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ABSTRACT 
 
 
The effect of distal radial and ulnar length change on forearm bone loading is not well 

understood during simulated dynamic wrist loading. This thesis presents two studies which 

investigate the effect of these length changes on distal forearm loading under simulated dynamic 

wrist motion.  The first study investigates the effect of radial length change on axial loading at 

the distal radius and ulna and relationship between ulnar variance and distal forearm loading. 

The complex variation in axial loads in the distal radius and during length change and dynamic 

wrist motion were studied and discussed. There was no correlation between native variance and 

distal loads. The second study investigates the effect of ulnar change on axial loading at the 

distal radius and ulna and the effect of triangular fibrocartilage ligament complex (TFCC) on this 

relationship. Variation in axial loads during ulnar lengthening followed similar trends to radial 

shortening and vice versa.  

 

Keywords: Axial loading, distal radius and ulna, kienbock’s disease, ulnocarpal impaction, ulnar 

variance, triangular fibrocartilage ligament complex (TFCC), wrist, forearm, biomechanics, in-

vitro, simulator, simulated dynamic motion. 
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Chapter 1 

1. INTRODUCTION	
 

This chapter reviews the anatomy, function and biomechanics of the radiocarpal joint, 

distal radioulnar joint and forearm. The clinical and biomechanical effects of radial 

shortening in a malunited distal radius fracture, ulnar positive variance in ulnocarpal 

impaction syndrome and ulnar negative variance in Kienbock’s disease are discussed 

followed by the study rationale, objectives and hypotheses. 

 
 

1.1 OSSEOUS	ANATOMY	OF	THE	FOREARM 
 

1.1.1 OSTEOLOGY	OF	THE	RADIUS	
 

The radius articulates with the ulna at its proximal and distal extent causing the radius to rotate 

on the ulna producing forearm supination (palm up) and pronation (palm down) in addition to 

flexion and extension of the wrist. The proximal articulation is referred to as the proximal 

radioulnar joint (PRUJ) and the distal articulation is referred to as the distal radioulnar joint 

(DRUJ) (Figure 1.1).  The distal radius consists of three articulating surfaces: the scaphoid and 

lunate facets which articulate with the scaphoid and lunate respectively (Figure 1.2) and the 

sigmoid notch which articulates with the distal ulna. 
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Figure 1. 1 Radius and Ulna. 
Radius and Ulna articulating at the proximal radioulnar joint (PRUJ) and the distal 
radioulnar joint (DRUJ) (© D Isa). 
 
 
 
 
 
The anatomy of the distal radius is commonly described in terms of plain radiographic 

measurements: radial inclination, radial length, ulnar variance and volar tilt (Figure 1.3). The 

radial inclination of the distal radius articular surface averages 22o on posteroanterior (PA) 

radiographs, radial length averages 11-22mm, and volar tilt averages 11o.1 
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Figure 1. 2 Articulating surfaces of the Distal Radius. 
The scaphoid and lunate facets and the sigmoid notch (© D Isa). 
 
 
 
 
 
The radial diaphysis also possesses a bow in both the coronal and sagittal plane. Schemitsch and 

Richards2 devised a radiographic measurement to quantify the position and magnitude of radial 

bow. With the forearm in neutral rotation on radiographs, a line is drawn from the radial 

tuberosity to the ulnar border of the distal radius. A second line perpendicular to this is drawn 

from the point of maximal radial bow. The height of this line is measured and compared to the 

contralateral side. The radial bow is described by noting the length and position of this line (see 

line X in figure 1.4). Alternatively, the bow can be described by the location of the apex of 

maximal bow at the middle third of the radius and measures on average 10o which corresponds to 

the position of line X.3,4 
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Figure 1. 3 Anatomic radiographic parameters of the distal radius. 
PA radiographs showing radiographic measurements of (a) Radial inclination (b) Radial 
height and (c) Ulnar variance. Lateral radiograph showing radiographic measurement of 
(d) Volar tilt (© D Isa). 
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In the coronal plane, the radial bow measures 10o with an apex radial bow at the middle third of 

the radius. In the sagittal plane, the apex dorsal bow is on average 12cm distal to the radial head 

and located within the proximal two-thirds of the radius averaging 5o.4 (Figure 1.4) 

 

The proximal radius consists of the radial head, neck and tuberosity. The radial head is elliptical 

with the concavity of the radial head articulating with the capitellum offset in a radial direction 

from the radial neck axis. 

 

 

 

 

 

 

 
Figure 1. 4 Measurement of radiographic bow of radial shaft in coronal and sagittal planes. 
(© D Isa). 
The radial bow is described by noting the length and position of the line “X” 
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1.1.2 OSTEOLOGY	OF	THE	ULNA 
 

The distal ulna articulates with the sigmoid notch around which the radius rotates. The 

dorsomedial extension of the subcutaneous border of the ulna is called the ulnar styloid. The base 

of the ulnar styloid is devoid of cartilage and is called the fovea which is the geometric center of 

rotation of the DRUJ. The ulna head articulates with the articular disc of the TFCC. The dorsal 

groove of the ulnar head accommodates the extensor carpi ulnaris (ECU) tendon. (Figure 1.5). 

 

Ulnar variance is a common radiographic parameter used to assess the height of the ulna relative 

to the ulnar corner of the lunate fossa on the distal radius (or relative to the length of the distal 

radius) measured on PA radiographs with the wrist in neutral rotation (Figure 1. 3 c). Ulnar 

variance averages -0.9 mm.5 Changes in ulnar variance with forearm position and grip has been 

described accounting for subtle variations on radiographs.6,7,8 Mean maximum dynamic increase 

in ulnar variance of 1.3 ± 0.5 mm occurs with gripping in pronation compared with ulnar 

variance with the forearm relaxed in pronation.7  

 

 

 
Figure 1. 5 Distal ulna osteology. 
(© D Isa) 
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The ulna diaphysis is relatively straight in the sagittal and coronal plane at the distal and middle 

third of the ulna. At the proximal third, there is a varus bow of approximately 17.7o 9 as well as 

proximal ulna dorsal angulation averaging 5.7 ± 2.4o an average of 47 ± 6 mm from the 

olecranon tip in the sagittal plane.10 (Figure 1.6) 

 

 

 

 

 

Figure 1. 6 Bony osteology of the ulnar shaft. 
(© D Isa) 
Osteology depicting the proximal ulna dorsal angulation (PUDA) and the proximal varus bow  
 
 
 
 
 
The most proximal section of the ulna is referred to as the olecranon. The olecranon and 

coronoid process form the greater sigmoid notch which articulates with the distal humerus. The 

coronoid consists of the anteromedial facet, the coronoid tip, the base and the lesser sigmoid 

notch which articulates with the radial head (Figure 1.7).  
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Figure 1. 7 Proximal ulna osteology 
(© D Isa). 
	
 
 
1.1.3 DISTAL	RADIO-ULNAR	JOINT	OSTEOLOGY 
 

Distally, the DRUJ articulation constitutes the sigmoid notch of the distal radius and the ulnar 

head. The bony architecture confers 20% stability to the DRUJ.11 The majority of stability comes 

from the soft tissue stabilizers which are described later in section 1.1.2.1. 

 

The radius of curvature of the sigmoid notch is approximately 15 mm with a 47°- 80° arc of 

cartilaginous surface. The radius of curvature of the articulating portion of the distal ulna is 
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approximately 10mm with  90° - 135° of cartilaginous coverage creating a lack of congruency 

between the two surfaces.12 (Figure 1.8) 

 

 

 

Figure 1. 8 Axial view of the DRUJ. 
The radius of curvature of the sigmoid notch is greater than that of the ulnar head (© D 
Isa). 
 
 
 
 
The morphology of the sigmoid notch was first described by Tolat and colleagues13 Four 

categories of sigmoid notches were described in order of descending prevalence: Flat face, ski 

slope, “C” type and “S” types, with flat face type influencing the predisposition to instability 

(Figure 1.9). 
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Figure 1. 9 Categories of sigmoid notches. 
(© D Isa). 
In order or descending prevalence: a. Flat face, b. “C” type, c. “S” type and d. Ski slope  

 

 

Three basic configurations of the DRUJ in the coronal plane exist: type I vertical (38%); type II 

oblique (50%); or type III reverse obliquity (12%) described by Tolat and colleagues.13 Type I 

has opposing surfaces parallel, in type II, the opposing joint surfaces are oblique and in type III, 

the opposing joint surfaces are oriented in a reverse oblique orientation (Figure 1.10). A strong 

correlation exists between obliquity and ulna variance; the more positive the ulna variance, the 

less the DRUJ obliquity, eventually becoming reverse oblique.14,15,16 
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Figure 1. 10 Configurations of DRUJ in the coronal plane 
(© D Isa) 
Types of DRUJ configurations in the coronal plane as described by Tolat. 
 
 
 

 

1.2 SOFT	TISSUE	ANATOMY	AND	STABILIZERS	OF	THE	FOREARM 
 

The radius and ulna are linked by the annular ligament at the PRUJ proximally, the interosseous 

membrane (IOM) along the diaphysis and the TFCC at the DRUJ. 

 

1.2.1 LIGAMENTS	OF	THE	DRUJ 
 

Static stabilizers of the DRUJ include the TFCC and the IOM. Dynamic stabilizers of the DRUJ 

include the ECU and pronator quadratus (deep head). The main soft tissue stabilizer of the DRUJ 

is the TFCC. The term TFCC was coined by Palmer and Werner in 198117 and is comprised of a 
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series of anatomically confluent structures, each with distinct functions. The TFCC consists of 

the volar and dorsal radioulnar ligaments (VRUL and DRUL), the ulnocarpal ligaments, the 

ECU tendon subsheath, the articular disc and the meniscus homologue. (Figure 1.11) 

 

  

 
Figure 1. 11 The Triangular Fibrocartilaginous Cartilage Complex (TFCC) 
(© D Isa) 
 

 

The primary ligamentous stabilizers of the DRUJ are the volar and dorsal radioulnar ligaments 

which extend from the volar and dorsal aspects of the sigmoid notch respectively and converge 
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and attach to the ulna in a triangular fashion (Figure 1.12).  As these ligaments extend ulnarly, 

they each divide into two limbs (superficial and deep). The deep limbs attach to the fovea and the 

superficial limbs extend distally and insert at the base and mid portion of the ulnar styloid. 

Fractures of the ulnar styloid typically involve injury to the superficial limbs of the radioulnar 

ligaments but the DRUJ remains stable if the deep fibers remain intact (Figure 1.12). The foveal 

attachments are the most important components conferring stability.18 

 

 

 

Figure 1. 12 Superficial and deep limbs of the dorsal and volar radioulnar ligaments. 
(© D Isa) 
 
 
 
 
The articular disc, also known as the triangular fibrocartilage disc, serves as a supporting 

platform for the carpus and is predominantly static during wrist motion (Figure 1.11).19 The disc 
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functions to extend the lunate facet’s articular surface providing a continuous gliding surface and 

acts as part of a mobile platform for the ulnar carpus.20 There is a correlation between ulnar 

variance and articular disc TFCC thickness. The more positive the ulnar variance the thinner the 

articular disc/triangular fibrocartilage.21,22 

The meniscus homologue (Figure 1.11) is a fold of synovium located between the articular disc, 

ulnocarpal capsule, DRUL, VRUL and triquetrum and is taught in radial deviation and loose in 

ulnar deviation.19,23 It helps to exert a sling effect and has been referred to as a hammock 

structure stabilizing the ulnar carpus.24 

 

The ulnocarpal ligaments consist of the ulnolunate and ulnotriquetral ligaments which originate 

off the VRUL and articular disc and insert into the lunate and triquetrium respectively (Figure 

1.11). The ulnocarpal collateral ligament, sometimes referred to as the subsheath of the ECU is 

located ulnar to the ulnocarpal ligaments and has been shown to stabilize the ulnocarpal joint 

during forearm rotation.25 

 
 
 
1.2.2 INTEROSSEOUS	MEMBRANE 
 

The interosseous membrane (IOM) of the forearm is a robust ligamentous complex linking the 

radius to the ulna. The IOM consists of a several components which include a distal membranous 

portion (distal oblique bundle [DOB]),26 middle ligamentous complex (accessory band [AB] and 

central band [CB]) and proximal membranous portion (dorsal oblique accessory cord and 

proximal oblique cord)26,27 (See Figure 1.13). The DOB is present in 40% of individuals.26,28 

When present, the DOB constrains volar and dorsal instability of the radius at the DRUJ in all 



 15 

forearm rotation positions and contributes to DRUJ stability.28,29,30 The CB contributes to 

longitudinal stability of the forearm and prevents divergence of the radius and ulna thus 

maintaining the forearm axis of rotation by tethering the bones together during pronation and 

supination 27,31,32 The function of the proximal membranous portion is controversial and 

unconfirmed in the literature.33,34,35 The biomechanics of the IOM is discussed in further detail in 

section 1.3.1. 

 

  

 
Figure 1. 13 The anatomic components of the IOM. 
The distal membranous portion/distal interosseous membrane (dIOM) which consists of 
the dorsal oblique bundle (DOB), (2) the middle ligamentous complex which consists of the 
central band (CB) and accessory band (AB) and (3) the proximal membranous portion 
which consists of the dorsal oblique accessory cord and proximal oblique cord (© D Isa). 
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1.2.3 MUSCLES	OF	THE	FOREARM 
 

Muscles of the anterior compartment of the forearm are primarily involved in wrist and finger 

flexion and forearm pronation. 

 

The superficial volar compartment consists of the flexor carpi radialis (FCR), palmaris longus 

(PL), flexor carpi ulnaris (FCU) and pronator teres (PT) from radial to ulnar. The intermediate 

compartment consists of the flexor digitorum superficialis (FDS). The deep volar compartment 

includes the flexor digitorum profundus (FDP), flexor pollicis longus (FPL) and pronator 

quadratus (PQ). (Figure 1.14) 

 

The volar compartment contains muscles which are primarily responsible for wrist, finger and 

thumb flexion and well as forearm pronation (Table 1). 
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Table 1. The volar/anterior compartment of the forearm 

Muscle Function 

Flexor Carpi Radialis (FCR) Wrist flexion and radial deviation 

Palmaris Longus (PL) Wrist flexion 

Flexor Carpi Ulnaris (FCU) Wrist flexion and ulnar deviation 

Pronator Teres (PT) Forearm pronation and secondary elbow 

flexor 

Flexor Digitorum Superficialis (FDS) Flexion of proximal interphalangeal 

joints and metacarpophalangeal joint of 

digits 2-5 

Flexor Digitorum Profundus (FDP) Flexion of the distal interphalangeal 

joints of digits 2-5 

Flexor Pollicis Longus (FPL) Flexion of thumb 

Pronator Quadratus (PQ) Forearm pronation 

 

 

 

The dorsal/posterior compartment contains muscles which are primarily responsible for wrist, 

finger and thumb extension as well as forearm supination (Table 2) 
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Table 2. The dorsal/posterior compartment of the forearm 

Muscle Function 

Brachioradialis Forearm flexion 

Extensor Carpi Radialis Longus (ECRL) Wrist extension and radial deviation 

Extensor Carpi Radialis Brevis (ECRB) Wrist extension 

Extensor Carpi Ulnaris (ECU) Wrist extension and ulnar deviation 

Anconeus Assists triceps in elbow extension 

Extensor Digitorum Communis (EDC) Extension of the metacarpophalangeal 

joint of digits 2 - 5 and assists in wrist 

extension 

Extensor Digiti Minimi (EDM) Extension of the little finger 

Abductor Pollicis Longus (APL) Thumb abduction and extension at 

carpometacarpal joint 

Extensor Pollicis Longus (EPL) Thumb extension at the interphalangeal 

joint 

Extensor Pollicis Brevis (EPB) Thumb extension at the 

metacarpophalangeal joint 

Extensor Indicis Proprius (EIP) Extension of index finger and assists in 

wrist extension 

Supinator  Forearm supination 



 19 

The superficial dorsal compartment contains the mobile wad (brachioradialis, extensor carpi 

radialis longus (ECRL) and extensor carpi radialis brevis (ECRB)), extensor carpi ulnaris (ECU) 

and anconeus. The intermediate compartment consists of the extensor digitorum communis 

(EDC) and the extensor digiti minimi (EDM). The deep compartment consists of the abductor 

pollicis longus (APL), extensor pollicis longus (EPL), extensor pollicis brevis (EPB), extensor 

indicis proprius (EIP) and the supinator. (Figure 1.15) 

 

The ECU and its subsheath are dynamic stabilizers of the DRUJ.36 The ECU stabilizes the DRUJ 

and the ulnocarpal joint in both supination and neutral forearm rotation; especially when the 

TFCC is insuffficient.37 

 

The PQ is a dynamic stabilizer of the DRUJ38,39 especially in pronation.40 The superficial head of 

PQ is an important pronator while the deep head is a dynamic stabilizer of the DRUJ as 

suggested by continuous activation throughout forearm rotation in electromyographic studies.38 
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Figure 1. 14 Muscles of the volar compartment of the forearm 

 

 
Figure 1. 15 Muscles of the dorsal compartment of the forearm 

 

 

1.3 BIOMECHANICS	OF	THE	FOREARM	AND	DRUJ 
 

1.3.1 BIOMECHANICS	OF	THE	IOM 
 

The IOM is a secondary stabilizer of the DRUJ.  Its’ importance for DRUJ kinematics are most 

apparent when the primary soft-tissue stabilizers have been compromised at the level of the 

DRUJ.17,41,42 
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The axis of forearm rotation (AOR) runs proximally through the center of the radial head and 

distally through the fovea of the ulnar head. (Figure 1.16). The change in lengths of the 

components of the IOM during forearm rotation has been studied.33 The three most distal 

ligaments of the IOM (CB, AB and DOB) have negligible length change during prosupination 

because the ulnar attachments of these ligaments are located along the course of the AOR thus 

conceptually supporting these structures as isometric stabilizers of the forearm. The proximal 

membranous portion lacks isometry and is lengthened (taut) in pronation and lax in 

supination.33,35  

  
 
Figure 1. 16 Axis of rotation of the forearm (AOR). 
(© D Isa) 
AOR passing through the ulnar fovea distally and center of the radial head proximally  
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If the IOM is sectioned, there is resultant DRUJ instability in the absence of an intact TFCC. In 

particular, the distal IOM is found to have a key stabilizing role, with the DOB of particular 

importance when present.29,30,43 The distal oblique bundle of the IOM was described by Noda et 

al26 and its role in DRUJ stability has been demonstrated.43,28 The DOB provides longitudinal 

resistance to ulnar shortening. Arimitsu et al29 reported longitudinal resistance to ulnar shortening 

was significantly greater when shortening was performed proximal to the DOB compared with a 

more distal shortening. The presence of a DOB and ulnar shortening proximal to the DOB 

confers greater DRUJ stability.29,30 Moreover, Watanabe et al43 demonstrated the DOB 

constrained volar and dorsal instability of the radius at the DRUJ in all forearm rotation 

positions. Several studies have confirmed the DOB contributes to DRUJ stability29,30,28 despite its 

presence in only 40% of individuals.26,28 Biomechanical evidence suggests that individuals with a 

DOB have increased stability of their DRUJ. 

 

The IOM contributes to forearm load sharing between the radius and ulna as dissipation of forces 

occur via soft tissue stabilizers as the load progresses proximally during axial loading.44,45,46 

(Discussed in section 1.5 later). 

 

The CB inserts on the proximal radial shaft and runs distally to insert on the distal ulnar shaft.  It 

is frequently discussed in the literature because it is considered the most functional component of 

the IOM as the result of its stoutness and constancy (Figure 1.13).  In particular, the CB becomes 

the most important contributor to longitudinal stability of the forearm after resection of the radial 

head.27,31 The IOM, especially the CB also prevents divergence of the radius and ulna thus 
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maintaining the forearm axis of rotation by tethering the bones together during pronation and 

supination.32 In the absence of a radial head, proximal migration of the radius is resisted by load 

transference to the ulna through the IOM. Increased strain in the CB of the IOM has been noted 

in biomechanical studies and is responsible for the majority of longitudinal stiffness of the IOM 

after radial head excision.31,47,48 The  load-displacement  curve on biomechanical testing 

demonstrates the CB  behaves structurally as a strong ligament.49  

 

The proximal membranous portion (the proximal oblique cord and dorsal oblique accessory 

cord) of the IOM do not represent isometric components and are thought to act as restraints from 

excessive pronation motion of the forearm; however, the true functions of the proximal 

membranous portion are controversial and unconfirmed in the literature. 33,34,35  

 

	
1.3.2 BIOMECHANICS	OF	THE	DRUJ	
 

In most normal individuals, the total arc of pronation and supination measures between 150-

180°. The differential arc of curvature between the sigmoid notch and ulnar head suggests that 

prosupination not only involves rotation but also dorsovolar translation due to the cam effect at 

the DRUJ.13 with the ulnar head moving dorsal and distal in pronation and volar and proximal in 

supination.50  Additionally, studies have found that the DRUL is taut in pronation and thus 

important in stabilizing the DRUJ in pronation while the VRUL is taut in supination and thus 

more important in stabilizing the DRUJ in supination.25,42,51,52 The AOR runs proximally through 

the center of the radial head and distally through the fovea of the ulnar head (Figure 1.16) and 

the axis moves from the radial to ulnar at the DRUJ as the forearm moves from pronation to 
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supination (Figure 1.17).53 

 

 

 

Figure 1. 17 Change in axis of rotation(AOR) during forearm rotation 
AOR moves in an ulnar to radial direction as the forearm moves from pronation to 
supination. 
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1.3.3 FOREARM	LOAD	TRANSMISSION	
 
 
In an earlier static biomechanical study,17 the radius distal was reported to bear 60% of the axial 

load transmitted through the bones of the forearm and the ulna was thought to bear the remaining 

40% in ulnar neutral wrists. TFCC excision resulted in transmission of 95% of the load through 

the radius and 5% through the ulna. This demonstrates the TFCC also functions to transmit 

load/load sharing between the radius and ulna. The TFCC not only plays a major role in stability 

of the DRUJ, but also load transference.48 

 

Subsequent static biomechanical studies have examined the axial load distribution between the 

distal radius and ulna in static positions. It has been reported that 9 – 43 % of the total wrist load 

passes through the distal ulna in neutral wrist and forearm position50,54,55,56,57 ,58,44 however, the 

load distribution between the distal radius and ulna varies based on the length of the radius 

relative to the ulna. When the ulnar length was increased by 2.5 mm, the forearm axial load 

borne by the distal ulna increased to 42%. Conversely, when ulnar length was decreased by 2.5 

mm, the axial load borne by the ulna decreased to 4%.50,54 There is a variation in axial load 

transmission between the radius and ulna throughout the arc of forearm rotation. The axial load 

transmitted through the distal ulna has been shown to be over 30% at 60o supination during 

simulated in-vivo forearm rotation.45,59 This is controversial as some biomechanical studies have 

demonstrated more load transmitted through the distal ulna at 45o and 75 o of pronation. 22,60 

These studies have applied non-physiologic static loads and have not simulated in-vivo wrist 

motion.  

However, it is interesting to note that a more positive native ulnar variance does not necessarily 
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result in more force transmission through the distal ulna than a wrist with a more negative native 

ulnar variance.22,55 This is likely due to the greater thickness of the TFCC in wrists with ulnar 

negative ulnar variance.22,55  

1.4 DISTAL	RADIUS	SHORTENING 
 

Shortening of the distal radius can occur either as a sequela of distal radial fractures or as a result 

of distal radius shortening osteotomy as a surgical treatment for Kienbock’s disease, avascular 

necrosis of the lunate. 

 

1.4.1 SHORTENING	IN	DISTAL	RADIUS	FRACTURES 
 

The most common cause of axial shortening of the distal radius is due to malunion or growth 

arrest following distal radius fractures.  Distal radius malunion is the most common complication 

of distal radius fractures with an incidence of 17 - 24%.61,62 Radial shortening of 3-6 mm or more 

affects wrist function, range of motion especially in forearm rotation, and impairs clinical 

outcome.63,64,65 Of the radiographic parameters, radial shortening has been associated most 

frequently with unsatisfactory outcomes following distal radius fractures.66,67,68,69,70 Patients with 

residual radial shortening develop wrist pain and disability due to ulnar positive variance and 

subsequent clinical sequelae such as ulnar impaction syndrome (Discussed in section 1.3.3 later). 

Axial shortening/loss of radial height results in a shift and transfer of load onto the ulna, 

resulting in pain and limitation of grip strength, which gives rise to poor function (Figure 1.17). 

Restoration of anatomic parameters improve patient outcomes in distal radius fractures. 71,72  
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Figure 1. 18 Distal Radius Malunion. 
(© D Isa). 
46 year old woman with previous left (L) distal radius fracture and subsequent malunion with 
residual shortening and ulnar positive variance after non-operative management. The patient 
presented with ulnar wrist pain and limited range of motion. X-ray of left wrist shows loss of 
radial height and bony resorption and osteopenia from chronic regional pain syndrome (CRPS) 
and disuse. X-ray of the right wrist (R) of the same patient for comparison  
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Bu et al57 investigated the effect of sequential radial length change on distal ulnar loading under 

static loading conditions. The authors observed differences in the effect of radial shortening on 

distal ulnar loading on wrists with inherent ulnar positive variance compared with wrists with 

inherent ulnar negative variance and concluded wrists with an inherent ulnar negative variance 

may tolerate more radial shortening post-fracture and are less likely to have clinical symptoms of 

ulnar carpal impaction.57   

As discussed previously, a biomechanical study of the effect of distal radius shortening reported 

that when ulnar variance was increased by 2.5 mm, the forearm axial load borne by the ulna 

increased to 40%. Conversely, when ulnar variance was decreased to 2.5 mm, forearm axial load 

borne by the ulna decreased to 5%.50,54 This suggests considerably altered load distribution with 

relatively small changes in distal radius length. This altered loading may cause pain and 

functional impairment and over time, potentially the development of degenerative wrist arthritis. 

 

1.4.2 RADIAL	SHORTENING	OSTEOTOMY	IN	KIENBOCK’S 
 

Avascular necrosis of the lunate, also known as Kienbock’s disease, is a relatively uncommon 

disorder of the wrist. Kienbock’s disease most commonly affect male laborers aged 20 – 40 

years. Both wrists are equally affected. Symptoms include activity related dorsal wrist pain, 

swelling, decreased motion and reduced grip strength. Existing theories on the cause include the 

pattern of arterial blood supply,73,74 disruption of venous outflow,75 ulnar negative variance,,75,76 

and increased/decreased radial inclination.77,78  However, no definitive cause has been proven. 

 

The lunate is supplied by dorsal and palmar branches of the radial artery with contributions from 
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the anterior interosseous artery and palmar intercarpal arch. There are 3 patterns of interosseous 

branching in the lunate, the “Y,” “X,” or “I,” patterns of blood supply with the ‘I’ pattern 

demonstrating the highest risk for AVN.73 The extraosseous arterial supply to the lunate arises 

from branches entering the lunate both palmarly and dorsally. The lunate is supplied by a single 

palmar artery in 7 – 20% of normal individuals73,74 thus in theory placing the lunate at risk of 

traumatic interruption of its vascular supply. Venous stasis due to disruption of venous outflow is 

another vascular theory either as a result of the disease process or traumatic insult to vascular 

outflow.75 

Negative ulnar variance as a predisposing factor was first described in 1928.76 It was noted that 

78% of patients with Kienbock’s in this study had negative ulnar variance compared to 23% in 

the general population. It is theorized that a short distal ulna leads to increased force transmission 

across the distal radius and lunate facet. However, recent biomechanical studies22 have failed to 

correlate native ulnar variance with increased load transmission across the distal radius and ulna. 

Furthermore, other investigators have not observed a correlation between negative native ulnar 

variance and incidence of Kienbock’s79 with no significant difference in ulnar variance between 

patients with Kienbock’s and the general population.78,80,81 This theory of increased load 

transmission across the distal radius with ulnar negative variance has led to the common practice 

of treating Kienbock’s disease with radial shortening osteotomies (See figure 1.18).57,82,83,84,85 

The magnitude of shortening which is optimal and the effect of that shortening under active wrist 

motion has not been determined. 

 

The theory of radial inclination contributing to Kienbock’s has also been described as a cause for 

increased force transmission through the lunate facet of the distal radius and has led to various 
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techniques of radial opening or closing wedge osteotomies to alter inclination.86,87,88 However this 

theory is controversial as radial inclination has been found to be lower than average in most 

patients with Kienbock’s disease.78 Conflicting results have been published on the effect of 

changing radial inclination and unloading of the radiolunate joint thus this is not as popular as 

radial shortening as a treatment modality. 77,89,90 

 

 

 

 
Figure 1. 19 Distal radius shortening osteotomy for Kienbock's disease. 
Images of a 24-year-old woman with stage II Kienbock’s disease. a) Left wrist x-ray 
demonstrating sclerosis of the lunate without collapse or fragmentation. Patient has ulnar 
negative variance b) T1 weighted MRI image of the same wrist demonstrating a hypointense 
lunate indicating an avascular lunate. c) Post-operative x-ray imaging following radial 
shortening osteotomy to offload the lunate. 

 
 

 

Kienbock’s disease has also been reported with various conditions including septic emboli, 

scleroderma, carpal coalition, sickle cell anemia, systemic lupus erythematosus, and 
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corticosteroid use. No consistent correlation with any specific etiology has been demonstrated 

suggesting that multiple factors are likely at play in the etiology of Kienbock’s disease. 

As a result of osteonecrosis, the final stages Kienbock’s disease are lunate fragmentation and 

collapse. Litchman et al91 described a 4 stage classification system for Kienbock’s disease based 

on plain radiographs (Table 1) and may be useful to guide treatment. 

 

Table 3. Litchman Classification for Kienbock’s Disease 

Muscle Function 

Stage 1 No X-ray changes 

Signal change on MRI 

Stage 2 Lunate sclerosis 

Stage 3A Lunate collapse 

No scaphoid palmar flexion 

No loss of carpal height 

Stage 3B Lunate collapse 

Fixed scaphoid palmar flexion 

Loss of carpal height 

Stage 4 Perilunate arthritis 
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The treatment of Kienbock’s disease is based on the Litchman’s classification. In the early stages 

before lunate collapse (stage 2 or 3a), treatment is aimed at unloading the lunate fossa which 

includes radial shortening osteotomies or lunate revascularization with the use of vascularized 

pedicled bone grafts.92,93,94  In later stages, treatment is aimed at addressing the carpal 

malalignment, preventing further collapse and salvage procedures. These procedures include 

scaphotrapeziotrapezoid fusion, scaphocapitate fusion, proximal row carpectomy, limited 

intercarpal fusion and total wrist fusion based on amount of degenerative changes and patient 

goals.92,93,94 

 

1.4.3 CLINICAL	EFFECTS	OF	ULNAR	POSITIVE	VARIANCE 
 

Positive ulnar variance, can be congenital or acquired. Common causes include distal radius 

malunion with shortening, radial head excision with subsequent proximal migration of the radius, 

congenital positive ulnar variance, premature physeal closure of the radius or overgrowth of the 

ulna due to trauma, Madelung’s deformity, infection or tumor. 

 
Positive ulnar variance can lead to ulnocarpal impaction. The most common cause of 

symptomatic ulnocarpal impaction is radial shortening due to a distal radius malunion. Ulnar 

positive variance is associated with ulnar sided wrist pain, restricted ulnar deviation and forearm 

rotation and development of degenerative changes due to the impaction of the ulnar head against 

the ulnar carpus. These changes include erosion and perforation of the TFCC and lunotriquetral 

ligament and lunate chondromalacia. 95,96 
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Ulnar impaction syndrome is most frequently associated with the ulnar positive variance (Figure 

1.20), however, it can also occur in wrists with either ulnar negative or neutral variance.97 Pain 

often occurs with wrist pronation, forceful grip and axial loading with ulnar deviation. The 

ulnocarpal stress test98 places the wrist in ulnar deviation while passively rotating the forearm 

with an axial load which should reproduce the patients’ pain. 

 

 

 
 
Figure 1. 20 Ulnocarpal impaction Syndrome 
Images of a 20-year-old male with ulnar positive variance and symptomatic ulnocarpal 
impaction. a) Left wrist X-ray demonstrating ulnar positive variance. b) Left wrist T2 weighted 
coronal cut demonstrating ulnocarpal impaction with subchondral bony edema (red arrows). c) 
Post-operative X-ray following ulnar shortening osteotomy demonstrating restoration of neutral 
ulnar variance. 
 
 

 As noted previously, changes in ulnar variance with forearm position and grip has been 

described accounting for subtle variations on radiographs.6,7,8 An increase in ulnar variance of up 

to 2.5mm can occur on pronated grip view.8 This proximal migration/dynamic positive ulnar 
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variance with increased ulnocarpal load with pronation and grip may explain why patients with 

ulnocarpal impaction syndrome have pain with the ulnocarpal stress test. 

 

Treatment for symptomatic ulnar impaction includes ulnar shortening osteotomy, wafer resection 

of the ulnar head,99 a hemiresection interposition arthroplasty or an excisional arthroplasty.100 

These procedures have been shown to decrease load transmission through the distal ulna56 and  

provide satisfactory pain relief.101,102,103,104 However the optimal magnitude of ulnar shortening is 

unknown. Excessive ulnar shortening can cause DRUJ incongruity105 and contribute to the late 

onset of distal radioulnar joint arthritis which is commonly reported after this procedure.106, 

 

 

1.5 CURRENT	BIOMECHANICAL	STUDIES	ON	FOREARM	LOAD	TRANSMISSION 
 

A range of 9 – 43 % of the total wrist load has been reported to pass through the distal ulna in 

neutral wrist and forearm position. 44,50,54,55,56,57,58,107.  

Earlier studies by Palmer and Werner21,50,54,95 investigated loading by application of a constant 

force to cadaveric wrists. The wrists were constrained by cementing a pin in the third metacarpal 

to a loading frame to prevent radioulnar deviation and flexion/extension of the wrist. A constant 

load of 22.2 N was applied across the wrist using weights attached to the ECRL, ECRB, ECU, 

FCR and FCU. Loading of supinators and pronators and their respective contributions were not 

accounted for and the effects of wrist and forearm positioning on load transmission was not 

investigated. Axial loads were recorded by means of load cells in the mid-shaft of the radius and 

ulna which did not account for load dissipation through the IOM as load progresses proximally 
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and hence did not accurately measure load at the distal radius and ulna.44,45 This method of static 

wrist loading may not accurately simulate distal radius and ulna loading during in-vivo wrist 

motion.  

Trumble et al108 further investigated load sharing in the radius and ulna by static loading of the 

wrist in 5o and 10o of radial deviation, 5o, 15o and 15o ulnar deviation, 5o flexion and 5o, 10o, 15o, 

20o, and 25 o extension and 40o of pronation and supination. An arbitrary constrained axial load 

of 98.1 N was applied to the wrist using an InstronÒ materials testing machine (servohydraulic 

testing system). Radial and ulnar loads were measured by load cells affixed to the shaft between 

the middle and distal thirds of the radius and ulna. An average of 17% of the applied axial load 

was transmitted through the ulna with an increase observed in wrist extension, ulnar deviation 

and supination. Although this study expanded on earlier studies by examining the effects of wrist 

and forearm position on load transmission, their method of static loading does not, in all 

likelihood, accurately simulate dynamic motion. Load cells were also placed in the radial and 

ulnar shaft between the middle and distal one third at a distance the distal articular surfaces and 

the ROM studied was limited to a narrow range especially in flexion and extension. 

In the studies listed above, the wrist was fixed in a neutral position while an axial load was 

applied. The limitation of the methodology was that they did not reproduce active dynamic wrist 

motion and therefore, did not account for the effect of muscle activation on wrist loading and did 

not accurately simulate normal wrist kinematics. Thus, their results may not reflect in-vivo wrist 

load transmission in various wrist and forearm positions. Secondly, the load cells were placed in 

the mid portion of the radius and ulna, measuring the load transmission across the forearm. This 

may not accurately measure load across the distal radius and ulna as dissipation of forces occur 

via soft tissue stabilizers, especially the IOM, as the load progresses proximally during axial 
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loading. 44,45,46.  

The importance of the IOM in load sharing between the radius and ulna has been investigated in 

two prior biomechanical studies.44,45 Loading has been shown to be equal in the proximal and 

distal aspects of the radius and ulna after IOM sectioning indicating no load transfer from the 

radius to the ulna after IOM sectioning.45 In another study with an intact IOM,44 in neutral elbow 

position, there was an increased load registered in the proximal ulna (11.8%) compared to the 

distal ulna (2.8%) indicating force transfer via the interosseous membrane. 

Markolf et al44 further expanded on previous biomechanical studies on forearm load transmission 

and also investigated the role of the IOM in load sharing by placing load cells in the distal ulna 

and proximal radius as close as possible to the radial and ulna heads. A static constant 

constrained load of 134 N was applied to the wrist using a servohydraulic testing machine while 

manually rotating the forearm. This was the maximum load that could be applied without 

causing structural failure; the magnitude of loading had no clinical rationale. As with previously 

mentioned studies, the applied loading was constant and did not take into account variation in 

loading with supination and pronation. Flexion, extension and radioulnar deviation were not 

studied. The proportion of load transmission at the distal radius and proximal ulna was calculated 

indirectly by subtracting the fraction that was registered by the proximal radial load-cell and 

distal ulnar load cell from 100%. Since the investigators did not directly measure loading in these 

areas load transfer through the IOM or other structures were not accounted for and thus the 

actual loading may have been considerably different. The effect of elbow position (full 

extension, 45o and 90o of flexion and varus/valgus positioning) and radial shortening on load 

sharing was investigated. At 4mm radial shortening, there was approximately equal load sharing 

observed between both the radius and ulna. However, the effects of ulnar lengthening/shortening 
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and radial lengthening on forearm load sharing was not investigated.  

There is conflicting evidence regarding the relationship between ulnar variance and load 

transmitted through the distal ulna.22,109 Bu et al57 investigated the effects of native ulnar 

variance and radial shortening on load transmission. The effects of radial lengthening and ulnar 

length change was not investigated. Loading was performed by application of a static axial load 

of 143 N applied to dead weights to a ball joint fixed to intramedullary pins in the second and 

third metacarpal. Load distribution in specimens with native ulnar positive variance was 69% 

through the radius and 31% through the ulna and in wrists with ulnar negative variance and 94% 

through the radius and 6% through the ulna.  

 

However, a recent biomechanical study simulating dynamic wrist motion showed no significant 

relationship between ulnar variance and load transmission.22 Harley et al22 investigated the 

effects of simulated dynamic ROM on force variation in the distal radius and ulna. Load cells 

were placed at the junction between the middle and distal third of the radial and ulnar shafts and 

dynamic wrist motion simulated. There was no significant relationship between native ulnar 

variance and the proportion of load transmission through the distal ulna. Under quasi-static 

loading at neutral wrist and forearm positions, 13% of the forearm load was transmitted through 

the distal ulna and during simulated dynamic motion, peak ulnar forces were 17% during wrist 

flexion/extension and 20% during ulnar deviation. Loading was also higher through the distal 

ulna in pronation than supination. Although this study simulated dynamic wrist motion, the 

forearm muscles were stripped off the bone while the prime mover tendons were left intact 

distally. The dorsal and volar palmar radioulnar joint ligaments were also sectioned in this study 

to ensure load was directly applied to the distal radius and ulna. The results from these studies 
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lack the influence and contribution of forearm muscles and intact ligamentous stabilizers of the 

wrist to load distribution in the forearm. The effect of multiplanar motion such as dart throw on 

load transmission was not investigated. Dart throw motion has been shown to be an important 

functional motion in performing activities of daily living.110 Load cells were placed at a distance 

from the articular surface of the distal radius and ulna and were not placed in line with the central 

aspect/mid axis of the radius and ulna thus, absolute loads may not represent true loads at the 

distal radius and ulna. The effect of radial and ulnar length change on load sharing during 

simulated dynamic motion was not investigated.  

 

There is a correlation between ulnar variance and articular disc of the TFCC (TFC) thickness 

with greater thickness of the TFC in wrists with ulnar negative ulnar variance.22,55 An earlier 

study using constrained axial loading by Palmer et al17 showed resection of the TFC resulted in a 

redistribution of the axial load so that the radius transmitted 95% and the ulna, 5% as opposed to 

60% through the radius and 40% through the ulna with the TFC intact during static wrist loading. 

A subsequent study showed excision of two thirds or more of the TFC reduced ulnar load to 3% 

under static loading conditions.111 

It  was previously reported that a more positive ulnar variance resulted in more load being 

transmitted through the distal ulna in the static loading scenario.57,109 However the correlation 

between ulnar variance and loading at the distal ulna is controversial in more recent literature 

using more physiologically relevant dynamic wrist motion simulators.22,57 The load distribution 

between the radius and ulna varies based on the length of the radius relative to the ulna. When 

ulnar variance is decreased to 2.5 mm, forearm axial load borne by the ulna decreased to 4%. 

The results from this study indicate shortening of only 2.5 mm is sufficient to decompress the 
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ulnocarpal joint.50,54 This load decrease is the rationale behind ulnar shortening osteotomy for 

ulnar impaction syndrome.  

 

1.6 RATIONALE 
 
 
Load sharing between the distal radius and ulna remains controversial at native length and 

following changes in radial and ulnar length. The aforementioned studies investigated load 

sharing during wrist motion under static loading. Only one study22 has investigated loading 

during simulated dynamic motion at native forearm bone length. 

 

We chose a method of dynamic loading by suturing the prime mover tendons and connecting 

them to servomotors. The use of servomotors provide more precise motion control than that of 

hydraulic or pneumatic actuators used in previous studies22 that have simulated dynamic motion. 

Proportional loads were applied to the other tendons based on previous electromyographic 

studies of muscle activation and the relative cross sectional areas of muscles to simulate more 

physiologic motion.112,113 

 

The purpose of this research is to quantify how changes in radial and ulnar length affects distal 

forearm loading as the wrist is moved through simulated dynamic wrist motion. Surgeons require 

an improved knowledge of the normal forces across the distal radius and how this is altered with 

radial and ulnar shortening and lengthening to influence clinical and surgical decisions.  

This study aims to clarify the relationship between radial and ulnar length change and load 

distribution between the distal radius and ulna during simulated wrist motion. We also aim to 
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quantify the relationship between native ulnar variance and load distribution across the wrist. 

Furthermore, the contribution of the TFC to load transfer in the distal radius and ulna with ulnar 

length change during simulated dynamic wrist motion to recreate normal wrist mechanics will be 

investigated. 

Although the effects of distal radius and ulna length changes on load transfer between the radius 

and ulna has been reported in a static situation; it is poorly understood during clinically relevant 

motions. This study will help surgeons develop a biomechanical rationale for clinical decisions 

related to management of Kienbock’s disease, ulnocarpal impaction syndrome, distal radius and 

ulnar malunions and will have implications in the design of improved wrist implants. Hence, we 

plan to quantify the load distribution between the distal radius and ulna under simulated dynamic 

wrist motion for these various clinical scenarios with and without the TFC intact.  

These studies herein are important in adding to the existing body of literature. Firstly, a custom 

jig with a load cell will be placed close to the distal articulating surface of the radius and ulna 

with placement of the load cell in line with the central axis of the radius and ulna thus gaining a 

better understanding of distal radial and ulnar forces than previous studies. Secondly, a dynamic 

wrist motion simulator will be utilized closely simulating in-vivo motion as opposed to static 

loading methods used in most previous studies. We will add to existing body of literature by also 

investigating the effects of simulated dart throwers motion on distal forearm loading with length 

changes of the distal radius and ulna. Thirdly, the soft tissue envelope will be left intact thus 

closely representing in-vivo conditions when compared to previous studies. Lastly, the effects of 

radial and ulnar lengthening during simulated dynamic motion will be studied which has not 

been reported in the literature to date. This study will contribute significantly to our 

understanding of load transmission following simulated surgical procedures and diseased states. 
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1.7 OBJECTIVES	AND	HYPOTHESIS 
 

Objectives 

1. To determine the relationship between distal forearm loading at the wrist and 

radial length change during simulated dynamic wrist motion. 

2. To determine the relationship between native ulnar variance and distal forearm 

loading. 

3. To determine the relationship between distal forearm loading at the wrist and 

ulnar length change during simulated dynamic wrist motion. 

4. To determine the relationship between the TFC integrity and the force 

transmission through the distal ulna with ulnar length change.  

Hypotheses 

1. Distal radial loads will increase and distal ulnar loads will decrease with radial 

lengthening and vice versa. There will be variation in loads at different wrist 

positions during simulated dynamic wrist motion. 

2. There will be no relationship between native ulnar variance and distal forearm 

loading. 

3. Distal radial loads will decrease and distal ulnar loads will increase with ulnar 

lengthening and vice versa. There will be variation in loads at different wrist 

positions during simulated dynamic wrist motion. 

4. TFC excision will influence load transmission for each interval of ulnar length 

change. Excision of the TFC during ulnar length change will decrease load 

transmission through the distal ulnar compared to the TFC intact state.	 	
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1.8 THESIS	OVERVIEW	
 

Chapter 2 is a study on the effects of distal radial length change with radial lengthening of 

+1mm, +2mm and +3mm and radial shortening of -1mm, -2mm, -3mm and -4mm on load 

distribution at the wrist joint between the distal radius and ulna during simulated wrist ROM. 

This study will clarify the effects of radial shortening osteotomy for reducing load across the 

radiocarpal joint for treatment of Kienbock’s disease. The effect of radial shortening after distal 

radial fractures on distal forearm loading will also be better understood. 

Chapter 3 is a study on distal forearm loading with ulnar lengthening of +1mm, +2mm and 

+3mm and ulnar shortening of -1mm, -2mm, -3mm and -4mm during simulated wrist ROM to 

clarify the effects of ulnar shortening osteotomy for reducing load across the ulnocarpal joint for 

treatment of ulnocarpal impaction. The contribution of the TFC to load sharing will also be 

studied.  

Chapter 4 concludes with a summary of our findings and directions for future research. 
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2.	EFFECT	OF	RADIAL	LENGTH	CHANGE	ON	DISTAL	FOREARM	LOADING	DURING	SIMULATED	WRIST	

MOTION 
 
 
2.1 OVERVIEW	

 

This chapter reports on an in-vitro cadaveric study examining the relationship between 

changes in radial length and distal forearm forces during simulated wrist motion. Load 

cells were implanted in the distal radius and ulna to quantify loads, during simulated 

active motion. 

 

2.2 INTRODUCTION	
 

 

Distal radius malunion is a frequent cause of wrist pain and disability impairing patient function. 

It is the most common complication of distal radius fractures with an incidence of 17 - 24%.1,2 3 

Of the radiographic deformities, radial shortening has been associated most frequently with 

unsatisfactory outcomes following distal radius fractures.4,5,6,7,8 Radial shortening results in a 

transfer of load onto the ulna, resulting in pain and weakness, which gives rise to poor function. 

The treatment of distal radius malunion aims to restore normal radial length and correct 

associated deformities. Understanding the biomechanical implications of radial shortening will 

aid in surgical decision making when performing distal radial osteotomies by clarifying the 

importance of restoring normal anatomic parameters. 

 

Avascular necrosis (AVN) of the lunate, also known as Kienbock’s disease, is another cause of 

progressive wrist pain, stiffness and weakness. Various theories exist, however, the exact 
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etiology remains to be clarified. Negative ulnar variance as a predisposing risk factor was first 

described by Hulten in 1928.9 It was noted at the time that 78% of patients with Kienbock’s had 

negative ulnar variance compared to 23% in the general population; thus, it was theorized that 

negative ulnar variance leads to increased force transmission across the distal radius, particularly 

the lunate facet, leading to AVN of the lunate. In a survey of hand surgeons in North America,10 

the majority of the responding surgeons believe ulnar-negative variance to be the sole 

contributory factor to the development of Kienböck disease. The treatment of Kienbock’s disease 

is based on the Litchman’s classification. In the early stages before lunate collapse (stage II or 

IIIa), treatment is aimed at unloading the lunate fossa. This theory of increased load transmission 

across the distal radius in patients with negative ulnar variance has led to the common practice of 

treating Kienbock’s disease with a joint leveling procedure such as radial shortening 

osteotomies, resulting in good clinical outcomes. 11,12,13,14,15,16,17 However, the magnitude of 

shortening which leads to optimal clinical outcomes and the effect of radial shortening on distal 

radius and ulnar loading has not been reported. 

 

As described in Chapter 1 (Section 1.5), earlier biomechanical studies18,19,20,21,22,23  on forearm 

load transmission and simulated radial shortening19,24,25 have investigated load sharing at the 

distal radius and ulna only during static loading of the wrist. Constrained axial loads were 

applied to the wrist while the wrist was fixed in various positions. The limitation of the 

methodology was that they did not accurately simulate normal wrist kinematics by reproducing 

active dynamic wrist motion thus calling into question the clinical applicability of these findings.  
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The effect of native ulnar variance on loading through the distal forearm is controversial. 

Previous biomechanical studies have reported that a wrist with a naturally positive ulnar variance 

have increased loads through the distal ulna when compared to a wrist with negative ulnar 

variance.19,22 However the correlation between ulnar variance and loading at the distal ulna is 

controversial in recent literature using more physiologically relevant dynamic wrist motion 

simulators.19,26 

 

The effects of radial length change on axial load transmission during simulated dynamic wrist 

motion remains to be clarified. Surgeons treating patients with distal radius shortening associated 

with distal radius fractures and Kienbock’s disease require an improved knowledge of the normal 

forces across the distal radius and how this is altered with radial length changes. This will assist 

in surgical decision making when considering distal radius osteotomies for malunion or 

Kienbock’s disease. A better understanding of distal forearm loading may also assist in the 

development of improved arthroplasty designs for the radiocarpal and distal radioulnar joints. 

 

Hence, in order to develop improved evidence-based treatments for distal radial malunions and 

Kienbock’s disease, a biomechanical cadaver-based experimental model was developed to 

evaluate the effects of radial length change on axial loading through the distal forearm during 

simulated dynamic wrist motion. Our main objective was to quantify the effects of radial 

shortening on distal radial and ulnar loading during simulated dynamic wrist motion. Our 

secondary objective was to clarify the relationship between native ulnar variance and distal ulnar 

loading under simulated dynamic wrist motion. Our hypotheses were: 1) distal radial loads will 

increase and distal ulnar loads will decrease with radial lengthening; 2) distal radial loads will 
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decrease and distal ulnar loads will increase with radial shortening; 3) loading will vary at 

different wrist positions during simulated dynamic wrist motion; and 4) differences in native 

ulnar variance will not influence load distribution in the distal radius and ulna.  

 

2.3 METHODS 
 

2.3.1 IMPLANT	DESIGN	
 
 
A custom implant was designed to lengthen and shorten the radius using a lead screw 

mechanism. A one-degree of freedom (1-DOF) load cell (Honeywell® model 11, NJ, USA) was 

placed distal to the lead screw (Figure 2.1 a) to quantify axial load through the distal radius. 

Distally, the radial implant was secured to bone through a locking mechanism by threaded holes 

in the distal fixation plate to create a fixed angle construct. The distal fixation plate was designed 

with a 12o volar angulation to match the contour of the volar aspect of the distal radius for flush 

fit based on previous studies.27 The implant had both a spacer for specimen preparation and the 

final implant with a load cell and lead screw mechanism for testing. The spacer and load cell 

were designed similarly with the same length but with a slight width difference; the spacer had a 

slightly smaller diameter than the final testing implant to facilitate implant insertion and cement 

fixation. The spacer preserved the native distal radial and ulnar articular height during implant 

insertion so as not to affect the normal load sharing and native variance of the forearm (Figure 

2.1 b). To improve fixation of the distal fragment, the metaphysis was reamed and 

polymethylmethracrylate (bone cement) was inserted to augment screw purchase. Locking 

screws were used to provide a rigid fixed angle construct. 



 62 

 

 
a. Radial Custom Implant	

 
b. Radial Spacer Block (a) Isometric (b) Lateral and (c) AP views	
 
 
 
Figure 2. 1 Custom Radial Implants 
© D Isa, M McGregor 

a. Custom implant for radius. Components include a distal fixation plate with 22 volar 
angulation, a 1-DOF load cell, lead screw mechanism for length adjustments and a 
notched proximal stem.  

b. Radial spacer block. 
 

 

Proximally, the stem was notched and roughened to assist with fixation in the intramedullary 

canal. An appropriate stem diameter for our study was calculated based on mean intramedullary 

measurements from cadaveric CT scans. This allowed for a secure fit in the smallest 

intramedullary canals while also allowing for an adequate cement mantle.  
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The intermediate components between the proximal and distal components consist of a load cell 

for axial (tensile and compressive) load measurement and a lead screw mechanism. The lead 

screw mechanism allowed for length adjustment of the implant. Rotating the central nut caused 

both threaded eye bolts to be translated in or out simultaneously, thus adjusting the implant 

length without rotating the thread eye bolts. The thread pitch was such that one third of a full bolt 

revolution counterclockwise resulted in 1mm of lengthening and one third of a full middle bolt 

revolution clockwise resulted in 1mm of shortening. The implant was designed to achieve 5 mm 

of shortening and 5 mm of lengthening each from the native position. 

A similar ulnar implant with a 1-DOF load cell (Honeywell® model 11, NJ, USA) was also 

designed (Figure 2.2 a). The distal component incorporated a rectangular notched stem for 

cementing into the intramedullary canal of the distal ulna. The intermediate components and 

proximal stem were designed in a similar fashion to the radial component. The intermediate 

component between the proximal and distal components consists of a load cell for axial (tensile 

and compressive) load measurement and a lead screw mechanism. Proximally, the stem was 

notched and roughened to assist with fixation in the intramedullary canal. The ulnar spacer and 

custom ulnar implant were designed similarly with the same length but with a slight width 

difference; the spacer had a slightly smaller diameter than the final testing implant to facilitate 

maintenance of an intact bone bridge and preserve the native distal ulnar articular surface 

location during the insertion and cementing process (Figure 2.2 b). 
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a. Ulnar Custom Implant 

 
b. Ulnar Spacer Block (a) Isometric (b) Lateral (c) AP View 
Figure 2. 2 Custom Ulnar Implant 
© D Isa, McGregor 

a. Custom implant for ulna. Components include a distal post, a 1-DOF load cell, lead 
screw mechanism for length adjustments and a notched proximal stem  

b. Ulnar spacer block. 
 
 
 

2.3.2 AXIAL	LOAD	MEASUREMENT 
 
 
Axial loads measured using the 1-DOF Honeywell® load cell model 11 (NJ, USA) had 0.8% 

accuracy, 0.1% repeatability. The load cells were zeroed prior to implantation without the 

application or influence of external loads. The load cells have threaded connections on either 

side to securely attach to the radial and ulnar custom implants to measure axial (tensile and 

compressive) forces.  
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2.3.3 SPECIMEN	PREPARATION 
 

 

Testing was performed on 9 fresh frozen right cadaveric forearm specimens (mean age 74 years; 

range 60 to 83 years; all male) with no clinical or CT evidence of osteoarthritis. The specimens 

were amputated at the mid-humeral level and stored at - 20 °C. They were thawed for 18 hours at 

room temperature (22 °C) and then prepared for mounting. 

PA wrist X-rays with the elbow flexed at 90o and forearm in neutral rotation were taken to 

measure native ulnar variance. 

A standard volar flexor carpi radialis (FCR) approach to the distal radius was utilized (Figure 

2.3). Skin and subcutaneous tissue was sharply incised. The FCR tendon sheath was then incised 

and the FCR tendon retracted ulnarly. The floor of the FCR tendon sheath was incised and flexor 

pollicis longus (FPL) and the contents of the carpal tunnel was retracted ulnarly exposing the 

pronator quadratus (PQ). The PQ was then subperiosteally elevated off the distal radius in a 

radial to ulnar direction. Care was taken so as not to disrupt the volar distal radioulnar joint 

(DRUJ) capsule or interosseous membrane. 
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Figure 2. 3  FCR approach. Pronator quadratus over the distal radius. 
© D Isa 

 
 
 
A 40mm segment of the volar cortex 10 mm proximal to the DRUJ was excised using a cutting 

guide and a microsagittal saw. The dorsal bone bridge was left intact to maintain the alignment 

of the radius (Figure 2.4 a-g). The radial implant spacer was then cemented in place (Figure 2.4 

h). 
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Figure 2. 4 Bone bridge technique radius 
© D Isa 

(a) – (e) Radial bone bridge technique. Lateral view showing bone bridge left intact dorsally 
to maintain articular height. The radial spacer is shown inserted. The bone bridge was cut 
prior to installation of final custom radial implant. (f) Radial Cutting guide (g) Bone Bridge 
Radius and (h) Cadaver specimen with radial spacer block. 

 
 
 
 
To insert the ulnar implant, the subcutaneous boarder of the ulna was approached using the 

interval between extensor carpi ulnaris (ECU) and flexor carpi ulnaris (FCU). The extensor 
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retinaculum was left intact. Using the bone bridge technique, a 40mm segment of bone 

approximately 10mm proximal to the DRUJ was excised. Utilizing a cutting guide, cuts were 

made using a microsagittal saw leaving a radially based bone bridge intact. The ulna implant 

spacer was then cemented in place (Figure 2.5 a-h). 

The tendons of the muscle groups contributing the greatest proportion of force for a given 

motion (prime movers) were exposed and sutured proximal to the extensor retinaculum to allow 

for simulated active wrist motion.28,29 

The tendons of the wrist extensors (extensor carpi radialis longus [ECRL], extensor carpi radialis 

brevis [ECRB] extensor carpi ulnaris [ECU]), wrist flexors (flexor carpi radialis [FCR], flexor 

carpi ulnaris [FCU]), pronator teres [PT] and biceps [BI] were sutured using a Spectra extreme 

braid fishing line (80lbs) using a running locking stitch (Figure 2.6). All sutures (except BI) were 

tunneled under the skin and passed through alignment guides in the medial and lateral epicondyle 

to mimic physiologic line of muscle pull. The sutures were then attached to electric servomotors 

(SMI 2316D-PLS, Animatics, CA) with force transducers (Vishay Precision Group, Raleigh, 

NC) to control tendon forces. 
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Figure 2. 5  Radial and ulnar spacers in cadaver specimens. 
© D Isa 

(a) – (e) Ulnar bone bridge technique. AP view showing bone bridge left intact radially to 
maintain articular height. The ulnar spacer is shown inserted. The bone bridge was cut prior 
to installation of final custom radial implant. (f) Radial Cutting guide (g) Bone Bridge 
Radius and (h) Cadaver specimen with radial spacer block. 

 
 

	
 

In order to track joint motion, infrared marker triads were rigidly affixed to the radius, ulna and 

3rd metacarpal using custom DelrinÒ pedestals and wrist motion was tracked using an Optotrak 

Certus (Northern Digital Inc, Waterloo, Ontario, Canada) motion capture system with a 3D 
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accuracy of 0.1mm and 0.01mm resolution.30 (Figure 2.7) 

 

 
 
Figure 2. 6  Running locking stitch through tendon 
© D Isa 
 

All incisions were closed using a nylon zipper to preserve moisture and for ease of accessibility 

to the radial and ulna implants for length adjustments. The specimens were also kept moist by 

intermittent saline irrigation of the soft tissues. 

 
 
Specimens were tested in a simulator capable of producing active wrist motion with simulated 

muscle loading (Figures 2.7). The humerus was rigidly secured to the simulator by means of a 

clamp. The elbow was placed at 90o of flexion, neutral varus/valgus and neutral forearm rotation 

and the ulna was transfixed to a static post on the simulator using two partially threaded 

steinmann pins at the proximal and middle third of the forearm.  

Once the specimen was mounted on the motion simulator, the bone bridge was cut and the radius 
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and ulnar implant spacers were replaced with the 1 DOF load cells (Figure 2.8).  

 

 

Figure 2. 7  Wrist motion simulator. 
© D Iglesias 
A wrist motion simulator that utilizes an array of servomotors connected to the tendons of the 
wrist prime movers was used to apply, maintain and adjust tone loads to achieve simulated 
active motion. The cadaver arms were mounted on motion simulator with elbow at 90o of flexion 
and neutral varus/valgus position. Infrared marker triads (“optical tracking markers”) were 
rigidly affixed to the ulna, radius and third metacarpal using custom DelrinÒ pedestals. 

(a) Derlin® platform (b) & (c) servomotors (motor manifold) (d) Cable guide rail (e) suture 
attachment to prime movers routed through epicondyle guides (f) Ulnar support tower (g) 
Humeral clamp (h) Optical tracking markers. 
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Figure 2. 8  Radiographic image of radial and ulnar implants in-situ. 
© D Isa 
Radiographic image of the cemented radial and ulna implants in neutral alignment. 
 
 
 
 

2.3.4 SIMULATION	OF	MOTION	AND	TESTING	PROTOCOL 

 
Our in-vitro simulator models the in-vivo activation of individual muscles using a force position 

algorithm to generate reproducible wrist motion pathways.28 Muscle loading protocols are based 

on electromyographic studies of active wrist motion and theoretical ratios derived from existing 

data on the cross sectional areas of the muscles of the wrist.31 The simulator uses antagonistic 

muscle pairs to more accurately simulate in vivo wrist and forearm motion. A minimum tone 

load was applied to groups resisting motion (8.9 N to FCU, FCR, ECRL, ECRB and ECU and 15 

N to BI and PT). The magnitude of load through the muscle groups enforcing motion increased 

with the resultant force imbalance moving the wrist in the desired direction. As the wrist moves, 
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position data from the optical trackers provides feedback to the actuators to alter muscle tensions 

to achieve the desired motion pathways.  The development of this active motion simulator has 

improved our ability to produce more reproducible motion pathways including flexion, 

extension, radial and ulnar deviation as well as the dart thrower motions.28 Activation of the BI 

and PT where used to maintain the forearm in neutral rotation throughout testing. 

 
 
Before shortening and lengthening of the radius, axial loading data was recorded during 

simulated dynamic wrist motion at the native radial length. Motions studied included wrist 

flexion (wrist moved from 50o extended position to 50o of flexion), ulnar deviation (wrist moved 

from 15o radially deviated position to 10o of ulnar deviation) and dart throw motion (30o of 

extension and 10o radial deviation to 30o of flexion and 10o ulnar deviation) at a rate of 3o per 

second (Figure 2.9). All data was collected with the forearm maintained at neutral rotation. 

Radial shortening and lengthening was simulated by 1 mm intervals with +1, +2 and +3 of 

lengthening and -1, -2, -3 and -4mm of shortening from native radial length. The ulnar length 

remained unchanged throughout the testing protocol. We chose a lengthening limit of 3mm as 

this length was the maximum attainable length due to the intact TFCC. 
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Figure 2. 9  Wrist motions evaluated. 
© D Isa 
The three primary wrist motions simulated by the wrist motion simulator for purposes of this 
study: Flexion (from 50o of extension), ulnar deviation [UD] (from 15o of radial deviation [RD]) 
and multiplanar motion [dart] (from 30o of Extension and 10o of RD). 
 
 
 
 
 

2.3.5 METHODS	AND	DATA	ANALYSIS 
 
 
 
Statistical Analyses 

 

The relationship between radial and ulnar loads and native ulnar variance were calculated using 

Pearson’s correlation coefficient. 

 

A two-way repeated-measures ANOVA was performed with radial length and joint angle as 

independent variables and radial and ulnar axial loads as the dependent variables. A Greenhouse-

Geisser correction was performed when Mauchly’s test for sphericity was violated. Statistical 

significance was set at p < 0.050. Comparisons were made at interval radial length changes (+3, 

+2, +1, neutral, -1, -2, -3, -4mm of length change from native length) during simulated dynamic 
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wrist flexion from 50o of wrist extension to 50o of flexion (-50o to 50o; where -50 o, -40 o, -30 o, -

20 o and -10 o represent wrist extended positions and 10 o, 20 o, 30 o, 40 o and 50 o represent wrist 

flexed positions), ulnar deviation from 15o of radial deviation to 10o of ulnar deviation (-15o to 

10o; where -15, -10 and -5 are radially deviated positions and 5 and 10 represented ulnarly 

deviated positions) and dart throw motion from 30o of extension and 10o of radial deviation to 

30o of flexion and 10o of ulnar deviation (-30o, -10o to 30o, 10o) . Comparisons between flexion 

angles were done at 10 o increments, radial to ulnar deviation at 5 o increments and in 10 o 

increments of extension for dart throw motion where -30 o, -20 o and -10 o represent wrist 

extended positions and 10 o, 20 o, 30 o represent wrist flexed positions. Where interactions were 

detected between joint angle and radial length, separate ANOVA analyses were undertaken to 

examine the effect of various radial lengths on distal forearm loading separately. The flexion-

extension, radioulnar deviation, and dart-throw motions were sometimes limited in certain 

cadavers and as a result, 8 specimens were used to evaluate flexion, 7 specimens for ulnar 

deviation and 6 specimens for dart throw motion.  

 
	

2.4 RESULTS	
 

2.4.1	NATIVE	LOADS	AND	ULNAR	VARIANCE 
 

Mean ulnar variance measured on standard PA radiographs was 0.1 ± 1.7mm (range -3.1mm – 

2.3mm). There was no significant correlation between radial (r = -0.104, p = 0.775) and ulnar (r 

= -0.153, p = 0.673) loads and native ulnar variance. 
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2.4.2	FLEXION	
 

Radial and ulnar axial loads during simulated active flexion (from the 50o extended position to 

50o of flexion) were compared at 10o flexion intervals for each radial length change studied.  

There was a significant effect of radial length change on distal radial loads for each millimeter of 

radial length change (p<0.001) (Figure 2.10 a). With an increase or decrease in radial length, 

there was an increase or decrease in radial loads respectively (Appendix 2.1): 79 ± 12N at 3mm, 

79 ± 13N at 2mm, 75 ± 8N at 1mm of radial lengthening, 72 ±  8N at native length and 65 ± 13N 

at 1mm, 58 ± 16N at 2mm, 53 ± 16N at 3mm, 45 ±  19N at 4mm of radial shortening during 

wrist flexion. There was an interaction between radial length and joint angle on radial loads (p = 

0.034). 

 

Post hoc analysis showed significant decrease in radial loads by 10%, 19%, 26% and 38% with 

1mm, 2mm, 3mm and 4mm of radial shortening respectively (p = 0.019).  However, a significant 

increase in radial loads by 10% occurred only at 3mm of radial lengthening (p=0.036). 

Variations in radial loads during wrist flexion with radial length change were statistically 

significant. In neutral wrist position and in the flexed position (-30o to 50o), with an increase or 

decrease in radial length, there was a corresponding increase or decrease respectively in radial 

load (Figure 2.11, p<0.001). However, in the wrist extended positions (-500 to -30o), there was an 

inverse relationship between length changes and radial loads (Figure 2.11 a); an increase in 

radial load was observed with radial shortening and a decrease in radial load was observed with 

radial lengthening (p=0.009).  
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At each 10o interval of wrist motion from extension to flexion for each millimeter of length 

change evaluated, there was a significant inverse relationship between ulnar loads and radial 

length (p < 0.001) (Figure 2.11 b). For each millimeter of radial length increase or decrease, 

there was a corresponding decrease or increase in ulnar loading respectively (p<0.001) 

(Appendix 2.1): 3 ± 4N at 3mm, 7 ± 7N at 2mm, 10 ± 8N at 1mm of radial lengthening, 12 ± 6N 

at native length and 19 ± 10N at 1mm, 22 ± 11N at 2mm, 25 ± 9N at 3mm, 31 ± 11N at 4mm of 

radial shortening. There was a 17%, 42% and 75% decrease in ulnar loads from neutral radial 

length at 1mm, 2mm and 3mm of radial lengthening respectively. There was a 58%, 83%, 108% 

and 158% increase in ulnar loads compared to neutral length at 1mm, 2mm, 3mm and 4mm of 

radial shortening respectively. 

 

The effect of joint angle was also significant with greater ulnar loads observed with the wrist in 

extension compared to neutral and flexed positions for each interval of length change (p<0.001) 

(Figure 2.10 b). There was no interaction between radial length and joint angle on ulnar loads 

(p=0.084). 
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Figure 2. 10 Radial and ulnar loads during wrist flexion n=8. 
 (In order to facilitate the interpretation of the data, the lines were constructed with 
increasing thickness to represent lengthening and shortening.  Lengthening is solid, and 
shortening is dashed. The same format is employed for all other related graphs in this 
chapter.) 
a. Graph showing radial loads at 3mm, 2mm and 1mm of radial lengthening (3, 2, 1), 

native length (0) and 1mm, 2mm, 3mm and 4mm of radial shortening (-1, -2, -3, -4) 
during wrist flexion. Flexion motion started with the wrist in 50o of extension (-50) to 
50o of flexion (50).	

b. Graph showing ulnar loads at 3mm, 2mm and 1mm of radial lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of radial shortening (-1, -2, -3, -4) 
during wrist flexion. Flexion motion started with the wrist in 50o of extension (-50) to 
50o of flexion (50). 
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Figure 2. 11 Radial and ulnar loads with radial length change during simulated wrist 
motion from extension to flexion n = 8. 
© D Isa 
Radial and ulnar loads at 3mm, 2mm and 1mm of radial lengthening (+3, +2, +1), native radial 
length (0) and 4mm, 3mm, 2mm and 1mm of radial shortening (-4, -3, -2, -1) in (a) extension, (b) 
neutral and (c) flexion. Mean + 1 SD are shown. 
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2.4.3					ULNAR	DEVIATION	

	
 

At each 5o interval of ulnar deviation evaluated, radial and ulnar axial load measurements during 

simulated active ulnar deviation (RUD) from the 15o radially deviated position to the 10o ulnarly 

deviated position were compared at each interval of radial length change.  

 

Overall, there was a significant relationship between radial loads and radial length change for 

each millimeter of length change evaluated (p < 0.001) (Figure 2.12 a). With an increase or 

decrease in radial length, there was a decrease in radial loads (Appendix 2.2): 78 ± 26N at 3mm, 

82 ± 23N at 2mm, 81 ± 21N at 1mm of radial lengthening (3, 2, 1), 85 ± 17N at native length (0) 

and 71 ± 14N at 1mm, 66 ± 16N at 2mm, 61 ± 13N at 3mm, 56 ± 13N at 4mm of radial 

shortening (-1, -2, -3, -4) during wrist ulnar deviation. During simulated dynamic ulnar 

deviation, variation in radial loads based on wrist position were significant (p = 0.021) with peak 

radial loads observed in the radial deviated wrist position for each interval of radial length 

change (Figure 2.13 a). There was an interaction between joint angle and radial length on radial 

loads (p<0.001).  

 

Post hoc analysis showed there was a 16%, 22%, 28% and 34% decrease in radial loads 

compared to native length at 1mm, 2mm, 3mm and 4mm of radial shortening respectively. 

 (p = 0.002). Although there was a trend towards decreased radial loads with radial lengthening, 

changes in radial loads up to 3mm (8% decrease) did not reach statistical significance (p=0.053). 

In the radially deviated wrist position (-15o), post hoc analysis also showed the increase and 
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decrease in radial load with radial lengthening and shortening respectively was significant 

(Figure 2.13 a), however, in the neutral (0o) and in ulnarly deviated positions (5o and 10o), peak 

loads were observed at native length regardless of radial length change (p<0.001) (Figure 2.13 b 

and c).  

 

With regards to distal ulnar loads, there was a significant inverse relationship between ulnar 

loads and radial length for each millimeter of length change evaluated (p = 0.037) (Figures 2.12 

b and 2.13 a, b, c): 7 ± 7N at 3mm, 10 ± 7N at 2mm, 13 ±  7 at 1mm of radial lengthening (3, 2, 

1), 14 ±  8N at native length (0) and 18 ± 7N at 1mm, 21 ± 7N at 2mm, 25 ± 8N at 3mm, 30 ± 

10N at 4mm of radial shortening (-1, -2, -3, -4) (Appendix 2.2). There was a 7%, 29% and 50% 

decrease in ulnar loads from native length at 1mm, 2mm and 3mm of radial lengthening 

respectively and a 29%, 50%, 79% and 114% decrease in ulnar loads compared to native length 

at 1mm, 2mm, 3mm and 4mm of radial shortening respectively. Peak loads in the ulna were 

observed in ulnar deviation at 10o (p = 0.034) for each interval of radial length change (Figure 

2.13 c). There was no interaction between radial length and joint angle (p = 0.583). 
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Figure 2. 12  Radial and ulnar loads during wrist ulnar deviation n = 7. 

a. Graph showing radial loads at 3mm, 2mm and 1mm of radial lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of radial shortening (-1, -2, -3, -4) 
during wrist ulnar deviation. Ulnar deviation started with the wrist in 15o of radial 
deviation (-15) to 10o of ulnar deviation (10). 

b. Graph showing ulnar loads at 3mm, 2mm and 1mm of radial lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of radial shortening (-1, -2, -3, -4) 
during wrist flexion. Ulnar deviation started with the wrist in 15o of radial deviation 
(-15) to 10o of ulnar deviation (10). 
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Figure 2. 13  Radial and ulnar loads with radial length change during simulated wrist 
motion from radial to ulnar deviation n = 7. 
© D Isa 
Radial and ulnar loads at 3mm, 2mm and 1mm of radial lengthening (+3, +2, +1), native radial 
length (0) and 4mm, 3mm, 2mm and 1mm of radial shortening (-4, -3, -2, -1) in (a) extension, (b) 
neutral and (c) flexion. Mean + 1 SD are shown. 
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2.4.4					DART	THROW	MOTION	
 

Radial and ulnar axial loads during simulated active dart throw (from the 30o extended and 10o 

radially deviated position to the 30o flexed and 10 o ulnarly deviated position) were compared at 

10o flexion intervals for each radial length change studied. 

Although there was a slight decrease in radial loads with radial lengthening and also, a decrease 

in radial loads with radial shortening, these changes did not reach statistical significance 

(p=0.243) (Appendix 2.3): 72 ± 22N at 3mm, 76 ± 7N at 2mm, 69 ± 13N at 1mm of radial 

lengthening (3, 2, 1), 76 ± 16N at native length (0) and 57±  3N at 1mm, 53 ± 6N at 2mm, 51 ± 

3N at 3mm, 45 ±  4N at 4mm of radial shortening (-1, -2, -3, -4) during ulnar deviation. There 

was a significant change in radial loads with wrist position (p = 0.003) with peak radial loads 

observed at initiation of dart throw with the wrist in extension and radial deviation (- 30o and -

10o) (Figure 2.14 a). 

 

There was an interaction between radial load and joint angle (p < 0.001). There was a 5% 

decrease in radial loads with 3mm of lengthening and 41% decrease in radial loads with 4mm of 

shortening. However, post hoc analysis showed the decreases in radial loads with radial 

lengthening up to 3mm (p = 0.931) and decreases in radial loads with shortening up to 4mm 

(p=0.111) were not statistically significant.  

 

With regards to distal ulnar loads, there was an inverse relationship between ulnar loads and 

radial length for each millimeter of length change evaluated (p < 0.001) (Figure 2.14 b): 3 ± 4N 

at 3mm, 5 ± 3N at 2mm, 10 ± 4N at 1mm of radial lengthening, 14 ± 8N at native length (0) 17 ± 
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4N at 1mm, 20 ± 5N at 2mm, 24 ± 6N at 3mm, 29 ± 6N at 4mm of radial shortening (-1, -2, -3, -

4) (Appendix 2.3). An increase in ulnar load was observed with decreasing radial length and vice 

versa (Figure 2.15 a, b and c). There was a 29%, 64% and 79% decrease in ulnar loads from 

native radial length at 1mm, 2mm and 3mm of radial lengthening respectively and a 21%, 43%, 

71% and 107% decrease in ulnar loads compared to native length at 1mm, 2mm, 3mm and 4mm 

of radial shortening respectively. During dart throw motion, variation in ulnar loads based on 

wrist position were significant (p = 0.001) with peak ulnar loads observed in the flexed and 

ulnarly deviated position (10o to 30o). For each interval of radial length change, peak loads in the 

ulna were observed in terminal dart throw (30o and 10o) (p = 0.001) (Figure 2.14 b). At 3mm of 

radial lengthening, tensile forces were observed in the ulna at initiation of dart throw (-30o) (p < 

0.001) (Figure 2.15 a). There was no interaction between radial length and joint angle (p = 

0.218).  
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Figure 2. 14  Radial and ulnar loads with radial length change during simulated wrist dart 
throw motion n = 6. 

a. Graph showing radial loads at 3mm, 2mm and 1mm of radial lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of radial shortening (-1, -2, -3, -4) 
during dart throw. Dart motion started with the wrist in 30o of extension and 10o of 
radial deviation (-30, -10) to 30o of flexion and 10o or ulnar deviation (30, 10).	

b. Graph showing ulnar loads at 3mm, 2mm and 1mm of radial lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of radial shortening (-1, -2, -3, -4) 
during dart throw. Dart motion started with the wrist in 30o of extension and 10o of 
radial deviation (-30, -10) to 30o of flexion and 10o or ulnar deviation (30, 10).	
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Figure 2. 15 Radial and ulnar loads with radial length change during simulated wrist dart 
throw motion n = 6. 
© D Isa 
Radial and ulnar loads at 3mm, 2mm and 1mm of radial lengthening (+3, +2, +1), native radial 
length (0) and 4mm, 3mm, 2mm and 1mm of radial shortening (-4, -3, -2, -1) in (a) extension 
(30o extension and 10o radial deviation, (b) neutral and (c) flexion (30o flexion and 10o ulnar 
deviation). Mean + 1 SD are shown. 
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2.5 DISCUSSION 

 
 
This study demonstrated that axial loading through the distal forearm is complex and dependent 

on radial length and joint position. During radial length changes, there was more variability in 

radial loads during simulated wrist motion as compared to ulnar loads which occurred in a more 

predictable fashion. There was no correlation between native ulnar variance and distal forearm 

loading. 

 

Our current understanding of forearm loading have been based on observations made from 

previous studies on the biomechanics of the distal forearm whereby static axial loads were 

applied to the wrist. 18,19,20,21,22,23,32, Static wrist loading may not accurately simulate normal distal 

radius and ulna loading during in-vivo wrist motion whereby loading is applied to the wrist by 

tendons used to achieve motion and by the effects of gravity.  

 

The relationship between native ulnar variance and distal forearm loading remains 

controversial.19,26, Although Bu et al19 observed wrists with positive native ulnar variance had 

more load through the distal ulna than wrists with ulnar negative variance, Harley et al26 did not 

observe a correlation between ulnar variance and distal forearm loading. We did not observe a 

correlation between native ulnar variance and distal forearm loading consistent with the results 

observed by Harley et al.26 This can be attributed to the inverse relationship between TFCC 

thickness and ulnar variance.20 The load bearing characteristics and compensatory thickness of 

the TFCC likely accommodates axial load differences. Our sample size may have precluded 

observing significant changes in axial loads with variation in native ulnar variance. 
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Our study demonstrated an average of 86:14 load sharing between the distal radius and ulna 

during flexion and ulnar deviation and 84:16 during dart throw. This is comparable to results 

observed by Harley et al26 with 14% axial loads borne by the distal ulna during quasi-static 

loading and Greenberg et al34 under static loading. In a static loading study, Ekenstram et al33 

demonstrated 85:15 load sharing between the radius and ulna with no significant change in load 

sharing from 50o of flexion to 50o extension. Trumble et al18 demonstrated 17% of the axial load 

passed through the distal ulna in neutral wrist position under static loading with peak ulnar loads 

of 24% seen in extension. Harley et al26 observed peak ulnar loads of 17% at 20o in flexion 

during simulated dynamic motion. The distal ulnar loads in our study findings were similar to 

Trumble et al18 with peak mean distal ulna loads of 26% observed when the wrist was in the 

extended position .  

With regards to radial loading, although there were no significant changes in the extended and 

flexed positions at native length, this changed with radial length change during simulated 

dynamic flexion: In the extended wrist position, at each interval of radial length increase, there 

was a trough in radial loads and with radial length decrease, peak radial loads were observed. To 

our knowledge, our study is the first reporting these variations in radial loads. Peak ulnar loads 

were observed in extension for each interval of radial length change evaluated in our study.  

Pogue et al25 observed significant changes in lunate contact area with 2mm of radial shortening 

from 13% to 16%. In a cadaveric study by Shepard and Markolf et al,35 an estimated increase in 

distal ulnar loads of 10% per millimeter of radial shortening was observed (60% increase in 

distal ulnar force after 6 mm of distal radial shortening). In our study, much greater differences 

were observed, with radial shortening, 58%, 83%, 108% and 158% increase in ulnar loads were 

observed at 1mm, 2mm, 3mm and 4mm respectively during flexion; 29%, 50%, 79% and 114% 
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increases in ulnar deviation and 21%, 43%, 71% and 107% increases with dart throw. A 

computational study using two-dimensional rigid body spring model predicted a 45% decrease in 

radiolunate load with 4mm of radial shortening.36 Our study observed similar changes with a 

38%, 34% and 41% reduction in radial loads during simulated dynamic flexion, ulnar deviation 

and dart throw motion respectively with 4mm of radial shortening. We likely observed greater 

differences from  Shepard and Markolf35 due to the employment of dynamic loading with 

application of greater tendon loads that more closely simulate in-vivo wrist kinematics.  

 

Although radial shortening causes a decrease in axial radial loads, our study shows excessive 

shortening caused a paradoxical increase in distal radial loads (from loads at native length) when 

the wrist is in extension. When initiating flexion from an extended wrist position, the ECU and 

FCU exert a greater amount of force to bring the wrist out of the extended position when the 

radius is shortened. This increased tendon loads across the wrist may explain the rise in axial 

loads. Consequently, caution should be exercised when performing distal radial shortening 

osteotomy for Kienbock’s disease as excessive shortening may result in not only in ulnocarpal 

impaction, but also excessive loading of the distal radius during activities that involve wrist 

extension. Calfee et at37 demonstrated good clinical outcomes with 2mm of radial shortening for 

Kienbock’s disease. Thus, we propose shortening by 2mm to sufficiently reduce distal radial 

loading for treatment of Kienbock’s disease. 

The variation in radial loads during simulated radial length change observed in our study 

(especially in wrist extension) may be explained by the changes in tendon loads that occur with 

radial length change. In our study, with each interval of radial shortening, we observed an 

increase in tendon loads in ECU and FCU in the extended wrist position. When initiating flexion 
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from an extended wrist position, these ulnar sided wrist tendons work harder to bring the wrist 

out of the extended position when the radius is shortened. In addition to TFCC pathology and 

ulnocarpal impaction, this may also be another explanation as to why following distal radial 

fractures, even with minimal shortening, ulnar sided wrist pain is so common. Previous 

biomechanical studies38,39 have observed a decrease in moment arm of the flexors and extensors 

and a change in their center of rotation with radial shortening/simulated distal radius deformity. 

This decrease in moment arm and increase in tendon loads may explain the variation in loads 

during simulated motion with radial length change/simulated distal radius deformity. Tang et al40 

observed the majority of the principal wrist movers either had an increase in wrist extension 

moment arm or a decrease in wrist flexion moment arm during simulated distal radius malunion 

thus possibly increasing the biomechanical consequences for wrist prime movers. Biomechanical 

changes that occur in surrounding soft tissues during simulated motion are complex and likely 

play a role in axial load variation with radial length change. The clinical consequences of these 

changes with subtle deformities remain to be clarified as tendons are capable of adapting to 

changes in moment arms and excursion such that normal joint torque production is maintained 

near normal levels.41  

Markolf et al32 observed 4mm of radial shortening resulted in equal load sharing between the 

radius and ulna. In a biomechanical study,42 shortening of the radius using a -4 mm metallic 

radial head implant increased the mean distal ulnar force from 29% of the applied wrist force to 

52% with the elbow in varus alignment. In our study, we observed distal radial loads of 59%, 

65% and 61% of total forearm bone loads during flexion, UD and dart throw respectively at 

4mm of radial shortening (Appendices 2.12 – 2.14).  We did not observe equal load sharing. 

Radial loads were consistently higher than ulnar loads at even at 4mm of radial shortening for all 
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three motions evaluated. Percentage radial loads at +3mm, +2mm, +1mm, 0, -1mm, -2mm and -

3mm of length change were 96%, 91%, 88%, 86%, 78%, 72% and 68% respectively during 

flexion, 91%, 89%, 86%, 85%, 80%, 76% and 71% respectively during ulnar deviation and 95%, 

94%, 88%, 84%, 77%, 73% and 68% respectively during dart throw (Appendices 2.12 – 2.14). 

This may be due to differences in muscle loading utilized. Dynamic loading may influence axial 

bone loads and more closely simulate in-vivo conditions over static loading employed in 

previous studies. Also, in our protocol, the elbow was placed in neutral position. Previous studies 

have shown load-sharing at the wrist changes based on the on the varus-valgus positioning of 

the elbow.32,43 

A static loading study by Bu et al44 evaluated the effects of sequential radial length change on 

distal ulnar loading in wrists with inherent differences in ulnar variance. In wrists with ulnar 

positive variance (³ +2mm), a decrease in distal ulnar loads from 31% to 8% of total wrist load 

at 3mm of radial lengthening and an increase to 56% with 4mm of shortening.44 The current 

study observed a decrease in distal ulnar loads from 14% to 3% during flexion and to 9% during 

ulnar deviation and an increase to 41% during flexion and to 35% during ulnar deviation throw at 

3mm of lengthening and 4mm of shortening respectively. During dart throw, a decrease in 

percentage diatl ulnar loads from 16% to 5% and an increase to 39% was observed at 3mm of 

lengthening and 4mm of shortening respectively. In addition to differences in loading protocols 

(dynamic versus static), differences may also be explained by the native variance of the wrists 

utilized.  

During simulated dynamic radioulnar deviation, our study showed peak radial loads seen during 

radial deviation and peak ulnar loads seen with ulnar deviation. This is consistent with previous 
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biomechanical studies. 18,26,33,45 This can be attributed to the force vector and tendon loading 

changes within the radiocarpal joint during ulnar deviation. In our study, increase in radial loads 

can be attributed to the peak tendon loads in radial sided prime movers (ECRL and FCU) in the 

radially deviated position whereas increase in ulnar loads in ulnar deviation can be attributed to 

peak tendon loads in the ulnar sided prime movers (ECU and FCU) in the ulnarly deviated 

position. 

Dart throw motion has been shown to be an important functional motion in performing most 

activities of daily living.46 Greenberg et al33 observed a mean ulnar load of 18% and a peak ulnar 

load of 26% during simulated dynamic dart throw motion. No comments were made on the phase 

of the dart throw at which peak ulnar loads were observed. We observed a mean ulnar load of 

16% of total bone load during dart throw at native length (Appendix 2.14). In our analysis of 

absolute loads, peak radial loads (120% increase) were observed at initiation of dart throw and 

peak ulnar loads (25% increase) observed at terminal dart throw as the wrist moved from an 

extended and radially deviated position to a flexed and ulnarly deviated position (Figure 2.14). 

Interestingly, we observed tensile loads in the ulna at initiation of dart throw with 3mm of radial 

lengthening. This may have clinical implications in arthroplasty designs of the distal ulna as 

tensile loads may lead to tensile failure of the implant with excessive change in variance. This 

tension may well arise due to excessive ulnar shortening and changes in tendon loads that occur 

with radial length change. 

Limitations exist for this study.  First, biologic remodeling of the ligaments in response to 

changes in osseous length likely occur over time and cannot be accounted for in a biomechanical 

study. Some forearms were excluded in analysis as we could not achieve the desired range of 

motion in all specimens. Caution should be exercised when applying these results clinically as 
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we may be underpowered with our sample size to show a statistical difference. However, 

statistical significance was achieved for most comparisons thus we were evidently powered for 

most of the comparisons of interest. These are inherent limitations of cadaveric studies due to the 

costly nature of such studies and their limited availability. Nevertheless, this study is important 

in understanding load transfer in the distal forearm and serves as basis for further clinical studies. 

In some wrists, radioulnar deviation was limited to 15 degrees of radial deviation and 10 degrees 

of ulnar deviation thus we chose this range of motion to include all specimens. Second, the 

action of pronator quadratus was not simulated and thus we did not account for this force vector 

across the distal radioulnar joint and its role in load sharing. Third, the forearms were mounted 

vertically with gravity assistance in flexion past neutral, distal forearm loading may vary when 

forearms are positioned in horizontal plane positioning with different muscle groups working 

against gravity. Lastly, in addition, the flexion-extension, radioulnar deviation, and dart-throw 

motions were sometimes limited in certain cadavers and as a result, we excluded certain 

specimens from the data analysis.  

Notwithstanding the limitations, our study has multiple strengths. Firstly, previous 

biomechanical studies utilized static loading protocols however, we employed the use of a 

dynamic wrist motion simulator thus closely simulating in-vivo kinematics. Secondly, given the 

paucity of data in the literature investigating dart throw motion on distal forearm loading, we 

contributed significantly to existing literature on distal forearm loading by investigating the 

effects of simulated dart throw on distal forearm loading with radial length. Thirdly, the soft 

tissues overlying the elbow, forearm, and wrist were left intact and low profile load cells were 

inserted with minimal disruption of soft tissue envelope thus closely representing in-vivo 

conditions when compared to previous studies. Fourthly, the use of a highly accurate and reliable 
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optical tracking system enabled accurate tracking of joint angles providing precise feedback to 

the motion simulator during simulated motion. Fifthly, in this study, we analyzed absolute loads, 

previous studies19,21,22,26,32, 43,47,48 have focused on percentage load sharing between the radius 

and the ulna. The drawback to percentage load sharing between the radius and ulna reported in 

previous studies is that if percentage loading remains unchanged with radial length change, the 

actual axial loads may have changed significantly thus rendering the percent irrelevant. 

Lastly, to our knowledge, the effects of distal radial length change during simulated dynamic 

motion studied has not been reported in the literature to date thus giving new insight into distal 

forearm axial loading.  

 

This study further clarifies that there is no relationship between distal forearm loading and native 

ulnar variance. With radial length changes, distal forearm loading during simulated dynamic 

wrist motion is more complex than described by previous static loading studies. The variation in 

radial loads observed during simulated dynamic wrist motion with radial length change is novel 

and adds to the existing body of literature. We observed less variation in ulnar loads with radial 

length change and changes in ulnar loads that occur in response to length change occur in a more 

predictable fashion. Our study provides new insight into biomechanical changes that occur with 

radial length change during simulated in-vivo wrist motion using a validated wrist motion 

simulator. 
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Chapter 3 

3.	THE	EFFECT	OF	ULNAR	LENGTH	CHANGE	AND	TFC	INTEGRITY	ON	DISTAL	FOREARM	LOADING	
DURING	SIMULATED	WRIST	MOTION 

 
 

3.1	OVERVIEW	
 

This chapter reports on an in-vivo cadaveric study examining the relationship between 

change in ulnar length and wrist joint forces during simulated wrist motion via load cells 

in the distal radius and ulna during simulated active motion. Also, the presence and 

absence of the triangular fibrocartilage (TFC) was evaluated to examine the effects of the 

TFC on load distribution during ulnar length change. 

	

3.2	INTRODUCTION	
 
 
Ulnocarpal impaction also known as ulnar impaction or ulnocarpal abutment, is caused by ulnar 

head abutment against the ulnar side of the carpus. This leads to erosion and perforation of the 

triangular fibrocartilage (TFC) and/or lunotriquetral ligament, lunate chondromalacia, and ulnar 

sided degenerative arthritis. 1,2,3  

 

Although ulnocarpal impaction is more commonly associated with wrists demonstrating ulnar 

positive variance, it may also occur in wrists with ulnar negative or neutral variance.4 Ulnocarpal 

impaction may also be seen in distal radius malunion with radial shortening, radial head excision 
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with subsequent proximal migration of the radius, congenital positive ulnar variance, premature 

physeal closure of the radius, overgrowth of the ulna due to trauma, Madelung’s deformity, 

infection or tumor. 

 

Changes in ulnar variance with forearm position and grip has been described accounting for 

subtle variations on radiographs.5,6,7 An increase in ulnar variance of up to 2.5mm can occur on 

pronated grip view.7 This dynamic positive ulnar variance causes increased ulnocarpal load and 

may explain why patients with ulnocarpal impaction syndrome have pain with the ulnocarpal 

stress test.8 The ulnocarpal stress test9 places the wrist in ulnar deviation while passively rotating 

the forearm with an axial load. 

  

Current treatment for symptomatic ulnar impaction include ulnar shortening osteotomy, wafer 

resection of the ulnar head,8 a hemiresection interposition arthroplasty or an excisional 

arthroplasty10. All of these procedures are aimed at decreasing load transmission through the 

distal ulna11 and have been shown to provide satisfactory pain relief.12,13,14,15 A limiting factor 

with ulnar shortening osteotomy is DRUJ arthrosis which has been reported in long-term follow-

up studies evaluating the outcome of this procedure.16,17 Ulnar shortening osteotomy is also used 

in the treatment of DRUJ instability as it tightens the ulnocarpal ligaments, DRUJ capsule and 

TFC. The TFC also functions in load sharing between the radius and ulna.18,19 In a biomechanical 

study by Palmer et al,20 excision of the TFC resulted in a decrease in distal ulnar loads to 8% 

from 18%. 

 

The optimal amount of ulnar shortening to relieve the symptoms of ulnocarpal impaction 
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remains unknown. A previous biomechanical study demonstrated a decrease in load transmission 

through the distal ulna from 18% to 4% by 2.5mm of ulnar shortening18 thus concluding 

shortening of only 2.5 mm is sufficient to decompress the ulnocarpal joint. Both wafer removal 

and hemiresection have been shown to significantly decrease mean distal ulnar loads regardless 

of ulnar variance.11 These studies were conducted by application of a constant force to cadaveric 

wrists; this method of static wrist loading may not accurately simulate distal radius and ulna 

loading during in-vivo wrist motion. In a simulated dynamic study by Greenberg et al,21 distal 

ulnar metaphyseal shortening osteotomies were performed with a mean change in ulnar variance 

of 2.8mm. Significant decreases in ulnar load during flexion-extension, radioulnar deviation and 

dart thrower’s motion were noted after shortening. However, this study did not examine the 

effect of sequential ulnar length change on distal loading and the effects of TFC sectioning on 

these loads.  

 

An inverse correlation between ulnar variance TFC thickness exists with greater thickness of the 

TFC observed in wrists with negative ulnar variance.22,23 An earlier study using constrained axial 

loading by Palmer et al18 demonstrated resection of the TFC resulted in a reduction in distal ulnar 

load from 40% to 5% of total wrist load. A subsequent study showed excision of the TFC 

reduced ulnar load from 18% to 8%.20 However, these studies were conducted under static 

loading conditions and may not accurately simulate normal wrist mechanics.  

The effects of ulnar length change on axial load transmission during simulated dynamic wrist 

motion and the effect of TFC sectioning on these loads remains to be clarified. A better 

understanding of distal forearm loading will aid in surgical decision making and provide insight 

into the treatment of ulnocarpal impaction, TFC injuries and DRUJ instability. 
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The primary objective of this study was to determine the relationship between ulnar length 

change and distal forearm axial loading during simulated dynamic wrist motion. Our secondary 

objective was to evaluate the effect of TFC excision on distal radial and ulnar loads with ulnar 

length change during simulated dynamic wrist motion. Our hypotheses were: 1) distal ulnar loads 

will increase and distal radial loads will decrease with ulnar lengthening; 2) distal ulnar loads 

will decrease and distal radial loads will increase with ulnar shortening; 3) loading will vary at 

different wrist positions during simulated dynamic wrist motion; and 4) TFC sectioning will 

have a significant effect on distal forearm loading. 

 
3.3	METHODS 
 
 
3.3.1	IMPLANT	DESIGN 
 
 
 
As described in Chapter 2 (Section 2.3.1), a custom implant which incorporates a load cell was 

designed to lengthen and shorten the ulna using a lead screw mechanism (Figure 2.2 a).  The 

distal component was designed with a rectangular notched stem for cementing into the 

intramedullary canal of the distal ulna. Stem diameter was calculated based on intramedullary 

measurements of cadaveric CTs to fit even the smallest intramedullary canals while allowing 

room for an adequate cement mantle. The purpose of the stem diameter selection and stem 

notching was to assist with implant fixation in addition to mitigating the risk of implant 

loosening.  

Between the proximal and distal components consists of a load cell for axial (tensile and 
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compressive) load measurement and a lead screw mechanism. The lead screw mechanism was 

designed to adjust the implant length by rotating the central nut thus causing both threaded eye 

bolts to be translated in or out simultaneously without rotating the thread eye bolts. The thread 

pitch was designed such that one third of a full bolt revolution counterclockwise and clockwise 

results in 1mm of lengthening and shortening respectively. The implant was designed to achieve 

5 mm of shortening and 5 mm of lengthening each from the native position. 

The implant had a spacer for specimen preparation while the final implant with a load cell and 

lead screw mechanism was used for testing. The ulnar spacer (Figure 2.2 b) and custom ulnar 

implant were designed with the same length.  However, the spacer had a slightly smaller 

diameter than the final testing implant to facilitate maintenance of an intact bone bridge and 

preserve the native distal ulnar articular surface location during the insertion and cementing 

process.  Again, the stem was notched proximally and roughened to assist with fixation in the 

intramedullary canal. An appropriate stem diameter for our study was obtained through 

calculations based on intramedullary measurements from cadaveric CT scans. This was to allow 

for a secure fit in even the smallest intramedullary canals while allowing for an adequate cement 

mantle. A one-degree of freedom (1-DOF) Honeywell® load cell model 11 (NJ, USA) cell was 

placed distal to the lead screw to quantify distal ulnar axial loads. 

A similar radial implant including a load cell was also designed (Figure 2.1 a). The distal fixation 

locking plate was designed with a 22o volar angulation to match the contour of the volar 

metaphyseal flare of the distal radius. The intermediate components and proximal stem were 

designed in a similar fashion to the ulnar component with a load cell for axial load measurement 

and a lead screw mechanism. Proximally, the stem was notched and roughened to assist with 

fixation in the intramedullary canal. The radial spacer (Figure 2.1 b) and custom radial implant 
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were designed similarly with the same length but the spacer had a slightly smaller diameter than 

the final testing implant to facilitate maintenance of an intact bone bridge and preserve the native 

distal radial articular surface location during the insertion and cementing process. Cutting guides 

were also designed to guide cuts and ensure reproducible cuts (Figures 2.4 f and 2.5 f) 

 

 
 
3.3.2	AXIAL	LOAD	MEASUREMENT 
 
 
Axial load was measured using 1-DOF Honeywell® load cell model 11 (NJ, USA) 0.8% 

accuracy, 0.1% repeatability. The load cells were zeroed prior to implantation without the 

application or influence of external loads. The threaded connections on either side of the load 

cells securely attach to the radial and ulnar custom implants to measure axial (tensile and 

compressive) forces.  

 

 
 
3.3.3	SPECIMEN	PREPARATION 
 

Testing was performed on 9 fresh frozen right cadaveric forearm specimens (mean age 74 years; 

range 64 to 83 years; all Caucasian male) with no clinical or CT evidence of osteoarthritis. The 

specimens were amputated at the mid-humeral level and stored at - 20 °C. They were thawed for 

18 hours at room temperature (22 °C) and then prepared for mounting. 

 

An approach to the subcutaneous border of the ulna was utilized initially. The skin and 

subcutaneous tissue was sharply incised and the interval between extensor carpi ulnaris (ECU) 
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and flexor carpi ulnaris (FCU) was incised down to the ulna (Figure 3.1). The extensor 

retinaculum was left intact. Retractors were then placed. 

Using the bone bridge technique as described in Chapter 2 (Section 2.3.3), cuts were made using 

a microsagittal saw leaving a radial bone bridge intact. A 40mm segment of bone was removed 

approximately 10 mm proximal to the DRUJ utilizing a cutting guide. The ulnar spacer was then 

cemented in place (Figure 3.4 a). 

 

 
Figure 3. 1 Approach to Subcutaneous Border of the Ulna demonstrating Bone Bridge. 
© D Isa 
 
 
 
As described in Chapter 2 (Section 2.3.3), the radial spacer was implanted using the volar FCR 

Ulna ECU
Extensor Retinaculum 

over ECU

Bone Bridge FCU
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approach (Figure 2.2). After incision of the skin and subcutaneous tissue, the FCR tendon sheath 

was incised and the FCR tendon retracted ulnarly. The floor of the FCR tendon sheath was 

incised and the contents of the carpal tunnel were retracted ulnarly exposing the pronator 

quadratus (PQ).  The PQ was then subperiosteally elevated off the distal radius carefully to avoid 

disruption of the volar distal radioulnar joint (DRUJ) capsule or interosseous membrane during 

this process. 

Using the bone bridge technique, a 40mm segment of volar cortex was excised 10mm proximal 

to the DRUJ. The dorsal bone bridge was left intact to maintain the alignment of the radius 

during specimen preparation and mounting. The radial implant spacer was then cemented in 

place (Figure 2.3). 

As discussed in Chapter 2 (Section 2.3.3), the tendons of the prime movers were then sutured: 

The tendons of the wrist extensors proximal to the extensor retinaculum (extensor carpi radialis 

longus [ECRL], extensor carpi radialis brevis [ECRB] extensor carpi ulnaris [ECU]), wrist 

flexors (flexor carpi radialis [FCR], flexor carpi ulnaris [FCU]), pronator teres [PT] and biceps 

[BI] were sutured using a Spectra extreme braid fishing line (80lbs) using a running locking 

stich. To mimic physiologic line of pull, all sutures (except BI) were tunneled under the skin and 

passed through alignments guides in the medial and lateral epicondyle. Tendon forces were 

controlled by attachment of the sutures to electric servomotors (SMI 2316D-PLS, Animatics, 

CA) with force transducers (Vishay Precision Group, Raleigh, NC) to control tendon forces. 

Infrared marker triads were rigidly affixed to the radius, ulna and 3rd metacarpal using custom 

DelrinÒ pedestals to track joint angles and wrist motion was tracked using an Optotrak Certus 

(Northern Digital Inc, Waterloo, Ontario, Canada) motion capture system with a 3D accuracy of 



 110 

0.1mm and 0.01mm resolution.24 

 
 
Nylon zippers were used to close the incisions in order to preserve moisture and for ease of 

accessibility to the radial and ulna implants for length adjustments. Saline irrigation of the 

specimen’s soft tissues was done intermittently to keep the specimens moist during testing. 

Once the specimen was mounted on the motion simulator, the radial and ulnar bone bridges were 

cut after the spacers were removed and the final implants fixed in place. 

 
 
3.3.4	SIMULATION	OF	MOTION	AND	TESTING	PROTOCOL 
 

As discussed in Chapter 2 (Section 2.3.4), the motion simulator utilized in this study simulates 

in-vivo behavior using a force position algorithm that simulates dynamic/active motion based on 

electromyographic studies on active wrist and forearm motion and ratios derived from existing 

anatomic data detailing the cross sectional areas of the muscles of the wrist (Figure 2.6).25 Loads 

are applied to antagonistic muscle pairs to more accurately simulate an in vivo wrist with a 

minimum tone load applied to groups resisting motion (8.9 N to FCU, FCR, ECRL, ECRB and 

ECU and 15 N to BI and PT). The magnitude of load through the muscle groups enforcing 

motion increased with the resultant force imbalance moving the wrist in the desired direction. 

Activation of the BI and PT were used to maintain the forearm in neutral rotation throughout 

testing. 

 

The motions evaluated in this study included wrist flexion (wrist moved from 50o extended 

position to 50o of flexion), ulnar deviation (wrist moved from 15o radially deviated position to 
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10o of ulnar deviation) and dart throw motion (30o of extension and 10o radial deviation to 30o of 

flexion and 10o ulnar deviation) at a rate of 3o per second (Figure 2.8). All data was collected 

with the forearm maintained at neutral forearm rotation. The effect of ulnar length change of 

1mm, 2mm and 3mm of lengthening and 1mm, 2mm, 3mm and 4mm of shortening on distal 

forearm loading was studied. The radial length remained unchanged throughout the testing 

protocol. 

 

The TFC was then excised. A 4cm longitudinal incision centered over the DRUJ was utilized. 

The extensor digiti minimi (EDM) was exposed and the interval between EDM and the fourth 

extensor compartment to expose the capsule distal to the extensor retinaculum. The capsule was 

then incised distal to the TFC to expose the TFC. The TFC was visualized and excised. The 

dorsal and volar radioulnar ligaments were left intact. After the TFC was excised, the testing 

protocol was then repeated. Complete excision of the TFC was confirmed at the end of the 

testing protocol by disarticulating the wrist.  

 

3.3.5	METHODS	AND	DATA	ANALYSIS 
 
 
 
Statistical Analyses 

 

A three-way repeated-measures ANOVA was performed to investigate the effect of ulnar length, 

joint angle and TFC status on axial loads. A Greenhouse-Geisser correction was performed when 

Mauchly’s test for sphericity was violated. Ulnar length, joint angle and TFC status were the 



 112 

independent variables and axial load the dependent variable. Statistical significance was set at P 

< .050. Comparisons were made at various ulnar lengths (+3, +2, +1, neutral, -1, -2, -3, -4mm of 

length change) during simulated dynamic wrist flexion from 50o of wrist extension to 50o of 

flexion (-50o to 50o; where -50 o, -40 o, -30 o, -20 o and -10 o represent wrist extended positions 

and 10o, 20o, 30o, 40o and 50o represent wrist flexed positions), ulnar deviation from 15o of radial 

deviation to 10o of ulnar deviation (-15o to 10o; where -15, -10 and -5 are radially deviated 

positions and 5 and 10 represented ulnarly deviated positions) and dart throw motion from 30o of 

extension and 10o of radial deviation to 30o of flexion and 10o of ulnar deviation (-30o, -10o to 

30o, 10o) . Comparisons between flexion angles were done at 10 o increments, radial to ulnar 

deviation at 5 o increments and in 10 o increments of flexion for dart throw motion (Figure 2.8).  

 

Where interactions were detected between joint angle, ulnar length and/or TFC status, separate 

ANOVA analyses were undertaken to examine the effect of various ulnar lengths on distal 

forearm loading. The flexion-extension, radioulnar deviation, and dart-throw motions were 

limited in certain cadavers and as a result, 8 specimens were used to evaluate flexion, 7 

specimens for ulnar deviation, and 6 specimens for dart thrower’s motion.  

 

 
3.4	RESULTS 
 

3.4.1	FLEXION 
 

For the TFCC intact and sectioned states, radial and ulnar axial loads during simulated active 

flexion (from the 50o extended position to 50o of flexion) were compared at 10o flexion intervals 

for each ulnar length change studied. 
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Changes in ulnar loads with ulnar length change were significant (p < 0.001) (Figure 3.2). With 

ulnar lengthening, there was an increase in ulnar loads and vice versa; 27 ± 10N at 3mm, 24 ± 

10N at 2mm, 18 ± 8N at 1mm of ulnar lengthening, 12 ± 6N at native length and 7 ± 6N at 1mm, 

3 ± 5N at 2mm, -1 ± 3N at 3mm, -3 ± 2N at 4mm of ulnar shortening during wrist flexion 

(Appendix 2.5). There was a 50%, 100% and 125% increase in ulnar loads from neutral ulnar 

length at 1mm, 2mm and 3mm of ulnar lengthening respectively. Conversely, there was a 42%, 

75%, 108% and 125% decrease in ulnar loads compared to native length at 1mm, 2mm, 3mm 

and 4mm of ulnar shortening respectively with tensile loads were observed at 3 and 4mm of 

ulnar shortening. During simulated wrist flexion, variation in loading was observed with peak 

loads observed in the -50o extended wrist position for each millimeter change in ulna length 

investigated (p = 0.006) (Figure 3.3). There was no interaction between TFC status, ulnar length 

and joint angle (p = 0.324) and no interaction between ulnar length and joint angle (p = 0.325) on 

distal ulnar loads. 

 

There was no significant change in radial loads with ulnar length change (p = 0.324) (Figure 

3.2): 61 ± 15N at 3mm, 67 ± 12N at 2mm, 69 ± 7N at 1mm of ulnar lengthening, 72 ±  8N at 

native length and 66 ± 6N at 1mm, 60 ± 8N at 2mm, 64 ± 6N at 3mm, 59 ±  16N at 4mm of ulnar 

shortening (Appendix 2.5). There was no interaction between TFC status, ulnar length and joint 

angle (p = 0.282); however, there was a significant interaction between joint angle and ulnar 

length (p = 0.002) on radial loads.  
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Post hoc analysis showed the variation in radial loads seen in the extended wrist position (-500 to 

-30o) during simulated dynamic wrist flexion with each millimeter change in ulnar length (p < 

0.05).  More specifically, during flexion, with each millimeter increase in ulna length, peak 

radial loads were seen in the -50o position and with each millimeter decrease in ulna length, 

lowest radial loads were seen in the -50o extended position (Figure 3.2 a). Radial and ulnar loads 

followed similar trends in the extended wrist position (Figure 3.2 a). 

 

 

Effect of TFC excision 

 

Distal radial and ulnar axial loads during simulated active flexion with the TFC excised were 

compared to the TFC intact state. At each 10o interval of wrist flexion evaluated from -50o to 

50o. There was no effect of TFC sectioning on distal ulnar loads (p = 0.342). However, there was 

a decrease in radial loads (p = 0.027) when the TFC was sectioned during simulated dynamic 

flexion. (Figure 3.3).  
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Figure 3. 2 Radial and ulnar loads during wrist flexion n = 8. 

(In order to facilitate the interpretation of the data, the lines were constructed with increasing 
thickness to represent lengthening and shortening.  Lengthening is solid, and shortening is 
dashed. Mean are loads reported. The same format is employed for all other related graphs in 
this chapter.) 

c. The radial loads at 3mm, 2mm and 1mm of ulnar lengthening (3, 2, 1), native length 
(0) and 1mm, 2mm, 3mm and 4mm of ulnar shortening (-1, -2, -3, -4) during wrist 
flexion. Flexion motion started with the wrist in 50o of extension (-50) to 50o of flexion 
(50).	

d. The ulnar loads at 3mm, 2mm and 1mm of ulnar lengthening (3, 2, 1), native length 
(0) and 1mm, 2mm, 3mm and 4mm of ulnar shortening (-1, -2, -3, -4) during wrist 
flexion. Flexion motion started with the wrist in 50o of extension (-50) to 50o of flexion 
(50).	
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Figure 3. 3 Radial and ulnar loads with ulnar length change during simulated wrist flexion 
with and without the TFC intact n = 8. 
Radial and ulnar loads at 3mm, 2mm and 1mm of ulnar lengthening (+3, +2, +1), native radial 
length (0) and 4mm, 3mm, 2mm and 1mm of ulnar shortening (-4, -3, -2, -1) in (a) extension, (b) 
neutral and (c) flexion. Mean + 1 SD are shown. 
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3.4.2	ULNAR	DEVIATION 
 

For the TFCC intact and sectioned states, radial and ulnar axial loads during simulated active UD 

(from the 15o of radial deviation to 10o of UD) were compared at 5o intervals for each ulnar 

length change studied. 

 

Changes in ulnar loads with ulnar length change were significant (p < 0.001) (Figure 3.4). With 

ulnar lengthening, there was an increase in ulnar loads and vice versa: 27 ± 10N at 3mm, 24 ± 

10N at 2mm, 20 ± 8N at 1mm of ulnar lengthening (3, 2, 1), 14 ± 8N at native length (0) and 10 

± 7N at 1mm, 7 ± 6N at 2mm, 3 ± 5N at 3mm, -1 ± 4N at 4mm of ulnar shortening (-1, -2, -3, -4) 

during wrist UD (Appendix 2.6). There was a 43%, 71% and 93% increase in ulnar loads from 

neutral ulnar length at 1mm, 2mm and 3mm of ulnar lengthening respectively and a 29%, 50%, 

79% and 107% decrease in ulnar loads compared to neutral length at 1mm, 2mm, 3mm and 4mm 

of ulnar shortening respectively. Tensile loads were observed at 4mm of ulnar shortening.  

 

Variation in distal ulnar loads during simulated dynamic UD were observed (Figure 3.5) with 

peak ulnar loads observed in ulnar deviation for each millimeter of ulnar length change (p = 

0.003). There was no significant interaction between TFC status, ulnar length, and joint angle (p 

= 0.536) and no significant interaction between ulnar length and joint angle (p = 0.297) on distal 

ulnar loads. 

 

Changes in radial loads with ulnar length change were significant (p = 0.008) with a decrease in 

radial loads with both ulnar lengthening and shortening (Figure 3.5 a, b, c); 68 ± 13N at 3mm, 74 
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± 13N at 2mm, 74 ± 12N at 1mm of ulnar lengthening (3, 2, 1), 85 ±  17N at native length (0) 

and 69 ± 9N at 1mm, 68 ± 17N at 2mm, 67 ± 18N at 3mm, 65 ±  21N at 4mm of ulnar shortening 

(-1, -2, -3, -4) (Appendix 2.6). There was no interaction between TFC status, ulnar length, and 

joint angle (p = 0.646); however, there was an interaction between joint angle and ulnar length (p 

= 0.006) on radial loads.  

 

Post hoc analysis showed decreases in radial loads of 20% occurred at 3mm of ulnar lengthening 

(p = 0.012). Meanwhile, there was a 19% decrease in radial loads at 1mm of ulnar shortening (p 

= 0.024) (Appendix 2.5).  However, there was no change in radial loads from 1 to 2mm, 2 to 

3mm and 3 to 4mm of ulnar shortening (p = 0.222, p = 0.450 and p = 0.107 respectively). 

Variation in distal radial loads during simulated dynamic UD were significant with peak radial 

loads (50% increase from neutral wrist position) observed in radial deviation for each millimeter 

of ulnar length change (p = 0.001) (Figure 3.4). 

 

 

Effect of TFC excision 

 

Radial and ulnar axial loads in the TFC excised state were compared to the TFC intact state at 5o 

interval of simulated dynamic wrist UD evaluated from 15o of radial deviation (-15o) to 10o of 

ulnar deviation (10o). There was no effect of TFC excision on distal ulnar and radial loads (p = 

0.249 and p = 0.109 respectively). (Figure 3.5 a-c).  
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Figure 3. 4 Radial and ulnar loads during ulnar deviation n = 7. 

a. Graph showing radial loads at 3mm, 2mm and 1mm of ulnar lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of ulnar shortening (-1, -2, -3, -4) 
during wrist ulnar deviation. Ulnar deviation started with the wrist in 15o of radial 
deviation (-15) to 10o of ulnar deviation (10). 

b. Graph showing ulnar loads at 3mm, 2mm and 1mm of ulnar lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of ulnar shortening (-1, -2, -3, -4) 
during wrist flexion. Ulnar deviation started with the wrist in 15o of radial deviation 
(-15) to 10o of ulnar deviation (10).	
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Figure 3. 5 Radial and ulnar loads with ulnar length change during simulated ulnar 
deviation with and without the TFC intact n = 7. 
Radial and ulnar loads at 3mm, 2mm and 1mm of ulnar lengthening (+3, +2, +1), native radial 
length (0) and 4mm, 3mm, 2mm and 1mm of ulnar shortening (-4, -3, -2, -1) in (a) radial 
deviation (b) neutral and (c) ulnar deviation. Mean + 1 SD are shown. 
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3.4.3	DART	THROW 
 

Radial and ulnar axial loads were compared at each millimeter change in ulnar length from 

neutral variance for the TFC intact and sectioned states at each 10o interval of simulated active 

flexion during dart throw (from 30o of extension and 10o radial deviation to 30o of flexion and 

10o of ulnar deviation). 

 

Changes in ulnar loads with ulnar length change were significant (p < 0.001) (Figure 3.11). With 

ulnar lengthening, there was an increase in ulnar loads (Figure 3.6): 21 ± 7N at 3mm, 18 ± 6N at 

2mm, 13 ± 5N at 1mm of ulnar lengthening (3, 2, 1), 14 ± 8N at native length (0).  Conversely, 

ulnar loads decreased with ulnar shortening: 2 ± 6N at 1mm, -2 ± 5N at 2mm, -6 ± 6N at 3mm, -

10 ± 6N at 4mm of ulnar shortening (-1, -2, -3, -4) during wrist ulnar deviation (Appendix 2.7). 

There was a 7%, 29% and 50% increase in ulnar loads from neutral ulnar length at 1mm, 2mm 

and 3mm of ulnar lengthening, respectively and a 86%, 114%, 143% and 171% decrease in ulnar 

loads compared to neutral length at 1mm, 2mm, 3mm and 4mm of ulnar shortening respectively. 

Tensile loads were observed at 2mm, 3mm and 4mm of ulnar shortening. Variation in distal 

ulnar loads during simulated dynamic dart throw were significant with peak ulnar loads observed 

in 30o of extension and 10o of radial deviation (-30) for each millimeter of ulnar length change (p 

= 0.017) (Figure 3.6 a). There was no interaction between TFC status, ulnar length, and joint 

angle (p = 0.240) and no interaction between ulnar length and joint angle (p = 0.206) on distal 

ulnar loads. 
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Furthermore, there were no significant changes in radial loads with ulnar length change (p = 

0.232). (Figure 3.7 a, b, c); 58 ± 7N at 3mm, 67 ± 10N at 2mm, 67 ± 12N at 1mm of ulnar 

lengthening (3, 2, 1), 76 ±  16N at native length (0) and 68 ± 15N at 1mm, 71 ± 18N at 2mm, 67 

± 19N at 3mm, 69 ±  21N at 4mm of ulnar shortening (-1, -2, -3, -4) (Appendix 2.7). Peak radial 

loads were observed at initiation of dart throw (30o of extension and 10o of ulnar deviation) for 

each millimeter change in ulnar length (p = 0.049) (Figure 3.6 a). There was no interaction 

between TFC status, ulnar length, and joint angle (p = 0.667) and no interaction effect between 

joint angle and ulnar length (p = 0.111) on radial loads.  

 

 

Effect of TFC excision 

 

At each 10o interval of dart throw evaluated, radial and ulnar axial loads in the TFC excised state 

were compared to the TFC intact state. There was no change in distal ulnar loads (p = 0.240); 

however, there was a decrease in radial loads (0.037) when the TFC was excised. (Figure 3.7 a-

c).  
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Figure 3. 6 Radial and ulnar loads during dart throw n = 6. 

a. Graph showing radial loads at 3mm, 2mm and 1mm of ulnar lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of ulnar shortening (-1, -2, -3, -4) 
during dart throw. Dart motion started with the wrist in 30o of extension and 10o of 
radial deviation (-30, -10) to 30o of flexion and 10o or ulnar deviation (30, 10).	

b. Graph showing ulnar loads at 3mm, 2mm and 1mm of ulnar lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of ulnar shortening (-1, -2, -3, -4) 
during dart throw. Dart motion started with the wrist in 30o of extension and 10o of 
radial deviation (-30, -10) to 30o of flexion and 10o or ulnar deviation (30, 10).	
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Figure 3. 7 Radial and ulnar loads with ulnar length change during simulated dart thow 
motion with and without the TFC intact n = 6. 
Radial and ulnar loads at 3mm, 2mm and 1mm of ulnar lengthening (+3, +2, +1), native radial 
length (0) and 4mm, 3mm, 2mm and 1mm of ulnar shortening (-4, -3, -2, -1) in (a) dart extension 
(b) neutral and (c) dart flexion. Mean + 1 SD are shown. 
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3.5	DISCUSSION 
 
 
This biomechanical study was designed to investigate the effects of ulnar length change and TFC 

integrity on distal forearm loading during simulated wrist motion.  Quantifying changes in the 

forces through the distal radius and ulna with ulnar shortening osteotomies for ulnocarpal 

impaction or ulnar lengthening osteotomies for Kienbock’s disease will provide surgeons useful 

data to guide their treatment.  

 

The load distribution between the distal radius and ulna varies based on changes in radial length 

relative to the ulna as a result of surgical osteotomies or distal radius malunion. Earlier studies by 

Palmer and Werner1,26,27,28 investigated the percentage loading by application of a constant force 

to cadaveric wrists. In a static load sharing study, Palmer and Werner27,28 observed when the 

ulnar length was increased by 2.5 mm, the forearm axial load borne by the distal ulna increased 

to 42% from 18%. Conversely, when ulnar length was decreased by 2.5 mm, the axial load borne 

by the ulna decreased to 4%. Greenberg et al21 observed a reduction in mean distal ulnar force 

from 16% to 3% of total wrist load during dynamic motion from 50o of flexion to 50o of 

extension, 24% to 4% during radial deviation and 18% to 3% during dart throw when a distal 

metaphyseal osteotomy with an average ulnar shortening of 2.8mm. Herein we evaluated 1mm 

sequential changes in ulnar length with up to 3mm of lengthening and 4mm of shortening. With 

regards to absolute loads, we observed a 75%, 50% and 114% reduction in distal ulnar loads 

during flexion, UD and dart throw at 2 mm of ulnar shortening. Tensile loads were observed in 

the ulna with a reduction in distal ulnar loads of 108%, 79%, 143% at 3mm of ulnar shortening 

and at 4mm of shortening, 125%, 107% and 171% decrease in ulnar loads during flexion, ulnar 

deviation and dart throw motion respectively.  However, with regards to percentage of total 
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compressive bone loads for direct comparison to previous studies, at 2mm of shortening, there 

was a decrease in distal ulnar loads from 14% to 5% during flexion, from 14% to 9% during UD 

and from 16% to 0% during dart throw and at 3mm of shortening, there was a decrease to 0%, 

4% and 0% during flexion, UD and dart throw respectively (Appendices 2.15 – 2.17). Our results 

show 2mm of shortening was enough to completely offload the distal ulna during dart throw. Our 

results differ from Palmer et al28 as they used a static loading protocol with application of 

arbitrary loads. The use of dynamic loading in our protocol allowed for application of tendon 

loads that closely mimic in-vivo wrist kinematics. With sequential shortening, the tensile loads at 

the distal ulna were presumably due to decreased tendon loads in the ulnar sided prime movers 

(ECU and FCU) and additionally, ulnar shortening tensions the TFCC thus placing tension on 

the distal ulna. Differences from Greenberg et al21 may also be attributed to differences in 

location of ulnar osteotomy, reporting changes in absolute loads versus percentage wrist load, 

and differences in direction of motion evaluated. 

 

A computational study using two-dimensional rigid body spring model by Horii at al29 observed 

a decrease in radiolunate load by 45% with 4mm of ulnar lengthening and an increase of 45% 

with radial shortening. The aforementioned study did not evaluate distal ulnar loading. We noted 

a 15%, 20% and 24% decrease in distal radial loads with 3mm of ulnar lengthening during 

flexion, ulnar deviation and the dart throw motions respectively. This however did not reach 

statistical significance. By lengthening the ulnar beyond 3mm, we may have observed more 

significant decreases in radial loads, however, further lengthening was limited by the tension in 

the intact soft tissue envelope. These differences from may be explained by their use of a rigid 

spring body model which does not differentiate between radial shortening and radial lengthening. 
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This method does not factor in the soft tissue contributions and effects of dynamic tendon 

loading on distal forearm loading. We utilized a dynamic motion simulator that models the in-

vivo activation of individual muscles using a force position algorithm to generate reproducible 

wrist motion.30 

 

Conversely, we observed that decreases in distal ulnar loads were more significant when the 

ulnar was shortened compared to radial lengthening. Tensile loads in the ulna were observed 

with 3 and 4mm of ulnar shortening versus radial lengthening during flexion, ulnar deviation, 

and dart throw. We postulate that these observations occur as a result of the greater load transfer 

through the distal radius and larger surface area of the distal radius, thus, requiring a greater 

amount of force to lengthen. Also, decreases in tendon loads in the ulnar sided prime movers 

(ECU and FCU) were more significant with ulnar shortening compared to radial lengthening 

perhaps also explaining the more significant decreases in ulnar loads with ulnar shortening. 

During wrist flexion, we observed an increase in radial loads with each millimeter increase in 

ulnar length and conversely in the extended wrist position. As discussed in Chapter 2, we 

observed the same trends with radial shortening. Excessive radial shortening caused a 

paradoxical increase in distal radial loads (from loads at native length) when the wrist was in 

extension. When initiating flexion from an extended wrist position, the ulnar sided prime movers 

exert a greater amount of force to bring the wrist out of the extended position when the radius is 

relatively short as evidenced by the increased tendon loads observed in the extended wrist 

positions.  

The TFC plays an important role in DRUJ stability and load transmission. In a biomechanical 
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study with sequential TFC excision, Palmer et al20 observed excision of the central two-thirds of 

the TFC resulted in a decrease in distal ulnar loads to 13% from 18% and excision of the whole 

TFC resulted in a decrease in distal ulnar loads to 8% from 18%.20 A subsequent study by the 

same author confirmed these findings with a decrease in distal ulnar loads to 6% (from 18%) 

observed when the TFC was excised under static loading conditions.28 Wnorowski et al31 

observed less dramatic decreases in loads of the distal ulna of 5% (from 21% to 16%) with 

excision of the TFC.31 The aforementioned studies examined the effect of TFC excision on load 

sharing at the distal radius and ulna. Our study observed a decrease in distal ulnar loads from 

14% to 13% of total distal forearm bone load during flexion and UD and a decrease from 16% to 

8% during dart throw at native ulnar length after TFC excision. The motion simulator utilized 

enabled us to dynamically evaluate the role of TFC in load transmission. The TFC’s role in load 

transmission was most evident during dart throw. In this study, we also observed the TFC’s role 

in load sharing was more evident as the ulnar was lengthened when we evaluated percentage 

load sharing (Appendices 2.15 – 2.17). There was no change in percentage load sharing with 

ulnar shortening. This presumably is because ulnar shortening in itself significantly offloads the 

distal ulnar such that with ulnar shortening, the TFC may serve no load bearing function. In this 

study, at 3mm of ulnar shortening, the distal radius already bore 100% of compressive loads 

through the distal forearm prior to TFC excision. This trend is similar to the observations by 

Palmer et al20 where with TFC excision, there was a decrease in distal ulnar loads from 3% to 2% 

with 2.5mm of shortening and 43% to 26% with 2.5mm of lengthening. In another study by 

Palmer et al,28 there was a decrease in distal ulnar loads from 4% to 3% with 2.5mm of 

shortening and 42% to 22% with 2.5mm of lengthening. However, we did not observe the same 

magnitude of change with ulnar lengthening. At 3mm of lengthening, there was a decrease in 
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distal ulnar loads from 31% to 25% during flexion, 29% to 24% during ulnar deviation and 27% 

to 23% during dart throw. The use of a dynamic loading protocol which attempts to simulate 

physiologic loading may account for these differences. Ferreira et al32 studied the effect of TFCC 

sectioning on distal ulnar loading in wrists with simulated distal radial malalignment (translation 

and dorsal angulation) during forearm rotation. Although they observed a decrease of 60% in 

distal ulnar absolute loads when the TFCC was sectioned, their results did not reach statistical 

significance. In our study, although there was a trend towards decreased distal ulnar absolute 

loads of 28%, 25% and 67% compared to the TFC intact condition during flexion, ulnar 

deviation, and dart throw respectively when the TFC was excised, this did not reach statistical 

significance. Differences from Ferreria et al32 may be explained by differences in the motions 

evaluated (forearm rotation versus wrist motion) and protocol of soft tissue sectioning (TFCC 

was divided by detachment of ulnar attachment whereas we only removed the TFC). Also, 

variation in loads during forearm rotation differ from variations during flexion/extension and 

RUD.22 Decreases in distal ulnar loading observed in this study may be due to that fact that 

excising the TFC releases the constraining effect of the TFC on DRUJ contact force thus causing 

a resultant reduction in distal ulnar loading as forces across the DRUJ relax considerably.32  

As discussed in Chapter 2 section 2.5, limitations to this study exist. First, we may be 

underpowered with our sample size to show a statistical difference and we may have seen more 

significant differences on the effect of TFC excision on distal forearm loading with a larger 

sample size. We however achieved statistical significance for most comparisons thus we were 

evidently powered for most of the comparisons of interest. Second, biologic remodeling of the 

soft tissues in response to bone length changes are likely to occur over time and cannot be 

accounted for in a biomechanical study. Third, range of motion was limited in some wrists and as 
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a result, we excluded certain specimens from the data analysis. Fourth, we did not account for 

the force vector of pronator quadratus across the DRUJ and its role in distal forearm load 

sharing. Fifth, the forearms were mounted vertically with gravity assistance in flexion past 

neutral.  Consequently, distal forearm loading may vary when forearms are positioned in the 

horizontal plane with different muscle groups working against gravity. In addition, investigating 

extension, radial deviation and reverse dart motion may have shown different loading patterns 

than flexion, ulnar deviation, and dart throw. Lastly, in this study, we statistically analyzed 

absolute loads, whereas previous studies have focused on percentage load sharing between the 

radius and the ulna making direct comparisons challenging.  

It is important to recognize the strengths of this study.  A repeated measures experimental design 

was employed to enhance comparisons within each arm and hence statistical power. This study 

advances previous research that examined distal forearm loading by application of static loads 

and further clarifies the effect of ulnar length change on distal forearm loading during simulated 

dynamic wrist motion. The custom-designed implant with load cell were designed to be low 

profile without compromising implant integrity. This minimized soft-tissue dissection and 

excision during implant insertion. As a result of this, we took into account the effect of an intact 

soft tissue envelope on distal forearm bone loading. Moreover, the use of a highly accurate and 

reliable optical tracking system enabled us to track joint angles to provide precise feedback to the 

motion simulator during motion. Despite the challenges of comparing absolute loads to 

percentage loads in previous studies, reporting percentage load sharing between the radius and 

ulna may not accurately reflect the changes in axial loads in the distal radius and ulna. Although 

actual axial loads may change significantly during radial length change, percentage loading may 

remain unchanged due to symmetric changes in distal radial and ulnar loads. Thus, absolute 
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loads are a true reflection of the load changes at the distal radius and ulna. 

To our knowledge, the effects of sequential distal ulnar length change during simulated dynamic 

motion studied has not been reported in the literature to date thus giving new insight into distal 

forearm axial loading. Ulnar length change from 3mm of lengthening to 4 mm of shortening did 

not cause significant changes in radial loads as it did ulnar loads. Meanwhile, changes in ulnar 

loads during length changes followed a more predictable pattern. For each millimeter interval 

change in ulnar length, when the TFCC was excised, significant decreases in distal radial loads 

were observed and to a lesser extent, a decrease in ulnar loads. 

In conclusion, although ulnar length changes do not cause significant changes in radial loads 

during simulated active wrist motion, ulnar loads were predictably altered. To our knowledge, 

this is the first study demonstrating tensile loads in the distal ulna with ulnar shortening beyond 

2mm. The role of the TFC in load sharing at the distal radius and ulna was evident with ulnar 

lengthening beyond neutral. 
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Chapter 4 

4.	CONCLUSIONS	AND	FUTURE	DIRECTIONS	

 
4.1	OVERVIEW	
 

This chapter reviews the initial objectives and hypotheses presented in Chapter 1 and key 

conclusions drawn from Chapters 2 and 3. Finally, an outline for future directions and 

clinical research are also presented. 

 
 

4.2	OBJECTIVES	AND	HYPOTHESES	
 
The effects of distal radius and ulna length changes on load transfer between the radius and ulna 

has been previously reported under static loading conditions, however, this relationship is poorly 

understood during simulated dynamic wrist motion that attempts to simulate in-vivo wrist 

kinematics. To clarify this relationship, this thesis quantified the loading of the distal radius and 

ulna under simulated dynamic wrist motion during radial and ulnar length change with and 

without the TFC intact. An understanding of these relationships will help surgeons develop a 

biomechanical rationale for clinical decisions related to management of Kienbock’s disease, 

ulnocarpal impaction syndrome, distal radius and ulnar malunions and will have implications in 

the improvement of wrist implant design.  

Objectives 

1. To determine the relationship between distal forearm loading at the wrist and 

changes in radial length during simulated dynamic wrist motion. 

2. To determine the relationship between native ulnar variance and distal forearm 
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loading. 

3. To determine the relationship between distal forearm loading at the wrist and 

changes in ulnar length during simulated dynamic wrist motion. 

4. To determine the relationship between the TFC integrity and the force 

transmission through the distal ulna with ulnar length change.  

	
4.3	EFFECT	OF	RADIAL	LENGTH	CHANGE	ON	DISTAL	FOREARM	LOADING	DURING	SIMULATED	WRIST	

MOTION	
	
	

Our hypotheses were that (1) there will be no relationship between native ulnar variance 

and distal forearm loading, (2) distal radial loads will increase and distal ulnar loads will 

decrease with radial lengthening and vice versa and (3) there will be variation in loads at 

different wrist positions during simulated dynamic wrist motion.  

In this study, there was no correlation between native ulnar variance and distal radial and 

ulnar loading during simulated dynamic motion. The load bearing characteristics and 

compensatory thickness of the TFC likely accommodates axial load differences. 

Our study also confirmed that with an increase or decrease in radial length, there was an 

increase or decrease in radial loads respectively. However, with sequential shortening in 

extension, there was a corresponding increase in radial loads and with sequential 

lengthening, there was a corresponding decrease in radial loads. These changes were due 

to the increasing tendon loads seen in the ulnar sided prime movers (ECU and FCU) with 

each millimeter of radial shortening and vice versa with lengthening. Excessive 

shortening causes a paradoxical increase in distal radial loads (from loads at native 
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length) when the wrist is in extension. Based on this paradoxical phenomenon, caution 

should be exercised to avoid excessive radial shortening osteotomies for Kienbock’s 

disease to prevent increases in distal radius loading during wrist extension. 

We observed peak radial loads at the initiation of dart throw and radial deviation at native 

radial length and for each millimeter change in radial height. Peak ulnar loads were 

observed in wrist extension, ulnar deviation and terminal dart throw. These changes can 

be attributed to the force vector and tendon loading changes within the radiocarpal joint 

during dynamic motion: in radial deviation, peak tendon loads were observed in radial 

sided prime movers (ECRL and FCU) thus causing a peak in radial loads and in ulnar 

deviation, peak tendon loads were observed in the ulnar sided prime movers (ECU and 

FCU) thus causing a peak in ulnar loads. 

Although changes in distal ulnar loads occurred in a more predictable fashion with radial 

length change, this study suggests variation in distal radial loads with length change is 

more complex than previously described. Excessive radial shortening causes an increase 

in radial loads in extension and thus caution should be exercised to minimize radial 

shortening when performing osteotomies for Kienbock’s disease. Good clinical outcomes 

have been reported with 2mm of radial shortening. Thus, shortening by 2mm may be 

adequate to offload the distal radius. 

 

4.4	THE	EFFECT	OF	ULNAR	LENGTH	CHANGE	AND	TFC	INTEGRITY	ON	DISTAL	FOREARM	LOADING	DURING	
SIMULATED	WRIST	MOTION	
 

In this study, our hypotheses were that (1) distal radial loads will decrease and distal 
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ulnar loads will increase with ulnar lengthening and vice versa, (2) excision of TFC 

during ulnar length change will decrease load transmission through the distal ulnar 

compared to the TFC intact state and (3) there will be positional variation in axial loads 

with length change. 3) there will be variation in loads at different wrist positions during 

simulated dynamic wrist motion.  

This study gives new insight into the effect of ulnar length change on distal forearm 

loading during simulated motion. Ulnar length change did not cause significant changes 

in radial loads as it did with ulnar loads. When initiating flexion from an extended wrist 

position, the ulnar sided prime movers exert a greater amount of force to bring the wrist 

out of the extended position when the radius is relatively short as evident by the 

sequential increases in tendon loads observed in the extended wrist positions with each 

millimeter of ulnar lengthening. 

Changes in distal ulnar loads with ulnar length changes occurred in a predictable fashion 

with tensile loads in the ulna observed with ulnar shortening beyond 2mm. Ulnar 

shortening tensions the TFCC and decreases tendon loads in the ECU and FCU to 

achieve motion both of which account for the sequential decreases in distal ulnar loads 

thus placing tension on the distal ulna. 

For all ulnar length change intervals evaluated, when the TFC was excised, significant 

decreases in distal radial absolute loads were observed and to a lesser extent, decreases in 

ulnar loads compared to the TFC intact state. Excising the TFC releases the constraining 

effect of the TFC on DRUJ contact force thus causing a resultant reduction in distal 

forearm loading. The role of the TFC in load sharing at the distal radius and ulnar had a 
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noticeable effect during ulnar lengthening when percentage load sharing was evaluated. 

We did not observe changes in load sharing with ulnar shortening as shortening in itself 

significantly offloaded the distal ulnar with 100% of the compressive loads borne by the 

distal radius with 3 mm of ulnar shortening. 

We also observed more significant decreases in radial load with radial shortening versus 

ulnar lengthening. With radial shortening, we observed a decrease in summed radial loads 

of 13%, 24%, 29% and 37% at 1mm, 2mm, 3mm and 4mm respectively and a decrease in 

summed radial loads of 10%, 11% and 20% at 1mm, 2mm and 3mm of ulnar lengthening 

respectively (Appendices 2.4 and 2.8) during dynamic motion. This study demonstrated 

radial shortening is more effective in reducing radial loads over ulnar lengthening. 

Armistead et al1 performed ulnar lengthening osteotomies in 20 patients with an average 

native ulnar variance of 3.1mm (range 0 to -8mm). The ulnar was lengthened to neutral 

variance. In patients with neutral ulnar variance, the ulnar was lengthened by 2mm with 

satisfactory clinical results. We observed a reduction in radial loads of 11% at 2mm of 

ulnar lengthening, however, 2mm of radial shortening produced 24% decrease in radial 

loads. From a biomechanical standpoint, shortening of radius produces more dramatic 

decreases in load and may be preferred over ulnar lengthening as a treatment for 

Kienbock’s disease; reducing DRUJ problems by avoiding excessive changes in variance. 

Changes in variance of more than 4 mm has been shown to cause peak pressures at the 

DRUJ.2 Although ulnar lengthening as a joint leveling procedure is a treatment option for 

Kienbock’s disease,1,3 ulnar lengthening has been shown to have a nonunion rate of 15%1 

making it the less popular option over radial shortening osteotomies; furthermore in this 

biomechanical study we have shown it to be less effective.  
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In summary, this study suggests that biomechanically, radial shortening is a more 

effective form of treatment in Kienbock’s disease. Ulnar shortening beyond 2mm during 

distal ulnar arthroplasties places tension on the distal ulna which can result in tensile 

failure of the implant. 

 

4.5	FUTURE	DIRECTIONS	
 
 

The use of a motion simulator to investigate wrist biomechanics shows great promise. 

Current understanding of wrist biomechanics is based on static loading studies which do 

not represent in-vivo conditions. As we only examined the effects of radial and ulnar 

shortening on axial loads, studies on the effects of multiplanar deformities (translation, 

angulation and shortening) on rotational and bending loads in addition to axial loads can 

be readily performed under dynamic loading conditions. The effect of extension, radial 

deviation, reverse dart and forearm rotation on axial loads remain to be clarified as well 

as the effect of forearm position (horizontal vs vertical orientations) on these loads. A 

wide range of biomechanical studies can be performed to investigate the effects of 

multiplanar deformity on distal radial and ulna kinematics. Also, the effects of various 

surgical reconstructive techniques and wrist arthroplasty on wrist kinematics and 

biomechanics can be investigated under simulated dynamic conditions. 
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APPENDICES 
 

Appendix 1 Glossary of Terms  

 
 

 

Actuators Machine component/mechanical device responsible for controlling a 
system by converting energy into mechanical motion 

Axial load Load applied along the primary/central axis of the bony shaft  

Biomechanics The study of mechanics of a living body, especially of the forces exerted 
by the musculoskeletal system 

Degree of freedom Number of independent motions 

Dynamic loading Exertion of varying amount of force to achieve a desired motion 

Force vector Having both magnitude and direction 

Hydraulic Operated, moved or effected by the pressure transmitted when fluid is 
forced through a confined space under pressure 

Kinematics Properties of motion of an object without reference to forces that result 
in motion 

Minimum tone load Least amount of load required to provide resistance 

Motion Simulator Device that reproduces in-vivo wrist and forearm motion 

Newton SI unit of force 

Optical trackers Monitoring a defined measurement space using two or more cameras 

Pneumatic Operated by gas or pressurized air 

Servomotor An actuator that allows for precise control of an object’s velocity 

Static loading Exerting a constant amount of force without causing motion 
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Appendix 2 

	
Appendix 2. 1 Graph showing radial and ulnar loads with radial length change during 
flexion (Mean ± SD). 
With an increase or decrease in radial length, there was an increase or decrease in radial loads 
respectively (p<0.001). For each millimeter of radial length increase or decrease, there was a 
corresponding decrease or increase in ulnar loading respectively (p<0.001). 
 
 
 

 
Appendix 2. 2 Graph showing radial and ulnar loads with radial length change during 
ulnar deviation (Mean ± SD). 
Overall, there was a significant relationship between radial loads and radial length change for 
each millimeter of length change evaluated (p < 0.001). Peak radial loads are seen at native 
length.  For each millimeter of radial length increase or decrease, there was a corresponding 
decrease or increase in distal ulnar loading respectively (p = 0.037). 

-20 

0

20

40

60

80

100

120

-5 -4 -3 -2 -1 0 1 2 3 4

Flexion

Radial	Load Ulnar	Load

Radial	Length	(mm)

Lo
ad
	(N

)

0

20

40

60

80

100

120

-5 -4 -3 -2 -1 0 1 2 3 4

Ulnar	Deviation

Radial	Load Ulnar	Load
Radial	Length	(mm)

Lo
ad
	(N

)



 145 

 
Appendix 2. 3 Graph showing radial and ulnar loads with radial length change during dart 
throw (Mean ± SD). 
Changes in radial loads during radial height change did not reach statistical significance 
(p=0.243). An inverse relationship between ulnar loads and radial length for each millimeter of 
length change evaluated was observed (p < 0.001). For each millimeter of radial length increase 
or decrease, there was a corresponding decrease or increase in distal ulnar loading respectively.	
 
 

 
Appendix 2. 4 Graph showing radial and ulnar loads with radial length change during 
dynamic wrist motion (Mean ± SD). 
Radial lengthening did not produce significant load changes however, each millimeter of radial 
shortening caused a step wise decrease in radial loads (13%, 24%, 29% and 37% at 1mm, 2mm, 
3mm and 4mm of shortening respectively). For each millimeter of radial length increase or 
decrease, there was a corresponding decrease or increase in distal ulnar loading respectively.	
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Appendix 2. 5 Graph showing radial and ulnar loads with ulnar length change during 
flexion with and without the TFC intact (Mean ± SD). 
There was no significant change in radial loads with ulnar length change (p = 0.324). With 
ulnar lengthening, there was an increase in ulnar loads and vice versa (p < 0.001). There was a 
statistically significant decrease in radial loads (p = 0.027) when the TFC was excised. There 
was a trend towards decreased distal ulnar loads when the TFC was excised however, this did 
not reach statistical significance (p = 0.342). 
 
 
	

 
Appendix 2. 6 Graph showing radial and ulnar loads with radial length change during 
ulnar deviation with and without the TFC intact (Mean ± SD). 
Changes in radial loads with ulnar length change was statistically significant (p = 0.008) with a 
decrease in radial loads with both ulnar lengthening and shortening. with ulnar lengthening, 
there was an increase in ulnar loads and with shortening, a decrease (p < 0.001). There was a 
trend towards decreased distal ulnar and radial loads when the TFC was excised however, this 
did not reach statistical significance (p = 0.249 and p = 0.109 respectively). 
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Appendix 2. 7 Graph showing radial and ulnar loads with radial length change during dart 
throw with and without the TFC intact (Mean ± SD). 
There was no significant change in radial loads with ulnar length change (p = 0.232). Changes 
in ulnar loads with ulnar length change were statistically significant (p < 0.001): with ulnar 
lengthening, there was an increase in ulnar loads and with shortening, a decrease in ulnar loads. 
There was a decrease in mean radial loads (0.037) when the TFC was excised. However, there 
was no statistically significant change in distal ulnar loads (p = 0.240).	

 
Appendix 2. 8 Graph showing radial and ulnar loads with radial length change during 
dynamic wrist motion with and without the TFC intact (Mean ± SD). 
No significant change in radial load with radial length change during simulated active motion.  
For each millimeter of radial length increase or decrease, there was a corresponding decrease 
or increase in distal ulnar loading respectively. There was a decrease in radial and ulnar loads 
with TFC excision. 
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Appendix 2. 9 Radial and ulnar loads during wrist flexion with the TFC excised n = 8. 

a. Graph showing radial loads at 3mm, 2mm and 1mm of ulnar lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of ulnar shortening (-1, -2, -3, -4) 
during wrist flexion with the TFC excised. Flexion motion started with the wrist in 
50o of extension (-50) to 50o of flexion (50).	

b. Graph showing ulnar loads at 3mm, 2mm and 1mm of ulnar lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of ulnar shortening (-1, -2, -3, -4) 
during wrist flexion with the TFC excised. Flexion motion started with the wrist in 
50o of extension (-50) to 50o of flexion (50). 
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Appendix 2. 10 Radial and ulnar loads during ulnar deviation with the TFC excised n = 7 

a. Graph showing radial loads at 3mm, 2mm and 1mm of ulnar lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of ulnar shortening (-1, -2, -3, -4) 
during wrist ulnar deviation with the TFC excised. Ulnar deviation started with the 
wrist in 15o of radial deviation (-15) to 10o of ulnar deviation (10). 

b. Graph showing ulnar loads at 3mm, 2mm and 1mm of ulnar lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of ulnar shortening (-1, -2, -3, -4) 
during wrist flexion with the TFC excised. Ulnar deviation started with the wrist in 
15o of radial deviation (-15) to 10o of ulnar deviation (10).	
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Appendix 2. 11 Radial and ulnar loads during dart throw with the TFC excised n = 6. 

a. Graph showing radial loads at 3mm, 2mm and 1mm of ulnar lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of ulnar shortening (-1, -2, -3, -4) 
during dart throw with the TFC excised. Dart motion started with the wrist in 30o of 
extension and 10o of radial deviation (-30, -10) to 30o of flexion and 10o or ulnar 
deviation (30, 10).	

b. Graph showing ulnar loads at 3mm, 2mm and 1mm of ulnar lengthening (3, 2, 1), 
native length (0) and 1mm, 2mm, 3mm and 4mm of ulnar shortening (-1, -2, -3, -4) 
during dart throw with the TFC excised. Dart motion started with the wrist in 30o of 
extension and 10o of radial deviation (-30, -10) to 30o of flexion and 10o or ulnar 
deviation (30, 10).	
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Appendix 2. 12 Percentage load sharing with radial length change during flexion expressed 
as a percentage of forearm compressive loads 
 

 
Appendix 2. 13 Percentage load sharing with radial length change during ulnar deviation 
expressed as a percentage of forearm compressive loads  

 

 
Appendix 2. 14 Percentage load sharing with radial length change during ulnar deviation 
expressed as a percentage of forearm compressive loads 
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Flexion – Ulnar Length Change 
 
 

  
Appendix 2. 15 Percentage load sharing with ulnar length change with and without an 
intact TFC during flexion expressed as a percentage of forearm compressive loads 
 
 

Ulnar Deviation – Ulnar Length Change 
 
 

 
Appendix 2. 16 Percentage load sharing with ulnar length change with and without an 
intact TFC during ulnar deviation expressed as a percentage of forearm compressive loads 
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Dart Throw – Ulnar Length Change 
 
 

   
Appendix 2. 17 Percentage load sharing with ulnar length change with and without an 
intact TFC during ulnar deviation expressed as a percentage of forearm compressive loads. 

 

 
Appendix 2. 18 Ulnar and radial implants in cadaver forearms 

a. Ulnar Implant in- situ with plate and hose clamp around lead screw to counteract 
rotational torques. 

b. Radial Implant in- situ with plate and hose clamp around lead screw to counteract 
rotational torques. 
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