A Clinico-Pathological Study of the Structural and Functional Changes in the Retina and Optic Nerve Following Diabetic Retinopathy Treatments

Richard Filek
The University of Western Ontario

Supervisor
Dr. Cindy Hutnik
The University of Western Ontario Joint Supervisor
Dr. Subrata Chakrabarti
The University of Western Ontario

Graduate Program in Pathology
A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy

Recommended Citation
https://ir.lib.uwo.ca/etd/4939

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.
Abstract

Diabetic retinopathy (DR) is the result of microvascular changes in the retina due to hyperglycemia which alter the blood-retinal barrier (BRB). The increased permeability of BRB results in the accumulation of extracellular fluid, the development of diabetic macular edema (DME) and capillary occlusion. Capillary occlusion results in retinal ischemia which increases vascular endothelial growth factor (VEGF) levels, increases vascular permeability and results in neovascularization in proliferative diabetic retinopathy (PDR) patients. The treatments clinically used for DR are panretinal photocoagulation (PRP) for PDR and injectable vascular endothelial growth factor inhibitors (anti-VEGFs) for DME.

The safety of PRP and anti-VEGF therapy on the retina and optic nerve was evaluated in treatment-naïve DR patients by undergoing structural (OCT, HRT) and functional (visual field, visual acuity) diagnostic tests over a two year time period. Streptozotocin (STZ)-induced diabetic rats received different doses of intravitreal anti-VEGF injections to analyze the safety of VEGF inhibition on neuronal cells. Retinal cell cultures were exposed to different doses of anti-VEGF to assess metabolic activity, function and toxicity by colorimetric assays.

This study found that patients treated with PRP, despite showing an improvement in peripheral perfusion, had a significant and progressive decline in peripheral vision. There was a discrepancy between the grading of the optic nerves post-PRP by ophthalmologists despite the absence of significant morphological changes. Anti-VEGF treatment was found to be potentially detrimental to the optic
nerve by decreasing retinal nerve fiber layer thickness, increasing cup/disk ratio and cup volume over time. STZ-induced diabetic rats receiving intravitreal anti-VEGF injections had a dose-dependent increase in retinal ganglion cell death. Results from retinal cell cultures suggest that anti-VEGF treatment may be detrimental to the retina by decreasing cellular metabolic activity, and increasing cytotoxicity of retinal cells. Overall, PRP was relatively safe and improved peripheral perfusion but resulted in misdiagnosis of glaucoma based on non-morphological colouration changes of the optic nerve post-PRP. Anti-VEGF treatment appeared to be detrimental to the optic nerve by causing damage to retinal cells. In contrast to current recommendations, it is suggested to monitor both the retina and optic nerve status in patients undergoing frequent injections.

Keywords

Diabetic retinopathy, retina, optic nerve, panretinal photocoagulation (PRP), pascal, iatrogenic, diabetic macular edema (DME), diabetes, anti-VEGF, lucentis, ranibizumab, structural and functional changes, safety, efficacy, ophthalmology
Co-Authorship

Manuscript: Structural and functional changes to the retina and optic nerve following panretinal photocoagulation over a 2-year time period.

Richard Filek Designed, recruited patients, and conducted experiments.

Philip Hooper Collaborator; recruited patients from his clinic.

Tom Sheidow Collaborator; recruited patients from his clinic.

John Gonder Collaborator; recruited patients from his clinic.

Devesh K Varma Collaborator; graded optic nerve photos.

Lisa Heckler Collaborator; graded optic nerve photos.

William Hodge Collaborator; advised statistical analysis.

Subrata Chakrabarti Supervisor; edited and finalized the manuscript.

Cindy ML Hutnik Supervisor; edited and finalized the manuscript.

Chapters 3-4 contain material from two submitted manuscripts which are co-authored by Richard Filek, Philip Hooper, Tom Sheidow, Subrata Chakrabarti and Cindy ML Hutnik. Richard Filek conducted all experiments.
Acknowledgments

I am extremely grateful to my supervisors Dr. Cindy Hutnik and Dr. Subrata Chakrabarti for giving me the opportunity to carry out my research project, for your support, guidance, patience, and most importantly, your friendship during my graduate studies. Over the past five years, your mentorship has been instrumental in providing me a well-rounded experience consistent with my long-term career goals. You have shaped my growth from a student interested in ophthalmology research to a researcher adapt in basic science, animal, and clinical research. You have encouraged me to not only grow as a researcher but also as an instructor to other students and an independent thinker. For everything you’ve done for me, I thank you Dr. Hutnik and Dr. Chakrabarti. I am truly indebted to the both of you for this once in a lifetime opportunity.

I would like to thank Dr. Phil Hooper and Dr. Tom Sheidow for your assistance and guidance in starting my graduate career and providing me with the needed foundation for becoming a researcher. You have both walked with me through all stages of this project, and without your consistent, enlightening instructions and support, this thesis could have never matured. I deeply appreciate everything that you have done for me.

I would like to thank Dr. John Gonder, Dr. Devesh Varma and Dr. Lisa Heckler for assisting me in this project. I would like to thank Dr. William Hodge who sparked my interest in ophthalmology research ever since I was a 20 year old student looking for a NSERC supervisor during my third year at Western University. Without you, my passion for research would not have been realized and I would not
have had the chance to meet Dr. Cindy Hutnik, Dr. Phil Hooper and Dr. Tom
Sheidow.

I would like to thank the staff, secretaries, and technicians at the Ivey Eye
Institute. You have all been instrumental in helping and teaching me so many things
like how to perform diagnostic tests, manage patients and gather patient charts.

I would like to thank all members of the Ophthalmology research lab,
especially Hong Liu, for your support and patience in teaching me to conduct
laboratory tests. I will miss our time spent together in the lab and all the laughter that
we have shared. I would like to thank all members of the Chakrabarti lab, especially
Francis, for helping teach me animal technical skills.

I would like to thank all members of the Department of Pathology and
Laboratory Medicine, the Graduate Education Committee (GEC), and all of my
colleagues in the department. It has been a great privilege of mine to be elected by
our graduate students to represent their voices in the committee. For the past three
years as the student representative, I have come to know the GEC more as a family
than a committee. I have a lot of respect and learned so much from each individual
in the GEC -- Dr. Chandan Chakraborty, Dr. Zia Khan, Dr. Martin Duennwald, Dr.
Mark Darling, Dr. Christopher Howlett, Tracey Koning. It has been a pleasure
working with all of you and I hope I get the chance to work with you again in the
future.

I would like to thank all of my friends and loved ones for all of your support
throughout graduate school. I would like to express a deep gratitude to my dearest
mom and dad who have always stood by me like a pillar in times of need, and to whom I owe my life for their constant love, encouragement, moral support and blessings. You have stood by me in all situations and I thank you for your unwavering love, support and encouragement throughout this journey.
Table of Contents

Abstract ... i
Co-Authorship ... iii
Acknowledgments ... iv
Table of Contents .. vii
List of Tables .. xi
List of Figures ... xii
List of Appendices ... xvi
List of Abbreviations ... xvii

Chapter 1 ... 1
1 Introduction .. 1
 1.1 Diabetes Mellitus .. 1
 1.2 Epidemiology ... 7
 1.3 Diabetic Complications ... 9
 1.4 Diabetic Retinopathy ... 12
 1.4.1 Retinal Anatomy .. 12
 1.4.2 Epidemiology .. 27
 1.4.3 Pathogenesis .. 28
 1.4.4 Clinical Features of Diabetic Retinopathy .. 37
 1.5 Treatments ... 52
 1.5.1 Panretinal Photocoagulation .. 54
 1.5.2 Anti-VEGF Therapy .. 60
 1.6 Risks ... 65
 1.6.1 Panretinal Photocoagulation .. 65
 1.6.2 Anti-VEGF Therapy .. 67
1.7 Rationale .. 69
1.8 Hypothesis .. 70
1.9 Specific Aims ... 71
1.10 References .. 72

Chapter 2 .. 99

2 The structural and functional changes to the retina and optic nerve following
panretinal photocoagulation over a 2-year time period1 .. 99

2.1 Introduction ... 100
2.2 Methods .. 102
 2.2.1 Optical Coherence Tomography .. 103
 2.2.2 Heidelberg Retinal Tomography ... 103
 2.2.3 Humphrey Visual Field Analyzer ... 104
 2.2.4 Wide-Field Fluorescein Angiogram and Quantification of Ischemia
.. 104
 2.2.5 Optic Nerve Grading ... 106
 2.2.6 Pattern Scan Laser Photocoagulator (Pascal) ... 106
 2.2.7 Statistical Analysis ... 106
2.3 Results ... 108
2.4 Discussion .. 124
2.5 References .. 129

Chapter 3 .. 135

3 Two-year analysis of structural and functional changes to the retina and optic
nerve following anti-VEGF treatments for diabetic macular edema patients 135

3.1 Introduction ... 136
3.2 Methods .. 138
 3.2.1 Optical Coherence Tomography ... 139
 3.2.2 Humphrey Visual Field Analyzer .. 140
3.2.3 Wide-Field Fluorescein Angiogram and Quantification of Ischemia ... 140
3.2.4 Optic Nerve Grading .. 141
3.2.5 Ranibizumab (Lucentis) Injections ... 142
3.2.6 Statistical Analysis .. 142
3.3 Results ... 144
3.4 Discussion .. 165
3.5 References ... 171

Chapter 4 .. 182
4 Retinal cell death following anti-VEGF treatment in a diabetic rat model and retinal cell culture .. 182
4.1 Introduction ... 183
4.2 Methods ... 185
4.2.1 Diabetic Animal Model ... 185
4.2.2 Drug Administration ... 186
4.2.3 TUNEL Assay ... 187
4.2.4 Mixed Retinal Cell Culture .. 188
4.2.5 Dosage ... 188
4.2.6 Immunohistochemistry .. 189
4.2.7 Colorimetric Assays .. 191
4.2.8 Statistical Analysis .. 191
4.3 Results .. 193
4.3.1 Body weight and blood glucose levels ... 193
4.3.2 Increasing anti-VEGF concentrations caused more death in vivo ... 193
4.3.3 No difference in cell death between the clinical dose of ranibizumab and rat anti-VEGF ... 199
4.3.4 Frequency of injections has no effect on apoptotic cells ... 199
4.3.5 Verification of mixed retinal cell culture .. 206

4.3.6 Increasing anti-VEGF concentrations caused cell death in vitro . 206

4.3.7 Increased ranibizumab concentrations result in decreased cellular metabolic activity ... 209

4.3.8 Increasing ranibizumab concentrations result in increased necrosis .. 222

4.3.9 Increased apoptosis with increasing ranibizumab concentrations 227

4.3.10 Increased apoptosis and necrosis with rat anti-VEGF concentrations .. 227

4.4 Discussion .. 233

4.5 References ... 239

Chapter 5 ... 245

5 General Discussion, Limitations, and Future Direction 245

5.1 Summary of Discussion ... 246

5.2 Limitations ... 254

5.3 Future Direction .. 256

5.4 References ... 258

6 Appendices .. 264

6.1 Approved use of human participants undergoing PRP treatment .. 264

6.2 Approved use of human participants undergoing anti-VEGF treatment .. 265

6.3 Approved animal use protocol ... 266

6.4 Copyright permission .. 267

6.5 Antibodies used for experiments .. 273

6.6 Curriculum vitae .. 274
List of Tables

Table 1.1. Global prevalence of diabetes. ... 8

Table 2.1. Patient demographics ..109

Table 2.2. Changes in RNFL thickness (µm) over the course of 24 months in the control and PRP laser groups...113

Table 3.1. Demographics of patients involved in the study.................................145

Table 3.2. Changes in RNFL thickness (µm) over the course of 24 months in the control and anti-VEGF groups...149

Table 4.1. Body weights and serum glucose levels of control and STZ-induced diabetic rats ..194
List of Figures

Figure 1.1 Pathogenesis of T2DM ... 4
Figure 1.2. Risk factors affecting the development of T2DM 6
Figure 1.3. Sagittal section of the eye ..14
Figure 1.4. Wide-field photograph of the normal human fundus16
Figure 1.5. Histology of the retina ..19
Figure 1.6. Blood-retinal barrier under normal conditions 23
Figure 1.7. Schematic of the retinal capillary ..26
Figure 1.8. Pathologic features of BRB breakdown in a diabetic eye 31
Figure 1.9. Non-proliferative retinopathy ... 40
Figure 1.10. Diabetic macular edema ... 44
Figure 1.11. Pre-proliferative retinopathy ... 48
Figure 1.12. Proliferative diabetic retinopathy ... 51
Figure 1.13. Panretinal photocoagulation ... 56
Figure 1.14. Effect of panretinal photocoagulation treatment 58
Figure 1.15. Anti-VEGF agents clinically used for DME treatment 62

Figure 2.1 Interval changes in (A) macular thickness, (B) RNFL thickness and (C) mean perfused ratio at baseline, 6, 12, and 24 months later in the control and PRP laser groups .. 111
Figure 2.2. Interval changes in vertical cup/disk ratio measured on the (A) OCT and (B) HRT at baseline, 6, 12, and 24 months later in the control and PRP laser groups ...115

Figure 2.3. Interval changes in vertical cup/disk ratio as measured by two masked glaucoma specialists using stereo photographs at baseline, 6, 12, and 24 months later in the (A) PRP laser group and the (B) control group ..118

Figure 2.4. Interval changes in mean deviation measured on the (A) Humphrey Visual Field Analyzer and (B) visual acuity at baseline, 6, 12, and 24 months later in the control and PRP laser groups ...120

Figure 2.5. Interval changes in intraocular pressure at baseline, 6, 12, and 24 months later in the control and PRP laser groups ...123

Figure 3.1. Interval changes in (A) macular thickness, (B) RNFL thickness and (C) mean perfused ratio at baseline, 6, 12, and 24 months in the control and anti-VEGF groups ...147

Figure 3.2. Interval changes in cup volume measured on the OCT at baseline, 6, 12, and 24 months in the control and anti-VEGF groups ...151

Figure 3.3. Interval changes in vertical cup/disk ratio measured on the OCT at baseline, 6, 12, and 24 months in the control and anti-VEGF groups ...153

Figure 3.4. Interval changes in vertical cup/disk ratio measured on the OCT at baseline, 6, 12, and 24 months in participants receiving less than 10 injections and 10 or more injections ...156

Figure 3.5. Interval changes in vertical cup/disk ratio measured by two masked glaucoma specialists using stereo photographs at baseline, 6, 12, and 24 months in the (A) anti-VEGF group and the (B) control group ...158

Figure 3.6. Interval changes in mean deviation measured on the (A) Humphrey Visual Field Analyzer and (B) visual acuity at baseline, 6, 12, and 24 months in the control and anti-VEGF groups ...162
Figure 3.7. Interval changes in intraocular pressure at baseline, 6, 12, and 24 months in the control and anti-VEGF groups .. 164

Figure 4.1. TUNEL staining of control rat retina .. 196

Figure 4.2. TUNEL staining of diabetic rat retina .. 198

Figure 4.3. Apoptotic death rates following different doses of rat anti-VEGF in control and diabetic rats ... 201

Figure 4.4. Apoptotic cell death rates between the clinical dose of rat anti-VEGF and ranibizumab in control and diabetic rats ... 203

Figure 4.5. Effects of frequency of injections on the number of TUNEL-positive cells in control and diabetic rats ... 205

Figure 4.6. Expression of retinal ganglion cell (RGC)-specific markers in the primary rat retinal cell culture .. 208

Figure 4.7. Morphological effect of different concentrations of ranibizumab on RGCs following 48 hours post treatment ... 211

Figure 4.8. Morphological effect of different concentrations of ranibizumab on RGCs following 72 hours post treatment ... 213

Figure 4.9. Apoptotic cell death upon exposure to different concentrations of ranibizumab following 48 hours post treatment ... 215

Figure 4.10. Apoptotic cell death upon exposure to different concentrations of ranibizumab following 72 hours post treatment ... 217

Figure 4.11. Apoptotic cell death of support cells surrounding RGCs 219

Figure 4.12. Apoptosis in the INL following TUNEL staining 221

Figure 4.13. Cellular metabolic activity following different concentrations of ranibizumab .. 224
Figure 4.14. Necrosis following different concentrations of ranibizumab226

Figure 4.15. Apoptosis following treatments with different concentrations of ranibizumab ..230

Figure 4.16. Necrosis and apoptosis following treatments with different concentrations of rat anti-VEGF ...232
List of Appendices

6.1 Approved use of human participants undergoing PRP treatment 264
6.2 Approved use of human participants undergoing anti-VEGF treatment . 265
6.3 Approved animal use protocol ... 266
6.4 Copyright permission ... 267
6.5 Antibodies used for experiments.. 273
6.6 Curriculum vitae ... 274
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACVS</td>
<td>Animal Care and Veterinary Services</td>
</tr>
<tr>
<td>AMD</td>
<td>Age-related macular degeneration</td>
</tr>
<tr>
<td>BCVA</td>
<td>Best-corrected visual acuity</td>
</tr>
<tr>
<td>BRB</td>
<td>Blood-retinal barrier</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>C/D</td>
<td>Cup-to-disk ratio</td>
</tr>
<tr>
<td>DME</td>
<td>Diabetic macular edema</td>
</tr>
<tr>
<td>DR</td>
<td>Diabetic retinopathy</td>
</tr>
<tr>
<td>DRS</td>
<td>Diabetic Retinopathy Study</td>
</tr>
<tr>
<td>ETDRS</td>
<td>Early Treatment of Diabetic Retinopathy Study</td>
</tr>
<tr>
<td>Fab</td>
<td>Antigen binding fragment</td>
</tr>
<tr>
<td>FAZ</td>
<td>Foveal avascular zone</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>Fc</td>
<td>Fragment crystallizable region</td>
</tr>
<tr>
<td>FcRn</td>
<td>The neonatal Fc receptor for IgG</td>
</tr>
<tr>
<td>GC</td>
<td>Ganglion cell</td>
</tr>
<tr>
<td>GCL</td>
<td>Ganglion cell layer</td>
</tr>
<tr>
<td>GJ</td>
<td>Gap junction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipoprotein cholesterol</td>
</tr>
<tr>
<td>HIF-1</td>
<td>Hypoxia-inducible factor 1</td>
</tr>
<tr>
<td>HRT</td>
<td>Heidelberg retinal tomography</td>
</tr>
<tr>
<td>iBRB</td>
<td>Inner blood-retinal barrier</td>
</tr>
<tr>
<td>INL</td>
<td>Inner nuclear layer</td>
</tr>
<tr>
<td>INS</td>
<td>Inner segments</td>
</tr>
<tr>
<td>IOP</td>
<td>Intraocular pressure</td>
</tr>
<tr>
<td>IPL</td>
<td>Inner plexiform layer</td>
</tr>
<tr>
<td>IRMA</td>
<td>Intraretinal microvascular abnormality</td>
</tr>
<tr>
<td>IVFA</td>
<td>Intravenous fluorescein angiography</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>logMAR</td>
<td>Logarithm of the minimum angle of resolution</td>
</tr>
<tr>
<td>MD</td>
<td>Mean deviation</td>
</tr>
<tr>
<td>MTT</td>
<td>Thiazolyl Blue Tetrazolium Bromide</td>
</tr>
<tr>
<td>NBA</td>
<td>Neurobasal A medium</td>
</tr>
<tr>
<td>Nd:YAG</td>
<td>Neodymium-doped yttrium aluminum garnet</td>
</tr>
<tr>
<td>NFL</td>
<td>Nerve fiber layer</td>
</tr>
<tr>
<td>NPDR</td>
<td>Nonproliferative diabetic retinopathy</td>
</tr>
<tr>
<td>oBRB</td>
<td>Outer blood-retinal barrier</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>OCT</td>
<td>Optical coherence tomography</td>
</tr>
<tr>
<td>OLM</td>
<td>Outer limiting membrane</td>
</tr>
<tr>
<td>ONL</td>
<td>Outer nuclear layer</td>
</tr>
<tr>
<td>OPL</td>
<td>Outer plexiform layer</td>
</tr>
<tr>
<td>OS</td>
<td>Outer segment</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline</td>
</tr>
<tr>
<td>PCOS</td>
<td>Polycystic ovarian syndrome</td>
</tr>
<tr>
<td>PDR</td>
<td>Proliferative diabetic retinopathy</td>
</tr>
<tr>
<td>PEDF</td>
<td>Pigment epithelium derived growth factor</td>
</tr>
<tr>
<td>PIGF</td>
<td>Placental growth factor</td>
</tr>
<tr>
<td>PRP</td>
<td>Panretinal photocoagulation</td>
</tr>
<tr>
<td>PVD</td>
<td>Posterior vitreous detachment</td>
</tr>
<tr>
<td>RNFL</td>
<td>Retinal nerve fiber layer</td>
</tr>
<tr>
<td>RPE</td>
<td>Retinal pigment epithelium</td>
</tr>
<tr>
<td>STZ</td>
<td>Streptozotocin</td>
</tr>
<tr>
<td>T1DM</td>
<td>Type 1 diabetes</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type 2 diabetes</td>
</tr>
<tr>
<td>TG</td>
<td>Triglycerides</td>
</tr>
<tr>
<td>TUJ-1</td>
<td>Class III β-tubulin</td>
</tr>
<tr>
<td>VA</td>
<td>Visual acuity</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>VF</td>
<td>Visual field</td>
</tr>
</tbody>
</table>
Chapter 1

1 Introduction

1.1 Diabetes Mellitus

Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycemia\(^1\). Hyperglycemia is a condition in which glucose plasma levels are uncharacteristically high and exceed 7 mmol/L. In diabetics, hyperglycemia results in chronic low grade inflammation induced by inflammatory cytokines, creating persistent damage to host cells\(^2\). This mechanism also drives insulin resistance and additional complications that are commonly associated with diabetes. Even though hyperglycemia is a common feature of this disorder, the etiology of diabetes can vary. Based on underlying causes, diabetes can be divided into two major categories; type 1 and type 2. Type 1 diabetes (T1DM) is associated with absolute insulin deficiency due to autoimmune destruction of pancreatic beta cells that store and release insulin\(^3\). T1DM accounts for approximately 10% of all instances of the disease. These patients require exogenous insulin delivery by injections or insulin pumps to survive due to the inability of their pancreas to synthesize insulin.

The specific etiology of type 2 diabetes (T2DM) is unknown, although autoimmunity is not considered to be a major factor. T2DM accounts for approximately 80-90% of all cases of diabetes\(^4\). T2DM is primarily caused by a combination of insulin resistance, lack of receptor sensitivity to insulin, and
insulin deficiency. The pancreatic beta cells are still able to secrete insulin but at an insufficient level to overcome insulin resistance5. Insulin resistance happens at sites of adipose tissue, skeletal muscle and the liver4, 6. T2DM patients require medications which function to increase insulin release and improve insulin sensitivity to maintain normal blood glucose levels. If hyperglycemia persists and is not controlled in T2DM patients, over time the pancreas continues to compensate by making more insulin, resulting in exhaustion of beta cells leading to functional deterioration, defective insulin secretion and eventual insulin deficiency (\textbf{Figure 1.1}). At that stage, T2DM patients require an exogenous insulin supply like T1DM patients7.

There are multiple factors that may contribute to the development of diabetes. According to clinical data, the risk of T2DM increases with familial history of diabetes (genetic factors), high blood pressure, ethnicity, metabolic syndrome, dyslipidemia, hypertension, dietary factors, sedentary lifestyle, obesity and age (\textbf{Figure 1.2}). T1DM typically occurs in individuals that have familial history of the disease and in genetically susceptible individuals5, 8.
Figure 1.1. Pathogenesis of T2DM. Genetic predisposition and lifestyle factors contribute to insulin resistance. Once resistance develops, to compensate, beta cell hyperplasia attempts to maintain normal blood glucose levels. Eventually, beta cell secretory dysfunction sets in, leading to impaired glucose tolerance and diabetes. Adapted from: Kumar V, Abbas AK, Aster JC, Perkins JA. Robbins basic pathology. Philadelphia, PA: Elsevier; 2018.
Figure 1.1 Pathogenesis of T2DM

Genetic susceptibility

Lifestyle risk factors
 Obesity

Insulin resistance

β-cell hyperplasia

Early stage β-cell failure

Late stage β-cell failure

Normoglycemia

Impaired glucose

Diabetes mellitus

Obesity

Insulin resistance

β-cell hyperplasia

Early stage β-cell failure

Late stage β-cell failure
Figure 1.2. Risk factors affecting the development of T2DM. Adapted from: Holt RIG, Cockram CS, Flyvbjerg A, Goldstein BJ. Textbook of diabetes. 4th ed. Chichester, West Sussex, UK: Wiley Blackwell; 2010.
Figure 2: Risk factors affecting the development of T2DM

Type 2 diabetes mellitus

- Obesity
- Age
- Family history (genetic susceptibility)
- Gestational diabetes
- Polycystic Ovary Syndrome
- Ethnicity
- Metabolic syndrome
- Dyslipidemia
- Hypertension
- Dietary factors
- Sedentary lifestyle
1.2 Epidemiology

Diabetes has emerged as a major global health problem, with serious health-related and socioeconomic impacts on individuals and populations alike\(^5\). Diabetes is the fifth leading cause of death worldwide, claiming 4 million individuals annually. The pandemic growth of the disease is further being driven by improvements in healthcare which has increased life expectancy, shifted demographics, socioeconomics, and lifestyle nutritional patterns\(^5\). The rates of diabetes have been rapidly rising in middle- and low-income countries where the prevalence of obesity in adults and children has been increasing\(^5, 9, 10, 11\). In 2010, the International Diabetes Federation estimated that worldwide, there were 285 million people living with diabetes and that the number would exceed 400 million in the next twenty years\(^12\). In 2014, the World Health Organization ran a global report on diabetes and concluded that the number of people living with diabetes had already reached 422 million, far exceeding the predictions made in 2010 (Table 1)\(^11\). With the severity of disease complications, co-morbidities and complexity of therapy, the management of diabetes consumes vast resources worldwide\(^5\).
Table 1.1. Global prevalence of diabetes.

<table>
<thead>
<tr>
<th>WHO Region</th>
<th>Prevalence (%)</th>
<th>Number (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>African Region</td>
<td>3.1</td>
<td>7.1</td>
</tr>
<tr>
<td>Region of the Americas</td>
<td>5</td>
<td>8.3</td>
</tr>
<tr>
<td>Eastern Mediterranean Region</td>
<td>5.9</td>
<td>13.7</td>
</tr>
<tr>
<td>European Region</td>
<td>5.3</td>
<td>7.3</td>
</tr>
<tr>
<td>South-East Asia Region</td>
<td>4.1</td>
<td>8.6</td>
</tr>
<tr>
<td>Western Pacific Region</td>
<td>4.4</td>
<td>8.4</td>
</tr>
<tr>
<td>Total*</td>
<td>4.7</td>
<td>8.5</td>
</tr>
</tbody>
</table>

* Totals include non-Member States

1.3 Diabetic Complications

Diabetes can be a debilitating disease that is associated with high morbidity and mortality rates. The prime characteristic of diabetes is abnormal glucose metabolism and other metabolic complications that lead to serious pathological effects that affect practically all body systems\(^4\). These complications vary among individuals afflicted with diabetes primarily due to differences in the level of glycemic control and underlying pathophysiology\(^5\). High blood glucose is the primary culprit for the initiation of the damage and the continuation of effects on target tissues and organs\(^13\). Hyperglycemia induces oxidative stress through the excessive conversion of glucose into pyruvate through glycolysis. The pyruvate is then oxidized in the citric acid cycle to generate high amounts of the electron donors NADH and FADH\(_2\) that feed into the electron transport chain. As the result, the inner mitochondrial membrane voltage gradient increases until a threshold is reached, blocking further electron transfer within complex III. The arrest of electron transport chain being halted leads to coenzyme Q transferring only a single electron to molecular oxygen, generating superoxide. Increased production of superoxide results in cellular toxicity through the activation of five known major pathways involved in diabetic complications: the polyol pathway, intracellular production of advanced glycation end products, expression of the receptor for advanced glycation end products and related activating ligands, the protein kinase C pathway, and the hexosamine pathway\(^14, 15\). For most diabetic patients, complications are associated with macrovascular disease in the arteries, microangiopathy, the thickening of basement membranes, diabetic
nephropathy, retinopathy, neuropathy, and other tissues. These complications are observed in both T1DM and T2DM patients\(^4,16\).

Cardiovascular events are the most common complications that occur in patients with T1DM and T2DM. They are involved in as many as 80% of all patient deaths\(^4,17\). The hallmark of this complication is atherosclerosis which is the narrowing of large and medium-sized arteries by fatty plaques. As mentioned previously, in diabetic patients, it is the low-grade inflammation that damages hosts’ cells which leads to endothelial dysfunction, alters the microvasculature, accelerates atherosclerosis development and leads to heart disease complications\(^2,18-20\).

Diabetic nephropathy is the leading cause of chronic kidney disease in the world\(^21\). Small amounts of albumin found in the urine, also known as microalbuminuria, are the earliest manifestations of diabetic nephropathy. Microalbuminuria, due to glomerular leakiness, is caused by hyperglycemia damaging the podocytes of the glomerular filtration barrier and increasing permeability of the capillary wall\(^13,22\). Without treatment, 80% of T1DM and 20-40% of T2DM will progress to definite nephropathy over the course of 10-15 years once symptoms appear. By roughly 20 years post-diagnosis, as glomerular filtration rate progressively decreases, 75% of T1DM and 20% of T2DM afflicted individuals will develop end-stage renal disease and require dialysis or kidney transplantation\(^4,23,24\).
Diabetic neuropathy may affect the central nervous system, peripheral sensorimotor nerves, and autonomic nervous system. Most commonly the disorder affects the lower extremities, disrupting both motor and sensory functions. Over time, the effects may spread to the upper extremities as well. Diabetic neuropathy may also affect the autonomic nervous system, resulting in bladder and bowel dysfunction, erectile dysfunction, sudden foot drop, wrist drop or cranial nerve palsy. Diabetic patients tend to be more susceptible to skin infections compared to healthy individuals. Infections of the lower extremities may develop into gangrene and bacteremia. Such infections result in 5% of all diabetic deaths.
1.4 Diabetic Retinopathy

1.4.1 Retinal Anatomy

The retina is a layered structure consisting of photoreceptors and nerve cells lining the inner part of the eye29. The inner layer of retina is in contact with the vitreous body, a gel like substance that fills the space between retina and the lens, and the outer layer is associated with the choroid, a layer of highly vascularized connective tissues (\textbf{Figure 1.3}). The retina is not uniformly thick, normally being 0.55 mm at the macula and roughly 0.1 mm at the fovea, the latter being the centre of the macula17. The blood is supplied to the retina through two different sources. The central retinal artery supplies blood to the inner two-thirds of the retina while the vascular choroid and its choriocapillaris, located posterior to the retina, supply blood to the outer third.

The macula is located near the centre of the retina approximately 4 mm to the temporal side of the optic disk and measures approximately 4 mm in diameter (\textbf{Figure 1.4}). Roughly 1.5 mm in diameter, the fovea is responsible for our central vision and is located in the centre of the macula. It is composed entirely of cone photoreceptors which are responsible for our sharp visual acuity and colour vision. Within the fovea is a 0.5 mm diameter foveal avascular zone (FAZ) which is supplied nutrients through the diffusion of blood from the capillaries of the underlying choroid5. As a result, there is a depression at the site where FAZ is located which functions to prevent any dispersion or loss of light signal30.
Figure 1.3. Sagittal section of the eye. Internal structure of the eye by OpenStax College [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons.
Figure 3 Sagittal section of the eye
Figure 1.4. Wide-field photograph of the normal human fundus.
Figure 4 Wide-field photograph of the normal human fundus
The optic nerve is located 3 mm to the medial side of the macula and is known as the blind spot since there are no retinal layers in this zone. Ganglion cell axons from the neuronal cell layer, located near the inner surface of the retina, puncture through the sclera to form the optic nerve which transmits visual information to the brain. The optic nerve head is roughly 1.8 mm in diameter. Visually, the rim of the optic nerve is known as the disk and it contains nerve fibers from the ganglion cells. The inner section of the rim is the edge of the more whitish coloured cup which does not contain nerve fibers.

The retina is composed of a “three-neuron system” consisting of photoreceptors, first-, and second-order neurons. In terms of location, inner refers to the layer of cells closest to the vitreous. Outer refers to the layers of cells closest to the sclera, the white outer coat of the eye. Retinal cell nuclei are arranged in specific bands called nuclear layers (Figure 1.5). The outer nuclear layer (ONL) is composed of photoreceptor nuclei and lies closest to the vascular choroid and sclera. The human eye contains two types of photoreceptors, the rods and cones. Rods sense contrast, brightness and motion while cones are responsible for fine resolution, spatial resolution and colour vision. Photoreceptors absorb light and initiate neuro-electrical impulses. The density of cones increases as you approach the macula, with the fovea having exclusively cones while the periphery of the retina is primarily rod-dominated.

The inner nuclear layer (INL) of the retina is composed of the nuclei of the first-order neurons, the bipolar cells. INL also contains the nuclei of amacrine, horizontal and Muller cells which modulate activity of the ganglion cells.
Figure 1.5. Histology of the retina. (A) Schematic diagram showing the arrangement of the different cell types in the retina. (B) Hematoxylin and eosin stained primate retina demonstrating the layered arrangement of the retina. Image by OpenStax College [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons.
Figure 5: Histology of the retina

(a) Diagram showing the layers of the retina, including pigments, rods, bipolar cells, and ganglion cells.

(b) Cross-sectional view of the retina showing the layers from top to bottom: choroid, pigment epithelium, rods and cones, bipolar cells, ganglion cells, and optic nerve axons.

LIGHT
Bipolar cells are the dominant cells, with horizontal cell nuclei being found in the outer parts and the amacrine cells found in the inner parts of the INL. Muller cell nuclei are uniformly distributed throughout the INL. Functionally, bipolar cells transmit signals from photoreceptor cells found below the inner layer of the INL to ganglion cells located above the upper layer of INL. Bipolar dendrites synapse with photoreceptors and horizontal cells, while their axons synapse with ganglion and amacrine cells. Horizontal cells have a role in retinal processing and release inhibitory neurotransmitters, primarily GABA, that act on photoreceptor cells. Amacrine cells mostly play an inhibitory role and modulate signals that reach ganglion cells. Amacrine cells may be GABAergic and dopaminergic or can release acetylcholine.

The innermost nuclear layer of the retina is referred to as the ganglion cell layer (GCL) which houses the nuclei of the second-order neurons, the retinal ganglion cells. The GCL is located near the inner surface of the retina between the nerve fiber layer and the inner plexiform layer. The GCL varies in thickness, being the thickest near the fovea and thinnest at the periphery of the retina. The axons of the ganglion cells form the nerve fiber layer which is located at the innermost surface of the retina. The bundles of the nerve fibers form the optic nerve which is responsible for transmitting visual information to the brain.

The dense networks of axons and dendrites found in the retina are located within the outer plexiform layer (OPL), located between ONL and INL, and the inner plexiform layer (IPL), located between INL and GCL. The axons of photoreceptors which form synaptic terminals with bipolar cells and horizontal...
cells are contained within the OPL. Meanwhile, IPL contains axons of bipolar and amacrine cells, and dendrites of ganglion cells31. Glial, astrocytes and oligodendrocytes are located in the GCL and IPL layers of the retina33. The combination of the neural processing from all of the layers transmits visual information to the brain through the optic nerve31.

The blood-retinal barrier (BRB) is comprised of two parts: the endothelial cells of the retinal blood vessels which are connected by tight junctions and the outer retinal pigment epithelial (RPE) cells. The microenvironment of the retina is regulated by BRB which is essential for the structural and functional aspects of the retina34. Under normal conditions, BRB controls molecular and fluid movements between the retina and choroidal vasculature, preventing leakage and other harmful agents from entering the retina. The inner BRB (iBRB) is formed by tight junctions between retinal endothelial cells resting on a basal lamina (Figure 1.6)35. They are covered by the processes of astrocytes and Muller cells36. Pericytes are separated from the endothelial cells by the basal lamina and all three cell types play a critical role in maintaining the proper functioning of BRB34. The tight junctions between RPE cells form the outer BRB (oBRB)37. The barrier separates the neural layer of the retina from the choriocapillaris, maintains the cohesion of the neural layer of the retina, facilitates phagocytosis of rods and cones, and transports nutrients from the blood to the outer retina31, 34. In addition, RPE improves image resolution by absorbing light and preventing light from scattering31.
Figure 1.6. Blood-retinal barrier under normal conditions. The inner BRB is formed by tight junctions between retinal endothelial cells which are covered by the processes of astrocytes and Muller cells. The tight junctions between RPE cells form the outer BRB (oBRB). Image from: Kaur C, Foulds W, Ling E. Blood–retinal barrier in hypoxic ischaemic conditions: Basic concepts, clinical features and management. Prog Retin Eye Res 2008;27(6):622-647.
Pericytes, cells that are embedded within the basement membrane of the capillary blood vessels, have numerous roles within the retina (Figure 1.7). The ratio of pericytes to endothelial cells is 1:1; more than any other vascular bed38. Pericytes function to regulate vascular tone, support the capillary walls, secrete extracellular material such as fibronectin and are capable of phagocytosis38, 39. Actin, myosin and tropomyosin are all expressed in pericytes, making them capable of contraction and assist in regulation of blood flow within the retinal microcirculation39, 40, 41. Pericytes have also been shown to inhibit proliferation of endothelial cells and angiogenesis42.

Muller cells are the supporting glial cells of the retina that are similar in function to oligodendrocytes31. Muller cells have an important role in maintaining BRB by supporting neuronal activity, facilitating uptake of nutrients, disposing of wastes, maintaining ion homeostasis, controlling signaling molecules and maintaining extracellular pH43, 43, 45, 46. Muller cells under normal conditions have been found to reduce vascular permeability by secreting pigment epithelium derived growth factor (PEDF). The primary function of PEDF is to antagonize the actions of vascular endothelial growth factor (VEGF) which increases the permeability of BRB.

Astrocytes function to maintain the integrity of retinal vessels and are located in the nerve fiber layer, GCL, IPL and outer INL31, 47, 48, 49. Astrocytes have been shown to modify the morphology of the retinal vascular endothelium by increasing the expression of tight junction protein ZO-1, thus increasing the barrier properties50.
Figure 1.7. Schematic of the retinal capillary. An inner layer of retinal endothelial cells is enclosed by a tube of basement membrane, which in turn is surrounded by pericytes. Image from: Holt RIG, Cockram CS, Flyvbjerg A, Goldstein BJ. Textbook of diabetes. 4th ed. Chichester, West Sussex, UK: Wiley Blackwell; 2010.
1.4.2 Epidemiology

DR is the leading cause of blindness amongst working age (20-74 years old) adults with DME being the most common cause of this vision loss16, 51. Approximately 50% of patients with DR will develop DME16. Presently, millions of people are living with undiagnosed diabetes, and the incidence of T2DM in developed countries is on the rise; even as medicine advances, diabetes remains a major public health concern27, 52, 53. Duration of diabetes is a significant risk factor for developing DR, which is a vascular complication of both T1DM and T2DM26. After 15 years, 90% of T1DM patients develop some form of retinopathy, with half of them progressing to PDR which is characterized by retinal neovascularization16, 27. Retinopathy may be the first clinical manifestation of T2DM in some patients16. According to the United Kingdom Prospective Diabetes Study, approximately 37% of individuals who were first diagnosed with T2DM patients had already developed retinopathy. Within 15 years of developing diabetes, 60% of patients with T2DM develop some form of retinopathy26. Following the 15 year period, 5-10% of T2DM patients will develop PDR and 10-15% will develop DME. T2DM patients develop much earlier diabetic eye disease compared to T1DM patients as the majority of these patients live with undiagnosed diabetes and start treatment or lifestyle changes very late. Patients that have high-risk PDR, within 5 years have a 60% risk of developing severe vision loss and a 30% risk of moderate vision loss from DME26. Blindness occurs due to DR complications such as vitreous hemorrhages or traction retinal detachments16.
1.4.3 Pathogenesis

The exact pathogenesis of DR remains unknown, however, the underlying cause of its development is hyperglycemia17. This is supported by clinical observations of diabetic patients, the duration of their disease relative to the development of DR, retinopathy development in hyperglycemic animal models, and epidemiological and clinical trials showing a strong correlation between glycaemia control and retinopathy development17, 53-58. The exact mechanism by which hyperglycemia leads to retinopathy is unknown16. The initiation and progression of DR is very complex and relies on several factors that are not yet understood. These factors vary depending on the different stages of DR and the uniqueness of individuals16. Glucose has a vital role in the disease as it enters the retina by facilitated diffusion, hence a constant high serum glucose will result in high levels of glucose in the retina27. Multiple theories have been proposed on the potential mechanisms that facilitate retinal damage, specifically BRB, as a result of high glucose concentrations in the retina but none of them have been sufficiently supported. The theories propose that high blood glucose levels initiate several biochemical changes and processes, such as aldose reductase converting excess glucose into sorbitol16. Sorbitol is unable to diffuse out of the retina and, thus, accumulates resulting in damage27, 59. Another theory suggests that high glucose concentrations result in the glycosylation of proteins that play a key role in cellular dysfunction, such as selectively activating the β-isoform of protein kinase C60, 61.
What is absolutely known is that hypoxia, or oxygen deficiency, plays a major role in the breakdown of BRB in a diabetic eye and is present early in the development of DR17, 62. The pathology developing in the microvascular retinal capillaries is responsible for the breakdown of BRB. The first and most well-recognized pathologic feature of BRB is the loss of pericytes with thickening of the capillary basement membrane and microaneurysm development (Figure 1.8)34, 63, 64.

During the early stages of DR development, there is a thickening of the capillary basement membrane. Hyperglycemia is directly related to the abnormal production of constituents of the basement membrane, such as fibronectin or collagen, and accumulation of advanced glycation end products. These thicken the basement membrane, increase vascular dysfunction and may possibly occlude retinal capillaries65. Rat studies have shown that thickening of the capillary basement membrane may be prevented with aldose reductase inhibitors, but the results have not been consistent and have shown no effect on preventing the progression of DR according to a clinical trial17, 66, 67, 68. The loss of pericytes through apoptosis appears to be initiated by high blood glucose levels. Pericyte loss may potentially have an impact on the formation of microaneurysms34, 69, 70.

Due to capillary closure, oxygen delivery becomes increasingly limited in a diabetic eye, leading to retinal hypoxia. In addition, reduced oxygen delivery is further exacerbated by the higher amounts of glycated hemoglobin in diabetic patients' red blood cells34. Hemoglobin, when exposed to plasma glucose
Figure 1.8. Pathologic features of BRB breakdown in a diabetic eye. (A) Basement membrane thickening (arrow) in the retinal arteriole. Periodic acid-Schiff stain, magnification x250. Image from: Holt RIG, Cockram CS, Flyvbjerg A, Goldstein BJ. Textbook of diabetes. 4th ed. Chichester, West Sussex, UK: Wiley Blackwell; 2010. (B) Diabetic microaneurysms, trypsin retinal digestion. (C) Normal retinal capillaries, trypsin retinal digestion. Normal retinal capillaries are composed of approximately equal numbers of endothelial cells and pericytes. The nuclei of the endothelial cells are elongated while the pericytes have small, dark nuclei. The pericytes are embedded in the basement membrane of the capillary wall. (D) Retinal capillaries in diabetes mellitus, trypsin retinal digestion. A preferential loss of pericytes occurs in the early stages of diabetic retinopathy, disturbing the normal 1:1 ratio between pericytes and endothelial cells. Arrows denote pericyte ghosts in the capillary basement membrane. Diabetic thickening of the basement membrane causes intense staining with PAS stain. Images from: Eagle RC. Eye pathology an atlas and text. Philadelphia (Pennsylvania): Wolters Kluwer; Lippincott Williams & Wilkins; 2011.
Figure 8 Pathologic feature of BRB breakdown in a diabetic eye

A

B

C

D
through non-enzymatic glycation pathways, forms glycated hemoglobin71. Non-diabetic patients produce normal levels of glycated hemoglobin. In diabetic patients, if the normal blood glucose levels are not maintained and become elevated, the concentration of glycated hemoglobin increases. The lifespan of the glycated hemoglobin is approximately 3 months which allows it to be used as an approximation of average glucose levels over the last 3 months in diabetic patients. Glycated hemoglobin has a high affinity for oxygen, relative to normal hemoglobin, resulting in decreased oxygen delivery to the retina and contributing to hypoxia34. In an attempt to compensate for oxygen loss, the body increases blood flow to the retina and blood hemoglobin concentrations.

During the early stages of DR, there is vasodilation of blood vessels within the retina due to a combination of hyperglycemia and hypoxia which may further contribute to the breakdown of BRB34, 72. During the later stages, retinal hypoxia is further enhanced by decreased capillary circulation. The reduced circulation is caused by many factors. As the basement membrane thickens, the bore of the vessels affected is reduced, impeding blood flow34. Blood flow is also restricted by abnormal plasma viscosity due to increased levels of fibrinogen in diabetic patients and hemoglobin aggregation34, 73, 74, 75. Previous studies have shown that patients with diabetic retinopathy have abnormal blood viscosity. This increased plasma viscosity is due to elevated levels of fibrinogen and α-2-macroglobulin34. Compared to non-diabetic patients, patients with DR have increased red blood cell aggregation. Plasma viscosity, platelet and red blood cell function, vessel
wall structure, permeability and auto regulatory mechanisms all contribute towards the progression and severity of DR17.

Capillary closure results in a severe reduction of blood flow to the retina and increased leukocyte adherence to the capillary endothelium34, 76. The resulting tissue hypoxia results in up-regulation of adhesion molecules ICAM-1 and VCAM-1 which are involved in leukocyte adherence69, 77, 78, 79. The aggregation of red blood cells may also be involved in capillary closure80. The occlusion of capillaries further drives retinal hypoxia and the up-regulation of vascular permeability and angiogenic factors81. VEGF and nitric oxide are especially important in increased permeability and vascular dilation of BRB, control of free radicals, inflammatory mediation and hemodynamic alterations which all play a role in the disruption of BRB integrity. Hydrogen peroxide, which is produced from the phagocytosis of retinal components, disrupts tight junctions and causes dysfunction of BRB. Reactive oxygen species, also, indirectly increase vascular permeability of retinal blood vessels by increasing VEGF gene expression in endothelial cells34, 82, 83.

VEGF is an angiogenic growth factor that plays a central role in retinal neovascularization and vascular permeability which results in the development of macular edema27, 34, 84, 85. The development of ischemia in the retina creates hypoxia resulting in increased levels of hypoxia-inducible factor 1 (HIF-1) and increased levels of genes containing HIF-1 binding site in the promoter region, including VEGF27. VEGF is expressed by a wide range of cells including astrocytes, RPE, pericytes, amacrine, Muller and endothelial cells86. The exact
mechanism by which VEGF increases vascular permeability is unknown. VEGF binds to VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1), both of which are tyrosine kinase receptors and are known to regulate angiogenesis\(^97\). Activation of the receptors results in disruption of tight junctions of retinal endothelial cells by decreasing the expression of occludin which is important in tight junction stability and barrier function. As a result, the permeability of BRB increases leading to BRB breakdown in DR\(^88\). The activity of VEGF may be responsible for developing fenestrations in endothelial cells which further increases vascular permeability\(^89, 90, 91\). VEGF may also cause rearrangement of inter-endothelial junction-associated proteins such as VE-cadherin and tight junction proteins including ZO-1\(^34, 92, 93\). By creating inter-endothelial gaps, endothelial cleavage, and degenerative changes in endothelial basement membranes that affect the structural integrity of the microvessels, VEGF leads to the extravasation of albumin and blood plasma proteins\(^34, 84, 94\). According to Starling’s Law which describes the relationship between stroke volume and end diastolic volume, the end result of the process is edema formation. Edema is the term used to describe an accumulation of fluid in tissues. The increased permeability, induced by VEGF, leads to osmotically active molecules leaking out into the surrounding tissue followed by water loss. The hydrostatic pressure in the capillaries and vessels increases the flux of water from the vessels to the tissue and results in edema formation\(^95\).

By increasing permeability, VEGF has also been shown to control inflammatory responses\(^34, 85, 96\). As a result of VEGF’s pro-inflammatory actions,
ICAM-1 and VCAM-1 expression is increased on the surface of vascular endothelial cells, augmenting the attachment of leukocytes to vascular walls34, 78, 97, 98. The adherence of leukocytes to the vascular endothelium breaks down BRB, further increasing vascular permeability, retinal edema and loss of central vision by causing apoptosis of endothelial cells and blockage of the capillaries76, 77, 86, 99, 100, 101. Inhibition of VEGF and ICAM-1 has been shown to decrease the permeability of BRB34, 102.

The most common manifestation of BRB breakdown is an increase in retinal volume due to increased permeability and accumulation of extracellular fluids in the retina. The fluid accumulation occurs most commonly in macula, creating cystic spaces within and leads to edema. Edema may be spread over an area if there is widespread BRB breakdown in the peripheral retina, or can be restricted to focal areas of macular capillaries34.

During angiogenesis, there is an extensive breakdown of BRB32. Pericytes have been documented to inhibit TGF-β-mediated vascular endothelial cell proliferation. Loss of pericytes, as mentioned previously, creates a loss of this inhibitory effect and may stimulate endothelial cell proliferation and neovascularization33. New vessel formation on the retina breach through the ILM and proliferate along the interface between the vitreous and the inner surface of the retina. These new blood vessels, which grow in response to VEGF, are highly susceptible to bleeding when a posterior vitreous detachment (PVD) occurs and can result in visual loss due to vitreous hemorrhage27, 34. Furthermore, glial and RPE cells migrate and surround the neovascularization, forming fibrotic scar
tissue. If the vitreous and the scar tissue contract, traction on the retina can occur, resulting in a tractional retinal detachment. If the macula is involved, there is severe loss of vision which can become permanent unless the retina is surgically reattached in a timely matter.²⁷

The up-regulation of VEGF has been implicated in the etiology of macular edema and new vessel formation, as such, it might be expected that both abnormalities would always be present together. However, clinical data suggests otherwise. Macular edema can occur in all stages of DR. Additional factors, apart from the up-regulated VEGF, are likely involved in the etiology of macular edema and PDR in the diabetic eye.³⁴

A previous study has demonstrated that capillary outgrowth from retinal explants was significantly increased when the serum of diabetic patients was added to the media compared to serum from non-diabetic patients. A significantly greater capillary outgrowth occurred when the serum from PDR subjects was added to the media, indicating that circulatory factors play a major role in the development of DR.¹⁰³ Over time, as hyperglycemia continues to alter the microenvironment of the retina, the retinal structure deteriorates resulting in vision loss.
1.4.4 Clinical Features of Diabetic Retinopathy

DR can be broadly classified into non-proliferative diabetic retinopathy (NPDR), pre-proliferative retinopathy and proliferative retinopathy (PDR). It is crucial that the level of retinopathy is accurately diagnosed and treatment is administered depending on the specific NPDR level, as there is a risk of progression to PDR. Diabetic maculopathy, described as the presence of macular edema or DME in the macula, can occur at any or all stages of DR.
1.4.4.1 Non-proliferative diabetic retinopathy

NPDR is the milder form of retinopathy and can be further subdivided into mild, moderate and severe cases based on the extent of hemorrhages, microaneurysms, hard exudates and cotton wool spots104. Mild NPDR is marked by at least one microaneurysm and a low number of hemorrhages26. Retinal capillary microaneurysms appear as red dots which form as a result of structural weakness within the capillary wall due to the loss of structurally supportive pericytes. Microaneurysms may also form from fusion of capillary kinks or loops105. Other clinical features of NPDR are nerve fibre layer and dot blot retinal hemorrhages (Figure 1.9A), retinal exudates (Figure 1.9B) and “cotton wool spots” (Figure 1.9C) which represent localized infarction of the nerve fibre layer.

Retinal hemorrhages can occur either within the retinal substance or superficially amongst the nerve fiber layer (NFL). When present in the NFL, retinal hemorrhages tend to form strips of flame-shaped markings (Figure 1.9D). Retinal exudates are lipid residues from damaged capillaries and are yellow in appearance. They may be isolated or found in clusters which often form into circular areas surrounding a cluster of microaneuysms and are referred to as “circinate patches” (Figure 1.9E). Exudates are the result of increased vascular permeability allowing fluid and lipoprotein to leak into the surrounding retina. If exudates occur outside of the macula, no treatment is required. Over time, exudates may dissipate by themselves.

“Cotton wool spots”, or soft exudates, indicate regions of retinal ischaemia27, 29. These areas are fluffy and white in appearance representing
Figure 1.9. Non-proliferative retinopathy. (A) View of the superonasal retina showing numerous dot-blot intraretinal hemorrhages. This image was originally published in the Retina Image Bank® website. Henry J. Kaplan and Niloofar Piri. NPDR. Retina Image Bank. 2013;5345. © the American Society of Retina Specialists. (B) Exudates in the right macular area. This image was originally published in the Retina Image Bank® website. Mallika Goyal and Sridhar A. Exudative Diabetic Maculopathy. Retina Bank. 2013;11894. © the American Society of Retina Specialists. (C) Cotton wool spots. This image was originally published in the Retina Image Bank® website. Henry J. Kaplan and Niloofar Piri. Retinopathy. Retina Bank. 2013;4967. © the American Society of Retina Specialists. (D) View of elongated lighter red flame hemorrhages and more oval and darker red blot hemorrhages. Image from: Holt RIG, Cockram CS, Flyvbjerg A, Goldstein BJ. Textbook of diabetes. 4th ed. Chichester, West Sussex, UK: Wiley Blackwell; 2010. (E) Photograph of left eye shows circinate (ring pattern) lipid surrounding a leaking microaneurysm inferonasal to the optic nerve. This image was originally published in the Retina Image Bank® website. Jeffrey G. Gross. NPDR with CSME. Retina Bank. 2012;1094. © the American Society of Retina Specialists. (F) Fluorescein angiography displaying capillary nonperfusion inferior to the macula. This image was originally published in the Retina Image Bank® website. Mallika Goyal and Sridhar A. DR Nonperfusion. Retina Bank. 2014;17533. © the American Society of Retina Specialists.
Figure 9 Non-proliferative diabetic
microinfarcts developing in the nerve fiber layer of the retina and form from the accumulation of cytoplasm within the nerve axons or axoplasm. The transport system is energy-dependent and relies on the integrity of the retinal capillary bed. If a capillary occlusion occurs and nerve fibers cross the area, transport will fail. However, axoplasmic transport will continue on either side of the occlusion where the capillaries remain intact. As a result, there is an accumulation of deposits at the site of ischemia. An increase in the development and accumulation of cotton wool spots may be indicative that the retinopathy is developing into a more serious type104.
1.4.4.2 Diabetic Macular Edema

Diabetic macular edema (DME) is the most common cause of vision loss in patients with diabetic retinopathy and can occur at any stage in the overall DR process26, 27. DME is the leading cause of vision loss because T2DM is more prevalent than T1DM and maculopathy is more commonly associated with older T2DM patients. Proliferative retinopathy is more commonly associated with T1DM patients29, 106, 107.

Ischemic maculopathy develops from extensive capillary occlusions within the central retina. The macula is the centre of vision and has very high metabolic activity. If there is inadequate perfusion due to capillary closure, atrophy sets in and visual acuity decreases. The affected macula appears pale, has numerous hemorrhages and microaneurysms with no exudates present. Unfortunately, currently there is no available treatment for ischemic maculopathy.

Diabetic macular edema occurs due to the increased permeability of retinal capillaries due to the breakdown of the BRB and microaneurysms resulting in extracellular fluid and thickening of the retina17. Fluid filled cystic spaces develop within the retina and at the fovea (\textbf{Figure 1.10}). DME can be characterized as either focal or diffuse vascular leakage and is also known as exudative maculopathy due to the plasma lipoproteins which leak out, precipitate and form hard exudates27, 29. This form of maculopathy has greater vision threatening effects the closer it is to the macula and fovea. This hard exudate and macular thickening disrupts the function of the central retina, causing vision
Figure 1.10. Diabetic macular edema. (A) Fluorescein angiogram discloses petalloid pattern of intraretinal cystoid edema in fovea. (B) Cross-sectional optical coherence tomography showing clinically significant macular edema with cysts and macular thickening. (C) Large cystoid spaces filled with granular proteinaceous fluid are seen in the outer plexiform and inner nuclear layers.

loss. Exudative maculopathy should be treated as early as possible with laser or anti-VEGF injections.
1.4.4.3 Pre-proliferative Retinopathy

In pre-proliferative retinopathy, retinal capillaries continue to close resulting in further ischemia and non-perfusion. Large, blotchy hemorrhages begin to form within the retina. The formation of hemorrhages may be associated with an increased number of cotton wool spots. Intraretinal microvascular abnormality (IRMA), small vascular loops stemming from capillaries or venules, are representative of intraretinal shunt vessels and a form of abnormal vascular development. They may be seen particularly along the edges of regions of capillary occlusions and non-perfusion (Figure 1.11A). The retinal vessels may develop venous dilation, reduplication, loops and beading (Figure 1.11B and C). The occurrence of such changes is indicative that the patient has transitioned into the severe stage of NPDR and is a significant predictor of future progression towards retinal neovascularization and PDR. Diabetic patients in the pre-proliferative retinopathy stage do not always progress to proliferative retinopathy but the risk is as high as 50% within the year.
Figure 1.11. Pre-proliferative retinopathy. (A) An example of intraretinal microvascular abnormality (IRMA) in the temporal retina of the left eye (arrow). This image was originally published in the Retina Image Bank® website. Talal Basha. Maculopathy and IRMA Left Retina. Retina Bank. 2013;12528. © the American Society of Retina Specialists. (B) Example of venous loops (arrows). This image was originally published in the Retina Image Bank® website. Hamid Ahmadieh. Venous Loop & Venous Beading. Retina Bank. 2014;18246. © the American Society of Retina Specialists. (C) Venous beading (arrows). This image was originally published in the Retina Image Bank® website. Henry J. Kaplan and Niloofar Piri. Venous Beading & NVE. Retina Bank. 2013;5347. © the American Society of Retina Specialists. (D) Fluorescein angiography displaying severe capillary nonperfusion. This image was originally published in the Retina Image Bank® website. Jeffrey S. Heier. Severe Capillary Nonperfusion. Retina Bank. 2013;178. © the American Society of Retina Specialists.
1.4.4.4 Proliferative Diabetic Retinopathy

With increasing retinal capillary bed closure and ischemia, retinal neovascularization may occur. In response to ischemia, vasoproliferative growth factors are secreted to rejuvenate the retinal perfusion, but they typically fail to do so. The new vessels grow on the retinal surface, with the posterior surface of the vitreous acting as a scaffold. At the edge of both perfused and non-perfused retina, neovascularization occurs (Figure 1.12A). When compared to normal vessels, the new vessels lack endothelial tight junctions, and are therefore very permeable and fragile which may result in bleeding termed a vitreous hemorrhage. If the bleeding is limited, a few floaters might be present which the patient may or may not notice, however if there is extensive bleeding, there can be an abrupt decrease in total vision. These hemorrhages typically develop when the posterior vitreous partially detaches overlying an area of new vessel development (Figure 1.12B). As the neovascularization continues, a fibrous tissue web may accompany the growing new vessels and can eventually undergo contraction over time resulting in a retinal detachment (Figure 1.12C).
Figure 1.12. Proliferative diabetic retinopathy. (A) Network of blood vessels (arrows) arising from a normal retinal vein represents neovascularization. This image was originally published in the Retina Image Bank® website. Jason S. Calhoun. Neovascularization. Retina Bank. 2013;7786. © the American Society of Retina Specialists. (B) Vitreous traction on neovascular tissue in proliferative diabetic retinopathy gives rise to vitreous hemorrhage. This image was originally published in the Retina Image Bank® website. Carmen L Gonzalez. Proliferative Diabetic Retinopathy. Retina Bank. 2013;9750. © the American Society of Retina Specialists. (C) Significant fibrovascular proliferation is seen along the major retinal vascular arcades in the left eye of this patient with proliferative diabetic retinopathy. This image was originally published in the Retina Image Bank® website. Daniel Rojas Abatte. Fibrovascular Proliferation. Retina Bank. 2016;26778. © the American Society of Retina Specialists.
1.5 Treatments

Treatments for DR follow the results of Diabetic Retinopathy Study (DRS) and Early Treatment of Diabetic Retinopathy Study (ETDRS)\(^27\). Both were landmark trials that set guidelines for the treatment of diabetic retinopathy. The DRS (1972) was established to see if panretinal photocoagulation (PRP) could prevent vision loss in patients with PDR and to assess the safety of the procedure using different lasers\(^104\). The results of that study conclusively showed that PRP significantly reduces severe vision loss in patients with PDR, reducing blindness by 90\%\(^{26, 110-123}\). For patients with PDR, DRS showed that the treatment outweighs the risks of laser but recommended that patients with non-proliferative changes should be monitored frequently\(^104\). The ETDRS (1985) was designed to determine the ideal stage of DR to conduct PRP, whether PRP was effective in the treatment of macular edema, and if aspirin was effective in altering the development of DR\(^104\). The results indicated that focal photocoagulation reduced the risk of moderate vision loss by 50\% in patients with PDR. ETDRS showed that both early PRP before the development of high-risk PDR and the deferral of treatment until high-risk PDR develops are effective in reducing the risk of severe vision loss. Examining this evidence, it can be concluded that, as the eye approaches the high-risk stage of PDR, PRP should be considered\(^{26, 124-146}\). ETDRS also defined the stages of DR from mild, moderate, severe, very severe NPDR to early, high-risk PDR levels. The classification allows physicians to correlate the level of DR with the risk of progression and the potential outcomes of the treatments\(^27\). The definition of mild
to moderate NPDRs is when a patient has an intraretinal hemorrhage in fewer than the four quadrants of the retina (superior, inferior, nasal and temporal), microaneurisms, hard exudates, macular edema and abnormalities in the foveal avascular zone. Moderate to severe NPDR is defined as having mild/moderate intraretinal hemorrhage in four quadrants, having cotton wool spots, venous beading and IRMAs. Severe NPDR is classified as having one of the following: severe intraretinal hemorrhage in four quadrants, venous beading in two quadrants, IRMA in one quadrant. Very severe NPDR is when at least two of the three traits occur: severe intraretinal hemorrhage in four quadrants, venous beading in two quadrants, IRMA in one quadrant. PDR has three of the following: presence of neovessels, location and size of the neovessels, presence of pre-retinal hemorrhage or vitreous hemorrhage103. The two treatments used clinically for DR are PRP for PDR and the use of anti-VEGFs for DME.
1.5.1 Panretinal Photocoagulation

PRP is a laser technique employing a visible laser treatment used to destroy select portions of the peripheral retina to reduce oxygen consumption and to restore the balance between oxygen supply and demand. A patient is administered pain numbing medication in the form of proparacaine drops to the eye, the pupil is dilated and a contact lens is placed on the cornea. Mild to moderate laser burns that produce a light grey spot on the retina are delivered in a grid-like pattern, sparing the macula and optic nerve, for a total of 1800-2400 burns of 500 µm in diameter delivered over 1-4 treatment sessions. The laser ray is absorbed by the melanin in the retinal pigment epithelium and causes thermal coagulation of RPE cells and the adjacent photoreceptors. Photoreceptors use more oxygen than most cells in the body, and in this oxygen deprived environment, eliminating them is an effective method to reestablish the balance and reduce the oxygen consumption of the retina. The photoreceptors, over time, are replaced by glial cells and oxygen from the vascular choroid can diffuse through the scars in the outer retina to reach the hypoxic inner retina. The whole process increases the oxygen tension and improves hypoxia. Since hypoxia is the stimulant for VEGF and neovascularization, the increased oxygen supply results in a stabilization of VEGF production back to normal levels, decreasing endothelial cell proliferation, decreasing permeability and decreasing neovascularization. Overall, the treatment reduces the oxygen consumption and the number of photoreceptors in the outer retina by approximately 20%.
Figure 1.13. Panretinal photocoagulation. (A) Ultra-wide field OPTOS photograph taken after panretinal photocoagulation in a patient with proliferative diabetic retinopathy. (B) The outer retina and retinal pigment epithelium are photocoagulated and the photoreceptors are absent, whereas the inner retina is relatively intact. Image from: Stefánsson E. The Mechanism of Retinal Photocoagulation – How Does the Laser Work? European Ophthalmic Review 2009;02(01):76-79.
Figure 1.14. Effect of panretinal photocoagulation treatment. (A) The oxygen flux is represented by a black arrow, coming from the choroid and passing through a laser scar into the inner retina. In the laser scar, photoreceptors are replaced by glia and the oxygen consumption is decreased. The oxygen flux from the choroid would normally be consumed by the photoreceptors, indicated by the green arrow. As the oxygen consumption of the glia is less than that of photoreceptors, the oxygen flux reaches the inner retina. (B) The schematic flow diagram explains the mechanism by which retinal photocoagulation affects retinal neovascularization and macular edema in diabetic retinopathy and other ischemic retinopathies. RPE = retinal pigment epithelial. Adapted from: Stefánsson E. The Mechanism of Retinal Photocoagulation – How Does the Laser Work? European Ophthalmic Review 2009;02(01):76-79.
Figure 14 Effect of
Laser can also be administered as a focal treatment for macular edema to ablate leaky microaneurysms around the macula and reduce swelling. This decreases the hydrostatic pressure of capillaries and venules, decreasing water flux from the vasculature to the tissue according to Starling’s law and reducing edema formation95. Focal laser is administered at a diameter of 100-200 µm to seal the small leaky microaneurysms around the macula17.

Based on the ETDRS, the current guidelines for diabetic retinopathy from the Royal College of Ophthalmologists state that patients with mild or moderate NPDR do not require treatment but require annual monitoring and are advised to maintain good glycemic control153. Patients with severe NPDR require closer monitoring with an assessment every 6 months to detect progression of the disease to PDR. In T2DM patients with very severe NPDR, PRP can be considered if the patient is an older T2DM, monitoring of DR is difficult due to compliance or obscured view of retina, prior cataract surgery and if vision has been lost in one eye. Patients with PDR urgently require PRP to prevent vision loss104. Since the primary goal of focal laser treatment is to reduce the risk of further vision loss and not to improve vision, treatment with focal laser for patients with macular edema should be considered when the macula is under the risk of being damaged even when vision is 20/2026, 27.
1.5.2 Anti-VEGF Therapy

VEGF is involved in neovascularization, increased vascular permeability and the development of diabetic macular edema. Anti-VEGF treatment has become the gold standard for treating centre-involved diabetic macular edema (edema within the macula)\(^5\). In humans, VEGF family consists of VEGF-A, -B, -C, -D and placental growth factor (PlGF)\(^{154-156}\). VEGF-A is the key target in antiangiogenic therapy since it is the major driver of pathological angiogenesis and is involved in increased permeability in DME\(^{154}\). As a result of alternative splicing and cleavage, VEGF-A is subdivided into several different isoforms\(^{154, 155}\). The VEGF-A isoforms differ in their size and their ability to bind heparin or neuropilins, but are all active as dimers\(^{154}\).

Over time, new forms of anti-VEGFs have been developed that have increased affinity for VEGF-A as well as an ability to inhibit a broad range of isoforms and other family members of VEGF, thus increasing the anti-angiogenic activity\(^{154}\). The three VEGF inhibitors used clinically are bevacizumab (Avastin), ranibizumab (Lucentis) and aflibercept (Eylea) (Figure 1.15)\(^5\). Anti-VEGF treatment is administered through a transcleral intravitreal injection in the office setting. The therapy aims to decrease macular swelling through inhibiting the actions of VEGF by preventing the binding of VEGF to its receptor. As the result of inhibition, vascular permeability, endothelial cell proliferation and endothelial cell migration are significantly reduced\(^{154, 155}\).
Figure 1.15. Anti-VEGF agents clinically used for DME treatment. Molecular differences between VEGF inhibitors. Aflibercept is a fusion protein consisting of the key VEGF-binding domains of human VEGF receptors 1 and 2. Bevacizumab is a recombinant, full-length humanized monoclonal antibody and ranibizumab is an affinity-matured antigen-binding fragment (Fab) of the antibody derived from bevacizumab.
Bevacizumab (Avastin) is a recombinant, full-length humanized monoclonal antibody that binds all known isoforms of VEGF-A154. The drug is approved for the treatment of colorectal cancer but does not have Health Canada approval for intraocular use and is thus used off-label154, 157, 158.

Ranibizumab (Lucentis) was developed for intravitreal administration to treat wet age-related macular degeneration and has subsequently been approved by Health Canada for DME. Ranibizumab (Lucentis) is an affinity-matured antigen-binding fragment (Fab) of the antibody derived from bevacizumab (Avastin)5, 154. Ranibizumab (Lucentis) has approximately 2.5 times greater affinity for VEGF, has been shown to be more effective than Bevacizumab (Avastin) and inhibits all known VEGF-A isoforms159, 160.

Aflibercept (Eylea), also known as VEGF trap, is a human recombinant fusion protein consisting of the key VEGF-binding domains of human VEGF receptors 1 and 2160. Overall, VEGF trap is the second Ig domain of human VEGFR1 and the third Ig domain of human VEGFR2 expressed as an inline fusion with the constant region (Fc) of human IgG\textsubscript{1}154, 161. Similar to bevacizumab and ranibizumab, aflibercept (Eylea) binds multiple isoforms of VEGF-A but is also capable of binding to VEGF-B and PIGF which are involved in vascular remodelling154, 162. Aflibercept (Eylea) is a potent drug, binding to VEGF-A with much greater affinity and a faster association rate than ranibizumab (Lucentis) or bevacizumab (Avastin). In 2014, Aflibercept was approved by Health Canada for the use in wet age-related macular degeneration and DME163.
In two masked phase 3 clinical trials named RISE and RIDE, monthly injections of ranibizumab with and without laser were compared to the gold standard at the time, focal laser, with findings that visual acuity improved compared to a sham injection over a two year time period\(^{163}\). In the RISE study, 44% of patients treated with ranibizumab had an improvement in central vision by 15 letters or more compared to 18% in the control arm. In the RIDE study, 33% of patients intravitreally injected with ranibizumab at a dose of 0.3 mg and 45% of patients at a dose of 0.5 mg gained 15 letters or more, indicating that 0.5 mg should be the clinical dose administered to patients\(^{163, 164}\). Another study, RESTORE, found that a dose of 0.5 mg of ranibizumab administered once a month for 3 months followed by an as-needed treatment thereafter significantly improved visual acuity and reduced macular thickness in patients\(^{163, 165}\). The study helped establish the gold standard for treatment of DME patients in clinic. However, the effects of ranibizumab injections do not last in all patients and many patients require repeated injections to sustain the beneficial effects\(^5\).
1.6 Risks

1.6.1 Panretinal Photocoagulation

Although laser surgery is often considered painless, when the peripheral retina is being treated, it is common for the patients to experience some discomfort or pain\cite{26,166}. To minimize the pain associated with the procedure, patients are given topical anesthetic and Tylenol post-treatment. To further reduce the stress, PRP is often administered in multiple sessions to minimize pain and improve patient experience.

A potential complication of PRP may be the development or digression of edema post-PRP. If the laser is too powerful, the ray may disrupt BRB and fluid can leak from the choroid into the retina. However, BRB is usually restored after 7-10 days\cite{167}. To reduce edema, physicians break up PRP treatment into multiple sessions to reduce the number of burns and thus the overall risk\cite{166}.

As a result of the treatment, PRP destroys the peripheral photoreceptors of the retina to reduce oxygen consumption, leading to a slight visual field loss. The negative impact is well established and has been documented by numerous studies showing that in the short-term, visual field depression is stable\cite{166}.

Some patient’s post-PRP may have diminished colour vision. The finding has been reported in ETDRS and it is proposed that it may potentially lead to direct cone destruction\cite{167}. In order to reduce the risk of the side effect, laser treatments should be administered in multiple sessions and at minimal duration.
and intensity166,167. Several patients have reported decreased night vision and transient contrast sensitivity post-PRP, although, the degree to which PRP affects either is not fully understood166,168. Studies have noted that diminished night vision and contrast sensitivity are potential side effects of severe retinopathy. As such, it is difficult of establish whether the effects experienced by the patients are due to the laser treatment or the progression of the disease168.

Post-laser, choroidal effusions or retinal detachments may occur which may lead to narrowing of the anterior angle, increased IOP or angle-closer glaucoma. This risk is further minimized when treatment is administered in multiple sessions166.

Post-laser, posterior segment complications, such as a vitreous detachment, may occur. The detachment may be partial or complete and may cause a retinal tear or elevate new vessels causing retinal hemorrhage to develop167. The application of burns with the laser may cause a formation of epiretinal membrane. An epiretinal membrane is a thin sheet of fibrous tissue that forms over the surface of the macular area of the retina. Surgical procedure is required to treat the complication.
1.6.2 Anti-VEGF Therapy

Since anti-VEGF therapy is administered through an intravitreal injection, the main risk is the development of endophthalmitis, an intraocular infection involving the aqueous and vitreous33, 169. The incidence of developing endophthalmitis is 0.019-1.6\%, with the reported rate in recent studies skewing towards the lower incidence rate169. The most important factor in reducing the risk of endophthalmitis is maintaining sterility through the use of topical antiseptic such as 5\% povidone-iodine solution169. During the injection, it is very important to avoid any contact of the sterile needle with the lashes and eyelids of the patient.

Intraocular inflammation occurs in approximately 1.4-2.9\% of patients undergoing intravitreal injections of anti-VEGFs169, 170. As opposed to the infectious endophthalmitis which develops over 2.55 days, acute intraocular inflammation occurs less than 1 day post-injection. Physicians recommend that patients who arrive to the clinic with the symptoms of intraocular inflammation should be treated as potentially being affected with endophthalmitis and administer intravitreal antibiotics169, 170.

There is a 0-0.67\% chance of developing a rhegmatogenous retinal detachment after intravitreal injection likely due to the creation of a posterior vitreous detachment or improper needle placement169, 171, 172. Monitoring the technique and using smaller gauge needles is recommended to avoid the retinal detachment.
Intravitreal injections have been documented to cause acute IOP elevation that last several hours169, 173, 174. Numerous theories have been proposed to address the cause of the issue. More prominent theories suggest that IOP elevation may be due to pharmacologic effects of blocking VEGF, an inflammatory mechanism, or impaired/damaged outflow due to repeated injections175. Topical glaucoma eye drops may be prescribed to lower the acute IOP. Patients with sustained increases in IOP require routine monitoring.

Hemorrhages have been reported in patients post-injection. Subconjunctival hemorrhage or bleeding underneath the conjunctiva of the eye has been reported in roughly 10\% of treatments, with patients receiving aspirin having a much higher frequency. In fewer cases, subretinal hemorrhages have also been reported although discontinuing anticoagulants is not advised for the patients due to risk of thromboembolic events169, 176-182.
1.7 Rationale

Over the past decade, there have been increased clinical reports of diabetic patients either post-PRP or treated with anti-VEGFs developing signs of glaucoma and optic neuropathy. The issue has been publicly discussed by Dr. Marianne Edwards in her presentation, “Post-Anti-VEGF injection related glaucoma,” at the 2014 Canadian Ophthalmological Society Annual Meeting. With the continued and increased use of intraocular anti-VEGF treatments and PRP being the gold standard treatment used to stabilize and control proliferative disease, numerous questions have been raised. Do these treatments increase the risk of developing glaucoma? What are the long-term effects of these treatments on the optic nerve? None of these questions have been examined in patients with DR nor have the effects of these treatments on retinal perfusion have been assessed. Controlled trials that not only look at visual acuity and central thickness but also retinal and optic structures are greatly needed to substantiate the safety and efficacy of PRP therapy and anti-VEGF drugs.
1.8 Hypothesis

The current study is based on the hypothesis that:

A) In respect to PRP treatments, PASCAL photocoagulation is a safe and effective panretinal laser treatment that will not cause structural and functional changes in the retina and optic nerve, specifically changes to total retinal thickness, thickness of the nerve fiber layer and optic nerve cupping.

B) Regarding anti-VEGF treatment, increased exposure to anti-VEGF will result in increased retinal cell death and morphological changes to the optic nerve.
1.9 Specific Aims

PRP Treatment

1. To use structural (OCT, HRT) and functional (visual field, visual acuity) diagnostic systems to monitor the total retinal thickness, nerve fiber layer of the macula, optic nerve and visual field to see if there are any progressive long term changes following the PASCAL laser system.

2. To quantify the amount of ischemia to PRP performed.

Anti-VEGF Treatment

3. To describe the effects of anti-VEGF injections and the frequency of injections on the structural and functional changes to the retina and optic nerve of DR patients with underlying DME using in vivo clinical pathological analysis.

4. To evaluate the effect of VEGF inhibition on neuronal cells in a STZ-induced diabetic rat retina by performing intravitreal anti-VEGF injections with different doses.

5. To determine if exposure to different doses of anti-VEGF alter retinal cells metabolic activity and function or induce toxicity by various colorimetric assays.
1.10 References

52. Klein R, Klein BEK, Moss SE, Davis MD, DeMets DL. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. II Prevalence and risk of

126. The Early Treatment Diabetic Retinopathy Study Research Group.

127. The Early Treatment Diabetic Retinopathy Study Research Group.

Chapter 2

2 The structural and functional changes to the retina and optic nerve following panretinal photocoagulation over a 2-year time period

The chapter addresses specific objectives outlined in aims 1 and 2:

1. To use structural (OCT, HRT) and functional (visual field, visual acuity) diagnostic systems to monitor the total retinal thickness, nerve fiber layer of the macula, optic nerve and visual field to see if there are any progressive long term changes following the PASCAL laser system.

2. To quantify the amount of ischemia to PRP performed.

\[\text{Parts of this work have been published in the following manuscript:}\]

2.1 Introduction

Diabetic retinopathy (DR) is the leading cause of blindness among working-aged adults that affects more than 141 million adults worldwide\(^1,2\). Over the past 40 years, epidemiological studies and clinical trials have demonstrated that timely laser photocoagulation treatment can prevent vision loss in DR patients. Panretinal photocoagulation (PRP) has been shown to stabilize and control the proliferative disease and, since the Diabetic Retinopathy Study, has become the gold standard treatment\(^3,4\). Whereas there are reports of PRP resulting in visual field changes, few studies have looked at the impact the procedure has on the optic nerve, especially the long-term effects\(^5\). The risk of a concurrent diagnosis of treated DR and normal tension glaucoma exists without adequate awareness of the potential impact of PRP on the appearance of the optic nerve head. While PRP has revolutionized how DR patients are managed, the long-term structural and functional effects of PRP on the retina and optic nerve remain to be determined.

Several studies have looked at the short-term effects of PRP on the retina. The Manchester Pascal Study Report 3 expanded on these projects by looking at the short-term effects of Pascal laser on the retinal nerve fiber layer over the course of 12 weeks\(^6,7\). A major limitation of the previous studies has been the relatively short-term evaluation of the effects. Furthermore, despite the evident need, no study has looked at the long-term consequences of the laser treatment.
on the retina or established whether the observed changes were due to the laser or progression of diabetes.

The purpose of the following study is to evaluate retinal and optic nerve changes using structural and functional diagnostic tests at 6, 12, and 24 months in DR patients post laser treatment. This is the first comprehensive study to investigate the long-term structural and functional effects of PRP on the retina and optic nerve that involves analysis of macular thickness, the RNFL, mean perfusion, vertical C/D ratio, cup volume, stereo photos, IOP, visual acuity and visual fields.
2.2 Methods

The following was a prospective study conducted at the Ivey Eye Institute, a tertiary care academic center in London, Ontario, Canada. The study complies with Declaration of Helsinki and was approved by Health Sciences Research Ethics Board of Western University. Prospective, treatment- naïve patients over the age of 18 years who had severe non-proliferative and proliferative DR, according to the ETDRS guidelines, and required PRP were recruited into the study. Participants were excluded from the study if they had advanced lens opacity or cataract that could affect diagnostic testing, history of glaucoma or any other disorder of the optic nerve (optic neuropathy, neuritis, uveitis or retinal degeneration), presence of macular edema (central macular thickness >300 μm) and prior retinal treatment (PRP, focal laser or surgery within 6 months of participation). All participants provided informed consent. From this group, eight patients who did not receive laser treatment, as the diabetic retinopathy was at the severe non-proliferative state, were chosen as the control. Participants were evaluated at baseline (pre-laser), 6, 12, and 24 months post-laser. During each study visit, participants underwent optical coherence tomography (OCT), Heidelberg Retinal Tomography (HRT), visual field (VF) and intravenous fluorescein angiography (IVFA) testing as well as a standard ophthalmic exam which included best-corrected Snellen visual acuity (BCVA), intraocular measurement using Goldmann applanation tonometry, and slip lamp examination. Humphrey 24-2 SITA visual field testing was performed with undilated eyes.
2.2.1 Optical Coherence Tomography

Macular thickness, optic disc cube and HD 5 line raster images were obtained using OCT (Cirrus HD-OCT 4000, Carl Zeiss Meditech, Dublin, California). The principles and the protocol have been previously described in detail7, 8, 9, 10. OCT tests were taken at baseline, 6, 12, and 24 months post-laser. Each scan was repeated 3 times to ensure collection of the highest signal strength.

Analysis of the macula were performed using 6 x 6 mm scans with 512 x 128 resolution (128 horizontal scan lines consisting of 512 A-scans). The macular thickness was displayed as 3 concentric circles, with a 1 mm diameter central circular subfield, a 3 mm diameter inner ring, and a 6 mm diameter outer ring. Each ring was divided into superior, inferior, nasal, and temporal quadrants7. When performing a scan of the optic nerve, a 3.4 mm ring was centered on the optic nerve and 768 A-scans were performed11, 12. The average RNFL thickness and vertical C/D ratio were measured. To analyze images of the retinal structure, HD 5 line raster was performed. This high-density scan performs 4,096 A-scans in five planes to provide a highly detailed image12.

2.2.2 Heidelberg Retinal Tomography

Imaging of the optic nerve was performed by Heidelberg Retina Tomograph II. The scanning protocol has been previously described in detail13, 14. Each scan was repeated 3 times to allow for selection of a scan with low
standard deviation. In brief, the optic disc margin contour line was marked at the inner border of the scleral ring by observing disk images. Once the contour line was marked, a standard reference plane was placed 50 μm posterior to the mean retinal height between 350° and 356° along the contour line15. The area superficial to the reference plane is considered to be the neuroretinal rim while the area deep to the plane is considered to be the cup. HRT software analyzes the shape of the optic nerve and determines, based on the set of stereometric parameters, whether it is within or outside of the normal limits. These parameters were also used to calculate the glaucomatous progression16.

2.2.3 Humphrey Visual Field Analyzer

Standard Humphrey 24-2 SITA testing algorithm was performed on Humphrey Field Analyzer, model 750i (Zeiss Humphrey Systems, Dublin, CA, USA). In 24-2 SITA testing algorithm, 54 individual points were tested. The threshold values calculated from the individual points were then compared to a normative database for similar aged normal-sighted individuals17. Data with fixation losses and false negative responses greater than 20% and false positive responses greater than 15% were excluded from the study16.

2.2.4 Wide-Field Fluorescein Angiogram and Quantification of Ischemia

Angiography was performed on Optos 200 Tx with an intravenous injection of 5 ml of 10% sodium fluorescein18. Digital stereoscopic photographs
and IVFA images were taken. The best IVFA image, obtained during the arteriovenous phase of each patient, was used to quantify the amount of ischemia. The uncompressed tiff images were transferred from the Optos V2 Vantage Review Software to Adobe software (Adobe Systems, Inc, San Jose, CA) for analysis.

Two graders quantified the amount of ischemia in each patient using the concentric rings method which has been previously described in detail. In the method, the innermost circle is first centered on the optic nerve to be sized proportionately and then repositioned to be fovea-centered. The 12 segments in each of the rings were graded as, “perfused,” or “non-perfused,” based upon whether more than 50% of the segment showed either a perfused or non-perfused morphology. The classification of “non-perfused” and “perfused” morphology was taken from the SCORE study. In the control and PRP laser eyes, “non-perfused” was characterized by a darker appearance of the retina and pruned tree appearance (narrowed and difficult to see) of surrounding arterioles. “Perfused” morphology was characterized by its clear ground-glass opacity.

Calculations of the mean perfused ratio were performed using the mean perfusion ratio = area perfused/ (area perfused + non-perfused). Each segment in each of the rings was given a value of either 0 indicating non-perfused or 1 indicating perfused retina.
2.2.5 Optic Nerve Grading

Stereoscopic photographs were taken with Optos 200 Tx at baseline, 6, 12, and 24 months post-laser. Optic nerve photographs were cropped to a size of 4 x 4 mm for grading. Two glaucoma specialists independently graded the C/D ratio of the laser treated eyes and control eyes of diabetic patients not requiring laser. The graders were masked to the type of patients and purpose of the study.

2.2.6 Pattern Scan Laser Photocoagulator (Pascal)

Pascal laser is a semi-automated 532 nm frequency-doubled neodymium-doped yttrium aluminum garnet (Nd:YAG) solid-state laser21. The laser was applied in a pattern array using very short pulse durations of 10-20 ms for each burn with typically a higher power compared to conventional photocoagulation (100 mW and 100 ms pulse duration). All patients received PRP with a pulse duration of 20 ms and a spot size of 200 mm. Power of the laser beam varied between 430 and 600 mW to achieve a mild gray-white burn intensity, which according to the ETDRS guidelines, is a grade 2+ and 3+ burn. Patients received a mean ± standard deviation of 1720.8± 392.3 laser spots ranging from 1125 to 2125 spots. Between sessions, there was an interval of two to three weeks.

2.2.7 Statistical Analysis

Statistical analysis was performed using GraphPad Prism 5 (GraphPad Software, La Jolla, CA). For statistical analysis, Snellen BCVA measurements
were converted to logarithm of the minimum angle of resolution (logMAR) scores. Unpaired t-test was used to compare the average age and Fisher’s exact test was used to compare the percentage of female participants between control and PRP laser groups. Paired t-test was used to compare differences at specified points over time in PRP treated and control groups. Repeated measures ANOVA with Bonferroni’s multiple comparison test was used to statistically analyze the interval changes of measurements in PRP laser and control groups at baseline, 6, 12, and 24 months, respectively. ANOVA with Bonferroni method was performed as outlined in J Neter, W Wasserman, and MH Kutner, Applied Linear Statistical Models, 3rd edition, Irwin, 1990. All data was expressed as mean ± SD and accepted as statistically significant if p<0.05. A correction of p<0.017 was applied for the Bonferroni's multiple comparison test.

To calculate sample size with an overall power of 80%, p<0.05 was used as an acceptable significance level. Using a two-tailed test for a control with an optic nerve of size 0.3 and an atrophy group of size 0.6, both derived from cup/disk ratio, the effect size would be 0.3. Adding the values to the sample size calculation, 16 patients would be needed for an 80% power number. Twenty diabetic patients requiring PRP were recruited into the study but four were removed due to patient compliance. Eight patients were used as diabetic controls not requiring laser. The diabetic control group did not have proliferative disease that developed during the two year study period. They were included to ensure that the observed changes could be correlated with the laser treatments and not due to diabetic disease progression itself.
2.3 Results

A single eye from each of the 16 patients requiring PRP and 8 control patients not requiring PRP, who were recruited between December 20, 2013, to December 27, 2015, were analyzed. The average age of patients was 70.6 ± 8.4 years for the control group and 65.7 ± 12.5 years for the PRP laser group. The control group had 37.5% female participants while the PRP laser group had 25% female participants. The control and PRP laser groups did not significantly differ (p>0.05) in any of these categories (Table 2.1). None of the patients developed diabetic macular edema during the study.

Following laser treatment, the macular thickness (Figure 2.1A) increased by 3.9 µM at 6 months (298.10 ± 29.02 µM, p=0.44) relative to baseline (294.20 ± 24.20 µM). The macular thickness recovered to 293.30 ± 20.99 µM at 12 months (p=0.82) and 291.90 ± 25.41 µM at 24 months (p=0.74). Compared to baseline (276.60 ± 35.36 µM), the control group showed no significant change in macular thickness at 6 months (273.40 ± 29.22 µM, p=0.27), 12 months (274.90 ± 33.48 µM, p=0.72), and 24 months (272.80 ± 36.51 µM, p=0.31).

RNFL thickness (Figure 2.1B) increased at 6 months (86.25 ± 12.07 µM, p=0.14), 12 months (85.50 ± 9.70 µM, p=0.29) and 24 months (84.38 ± 13.09 µM, p=0.56) compared to baseline (82.75 ± 11.38 µM). The control group had no significant change in RNFL thickness at 6 months (74.88 ± 9.96 µM, p=0.51), 12 months (74.38 ± 8.78 µM, p=0.93), and 24 months (72.75 ± 9.15 µM, p=0.40) compared to baseline (74.25 ± 10.39 µM). Analyzing each region, there was no
Table 2.1. Patient demographics

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>PRP Laser</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of eyes</td>
<td>8</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Average age (years± SD)</td>
<td>70.6±8.4</td>
<td>65.7±12.5</td>
<td>0.33*</td>
</tr>
<tr>
<td>Female Participants (%)</td>
<td>37.5%</td>
<td>25%</td>
<td>0.65†</td>
</tr>
<tr>
<td>Mean laser spots ± standard deviation</td>
<td>-</td>
<td>1720.8± 392.3</td>
<td>-</td>
</tr>
</tbody>
</table>

*Unpaired t test
†Fisher’s exact test
Figure 2.1. Interval changes in (A) macular thickness, (B) RNFL thickness and (C) mean perfused ratio at baseline, 6, 12, and 24 months later in the control and PRP laser groups. p-value: control group differences between baseline and post-follow-up measurements, paired t-test. p'-value: PRP laser group differences between baseline and post-laser measurements, paired t-test.
Figure 16 chapter 2 figure 1 Interval changes in (A) macular thickness, (B) RNFL thickness and (C) mean perfused ratio at baseline, 6, 12, and 24 months later in the
significant difference in thickness in the superior, inferior, temporal and nasal regions of the RNFL for both the control and PRP laser groups (P ≥ 0.18) (Table 2.2).

The mean perfused ratio showed no significant difference at 6 months (0.45 ± 0.15, p=0.16) but a significant improvement at 12 months (0.47 ± 0.14, p=0.02) and 24 months (0.49 ± 0.15, p=0.02) compared to baseline (0.44 ± 0.15) (Figure 2.1C). There was no significant difference in the control group at 6 months (0.61 ± 0.21, p=1.00), 12 months (0.61 ± 0.22, p=0.68) and 24 months (0.61 ± 0.22, p=0.80) compared to baseline (0.61 ± 0.21).

Analysis of the optic nerve and the associated vertical C/D ratio by OCT (Figure 2.2A) showed a slight increase at 6 months (0.48 ± 0.19, p=0.43), 12 months (0.47 ± 0.20, p=0.61) and 24 months (0.47 ± 0.19, p=0.62) compared to baseline (0.46 ± 0.19). Vertical C/D ratio remained consistent in the control group, being 0.52 ± 0.29 at baseline, 0.54 ± 0.23 at 6 months (p=0.57), 0.54 ± 0.24 at 12 months (p=0.64) and 0.54 ± 0.27 at 24 months (p=0.37).

Analysis of the optic nerve and the corresponding vertical C/D ratio using the HRT (Figure 2.2B) showed an increase at 6 months (0.33 ± 0.30, p=0.24) compared to baseline (0.27 ± 0.26) in the PRP laser group. The ratio remained elevated at 12 months (0.32 ± 0.28, p=0.34) and 24 months (0.31 ± 0.28, p=0.44) post-laser. Vertical C/D ratio showed no significant difference in the control group at 6 months (0.34 ± 0.31, p=0.61), 12 months (0.32 ± 0.30, p=0.44) and 24 months (0.33 ± 0.29, p=0.51) compared to baseline (0.35 ± 0.28).
Table 2.2. Changes in RNFL thickness (µm) over the course of 24 months in the control and PRP laser groups.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>6 months</th>
<th>12 months</th>
<th>24 months</th>
<th>P-Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>74.25 ± 10.39</td>
<td>74.88 ± 9.96</td>
<td>74.38 ± 8.78</td>
<td>72.75 ± 9.15</td>
<td>0.41</td>
</tr>
<tr>
<td>PRP Laser</td>
<td>82.75 ± 11.38</td>
<td>86.25 ± 12.07</td>
<td>85.50 ± 9.70</td>
<td>84.38 ± 13.09</td>
<td>0.42</td>
</tr>
<tr>
<td>Superior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>83.25 ± 18.38</td>
<td>82.75 ± 14.96</td>
<td>81.13 ± 14.93</td>
<td>79.75 ± 12.83</td>
<td>0.30</td>
</tr>
<tr>
<td>PRP Laser</td>
<td>100.00 ± 18.35</td>
<td>103.38 ± 17.04</td>
<td>101.75 ± 17.30</td>
<td>103.25 ± 23.13</td>
<td>0.78</td>
</tr>
<tr>
<td>Inferior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>85.25 ± 12.52</td>
<td>86.38 ± 14.14</td>
<td>84.88 ± 17.63</td>
<td>85.75 ± 17.65</td>
<td>0.95</td>
</tr>
<tr>
<td>PRP Laser</td>
<td>97.19 ± 19.90</td>
<td>102.38 ± 18.79</td>
<td>101.56 ± 15.74</td>
<td>99.13 ± 21.87</td>
<td>0.48</td>
</tr>
<tr>
<td>Temporal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>62.75 ± 15.15</td>
<td>64.00 ± 14.31</td>
<td>62.25 ± 10.73</td>
<td>58.75 ± 16.42</td>
<td>0.18</td>
</tr>
<tr>
<td>PRP Laser</td>
<td>66.38 ± 12.84</td>
<td>68.56 ± 11.87</td>
<td>69.13 ± 10.21</td>
<td>65.19 ± 11.02</td>
<td>0.21</td>
</tr>
<tr>
<td>Nasal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>66.00 ± 11.41</td>
<td>66.5 ± 8.65</td>
<td>68.88 ± 8.11</td>
<td>66.5 ± 7.05</td>
<td>0.62</td>
</tr>
<tr>
<td>PRP Laser</td>
<td>67.44 ± 8.22</td>
<td>70.56 ± 9.13</td>
<td>69.44 ± 10.94</td>
<td>69.75 ± 14.57</td>
<td>0.66</td>
</tr>
</tbody>
</table>

RNFL = retinal nerve fiber layer

*Repeated Measures ANOVA
Figure 2.2. Interval changes in vertical cup/disk ratio measured on the (A) OCT and (B) HRT at baseline, 6, 12, and 24 months later in the control and PRP laser groups. p-value: control group differences between baseline and post-follow-up measurements, paired t-test. p'-value: PRP laser group differences between baseline and post-laser measurements, paired t-test.
Figure 17 Interval changes in vertical cup/disk ratio measured on the (A) OCT and (B) HRT at baseline, 6, 12, and 24 months later in the control and PRP laser groups.
Two glaucoma specialists were assigned to independently grade the vertical C/D ratio in the same eyes following PRP laser using stereo photographs (Figure 2.3A). Grader 1 indicated at baseline, the mean vertical C/D was 0.44 ± 0.17 and noted an increase at 6 months (0.46 ± 0.17, p=0.08), 12 months (0.46 ± 0.16, p=0.15) and 24 months (0.47 ± 0.16, p=0.13) post-laser. Grader 2 indicated baseline mean vertical C/D ratio of 0.35 ± 0.17 and noted a significant increase at 6 months (0.37 ± 0.18, p=0.04), and 12 months (0.38 ± 0.18, p=0.02) with a further increase at 24 months (0.40 ± 0.19, p=0.005) post-laser. The graders also graded control eyes of diabetic patients not requiring laser treatment. Both grader 1 and 2 found that over 24 months there was no significant difference (p ≥ 0.10) (Figure 2.3B).

After the laser treatment, visual field tests had an average baseline mean deviation (MD) (Figure 2.4A) in the PRP laser group of -4.39 ± 3.10 dB. Mean MD digressed at 6 months by 1.30 dB (-5.68 ± 5.03 dB, p=0.24) and further significantly decreased at 12 months (-5.73 ± 4.07 dB, p=0.02) and 24 months (-6.36 ± 3.74, p=0.01) post-laser. Control group showed no significant differences in visual field mean MD at baseline (-8.46 ± 8.83 dB), 6 months (-8.43 ± 6.29 dB, p=0.98), 12 months (-7.41 ± 4.78 dB, p=0.53) and 24 months (-9.19 ± 6.35 dB, p=0.64).

Baseline mean best-corrected visual acuities (Figure 2.4B) were 0.32 ± 0.24 logMAR in the control group and 0.34 ± 0.31 logMAR in the PRP laser group. Visual acuity slightly increased to 0.3 ± 0.29 logMAR at 6 months (p=0.32)
Figure 2.3. Interval changes in vertical cup/disk ratio as measured by two masked glaucoma specialists using stereo photographs at baseline, 6, 12, and 24 months later in the (A) PRP laser group and the (B) control group. p-value: grader 1 differences between baseline and post-laser measurements, paired t-test. p’-value: grader 2 differences between baseline and post-laser measurements, paired t-test.
Figure 18: Interval changes in vertical cup/disk ratio as measured by two masked glaucoma specialists using stereo photographs at baseline.
Figure 2.4. Interval changes in mean deviation measured on the (A) Humphrey Visual Field Analyzer and (B) visual acuity at baseline, 6, 12, and 24 months later in the control and PRP laser groups. p-value: control group differences between baseline and post-follow-up measurements, paired t-test. p'-value: PRP laser group differences between baseline and post-laser measurements, paired t-test.
Figure 19 Interval changes in mean deviation measured on the (A) Humphrey Visual Field Analyzer and (B) visual acuity.
but gradually decreased to 0.36 ± 0.33 logMAR at 12 months (p=0.58) and 0.38 ± 0.30 logMAR at 24 months (p=0.37) post-laser. Visual acuity remained consistent in the control group, being 0.32 ± 0.24 logMAR at baseline, 0.29 ± 0.23 logMAR at 6 months (p=0.59), 0.31 ± 0.21 logMAR at 12 months (p=0.90) and 0.33 ± 0.20 logMAR at 24 months (p=0.85). The changes were not statistically significant.

After Pascal photocoagulation, intraocular pressure (IOP) (Figure 2.5) significantly decreased (p=0.04) by 1.5 mmHg at 6 months (17.31 ± 3.26 mmHg) compared to baseline (18.81 ± 4.04 mmHg). The pressure remained at 17.31 ± 3.05 mm Hg at 12 months (p=0.12) but then increased close to control values (18.25 ± 3.98 mmHg) at 24 months (p=0.68). In the control group, IOP remained constant, being 17.38 ± 2.00 mmHg at baseline, 17.13 ± 2.59 mmHg at 6 months (p=0.81), 17.00 ± 1.69 mmHg at 12 months (p=0.70) and 17.50 ± 3.30 mmHg at 24 months (p=0.93). The changes were not statistically significant.
Figure 2.5. Interval changes in intraocular pressure at baseline, 6, 12, and 24 months later in the control and PRP laser groups. mm Hg= millimeter of mercury. p-value: control group differences between baseline and post-follow-up measurements, paired t-test. p'-value: PRP laser group differences between baseline and post-laser measurements, paired t-test.
Figure 20 Interval changes in intraocular pressure at baseline, 6, 12, and 24 months later in the control and PRP laser.
2.4 Discussion

PRP laser used in this study was Pascal Pattern Scan Laser (OptiMedica, Santa Clara, CA, USA). Compared to conventional photocoagulation lasers which use lower power (100 mW) and longer pulse duration (100 ms), Pascal laser is applied in a pattern array, using very short pulse durations of 10-20 ms for each burn, and typically outputs a higher power. As a result, researchers have suggested that Pascal laser may promote healing while causing less collateral damage compared to conventional photocoagulation lasers\(^{22}\). Despite differences between Pascal laser and conventional argon laser for PRP, past studies have shown that there are no significant differences in the outcomes for patients between the two lasers, showing similar effects on the regression of DR\(^{22-25}\).

The macular and RNFL thickness (Figures 2.1A and B) showed an increase at 6 months and a decrease by 24 months post-laser indicating recovery. Past studies have described similar increases in thickness pre-6 months, likely due to post-laser intraretinal inflammation\(^{7,26,27}\). Photocoagulation creates thermal and photochemical damage, resulting in the production of reactive oxygen species (ROS)\(^{27}\). ROS generate an immune response in the retinal tissue by increasing the intraretinal junctional permeability and recruitment of leukocytes\(^{7,27-31}\). The decrease of the thickness post-6 months suggests that the effects of an inflammatory response persist up to 6 months in the retinal
tissue following laser treatment. Overall, by 24 months, there was no significant change in the macular or RNFL thickness compared to pre-treatment state.

To determine whether the observed changes were due to the laser treatment or diabetes itself, the amount of ischemia was quantified using the mean perfused ratio. The mean perfused ratio was calculated by the concentric rings method utilized by Nicholson et al19. Compared to the standard ischemic index method wherein the grader draws the ratio of area perfused to the total area graded, the concentric rings method utilizes a set template. It has a perfect agreement with the ischemic index method, a higher inter-grader agreement, and a shorter grading time19. Using the concentric rings method, it was observed that at 12 and 24 months post laser, PRP laser resulted in a significant increase in the perfusion of the eye while the control eyes showed no change. These results suggest that the changes in ischemia are most likely the result of the laser treatment.

When analyzing the optic nerve, both OCT and HRT testing showed a similar trend. In the vertical C/D ratio on the OCT, there was a slight increase of +0.009 at 6, 12, and 24 months compared to baseline in the PRP laser group. The HRT showed an increase in the vertical C/D ratio by +0.06 post-6 months. There was a statistically significant decrease in pressure by 1.5 mm Hg at 6 months compared to baseline (18.81 ± 4.04 mm Hg) (Figure 2.5)32. IOP remained lowered before recovering to 18.25 ± 3.98 mm Hg at 24 months.
The current gold standard for analyzing the optic nerve is grading of stereo-photographs by glaucoma specialists. Two glaucoma specialists were assigned to grade over 24 months, whereas grader 2 indicated a significant increase at 6 and 12 months, with a further significant increase at 24 months post-laser. There is a discrepancy between the grading of the optic nerves post-laser treatment by ophthalmologists. This has been shown in other studies of disc analysis and it is apparent that a more objective analysis is needed33, 34. To verify whether the discrepancy is due to the laser treated eyes and not the graders themselves, the graders also assessed control eyes of diabetic patients not requiring laser treatment. When asked to grade the control eyes, both grader 1 and 2 found that over 24 months, there was no significant difference in the C/D ratios. This discrepancy between the graders and OCT/HRT testing data suggests that non-morphological changes in the colour of the optic nerve post-PRP result in a decreased ability to consistently grade nerves for cupping which is important in recognizing the potential for hidden glaucoma.

In addition to the inconsistent clinical grading of the optic nerve post-laser, visual acuity showed a non-significant decline and visual fields showed a progressive significant decline at 12 and 24 months post-laser. It has been shown in a past study done by Hudson et al. that in diabetic macular edema patients, laser photocoagulation results in a perimetric sensitivity loss within 10° of the fovea despite showing visual acuity stabilization35. Visual fields and electroretinography have been performed on diabetic retinopathy patients post-laser treatments and have demonstrated that roughly 40% of the peripheral
retina is destroyed by photocoagulation resulting in visual field defects. A study by Subush et al. has also documented a mild loss of retinal sensitivity 6 months post-laser treatment. These past studies have reported the degree of peripheral retina destroyed by photocoagulation; however, none have studied progressive long-term visual field loss over a two year time period. With the unreliable grading of the optic nerve and further progressive deterioration of visual fields post-laser, it is understandable why some diabetic patients post-PRP are being misdiagnosed as having normal-tension glaucoma despite the likelihood that the presenting symptoms can be attributed to iatrogenic effects of the laser.

One limitation of the current study is that despite meeting the power number calculations for the treatment group, 16 control patients in the study would have been preferred. Although the number of participants for the control group did not meet the limit, the control group did not show any significant difference in any of the testing and showed stable trends. As both glaucoma and the effects of PRP on RNFL and optic disk are often progressive, the idea of extending the follow up period beyond 2 years to increase the ability to discern small, yet progressive changes is enticing. It would be interesting to determine if there are any predictive factors that can indicate which patients who receive PRP will progress and what the rate of that progression will be.

Studies have previously reported short-term visual field changes following PRP but no study has looked at the progressive nature over a two year time period. The progressive improvement in ischemia following PRP is also a novel finding. Studies have never correlated changes in visual fields with optic
nerve changes post-PRP. For that reason, the current study sought to obtain comprehensive results and conducted analyses of the optic nerve with both structural and functional tests to see if any early changes could be found in the optic nerve post-PRP.

In conclusion, the current study has found that pascal photocoagulation did not cause significant changes to macular or RNFL thickness over the 24 month time period. The morphology of the optic nerve head appeared unchanged following laser treatment as observed on the OCT and HRT diagnostic machines. Despite an improvement in peripheral perfusion, there was a significant progressive decline of peripheral visual field over the study period. Clinical grading of the optic nerve was more unreliable following PRP despite the absence of significant morphological changes as detected by the OCT and HRT diagnostic machines. Additional research is needed to help guide clinicians in making a diagnosis of normal tension glaucoma in diabetic patients who have received PRP.
2.5 References

13. Wollstein G, Garway-Heath DF, Hitchings RA. Identification of early glaucoma cases with the scanning laser ophthalmoscope11The authors
have no proprietary interest in the development or marketing of this or a competing instrument. Ophthalmology 1998;105(8):1557-1563.

Chapter 3

3 Two-year analysis of structural and functional changes to the retina and optic nerve following anti-VEGF treatments for diabetic macular edema patients

The chapter addresses specific objectives outlined in aim 3:

3. To describe the effects of anti-VEGF injections and the frequency of injections on the structural and functional changes to the retina and optic nerve of DR patients with underlying DME using *in vivo* clinical pathological analysis.
3.1 Introduction

Diabetic macular edema (DME) is a common complication of diabetic retinopathy (DR). During DR, chronic hyperglycemia results in enhanced production of vascular endothelial growth factors (VEGF), advanced glycation end products, nitric oxide, oxidative stress and inflammation\(^1\). The aforementioned factors disrupt the blood retinal barrier (BRB), increasing permeability, causing interstitial fluid accumulation and the development of DME\(^2\). Inhibition of these factors can reduce the development of fluid-filled cysts. At the present time, the gold standard, first line of treatments clinically used to treat DME patients are intravitreal anti-VEGF injections\(^3\).

Over the past decade, there have been increased clinical reports of diabetic patients receiving anti-VEGFs developing signs of glaucoma and optic neuropathy. Diabetes is a risk factor for the development of glaucoma and the use of anti-VEGFs might augment the risk\(^4\). Past studies have analyzed the safety of intravitreal anti-VEGF injections in age-related macular degeneration (AMD) but none have examined the effects of the treatments on the optic nerve\(^5\)-\(^26\). Studies have also reported a sustained increase in intraocular pressures (IOP) following intravitreal injections of anti-VEGFs in AMD patients\(^27\)-\(^31\). With the continued and increased use of anti-VEGF, numerous questions have been raised in regards to whether they have a role in increasing the risk of developing glaucoma and what are the long-term effects of the IOP spikes\(^27\), \(^32\). The results of controlled trials that look at visual acuity and central macular thickness as well
as retinal and optic nerve structures are greatly needed to substantiate the safety and efficacy of anti-VEGF drugs for DR with underlying DME.

The purpose of the following study was to determine whether the use of ranibizumab (Lucentis), an anti-VEGF, results in structural and functional changes to the retina and optic nerve of DR patients with underlying DME over a two year time period. This is the first comprehensive study to investigate the long-term structural and functional effects of anti-VEGF treatments on the retina and optic nerve that involve the analysis of macular thickness, the retinal nerve fiber layer (RNFL), mean perfusion, vertical C/D ratio, cup volume, stereo photos, IOP, visual acuity and visual fields.
3.2 Methods

The prospective study was conducted at the Ivey Eye Institute in London, Ontario, Canada. Ivey Eye Institute is a tertiary care academic center. The study was approved by Health Sciences Research Ethics Board of Western University and complies with the Declaration of Helsinki. Prospective, treatment-naïve diabetic patients with at least one eye having clinically significant diabetic macular edema (central macular thickness >300 μm) according to the ETDRS guidelines and requiring intravitreal anti-VEGF injections were recruited into the study. Participants were over the age of 18 years. Participants were excluded from the study if they had prior intravitreal anti-VEGF injections, advanced lens opacity, cataracts that could affect diagnostic testing, history of glaucoma, any other disorder of the optic nerve (optic neuropathy, neuritis, uveitis or retinal degeneration), presence/development of proliferative disease and prior retinal treatment (PRP, focal laser or surgery within 6 months of participation). All participants provided informed consent. Diabetic patients who did not have clinically significant macular edema and did not require anti-VEGF treatment or other retinal treatments were chosen as control. Participants were evaluated at pre-injection baseline and at 6, 12, and 24 months post-baseline. During each study visit, participants underwent optical coherence tomography (OCT), visual field (VF) and intravenous fluorescein angiography (IVFA) testing as well as a standard ophthalmic exam which included best-corrected Snellen visual acuity (BCVA), intraocular measurement using Goldmann applanation tonometer, and
slip lamp examination. Humphrey 24-2 SITA visual field testing was performed with undilated eyes.

3.2.1 Optical Coherence Tomography

Measurement of the macula and optic nerve through the macular thickness, optic disc cube and HD 5 line raster imaging tests were performed with the optical coherence tomography (Cirrus HD-OCT 4000, Carl Zeiss Meditech, Dublin, California). The principles and protocol have been previously described in detail. OCT tests were taken at pre-injection baseline and at 6, 12, and 24 months post-baseline. The scan at each time of measurement was repeated 3 times to ensure highest signal strength.

The macula was analyzed by a 6 x 6 mm scan and a resolution of 512 x 128 (128 horizontal scan lines consisting of 512 A-scans). The macular thickness was displayed as 3 concentric circles, the central circular subfield being 1 mm in diameter, the inner ring being 3 mm in diameter and the outer ring being 6 mm in diameter. Each ring was divided into superior, inferior, nasal, and temporal quadrants. When performing a scan of the optic nerve, a 3.4 mm ring was centered on the optic nerve and 768 A-scans were performed. The average RNFL thickness, vertical C/D ratio, and cup volume were measured. To analyze images of the retinal structure, a HD 5 line raster was performed. This high-density scan does 4,096 A-scans in five planes to provide a high definition image.
3.2.2 Humphrey Visual Field Analyzer

To measure peripheral visual fields, standard Humphrey 24-2 SITA testing algorithm was performed on Humphrey Field Analyzer, model 750i (Zeiss Humphrey Systems, Dublin, CA, USA). In the 24-2 SITA testing algorithm, 54 individual points are tested. From those points, the threshold values were calculated and compared to a normative database for similar aged normal-sighted individuals\(^{38, 39}\). Participants that had false positive responses greater than 15\%, fixation losses and false negative responses greater than 20\% were excluded from the study\(^{38}\).

3.2.3 Wide-Field Fluorescein Angiogram and Quantification of Ischemia

Wide-field fluorescein angiography was performed on the Optos 200 Tx with an intravenous injection of 5 ml of 10\% sodium fluorescein\(^{40}\). Intravenous fluorescein angiography (IVFA) photos and digital stereoscopic photographs were taken. To quantify the amount of ischemia in each patient, the best IVFA image obtained during the arteriovenous phase was used. For analysis, the uncompressed tiff images were transferred from the Optos V2 Vantage Review Software to Adobe software (Adobe Systems, Inc, San Jose, CA).

Two graders that were masked to the study quantified the amount of ischemia in each patient by using the concentric rings method which has been previously described in detail\(^{41}\). In this method, the innermost circle was first
centered on the optic nerve to be sized proportionately and then repositioned to be fovea-centered. The 12 segments in each of the rings were graded as, “perfused” or “non-perfused” if more than 50% of the segment showed either a perfused or non-perfused morphology. The classification of “non-perfused” and “perfused” morphology was taken from the SCORE study. In the control and anti-VEGF injected eyes, “non-perfused” was characterized by a darker appearance of the retina and pruned tree appearance (narrowed and difficult to see) of surrounding arterioles. “Perfused” morphology was characterized by its clear ground-glass opacity. Calculations of the mean perfused ratio were performed using the mean perfusion ratio = area perfused / (area perfused + non-perfused). Each segment in each of the rings was given a value of either 0 indicating non-perfused or 1 indicating perfused retina.

3.2.4 Optic Nerve Grading

Stereoscopic photographs were taken with Optos 200 Tx at baseline, 6, 12, and 24 months post-baseline injection. Photographs were cropped to a size of 4 x 4 mm for optic nerve grading. Two glaucoma specialists independently graded the cup-to-disk (C/D) ratio of the anti-VEGF injected eyes and control eyes of diabetic patients not requiring injections. The graders were masked to the type of patients and purpose of the study.
3.2.5 Ranibizumab (Lucentis) Injections

During the induction phase, participants received monthly intravitreal injections of ranibizumab (Lucentis, 0.5 mg in 0.05 mL solution for injection; Novartis Pharmaceuticals Canada Inc., Quebec, Canada) for 3 months. Post 3 months, participants received injections on an as needed basis until they were clinically stable based on their OCT tests and clinical assessment. Ranibizumab treatment was reinitiated if BCVA decreased by 5 letters or if central macular thickness became greater than 300 μm.

Patients received injections in clinical rooms. Topical anesthesia was administered and the eye was disinfected with povidone iodine eye drops. An ophthalmic speculum was utilized to retract the eye lid. A 30 gauge needle was used to administer the intravitreal anti-VEGF injection 3.5-4.0 mm posterior to the limbus.

3.2.6 Statistical Analysis

Data was analyzed using GraphPad Prism 5 (GraphPad Software, La Jolla, CA, USA). Snellen best-corrected visual acuity (BCVA) measurements were converted to logarithm of the minimum angle of resolution (logMAR) scores for statistical analysis. To compare the average age of the patients, an unpaired t-test was performed and to compare the percentage of female participants between control and anti-VEGF groups, a fisher’s exact test was used. To compare the differences at specified points over time in the anti-VEGF and
control groups, the paired t-test was performed. To statistically analyze the interval changes of measurements in the anti-VEGF and control groups at baseline, 6, 12, and 24 months, respectively, repeated measures ANOVA with a Bonferroni's multiple comparisons test was used. ANOVA with Bonferroni method was performed as outlined in J Neter, W Wasserman, and MH Kutner, Applied Linear Statistical Models, 3rd edition, Irwin, 1990. All data was expressed as mean ± SD and accepted as statistically significant if p<0.05. A correction of p<0.017 was applied for the Bonferroni's multiple comparison test.

To calculate the sample size with an overall power of 80%, p<0.05 was used as an acceptable significance level. Using a two-tailed test for a control with an optic nerve of size 0.3 and an atrophy group of size 0.6, both derived from cup/disk ratio, the effect size would be 0.3. Adding the values to the sample size calculation, it was calculated that 16 patients would be needed for an 80% power number. Thirty-six diabetic patients requiring anti-VEGF injections were recruited into the study but four were removed due to patient compliance and two for developing proliferative disease and requiring PRP treatment. Twenty-one patients were used as diabetic controls not requiring anti-VEGF injections. The diabetic control group did not have proliferative disease that developed during the two year study period. The control was included to ensure that the observed changes could be correlated with the anti-VEGF treatments and not due to diabetic disease itself.
3.3 Results

A single eye from each of the 30 patients requiring anti-VEGF injections and 21 control patients not requiring anti-VEGF injections, who were recruited between September 11, 2014 and July 23, 2015, was analyzed. The average age of patients was 67.7 ± 7.5 years for the control group and 63.9 ± 6.8 years for the anti-VEGF group. The control group had 33.3% female participants while the anti-VEGF group had 43.3% female participants. The control and anti-VEGF groups did not significantly differ (p>0.05) in any of these categories (Table 3.1). None of the patients developed proliferative diabetic retinopathy during the study. Patients received a mean ± standard deviation of 9.6 ± 5.3 injections ranging from 4 to 22 injections.

Following anti-VEGF treatment, the macular thickness (Figure 3.1A) significantly decreased by 27.9 µM at 6 months (313.60 ± 39.87 µM, p=0.0002) relative to baseline (341.50 ± 55.33 µM). The macular thickness further decreased to 309.80 ± 33.80 µM at 12 months (p=0.0001) and 303.40 ± 32.16 µM at 24 months (p=0.0001). Compared to baseline (287.70 ± 29.36 µM), the control group showed no significant change in macular thickness at 6 months (286.70 ± 27.83 µM, p=0.51), 12 months (289.40 ± 31.84 µM, p=0.51), or 24 months (288.20 ± 32.89 µM, p=0.84).

RNFL thickness (Figure 3.1B) significantly decreased at 6 months (90.03 ± 14.40 µM, p=0.0005), 12 months (87.97 ± 12.76 µM, p=0.0001) and 24 months (87.47 ± 11.81 µM, p=0.0001) compared to baseline (98.37 ± 18.89 µM). The
Table 3.1. Demographics of patients involved in the study.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>anti-VEGF</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of eyes</td>
<td>21</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Average age</td>
<td>67.7 ± 7.5</td>
<td>63.9 ± 6.8</td>
<td>0.07*</td>
</tr>
<tr>
<td>Female Participants (%)</td>
<td>33.3%</td>
<td>43.3%</td>
<td>0.57†</td>
</tr>
<tr>
<td>Mean anti-VEGF</td>
<td>-</td>
<td>9.6 ± 5.3</td>
<td>-</td>
</tr>
<tr>
<td>injections ± standard deviation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Unpaired t-test
†Fisher's exact test
Figure 3.1. Interval changes in (A) macular thickness, (B) RNFL thickness and (C) mean perfused ratio at baseline, 6, 12, and 24 months in the control and anti-VEGF groups. p-value: control group differences between baseline and follow-up measurements, paired t-test. p'-value: anti-VEGF group differences between baseline and follow-up measurements, paired t-test.
Figure 21 Interval changes in (A) macular thickness, (B) RNFL thickness and (C) mean perfused ratio at baseline.
control group had no significant change in RNFL thickness at 6 months (84.00 ± 14.94 µM, p=0.75), 12 months (83.19 ± 13.42 µM, p=0.35), or 24 months (83.10 ± 13.73 µM, p=0.42) compared to baseline (84.33 ± 15.51 µM). Analyzing each region, there was no significant difference in thickness in the superior, inferior, temporal and nasal regions of the RNFL for the control group but a significant decrease in all regions for the anti-VEGF group (p < 0.02) (Table 2).

The mean perfused ratio showed a significant improvement at 6 months (0.65 ± 0.09, p=0.0005), 12 months (0.67 ± 0.10, p=0.0001) and 24 months (0.67 ± 0.09, p=0.0001) compared to baseline (0.62 ± 0.09) for the anti-VEGF group. (Figure 3.1C). There was no significant difference in the control group at 6 months (0.60 ± 0.11, p=0.33), 12 months (0.60 ± 0.11, p=0.33) or 24 months (0.60 ± 0.11, p=0.86) compared to baseline (0.60 ± 0.11).

Analysis of the optic nerve and the associated cup volume by OCT (Figure 3.2) showed a significant increase at 6 (0.094 ± 0.10, p=0.02), 12 (0.096 ± 0.10, p=0.007), and 24 months (0.095 ± 0.10, p=0.03) compared to baseline (0.089 ± 0.1). Cup volume remained consistent and showed no significant difference in the control group at 6 (0.110 ± 0.13, p=0.09), 12 (0.111 ± 0.13, p=0.56), and 24 months (0.116 ± 0.13, p=0.86) compared to baseline (0.115 ± 0.13).

Vertical C/D ratio by OCT (Figure 3.3) showed a significant increase at 6 months (0.42 ± 0.20, p=0.0014), 12 months (0.43 ± 0.19, p=0.0009) and 24 months (0.44 ± 0.18, p=0.0009) compared to baseline (0.39 ± 0.21). Vertical C/D ratio remained consistent in the control group, being 0.47 ± 0.24 at baseline, 0.47
Table 3.2. Changes in RNFL thickness (µm) over the course of 24 months in the control and anti-VEGF groups.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>6 months</th>
<th>12 months</th>
<th>24 months</th>
<th>P-Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>84.33 ± 15.51</td>
<td>84.00 ± 14.94</td>
<td>83.19 ± 13.42</td>
<td>83.10 ± 13.73</td>
<td>0.61</td>
</tr>
<tr>
<td>anti-VEGF</td>
<td>98.37 ± 18.89</td>
<td>90.03 ± 14.40</td>
<td>87.97 ± 12.76</td>
<td>87.47 ± 11.81</td>
<td>0.0001</td>
</tr>
<tr>
<td>Superior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>99.52 ± 24.43</td>
<td>99.86 ± 23.57</td>
<td>97.43 ± 23.13</td>
<td>96.05 ± 21.47</td>
<td>0.54</td>
</tr>
<tr>
<td>anti-VEGF</td>
<td>113.50 ± 18.85</td>
<td>109.10 ± 21.04</td>
<td>107.00 ± 19.49</td>
<td>104.90 ± 18.14</td>
<td>0.0001</td>
</tr>
<tr>
<td>Inferior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>103.10 ± 22.61</td>
<td>101.60 ± 20.94</td>
<td>101.00 ± 19.45</td>
<td>101.00 ± 19.28</td>
<td>0.63</td>
</tr>
<tr>
<td>anti-VEGF</td>
<td>122.60 ± 33.94</td>
<td>111.00 ± 19.89</td>
<td>108.30 ± 18.29</td>
<td>107.80 ± 17.80</td>
<td>0.0001</td>
</tr>
<tr>
<td>Temporal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>63.05 ± 12.36</td>
<td>64.81 ± 11.82</td>
<td>63.57 ± 11.75</td>
<td>64.43 ± 14.65</td>
<td>0.64</td>
</tr>
<tr>
<td>anti-VEGF</td>
<td>80.07 ± 25.74</td>
<td>67.07 ± 14.09</td>
<td>66.20 ± 13.16</td>
<td>66.83 ± 14.30</td>
<td>0.0001</td>
</tr>
<tr>
<td>Nasal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>71.90 ± 15.92</td>
<td>69.76 ± 14.91</td>
<td>70.76 ± 12.45</td>
<td>69.86 ± 13.47</td>
<td>0.50</td>
</tr>
<tr>
<td>anti-VEGF</td>
<td>77.73 ± 16.15</td>
<td>73.10 ± 15.84</td>
<td>70.27 ± 12.80</td>
<td>69.93 ± 12.64</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

RNFL = retinal nerve fiber layer

*Repeated Measures ANOVA
Figure 3.2. Interval changes in cup volume measured on the OCT at baseline, 6, 12, and 24 months in the control and anti-VEGF groups. p-value: control group differences between baseline and follow-up measurements, paired t-test. p'-value: anti-VEGF group differences between baseline and follow-up measurements, paired t-test.
Figure 22 Interval changes in cup volume measured on the OCT at baseline, 6, 12, and 24 months in the OCT.

<table>
<thead>
<tr>
<th>Time of Measurement (Months)</th>
<th>Cup volume (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>0.10</td>
</tr>
<tr>
<td>12</td>
<td>0.15</td>
</tr>
<tr>
<td>24</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Control vs. anti-VEGF:
- Control: p=0.86
- anti-VEGF: p=0.007

Significance levels:
- * p=0.05
- ** p=0.01
- *** p=0.001
Figure 3.3. Interval changes in vertical cup/disk ratio measured on the OCT at baseline, 6, 12, and 24 months in the control and anti-VEGF groups. p-value: control group differences between baseline and follow-up measurements, paired t-test. p'-value: anti-VEGF group differences between baseline and follow-up measurements, paired t-test.
Figure 23: Interval changes in vertical cup/disk ratio measured on the OCT at baseline, 6, 12, and 24 months.
± 0.22 at 6 months (p=0.95), 0.47 ± 0.22 at 12 months (p=0.92) and 0.54 ± 0.23 at 24 months (p=0.86). When assessing participants receiving less than 10 injections (n=15) and those that received 10 or more injections (n=15), participants that received 10 or more injections showed a significant increase in the vertical C/D ratio at 6 months (0.48 ± 0.16, p=0.03), 12 months (0.49 ± 0.14, p=0.01) and 24 months (0.50 ± 0.14, p=0.002) compared to baseline (0.44 ± 0.18) (Figure 3.4). Participants that received less than 10 injections showed a non-significant increase in the vertical C/D ratio at 6 months (0.36 ± 0.22, p=0.10), 12 months (0.37 ± 0.22, p=0.08) or 24 months (0.38 ± 0.21, p=0.07) compared to baseline (0.33 ± 0.23).

Two glaucoma specialists were assigned to independently grade the vertical C/D ratios in the same eyes that received anti-VEGF injections using stereo photographs (Figure 3.5A). Both grader 1 and 2 indicated there was a significant increase in the vertical C/D ratio over the course of 2 years. At baseline, the mean vertical C/D was 0.309 ± 0.17 and grader 1 noted an increase at 6 months (0.320 ± 0.16, p=0.06), with a further significant increase at 12 months (0.322 ± 0.17, p=0.03) and 24 months (0.324 ± 0.17, p=0.03). Grader 2 indicated baseline mean vertical C/D ratio of 0.309 ± 0.11 and noted a significant increase at 6 months (0.338 ± 0.11, p=0.02), with a further increase at 12 months (0.353 ± 0.12, p=0.005) and 24 months (0.379 ± 0.14, p=0.006). The graders also graded control eyes of diabetic patients not requiring anti-VEGF treatment. Both grader 1 and 2 found that over 24 months, there was no significant difference (p ≥ 0.17) (Figure 3.5B).
Figure 3.4. Interval changes in vertical cup/disk ratio measured on the OCT at baseline, 6, 12, and 24 months in participants receiving less than 10 injections and 10 or more injections. p-value: differences between baseline and follow-up measurements of participants receiving less than 10 injections, paired t-test. p'-value: differences between baseline and follow-up measurements of participants receiving 10 or more injections, paired t-test.
Figure 24: Interval changes in vertical cup/disk ratio measured on the OCT at baseline, 6, 12, and 24 months for patients with different numbers of injections. The graph shows the vertical cup/disk ratio over time for two groups: <10 injections and ≥10 injections. The p-values for the differences between the groups at each time point are marked as follows:

- **p' = 0.03** for the comparison at 6 months between <10 injections and ≥10 injections.
- **p' = 0.01** for the comparison at 12 months between <10 injections and ≥10 injections.
- **p' = 0.0022** for the comparison at 24 months between <10 injections and ≥10 injections.

The p-values for the differences within each group at each time point are:

- **p = 0.10** for <10 injections at 6 months.
- **p = 0.08** for <10 injections at 12 months.
- **p = 0.07** for <10 injections at 24 months.

The data indicates a significant difference in vertical cup/disk ratio between the two groups over time, with the group ≥10 injections showing a trend towards higher values compared to <10 injections.
Figure 3.5. Interval changes in vertical cup/disk ratio measured by two masked glaucoma specialists using stereo photographs at baseline, 6, 12, and 24 months in the (A) anti-VEGF group and the (B) control group. p-value: grader 1 differences between baseline and follow-up measurements, paired t-test. p'-value: grader 2 differences between baseline and follow-up measurements, paired t-test.
Figure 25: Interval changes in vertical cup/disk ratio measured by two masked glaucoma specialists.
Visual field tests had an average baseline mean deviation (MD) (Figure 3.6A) in the anti-VEGF group of -2.37 ± 3.72 dB. Mean deviation improved at 6 months by 0.72 dB (-1.65 ± 4.06 dB, p=0.052) but returned to baseline levels by 12 months (-2.40 ± 4.42 dB, p=0.93) and worsened by 24 months (-3.01 ± 4.50, p=0.10). The control group showed no significant differences in visual field MD at baseline (-3.85 ± 6.38 dB), 6 months (-3.65 ± 5.52 dB, p=0.71), 12 months (-3.76 ± 4.93 dB, p=0.89), and 24 months (-4.22 ± 5.60 dB, p=0.54). Baseline mean best-corrected visual acuities (Figure 3.6B) were 0.24 ± 0.19 logMAR in the control group and 0.53 ± 0.35 logMAR in the anti-VEGF group. Visual acuity significantly improved to 0.34 ± 0.17 logMAR at 6 months (p=0.0006) and maintained this improvement, being 0.34 ± 0.22 logMAR at 12 months (p=0.0001) and 0.33 ± 0.15 logMAR at 24 months (p=0.0006). Visual acuity remained consistent in the control group, being 0.24 ± 0.19 logMAR at baseline, 0.25 ± 0.19 logMAR at 6 months (p=0.59), 0.24 ± 0.19 logMAR at 12 months (p=0.69) and 0.25 ± 0.20 logMAR at 24 months (p=0.45). The changes were not statistically significant.

In the anti-VEGF group, intraocular pressure (IOP) remained consistent over the two-year time period (Figure 3.7). At baseline, it was 16.57 ± 2.89 mmHg and slightly decreased to 16.53 ± 3.33 mmHg at 6 months (p=0.96). At 12 months (p=0.94), it was at 16.60 ± 3.09 mmHg and remained constant by 24 months (16.63 ± 3.09 mmHg, p=0.91). In the control group, IOP remained constant, being 16.67 ± 2.87 mmHg at baseline, 16.52 ± 3.19 mmHg at 6 months (p=0.82), 16.43 ± 2.93 mmHg at 12 months (p=0.63) and 16.52 ± 3.67 mmHg at
24 months (p=0.85). The changes were not statistically significant.
Figure 3.6. Interval changes in mean deviation measured on the (A) Humphrey Visual Field Analyzer and (B) visual acuity at baseline, 6, 12, and 24 months in the control and anti-VEGF groups. p-value: control group differences between baseline and follow-up measurements, paired t-test. p'-value: anti-VEGF group differences between baseline and follow-up measurements, paired t-test.
Figure 26 Interval changes in mean deviation measured on the Humphrey Visual Field Analyzer.
Figure 3.7. Interval changes in intraocular pressure at baseline, 6, 12, and 24 months in the control and anti-VEGF groups. mmHg= millimeter of mercury. *p*-value: control group differences between baseline and follow-up measurements, paired t-test. *p’*-value: anti-VEGF group differences between baseline and follow-up measurements, paired t-test.
Figure 27: Interval changes in intraocular pressure at baseline, 6, 12, and 24 months in the control group. The graph shows the comparison between the control group and the anti-VEGF group, with p-values indicating statistical significance. The data points are presented with error bars, showing the variability in intraocular pressure over time. The graph includes p-values: p = 0.82, p = 0.63, p = 0.85, p' = 0.96, p' = 0.94, p' = 0.91.
3.4 Discussion

The 24 month results from the study demonstrate that during anti-VEGF therapy, the macular thickness significantly decreased by 6 months and, while the patients were undergoing therapy, remained lowered over a 24 month time period. Mean BCVA improved by roughly 4 lines of vision at 6 months and the improvement was maintained over a 24 month period of undergoing therapy. The results were expected and coincide with previously published anti-VEGF landmark studies43-50. The RESTORE study demonstrated that ranibizumab monotherapy alone, or when combined with a laser treatment, is more effective in improving BCVA than only undergoing the laser treatment and, overall, the health-related quality of life is improved48. The RISE and RIDE studies have shown that, compared to sham injections, intravitreal injections of ranibizumab (Lucentis) improve BCVA and decrease macular thickness caused by edema50. The landmark studies have cemented anti-VEGF therapy as the standard of care for DME treatment. In all instances of anti-VEGF therapy, VEGF is blocked in the diabetic eye, reducing blood vessel proliferation and leakage. If the leakage is centralized within the macula, anti-VEGF therapy reduces macular edema, decreasing the overall macular thickness and in turn improving central vision.

To determine whether anti-VEGF therapy in DME patients results in retinal reperfusion, the amount of ischemia was quantified using the mean perfused ratio. According to the analysis of fluorescein angiography photographs from the RISE and RIDE trials, patients receiving sham injections, as compared to those receiving ranibizumab, had faster progression of retinal nonperfusion51. The
mean perfused ratio was calculated by the concentric rings method which has been previously utilized by Nicholson et al41. Compared to the standard ischemic index method, wherein the grader draws the ratio of area perfused to the total area graded, the concentric rings method utilizes a set template. The method has a perfect agreement with the ischemic index method, a higher inter-grader agreement, and a short-grading time41. Using the concentric rings method, there was a significant increase in perfusion of patients in the anti-VEGF group up until 12 months. The increased level of perfusion remained unchanged when measured at 24 months. The control eyes showed no change in perfusion. These results correlate with those of a past study which examined anti-VEGF reperfusion in diabetic retinopathy patients within 5 months of having an injection52. That study used standard grading of the reperfusion and quantified using ImageJ software. Roughly 75\% of the patient’s demonstrated reperfusion52. With a higher sample size, longer time-frame, and a different method of analyzing perfusion, our results verify the previous findings. The results suggest that although diabetes remains a contributing factor, the improvement in the degree of ischemia is most likely a result of the anti-VEGF treatment through the stabilization of blood vessels and other unknown mechanisms.

The average RNFL thickness measured from the start of anti-VEGF treatment, significantly decreased over a 24-month time period. Analyzing each quadrant separately, the superior, inferior, temporal, and nasal regions of the RNFL all showed significant decrease over a 24-month time period in patients undergoing anti-VEGF therapy but not in control patients. The greatest observed
change in thickness occurred within the first 6 months. Up until the 6 month period, anti-VEGF treatments are often administered monthly until the patient becomes clinically stable and then receives injections on an as needed basis. A recent study has examined RNFL thickness in diabetic patients in comparison to normal controls. Despite diabetics having a thinner RNFL compared to normal controls, there was no significant reduction of RNFL thickness in both groups over a two-year follow-up period. Past studies have examined patients affected with age related macular degeneration (AMD). The studies report that patients undergoing long-term anti-VEGF therapy have a decreased retinal ganglion cell layer when compared to the untreated eye but show no change in RNFL thickness. Due to the nature of the disease, people with diabetes are more sensitive to ocular changes than AMD patients and no other study has examined RNFL or optic nerve in DME patients undergoing anti-VEGF therapy.

The parapapillary RNFL is used as a surrogate measurement of the optic nerve status. When analyzing the optic nerve with OCT, the cup volume significantly increased over a 24-month time period in DME patients undergoing anti-VEGF therapy. The vertical C/D ratio also significantly increased by +0.06 over the time period. This is the first study to analyze the effects of anti-VEGF therapy on the optic nerve. No optic nerve edema was present in any of the patients as visualized by OCT. When assessing participants that received less than 10 anti-VEGF injections and patients that received 10 or more injections, participants that received 10 or more injections showed a significant increase in the vertical C/D ratio by +0.064 over the 24 month time period. Participants that
received less than 10 injections had a non-significant increase of +0.054 in the vertical C/D ratio. There was no significant difference (p=0.16) in baseline vertical C/D ratios between the two groups despite participants that had less than 10 injections having a mean baseline vertical C/D ratio of 0.33 ± 0.23 and participants that had 10 or more injections having a mean baseline vertical C/D ratio of 0.44 ± 0.18.

To eliminate scanning error or results being influenced by the repeatability or reproducibility of the OCT, the vertical C/D ratios were graded by glaucoma specialists using stereo-photographs, which is the current gold standard for analyzing the optic nerve. Two glaucoma specialists, that were masked to the study, were assigned to grade the vertical C/D ratio in the same eyes following anti-VEGF treatment using stereo photographs. Similarly to the OCT results, both grader 1 and 2 indicated that there was a significant vertical C/D ratio increase over 12 months with grader 2 stating a further significant increase at 24 months. Grader 1 indicated there was a +0.02 increase in the vertical C/D ratio whereas, grader 2 indicated there was a +0.07 increase in the vertical C/D ratio over the course of 24 months. Even though there was a discrepancy in the grading method of the optic nerves by the two ophthalmologists, both graders indicated a significant increase in the C/D ratio during anti-VEGF therapy. The discrepancy has been observed in other studies of disc analysis suggesting that a more objective analysis is needed56, 57. To confirm that the observed changes were due to the anti-VEGF therapy and not the graders themselves, the graders also assessed control eyes of diabetic patients not requiring anti-VEGF treatment.
Both grader 1 and 2 have found that over 24 months, there was no significant difference in the C/D ratios. The data combined with OCT results suggests that there are morphological changes that happen to the optic nerve in DME patients under anti-VEGF therapy which are not caused by glaucoma.

Overall, in regards to IOP results, there was no significant difference that occurred in patients over a 24-month treatment time frame. Mean IOP at baseline was 16.57 mmHg and 16.63 mmHg at 24 months. Past studies have shown conflicting results on whether or not long-term anti-VEGF usage results in sustained increase in IOP58, 59. In the current study, that examined DME patients undergoing ranibizumab treatment for 24 months, no sustained increase in IOP was observed. Functionally, looking at the effects of anti-VEGF therapy on peripheral vision, visual field testing showed no significant difference. It is important to note from baseline to 6 months, visual fields slightly improved by 0.72 dB but from 6 months to 24 months, peripheral vision declined by -1.36 dB.

Previous studies have confirmed that structural changes in the retina precede functional changes60, 61, 62. Although this is the longest study of its kind, we feel that analyzing patients over 24-months might not have been sufficient and thus, the time frame has limited the ability to detect more minute changes to the retina. In order to determine whether or not the effects of anti-VEGF therapy, as observed on RNFL, optic disk and ultimately peripheral vision, are indeed progressive and cause optic neuropathy, it would be enticing to extend the follow up period beyond 2 years. The next step would be to conduct a multi-center study analyzing common anti-VEGFs such as ranibizumab, bevacizumab and
aflibercept. While sharing the same basic mechanism, anti-VEGFs all have different molecular characteristics, which cause differences in potency, systemic clearance, and systemic VEGF inhibition50,63. It would be valuable to determine whether higher affinity anti-VEGFs result in greater changes to the optic nerve as well as if any predictive factors affect the changes to the optic nerve in regards to progress and the rate.

This is the first study to analyze long-term structural and functional changes to the retina and optic nerve in DME patients undergoing anti-VEGF therapy. As such, the current study sought to obtain comprehensive results. The analyses of the optic nerve included both structural and functional tests, and grading of stereo photographs by glaucoma specialists to detect any early changes in the optic nerve in patients starting anti-VEGF treatments.

In conclusion, anti-VEGF therapy may potentially be detrimental to the optic nerve by decreasing RNFL thickness, increasing cup volume and increasing vertical cup/disk ratio over time as measured on OCT and through grading of stereo photographs by glaucoma specialists. Patients that received 10 or more injections had a significant increase in the vertical C/D ratios compared to the patients that received less than 10 injections. Despite an improvement in peripheral perfusion, there was a slight decline of peripheral visual fields from 6 to 24 months in DME patients undergoing anti-VEGF therapy. The results provide a cautionary note to monitor both the retina and optic nerve status in patients undergoing frequent anti-VEGF injections.
3.5 References

19. Arevalo JF1, Fromow-Guerra J, Quiroz-Mercado H, Sanchez JG, Wu L, Maia M et al. Primary intravitreal bevacizumab (Avastin) for diabetic...
macular edema: results from the Pan-American Collaborative Retina

20. Diabetic Retinopathy Clinical Research Network1, Scott IU, Edwards AR,
Beck RW, Bressler NM, Chan CK, Elman MJ et al. A Phase II
Randomized Clinical Trial of Intravitreal Bevacizumab for Diabetic Macular

21. Ahmadieh H, Ramezani A, Shoeibi N, Bijanzadeh B, Tabatabaei A,
Azarmina M et al. Intravitreal bevacizumab with or without triamcinolone
for refractory diabetic macular edema; a placebo-controlled, randomized

22. Kumar A, Sinha S. Intravitreal bevacizumab (Avastin) treatment of diffuse
diabetic macular edema in an Indian population. Indian J Ophthalmol

23. Gragoudas ES, Adamis AP, Cunningham ET, Feinsod M, Guyer DR.
Pegaptamib for neovascular age-related macular degeneration. N Engl J

al. Ranibizumab for neovascular age-related macular degeneration. N

43. Nguyen QD, Shah SM, Heier JS, Do DV, Lim J, Boyer D et al. Primary End Point (Six Months) Results of the Ranibizumab for Edema of the

Chapter 4

4 Retinal cell death following anti-VEGF treatment in a diabetic rat model and retinal cell culture

The chapter addresses specific objectives outlined in aims 4 and 5:

4. To evaluate the effect of VEGF inhibition on neuronal cells in a STZ-induced diabetic rat retina by performing intravitreal anti-VEGF injections with different doses.

5. To determine if exposure to different doses of anti-VEGF alter retinal cells metabolic activity and function or induce toxicity by various colorimetric assays.
4.1 Introduction

Diabetic retinopathy (DR) is the result of microvascular retinal changes caused by hyperglycemia which alter the blood-retinal barrier (BRB). In DR, hyperglycemia results in enhanced production of vascular endothelial growth factors (VEGF), advanced glycated end products, nitric oxide, oxidative stress and inflammation within the eye1. The factors increase the permeability of BRB, resulting in accumulation of extracellular fluid within the retina and the development of diabetic macular edema (DME). If the leakage is centralized within the macula, the condition may lead to significant loss of central visual function and acuity.

Inhibition of these unregulated factors can reduce the developing leakage, so the gold standard treatment for DME is intravitreal anti-VEGF injections2. Intravitreal anti-VEGF injections inhibit the action of VEGF, decreasing permeability, leakage, and proliferation of blood vessels. While excess VEGF is harmful, past studies have found that VEGF is involved in neuroprotection by protecting retinal cells against the damaging insults of hypoxia, glutamate excitotoxicity and deprivation of serum3-10.

Over the past decade, there have been increased clinical reports of diabetic patients on anti-VEGF therapy developing signs of glaucoma and optic neuropathy. Diabetes is already a risk factor for the development of glaucoma and the use of anti-VEGFs might augment the risk11. In addition to this, our past research has demonstrated that over 24 months, DME patients undergoing anti-
VEGF therapy have decreased retinal nerve fiber layer (RNFL) thickness, increased cup volume, increased vertical cup/disk (C/D) ratio that is dependent on number of injections and show deterioration of peripheral vision. There is an uncertainty in regards to whether eliminating the neuroprotective role of VEGF through anti-VEGF therapy causes optic neuropathy and death of retinal cells. With newer, higher affinity anti-VEGFs being introduced into the market, the question remains whether or not neuronal cells in the diabetic retina may be further affected by the treatment.

The purpose of the following study is to examine whether increased exposure to anti-VEGFs will result in increased retinal cell death. First, the effects of VEGF inhibition on neuronal cells in a streptozotocin (STZ)-induced diabetic rat retina will be evaluated by performing intravitreal anti-VEGF injections of different doses. Second, we will determine whether the exposure to different doses of anti-VEGF alters retinal cells metabolic activity or induces toxicity by various colorimetric assays.
4.2 Methods

4.2.1 Diabetic Animal Model

Experimental protocols were approved by Animal Use Committee of Western University. Animals were approved by Animal Care and Veterinary Services (ACVS) of Western University and complied with the NIH Guide for the Care and Use of Laboratory Animals (NIH publication no. 80-23, revised in 1996). Animal care adhered to the Guiding Principles in the Care and Use of Animals.

Male Sprague-Dawley rats (250-300 grams, 7-8 weeks old) were obtained from Charles River (Charles River Canada Ltd., Saint-Constant, Quebec, Canada). Diabetes was induced in 25 randomly selected rats by a single intraperitoneal injection of streptozotocin (STZ) (Sigma-Aldrich, St. Louis, MO, 65mg/kg in citrate buffer at a pH of 5.6)\(^{12}\). The remaining 25 rats were designated as control and were injected with an identical volume of citrate buffer\(^{13, 14}\). Three days following STZ injection, the blood glucose levels for each rat were measured on an automated OneTouch Ultra glucometer (LifeScan Inc., Milpitas, California, USA). A blood glucose reading of >20 mmol/L was considered diabetic and the rat was used for further experimentation. To prevent ketoacidosis, diabetic rats were injected with an insulin implant (2 U/d, Linshin Canada Inc., Toronto, Ontario, Canada) that released small doses of insulin. For the duration of 5 months, diabetic rats were routinely monitored through body weight measurements and monitoring of blood glucose levels. The control and diabetic groups were comprised of five animals for each experimental procedure.
4.2.2 Drug Administration

After 5 months, rats received intravitreal injections. For each intravitreal injection, rats were anesthetized with 4% isoflurane during the induction phase and 3% for maintenance level. Prior to the injection, the eye was disinfected with topical povidone iodine eye drops. A 30 gauge needle was used to administer the intravitreal injection to the inferior temporal quadrant, posterior to the limbus. For each rat, the right eye was the test eye and the left eye was the control, injected with saline. With 25 control rats and 25 STZ-induced diabetic rats, each group had a n=5 consisting of 5 rats receiving 1 unit of 0.3375 mg/mL (final concentration in the eye being 0.0625 mg/mL, which is half the clinical dose) injection, 5 rats receiving 1 unit 0.675 mg/mL (final concentration being 0.125 mg/mL, clinical dose) injection, and 5 rats receiving 1 unit 1.35 mg/mL (final concentration being 0.25 mg/mL-double the clinical dose) injection of rat anti-VEGF (AF564; R&D Systems, Minneapolis, MN, USA). Five rats also received 1 unit of Ranibizumab (Lucentis, 0.5 mg in 0.05 mL solution for injection; Novartis Pharmaceuticals Canada Inc., Quebec, Canada) at 0.675 mg/mL (final concentration being 0.125 mg/mL-clinical dose). These injections were performed once a week for 3 weeks to simulate the injection frequency of human patients receiving injections once a month for the duration of 3 months. The remaining 5 rats received an injection of 1 unit 0.675 mg/mL (final concentration being 0.125 mg/mL-clinical dose) only once to analyze the effects of frequency of injections. The needle remained in the eye for 3-4 seconds before being drawn out to avoid reflux. Once finished, the isoflurane was shut off and the rat was
maintained on oxygen until fully recovered. At week 4, rats were euthanized in a carbon dioxide gas chamber, eyes were enucleated, fixed in 4% paraformaldehyde for 24 hours and placed in 70% ethanol for paraffin embedding.

4.2.3 TUNEL Assay

Following paraffin-processing, the eye tissues were sectioned to a thickness of 4 µm along the sagittal plane of the eye and transferred to positively-charged, transparent microscope slides (VWR, Radnor, PA). The slides were stored in -80°C until staining. To evaluate tissue integrity, efficacy of tissue preservation and to determine optic nerve location, every tenth slide was stained with Hematoxylin and Eosin according to standard protocol.

TUNEL Assay was performed to evaluate apoptotic cells. The sections were dewaxed and stained using the TUNEL method according to the manufacturer’s protocol (In Situ Cell Death Detection Kit, Fluorescein; Ref. 11684795910 Roche Applied Science, Indianapolis, Indiana, USA). In the assay, the enzyme terminal deoxynucleotidyl transferase catalyzes the reaction that labels the sites of DNA breaks with deoxyuridine. Slides were counterstained with 1µM DAPI for 10 minutes at room temperature to identify nuclei and washed with phosphate-buffered saline (PBS) before being put under cover glass. Sections were imaged with a Zeiss LSM 510 META confocal microscope equipped with an AxioCam MR3 (Carl Zeiss Canada, North York, Ontario, Canada). To quantify the number of TUNEL-positive cells in the retina for the
control and diabetic rats, cell bodies were counted in each layer by two graders. The graders were masked to the type of animal and purpose of the study.

4.2.4 Mixed Retinal Cell Culture

Eyes from 1 week old Sprague-Dawley rats were enucleated en bloc, and placed in CO₂-independent medium supplemented with 0.1% antibiotic-antimycotic (Ref. 15240096 Thermo Fisher Scientific, Waltham, Massachusetts, USA) and 4mM L-glutamine. Eyes were dissected and retinas were extracted within 1 hour of enucleation. Retinal cells were washed with Hank’s Balanced Salt Solution supplemented with 1% penicillin, placed in a 0.2% papain activated solution, and incubated in a 37°C water bath for 20 minutes with gentle stirring every 5 minutes. Digestion was stopped with the addition of 0.5 μL of DNAse1 (114 U/μL) and 1mL of warm Neurobasal A medium (NBA) supplemented with 2% fetal bovine serum (FBS), 0.5 mM L-glutamine, and 2% B-27 (Ref. 17504044 Thermo Fisher Scientific, Waltham, Massachusetts, USA). Retinal cells were dissociated by trituration in NBA and the suspension was centrifuged at 68 xg for 4 minutes. The cell pellet was resuspended in fresh NBA. The cells were seeded at 5x10⁵ cells per well onto 24-well plates containing 12-mm glass cover slips precoated sequentially with poly-D-lysine (2μg/cm² for 2 hours at 37°C) and laminin (1μg/cm² overnight at 37°C). Cells were maintained at 37°C in a 5% CO₂ incubator.

4.2.5 Dosage

NBA was refreshed two days after plating. On the fourth day of cultivation, the medium was removed from the mixed retinal cell cultures and replaced with
medium containing ranibizumab (Lucentis, Novartis Pharmaceuticals Canada Inc., Quebec, Canada) diluted down to clinical relevant concentrations (0.125 mg/mL) as well as half the clinical dose (0.0625 mg/mL) and double the clinical dose (0.25 mg/mL). Control wells contained only medium and no anti-VEGF (0 mg/mL). In another subset of experiments, mixed retinal cell cultures were also exposed to medium containing rat anti-VEGF (AF564; R&D Systems, Minneapolis, MN, USA) diluted down to the same concentrations. The cells were exposed to these concentrations for 48 or 72 hours at 37°C in a 5% CO₂ incubator.

4.2.6 Immunohistochemistry

Following 48 or 72 hours of exposure to anti-VEGF, the cells were fixed with 100% methanol for 5 minutes at -20°C for Thy 1.1 labelling. The cells were incubated for 1 hour at room temperature with 1% bovine serum albumin (BSA), 10% normal goat serum, and 0.3M glycine in 0.1% PBS-Tween as per the manufacturer's protocol. This increased the permeability of the cells and blocked non-specific protein-protein interactions. The cells were incubated for one hour at room temperature with a mouse anti-rat primary antibody against CD90/Thy 1.1 (1:200; ab225; Abcam, Toronto, Ontario, Canada) followed by a goat anti-mouse IgG secondary antibody conjugated to Alexa Fluor 488 (1:1000; Life Technologies Inc., Burlington, Ontario, Canada) at room temperature in the dark for 1 hour.

For double-labeling studies, cells were blocked in a blocking buffer consisting of 1X PBS, 5% normal goat serum, and 0.3% Triton X-100 for 1 hour.
in room temperature as per the manufacturer’s protocol. Primary and secondary antibodies were prepared in an antibody dilution buffer consisting of 1X PBS, 1% BSA, and 0.3% Triton X-100. The cells were incubated overnight at 4°C with a chicken anti-rat primary antibody Class III β-Tubulin antibody (1:400; TUJ-1; ab107216; Abcam, Toronto, Ontario, Canada), rabbit anti-rat primary Brn3a antibody (1:100; ab81213; Abcam, Toronto, Ontario, Canada), or rabbit anti-rat primary cleaved caspase-3 antibody (1:400; Asp175; Cell Signaling Technology Inc., Boston, Massachusetts, USA). After washing with PBS, cells were incubated for one hour in the dark with goat anti-chicken IgG secondary antibody, Texas Red (1:1000; Life Technologies Inc., Burlington, Ontario, Canada), and goat anti-rabbit IgG secondary antibody conjugated to Alexa Fluor 488 (1:1000; Life Technologies Inc., Burlington, Ontario, Canada). Cells were counterstained with 1µM DAPI for 10 minutes at room temperature to identify nuclei, washed with PBS, and mounted with Fluoromount G (Electron Microscopy Sciences, Hatfield, PA) on positively charged slides (VWR, Radnor, PA). Antibody concentrations were individually optimized to achieve optimal fluorescence with minimal background staining. Images were taken using a Zeiss Axio Imager.Z1 fluorescent microscope (Carl Zeiss Canada, Toronto, ON, Canada) equipped with an AxioCam MR3 (Carl Zeiss Canada).

Negative controls were utilized for every round of slide staining to eliminate suspicion of non-specific secondary antigen binding. For single-staining optimization experiments using anti-CD90/Thy 1.1, one slide was exposed to the appropriate secondary antibody in absence of its respective primary antibody.
For dual-staining experiments using both anti-TUJ-1 and anti-Brn3a or anti-cleaved caspase-3, one slide served as a control for each of the following conditions: TUJ-1 secondary antibody alone in absence of primary, Brn3a or cleaved caspase-3 secondary antibody alone in absence of primary, and both TUJ-1 and Brn3a or cleaved caspase-3 secondary antibodies in the absence of either primary antibody.

4.2.7 Colorimetric Assays

After 48 or 72 hours of treatment with the different doses of anti-VEGF, three colorimetric assays were performed; MTT (Thiazolyl Blue Tetrazolium Bromide) assay (M2128-1G; Sigma-Aldrich, St. Louis, Missouri, USA), lactate dehydrogenase (LDH) assay (11644793001; Roche Life Science, Laval, Quebec, Canada), and the cell death detection ELISA assay (11544675001; Roche Life Science, Laval, Quebec, Canada). The colorimetric assays were performed as per the manufacturers’ instructions. The MTT assay assessed cellular metabolic activity of the experimental cells to the control. The LDH and cell death detection ELISA assays were used to evaluate cytotoxicity of the experimental cells to the control cells by examining cell death through necrosis in the LDH assay and cell death through apoptosis in the ELISA assay. Protein concentrations (23225; Pierce™ BCA Protein Assay Kit, Thermo Fisher Scientific, Waltham, Massachusetts, USA) were measured for each sample to normalize the absorption data of the LDH and cell death detection ELISA assays.

4.2.8 Statistical Analysis

Statistically analysis was performed using one-way ANOVA with a
Bonferroni’s multiple comparison test and an unpaired t-test on the GraphPad Prism 5 software (GraphPad Software, La Jolla, CA). ANOVA with Bonferroni method was performed as outlined in J Neter, W Wasserman, and MH Kutner, Applied Linear Statistical Models, 3rd edition, Irwin, 1990. All data was expressed as mean ± SD and accepted as statistically significant if p<0.05. A correction of p<0.017 was applied for the Bonferroni’s multiple comparison test.
4.3 Results

4.3.1 Body weight and blood glucose levels

The body weight and blood glucose levels of the control and STZ-induced diabetic male Sprague-Dawley rats were monitored (Table 4.1). Five months post STZ injection, diabetic rats had a significant decrease in their body weight and a significant increase in the blood glucose levels compared to the non-diabetic control rats. The changes indicate that diabetic dysmetabolism was established and verifies that a diabetic rat model was used.

4.3.2 Increasing anti-VEGF concentrations caused more death in vivo

To determine whether different doses of anti-VEGF result in increased apoptotic cells in the retina, sagittal eye sections of control rats and STZ-induced diabetic rats underwent TUNEL staining. Imaging under a fluorescent microscope revealed that as the concentration of anti-VEGF increased, more apoptotic cells were present in both the control (Figure 4.1) and STZ-induced diabetic rats (Figure 4.2). Apoptotic cells were localized to the ganglion cell layer (GCL) and the inner nuclear layer (INL). When quantifying the number of TUNEL-positive cells in the retina of the control rats, untreated control (0 mg/mL) had a baseline number of 0.64 ± 1.29 apoptotic cells. At half the clinical dose (0.0625 mg/mL), the number increased to 1.60 ± 1.82 apoptotic cells, at the clinical dose (0.125 mg/mL) to 2.40 ± 2.07 apoptotic cells, and at double the clinical dose (0.25 mg/mL) the number significantly increased (p=0.0004) to 4.40 ± 0.89 apoptotic cells.
Table 4.1. Body weights and serum glucose levels of control and STZ-induced diabetic rats.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>STZ-induced diabetic rats</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight (g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td>240.4</td>
<td>245.5</td>
<td>0.09*</td>
</tr>
<tr>
<td>Finish</td>
<td>481.9</td>
<td>417.3</td>
<td>0.0001*</td>
</tr>
<tr>
<td>Blood Glucose (mmol/L)</td>
<td>5.8</td>
<td>17.8</td>
<td>0.0001*</td>
</tr>
</tbody>
</table>

*Unpaired t-test
Figure 4.1. TUNEL staining of control rat retina. TUNEL staining performed in control rats showed increased apoptotic cells in the ganglion cell layer following different doses of anti-VEGF injections compared with untreated retina from the control group. Blue represents DAPI-stained nuclei and green represents TUNEL staining. Magnification x40. n=5 for each group. Scale bar: 50 µm.
Figure 28: TUNEL staining of control rat retina at different concentrations.

- Control
- 0.0625 mg/mL
- 0.25 mg/mL
- 0.125 mg/mL
- Lucentis-0.125 mg/mL
Figure 4.2. TUNEL staining of diabetic rat retina. TUNEL staining performed in STZ-induced diabetic rats showed increased apoptotic cells in the ganglion cell layer following different doses of anti-VEGF injections compared with untreated retina from the diabetic control group. Blue represents DAPI-stained nuclei and green represents TUNEL staining. Magnification x40. n=5 for each group. Scale bar: 50 µm.
Figure 29 TUNEL staining of diabetic rat retina

Control

Dapi
TUNEL

0.125 mg/mL

0.0625 mg/mL

0.25 mg/mL

Lucentis-0.125 mg/mL
compared to the control (Figure 4.3A). For the STZ-induced diabetic rats, control had a baseline number of 0.46 ± 1.06 apoptotic cells. The number significantly increased at half the clinical dose to 2.60 ± 1.34 ($p=0.01$), 4.5 ± 3.32 at the clinical dose ($p=0.02$), and 6.8 ± 2.95 ($p=0.03$) at double the clinical dose (Figure 4.3B).

4.3.3 No difference in cell death between the clinical dose of ranibizumab and rat anti-VEGF

In control rats when comparing the clinical dose of ranibizumab (Lucentis-0.125 mg/mL) to the clinical dose of rat anti-VEGF (0.125 mg/mL) in regards to the amount of apoptotic cells, both were not significantly different from one another despite rat-anti-VEGF showing higher numbers of apoptotic cells (2.40 ± 2.07 cells) compared to ranibizumab (1.25 ± 0.96 cells) and untreated control (0.64 ± 1.29 cells) (Figure 4.4A). Similarly, in the diabetic rats, ranibizumab (2.00 ± 1.23) and rat anti-VEGF (4.5 ± 3.32) were also not significant to each other but both had significantly increased ($p<0.03$) apoptotic cells compared to untreated diabetic control (Figure 4.4B).

4.3.4 Frequency of injections has no effect on apoptotic cells

The frequency of injections did not have a significant effect on the number of apoptotic cells. In the control rats, single versus triple injections of the clinical dose of rat-anti-VEGF showed no significant difference ($p=0.79$). Single injections resulted in 2.00 ± 2.16 apoptotic cells while 3 injections resulted in 2.4 ± 2.074 apoptotic cells. Control rats injected with anti-VEGF had no significant difference ($p>0.36$) when compared to untreated control (0.64 ± 1.29 cells)
Figure 4.3. Apoptotic death rates following different doses of rat anti-VEGF in control and diabetic rats. The number of TUNEL-positive cells in the GCL was significantly greater at double the clinical dose (0.25 mg/mL) in the control rats (A) and significantly greater at half the clinical (0.0625 mg/mL), clinical (0.125 mg/mL), and double the clinical dose (0.25 mg/mL) in the diabetic rats (B) compared to untreated controls. Data are expressed as means ± SD. n=5 for each group. *p < 0.03, ***p=0.0004 compared with controls.
Figure 30: Apoptotic death following different doses of rat.
Figure 4.4. Apoptotic cell death rates between the clinical dose of rat anti-VEGF and ranibizumab in control and diabetic rats. Comparing the clinical dose of ranibizumab (Lucentis-0.125 mg/mL) to the clinical dose of rat anti-VEGF (0.125 mg/mL) in control (A) and diabetic (B) rats, neither was significant to each other regarding the number of TUNEL-positive cells. Compared to the untreated control in the control rats (A), the number of TUNEL-positive cells was not significantly greater at the clinical dose of ranibizumab and rat anti-VEGF but in the diabetic rats (B), both the clinical dose of ranibizumab and rat anti-VEGF had significantly increased numbers of TUNEL-positive cells compared to untreated diabetic control. Data are expressed as means ± SD. n=5 for each group. *p < 0.03, compared with controls.
Figure 31: No significant difference in the number of apoptotic cell death.
Figure 4.5. Effects of frequency of injections on the number of TUNEL-positive cells in control and diabetic rats. Injecting the clinical dose of rat-anti-VEGF once versus three times showed no significant difference between each other for both the control (A) and diabetic (B) rats. Injecting once versus three times in the control rats (A) had no significant difference when compared to untreated control. In the diabetic rats (B), injecting once or 3 times both showed significantly increased TUNEL-positive cells compared to untreated diabetic controls. Data are expressed as means ± SD. n=5 for each group. *p < 0.03, compared with controls.
Figure 32 Frequency of injections had no significant effect on
(Figure 4.5A). In the diabetic rats, a single injection of the clinical dose (3.40 ± 1.95 cells) had no significant differences from a dose consisting of 3 injections despite having more apoptotic cells (4.50 ± 3.32 cells). A single dose injection as compared to 3 injections both had significantly increased (p<0.03) number of apoptotic cells relative to untreated diabetic control (Figure 4.5B).

4.3.5 Verification of mixed retinal cell culture

The mixed retinal cell cultures were stained for Class III β-Tubulin, a known neuronal marker, with BRN3A and Thy 1.1 which are both retinal ganglion cell (RGC)-enriched markers. Cells were imaged at 60x magnification. Alexa Fluor 488 green emissions corresponded with staining for Class III β-Tubulin, suggesting that retinal neuronal cells were present in the mixed retinal cell culture. The expression of Brn3a and Thy 1.1 was indicative of the mixed retinal cell culture containing RGC’s. Initial immunofluorescence of primary rat retinal cell cultures showed positive expression of Brn3a, Class III β-Tubulin (Figure 4.6A) and Thy1.1 (Figure 4.6B). Confocal triple immunofluorescence indicated the co-staining of Thy1.1 (Figure 4.6D), Class III β-Tubulin (Figure 4.6E), and nuclear DAPI (Figure 4.6F) in cells at day 3 of culture (merged image in Figure 4.6C). The RGCs in culture showed dendritic outgrowth and elongation with axonal processes frequently contacting each other.

4.3.6 Increasing anti-VEGF concentrations caused cell death *in vitro*

Examining RGC’s under different concentrations of ranibizumab using immunocytochemistry, as the anti-VEGF concentration increased, the
Figure 4.6. Expression of retinal ganglion cell (RGC)-specific markers in the primary rat retinal cell culture. A-B: Immunofluorescence of primary rat retinal cell culture at day 1 of culture showed positive expression of Brn3a, Class III β-Tubulin (A) and Thy1.1 (B). Confocal triple immunofluorescence showed the co-staining of Thy1.1 (D), Class III β-Tubulin (E), and nuclear DAPI (F) in cells at day 3 of culture (merged image in C). The RGCs in culture showed dendritic outgrowth and elongation with axonal processes frequently contacting each other. A-B Magnification x80. C-F Magnification x60. Scale bars: 20 µm.
morphology of the RGC’s changed as well (Figures 4.7 and 4.8). Visually, as the anti-VEGF concentration increased, the number of RGC’s decreased, fewer contacts between RGC’s were observed and fewer dendritic and axonal outgrowths were detected. The observations were conducted at both 48 (Figure 4.7) and 72 (Figure 4.8) hours.

Immunostaining of cleaved caspase-3 in the mixed retinal cell culture under different ranibizumab concentrations showed increased apoptotic cell death in half the clinical (0.0625 mg/mL), clinical (0.125 mg/mL), and double (0.25 mg/mL) the clinical doses compared to untreated control (0 mg/mL). The observations were made at both 48 (Fig 4.9) and 72 (Fig 4.10) hours.

Double-labeling studies of Class III β-Tubulin and cleaved caspase-3 indicated that at double the clinical dose (0.25 mg/mL) RGC’s began to die from apoptosis. At half the clinical (0.0625 mg/mL), clinical (0.125 mg/mL), and double (0.25 mg/ml) the clinical doses, the surrounding supporting cells were dying through apoptosis in the mixed retinal cell culture (Figure 4.11). This was also observed in the TUNEL analysis of retinal sections, since death was observed in the INL as well for both the control and diabetic rats (Figure 4.12).

4.3.7 Increased ranibizumab concentrations result in decreased cellular metabolic activity

At 48 hours, as ranibizumab concentrations increased, cellular metabolic activity decreased as measured using the MTT assay. Cellular metabolic activity
Figure 4.7. Morphological effect of different concentrations of ranibizumab on RGCs following 48 hours post treatment. RGCs were stained for nuclei (blue) and Class III β-tubulin (red). Immunofluorescence of RGCs under different concentrations of ranibizumab for 48 hours showed that as the concentration increased, the morphology of the RGC’s changed. As the concentration went from untreated control to double the clinical dose (0.25 mg/mL), the number of RGC’s decreased, had fewer contacts between each other, and had fewer dendritic outgrowths. Magnification x60. Scale bar: 20 µm.
Figure 34 of different concentrations

Control

Dapi
Class III β-Tubulin

0.0625

0.125

0.25
Figure 4.8. Morphological effect of different concentrations of ranibizumab on RGCs following 72 hours post treatment. RGCs were stained for nuclei (blue) and Class III β-tubulin (red). Immunofluorescence of RGCs under different concentrations of ranibizumab for 72 hours showed that as the concentration increased, the morphology of the RGC’s continued to change. As the concentration went from untreated control to double the clinical dose (0.25 mg/mL), the amount of RGC’s showed a further decrease in number, had fewer contacts between each other and had fewer dendritic outgrowths. Magnification x60. Scale bar: 20 µm.
Figure 35 of different concentrations of Dapi Class III β-Tubulin.
Figure 4.9. Apoptotic cell death upon exposure to different concentrations of ranibizumab following 48 hours post treatment. Immunofluorescence staining for cleaved caspase-3 (green) and nuclei (blue) in the mixed retinal cell culture under different ranibizumab concentrations for 48 hours showed that there was an increase in apoptotic cell death in half the clinical (0.0625 mg/mL), clinical (0.125 mg/mL) and double (0.25 mg/mL) the clinical doses compared to untreated control (0 mg/mL). Magnification x20. Scale bar: 50 µm.
Figure 36 upon exposure to different concentrations of Dapi and Cleaved caspase-3.
Figure 4.10. Apoptotic cell death upon exposure to different concentrations of ranibizumab following 72 hours post treatment. Immunofluorescence staining for cleaved caspase-3 (green) and nuclei (blue) in the mixed retinal cell culture under different ranibizumab concentrations for 72 hours corresponded with the 48 hour results. There was increased apoptotic cell death observed at half the clinical (0.0625 mg/mL), clinical (0.125 mg/mL), and double (0.25 mg/mL) the clinical doses compared to untreated control (0 mg/mL). Magnification x20. Scale bar: 50 µm.
Figure 37 upon exposure to different Dapi Cleaved caspase-3 levels.
Figure 4.11. Apoptotic cell death of support cells surrounding RGCs.
Performing double-labeling studies of class III β-Tubulin (red) and cleaved caspase-3 (green) indicated that RGCs began to die from apoptosis at double the clinical dose (0.25 mg/mL) (arrowhead). At all doses, it was the surrounding supporting cells around the RGCs that were dying off through apoptosis. Images are shown with DAPI staining the nuclei in blue. Magnification x60. Scale bar: 20 µm.
Figure 38 with class III β-Tubulin and cleaved caspase-3.

Dapi
Class III β-Tubulin
Cleaved caspase-3
Figure 4.12. Apoptosis in the INL following TUNEL staining. TUNEL analysis of retinal sections showed apoptosis in the INL (arrowhead) as well for both the control (A) and diabetic (B) rats. Blue represents DAPI-stained nuclei and green represents TUNEL staining. INL, inner nuclear layer. Magnification x40. Scale bar: 50 µm.
Figure 39 VEGF inhibition resulted in the apoptosis
decreased at half the clinical dose by 2.37% (0.0625mg/mL; 69.87 ± 8.20 %, p=0.14), significantly decreased at the clinical (0.125 mg/mL; 68.18 ± 6.00%, p=0.003) and double the clinical doses (69.74 ± 4.50%, p=0.04) by 4.06% and 2.5% respectively compared to untreated control (0 mg/mL; 72.24 ± 7.18 %) (Figure 4.13A). At 72 hours, the cellular metabolic activity further decreased and displayed the same trend as cells at 48 hours. Compared to the untreated control (67.15 ± 3.34), the cellular metabolic activity decreased at half the clinical dose by 0.56% (0.0625mg/mL; 66.59 ± 4.07 %, p=0.57), and significantly decreased at the clinical (0.125 mg/mL; 63.51 ± 4.70%, p=0.002) and double the clinical dose (62.52 ± 5.04%, p<0.0001) by 3.64% and 4.63% respectively (Figure 4.13B).

4.3.8 Increasing ranibizumab concentrations result in increased necrosis

Cells were treated for 48 hours with different concentrations of ranibizumab and necrosis was measured using a LDH assay. Necrosis increased by 14% at half the clinical dose (0.0625 mg/mL; 114.40 ± 43.48 %, p=0.33), significantly increased by 30.2% at the clinical dose (0.125mg/mL; 130.60 ± 44.31%, p=0.04) and by 32.5% at double the clinical dose (0.25 mg/mL; 132.90 ± 29.44%, p=0.005) compared to untreated control (0 mg/mL; 100.4 ± 21.27) (Figure 4.14A). During 72 hours, there was less necrosis compared to 48 hours but the same trend was observed. At 72 hours, necrosis increased by 10.6% at half the clinical dose (0.0625mg/mL; 109.00 ± 22.62%, p=0.19), significantly increased by 27.7% at the clinical dose (0.125 mg/mL; 126.10 ± 22.57%, p=0.002) and 22.1% at double the clinical dose (0.25 mg/mL; 120.5 ± 28.35,
Figure 4.13. Cellular metabolic activity following different concentrations of ranibizumab. Cellular metabolic activity, as measured using the MTT assay, was significantly decreased at the clinical dose (0.125 mg/mL) and double the clinical dose (0.25 mg/mL) of ranibizumab for both 48 (A) and 72 (B) hours. The cellular metabolic activity was further decreased at 72 hours. Data is expressed as means ± SD. n=4. *p < 0.04, **p<0.003, ***p<0.0001 compared with controls.
Figure 40 Decreased cellular metabolic activity following
Figure 4.14. Necrosis following different concentrations of ranibizumab.

Necrosis, as measured using the LDH assay, was significantly increased at the clinical dose (0.125 mg/mL) and double the clinical dose (0.25 mg/mL) of ranibizumab for both 48 (A) and 72 (B) hours. There was less necrosis activity present at 72 hours compared to 48 hours. Data is expressed as means ± SD. n=4. *p < 0.04, **p<0.005 compared to the controls.
Figure 41 Increased necrosis following different concentrations
p=0.03) when compared to the untreated control (98.40 ± 15.25%) (Figure 4.14B).

4.3.9 Increased apoptosis with increasing ranibizumab concentrations

Cells were treated for 48 hours with different concentrations of ranibizumab, and apoptosis was measured using the cell death detection ELISA assay. Apoptosis significantly increased at half the clinical dose (0.0625 mg/mL; 131.9 ± 43.94%, p=0.02), the clinical dose (0.125 mg/mL; 124.00 ± 22.79%, p=0.005), and double the clinical dose (0.25 mg/mL; 137.20 ± 61.77%, p=0.04) by 35.4%, 27.5%, 40.7% respectively when compared to untreated controls (96.50 ± 19.34%) (Figure 4.15A). Cells displayed increased apoptosis when treated for 72 hours and showed the same trends as in 48 hours. There was a significant increase in apoptotic cells at half the clinical dose (0.0625 mg/mL; 142.3 ± 55.20%, p=0.01), the clinical dose (0.125 mg/mL; 137.9 ± 31.51%, p=0.001), and double the clinical dose (0.25 mg/mL; 142.70 ± 39.79%, p=0.002) by 47.7%, 43.3%, 48.1% respectively when compared to untreated controls (94.60 ± 24.72%) (Figure 4.15B).

4.3.10 Increased apoptosis and necrosis with rat anti-VEGF concentrations

Different concentrations of rat-anti-VEGF at 48 hours had a significant increase in necrosis at half the clinical dose (0.0625 mg/mL; 134.8 ± 30.61%, p=0.01), the clinical dose (0.125 mg/mL; 143.00 ± 33.29%, p=0.003), and double the clinical dose (0.25 mg/mL; 172.50 ± 48.52%, p=0.0002) by 29.8%, 38%, 48.1% respectively when compared to untreated controls (96.50 ± 19.34%) (Figure 4.15A).
67.5% respectively when compared to untreated controls (105.00 ± 21.46%) (Figure 4.16A). The cell death detection ELISA assay after 48 hours for different rat anti-VEGF concentrations showed increased apoptosis at half the clinical dose (0.0625 mg/mL; 139.80 ± 29.90%, p=0.001), the clinical dose (0.125 mg/mL; 143.10 ± 33.29%, p=0.002), and double the clinical dose (0.25 mg/mL; 152.40 ± 33.46%, p=0.0002) by 41.9%, 45.2%, 54.5% respectively when compared to untreated controls (97.88 ± 25.41%) (Figure 4.16B).
Figure 4.15. Apoptosis following treatments with different concentrations of ranibizumab. Apoptosis, as measured using the cell death detection ELISA assay, was significantly increased at half the clinical (0.0625 mg/mL), clinical (0.125 mg/mL), and double the clinical dose (0.25 mg/mL) of ranibizumab for both 48 (A) and 72 (B) hours. There was increased apoptosis present at 72 hours compared to 48 hours. Data is expressed as means ± SD. n=4. *p < 0.04, **p<0.005 compared to the controls.
Figure 42 Increased apoptosis following different concentrations

A. ELISA 48 hours

B. ELISA 72 hours

Apoptosis (%) vs. Control, 0.0625, 0.125, 0.25 Doses (mg/mL)
Figure 4.16. Necrosis and apoptosis following treatments with different concentrations of rat anti-VEGF. Necrosis (A) and apoptosis (B) at 48 hours was significantly increased at half the clinical (0.0625 mg/mL), clinical (0.125 mg/mL), and double the clinical dose (0.25 mg/mL) of rat anti-VEGF measured using the LDH assay and cell death detection ELISA assay respectively. Data is expressed as means ± SD. n=4. *p < 0.01, **p<0.003, p<0.0002 compared to the controls.
Figure 43 Increased necrosis and apoptosis following A

A Pure rat anti-VEGF LDH 48 hours

B Pure rat anti-VEGF ELISA 48 hours
4.4 Discussion

The aim of this study was to obtain in vitro and animal model mechanistic data to correlate with in vivo clinical observations. The first consideration was determination of the appropriate anti-VEGF concentrations. The values from the calculations of ranibizumab dilutions in the human vitreous were correlated to the rat vitreous, and based on the concentrations used in past studies, 0.125 mg/mL was used as the clinical dose15, 16. The clinical intravitreal dose of ranibizumab is 0.5 mg, resulting in a concentration of 0.125 mg/ml in the vitreum of human patients. As such, 0.125 mg/ml was the final vitreous and medium concentration used for the in vitro and in vivo experiments16, 17. Using 0.125 mg/mL as the final clinical concentration, half the clinical dose (0.0625 mg/mL) was also tested, as well as double the clinical dose (0.25 mg/mL) which is also the clinically relevant concentration of bevacizumab, another anti-VEGF clinically used for DME.

In relation to the frequency of injections, patients typically receive an anti-VEGF injection once a month for 3 months and are clinically assessed on month 4. They are then treated on an as needed basis until they are clinically stable according to their OCT tests and clinical assessments18. To simulate the treatment regime with rats, the rodents were injected once a week for 3 weeks and sacrificed on week 4.

Compared to normal controls, the diabetic rats were more sensitive to different concentrations of anti-VEGF injections. Compared to untreated diabetic controls, diabetic rats showed increased apoptotic deaths at half the clinical, clinical, and double the clinical doses whereas, non-diabetic control rats showed
increased apoptotic death at only double the clinical dose. The results were expected given the nature of the disease since diabetics are more sensitive to ocular changes compared to non-diabetics. The apoptotic death centered around the GCL and INL which correlates with a previous study. While anti-VEGF therapy improves vascular changes, past studies have also indicated that VEGF is involved in neuroprotection by protecting retinal cells against damaging insults like hypoxia, glutamate excitotoxicity and deprivation of serum. To ensure survival, retinal neurons have been shown to provide continuous trophic support. Under ischemic conditions in the retina, VEGF expression in neurons is increased. By eliminating VEGF through intravitreal anti-VEGF injections, neuronal cells that rely on VEGF for survival, such as bipolar, amacrine and glial cells, are put at risk of dying.

When comparing the clinical dose of ranibizumab and the clinical dose of rat anti-VEGF, although there was no significant difference between the two, rat anti-VEGF showed an increased number of apoptotic cells when compared to ranibizumab. The non-diabetic rats were not significantly different from the untreated control. For the diabetic rats, both clinical ranibizumab and rat anti-VEGF had increased number of apoptotic cells compared to the untreated diabetic control. The results were unexpected since ranibizumab is humanized and species-specific. None the less, ranibizumab may have some cross over effect in blocking rat VEGF and causing apoptotic cell death.

In regards to the frequency of injections and number of apoptotic cells, non-diabetic and diabetic rats who received a single injection versus three
injections showed no significant difference. Despite showing no significance, rats that were injected three times showed higher numbers of apoptotic deaths. For the non-diabetic rats, the results from single injections versus three injections were not significantly different compared to the untreated control. For the diabetic rats, having an injection, either once or three times, resulted in increased apoptotic death compared to untreated diabetic control. Multiple injections lead to increased apoptotic cell death due to greater reduction of VEGF and less neuroprotection in the eye.

Most of the apoptotic death observed in vivo animal experiments occurred in the ganglion cell layer. As such, for the in vitro experiments it was important for the mixed retinal cell culture to contain RGCs. To test for the presence of RGCs, cells were stained for Class III β-tubulin (TUJ-1) which is a constituent of neuronal microtubules and frequently expressed on RGCs, as well as Brn3a and Thy 1 which are also RGC-specific markers. Thy1 is a glycophosphatidylinositol anchored cell surface protein of the immunoglobulin superfamily which has been shown to be specifically expressed on RGCs. The expression of Thy 1 in the mixed retinal cell culture was at a level similar to past studies. Brn3a is a class IV POU domain transcription factor that has an important role in differentiation, survival, and axonal elongation during the development of RGCs. Brn3a has been determined to be a reliable marker of RGCs in past studies. The mixed retinal cell culture used for the study had expression of all 3 markers as well as had signs of outgrowth and elongation, indicating the presence of RGCs.
Exposure to increasing concentrations of ranibizumab for 48 and 72 hours lead to a decrease in RGC’s as detected by TUJ-1 staining. In regards to morphology, fewer contacts between RGCs and fewer outgrowths were observed. Staining for cleaved caspase-3 revealed that half the clinical, clinical, and double the clinical dose of ranibizumab resulted in increased apoptotic death compared to untreated control. Co-staining with TUJ-1 showed that RGCs remained relatively healthy and, in fact, the support cells around RGCs were the ones dying off. The observation correlates with the animal results since apoptotic death was also observed in the INL. No detrimental effects to RGCs as the result of ranibizumab treatments have been detected until administering double the clinical dose. Ranibizumab affects the supporting cells surrounding RGCs which in turn affect the morphology of RGCs as has been previously observed in the study. The damage to the supporting cells may affect the morphology of the optic nerve by causing a decrease in the ganglion cell layer and an increase in the cup/disk ratio as shown in our previous clinical study. The results correlate with past studies that have shown that treatments with anti-VEGF decrease the number of cells in INL but have no effect on the number of cells in GCL. Tests of anti-VEGF concentrations on pure RGC cell lines have also shown no significant changes. Previous studies have noted that anti-VEGF alone is not cytotoxic to RGCs but when the cells are exposed to oxidative stress, the protective effect of VEGF is eliminated. Through the use of a mixed retinal cell culture, which is the closet cell based in vitro model to the composition of an in vivo retina, we have verified that RGC’s are not being directly affected by
different anti-VEGF concentrations. The anti-VEGF treatments eliminate VEGFs neuroprotective functions, and potentially other unknown roles, causing the surrounding supporting cells to become cytotoxic and die thereby affecting RGC morphology.

The immunofluorescence results were supported by colorimetric assays, which suggest that as the concentration of ranibizumab increased, a significant decrease in cellular metabolic activity and an increase in cytotoxicity through necrosis and apoptosis at both 48 and 72 hours occurred. In accordance with the cleaved caspase-3 results, both half the clinical, clinical and double the clinical dose all showed significant increase in apoptotic death when tested using the cell death detection ELISA. Rat anti-VEGF was tested using the established concentrations to determine whether the antibody or the anti-VEGFs vehicle increased cell death. According to results, the antibody alone was more cytotoxic. Results from the LDH assay demonstrated that even at half the clinical dose, as well as at clinical and double the clinical doses, increased necrosis occurred. The cell death detection ELISA showed further apoptotic death under all 3 concentrations.

This is the first study to utilize a mixed retinal cell culture and conduct *in vitro* and *in vivo* experiments that mimic clinical conditions. The benchtop approach was a complementary addition to the overall study aimed at determining potential mechanisms to explain the clinical observation that repeated anti-VEGF injections may be detrimental to the optic nerve by decreasing RNFL thickness, increasing cup volume and increasing vertical
cup/disk ratio over time. For the aforementioned reason, the current study sought to obtain comprehensive results by the conduct of animal and mixed retinal cell culture experiments to determine whether different doses of anti-VEGF result in any changes to the retina.

In conclusion, repeated anti-VEGF injections may be detrimental to the retina by decreasing cellular metabolic activity and increasing cytotoxicity of retinal cells through necrosis and apoptosis. The cytotoxicity of the support cells affects RGC morphology which may explain why clinically anti-VEGF treatment results in decreased RNFL thickness, increased cup volume and increased cup/disk ratio. In contrast to current recommendations, the results provide a cautionary note to monitor both the retina and optic nerve status in patients undergoing frequent anti-VEGF injections.
4.5 References

Chapter 5

5 General Discussion, Limitations, and Future Direction
5.1 Summary of Discussion

DR is the most common microvascular complication of diabetes and the leading cause of blindness among adults1, 2. The goal of this thesis was to examine two common clinically-relevant treatments for DR and to determine whether they have an iatrogenic effect on the retina and the optic nerve. Numerous studies have been published on argon, and to a lesser extent PASCAL, panretinal photocoagulation (PRP) for PDR and the use of anti-VEGFs for DME. However, none of the studies have examined the effects of anti-VEGF treatments on the optic nerve and peripheral vision. This is especially alarming considering that over the past decade, with newer lasers being introduced into the market and higher affinity anti-VEGFs being developed, there have been an increasing number of reports indicating that diabetic patient’s post-PRP or receiving anti-VEGFs developing signs of optic neuropathy and glaucoma.

In order to analyze the effects of PRP laser on the retina and optic nerve, the primary objective was to use clinical structural (OCT, HRT) and functional (visual field, visual acuity) diagnostic tests to monitor the retina and optic nerve. Secondly, the intent was to observe whether PRP was beneficial and improved diabetic ischemia. The results suggest that overall, PRP did not cause any significant changes to the macula or RNFL thickness over a 24-month time period. There was a slight thickening of the macula and RNFL at 6 months but this finding was likely due to intraretinal inflammation from the treatment3, 4, 5. By 24 months, the thickness returned to baseline levels. Using the structural OCT
and HRT diagnostic tests to analyze the optic nerve revealed that overall, the morphology of the optic nerve appeared unchanged. There was a significant improvement in peripheral perfusion at 12 and 24 months post laser, thus improving the degree of ischemia in these diabetic patients. Despite the improvement, there was no change in central vision and a progressive significant decline in peripheral vision at 12 and 24 months post-laser was observed. The likely cause of peripheral deterioration was the destruction of peripheral retinal tissue by photocoagulation6, 7, 8. When glaucoma specialists who were masked to the study were asked to grade the optic nerve photos of patients that received PRP laser, grading of the optic nerve was much more unreliable following PRP when compared to control eyes. Grader 1 indicated that there was a significant increase in the cup/disk ratio at 6 and 12 months followed by a further increase at 24 months. Grader 2 indicated that there was a non-significant increase that was happening to the optic nerve. Despite no observed morphological changes to the optic nerve, as determined by the OCT and HRT, the optic nerve became more difficult to grade due to non-morphological colouration changes that affected the optic nerve post-PRP.

The following is a pilot study that assesses the effects of PRP on the optic nerve. The results from the study highlight the importance of laser treatments in improving the overall diabetes by increasing perfusion of blood vessels and improving diabetic ischemia. This is the first study to correlate unreliable grading of the optic nerve and progressive visual field loss in patients post-PRP. The findings may explain why some diabetic patient’s post-PRP laser treatments are
misdiagnosed with having normal-tension glaucoma. The misdiagnosed patients are treated with preventative glaucoma topical medications, have a number of health related quality of life issues related to side effects and cost. The study highlights the need for a more objective optic nerve analysis to assist clinicians in diagnosing normal tension glaucoma in diabetic patients who have received prior PRP.

In order to assess the effects of anti-VEGF therapy, the first objective was to recruit treatment naïve DR patients with underlying DME in order to analyze the effects of anti-VEGF injections and the frequency of injections on the retina and optic nerve using in vivo clinical pathological analysis. The second objective was to utilize an animal model to determine whether anti-VEGF therapy has any effects on the retina and neuronal cells of STZ-induced diabetic rats. The third objective was to generate a mixed retinal cell culture to examine whether different doses of anti-VEGF alter retinal cell metabolic activity or induce toxicity through the use of various colorimetric assays and immunofluorescence.

The macular thickness in anti-VEGF treated patients significantly decreased and central vision significantly improved from baseline over a 24-month time period. The results were expected as previous clinical trials and studies suggested likewise9-16. The anti-VEGF therapy was also beneficial in significantly improving perfusion of the diabetic eye, likely through the stabilization of blood vessels. Analysis of the optic nerve indicated that anti-VEGF therapy may be detrimental to the optic nerve by significantly decreasing RNFL thickness, increasing cup volume and increasing vertical cup/disk ratio as
measured on the OCT over a 24-month time period. As a secondary measure, to eliminate the possibility of the findings being due to scanning error or the repeatability or reproducibility of OCT, glaucoma specialists, who were masked to the study, were asked to grade the optic nerve photos of patients that underwent anti-VEGF therapy. Verifying the OCT data, both graders indicated a significant increase in the vertical cup/disk ratio of patients receiving anti-VEGF injections, whereas control patients showed no change. Data from monitoring IOP of the patients over a 24 month period showed consistent pressure values with no significant increase. In combination with OCT, the data suggested that morphological changes occurred to the optic nerve in DME patients undergoing anti-VEGF therapy for which glaucoma is not the primary cause. Of note are the differences in the OCT data of patients with different number of anti-VEGF injections. Patients that received less than 10 injections had no significant change in the cup/disk ratio whereas, patients that had more than 10 injections had a significant increase in the cup/disk ratio. Despite the findings that the patients that had more than 10 injections had a greater baseline vertical cup/disk ratio than patients that had less than 10 injections, baseline vertical cup/disk ratio between the two groups was not significantly different. In accordance, when analyzing peripheral visual fields, although a decline in the peripheral visual fields was observed from 6 to 24 months, it was not significant.

The overall results from using an *in vivo* animal model to explain retinal changes during anti-VEGF therapy revealed that diabetic rats are much more sensitive to anti-VEGF than non-diabetic rats. Diabetic rats had a significant
increase in apoptotic cell deaths at half the clinical, clinical, and double the clinical doses. In comparison, non-diabetic rats only showed significant apoptotic cell death for double the clinical dose when compared to untreated controls. Apoptotic death was centered around GCL and INL in both the non-diabetic and diabetic rats, corresponding with previously published results17. VEGF has been shown to play a neuroprotective role for retinal neurons, bipolar, amacrine and glial cells, protecting against damaging insults like hypoxia, glutamate excitotoxicity and deprivation of serum17-25. Eliminating VEGF through intravitreal anti-VEGF injections increases the risk of cell death. Comparing the effects of ranibizumab to rat anti-VEGF, rat anti-VEGF resulted in more apoptotic death but the difference was not significant. Compared to untreated controls, no significance in the number of apoptotic cells for the controls rats was detected. However, both ranibizumab and rat-VEGF had significantly increased apoptotic cells compared to untreated diabetic control rats. Though ranibizumab is humanized and species-specific, it still appears to have some cross over effect by blocking rat VEGF and causing apoptotic death. In regards to the frequency of injections, a single injection resulted in less apoptotic death as compared to having three injections of clinical doses though the difference was not significant. Increased frequency of injections presumably resulted in increased apoptotic cell death due to greater reduction of VEGF and less neuroprotection in the eye. In the control rats, one or three injections resulted in no significant difference in the amount of apoptotic cells compared to untreated controls. For the diabetic rats,
having one injection or three injections resulted in a significant higher amount of apoptotic death compared to untreated diabetic control.

A mixed retinal cell culture was developed for the study and verified for the presence of RGC by the immunofluorescence of TUJ-1, Brn3a and Thy 1, all of which are RGC-specific markers. When cells were dosed with half the clinical, clinical, and double the clinical doses of ranibizumab, as the concentration increased, RGC’s decreased in number, had fewer contacts between cells and fewer outgrowths were observed. When stained with cleaved caspase-3, the number of apoptotic deaths increased at half the clinical, clinical, and double the clinical doses. The co-staining of caspase-3 and RGC’s revealed that ranibizumab was likely not detrimental to RGCs unless at double the clinical dose. For all doses, supporting cells around RGCs were dying through apoptosis, thus affecting the morphology of the RGCs as previously described. It is likely that anti-VEGFs eliminate VEGFs neuroprotective function, and potentially other unknown roles, causing the surrounding supporting cells to become cytotoxic and die thereby affecting RGC morphology. The results correlate with animal findings since apoptotic death was also observed in INL. The finding is consistent with clinically observed results. The dying of support cells affects RGC morphology, which in turn could affect the morphology of the optic nerve by causing a decrease in the ganglion cell layer and an increase in the cup/disk ratio as shown previously. Since structural changes happen prior to functional changes, the changes affecting the optic nerve could explain a decline in peripheral vision in DME patients undergoing anti-VEGF therapy at 6 months.
The results of the immunofluorescence were further supported by the colorimetric assays which indicated that, as the concentration of ranibizumab increased, there was a significant decrease in cellular metabolic activity and an increase in cytotoxicity through necrosis and apoptosis at both 48 and 72 hours. The cell death detection ELISA, in accordance with the caspase-3 results, showed a significant increase in apoptotic cell death at half the clinical, clinical, and double the clinical doses. Rat anti-VEGF was also tested under the same concentrations as ranibizumab to determine whether the antibody or the anti-VEGFs vehicle was causing increased cell death in retina. Findings have established that the rat anti-VEGF was more cytotoxic than ranibizumab. Through the LDH assay, it was observed that even half the clinical dose caused increased necrosis as well as the clinical and double the clinical doses. The cell death detection ELISA showed further apoptotic death with all 3 concentrations.

This is the first long-term study analyzing the effects of anti-VEGF therapy on the optic nerve. The valuable conclusion from my study is that anti-VEGF treatments are detrimental to the optic nerve despite improvements in central vision based on in-vivo clinical and in-vitro studies. The finding is especially alarming since anti-VEGFs are becoming more commonly used as the first line of treatment due to the ease, simplicity and speed of the treatment. Recent studies suggest eliminating the use of panretinal photocoagulation in favour of anti-VEGFs for proliferative diabetic retinopathy treatments26, 27. In western Canada, instead of administering anti-VEGFs once a month for 3 months, clinicians are treating patients with anti-VEGF injections on the weekly basis. Currently, there
are novel anti-VEGFs in development, such as Aflibercept (Eylea®), which are VEGF traps and have a much higher binding affinity for VEGF, as well as longer duration of action as compared to ranibizumab (Lucentis). Despite short-term improvements, the possibility of long-term damage to the optic nerve and creating another form of blindness is especially important to address and provide a cautionary note to monitor both the retina and optic nerve status in patients undergoing frequent anti-VEGF injections.
5.2 Limitations

A limitation of chapter 2 when examining the effects of the PRP laser is the low number of participants in the study. Despite meeting power number calculations for the treatment group, at least 16 control patients in the study would have been preferred. Although the number of participants for the control group did not meet the limit, the control group did not show any significant difference in any of the testing and showed stable trends.

A limitation for chapter 3 is the limited 24 month time period for the clinical analysis of the patients. A longer duration of the study would have been preferred to observe continued changes to the retina. Despite changes to the RNFL thickness, increase in cup/disk ratio and slight deterioration of peripheral vision, it is still uncertain whether or not the changes are progressive and will continue to get worse or reach steady state over time.

The main limitation for chapter 4 is the use of rat animal models as surrogates for humans. A rat model was used for the in vivo work and in vitro work by generating a rat mixed retinal cell culture. Even though rodents and humans share a large percentage of DNA, there are major differences. In regards to diabetes, humans develop T1DM and T2DM. T1DM is associated with absolute insulin deficiency due to autoimmune destruction of pancreatic beta cells whereas T2DM is caused by a combination of insulin resistance and insulin deficiency. The rats were made diabetic by pharmacological induction which targeted and destroyed the beta-cells. Furthermore, there is no established diabetic animal model to demonstrate all of the vascular and neural
complications associated with advanced proliferative DR which the study focused on30. Even though the study mimicked \textit{in vitro} and \textit{in vivo} clinical conditions as closely as possible, the differences should be considered when translating these types of studies to humans.
5.3 Future Direction

Clinical reports of DR patients being diagnosed with having glaucoma and optic neuropathy show that the patients have often undergone PRP laser treatment multiple years ago. As both glaucoma and the effects of PRP on RNFL and optic disk are often progressive, it would be enticing to extend the follow up period beyond 2 years to increase the ability to discern small, yet progressive changes. The extended study period would potentially allow to determine predictive factors that affect the progress and rate of the retinal changes.

Regarding the study presented in chapter 3, it is well established that structural changes precede functional changes. Monitoring patients over 24 month time period might have not been sufficient. To determine whether or not the effects of anti-VEGF therapy as observed on the RNFL, the optic disk and ultimately peripheral vision are indeed progressive and cause optic neuropathy, it would be enticing to extend the follow up period beyond 2 years. The next step would be to conduct a multi-center study analyzing not just ranibizumab but other anti-VEGF medications such as bevacizumab and aflibercept. These commonly used anti-VEGFs all have different molecular characteristics, which cause differences in potency, systemic clearance, and systemic VEGF inhibition31,32. It would be of interest to determine whether higher affinity anti-VEGFs result in greater changes to the optic nerve as well as if there are any predictive factors that affect progress and rate of the treatments.

Future studies for chapter 4 should focus on identifying the supporting cells that became apoptotic under different doses of anti-VEGF. Additionally, the
study should be repeated using different clinical anti-VEGFs rather than ranibizumab alone to determine whether higher affinity anti-VEGFs result in greater amounts of apoptotic cellular death when visualized under immunofluorescence and with colorimetric assays.
5.4 References

12. Do DV, Sepah YJ, Boyer D, Callanan D, Gallemore R, Bennett M et al. Month-6 primary outcomes of the READ-3 study (Ranibizumab for Edema
of the mAcula in Diabetes-Protocol 3 with high dose). Eye (Lond) 2015;29(12):1538-1544.

24. Tolosa L, Mir M, Asensio VJ, Olmos G, Llado J. Vascular endothelial growth factor protects spinal cord motoneurons against glutamate induced

6 Appendices

6.1 Approved use of human participants undergoing PRP treatment

Use of Human Participants - Revision Ethics Approval Notice

Principal Investigator: Dr. Cindy Huber
File Number: 103197
Review Level: Delegated
Protocol Title: A 12-Month Cohort Study Assessing the Nature and the Time Course of Structural and Functional Changes to the Retina Following Either Conventional Panretinal Photocoagulation or PASCAL Photocoagulation in Severe Proliferative or Proliferative Diabetic Retinopathy Patients
Department & Institution: Schulich School of Medicine and Dentistry/Ophthalmology, Western University
Sponsor:
Ethics Approval Date: December 20, 2013 Expiry Date: August 31, 2014
Documents Reviewed & Approved & Documents Received for Information:

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Comments</th>
<th>Version Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revised Letter of Information & Consent</td>
<td>Revised consent form changes highlighted</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Revised protocol changes highlighted (including OPTOS, the new instrument used).</td>
<td></td>
</tr>
</tbody>
</table>

This is to notify you that the University of Western Ontario Research Ethics Board for Health Sciences Research involving Human Subjects (HSREB) which is organized and operates according to the Tri-Council Policy Statement: Ethical Conduct of Research Involving Humans and the Health Canada/ICH Good Clinical Practice Practices: Consolidated Guidelines, and the applicable laws and regulations of Ontario has reviewed and granted approval to the above referenced revision(s) or amendment(s) on the approval date noted above. The membership of this REB also complies with the membership requirements for REB's as defined in Division 5 of the Food and Drug Regulations.

The ethics approval for this study shall remain valid until the expiry date noted above assuming timely and acceptable responses to the HSREB's periodic requests for surveillance and monitoring information. If you require an updated approval notice prior to that time you must request it using the University of Western Ontario Updated Approval Request Form.

Members of the HSREB who are named as investigators in research studies, or declare a conflict of interest, do not participate in discussion related to, nor vote on, such studies when they are presented to the HSREB.

The Chair of the HSREB is Dr. Joseph Gilbert. The HSREB is registered with the U.S. Department of Health & Human Services under the IRB registration number IRB00000040.

Signature

Ethics Officer to Contact for Further Information

This is an official document. Please retain the original in your files.
6.2 Approved use of human participants undergoing anti-VEGF treatment

Western University Health Science Research Ethics Board
HSREB Delegated Initial Approval Notice

Principal Investigator: Dr. Cindy Hutaik
Department & Institution: Schulich School of Medicine and Dentistry/Ophthalmology, Western University

HSREB File Number: 105570
Study Title: Two year Analysis of Changes in Optic Nerve Structure in Diabetic Macular Edema Patients Receiving Multiple Ranibizumab Injections
Sponsor:

HSREB Initial Approval Date: August 29, 2014
HSREB Expiry Date: August 31, 2016

Documents Approved and/or Received for Information:

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Comments</th>
<th>Version Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>Letter to patient for appointment reminder</td>
<td>2014/07/18</td>
</tr>
<tr>
<td>Sponsor Protocol</td>
<td>Protocol (Received for information only)</td>
<td>2014/08/25</td>
</tr>
<tr>
<td>Other</td>
<td>Patient appointment reminder letter</td>
<td>2014/08/25</td>
</tr>
</tbody>
</table>

The Western University Health Science Research Ethics Board (HSREB) has reviewed and approved the above named study, as of the HSREB Initial Approval Date noted above.

HSREB approval for this study remains valid until the HSREB Expiry Date noted above, conditional to timely submission and acceptance of HSREB Continuing Ethics Review. If an Updated Approval Notice is required prior to the HSREB Expiry Date, the Principal Investigator is responsible for completing and submitting an HSREB Updated Approval Form in a timely fashion.

The Western University HSREB operates in compliance with the Tri-Council Policy Statement Ethical Conduct for Research Involving Humans (TCPS2), the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use Guideline for Good Clinical Practice (ICH E6 R1), the Ontario Personal Health Information Protection Act (PHIPA, 2004), Part 4 of the Natural Health Product Regulations, Health Canada Medical Device Regulations and Part C, Division 5, of the Food and Drug Regulations of Health Canada.

Members of the HSREB who are named as Investigators in research studies do not participate in discussions related to, nor vote on such studies when they are presented to the REB.

The HSREB is registered with the U.S. Department of Health & Human Services under the IRB registration number IRB 00009940.

Ethics Officer: on behalf of Dr. Joseph Gilbert, HSREB Chair

Ethics Officer to Contact for Further Information

| Erikas Basile | Grace Kelly | Miss Mkhail | Vikki Tran |

This is an official document. Please retain the original in your files.
6.3 Approved animal use protocol

AUP Number: 2010-001
PI Name: Chakrabarti, Subrata
AUP Title: Pathogenesis of Diabetic Retinopathy

Official Notification of AUS Approval: A MODIFICATION to Animal Use Protocol 2010-001 has been approved.

The holder of this Animal Use Protocol is responsible to ensure that all associated safety components (biosafety, radiation safety, general laboratory safety) comply with institutional safety standards and have received all necessary approvals. Please consult directly with your institutional safety officers.

Submitted by: Kinchlea, Will D
on behalf of the Animal Use Subcommittee
6.4 Copyright permission

LICENCE TO PUBLISH

Manuscript Number: EYE-16-1307R
Journal Name: EYE (the 'Journal')

Proposed Title of the Contribution: Structural and Functional Changes to the Retina and Optic Nerve Following Panretinal Photocoagulation over a 2 Year Time Period
Author(s): Richard Filek, Phil Hopper, Tom Shieldlow, John Gonder, Devash K Varma, Lisa Dicker, William Hodge, Sunara Chakrabarti, Cesty ML Hutnik

To: The Royal College of Ophthalmologists (the "Society")

1. In consideration of the Society evaluating the Contribution for publication (and publishing the Contribution if the Society so decides), the Author(s) grant to the Society for the full term of copyright and any extensions thereof, subject to clause 2 below, the exclusive right and irrevocable licence:
 (a) to edit, adapt, publish, reproduce, distribute, display and store the Contribution in all formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world,
 (b) to translate the Contribution into other languages, create adaptations, summaries or extracts of the Contribution or other derivative works based on the Contribution and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts and derivative works;
 (c) to license others to do any or all of the above; and
 (d) to re-license article metadata without restriction (including but not limited to author name, title, abstract, citation, references, keywords and any additional information, as determined by the Society).

2. Ownership of copyright remains with the Author(s), and provided that:
 (a) when reproducing the Contribution or extracts from it on the Supplementary Information (defined below), the Author(s) acknowledge first and reference publication in the Journal, the Author(s) retain only the following non-exclusive rights:
 (i) to reproduce the Contribution in whole or in part in any printed volume (book or thesis) of which they are the Author(s);
 (ii) to lend the Contribution or any part thereof to any academic institution where they work may reproduce the Contribution for the purpose of course teaching;
 (iii) to post a copy of the Contribution as accepted for publication after poor review (in a coded word processing file or a PDF version thereof) on the Author(s) own web sites or institutional repositories, or the Author(s) funding body's archive, six months after publication of the printed or online edition of the Journal, provided that they also link to the Contribution on the Society's web site; and
 (iv) to reuse figures or tables created by the Author(s) and contained in the Contribution in presentations and other works created by them.
 (b) the Author(s) grant to the Society for the full term of copyright and any extensions thereof the same rights that have been granted in respect of the Contribution as set out in clause 1 above, and to all supplementary material in any form (including without limitation images, videos, tables and/or graphs) submitted by the Author(s) to the Society with or in connection with the Contribution ("Supplementary Information") but on a non-exclusive basis.

3. The Society acknowledges that an earlier version of the Contribution and/or Supplementary Information may have been submitted as a pre-print service (in accordance with that service's standard licence terms).

4. The Author(s) jointly and severally warrant and represent to the Society and Nature Publishing Group, a division of Macmillan Publishers Ltd ("NPG") that:
 (a) the Author(s) are the sole Author(s) of and sole owners of the copyright in the Contribution and supplementary information and the Contribution and the Supplementary Information is the original work of the Author(s) and not copied (in whole or part) from another work. If however the Contribution or the Supplementary Information includes materials from other sources, the Author(s) warrant that they have obtained the permission of the owners of the copyright in all such materials to enable them to grant the rights contained herein. Copies of all such permissions are attached to this licence.
 (b) all of the facts contained in the Contribution and the Supplementary Information are true and accurate;
 (c) the signature (the Author or the employee) who has signed this Agreement below has full right, power and authority to execute this Agreement and grant the rights herein on behalf of all of the Authors;
 (d) nothing in the Contribution or the Supplementary Information is obscene, defamatory, libellous,侵权 any right of privacy or publicity, infringes any intellectual property rights (including without limitation copyright, patent, database or trademark rights) or any other human, personal or other rights of any person or entity, or is otherwise unlawful;
 (e) nothing in the Contribution or the Supplementary Information infringes any duty of confidentiality which any of the Author(s) may owe to any person or entity; and
 (f) the provisions of this Agreement and the Supplementary Information infringe any duty of confidentiality which any of the Author(s) may owe to any person or entity.

5. If the Contribution is rejected by the Society for publication, all rights under this licence shall revert to the Author(s).

6. The Author(s) agree to the Society to take such steps as it considers necessary at its own expense in the Author's (a) name and on their behalf if the Society believes that a third party is infringing or a likely to infringe copyright in the Contribution or Supplementary Information including but not limited to initiating legal proceedings.

7. The Author(s) hereby waive or agree not to assert (where such waiver is not possible at law) any and all moral rights they may now or in the future hold in connection with the Contribution and the Supplementary Information.

8. The Author(s) shall cooperate fully with the Society in relation to any legal action that might arise from the publication of the Contribution and/or Supplementary Information and the Author(s) shall give the Society access at reasonable times to any relevant accounts, documents and records within the power or control of the Author(s).

9. The Author(s) agree that NPG is entitled to have the benefits of and shall have the right under the Contracts Rights of Third Parties Act 1999 to enforce the terms of this Agreement.

10. If the Contribution is rejected by the Society and not published, all rights under this licence shall revert to the Author(s).

11. This Agreement shall be governed by and construed in accordance with the laws of England and Wales. The parties irrevocably agree that the courts of England and Wales shall have exclusive jurisdiction to settle any dispute or claim that arises out of or in connection with this Agreement or its subject matter or formation.

Signed for and on behalf of the Author(s):

[Signature]

Print name:

Richard Filek

Address:

[Address]

Date:

March 18, 2017
This Agreement between Richard Filek ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions provided by Elsevier and Copyright Clearance Center.

<table>
<thead>
<tr>
<th>License Number</th>
<th>4203280479888</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Oct 06, 2017</td>
</tr>
<tr>
<td>Licensed Content Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Licensed Content Publication</td>
<td>Progress in Retinal and Eye Research</td>
</tr>
<tr>
<td>Licensed Content Title</td>
<td>Blood-retinal barrier in hypoxic ischaemic conditions: Basic concepts, clinical features and management</td>
</tr>
<tr>
<td>Licensed Content Author</td>
<td>C. Keur, W.S. Foulds, E.A. Ling</td>
</tr>
<tr>
<td>Licensed Content Date</td>
<td>Nov 1, 2008</td>
</tr>
<tr>
<td>Licensed Content Volume</td>
<td>27</td>
</tr>
<tr>
<td>Licensed Content Issue</td>
<td>6</td>
</tr>
<tr>
<td>Licensed Content Pages</td>
<td>26</td>
</tr>
<tr>
<td>Start Page</td>
<td>622</td>
</tr>
<tr>
<td>End Page</td>
<td>647</td>
</tr>
<tr>
<td>Type of Use</td>
<td>reuse in a thesis/dissertation</td>
</tr>
<tr>
<td>Intended publisher of new work</td>
<td>other</td>
</tr>
<tr>
<td>Portion</td>
<td>figures/tables/illustrations</td>
</tr>
<tr>
<td>Number of figures/tables/illustrations</td>
<td>1</td>
</tr>
<tr>
<td>Format</td>
<td>electronic</td>
</tr>
<tr>
<td>Are you the author of this Elsevier article?</td>
<td>No</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>No</td>
</tr>
<tr>
<td>Original figure numbers</td>
<td>Figure 1</td>
</tr>
<tr>
<td>Title of your thesis/dissertation</td>
<td>A CLINICO-PATHOLOGICAL STUDY OF THE STRUCTURAL AND FUNCTIONAL CHANGES IN THE RETINA AND OPTIC NERVE FOLLOWING DIABETIC RETINOPATHY TREATMENTS</td>
</tr>
<tr>
<td>Expected completion date</td>
<td>Oct 2017</td>
</tr>
<tr>
<td>Estimated size (number of pages)</td>
<td>294</td>
</tr>
<tr>
<td>Requestor Location</td>
<td>Richard Filek</td>
</tr>
</tbody>
</table>

Total 0.00 CAD
This Agreement between Richard Filek ("You") and Wolters Kluwer Health ("Wolters Kluwer Health") consists of your license details and the terms and conditions provided by Wolters Kluwer Health and Copyright Clearance Center.

<table>
<thead>
<tr>
<th>License Number</th>
<th>4207231262553</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Oct 13, 2017</td>
</tr>
<tr>
<td>Licensed Content Publisher</td>
<td>Wolters Kluwer Health</td>
</tr>
<tr>
<td>Licensed Content Publication</td>
<td>WK Health Book</td>
</tr>
<tr>
<td>Licensed Content Title</td>
<td>Eye Pathology</td>
</tr>
<tr>
<td>Licensed Content Author</td>
<td>Ralph C. Eagle MD</td>
</tr>
<tr>
<td>Licensed Content Date</td>
<td>Jan 1, 2016</td>
</tr>
<tr>
<td>Type of Use</td>
<td>Dissertation/Thesis</td>
</tr>
<tr>
<td>Requestor type</td>
<td>individual</td>
</tr>
<tr>
<td>Format</td>
<td>print and electronic</td>
</tr>
<tr>
<td>Portion</td>
<td>figures/tables/illustrations</td>
</tr>
<tr>
<td>Number of</td>
<td>2</td>
</tr>
<tr>
<td>The ID numbers of the</td>
<td>Figure 9-11 and Figure 9-27</td>
</tr>
<tr>
<td>figures/tables/illustrations are...</td>
<td></td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>no</td>
</tr>
<tr>
<td>Reusing current or a</td>
<td>previous edition</td>
</tr>
<tr>
<td>previous edition</td>
<td></td>
</tr>
<tr>
<td>Previous edition being used...</td>
<td>Second edition</td>
</tr>
<tr>
<td>Circulation/distribution</td>
<td>50</td>
</tr>
<tr>
<td>Order reference number</td>
<td></td>
</tr>
<tr>
<td>Title of your thesis / dissertation</td>
<td>A CLINICO-PATHOLOGICAL STUDY OF THE STRUCTURAL AND FUNCTIONAL CHANGES IN THE RETINA AND OPTIC NERVE FOLLOWING DIABETIC RETINOPATHY TREATMENTS</td>
</tr>
<tr>
<td>Expected completion date</td>
<td>Oct 2017</td>
</tr>
<tr>
<td>Estimated size (number of pages)</td>
<td>294</td>
</tr>
<tr>
<td>Requestor Location</td>
<td>Richard Filek</td>
</tr>
</tbody>
</table>

Billing Type
Billing Address

| Total | 0.00 CAD |
RE: Permission to use images for PhD dissertation

Caroline Bozell

Mon 10/9/2017 2:07 PM

To Richard Filek

Hi Richie,

Thank you so much for your interest in the Retina Image Bank! All images on the site can be used for educational purposes as long as they include the following customized copyright statement alongside each:

“This image was originally published in the Retina Image Bank® website, Author, Photographer, Title, Retina Image Bank, Year, Image Number. © the American Society of Retina Specialists.”

I hope this helps. If you have any questions or need anything else please let us know.

Thanks,
Caroline

Caroline Bozell
Director, Retina Image Bank and Member Sections
RE: NON RIGHTSLINK- Permission to use images for PhD dissertation

Wiley Global Permissions

Wed 10/18/2017 7:01 AM

To Richard Fiek

Dear Richie,

Thank you for your email.

Permission is granted for you to use the material requested for your thesis/dissertation subject to the usual acknowledgements (author, title of material, title of book/journal, ourselves as publisher) and on the understanding that you will reapply for permission if you wish to distribute or publish your thesis/dissertation commercially.

You should also duplicate the copyright notice that appears in the Wiley publication in your use of the Material. Permission is granted solely for use in conjunction with the thesis, and the material may not be posted online separately.

Any third party material is expressly excluded from this permission. If any material appears within the article with credit to another source, authorisation from that source must be obtained.

Best wishes

Kelly Hoff
Permits Coordinator
Copyright & Permissions

WILEY
This is a License Agreement between Richard Filek ("You") and Touch Medical Media ("Touch Medical Media") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by Touch Medical Media, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

License Number: 421262068330
License date: Oct 06, 2017
Licensed content publisher: Touch Medical Media
Licensed content title: European ophthalmic review (Online)
Licensed content date: Jan 1, 2007
Type of Use: Thesis/Dissertation
Requestor type: Academic institution
Format: Electronic
Portion: Image/photo
Number of images/photos requested: 3
Title or numeric reference of the portion(s): Figure 1, Figure 2, and Figure 3
Title of the article or chapter the portion is from: The Mechanism of Retinal Photocoagulation – How Does the Laser Work?
Editor of portion(s): N/A
Author of portion(s): Einar Stefánsson
Volume of serial or monograph: N/A
Page range of the portion: 76-77
Publication date of portion: February 10, 2011
Rights for: Main product
Duration of use: Current edition and up to 5 years
Creation of copies for the disabled: No
With minor editing privileges: No
For distribution to: Canada
In the following language(s): Original language of publication
With incidental promotional use: No
The lifetime unit quantity of new product: Up to 499
Made available in the following markets:
The requesting person/organization is: Richard Filek
Order reference number:
Author/Editor:
Title of New Work:
Publisher of New Work:
Expected publication date: Oct 2017
Estimated size (pages):
Total (may include CCC user fee): 0.00 USD
6.5 Antibodies used for experiments

<table>
<thead>
<tr>
<th>Primary antibody</th>
<th>Dilution</th>
<th>Company, Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse CD90/Thy 1.1</td>
<td>1:200</td>
<td>Abcam; Toronto, Ont, Canada</td>
</tr>
<tr>
<td>Chicken Class III β-Tubulin antibody/TUJ-1</td>
<td>1:400</td>
<td>Abcam; Toronto, Ont, Canada</td>
</tr>
<tr>
<td>Rabbit Brn3a</td>
<td>1:100</td>
<td>Abcam; Toronto, Ont, Canada</td>
</tr>
<tr>
<td>Rabbit cleaved caspase-3</td>
<td>1:400</td>
<td>Cell Signaling Technology Inc., Boston, Massachusetts, USA</td>
</tr>
</tbody>
</table>
6.6 Curriculum vitae

Richard Filek

<table>
<thead>
<tr>
<th>EDUCATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Western University</td>
<td>London, Ontario</td>
</tr>
<tr>
<td>HONOURS BACHELORS OF MEDICAL SCIENCE HONORS</td>
<td>SEPTEMBER 2008 – APRIL 2012</td>
</tr>
<tr>
<td>Western University</td>
<td>London, Ontario</td>
</tr>
<tr>
<td>DOCTOR OF PHILOSOPHY – PATHOLOGY AND LABORATORY MEDICINE</td>
<td>AUGUST 2012-PRESENT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCHOLARSHIPS/AWARDS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Western University</td>
<td>London, Ontario</td>
</tr>
<tr>
<td>WESTERN SCHOLARS</td>
<td>SEPTEMBER 2008-APRIL 2009</td>
</tr>
<tr>
<td>Western University</td>
<td>London, Ontario</td>
</tr>
<tr>
<td>DEAN’S HONOR ROLL</td>
<td>SEPTEMBER 2010-APRIL 2011, SEPTEMBER 2011-APRIL 2012</td>
</tr>
<tr>
<td>Western University</td>
<td>London, Ontario</td>
</tr>
<tr>
<td>WESTERN GRADUATE RESEARCH SCHOLARSHIP</td>
<td>SEPTEMBER 2012 – PRESENT</td>
</tr>
<tr>
<td>Western University</td>
<td>London, Ontario</td>
</tr>
<tr>
<td>SCHULICH GRADUATE SCHOLARSHIP</td>
<td>SEPTEMBER 2014 - PRESENT</td>
</tr>
<tr>
<td>Lawson Health Research Institute</td>
<td>London, Ontario</td>
</tr>
<tr>
<td>STUDENTSHP AWARD- SPRING 2015 INTERNAL RESEARCH FUND COMPETITION - AWARDED $15,000</td>
<td>JULY 2015- JULY 2016</td>
</tr>
<tr>
<td>Department of Ophthalmology- Ophthalmology Research Day 2016</td>
<td>London, Ont</td>
</tr>
<tr>
<td>OUTSTANDING RESEARCH DAY PRESENTATION BY A GRADUATE STUDENT NOVEMBER 2016</td>
<td>NOVEMBER 2016</td>
</tr>
<tr>
<td>- AWARDED $1,000</td>
<td></td>
</tr>
<tr>
<td>Department of Ophthalmology, Western University</td>
<td>London, Ontario</td>
</tr>
<tr>
<td>McGrath Research Scholarship (2016/17)</td>
<td>JANUARY 2017</td>
</tr>
<tr>
<td>- AWARDED $8,000</td>
<td></td>
</tr>
<tr>
<td>Department of Pathology and Laboratory Medicine, Western University</td>
<td>London, Ontario</td>
</tr>
<tr>
<td>The Cameron Wallace Graduate Student Award in Pathology</td>
<td>MARCH 2017</td>
</tr>
<tr>
<td>The award recognizes a graduate student’s achievement in both Pathology research and course work. This award is given in recognition of Dr. Cameron Wallace who was head of the Department of Pathology from 1965-1974</td>
<td></td>
</tr>
<tr>
<td>- AWARDED $1400</td>
<td></td>
</tr>
</tbody>
</table>
Ivey Eye Institute

2013 OPHTHALMOLOGY RESEARCH DAY

• Platform presentation; “Investigating the structural and functional changes to the retina following PRP in diabetic retinopathy patients”

St. Joseph’s Health Care London

4th ANNUAL DIABETES RESEARCH DAY

• Poster presentation; “Investigating the structural and functional changes to the retina following PRP in diabetic retinopathy patients”

Western University

2013 ANNUAL PATHOLOGY RESEARCH DAY

• Poster presentation; “Structural and functional changes to the retina following anti-VEGF treatments in diabetic retinopathy patients”

Pan-American Association of Ophthalmology

2015 PAN-AMERICAN RESEARCH DAY

• Poster presentation; “Visual Field Indices as the Primary outcome for New Glaucoma Drug Testing: A Systematic Review”

The Association for Research in Vision and Ophthalmology

2015 ARVO ANNUAL MEETING, DENVER COLORADO, USA

• Poster presenter; “Visual Field Indices as the Primary outcome for New Glaucoma Drug Testing: A Systematic Review”

ARVO 2016 ANNUAL MEETING, SEATTLE WASHINGTON, USA

• Poster presenter; “Investigating the Structural and Functional Changes to the Retina Following PRP in Diabetic Retinopathy Patients”

ARVO 2017 ANNUAL MEETING, BALTIMORE, MARYLAND, USA

• Platform presentation; “A Clinico-Pathological Study of the Structural and Functional Changes to the Retina and Optic Nerve following anti-VEGF Treatments for Diabetic Macular Edema”
 • Selected by the Annual Meeting Program Committee as a “Hot Topic”
 • Representing the newest and most innovative research being conducted in various specialties
 • This distinction is awarded to just over 2% of all 2017 Annual Meeting abstracts

Canadian Ophthalmological Society

2016 COS ANNUAL MEETING & EXHIBITION, OTTAWA CANADA

• Platform presentation; “Investigating the structural and functional changes to the retina following PRP in diabetic retinopathy patients”

2017 COS ANNUAL MEETING & EXHIBITION, MONTREAL CANADA

• Platform presentation; “A Clinico-Pathological Study of the Structural and Functional Changes to the Retina and Optic Nerve following anti-VEGF Treatments for Diabetic Macular Edema”
OPHTHALMOLOGY RESEARCH DAY 2016
NOVEMBER 4, 2016

Platform presentation; “Investigating the Structural and Functional Changes to the Retina Following PRP in Diabetic Retinopathy Patients”

PUBLICATIONS

Journal Articles

- Published
- Co-first author; set up the search strategy, screening of the publications, data extraction and writing of the manuscript

- Published
- Secondary author; set up the search strategy, screening of the publications, and data extraction

- Published
- As first author, I devised the protocol, ethics approval, grant, recruited patients, scheduling, diagnostic testing, data analysis, wrote and submitted the manuscript

- Published
- As co-first author, I conducted experiments and wrote the manuscript for publication

- Submitted for publication to Ophthalmology®, the journal of the American Academy of Ophthalmology
- As first author, I devised the protocol, ethics approval, grant, recruited patients, scheduling, diagnostic testing, data analysis, wrote and submitted the manuscript

*Submitted for publication to Progress in Retinal and Eye Research
*As first author, I devised the protocol, created a mixed retinal cell culture, worked with rats, intravitreal animal injections, colorimetric assays, immunofluorescence, data analysis, wrote and submitted the manuscript

DEPARTMENTAL AND COMMUNITY ACTIVITIES

St. Joseph’s Health Care London
Physiotherapy and Ophthalmology Departments

VOLUNTEER
- Contributed 239.43 total volunteer hours
- Assist patients in registration for their appointments

Youth Science London

43rd ANNUAL LONDON DISTRICT SCIENCE FAIR-JUDGE
THE 30TH LONDON DISTRICT SCIENCE OLYMPICS-VOLUNTEER
44th ANNUAL LONDON DISTRICT SCIENCE FAIR
2015 THAMES VALLEY SCIENCE & ENGINEERING FAIR
- Judged and determined for awards the best junior and senior physical science projects
- Volunteered and taught secondary school students. Created scientific activity schedule (Experiments, games, sports)

Pathology Research Based Graduate Education Committee

PATHOLOGY GRADUATE STUDENT REPRESENTATIVE
- Elected by the Pathology & Laboratory Medicine Graduate Students to be their student representative
- Listen to questions and concerns that the graduate students may have, express these issues to the Pathology Research Based Graduate Education Committee and resolve those issues

Schulich Graduate Student Council, Western University

PATHOLOGY AND LABORATORY MEDICINE REPRESENTATIVE
- Represent the Pathology Department on the Schulich Graduate Student Council
- Communicate with the Pathology Department and its graduate students Schulich events, workshops, socials, academic information nights, and fundraisers
- Work in collaboration with the other departmental reps to create and organize Schulich wide academic, professional, and social events

Western Pathology Association, Western University

RESEARCH REPRESENTATIVE
- Promote student and faculty interactions within the Department of Pathology and Laboratory Medicine through academic, professional and social events
- Advance the Department’s vision, aims and goals by enhancing team work, collaborations, and intellectual exchange
Proctor exams, Western University
London, Ontario
Path 2420a
Path 3240a/9240a
Path 3245b/9245b
Path 2420a
Path 3240a/9240a

Executive Council Student Representative, Western University
London, Ontario
REPRESENTATIVE
MAY 2015-PRESENT
•Represent the voice of the graduate student body by sitting in on Schulich Executive Committee meetings with all departmental chairs of the Schulich School of Medicine & Dentistry