significantly reduced compared to the heat-killed bacteria 

group alone, while reduction trends persisted for the majority of inflammatory cytokines. 

On the other hand, there was no significant difference between animals administered 

gentamicin-killed bacteria supplemented with CATH-2 and gentamicin-killed bacteria 

alone in many cytokines, including TNF-α, KC, IL-12p70, G-CSF, MIP-2, or MMP-9. In 

fact, IL-6 and IL-23p19 showed increases in release from animals administered gentamicin-

killed+CATH-2 compared to gentamicin-killed bacteria alone (Figure 3.3). 
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Figure 3.3 
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Figure 3.3.  Cytokine and chemokine concentrations from whole lung BALF. (n=5-6) 

*p<0.05; **p<0.01; ***p<0.001. 
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3.4 Discussion 

 In this study, we have shown that CATH-2 is able to kill a clinically-relevant lung 

pathogen, P. aeruginosa, and intratracheal instillation of these killed bacteria does not 

induce a marked inflammatory response, as observed with heat or conventional antibiotic 

killed bacteria. Compared to other methods of bacterial killing, the bacteria killed by this 

cathelicidin peptide induced a significantly dampened inflammatory response after 

instillation, through the reduced recruitment of leukocytes and decreased concentrations of 

pro-inflammatory cytokines in the lavage fluid. Furthermore, the addition of CATH-2 to 

heat-killed bacteria eliminated the exacerbated inflammatory response induced by heat-

killed bacteria, although this anti-inflammatory effect was not observed with gentamicin-

killed bacteria.   

To address our hypothesis that CATH-2-killed bacteria will elicit a reduced 

inflammatory response after in vivo intratracheal instillation, we utilized a model of 

intratracheal instillation of killed bacteria into healthy mice. None of the experimental 

groups showed any sign of lung dysfunction as indicated by measurements of compliance, 

elastance, surfactant composition, as well as total protein in the lavage. This data suggests 

that the inflammatory responses measured in this experiment were in response to the 

instilled bacterial products and peptide, and not an indirect effect due to tissue injury within 

the lung. The use of killed bacteria allowed for the investigation of CATH-2’s ability to 

modulate the inflammatory responses induced by products released after bacterial death, 

without the confounding factors associated with toxin production or epithelial damage 

induced by live bacteria (3, 11). Therefore, this provides evidence for the role of 

cathelicidin peptides in modulating immunity and inflammatory responses after bacterial 
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clearance, as observed through the changes in cell recruitment and inflammatory cytokine 

production.    

The main finding of this study is that the mechanism of bacterial death affected the 

inflammatory response in vivo. While heat-killed and gentamicin-killed bacteria were able 

to induce robust inflammatory responses, CATH-2-killed bacteria induced a significantly 

lower inflammatory response, as fewer neutrophils were recruited, and the concentration 

of inflammatory cytokines recovered from the BALF was significantly lower for multiple 

different markers. CATH-2’s ability to kill bacteria without inducing an inflammatory 

response has previously only been documented in vitro, as it was shown that treatment of 

macrophages with peptide-killed E. coli, S. enteritidis, or P. aeruginosa exhibit a reduced 

inflammatory response after co-incubation (19). Our data provides clear evidence that this 

phenomenon also occurs in the multicellular in vivo environment within the lung. Taken 

together, these studies strongly support the conclusion that the cathelicidin peptide CATH-

2 can not only kill bacteria directly, but is also able to dampen the immunogenic response 

induced by the bacterial components, such as endotoxins and other bacterial structures, 

released upon bacterial cell death.  

A second important finding of this study was the ability of CATH-2 to down-

regulate the inflammatory responses caused by heat-killed bacteria. The fact that CATH-2 

supplementation was able to return inflammation to basal levels adds evidence of the ability 

of CATH-2 to directly modulate the inflammatory response induced by bacterial products, 

and that this effect is can be independent from its killing activity. However, this down 

regulation was not observed when CATH-2 was supplemented to gentamicin-killed 

bacteria, where in fact an exacerbated inflammatory response was observed. While 
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gentamicin has been mainly studied in nephrotoxicity and ototoxicity due to its common 

side effects, the mechanisms of action to induce both apoptosis and necrosis in vivo involve 

the accumulation of high levels of gentamicin intracellularly, causing non-specific 

activation of multiple apoptotic and necrotic pathways (25). It is possible that the high 

concentration of gentamicin (1 mg/ml) that was used to kill the bacteria induced some of 

these cytotoxic effects once administered intratracheally. Recent studies in our lab have 

demonstrated that bacteria killed with a lower dose of gentamicin induced inflammatory 

effects that were downregulated by co-administration of CATH-2, similar to heat-

killed+CATH-2 observations (Brandon Baer, unpublished results). Overall, these results 

require further investigation into the mechanism of action, in order to understand the 

potential of cathelicidins as active therapeutics in co-treatment with conventional 

antibiotics.  

Initial interest in cathelicidins for therapeutic development focused solely on their 

direct bactericidal functions (26, 27). CATH-2 has been repeatedly shown to possess 

bactericidal activity against multiple different bacterial strains under a wide variety of 

environmental conditions in in vitro settings (28–31). Unlike other cathelicidin peptides, 

such as human LL-37, which lose bactericidal activity under physiologic salt conditions 

(32), CATH-2 appears to be relatively insensitive to a variety of different conditions, 

including serum and high ionic environments. The ability of CATH-2 to maintain 

bactericidal activity provides evidence for its potential direct bactericidal role in vivo (16, 

17). Regardless of their degree of bactericidal activity, it is abundantly clear that 

cathelicidin peptides can be directly responsible for the clearance of bacterial infection, and 

that a loss/decrease in peptide can lead to a strong reduction in immune response and 
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bacterial clearance (33, 34). From the data presented here, we suggest that CATH-2 has the 

ability to both kill bacteria, as well as dampen inflammatory responses after stimulation 

with the bacterial products. This direct bactericidal activity along with the ability to inhibit 

the inflammatory response induced by killed bacteria is key in regulating proper immune 

responses. These regulatory functions prevent excessive inflammatory responses, and 

indiscriminate cytotoxic damage caused by neutrophil migration and activation, commonly 

associated with chronic infection states (35–38).    

One of the common immunomodulatory functions of various cathelicidin peptides 

is their (relatively) conserved ability to bind and neutralize bacterial endotoxins, such as 

LPS, thereby silencing the downstream inflammatory signalling process (39–41). In 

combination with these previous observations, our results suggest that, in addition to 

CATH-2 direct antimicrobial activity via bacterial membrane binding and cell lysing, there 

is a potential anti-inflammatory activity of CATH-2 via binding to the LPS released from 

the bacterial membrane, thereby inhibiting cellular activation through TLR 4. Additional 

studies have also shown that cathelicidins are able to down-regulate signalling through 

other TLR pathways such as TLR 5 (42). As P. aeruginosa contains flagellin, the main 

agonist of TLR 5, it is possible that CATH-2 has some immunomodulatory interaction with 

this pathway as well, similar to that observed with other cathelicidin peptides. 

In a natural host immune response, activation of TLRs by bacterial by-products 

elicits a series of complex intracellular cascades, with the focus on translocation and 

activation of the nuclear factor-κB (NF-κB) (43). This transcription factor is found in all 

major cell types, and is one of the transcription factors responsible for this pro-

inflammatory cytokine release (44, 45). The goal of most inflammatory cytokines released 
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is the recruitment of circulating neutrophils to aid in the removal of an invading pathogen 

(46). However, in patients with underlying diseases, such as cystic fibrosis, this recruitment 

can be detrimental as neutrophils release a vast array of toxins and oxidizers, which act to 

kill bacteria, but can damage host tissues in the process (47). The ability of CATH-2 to 

prevent this signalling caused by bacterial debris, which is found throughout the CF airways 

over the course of a patient’s life, would therefore be able to protect tissue damage caused 

by the exacerbated inflammatory response often observed (47). 

The ability to both kill clinically-relevant pathogens, as well as reduce the ensuing 

inflammatory environment, are essential properties for the development of CATH-2 as a 

therapeutic in cystic fibrosis. The CF microenvironment is incredibly complex, and is 

marred by the combination of a non-functional mucociliary elevator (22), incompetent 

innate immune responses (47), ineffective removal of apoptotic cells and debris (48), all 

cumulating in a tissue-damaging pro-inflammatory environment (47, 49, 50). Therefore, 

these studies provide evidence for the potential therapeutic use of CATH-2 in the treatment 

of P. aeruginosa infection in CF patients. Based on these experiments, CATH-2 may be 

developed in order to both reduce the bacterial load via direct bactericidal activity, as well 

as minimize the inflammatory impact of the bacterial debris after death. These two 

properties could make CATH-2 a powerful future therapeutic option in the treatment of 

CF-associated pneumonia.   

In conclusion, CATH-2 is an effective bactericidal agent, and bacteria killed 

through this peptide result in a diminished inflammatory response in vivo, presumably 

enabling the host organism to prevent an inflammatory environment after the colonizing 

bacteria are cleared. This anti-inflammatory role adds merit to cathelicidins’ potential as 
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therapeutic antimicrobial agents in the future. However, their pro-inflammatory role with 

bacteria and conventional antibiotics raises questions as to the mechanism of interaction 

between these compounds, and requires further investigation before the two can be used 

effectively together. 
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Chapter 4: The antibacterial and anti-inflammatory 

activity of an exogenous surfactant preparation fortified 

with chicken cathelicidin-2 against cystic fibrosis 

associated pathogens 
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4.1 Introduction 

Cystic fibrosis (CF) is an autosomal recessive disease caused by defects in the cystic 

fibrosis transmembrane conductance regulator (CFTR) gene, which leads to alterations in 

the respiratory epithelial cilia and increased viscosity of the airway-surface mucosal layer. 

As a consequence of the inability to efficiently clear airway secretions, chronic airway 

colonization of bacterial pathogens ensues, resulting in a vicious circle of repeated lower 

respiratory tract infections, inflammation and tissue remodelling (1, 2). The prolonged use 

of oral or systemic antibiotics used to treat infections in these patients frequently results in 

airway colonization of multi-drug resistant bacteria, which represents an independent 

predictor of adverse clinical outcomes, decline in lung function and death (2–4). In 

addition, the complex pro-inflammatory environment induced by chronic bacterial airway 

infections further promotes airway epithelial cell injury and airway remodelling (5–11). 

Over time, the development of antibiotic-resistant bacterial infections coupled with, 

chronic, maladaptive inflammation poses a significant therapeutic challenge. Novel 

therapies are urgently needed in order to improve the quality of life for this challenging 

patient population.   

Cathelicidins are a class of host-defense peptides that have been investigated for 

their potential therapeutic use against antibiotic-resistant infections (12). Cathelicidins are 

essential components of the innate immune system that are highly conserved across 

multiple mammalian species and have been shown to possess both direct bactericidal 

activity and immunomodulatory activity including alterations of inflammatory cytokine 

production and immune cell migration (13–21). Due to their broad-spectrum antimicrobial 

and immunomodulatory effects, these peptides may represent an excellent alternative to 
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conventional antimicrobials and are currently being investigated for use in patients with CF 

(22–25). 

In order to optimize the delivery of therapeutics throughout the airways, exogenous 

surfactant has been investigated as a potential delivery vehicle due to its ability to improve 

distribution of lung targeted therapeutics to peripheral lung regions (26–28). The use of 

exogenous surfactant has been thoroughly investigated and currently exists as the standard 

of care for neonates with surfactant deficiency in the setting of neonatal respiratory distress 

syndrome, and is therefore safe and well tolerated (26, 28, 29). Our group has previously 

investigated a combined approach using a chicken cathelicidin, CATH-2, together with a 

commercially available exogenous surfactant preparation, bovine lipid-extract surfactant 

(BLES), and has shown that BLES+CATH-2 maintains both excellent surfactant 

biophysical properties, antimicrobial activity, and was tolerated  when administered 

intratracheally to naïve mice (30). Therefore, the objective of the current study was to assess 

the specific antimicrobial or anti-inflammatory properties of BLES+CATH-2 for the 

treatment of CF related lung infections. It was hypothesized that BLES+CATH-2 will 

exhibit bactericidal activity against multi-drug resistant bacteria obtained from CF patients 

and additionally, that BLES+CATH-2 will reduce the inflammatory response induced by 

bacterial products in an in vivo model of pulmonary inflammation. 
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4.2 Materials and Methods 

Clinical isolates 

 Clinical bacterial isolates were obtained from nine adult CF patients attending the 

London Health Sciences Centre outpatient CF clinics and protocols were approved by the 

Human Ethics subcommittee at The University of Western Ontario. Isolated bacteria were 

stored in citrate glycerol solutions at -80°C, and were isolated, identified and sub-cultured 

onto chocolate blood agar (CBA) prior to use in study. The samples obtained included eight 

P. aeruginosa, one A. xylosoxidans, and three S. aureus bacterial strains isolated from CF 

sputum samples. Antibiotic sensitivities of the isolated bacteria were obtained according to 

Clinical Laboratory Standards Institute procedures.   

 

Bactericidal activity against clinical bacteria 

 Bactericidal activity was measured using a spot plating assay.  In brief, an overnight 

culture of bacteria grown in TSB diluted in Müeller-Hinton Broth (MHB). The turbidity 

was adjusted to 0.5 McFarland, followed by an additional 50x dilution in either MHB or 

saline. Subsequently, 50 µl of bacteria and 50 µl of either CATH-2 or BLES+CATH-2 (0-

200 µM of CATH-2; 10 mg/ml phospholipid of BLES) was added to a polypropylene 

coated 96-well plate, and incubated at 37°C for three hours with no shaking.  After 

incubation, the bacterial suspension was serially diluted 10-10 000-fold, and 10 µl of each 

dilution was spot plated in triplicate on CBA plates. These plates were incubated overnight, 

and colonies on the plates were counted the following morning. Minimum bactericidal 

concentration (MBC) was determined as the minimum CATH-2 concentration at which no 
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bacterial growth was observed, corresponding to a bacterial concentration of less than 100 

CFU/ml.   

 

In vivo antimicrobial-independent inflammation model  

One mucoid strain of P. aeruginosa (Patient 6) and one S. aureus (Patient 4) (Table 

4.1) species were selected for use in this study. An overnight culture of P. aeruginosa or S. 

aureus was diluted 1/10 in MHB. The optical density was measured using a 

spectrophotometer, and bacteria were further diluted in MHB to reach an initial 

concentration of approximately 2x106 CFU/ml.  Subsequently, the bacteria were killed by 

heat (90°C for one hour). In a subset of bacteria killed by heat, CATH-2 (20 µM) or 

BLES+CATH-2 (10 mg/ml phospholipid; 100 µM peptide) was added to the killed-bacteria 

mixture prior to instillation. The dead-bacteria solutions were plated via spot plating on 

chocolate agar, and incubated overnight at 37°C to confirm complete bacterial killing of 

instilled samples. 

The killed bacteria were then instilled into male C57Bl/6 mice (Charles River, 

Sherbrooke, Qc, Canada) as previously described in Chapter 3. Once intubated, mice were 

randomized to receive a 50 µl instillation of either heat-killed bacteria, heat-killed bacteria 

+ CATH-2, heat-killed bacteria + BLES+CATH-2, or MHB without bacteria as a negative 

control. Mice were extubated following successful instillation, followed by a subcutaneous 

injection of 0.5 ml of saline and were allowed to breathe spontaneously for six hours. 

Following the 6-hour time period, the mice were euthanized by sodium pentobarbital 

overdose (110 mg/kgBW) and severance of the descending aorta, and were placed on a 

FlexiVent© to measure quasi-static lung compliance and elastance. Following Flexivent 
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measurements, whole lung bronchoalveolar lavage fluid (BALF) was collected by flushing 

the lungs with 3 aliquots of 1 ml sterile saline. The whole lung lavage was immediately 

centrifuged at 400 x g at 4°C, and the pellet was collected for cell analysis, while the 

supernatant was collected and used to measure protein content and cytokine quantification. 

Differential cell analysis of the cell pellets obtained from the lavage was done as 

previously described (31). Protein content of the lavage fluid was measured using a Micro 

BCA protein assay kit (Pierce, Rockford, Ill., USA), according to the manufacturer’s 

instructions. Concentrations of mouse cytokines were measured using multiplexed 

immunoassay kits according to the manufacturers’ instructions (R&D Systems, 

Minneapolis, MN). A Bio-Plex 200 readout system was used (Bio-Rad), which utilizes 

Luminex® xMAP fluorescent bead-based technology (Luminex Corporation, Austin, TX). 

Cytokine levels (pg/ml) were automatically calculated from standard curves using Bio-Plex 

Manager software (v. 4.1.1, Bio-Rad). 

 

Statistical Analysis 

 Analysis of the inflammatory response induced by heat-killed P. aeruginosa and S. 

aureus was performed by a one-way measure of variance (ANOVA) followed by Tukey 

post-hoc test.  Means were reported ± standard error of the mean, and values were 

considered statistically significant at a probability value (p) < 0.05. 
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4.3 Results 

Patient Data 

 In vitro bacterial-resistance patterns were obtained using protocols performed by 

the London Health Science Centre Clinical Microbiology Laboratory and clinical 

characteristics of cystic fibrosis patients are shown in Table 4.1. Patients ranged between 

24 and 57 years of age.  Severity of disease was variable between patient groups, with 

FEV1PRED between 28 and 87%. Two-thirds of patients were colonized with at least one 

strain of P. aeruginosa, 3 out of the 9 patients were infected with S. aureus, and one patient 

was infected with A. xylosoxidans. Of the eight P. aeruginosa isolates investigated, 50% 

presented with a mucoid phenotype. Of all bacteria investigated, 58% were resistant to at 

least two conventional antibiotics. Bacterial resistance did not correlate with age, or disease 

severity. 
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Patient No. Sex (M/F) Age (years) Weight (kg) BMI (kg/m2) FEV1 %Pred Bacteria Resistance Profiles 

1 F 57 60.6 22.5 39 Pseudomonas aeruginosa NR 

2 M 24 72 25.3 50 Staphylococcus aureus Clindamycin, Erythromycin R 

3 M 50 57 19.3 43 Achromobacter xylosoxidans 

Gentamicin, Meropenem, 

Tobramycin R; Imipenem, 

Ciprofloxacin I 

4 F 35 62 22.4 87 Staphylococcus aureus NR 
      Pseudomonas aeruginosa (muc) NR 
      Pseudomonas aeruginosa Tobramycin, Gentamicin R 

5 F 44 59 22 73 Pseudomonas aeruginosa (muc) 

Amikacin, Gentamicin, 

Meropenem, Ciprofloxacin, 

Tobramycin R 

6 F 40 57 20.9 52 Pseudomonas aeruginosa (muc) Gentamicin, Tobramycin R 

7 M 37 52.5 19.3 28 Pseudomonas aeruginosa (muc) NR 

8 M 27 62 18.7 48 Staphylococcus aureus 
Clindamycin, Erythromycin, 

Cloxacillin R 

9 F 31 40.5 18.2 55 Pseudomonas aeruginosa (muc) NR 

            
Pseudomonas aeruginosa 

Meropenem R; Ciprofloxacin, 

Gentamicin I 

 

Table 4.1.  Resistance profiles of clinical samples. Resistance profiles were obtained by London Health Sciences Centre Clinical 

Microbiology Laboratory using clinical laboratory and standards institute protocols.  Muc = mucoid phenotype.  NR = no resistance 

identified, R = resistant, I = impaired activity. 
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Bactericidal activity of BLES+CATH-2 against bacteria from cystic fibrosis patients 

After in vitro incubation of either CATH-2 or BLES+CATH-2 with the isolated 

bacteria, it was observed that CATH-2 alone exhibited potent bactericidal activity against 

all P. aeruginosa strains tested, regardless of antibiotic resistance profile of the bacteria 

(Figure 4.1). The MBC of CATH-2 against all P. aeruginosa strains was between 2.5 – 10 

µM. BLES+CATH-2 bactericidal activity against the clinical P. aeruginosa was much 

more variable, with bacterial recovery varying between a 3-log reduction to complete 

bacterial killing. Overall, BLES+CATH-2 MBC values were typically 100 µM, and as low 

as 50 µM against select CF-derived isolates (Figure 4.1). 

 Similar to P. aeruginosa, CATH-2 exhibited potent antimicrobial activity against 

all strains of S. aureus tested. CATH-2 again showed bactericidal activity against all S. 

aureus isolates investigated, with MBC values between 5 – 10 µM for all strains 

investigated (Figure 4.2). BLES+CATH-2 showed consistent bactericidal activity, and 

achieved MBC values at 100 µM against all S. aureus isolates tested. Bactericidal activity 

of CATH-2 and BLES+CATH-2 against A. xylosoxidans was similar to activity observed 

against both P. aeruginosa and S. aureus (Figure 4.3). 
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Figure 4.1 
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Figure 4.1.  Antimicrobial assays of CATH-2 and BLES+CATH-2 against P. aeruginosa 

isolates.  The bacteria were suspended in MHB, and then treated with various 

concentrations of CATH-2 (green, solid line) or CATH-2 suspended in 10 mg/ml 

phospholipid of BLES (red, dotted line). (n=3) 
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Figure 4.2 

 

 

Figure 4.2. Antimicrobial assays of CATH-2 and BLES+CATH-2 against S. aureus 

isolates. The bacteria were suspended in MHB, and then treated with various concentrations 

of CATH-2 (green, solid line) or CATH-2 suspended in 10 mg/ml phospholipid of BLES 

(red, dotted line). (n=3) 

 

Patient 2 - S. aureus

0 2 4 6 8 10
1

2

3

4

5

6

7

8

20 40 60 80 100

Concentration (M)

L
o

g
 C

F
U

/m
l

Patient 4 - S. aureus

0 2 4 6 8 10
1

2

3

4

5

6

7

8

20 40 60 80 100

Concentration (M)

L
o

g
 C

F
U

/m
l

Patient 8 - S. aureus

0 2 4 6 8 10
1

2

3

4

5

6

7

8

20 40 60 80 100

Concentration (M)

L
o

g
 C

F
U

/m
l



127 

 

 

 

Figure 4.3. 

Patient 3 - A. xylosoxidans
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Figure 4.3. Antimicrobial assays of CATH-2 and BLES+CATH-2 against A. xylosoxidans. 

The bacteria were suspended in MHB, and then treated with various concentrations of 

CATH-2 (green, solid line) or CATH-2 suspended in 10 mg/ml phospholipid of BLES (red, 

dotted line). (n=3) 
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Bactericidal activity of CATH-2 and BLES+CATH-2 in saline 

 Figure 4.4 demonstrates the bactericidal activity of CATH-2 and BLES+CATH-2 

in saline against the same CF-derived bacteria used above. Against P. aeruginosa, CATH-

2 was an effective antimicrobial agent, and was able to reduce bacterial recovery to below 

detectable levels at concentrations between 5-10 µM. The addition of BLES severely 

inhibited bactericidal activity, as BLES+CATH-2 was unable to reduce any strain of 

bacteria to below detectable levels, even at 100 µM concentrations.  

 CATH-2 possessed minimal bactericidal activity against either S. aureus or A. 

xylosoxidans, as it was only able to reduce bacteria to below detectable levels in one strain 

(Patient 8 S. aureus) at a concentration of 50 µM. While increasing doses of CATH-2 were 

able to reduce some bacterial recovery (2-3 log reduction), BLES+CATH-2 exhibited no 

detectable bactericidal activity against any isolates of S. aureus or A. xylosoxidans. 
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Figure 4.4 

Patient 1 - P. aeruginosa

0 2 4 6 8 10
1

2

3

4

5

6

7

8

20 40 60 80 100

Concentration

L
o

g
 C

F
U

/m
l

Patient 2 - S. aureus

0 2 4 6 8 10
1

2

3

4

5

6

7

8

20 40 60 80 100

Concentration

L
o

g
 C

F
U

/m
l

Patient 4 - P. aeruginosa  (muc)

0 2 4 6 8 10
1

2

3

4

5

6

7

8

20 40 60 80 100

Concentration

L
o

g
 C

F
U

/m
l

Patient 4 - S. aureus

0 2 4 6 8 10
1

2

3

4

5

6

7

8

20 40 60 80 100

Concentration

L
o

g
 C

F
U

/m
l

Patient 6 - P. aeruginosa  (muc)

0 2 4 6 8 10
1

2

3

4

5

6

7

8

20 40 60 80 100

Concentration

L
o

g
 C

F
U

/m
l

Patient 8 - S. aureus

0 2 4 6 8 10
1

2

3

4

5

6

7

8

20 40 60 80 100

Concentration

L
o

g
 C

F
U

/m
l

Patient 9 - P. aeruginosa  (muc)

0 2 4 6 8 10
1

2

3

4

5

6

7

8

20 40 60 80 100

Concentration

L
o

g
 C

F
U

/m
l

Patient 3 - A. xylosoxidans

0 2 4 6 8 10
1

2

3

4

5

6

7

8

20 40 60 80 100

Concentration

L
o

g
 C

F
U

/m
l

 

Figure 4.4. Representative antimicrobial assays of CATH-2 and BLES+CATH-2 against 

various bacterial species isolated from CF patient sputum in saline. The bacteria were 

suspended in saline, and then treated with various concentrations of CATH-2 (green, solid 

line) or CATH-2 suspended in 10 mg/ml phospholipid of BLES (red, dotted line). (n=3) 
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In vivo inflammation induced by killed cystic fibrosis derived bacteria 

To investigate the potential anti-inflammatory effects of BLES+CATH-2, we used 

a previously reported model of inflammation induced by killed bacteria as described in 

Chapter 3. After instillation of the killed bacteria, there were no significant differences in 

lung compliance, elastance or protein content found within the lungs of instilled animals 

(Table 4.2). We observed a significant increase in total cell counts recovered in the BALF 

from animals that received intratracheally-administered heat-killed P. aeruginosa 

compared to control treatments (Figure 4.5a). We demonstrated that there was no increase 

in total cells recovered from animals administered CATH-2-killed P. aeruginosa compared 

to animals that did not receive killed bacteria. The differential cell counts demonstrated a 

significant increase in neutrophils from animals administered heat-killed P. aeruginosa 

compared to control animals, which was not observed in animals administered CATH-2-

killed bacteria (Figure 4.5b). Supplementation of heat-killed P. aeruginosa with either 

CATH-2 or BLES+CATH-2 significantly reduced total cells in the BALF, including 

significantly lower number of neutrophils compared to heat-killed control groups (Figure 

4.5a). These values for heat-killed bacteria supplemented with CATH-2 or with 

BLES+CATH-2 groups were not significantly different from the control group, or animals 

receiving CATH-2-killed bacteria alone (Figure 4.5b). Multiplex cytokine analysis showed 

that heat-killed P. aeruginosa elicited a significant increase in KC, MIP2, and GM-CSF 

compared to controls, while CATH-2-killed bacteria did not (Figure 4.6). Heat-killed P. 

aeruginosa supplemented with either CATH-2 or BLES+CATH-2 did not increase any of 

the inflammatory cytokines measured compared to negative controls, and significantly 

decreased KC concentrations compared to heat-killed bacteria. BLES+CATH-2 
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supplementation also significantly reduced MIP-2 levels compared to heat-killed P. 

aeruginosa. 

For S. aureus, cell counts recovered from mice administered heat-killed bacteria 

were significantly higher than the negative control group (Figure 4.7a). Cell counts from 

animals administered CATH-2-killed S. aureus were not statistically different from control 

animals, but was not statistically different compared to animals receiving heat-killed 

bacteria. Heat-killed bacteria supplemented with CATH-2 or BLES+CATH-2 were 

significantly reduced compared to heat-killed alone (Figure 4.7a). Heat-killed S. aureus 

supplemented with CATH-2 or BLES+CATH-2 also had a significantly lower recovery of 

neutrophils compared to heat-killed bacteria alone (Figure 4.7b). Despite the differences in 

cells recovered and cell differentials, there was no increase in any cytokine production after 

administration of heat-killed S. aureus compared to the control treatment, and no significant 

difference in any cytokine investigated for animals administered killed S. aureus (Figure 

4.8).   
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Treatment 
Protein Content 

(mg/kg BW) 

Quasi-Static 

Compliance 

(ml/cmH2O) 

Quasi-Static 

Elastance 

(cmH2O/ml) 

Control 21.62 ± 3.0 0.0777 ± 0.016 13.28 ± 2.70 

P. aeruginosa    

Heat-killed 20.56 ± 9.7 0.0718 ± 0.0080 14.08 ± 1.76 

CATH-2-killed 24.80 ± 8.2 0.0676 ± 0.0071 14.92 ± 1.55 

Heat+CATH-2 19.44 ± 5.9 0.0755 ± 0.0069 13.35 ± 1.34 

Heat+(BLES+CATH-2) 17.58 ± 4.9 0.0801 ± 0.0064 12.56 ± 1.07 

S. aureus    

Heat-killed 20.79 ± 5.2 0.0754 ± 0.0132 13.70 ± 3.02 

CATH-2-killed 22.08 ± 4.4 0.0739 ± 0.0066 13.62 ± 1.24 

Heat+CATH-2 20.98 ± 7.8 0.0736 ± 0.0080 13.74 ± 1.64 

Heat+(BLES+CATH-2) 18.39 ± 8.0 0.0712 ± 0.0071 14.16 ± 1.46 

 

Table 4.2. Protein content obtained from BALF after whole lung lavage, and quasi-static 

compliance and elastance as measured by FlexiVent. Values presented as mean ± SEM. (n=5-

7) 
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Figure 4.5 
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Figure 4.5. Cell counts and differentials cell counts of animals administered heat-killed P. 

aeruginosa obtained from Patient 6. a) Total cell counts obtained from BALF of animals 

administered killed bacteria. b) Macrophage and neutrophil concentrations obtained from 

BALF of animals administered killed bacteria. (n=4-7) *p < 0.05, **p < 0.01, ***p < 0.001 

vs. control; ###p < 0.001 vs. heat-killed bacteria.  
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Figure 4.6 
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Figure 4.6. Cytokine content in the BALF obtained from animals administered killed P. 

aeruginosa. (n=5-7) *p < 0.05 vs. control; ##p < 0.01 vs. heat-killed.  
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Figure 4.7 
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Figure 4.7. Cell counts and differentials of animals administered heat-killed Patient 4 S. 

aureus. a) Total cell counts obtained from BALF of animals administered killed bacteria. 

b) Macrophage and neutrophil concentrations obtained from BALF of animals 

administered killed bacteria. (n=5-6) *p < 0.05, **p < 0.01 vs. control; ##p < 0.01, ###p < 

0.001 vs. heat-killed bacteria; +p < 0.05 vs. CATH-2-killed bacteria. 
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Figure 4.8 
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Figure 4.8.  Cytokine content in the BALF obtained from animals administered killed S. 

aureus. (n=6-7)  
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4.4 Discussion 

In the current study, the antimicrobial and anti-inflammatory effects of 

BLES+CATH-2, a chicken cathelicidin suspended in a clinically-used exogenous 

surfactant, were investigated as a potential therapeutic compound for the treatment of cystic 

fibrosis. Here, we provided evidence that BLES+CATH-2 exhibits bactericidal activity 

against an array of clinically derived pathogens from adult cystic fibrosis patients, as well 

as being able to reduce the recruitment of inflammatory cells and modulate 

proinflammatory cytokine production after heat-killed pathogens were instilled in vivo. 

Taken together, the bactericidal and immunomodulatory properties of BLES+CATH-2 

represent a potential therapy that warrants further investigation for the treatment of cystic 

fibrosis lung infections. 

The first goal of this study was to identify the bactericidal potential of 

BLES+CATH-2 against multiple cystic fibrosis-associated bacterial isolates, including 

multi-drug resistant isolates. P. aeruginosa represents one of the most prevalent bacteria 

found in CF patients, while S. aureus is the most common bacteria in patients under the age 

of 18 (8, 32–36). In addition to being the most common bacteria, these are also the most 

drug-resistant bacteria isolated from CF patients, with reports of resistance rates as high as 

22.6% and 42.7% against select antibiotics for both S. aureus and P. aeruginosa 

respectively (37, 38). Consistent with this information, the multiple strains of P. aeruginosa 

(including both mucoid and non-mucoid phenotypes), S. aureus, and A. xylosoxidans 

isolated from CF patient sputum samples displayed a wide range of antibiotic resistance 

patterns. Although the antimicrobial activity of BLES+CATH-2 against these clinical 

strains was reduced compared to the CATH-2 peptide alone, BLES+CATH-2 exhibited 
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significant antimicrobial activity at higher CATH-2 concentrations. At 100 µM peptide 

concentrations, BLES+CATH-2 was able to reduce eight out of twelve bacterial isolates to 

below detectable levels after three-hour incubations. For the remaining bacteria tested, 

BLES+CATH-2 was still able to reduce bacteria by 3 log values for two of the four isolated 

strains. This data was similar to what was previously observed when BLES+CATH-2 was 

tested against other strains of P. aeruginosa or S. aureus (30). The concentration of 100 

µM in the BLES+CATH-2 compound was the concentration previously used in safety and 

tolerability studies in Chapter 2, suggesting that this concentration would be effective as 

a therapeutic. 

Interestingly, CATH-2 exhibited minimal bactericidal activity against S. aureus 

when suspended in saline, but was significantly more active when the bacteria were 

suspended in Müeller-Hinton broth. Previous groups have also shown this disparity in 

activity, albeit during investigations of different peptides and different bacteria (39). They 

determined that the key component of media that was responsible for these differences in 

activity was carbonate, which appeared to increase bacterial susceptibility via alterations 

in the membrane thickness. It is possible that similar changes occurred in this study, which 

would explain the increased sensitivity of S. aureus to CATH-2, and the enhanced 

antimicrobial activity of BLES+CATH-2 against both S. aureus and P. aeruginosa 

suspended in MHB as opposed to saline. Importantly, it is suggested that the MHB media 

conditions may be more accurate measures of antimicrobial activity. First, the Clinical and 

Laboratory Standards Institute guidelines for investigations of antibiotic efficacy are 

performed in MHB, and therefore our results presented here are directly applicable to 

clinical investigation guidelines (40). Secondly, due to the carbonate and bicarbonate 
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content found naturally within the lung, we believe that these media conditions are more 

relevant to the in vivo environment, supporting the potential in vivo antimicrobial activity 

of CATH-2 and BLES+CATH-2. Interestingly, as the CFTR is also a bicarbonate 

transporter, and its loss of function leads to reduced bicarbonate concentrations in the air-

surface liquid, it may help explain the diminished activity of  endogenous host defense 

systems observed in CF lung infections (41–43). 

Following the bactericidal assays, we investigated whether the ability of CATH-2 

to modulate inflammatory responses by killed bacteria was maintained after suspension in 

the exogenous surfactant BLES. Two of the CF-isolated bacteria were killed ex vivo by 

heat, before intratracheal administration. This specific experimental procedure was utilized 

to specifically focus on the immunomodulatory properties of BLES+CATH-2 in response 

to the bacterial products from clinical strains of bacteria. The data obtained provided 

evidence that BLES+CATH-2 was capable of down-regulating inflammatory responses 

induced by killed bacteria, and that the immunomodulatory activity occurred via an 

antimicrobial-independent mechanism. This data is consistent with previous observations 

obtained with CATH-2 alone utilizing a non-clinical strain of P. aeruginosa presented in 

Chapter 3. The induction of inflammatory responses by heat-killed P. aeruginosa was 

shown to be completely mitigated after co-treatment with BLES+CATH-2, as shown by 

significant reductions in neutrophil influx, as well as reductions in all inflammatory 

cytokines investigated, including KC (mouse analog of CXCL1) and MIP-2 (mouse analog 

of CXCL2). This ability to not only kill clinically isolated antibiotic resistant bacteria, but 

to also diminish the inflammatory response after killing provides a unique multi-functional 
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therapeutic that would target two disease processes that are detrimental to CF patients (11, 

32, 41, 42, 44). 

Despite the profound anti-inflammatory activity of BLES+CATH-2 against heat-

killed P. aeruginosa, the administration of identical concentrations of heat-killed S. aureus 

produced a markedly different inflammatory response after intratracheal administration. 

Heat-killed S. aureus administration lead to a significant increase in inflammatory cells in 

the lavage, while co-treatment with both CATH-2 and BLES+CATH-2 significantly 

reduced inflammatory cell infiltration, similar to results observed after administration of 

heat-killed P. aeruginosa. Despite the increased neutrophil influx, no changes in cytokine 

production induced by heat-killed S. aureus stimulation were observed. It is possible that 

our method of heat-killing the bacteria induced significant changes to the 

immunostimulatory products of S. aureus, such as lipoteichoic acid or the peptidoglycan 

layer, as the lack of cytokines produced in this setting is inconsistent with previous studies 

investigating TNF-α production by alveolar macrophages in vitro (45). An alternative 

explanation for the lack of cytokine production observed in this study may be due to the 

downregulation of virulence genes, including toxins and cell surface adhesion molecules, 

which is commonly observed in CF patient-derived S. aureus isolates, therefore eliciting a 

diminished inflammatory response (46–48). 

It should be noted that, while the heat-killed bacteria model of inflammation used 

is not entirely indicative of the clinical environment, we believe this to be a superior method 

compared to instillation of single bacterial endotoxins, such as isolated lipopolysaccharide, 

or other immune-stimulating bacterial toxins such as lipoteichoic acid, flagella, etc. This 

method of inflammatory stimulation can account for a more relevant immune response, as 
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it has previously been reported that the initial inflammatory response induced by heat-killed 

bacteria is qualitatively similar to the response induced by live bacteria (49). In addition, 

while many pathogen associated molecular patterns interact with specific pathogen- 

recognition receptors, whole bacteria will induce signalling and lead to changes in cytokine 

expression through multiple pathways simultaneously (50). In the context of the current 

experiment, this suggests that CATH-2, as well as BLES+CATH-2, has the ability to 

interfere with multiple mechanisms of immune stimulation by bacteria, rather than via 

blocking of one specific virulence factor (45, 49, 51, 52).   

The use of exogenous surfactant as a vehicle to spread therapeutics throughout the 

lung has been explored extensively, including the delivery of conventional antibiotics (27–

29, 53–56). It has the ability to increase therapeutic concentrations deposited in the airways 

compared to aerosolized administration, as there is more uniform distribution and less 

material lost in the central conducting airway regions during administration (26, 57). 

Importantly, it also has the ability to bypass systemic administration, and reduces side 

effects often associated with high circulating concentrations of antibiotics (58). For 

cathelicidin peptides, this route of administration is especially important because of the 

relatively short half life of most peptides (59, 60). While previous studies have 

demonstrated that CATH-2 retains the most antimicrobial activity after suspension in the 

exogenous surfactant BLES compared to other peptides (30), there are no studies 

investigating the immunomodulatory activity of other cathelicidin peptides in BLES. If the 

immunomodulatory activity is retained, despite antimicrobial activity loss, the cathelicidin 

peptide library may become a crucial source for developing anti-inflammatory therapies 

for respiratory disease, and warrants further investigation. 
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In conclusion, we showed that the chicken cathelicidin CATH-2, in combination 

with the exogenous surfactant BLES, possessed bactericidal activity against clinically-

derived antibiotic-resistant CF pathogens in vitro. In addition to this, we showed that 

BLES+CATH-2 was able to downregulate inflammation through antimicrobial-

independent mechanisms by silencing the inflammatory response induced by killed 

bacteria. Taken together, the ability to kill multi-drug resistant bacteria and while being 

able to modulate the hyper-inflammatory environment induced by these pathogens within 

the CF patient airways provides strong evidence for the potential of BLES+CATH-2 as a 

therapeutic for the management of respiratory infections associated with cystic fibrosis. 
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Chapter 5: Efficacy of BLES+CATH-2 therapeutic 

administration in in vivo models of bacterial pneumonia 
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5.1 Introduction 

 Bacterial infection of the lungs, known as bacterial pneumonia, is the leading cause 

of mortality due to bacterial infection, accounting for 35% of all deaths due to infectious 

disease (1–3). While not always severe, approximately 24.8 cases per 10 000 adults with 

community acquired pneumonia will be placed in intensive care units, with 6% of those 

patients requiring mechanical ventilation (4). Pseudomonas aeruginosa is a common 

bacterial pathogen associated with respiratory tract infection in immunocompromised 

patients (5, 6). It is the second-leading cause of ventilator-associated pneumonia (VAP) 

worldwide, and is associated with mortality rates as high as 90% after infection of 

mechanically ventilated patients (7–10). Prevalence of antibiotic resistant infections has 

been steadily increasing, with between 40-82% of hospital-acquired bacterial pneumonia 

cases being caused by drug resistant infections (8). Indeed, P. aeruginosa resistance rates 

are not exempt from this trend. The prevalence of multi-drug resistant and extensively drug 

resistant isolates have steadily increased, and the rate of P. aeruginosa resistance towards 

carbapenems, a class of “last resort” drugs, has significantly increased over the past decade, 

with 34% of VAP isolates resistant to meropenem (10, 11). New treatment options are 

desperately needed.   

 To develop a new therapy for the treatment of P. aeruginosa pneumonia, previous 

work has identified a cathelicidin/surfactant combination that has shown effective 

combined activity - specifically, the chicken cathelicidin CATH-2 in conjunction with 

bovine lipid-extract surfactant (BLES). CATH-2 is one peptide that has been shown to 

possess potent antimicrobial activity, and unlike many cathelicidins, is able to maintain this 

activity in physiologically relevant salt conditions (12, 13). When suspended in BLES, 
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BLES+CATH-2 has shown enhanced adsorptive and spreading properties compared to the 

surfactant alone, whilst retaining the best bactericidal activity of all peptide/surfactant 

combinations investigated as demonstrated in Chapter 2 (14). Chapter 4 presents 

evidence of the therapeutic potential of this compound’s ability to kill multi-drug resistant 

bacteria. However, BLES+CATH-2 activity in vivo has yet to be investigated. In this 

chapter, we hypothesize that treatment with BLES+CATH-2 in animal models of bacterial 

pneumonia will improve physiologic outcomes and increase bacterial clearance from the 

airways.  
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5.2 Materials and Methods 

Bacterial Preparation 

An overnight culture of P. aeruginosa ATCC 27853 was diluted 1/10 before optical 

density was measured. The bacteria were then further diluted in either sterile saline for 

mouse experimentation, or Müeller-Hinton Broth (MHB) for rat experiments, in order to 

reach the initial concentration required for each individual experiment.   

 

In vivo treatment of acute bacterial pneumonia 

Male C57Bl/6 mice (Charles River, Sherbrooke, Qc, Canada), weighing 19-28 g, 

were used for this experiment. All animal procedures were approved by the Animal Use 

Subcommittee at the University of Western Ontario, and followed the approved guidelines 

described by the Canadian Council of Animal Care. Mice were anesthetized by 

intraperitoneal injection of ketamine (100-125 mg/kg body weight) and dexmedetomidine 

(0.5 mg/kg BW), and then intratracheally intubated using a 20 G catheter, with the aid of a 

fiber-optic stylet (BioLite intubation system for small rodents, BioTex, Inc., Houston, 

Texas, USA). Once intubated, mice were infected with 50 µl of bacteria at a concentration 

of 2x106 CFU/ml. Five minutes after bacterial administration, the mice were administered 

50 µl of one of the following five treatments: a) air bolus; b) saline; c) BLES (20 mg 

phospholipid/kgBW); d) CATH-2 (100 µM; 0.64 mg/kgBW); or e) BLES+CATH-2.  Mice 

were extubated following successful instillation and were subsequently injected with the 

reversal agent for dexmedetomidine, Antisedan, and allowed to breathe spontaneously for 

either four or eighteen hours. After, the mice were euthanized by IP injection of sodium 

pentobarbital (110 mg/kgBW) and dissection of the descending aorta. The lungs were 
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removed en bloc, and placed in 3 ml of sterile saline before homogenization using a Potter-

Elvehjam homogenizer. Aliquots from the homogenized tissue were plated on modified 

cetrimide agar plates, and colony enumeration was performed the following morning. 

 

In vivo rat ventilator-associated pneumonia model 

 Sprague-Dawley rats (Charles River, Sherbrooke, QC, Canada) weighing between 

330-435 g were used for this experiment. In brief, animals were anesthetized with a mixture 

of ketamine:dexmedetomidine (80 mg/kgBW; 0.5 mg/kgBW). Once no toe-pinch response 

was observed in the animals, they received a subcutaneous injection of the analgesic 

buprenorphine (0.05 mg/kgBW), followed by an additional subcutaneous injection of 

sensorcaine (bupivacaine HCL, 0.2 ml – 2.5%) in the ventral neck region at the site of 

incision. The right and left jugular veins were exposed and catheterized with PE-50 tubing 

in order to continuously infuse anesthetic (propofol, 5-20 mg/h), the neuromuscular blocker 

Nimbex (cisatracurium besilate, 0.4 mg/hr), and sterile fluids (heparinized saline 1000 

IU/l). One carotid artery was also exposed and catheterized in order to monitor heart rate, 

blood pressure, and blood oxygenation levels, as well as allowing for additional sterile 

fluids infusion. The trachea was then exposed, and intubated using a 14 G endotracheal 

tube and secured using 2-0 ligatures. After recording initial hemodynamic measurements, 

the rats were administered a bolus of Nimbex (0.4 mg/kgBW) and immediately placed on 

a volume-cycled rodent ventilator (Harvard Instruments, St. Laurent, QC, Canada). 

Mechanical ventilation was performed using 100% oxygen and a ventilation strategy that 

was set at a tidal volume of 8 ml/kg BW, a respiratory rate of 54-60 bpm, and a positive-

end expiratory pressure of 5 cmH2O.   
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 Throughout mechanical ventilation, airway pressures were monitored every 15 

minutes using an airway pressure monitor (Sechrist Industries, Anaheim, USA), and blood 

gas measurements were performed by ABL800. Fifteen minutes after being placed on 

ventilation, a blood gas was collected as a baseline. Inclusion criteria required an arterial 

oxygenation of 400 mmHg partial pressure of oxygen/fraction of inspired oxygen 

(PaO2/FiO2). 

 After reaching inclusion criteria, the animals were infected intratracheally with P. 

aeruginosa. As noted above, bacteria were diluted in MHB to reach an initial concentration 

of ~1x109 CFU/ml, of which 500 µl was instilled intratracheally. After instillation, the 

animals received 3 ml air bolus followed by a single breath-hold in order to optimize 

bacterial distribution throughout the airways. The animals were then returned to mechanical 

ventilation for one hour, with monitoring of hemodynamics and arterial blood gases. At 

this time, the animals were briefly disconnected from the ventilator and randomized to 

receive one of the following treatments: a) saline; b) BLES (20 mg phospholipid/kgBW); 

c) CATH-2 (100 µM; 0.64 mg/kg BW); or d) BLES+CATH-2. After instillation, the 

animals received 3 ml air bolus followed by a breath hold, similar to post-bacterial 

instillation, and returned to the ventilator and monitored for three hours. At the end of 

ventilation, the animals were euthanized by administration of a bolus of sodium 

pentobarbital (110 mg/kgBW) via the catheterized jugular vein, followed by dissection of 

the descending aorta.   

From one cohort, the lungs, spleen, liver, and blood were collected for 

homogenization. Tissues were suspended in various volumes of sterile saline (2 ml for 

spleen, 3 ml for lung, and 10 ml for liver tissue) and homogenized using a Potter-Elvehjem 
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homogenizing potter. The homogenate was then serially diluted and plated on cetrimide 

agar plates and incubated overnight before performing colony enumeration the following 

day. 

In the second cohort, bronchoalveolar lavage fluid (BALF) was collected via whole 

lung lavage as previously described (15). A sample of the BALF was serially diluted and 

plated on cetrimide agar plates in order to perform colony enumeration. The remaining 

BALF was then centrifuged at 150 g for 10 minutes. Supernatant was aliquoted for protein 

content analysis and inflammatory cytokine concentrations. The remaining cell pellet was 

suspended in 1 ml of PlasmaLyte, and diluted 100x. An aliquot of the diluted cell pellet 

was mixed with an equal volume of trypan blue in order to perform total cell counts using 

a hemocytometer and light microscopy.  In addition, a 10x dilution of the cell pellets were 

centrifuged onto cytospin slides at 1000 rpm for six minutes before staining with 

Hemacolor stain (Harleco, EMD Chemicals Inc., Gibbstown, NJ, USA). Cell differentials 

were then performed under light microscopy as previously described (16).  Protein content 

within the lavage fluid was determined using a Micro-BCA protein kit (Pierce, Rockford, 

IL) according to the manufacturer’s instructions. IL-6 and TNF-α levels were measured 

using respective enzyme-linked immunosorbent assay kits (ELISA kits; BD Biosciences, 

San Diego, CA, USA) according to the manufacturer’s instructions. 

 

Statistical Analysis 

 Statistical significance for the bactericidal activity of the various treatments in vivo 

was determined using a one-way measure analysis of variance (ANOVA) followed by 

Tukey’s post-hoc test. The effect of various treatments on peak inspiratory pressures and 
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arterial oxygenation was assessed using a two-way ANOVA followed by Tukey’s post-hoc 

test. Total cell counts, cell differentials, and inflammatory cytokine concentrations were 

also analyzed by one-way ANOVA. Means are reported ± standard errors of the mean, and 

values were determined to be significantly different at a probability value (p) < 0.05. 
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5.3 Results 

Bacterial recovery in mice 

 After intratracheal inoculation of ~2x106 CFU/ml of P. aeruginosa ATCC 27853, 

mice were treated with a 50 µl intratracheal instillation of either CATH-2 (100 µM) or 

BLES+CATH-2 (20 mg/kgBW phospholipid; 100 µM). Four hours after treatment, 

bacterial recovery was significantly reduced from lung homogenate of animals treated with 

BLES+CATH-2 compared to saline controls (Figure 5.1a). CATH-2 treatment alone 

showed no significant effect on bacterial load in lung homogenate. 

 After 18 hours, all control treatment groups had a reduced bacterial recovery from 

the lung homogenate, indicating bacterial clearance by the animals’ innate immune defense 

system. The effect of BLES+CATH-2 administration was no longer observed 18 hours after 

instillation, as there was no significant difference in bacterial recovery from lung 

homogenate in animals treated with BLES+CATH-2 compared to any of the control 

treatment groups (Figure 5.1b). In contrast, lung homogenate from animals administered 

CATH-2 had a significantly increased bacterial load compared to all other treatment 

groups. 
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Figure 5.1 
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Figure 5.1. Bacterial recovery from lung tissue homogenate a) four hours, or b) eighteen 

hours after administration of P. aeruginosa. (n=5-8) *p < 0.05 vs. saline treatment; +p < 

0.05 vs. all treatment groups. 
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Physiologic outcomes in ventilator-associated pneumonia model 

 In the rat VAP model, the animals were placed on mechanical ventilation using a 

clinically relevant ventilation strategy (8 ml/kg BW tidal volume; 5 cmH2O positive end 

expiratory pressure, 54-60 breaths per minute respiratory rate). After reaching inclusion 

criteria of PaO2/FiO2 > 400 mmHg, the animals were inoculated with ~ 5x108 CFU of P. 

aeruginosa ATCC 27853. One hour following bacterial administration, the animals were 

administered treatments, and returned to the ventilator for three hours. Throughout 

ventilation, peak airway pressure was recorded. Saline-treated animals showed a significant 

increase in peak-inspiratory pressure (PIP) over the course of ventilation, indicative of 

decreasing lung compliance and development of lung injury (Figure 5.2). CATH-2 

instillation elicited a significant increase in PIP 15 minutes after instillation compared to 

BLES alone, with no other significant differences observed. Similarly, CATH-2 treated 

animals had significantly higher PIP values from 180 – 225-minute ventilation time points 

compared to BLES+CATH-2. 

 In addition, arterial oxygenation was also measured over the course of ventilation. 

For saline control treated animals, arterial oxygenation at the end of ventilation was reduced 

compared to baseline measurements, with the mean oxygenation decreasing to 199 mmHg 

by the end of ventilation, again indicating respiratory dysfunction (Figure 5.3). Animals 

that received CATH-2 treatment presented a significant, severe drop in arterial oxygenation 

immediately after administration (t60mins = 508.7 ± 15.12 mmHg; t75mins = 112.0 ± 16.73 

mmHg). Arterial oxygenation at this time-point was significantly different to every other 

treatment group, and CATH-2 treated animals showed significantly reduced oxygenation 

compared to BLES treated animals throughout the remaining three hours of ventilation.   
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 After treatment, BLES+CATH-2-treated animals also showed a significant increase 

in arterial oxygenation compared to CATH-2 treated animals throughout the course of 

ventilation. However, there was no significant difference between BLES+CATH-2 

treatment and either saline or BLES treatment (Figure 5.3). There was no significant 

difference in mean arterial pressure, heart rate, or the arterial partial pressure of carbon 

dioxide at any time point between any of the treatment groups. There was a significant 

reduction of pH in animals receiving CATH-2 alone compared to all other treatment groups 

at t = 75 mins (Table 5.1). 
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Figure 5.2 
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Figure 5.2. Peak inspiratory pressure over the duration of ventilation. (n=17-18) xxp < 0.01 

vs. BLES; +p < 0.05 vs. BLES+CATH-2. 
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Figure 5.3 
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Figure 5.3. Arterial oxygenation during mechanical ventilation.  Bacterial instillation at t 

= 0, treatment instillation at t = 60 min. (n=17-18) ***p < 0.001 vs. Saline; xp < 0.05, xxp 

< 0.01, xxxp < 0.001 vs. BLES; ##p < 0.01, ###p < 0.001 vs. CATH-2. 
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Treatment Group Baseline t=15 t=75 t=240 

Mean Arterial Pressure (mmHg) 

Saline 168.9 ± 6.78 110 ± 5.60 90.8 ± 5.41 53.5 ± 2.60 

BLES 161.9 ± 4.60 112.6 ± 6.39 83.7 ± 6.16 47.82 ± 3.74 

CATH-2 161.2 ± 4.89 115.2 ± 3.63 73.4 ± 2.92 45.6 ± 3.74 

BLES+CATH-2 168.8 ± 4.04 109.0 ± 5.41 81.78 ± 4.64 51.0 ± 3.08 

Heart Rate (bpm) 

Saline 248.9 ± 5.13 253.0 ± 4.19 232.4 ± 5.13 252.5 ± 6.02 

BLES 238.9 ± 5.58 252.4 ± 7.32 223.6 ± 7.32 252.2 ± 8.19 

CATH-2 241.7 ± 6.75 256.3 ± 2.99 218.1 ± 6.86 255.2 ± 8.19 

BLES+CATH-2 243.2 ± 5.23 250.8 ± 4.98 220.0 ± 5.38 249.9 ± 6.83 

PaCO2 (mmHg) 

Saline 45.07 ± 1.52 49.78 ± 1.34 51.24 ± 1.79 62.40 ± 3.48 

BLES 44.90 ± 2.08 48.39 ± 1.73 51.15 ± 2.26 58.09 ± 4.42 

CATH-2 43.80 ± 1.75 48.94 ± 1.77 57.09 ± 2.50 65.33 ± 4.81 

BLES+CATH-2 43.76 ± 1.50 49.22 ± 1.70 50.12 ± 1.30 56.66 ± 2.03 

pH 

Saline 7.356 ± 0.001 7.312 ± 0.010 7.271 ± 0.009 7.122 ± 0.017 

BLES 7.349 ± 0.012 7.314 ± 0.011 7.273 ± 0.012 7.136 ± 0.022 

CATH-2 7.359 ± 0.011 7.313 ± 0.008 7.227 ± 0.014* 7.107 ± 0.018 

BLES+CATH-2 7.350 ± 0.011 7.312 ± 0.011 7.276 ± 0.010 7.154 ± 0.012 

 

Table 5.1. Physiologic measurements of rats through duration of mechanical ventilation. 

(n=17-18) *p < 0.05 vs. all treatment groups. 
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Bacterial Clearance and Immune Response 

There was no significant difference in bacterial recovery between any treatment 

group in both the whole lung homogenate (Figure 5.4a) or from the BALF (Figure 5.4b). 

No significant difference in bacterial recovery was observed for any other tissues 

investigated, such as spleen, liver, or serum (data not shown). Total cells recovered from 

the BALF were not significantly different between treatment groups (Figure 5.5a). From 

the total cells, the majority of cell types (>90%) recovered from all treatment groups were 

neutrophils, however there was no significant difference in percentage of neutrophils 

between any treatment groups (Figure 5.5b). There was no significant difference in total 

protein content recovered from the BALF of any treatment group (Figure 5.5c). Cytokine 

analysis from recovered BALF fluid also showed no significant difference in TNF-α 

(Figure 5.5d). 
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Figure 5.4 
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b) 

Bacteria Recovered - Lavage (Log CFU/ml)
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Figure 5.4.  Bacterial recovery from a) lung tissue homogenate (n=9-11), or b) whole lung 

BALF after ventilation (n=6-7). 
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Figure 5.5. 
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b) 

Percentage Neutrophils
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c) 

Protein Content
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d) 
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Figure 5.5. a) Total cell counts recovered from whole lung BALF, and b) percentage of 

neutrophils from recovered cells. c) Total protein content recovered from BALF. d) TNF-

α content recovered from BALF. (n=4-7) 
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5.4 Discussion 

This study investigated the in vivo efficacy of BLES+CATH-2 as a treatment for 

bacterial pneumonia. Two animal models were investigated in order to determine 

BLES+CATH-2 bactericidal function against the clinically relevant pathogen P. 

aeruginosa. In our spontaneously breathing mouse model, BLES+CATH-2 was able to 

significantly reduce bacterial load from lung tissue four hours after intervention compared 

to saline controls, although this significant difference was no longer observed 18 hours after 

treatment. However, this bactericidal activity was not observed in the ventilator-associated 

pneumonia rat model, as BLES+CATH-2 had no effect on bacterial recovery from the lung 

tissue or bronchoalveolar lavage fluid. In addition, BLES+CATH-2 showed no significant 

improvement in arterial oxygenation at the end of ventilation. Taken together, these results 

demonstrate limited efficacy of BLES+CATH-2 after in vivo administration. 

 The rationale for this study was based in part on work described in Chapter 2, 

which investigated the in vitro properties of the exogenous surfactant BLES with a panel 

of different antimicrobial peptides (14). Throughout in vitro assays, it was identified that 

the cathelicidin peptides interacted differently with BLES, and therefore activity was 

modified as well. The most striking differences between peptides was their bactericidal 

activity in vitro, where despite potent antibacterial activity of all four peptides, the addition 

of BLES to mCRAMP and LL-37 completely abrogated all bactericidal function. On the 

other hand, while CATH-2 activity was mitigated, it showed the greatest bactericidal 

activity after suspension in BLES, and was therefore the most promising candidate for 

investigating its in vivo bactericidal efficacy. 
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 Despite a plethora of studies to suggest bactericidal efficacy of cathelicidins in vitro, 

data suggesting in vivo bactericidal activity is sparse (17, 18). Similar experimental models 

using different cathelicidin peptides have previously failed to show any therapeutic benefit 

(19). Other groups suggest that most cathelicidins, specifically LL-37 or mCRAMP, exert 

their therapeutic role through the recruitment of neutrophils, and that the direct bactericidal 

function of these peptides in negligible in vivo (20). It has been hypothesized that 

environmental conditions and/or the short half-life of cathelicidins are responsible for this 

lack of direct bactericidal activity in vivo (19, 21). In this study, we provide evidence that 

BLES+CATH-2 may be able to exert some bactericidal activity, as shown through the 

reduction in bacterial recovery from lung homogenate.  

Previous studies performed in both Chapter 2 and Chapter 4 provided convincing 

evidence of CATH-2 bactericidal potential in vitro, and moreover, that the addition of 

BLES would actively reduce this antimicrobial activity. However, observations from this 

study suggest that the bactericidal activity of CATH-2 and BLES+CATH-2 are much less 

clear, as in our mouse pneumonia model, we observed a marginal decrease in bacterial 

recovery from animals administered BLES+CATH-2, that was not observed from CATH-

2 treatment alone. This may in fact be due to the improved distribution and increase site 

concentrations in these infection models, as hypothesized by the use of an exogenous 

surfactant vehicle. The use of exogenous surfactant as a vehicle to spread therapeutics 

throughout the lung has been explored extensively using conventional antibiotics (22–28). 

Studies have shown that the use of exogenous surfactant as a vehicle has the potential to 

increase the delivery efficiency of therapeutics to the lung over parenteral or intravenous 

therapy (22, 26, 29–31). The four-hour acute pneumonia studies provide some evidence to 
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suggest that BLES may be increasing the distribution of CATH-2 to the infection sites. 

However, it appears that this increased spreading is not sufficient to significantly improve 

bactericidal activity, as both the 18-hour pneumonia model and the VAP model showed no 

reduction in bacterial recovery. 

Expanding on the well-studied antimicrobial and immunomodulatory activity 

throughout this thesis, this chapter also investigated the ability of BLES+CATH-2 to 

improve arterial oxygenation, a clinically relevant outcome for patients placed on 

mechanical ventilation (32). This study provides evidence that BLES+CATH-2 can 

mediate a small improvement in arterial oxygenation, as animals administered 

BLES+CATH-2 had an average increase of 77 mmHg compared to saline treated animals, 

although this was not statistically significant. Additionally, this effect was also observed 

by BLES treatment alone, which also improved oxygenation an average of 64 mmHg by 

240 minutes, but again was not statistically significant. This data lends some support to the 

hypothesis that the use of BLES can distribute throughout the lungs and into small 

peripheral airways and alveoli, as previous work has suggested that this exogenous 

surfactant administration is directly related to improved oxygenation (31, 33). 

While both BLES and BLES+CATH-2 were able induce a mild improvement in 

arterial oxygenation, CATH-2 treatment alone showed a significant deleterious effect. This 

effect was most clearly observed in the VAP model, where despite a mild reduction in 

bacterial recovery, CATH-2 administration caused a rapid and severe decrease in 

oxygenation. This decrease was statistically lower than all other treatment groups between 

time point 75 mins (immediately after treatment instillation) until the end of the ventilation 

protocol. It is hypothesized that this drastic reduction is due to cytotoxic activity of CATH-
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2, leading to diffuse airway damage and decreasing oxygenation. The cytotoxic activity of 

CATH-2 has been demonstrated in vitro via hemolytic assays, and we theorize that this 

activity is the cause of the rapid decline in oxygenation (13). We expect that this is also the 

reason behind the increased bacterial recovery observed at 18 hours in the mouse, where 

increased epithelial damage would improve bacterial colonization and proliferation. 

However, we could not detect any differences in protein content or inflammatory cytokines 

within the BALF, which would be expected in the case of severe epithelial cell death, and 

therefore further studies to confirm these observations are required. Importantly, 

BLES+CATH-2 administration did not induce any of these deleterious changes, indicating 

greater safety and tolerability of administration, even though data supporting any 

therapeutic benefit is currently lacking. 

As mentioned, this chapter is the first investigation of direct bactericidal activity, 

and ability to affect clinically relevant outcomes, in two separate in vivo animal models. In 

this chapter, we utilized a well-described model of acute bacterial pneumonia in a C57Bl/6 

mouse, and a rat VAP model using Sprague-Dawley rats. The mouse model investigated 

here has previously been used to study the effect of exogenous cathelicidin administration 

for the treatment of P. aeruginosa respiratory infection (20). However, whereas previous 

studies collected BALF and measured cell recruitment and cytokine production, our initial 

studies solely investigated bacterial recovery, and were therefore limited by the use of 

tissue homogenate instead of lavage fluid analysis. In order to expand on these initial 

studies, the VAP-rat was used to collect and analyze both tissue homogenate and BALF 

rather than the mouse pneumonia model. This second model was selected for two reasons: 

1) a significantly greater volume of BALF is available in rats, and 2) we are able to measure 
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peak-inspiratory pressure, arterial oxygenation, and a number of other clinically-relevant 

parameters in the VAP model that were unavailable in the mouse pneumonia model. Thus, 

the inclusion of the VAP model permitted a greater range of outcome measurements. In 

addition, this study provided the opportunity to investigate the therapeutic potential of 

BLES+CATH-2 in severe lung dysfunction and inflammation settings, as noted by 

decreased oxygenation, and increased inflammatory cytokine production. Taken together, 

these two models were able to provide substantial data towards the efficacy of 

BLES+CATH-2 treatment in separate in vivo pneumonia models. 

However, despite the large amount of data acquired from these models, there are 

many limitations of study. The first issue involves the use of P. aeruginosa as our bacterial 

model of infection. It has been well documented that, in healthy animal models, P. 

aeruginosa can be readily cleared by the host immune system (34). This is the likely 

explanation for why there was such a large reduction in bacterial recovery 18 hours after 

administration in the mouse pneumonia model regardless of treatment. Similar limitations 

were observed in the rat VAP model, as rats clear P. aeruginosa even more efficiently than 

mice (34). To this effect, preliminary studies performed in collaboration with Dr. Nicholson 

identified the bacterial load required to develop a respiratory infection that caused a 

significant reduction in arterial oxygenation over the course of ventilation, without the 

innate clearance of the bacteria. The resulting data suggested that the rat VAP model 

required a much larger bacterial load to develop signs of lung injury during infection than 

the acute pneumonia model used in mice. It is possible that this large dose was the reason 

why no bactericidal activity of BLES+CATH-2 was observed in this model, a phenomena 

known as the “inoculum effect”, in which antibiotics lose potency as bacterial load 
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increases (35). In future, animal models should utilize different strategies for infection, in 

order to more accurately model development of bacterial pneumonia. Use of different 

animal/bacteria combinations, would better describe the progression of a respiratory 

infection and development of chronic disease states, which more accurately represents the 

situation in clinical settings and would better predict the efficacy of therapeutic treatments 

against these infections (10, 36–40). Animal models that are administered multiple 

therapeutic doses would also be more viable for future testing, as again these would be 

more accurate of the treatment regimens currently prescribed (41–44). 

In conclusion, this study presented evidence that BLES+CATH-2 can exhibit some 

bactericidal activity in vivo as observed in the mouse model of acute bacterial pneumonia, 

which showed a significant reduction in bacterial recovery four hours after instillation 

compared to control treatments, and lead to a mild improvement in oxygenation in VAP 

models compared to saline controls, although there was no statistically significant 

difference between these treatment groups. Moreover, while CATH-2 appeared to induce 

detrimental effects after administration, none of the negative outcomes were observed after 

BLES+CATH-2 treatment, suggesting safety and tolerability of this compound. While we 

were unable to identify any statistically significant improvement to clinical outcomes in 

both of our infection models, this was the first study to investigate the activity of 

BLES+CATH-2 in vivo, and supports the conclusions that BLES+CATH-2 does not induce 

harmful side effects after administration. Future studies will be required in order to improve 

BLES+CATH-2 therapeutic activity in vivo, via increased bacterial clearance and improved 

arterial oxygenation, without sacrificing compound tolerability. 
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Chapter 6: Summary and discussion of major findings 
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 The objective of this thesis was to develop and investigate the therapeutic potential 

of a cathelicidin peptide/exogenous surfactant compound mixture for the treatment of 

bacterial pneumonia. The high incidence of bacterial pneumonia, coupled with the 

increasing prevalence and global health crisis of multi-drug resistant infections, was the 

rationale for our pursuit of therapeutic development (1, 2).  

 Our hypothesis was that the use of cathelicidin peptides (multifunctional peptides 

with potent antimicrobial activity and immunomodulatory properties) in combination with 

exogenous pulmonary surfactant (which is able to spread rapidly throughout the airways, 

with improved deposition compared to aerosol administration) would improve outcomes in 

bacterial pneumonia. Throughout this thesis, we developed and tested a 

cathelicidin/surfactant compound for it’s ability to a) maintain biophysical activity, b) 

provide antibacterial activity, c) modulate the inflammatory response during stimulation by 

dead bacteria, and finally d) investigating the antibacterial, immunomodulatory, and 

physiologic benefit of BLES+CATH-2 in in vivo models of pneumonia. 

Initially, we investigated the properties of various cathelicidins with the exogenous 

surfactant BLES to select an optimal cathelicidin/surfactant combination in Chapter 2. By 

investigating the biophysical properties of the surfactant with various cathelicidin peptides, 

we observed that the four cathelicidin peptides tested had minimal effect on biophysical 

function, i.e. the ability to reduce surface tension upon lateral compression. When 

investigating the adsorptive properties of these cathelicidin/surfactant combinations, we 

observed that cathelicidins enhanced diffusion in a dose-dependent manner. We theorized 

that this increased adsorption was caused by the cathelicidins’ ability to interact with and 

“break” the surfactant bilayers in the aqueous subphase, increasing surfactant material 
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released and available to move to the air-liquid interface. The surfactant protein SP-C, 

which is relatively similar to cathelicidins in structure, is crucial for surfactant adsorption 

(3, 4). It is possible that cathelicidins interact with the surfactant phospholipids through a 

similar mechanism, which would explain the phenomena observed in this thesis. 

In addition to these findings, we also discovered that bactericidal activity of 

cathelicidins was severely impaired when mixed with surfactant. Due to the cationic nature 

of cathelicidins, and the presence of anionic phospholipids, such as PG, we theorize that 

this reduced activity is due to electrostatic interactions of the peptides with PG, “masking” 

the cationic charge of the peptide and preventing the interaction with bacterial membranes. 

These results were verified when investigating BLES+CATH-2 activity against MDR-

isolates obtained from CF patients in Chapter 4. However, the degree of inhibition appears 

to be cathelicidin dependent; while CATH-2 and CATH-1 still maintained some 

bactericidal activity, LL-37 and mCRAMP completely lost antimicrobial functions. It is 

possible that, due to different peptide structures, different cathelicidin 

interactions/orientations within the phospholipid membranes may differ the charge 

masking, as previously observed (5–7). This would allow peptides such as CATH-2 (with 

two α-helical regions, both containing basic amino acid residues) to maintain some 

interaction with bacterial membranes, while other peptides (i.e. LL-37, with a single α-

helical region that spans the majority of the peptide) insert deeper inside the membrane, 

and completely mask antimicrobial activity. In all, the key conclusions to be drawn from 

these results is that a) BLES+CATH-2 shows the most potent bactericidal properties of all 

cathelicidin/surfactant combinations tested to date, and b) that this compound retains 

bactericidal activity against MDR-clinical isolates. 
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While BLES+CATH-2 showed the most potent bactericidal activity, the 

immunomodulatory activity of CATH-2, as well as BLES+CATH-2, was relatively 

unknown. Unpublished results from our lab, as well as from our collaborator Dr. Coorens 

at Utrecht University demonstrated that, in vitro, CATH-2 and BLES+CATH-2 were able 

to prevent pro-inflammatory cytokine production from macrophages after treatment with 

either LPS or killed bacteria. These studies are supported by a wealth of data about other 

cathelicidin peptides, which suggest that one of the endogenous functions of cathelicidins 

is to downregulate inflammatory signalling by bacterial toxins, such as LPS (8–11).  

To expand on this, Chapter 3 and Chapter 4 investigated whether CATH-2 and 

BLES+CATH-2 could provide this anti-inflammatory activity with killed bacteria in vivo. 

Instillation of heat-killed bacteria, which has previously been used to study inflammatory 

responses (12–14), were used to focus solely on CATH-2 immunomodulatory activity. The 

benefit of this model over instillation of a single bacterial PAMP (i.e. LPS or LTA) was the 

presence of multiple immunogenic compounds able to activate multiple different PAMP 

receptors and signalling pathways simultaneously. In these studies, the co-treatment of 

CATH-2 or BLES+CATH-2 with heat-killed P. aeruginosa, including both ATCC strains 

and MDR-clinical isolates, were able to reduce inflammatory cytokine production to 

concentrations equal to naïve and control treatment groups. These studies present evidence 

that CATH-2, and importantly BLES+CATH-2, can prevent and/or reduce the 

inflammation elicited by killed bacteria. 

On top of the ability of CATH-2/BLES+CATH-2 to modulate inflammatory 

responses, Chapter 3 demonstrated that bacteria killed by CATH-2 did not induce any 

inflammatory response. This activity, termed “silent killing”, was initially presented by Dr. 
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Coorens in vitro, and showed that the cathelicidin peptide CATH-2 was able to kill bacteria 

in co-cultures with macrophages without inducing an inflammatory response (15). These 

results were expanded to the in vivo setting, which demonstrated that CATH-2-killed 

bacteria did not induce an inflammatory response in the airways after intratracheal 

instillation. Animals that received CATH-2-killed bacteria, similar to heat-killed bacteria 

co-treated with CATH-2 or BLES+CATH-2, has less inflammatory cells recovered from 

the BALF, and reduced cytokine concentrations in BALF. This “silent” killing mechanism 

has vast therapeutic potential moving forward, as the ability to kill bacteria without eliciting 

an inflammatory response would greatly increase recovery time, and limit the collateral 

tissue damage caused by inflammatory cell migration and activation. 

However, treatment of VAP with BLES+CATH-2 showed no beneficial effects in 

Chapter 5. Indeed, while treatment in the mouse acute pneumonia model showed a 

significant difference between saline-controls and BLES+CATH-2 treatment, this 

bactericidal activity was not observed in the rat VAP model. While treatment with 

BLES+CATH-2 significantly increased oxygenation in this model compared to CATH-2 

alone, there was no significant improvement over saline or BLES controls. In all, it appears 

that BLES+CATH-2 was an ineffective therapeutic for P. aeruginosa induced VAP in our 

rat model. 

Based on the data accumulated throughout this thesis project, we conclude that 

BLES+CATH-2 has some therapeutic potential for the treatment of multi-drug resistant 

bacterial pneumonia. However, the lack of antimicrobial activity demonstrated in vivo 

suggests that further research is needed in order to improve BLES+CATH-2 activity. The 
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purpose of this chapter is to discuss potential future directions in order to continue 

development and improve the efficacy of BLES+CATH-2 as a therapeutic compound. 

 

6.1 Future Directions 

6.1.1 Alterations to exogenous surfactant composition 

 As described in Chapter 2, we theorize that the cause of the mitigated bactericidal 

activity of BLES+CATH-2 involves the electrostatic interactions between the highly 

cationic CATH-2 and anionic phospholipid PG in BLES. As such, one method to improve 

the bactericidal activity of BLES+CATH-2 would be to reduce the content of anionic 

phospholipids in the surfactant, freeing more cathelicidin peptide to interact with bacterial 

membrane.  

 Previous work has gone into great detail over the orientation of cathelicidin peptides 

in lipid membranes with different phospholipid content (5–7). From this, and from our 

observations with cathelicidin peptides and the exogenous surfactant BLES, we 

hypothesize that a reduction in PG content would reduce any electrostatic activity with the 

cathelicidin peptide, without sacrificing surfactant biophysical properties. Indeed, many 

natural surfactants and synthetic surfactants have varying phospholipid concentrations, 

with PG content ranging anywhere between 20% (15) to as low as 7% found in endogenous 

rabbit surfactant (16). By reducing the content of the acidic phospholipids in BLES from 

~10% to as low as 5-7%, we hypothesize that we would be able to increase natural 

cathelicidin activity (i.e. bactericidal function), without significant alterations to surfactant 

spreading or biophysical function. However, future testing is required to determine if this 
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hypothesis is correct, and if this would improve the therapeutic viability of a modified 

surfactant + CATH-2. 

 One experimental approach to investigate this would be to formulate a synthetic 

surfactant. With the addition of recombinant surfactant proteins, this synthetic surfactant 

could be produced with a specific phospholipid composition aimed at improving the 

interactions between the surfactant and the antimicrobial peptide to optimize antimicrobial 

and immunomodulatory functions in vivo. This new surfactant could then be re-investigated 

using the protocols described in this thesis to determine biophysical properties, 

antimicrobial activities, immunomodulatory functions, and in vivo efficacy. Using 

throughput screening of different surfactant compositions and cathelicidin peptides, we 

anticipate that a surfactant/cathelicidin compound could be identified and developed as a 

suitable therapeutic. 

 

6.1.2 Focus on development of anti-inflammatory therapeutic 

 In lieu of the strong anti-inflammatory activity shown by BLES+CATH-2 in 

Chapter 3 and Chapter 4, our lab has continued focus on investigating these properties of 

BLES+CATH-2. Unlike the antimicrobial activity, BLES+CATH-2 appears to exhibit 

much more consistent immunomodulatory activity. Work recently performed by an 

undergraduate student, Christina Arsenault, showed that both CATH-2 and BLES+CATH-

2 was able to downregulate inflammatory responses after co-administration with heat-killed 

P. aeruginosa, similar to results observed in Chapter 4. However, in addition, Ms. 

Arsenault showed that after a 15-minute delay in administration (i.e. instillation of 

treatment 15 minutes after instillation of heat-killed bacteria), CATH-2 lost its anti-
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inflammatory properties, while BLES+CATH-2 treated animals showed reduced 

inflammatory cytokine production and cell infiltration. 

In addition to this, more work done by a graduate student, Brandon Baer, has 

continued these investigations by re-visiting the combined therapy of CATH-2 and 

conventional antibiotics. Mr. Baer has identified that bacteria killed by a lower, more 

clinically relevant dose of gentamicin than what was used in Chapter 3 (8 µg/ml vs. 1 

mg/ml in Chapter 3) still elicit an inflammatory response similar to what was described in 

this thesis. However, unlike previous results, the addition of CATH-2 did once again reduce 

the production of inflammatory cytokines. Adding to the potential anti-inflammatory 

activity of CATH-2, Mr. Baer has revisited other cathelicidin peptides, including LL-37 

and PMAP-23, which showed that these anti-inflammatory properties appear to be 

relatively well conserved across multiple different peptides. 

This data, combined with the work performed by Ms. Arsenault, provides a 

rationale for investigating the immunomodulatory activity of different cathelicidin peptides 

with the exogenous surfactant BLES. The anti-inflammatory activities of cathelicidin 

peptides, when administered with antibiotic-killed bacteria, presents a unique avenue for 

therapeutic development in order to manage inflammation post-infection. In addition, the 

supplementation of BLES appears to have a significant therapeutic benefit to this 

immunomodulatory activity, and if this beneficial effect is conserved with other peptides, 

it would vastly increase the library of therapeutic agents available for clinical development 

and use. Therefore, there is a strong rationale to continue investigations into the 

immunomodulatory activity of different cathelicidin peptides/exogenous surfactant is to 

increase understanding of the therapeutic benefit of these compounds. The use of a various 
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animal models to investigate multiple different mechanisms of lung inflammation, such as 

asthma or chronic obstructive pulmonary disease, would allow for a thorough, robust 

investigation to the limits and potential of BLES+CATH-2 as a respiratory anti-

inflammatory treatment. 

 

6.2 Concluding Remarks 

The presence of multi-drug resistant infections is the largest global health concern 

facing this generation, and without the development of new therapies and practices, will 

become the leading cause of death worldwide by 2050 (2). The high prevalence of bacterial 

pneumonia, makes development of therapeutics specifically for respiratory tract infections 

especially important. 

Cathelicidin peptides are a unique source of development for future therapeutics for 

respiratory infections. Their combined microbicidal activities and immunomodulatory 

properties give these peptides a vast diversity of potential uses. The combined treatment 

strategy of a cathelicidin peptide with exogenous surfactant, ideal to spread the peptides 

throughout the complex lung structure, was investigated in this thesis. While the proof-of-

principle determined the validity of this approach in vitro, the lack of antimicrobial activity 

and physiologic improvements in in vivo models limits the potential of this compound. 

Instead, anti-inflammatory activity was much more well defined, and may represent another 

avenue for BLES+CATH-2 therapeutic development.  
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