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Abstract  

Gas-solid fluidized beds are widely used in industrial dry coal preparation to separate waste 

from coal (still a primarily important energy source worldwide). It is the density difference 

between coal and the waste that enables the separation. Experiments were carried out in a two 

dimensional gas-solid fluidized bed. Filtered air at room temperature was used as the 

fluidizing gas, while magnetite, sand (two types) and FCC catalyst particles belonging to 

Geldart groups A and B were used as bed particles. Image processing and Matlab were 

applied for bubble size and velocity measurements. Bubble properties and bed expansion in 

fluidized beds of four single-component particles and binary systems were studied. Bubble 

size and bubble rise velocity were found to be proportional to the distance above the gas 

distributor and excess gas velocity. Bubble diameter is reduced by the addition of lighter and 

smaller particles in a binary system. In addition, a new empirical correlation for estimation of 

bubble diameter was proposed for single-component and binary fluidization systems. The 

results were in good agreement with the experimental data. 
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Chapter 1, Introduction and objectives  

1.1 The importance of coal separation  

Coal is still important as a steadily available source of energy worldwide due to its vast 

underground resources. Figure 1.1 shows that coal’s market share fell to the lowest level 29.2% 

in 2005, but still ranking the second largest energy source. Moreover, Figure 1.2 illustrates that 

coal is the dominant fuel in the Asia Pacific region, accounting for 51% of regional energy 

consumption - the highest share of any fuel for any region (BP Statistical Review of World 

Energy). 

Therefore, coal cleaning technology is becoming increasingly important to produce high 

quality coal and reduce emission of air pollutants. In the near future, dry coal separation 

technology is expected to be the dominant method, replacing the tradidional wet cleaning 

technology. 

 

Figure 1.1 Primary energy world consumption 2015 (million tonnes oil equivalent)(BP 

Statistical Review of World Energy). 



2 

 

 

Figure 1.2 Primary energy regional consumption by fuel 2015 (percentage) (BP Statistical 

Review of World Energy). 

 

1.2 Gas-solid fluidization technology applied in dry coal separation  

Wet cleaning technology for coal beneficiation had been dominant for the last five decades due 

to its high separation efficiency (Yang et al. 2016). However, wet cleaning process requires a 

large quantity of water, which is becoming increasingly scarce for people living near coal mines 

due to serious water contamination. As an alternative method, dry coal separation technology 

exhibits the most important advantage over wet cleaning process-no need for water. The first 

fluidized bed applied for coal separation was conducted in a lab utilizing river sand as the 

medium solids to separate gangue from coal (Fraser and Yancey 1926). A mixture of fine 

magnetite powder and sand particles was also used as the fluidizing medium (lohn 1971). The 

density of this mixture is lower than that of magnetite but higher than that of sand particles. 

Warren Spring Laboratory (1966) invented a fluidized bed with an inclined vibratory trough, 

using magnetite powder as the fluidizing medium in United Kingdom. Researchers 
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(Beeckmans and Minh 1977) at Western University (UWO) developed a counter-current 

fluidized bed cascade (CCFC) system to separate sand from coal. Recently, an air-dense 

medium-fluidized bed (ASMFB) designed at China University of Mining and Technology 

(1994) has been widely studied due to its high efficiency.   

The fluidizing medium inside a gas-solid fluidized bed behaves like a liquid, which allows 

particles heavier than the medium to sink to the bottom and particles lighter than the medium 

to float to the surface. The Archimedes’ principle perfectly explains this separation 

mechanism based on the analysis of various forces acting on the particles as shown in Figure 

1.3. 

 

Figure 1.3 Forces acting on a single particle. 

where G is the gravity force, Fb is the buoyant force, Fgd is the friction drag force of air and 

Fsd is the drag force of dense medium. 

The density difference between medium solids and feed particles enables this physical gravity 

separation. Therefore, the density of the medium solids plays a vital role in the separation 

process. Moreover, the uniformity of bed density can ensure a high separation efficiency, 

which is difficult to achieve due to the non-uniformity of bed density caused by bubbles. 

Based on the two-phase theory of gas-solid fluidization shown in Figure 1.4 (Davidson and 

Harrison 1963), a gas-solid fluidized bed consists of dense phase and bubble phase with 
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significantly different properties.  

 

Figure 1.4 The diagram of phases in a gas-solid fluidized bed. 

Bubbles inside the fluidized bed continue to rise to the surface from the gas distributor, carrying 

solid particles in their wake, which results in non-uniformity of the bed density. Solids mixing 

is crucial in coal beneficiation to ensure an efficient separation. Such mixing is induced by 

bubbles motion, breakage and coalescence. Particles are dragged upward in the bubbles wake 

while particles in the emulsion phase fall downward along the bubble walls. Particles fall in 

boundary layer formed around the bubble, however the irregular shape of the bubbles make it 

difficult to accurately determine the particles flow quantitatively. Study of particles micro-

mixing which is related to boundary layer and interaction between the gas and particles as well 

as bubble wake phenomenon is quite challenging and out of scope of this study.  
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The medium solids usually are comprised of single-component particles with higher density 

to proceed the separation, which significantly affects the range of choices of feed coal. In 

order to lower the density of medium solids, binary mixtures of particles were introduced.  

 

1.3 Objectives  

Corresponding to the non-uniformity of bed density, the bubble behavior in a two-

dimensional gas-solid fluidized bed using different particles is of main concern in this study, 

aimed to reach the following objectives: 

 The relationship between bubble size and particle type, particle size, ungassed bed height 

and distance above gas distributor. 

 The variation of bubble size and bubble velocity at different operating conditions. 

 A new correlation for estimation of bubble diameter for single-

component and binary fluidization systems. 

 Develop a method to determine the bed density for single-component and binary 

fluidization systems. 

1.4 Thesis structure  

This thesis consists of four chapters and follows the ‘monograph’ format as outlined by the 

Master’s Programs of GENERAL THESIS REGULATIONS by the School of Graduate and 

Postdoctoral Studies (SGPS) at the University of Western Ontario (UWO). A summary of 

each chapter is provided below. 

Chapter 1 consists of general introduction and literature review, including industrial 

applications and objectives. The development of coal cleaning technologies and studies about 
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bubble dynamics are elaborated.  

Chapter 2 is focusing on the study of bubble properties in 2-D gas-solid fluidized beds with 

single-component particles. Details about experiment and image processing technology are 

provided. 

Chapter 3 reports the bubble dynamics in 2-D gas-solid fluidized bed with binary mixtures. 

The variation of bubble size in binary mixtures is presented.   

Chapter 4 provides general conclusions. The first part is conclusions of bubble properties as a 

function of particle type, particles size, ungassed bed height and the height above the gas 

distributor. A new correlation for estimation of bubble diameter was also proposed in the first 

part. The second part is comprehensive studies of bubble dynamics and bed expansion in 

binary fluidization systems.  

 

 

 

 

 

 

 

 

 

 

 



7 

 

Reference  

BP Statistical Review of World Energy 2016, BP, London 2016. 

 

Beeckmans, J. M. and T. Minh (1977), Separation of mixed granular solids using the 

fluidized counter-current cascade principle, The Canadian Journal of Chemical Engineering 

55: 493-496. 

 

Chen Q. R. and Y. F. Yang(1994), Development of dry beneficiation of coal in China, Coal 

preparation 23: 3-12. 

 

Douglas, E. and T. Walsh (1966), New type of dry heavy medium gravity separator, 

Transactions of the Institute of Mining and Metallurgy 75C: 226–232. 

 

Davidson, J. F. and D. Harrison (1963), Fluidized particles, Cambridge university press. 

 

Fraser, J. and H. F. Yancey (1926), Artificial storm of air-sand floats coal on its upper surface, 

leaving refuse to sink, Coal Age 29: 325-327. 

 

Lohn, P. (1971), Fluidized bed heavy medium separation-A modern dry separation procedure, 

Aufbereitung Technik 3: 140-146. 

 

Xuliang Yang, Yuemin Zhao and Zhenfu Luo (2016), Dry cleaning of fine coal based on gas-

solid two-phase flow: A review, Chemical Engineering Technology 40(3): 439-449. 

 

 

 

 

 

 

 

 

 

 



8 

 

Chapter 2 Bubble dynamics in 2-D gas-solid fluidized bed  

2.1 Introduction  

Gas-solid fluidization technology has been widely used in different processes, such as fluid 

catalytic cracking, fluidized bed combustion, coating and dry coal separation. Among these 

applications, dry coal beneficiation exhibits remarkable advantages over wet cleaning 

technology, such as no need for water, less air pollution, no slurry treatment and so on (Dwari 

and Rao 2007, Houwelingen and Jong 2004). Density difference as the basic principle 

perfectly explains this physical separation. Particles relatively heavier than the bed medium 

sink towards the bottom of the bed, while particles lighter than the bed float to the bed 

surface (Sahu, Biswal and Parida 2009). Bubble behaviour has a significant effect on the 

mass transfer, heat transfer, bed density and chemical reactions. Therefore, knowledge of 

bubble dynamics is essential for improving efficiency of gas-solid fluidized bed for industrial 

applications. Various measurement systems have been developed to determine the bubble 

properties in fluidized beds, including different probes and photography. Several probe 

measurement systems, belonging to intrusive measurement technologies, have been utilized 

in recent years, which includes needle type capacitance probes (Werther and Molerus 1973), 

optical probes (Yasui and Johnson 1958, Andreux and Chaouki 2005) and electro-resistivity 

and conductivity probes (Park and Kang 1969). Photography technologies belonging to non-

intrusive measurement technologies, are mainly composed of direct photography (Geldart 

1970), X-ray photography (Rowe and Partridge 1965) and electrical capacitance tomography 

(Halow, Fasching, Nicoletti and Spenik 1993, McKeen and Pugsley 2003).  

In the last decade, investigations of bubble characteristics have been carried out using image 
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analysis technology. However, almost all of these studies used lights placed at the back of the 

fluidized bed, while a camera was placed at front. In this case, fewer bubbles ware observed 

due to the thickness of the bed. Another issue caused by the thickness is that particles 

surrounding bubbles may decrease the visibility of the bubbles. 2D fluidized beds, 

overcoming these shortcomings, have been widely used for investigations of bubble behavior 

in recent years.  

In this study, experiments for investigation of bubble properties in a two dimensional gas-

solid fluidized bed were conducted. The behaviour of bubbles was recorded and processed 

using image processing technology. The objective of this work is to get bubble distribution, 

bed expansion and bubble parameters as a function of the height, particle size, particle type, 

and superficial gas velocity using image analysis.  

 

2.1.1 Bubble size 

When particles in a fluidized bed are fluidized by an upward flow of gas, bubbles are formed 

by excess gas (the superficial gas velocity exceeding the minimum fluidization velocity). 

Bubbles generated at the bottom rise through the bed to the surface. During this process, 

bubbles continually coalesce and break up reaching a balance between them and evolve at 

varying bubble diameter (Horio and Nonaka 1987).  

Yasui and Johanson (1958) made the first attempt to study bubble dynamics in fluidized beds  

using 4-in and 6-in columns. They derived an empirical correlation for predicting bubble 

diameter from the experimental data directly measured using the light probe technique. Five 

different particles ranging from 12μm to 450μm were used. Lim et al. (1990) were the first 
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researchers who utilized image analysis technology to study bubble characteristics. Geldart 

(1970) derived another formula of bubble size in a 3D bed from data collected from a 2D bed. 

A transition of bubble diameter from 2D bed to 3D bed is needed, because their flow 

dynamics are different (Ma, Liu and Chen 2015). Mori and Wen (1975) proposed a 

correlation of bubble diameter and growth in fluidized beds. Furthermore, the bubble 

diameters calculated from this correlation are in good agreement with the bubble sizes 

observed. Darton’s equation (Darton et al. 1977) for bubble diameter has been the most 

widely used by researchers due to its good coverage under all conditions. However, this 

correlation excluded mechanism of bubbles splitting and breakage. Therefore, a continuously 

increasing pattern of bubble diameter was obtained from their work (Karimipour and Pugsley 

2011). However, in real cases, bubbles splitting and coalescence do exist and are of critical 

importance for bubble size evolution. Horio and Wen (1977) pointed out that the equilibrium 

bubble size should be the result of a balance between bubble coalescence and break up. For 

the cases of group A particles (Geldart 1973, shown in Figure 2.1), splitting and breakage 

occur in a high frequency in a fluidized bed of group A particles, which implies that the 

correlation of Darton cannot provide the best coverage for group A particles.  
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Figure 2.1 Geldart’s Powder Classification. 

Busciglio and Vella (2010) performed the investigation on bubble size distribution in a 2D 

fluidized bed by means of image analysis technology. The same technology was also 

employed by Ma et al. (2015) to study bubble behavior of large cohesive particles in a 2D 

fluidized bed.   

 

2.1.2 Bubble rise velocity  

In recent years, compared to bubble size, fewer studies of bubble velocity have been 

conducted by researchers. Davidson and Harrison (1963) developed the most widely used 

equation for bubble velocity. Corresponding to this correlation, bubble rise velocity is 

dominated by the bubble diameter. Another factor contributing to bubble velocity is the 

excess gas velocity. Whitehead et al. (1967) measured the bubble rise velocity using an 

optical probe in a 10 cm squared fluidized bed filled up with silica sands at varying excess 

gas velocities. They found that average bubble velocity is proportional to the excess gas 

velocity and bubbles rose faster in fine sand. Werther (1974) reported the existence of a 

maximum bubble rise velocity in several cylinder beds using a needle capacitance probe.  

Verma et al. (2014) investigated bubble rise velocity in a 3D fluidized bed with glass, 

alumina and low linear density polyethylene (LLDPE) using X-ray tomography technology. 

The experimental results of their work showed a good agreement with the simulations. They 

also found that the LLDPE particles have higher bubble rise velocity compared to the data 

calculated from previous correlations.  
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2.2 Experimental  

2.2.1 Experimental set-up 

Figure 2.2 shows the schematic diagram of the experimental setup. The fluidized bed designed 

for present study on bubble dynamics is made of Perspex (1500 mm height, 370 mm width and 

thickness of 19 mm), which provides detail observation of bubble behaviors inside the bed. 

There are three pressure measurement ports along the bed wall located at bed height of 0 mm, 

180 mm and 550 mm. Two lights were placed in front of the fluidized bed to enhance the 

contrast between the bubble and dense phases, allowing more small bubbles being visualized. 

The bubble behaviors were recorded by a digital camera (Canon T3i), which was placed on the 

opposite side of the bed. All videos were recorded at the steady state condition (complete 

fluidization). 

 



13 

 

 

Figure 2.2. Schematic diagram of experimental equipment. 

A sintered plastic gas distributor placed at the bottom of fluidized bed is designed with 10 

micron holes. Below the gas distributor is the wind box used to ensure uniform distribution of 

inlet gas across the distributor. Air was used as the fluidizing gas and controlled by three air 

rotameters ranging from 0 m3/h to 5 m3/h.  

Four types of particles were used at bed heights of 300 mm, 450 mm and 600 mm in the 

fluidized bed. Particles were fluidized by the upward air at varying superficial gas velocities. 

The excess gas velocities (defined as the difference between superficial gas velocity and 

minimum fluidization velocity) were kept constant at 1.63 cm/s, 4.37 cm/s and 7.05 cm/s. 

Other characteristics of particles have been summarized in Table 2.1. Geldart A particles and 

Geldart B particles were used in the experiments, to cover a wider range of particles. 

Table 2.1 Properties of particles 

Particle type  ρp (kg/m3) dp (μm) Geldart type 

Magnetite 4650 150-300 B 

Sand  2650 150-300 B 
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Sand  2650 75-125 A/B 

FCC catalyst  1540 75-125 A 

 

2.2.2 Experimental Methods  

2.2.2.1 Image processing  

The bubble behavior in the fluidized bed was videotaped after steady state condition was 

reached. The camera employed recorded video at a frequency of 29 Hz, which implies 29 

frames per second. Each frame is a 1088 X 1920 pixel picture. The pixel ranging from 0 to 

255 is called grey-value which indicates brightness. Grey-value 0 is black while grey-value 

255 means white. Each position in the picture has its own grey-value. In this way, pictures are 

transferred to a matrix, which can be analyzed using MATLAB (Matrix Laboratory).  

The experimental procedure for image processing can be summarized into several steps : 1. 

Split the video into consecutive frames. 2. Transfer original RGB images into grey images. 3. 

Set a threshold to transfer grey images into binary images. 4. Do the subtraction of grey-value 

between fluidizing particles images and ungassed particles image to determine bubble 

properties. 5. Depict the contour of bubbles and obtain bubble characteristics applying a 

package of software ‘Regionprops’. A video used as the base was recorded before air was 

introduced into bed. Then grey-value’s difference between the base image and fluidizing 

images of every position was obtained. A non-zero grey-value difference implies a position 

where bubble exists due to different grey-values between dense phase and bubble phase. 

Figure 2.3 shows the images used in the analysis.  
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        (a)                (b)                 (c)                (d) 

Figure 2.3 Image processing procedure: (a) Original RGB image (b) Grey image (c) Binary 

image (d) Image with circles  

 

2.2.2.2 Bubble size  

The bubble phase was discriminated from the dense phase based on grey-value difference. 

However, a threshold needs to be determined to improve the discrimination between these 

two phases because of the disturb of noise points. In this study, the threshold was determined 

to be 10 to exclude the impact of noise points. The area of a bubble (Ab) is the number of 

pixels forming this bubble. Every single bubble was transformed into a circle with the same 

area using a software called Regionprops. According to the bubble area, the equivalent 

bubble diameter De can be calculated from the following equation: 

𝐷𝑒 = 2√
𝐴𝑏

𝜋
                              (1) 

 

2.2.2.3 Bubble rise velocity  

The camera applied in this investigation recorded videos of 29 frames per second. Therefore, 

the time interval (∆t) between every two consecutive frames is 1/29 second. The coordinates 
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(xi, yi) of the bubble center in each frame can be determined automatically by the means of 

image processing technology. In this way, the axial distance (yi-yi-1) that every single bubble 

moves between every two consecutive frames was obtained. Then the bubble rising velocity 

can be calculated from the following equation: 

𝑢𝑏 =
𝑦𝑖−𝑦𝑖−1

∆t
                             (2) 

 

2.3 Results and Discussions  

2.3.1 The minimum fluidization velocity (Umf) 

The minimum fluidization velocity is the fluid velocity at incipient fluidization of a packed 

bed filled up with particles. It is a critical variable for designing fluidized beds. In this work, 

the minimum fluidization velocity (Umf) is determined by measuring the pressure drop as a 

function of superficial gas velocity (shown in Figure 2.3). 

 

Figure 2.4 Pressure drop as a function of superficial gas velocity. 

Pressure drop remains almost constant after superficial gas velocity exceeds certain value. 

This value is determined as the minimum fluidization velocity, at which the particles inside 

the bed begin to be fluidized. Many correlations for predicting minimum fluidization velocity 
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have been reported, such as correlations of Narsimhan (1965), Wen and Yu (1966) and 

Coltters and Rivas (2004). The equation of Wen and Yu for the minimum fluidization velocity 

is described as follows: 

                     𝐴𝑟 = 24.5𝑅𝑒𝑚𝑓
2 + 1650𝑅𝑒𝑚𝑓                          (3) 

where  

𝐴𝑟 = 𝑑3𝜌𝑔(ρ𝑝 − ρ𝑔)
𝑔

𝜇2                              (4) 

𝑅𝑒𝑚𝑓 =
𝑑ρ𝑔𝑢𝑚𝑓

𝜇
                                     (5) 

The correlation of Coltters and Rivas for the minimum fluidization velocity is given by 

                              𝑈𝑚𝑓 = K𝑋𝛼                                (6) 

where  

                           X =
𝑑2(𝜌𝑝−𝜌𝑔)𝑔

𝜇
(

𝜌𝑓

𝜌𝑔
)1.23                           (7) 

For metallic ores-gas fluidizing system 101μm<d<1250μm 

K = 3.1108 × 10−8, α = 0.93283 ± 0.03451 

For sand-gas fluidizing system 95μm<d<800μm 

 K = 9.7119 × 10−7, α = 0.84268 ± 0.01601 

For catalyst-gas fluidizing system 25μm <d<2250μm 

                   K = 1.145 × 10−5, α = 0.71957 ± 0.01422 

where ρp is the density of fluid medium, ρg is the density of fluidizing gas, μ is the viscosity 

of fluidizing gas, K and a are constants. 

According to these correlations, the minimum fluidization velocity depends on particle and 

gas properties, such as densities of solid and gas, sphericity, particle diameter, and voidage at 

Umf (Coltters and Rivas 2004). A comparison between Umf of these correlations and 
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experimental Umf is shown in Table 2.2. 

Table 2.2 Correlations for minimum fluidization velocity 

    Umf predicted (cm/s) This work  

Particles  dp (μm) ρ(kg/m3) Geldart type Wen/Yu Coltters/Rivas Experiment 

Magnetite  150-300 4650 B 7.73 6.49 10.6 

Sand 150-300 2650 B 4.40 4.72 3.71 

Sand 75-125 2650 A/B 0.87 1.20 1.20 

FCC catalyst 75-125 1540 A 0.51 0.76 0.51 

 

Table 2.2 shows that magnetite powder has the largest Umf, while FCC catalyst has the 

smallest Umf, which implies that FCC catalyst and sand with smaller particle size can be 

fluidized easier than magnetite powder and sand with larger particle size. The experimental 

minimum fluidization velocity has a good agreement with the results calculated from 

correlations in literature.    

    

2.3.2 Bubble size distribution  

Bubble size growth as a function of the bed height above the gas distributor and bed width 

are shown in Figure 2.5. It is clear that bubble diameter for Geldart B particles is increasing 

with increasing bed height. Small bubbles covers the whole bed area while large bubbles only 

exist in higher locations in the bed. However, in higher levels, population of small bubbles is 

smaller compared to that in lower levels. Figure 2.5 (a) shows that small bubbles exist at all 

elevations and lower region tends to have more small bubbles compared to higher region. 
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Figure 2.5 (b) illustrates that large bubbles exist in the central region, while small bubbles 

spread out along the bed width. The whole pattern of Figure 2.5 (b) acts like a triangle which 

means bubbles are moving toward to the center and becoming bigger due to the coalescence 

in the central region.  

According to Figure 2.5 (a), the present trend with a large slope implies that bubble 

coalescence tends to occur in the central region at the elevation between 15cm and 45cm, 

where small bubbles assemble. After coalescence, bubbles also grow gradually due to the 

decreasing hydrostatic bed pressure. Therefore, bubble coalescence is the main reason for 

bubble growth.    
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Figure 2.5 Bubble diameter growth as a function of bed height and bed width. 

 

2.3.3 Bubble size evolution 

Figure 2.6 (a) shows a remarkable increase in bubble diameter with increasing bed height at 

different gas velocities, while Figure 2.6 (b) shows a constant of bubble diameter for FCC 

catalyst at higher regions. It is attributed to small particles, which give bubbles more chance 

to break up. It is assumed that no bubble coalescence occurs at very high elevation due to 

long distances between bubbles. A balance is reached between the breakage of bubbles and 

the decreased bed hydrostatic pressure. For Geldart B type particles, bubbles coalesce as they 

rise through the whole bed, which makes bubbles grow bigger at higher elevation. These two 

Figures also show that bubble size increases when higher gas velocity is introduced. In 

addition, a sharper increase of bubble diameter is clearly observed with a higher gas velocity. 

It is likely due to more gas at higher gas velocity, which indicates bubbles have more chance 

to coalesce. 
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Figure 2.6 Bubble diameter De evolution as a function of the distance above gas distributor H 

for varying superficial gas velocities 

 

Figure 2.7 illustrates that there is a decrease of bubble diameter with increasing initial bed 

height in lower region due to high hydrostatic pressure. In Figure 2.7, FCC catalyst (75-125 

μm) with ungassed bed height of 60 cm has a constant value at the end. The bubbles have not 

reached the maximum size until 48 cm. Moreover, it is observed that higher initial bed height 

gives bubbles more space to grow larger.  
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Figure 2.7 Bubble diameter De as a function of ungassed bed height Ho 

 

Figure 2.8 Bubble diameter De as a function of bed height H 

Figure 2.8 shows that Geldart B type particles have bigger bubble size than Geldart A type 

particles. In addition, particles with larger size tend to have larger bubble size than smaller 

particles. This result are in good agreement with the research of Park et al. (1969) and Yasui, 

Johanson (1958). The voidage between Geldart B type particles is larger than that of Geldart 
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A type particles due to the large particle size, which means more space for the gas to form 

large bubbles between particles. However, the optimal fluidization should have large quantity 

of small bubbles homogeneously distributed in the bed (Lim et al. 2007). Base on this theory, 

fine particles have a better fluidization when the particles are fully fluidized. Compared to the 

bubble size of sand particles (150-300μm), magnetite powder has a bigger bubble diameter 

due to its relatively higher density. The fluidizing gas supports the weight of particles in the 

whole bed when particles are fluidized. In this case, fluidizing gas in magnetite powder is 

easier to accumulate and forms bigger bubbles. 

 

2.3.4 Comparison of bubble diameter  

Figure 2.9 shows that the experimental bubble diameters are not in good agreement with 

results calculated from the correlation of Darton. Bubble diameter from Darton’s equation is 

clearly smaller than actual bubble size. The equation of Darton et al. is decribed as follows: 

             𝐷𝑒 = 0.54𝑔−0.2(𝑈 − 𝑈𝑚𝑓)0.4(ℎ + 4𝐴𝐷
0.5)0.8                     (8) 

According to this equation, particle properties do not have any effect on the bubble size. 

However, as shown earlier, bubble diameter depends on particle size and type. Therefore, a 

new correlation was developed to modify Darton’s correlation.  
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Figure 2.9 Bubble diameter evolution with the distance above gas distributor 

 

2.3.5 Bubble rise velocity  

Bubble rise velocity changes with bubble size as bubbles rise through fluidized bed. The 

bubble rise velocity can be determined based on bubble diameter and excess gas velocity 

(Davidson and Harrison 1963). The correlation of Davidson and Harrison is given by; 

𝑢𝑏 = 0.71√𝑔𝐷𝑒 + (𝑈 − 𝑈𝑚𝑓)                            (9) 
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Figure 2.10 Bubble rise velocity as a function of the distance above gas distributor 

Figure 2.10 clearly shows that bubble rise velocity of magnetite powder is increasing with 

increasing bed height and excess gas velocity. The increasing bubble rise velocity with bed 

height is due to the appreciable coalescence of bubbles as they rise through the bed, which 

makes bubbles grow larger and rise faster. The excess gas needs to get out of the fluidized 

dense phase in the form of bubbles. According to the mass balance of gas, larger excess gas 

velocity leads to larger bubble rise velocity.   

 

Figure 2.11 Bubble rise velocities of different particles 
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Figure 2.11 illustrates that magnetite powder has the largest bubble rise velocity while FCC 

catalyst has the smallest bubble rise velocity, which is in good agreement with the bubble 

diameter. However, bubble rise velocity is increasing with decreasing particle size of sand, 

which is in contradiction with the growth pattern of bubble size of sand. Whitehead et al. 

(1967) measured the bubble rise velocity using an optical probe in a 10 cm squared fluidized 

bed filled up with silica sands at varying excess gas velocities. They found that average 

bubble velocity is proportional to the excess velocity and bubbles rose faster in fine sand. In 

addition, Rowe and Yacono (1976) also found that bubble rise velocity increased with 

decreasing particles size. The reason for this phenomenon is still unknown.  

 

Figure 2.12 Bubble rising velocity as a function of bubble diameter 

Figure 2.12 illustrates that bubble size can accelerate the bubble rising velocity, which means 

larger bubbles move much faster than small bubbles. Figure 2.13 shows the forces exerting 

on a single bubble. 

The buoyant force: 

𝐹𝑏 = ρ𝑓𝑉𝑏𝑔                                      (10) 
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where 

 𝑉𝑏 =
1

6
𝜋𝐷3                                     (11) 

The drag force: 

𝐹𝑑 =
1

2
ρ𝑓𝑢2𝐶𝐷𝐴                                 (12) 

where  

A =
1

4
𝜋𝐷2                                      (13) 

The gravity force: 

 G = 𝜌𝑎𝑖𝑟𝑉𝑏𝑔                                   (14) 

Where ρf is density of the fluid, D is the diameter of bubble, u is the velocity of fluid, CD is 

the drag coefficient, A is the projected surface area. The gravity force of bubble is so small 

that it is neglected in the following calculation.  

It is clearly seen that 𝐹𝑏 ∝ 𝐷3 and 𝐹𝑑 ∝ 𝐷2. Therefore the ratio of buoyant force and drag 

force is 
𝐹𝑏

𝐹𝑑
∝ D, which indicates bigger upward force with larger bubbles. Therefore, large 

bubbles rise faster than small bubbles. 

 

Figure 2.13 Forces acting on a single bubble 
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2.3.6 Bed expansion 

 2.3.6.1 Experimental  

The bed surface is forced up to a higher level when particles inside the bed are fluidized due to 

additional volume occupied by the bubbles. Therefore, bed expansion is of critical importance 

to determine the amount of solid and gas bubbles. In this work, two methods were applied to 

measure bed expansion. One method is direct observation of expanded bed height, while the 

other is through the measurement of pressure drop. Ten pictures were taken during the first 

method to obtain average expanded bed height (He) with known initial bed height (H0). Then 

the bed expansion can be calculated based on following formula: 

𝑒 =
𝐻𝑒−𝐻0

𝐻0
                              (15) 

 

Figure 2.14 Direct observation-Bed expansion as a function of excess gas velocity 
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Figure 2.15 Pressure drop-Bed expansion as a function of excess gas velocity 

It is observed that bed expansion increases with increasing excess gas velocity U-Umf due to 

more gas bubbles as shown in Figure 2.14 and Figure 2.15. They also show that sand with 

larger particle size has a bigger bed expansion than sand with smaller particle size, which 

indicates particles with smaller size give larger bed expansion. Moreover, these two Figures 

illustrate that FCC catalyst has the biggest bed expansion. Both FCC catalyst and sand (75-125 

μm) belong to Geldart A type particles. According to the results, Geldart A type of particle tends 

to have large bed expansions, which is attributed to the large amount of small bubbles of 

Geldart A type of particle.  

 

2.4.6.2 Theoretical  

Bubbles grow bigger and move faster when they rise through the fluidized bed. Therefore, there 

are specific bubble size and bubble rise velocity at each position. An iteration method was used 

to obtain expanded bed height. The fluidized bed was divided into equally spaced sections with 
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a height of Hi. Each part has its own serial number “n”. Bubble diameter di and bubble velocity 

vi in each part can be calculated using bubble size equation of Darton (1967) and bubble 

velocity equation of Davidson and Harrison (1963).  

Based on mass balance on the gas phase, the number of bubbles in each part can be obtained 

using the following equations:  

𝐷𝑒 = ∅(U − 𝑈𝑚𝑓)
0.204

(
𝐻𝑖

2
+ (𝑛 − 1)𝐻𝑖 + 4𝐴𝐷

0.5)
0.759

/1.2             (16)   

A single bubble volume will be: 

𝑉𝑏𝑖 =
1

4
𝜋𝐷𝑖

2𝑤                                  (17) 

Then the bubble rising velocity will be: 

𝑢𝑏𝑖 = 0.71√𝑔𝐷𝑖 + 𝑈 − 𝑈𝑚𝑓                          (18) 

The time bubble stays in each part will be: 

𝑡 =
𝐻𝑖

𝑢𝑏𝑖
                              (19) 

Then the number of bubbles in each part will be: 

𝑛𝑖 =
(𝑈𝑔−𝑈𝑚𝑓)𝑡

𝑉𝑏
                            (20) 

and the dense phase volume will be: 

𝑉𝑑𝑖 = 𝐴𝐻𝑖 − 𝑛𝑖𝑉𝑏𝑖                         (21) 

The summation of each dense phase volume will be the volume of ungassed fluidized bed, 

which is: 

 𝑉𝑑 = ∑ 𝑉𝑑𝑖
𝑛
1                            (22) 

The volume of ungassed fluidized bed is H0A . The difference between 𝑉𝑑 and H0A is the 

dense phase in expanded area, of which the bed height is H’.  

The bubble diameter 𝐷′ can be obtained using equation (8). 
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Then the bubble volume of expanded area will be n’V’b 

The summation of each bubble phase will be: 

𝑉𝑏 = ∑ 𝑛𝑖𝑉𝑏𝑖 + n′𝑉′𝑏
𝑛
1                       (23) 

Then the bed volume after expansion will be the summation of dense phase and bubble phase: 

𝑉𝑒 = 𝐴𝑤 + 𝑉𝑏,                     (24) 

 𝐻𝑒 =
 𝑉𝑒

𝐴
,                         (25) 

where w is the thickness of the fluidized bed, A is the cross-sectional area of the fluidized bed, 

Hi is the initial bed height. 

Therefore, the bed expansion e3 will be calculated using equation (15). 

 

Figure 2.16 Bed expansion e3 as a function of excess gas velocity (U-Umf) 

Figure 2.16 shows that bed expansion is proportional to the excess gas velocity. However, the 

results from theoretical calculation are independent of particle size and particle type.  

 

2.3.6.3 Bed expansion by graphical analysis  

A series of videos of fluidizing bed was recorded to analyze bubble characteristics. Each video 
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can be separated into consecutive frames using MATLAB. The number of bubbles (n) and 

bubble size (di) of each frame can be determined. Then the total volume of bubble phase can 

be calculated:  

𝑉𝑏 =
1

4
𝜋𝑤 ∑ 𝑑𝑖

2𝑛
𝑖=1                             (26) 

The bed height after expansion will be: 

𝐻𝑒 = 𝐻0 +
𝑉𝑏

𝐴
                               (27) 

Then the bed expansion e4 can be calculated using equation (15). 

Figure 2.17 illustrates the bed expansion based on experimental videos. Every single point in 

Figure 2.17 represents the average bed expansion calculated from 10 frames. Magnetite (150-

300 μm) and sand (150-300 μm) show the same pattern of bed expansion while sand (75-125 

μm) and FCC catalyst (75-125 μm) behave in a different way. The bubbles of sand (75-125 μm) 

and FCC catalyst (75-125 μm) are too small to be captured by camera, which leads to errors on 

determination of bed expansion.  

 

Figure 2.17 Bed expansion e4 as a function of excess gas velocity U-Umf 
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Table 2.3 Comparison between experimental bed expansion and theoretical bed 

expansion 

Particles  Ug-Umf  

(cm/s) 

Experimental bed expansion 

e1           e2 

Theoretical calculation 

  e3           e4  

Magnetite 

(150-300μm) 

1.63 0.089 0.075 0.051 0.065 

4.37 0.145 0.085 0.110 0.090 

7.05 0.182 0.117 0.158 0.104 

Sand  

(150-300μm) 

1.63 0.032 0.059 0.051 0.067 

4.37 0.124 0.117 0.110 0.129 

7.05 0.184 0.152 0.158 0.166 

Sand  

(75-125μm) 

1.63 0.098 0.128 0.051 0.026 

4.37 0.158 0.160 0.110 0.078 

7.05 0.239 0.201 0.158 0.183 

FCC catalyst  

(75-125μm) 

1.63 0.134 0.126 0.051 0.025 

4.37 0.179 0.181 0.110 0.072 

7.05 0.257 0.215 0.158 0.216 

 

Table 2.3 shows good agreement between experimental bed expansion and theoretical bed 

expansion of magnetite particles and sand (150-300 μm) particles while the discrepancy exists 

for FCC catalyst and sand (75-125 μm). Both FCC catalyst and sand (75-125 μm) belong to 

Geldart A type of particles, which have much smaller bubbles compared to Geldart B type of 

particles. However, these small bubbles cause some errors on bed expansion due to invisibility 
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under low superficial gas velocities.  

 

2.3.7 Development of a new correlation for bubble diameter by the modification 

of Darton’s equation  

The correlation of bubble diameter proposed by Darton et al. in 1977 has been acknowledged 

extensively in the literature. Most experimental data Darton et al. used belonging to Geldart B 

type particles, including quartz sand, glass powder, alumina, and carbon to verify their 

correlation. Therefore the correlation of Darton cannot provide the best coverage for Geldart 

A type particles.  

In addition, the theory developed by Darton et al. excluded mechanism of bubbles splitting 

and breakage. Therefore, a continuously increasing pattern of bubble diameter was obtained 

from their work. However, in real case, bubbles splitting and breakage do exist and are of 

critical importance for bubble size evolution. Horio and Wen (1977) pointed out that the 

equilibrium bubble size should be the result of a balance between bubble coalescence and 

break up. 

It is discovered that bubble diameter De is sensitive to several parameters, including excess 

gas velocity Ug-Umf, distance above the gas distributor “x”, gas distributor hole diameter AD 

and particle size dp. In addition, the particle-fluid density ratio has not been found to affect 

the bubble diameter. Therefore, a functional relationship between these parameters and 

bubble diameter is proposed: 

 𝐷𝑒 = ∅(U − 𝑈𝑚𝑓)α(ℎ + 4𝐴𝐷
0.5)β                     (28) 

Where ∅ is a coefficient, related to particle size, h is the distance above gas distributor, AD is 
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the diameter of holes on the distributor, α and β are constants. 

In this work, two Geldart A type particles, one Geldart A/B type particles and one Geldart A 

type particles were utilized and a large number of experimental data of bubble diameter were 

obtained. Based on the large quantity of experimental data analyzed using curve fitting 

method in Matlab , a new modified correlation of bubble size is derived as:  

𝐷𝑒 = ∅(U − 𝑈𝑚𝑓)
0.204

(ℎ + 4𝐴𝐷
0.5)

0.759
/1.2              (29) 

where  

∅ = {

0.252     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐵 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                           (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

0.153     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐴 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                          (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

  

Figure 2.18 shows calculated data against experimental results. Therefore, the proposed 

equation is in a good agreement with experimental data within 15% accuracy.   

 

Figure 2.18 Comparison of experimental bubble diameter and predicted bubble diameter 
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2.3.8 Estimation of the bed density  

The density of fluidized bed at a certain level is given by: 

�̅�𝑏𝑒𝑑 = 𝜌𝑏𝑢𝑏𝑏𝑙𝑒 × (
𝑉𝑏𝑢𝑏𝑏𝑙𝑒

𝑉𝑡𝑜𝑡𝑎𝑙
) + 𝜌𝑑𝑒𝑛𝑠𝑒 × (

𝑉𝑑𝑒𝑛𝑠𝑒

𝑉𝑡𝑜𝑡𝑎𝑙
)                  

(30) 

The gas volumetric flowrate in bubble phase (Davidson, 1985) is as follows: 

𝐺𝑏 = (𝑈𝑔 − 𝑈𝑚𝑓)A                                  (31) 

In the two-phase theory of fluidization, the bubble phase density is very close to the density 

of fluidizing gas, then the dense phase density can be taken as: 

𝜌𝑑𝑒𝑛𝑠𝑒 = 𝜌𝑝(1 − 𝜀𝑚𝑓) + 𝜌𝑔𝜀𝑚𝑓                            (32) 

where, 

𝜀𝑚𝑓 =
𝐻𝑚𝑓−𝐻0

𝐻0
                                  (33) 

The gas bubble volume at a certain level is given by 

𝑉𝑏 = 𝐴𝑏 × ∆ℎ =
𝐺𝑏∆ℎ

𝑢𝑏
                                 

(34) 

The bubble rise velocity can be calculated using equation (9), which is: 

𝑢𝑏 = 0.71√𝑔𝐷𝑒 + (𝑈𝑔 − 𝑈𝑚𝑓)                            (9) 

Then equation (34) will be 

                𝑉𝑏 = 𝐴𝑏 × ∆ℎ =
𝐺𝑏∆ℎ

𝑢𝑏
=

(𝑈𝑔−𝑈𝑚𝑓)A∆h

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
                      

(35) 

In addition, the dense volume will be 

𝑉𝑑 = 𝐴𝑑∆ℎ = (𝐴 − 𝐴𝑏)∆ℎ = (𝐴 −
(𝑈𝑔−𝑈𝑚𝑓)A

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
)∆ℎ              (36) 

So, the density of fluidized bed (equation (30)) is as follows: 
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�̅�𝑏𝑒𝑑 = 𝜌𝑏𝑢𝑏𝑏𝑙𝑒 × (
𝑉𝑏𝑢𝑏𝑏𝑙𝑒

𝑉𝑡𝑜𝑡𝑎𝑙
) + 𝜌𝑑𝑒𝑛𝑠𝑒 × (

𝑉𝑑𝑒𝑛𝑠𝑒

𝑉𝑡𝑜𝑡𝑎𝑙
) = 𝜌𝑏𝑢𝑏𝑏𝑙𝑒 × (

𝑉𝑏

𝐴∆ℎ
) + 𝜌𝑑𝑒𝑛𝑠𝑒 × (

𝑉𝑑

𝐴∆ℎ
) 

       = 𝜌𝑏 (
(𝑈𝑔−𝑈𝑚𝑓)

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
) + 𝜌𝑑(1 −

(𝑈𝑔−𝑈𝑚𝑓)

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
) 

= 𝜌𝑑 + (𝜌𝑏 − 𝜌𝑑)
(𝑈𝑔−𝑈𝑚𝑓)

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
                                   (37) 

Combining equations (37) and (32); 

�̅�𝑏𝑒𝑑 = 𝜌𝑑 + (𝜌𝑏 − 𝜌𝑑)
(𝑈𝑔−𝑈𝑚𝑓)

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
  

= 𝜌𝑝(1 − 𝜀𝑚𝑓) + 𝜌𝑔𝜀𝑚𝑓 + (𝜌𝑔 − 𝜌𝑝(1 − 𝜀𝑚𝑓) − 𝜌𝑔𝜀𝑚𝑓)
(𝑈𝑔−𝑈𝑚𝑓)

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
  

= (1 − 𝜀𝑚𝑓)(𝜌𝑝 − 𝜌𝑔) (1 −
(𝑈𝑔−𝑈𝑚𝑓)

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
) + 𝜌𝑔                     (38) 

where De can be calculated using equation (29), which is  

𝐷𝑒 = ∅(U − 𝑈𝑚𝑓)
0.204

(ℎ + 4𝐴𝐷
0.5)

0.0.759
/1.2                       (29) 

where 

∅ = {

0.252     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐵 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                           (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

0.153     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐴 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

                          (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

   

εmf can be calculated using equation (33), which is  

𝜀𝑚𝑓 =
𝐻𝑚𝑓−𝐻0

𝐻0
                                  (33) 

Therefore, the bed density of fluidized bed can be calculated using equation (38), (29) and 

(33). 

 

2.4 Conclusions  

Bubble dynamics and bed expansion of four types of particles have been investigated in a 2D 

gas-solid fluidized bed using image processing technology. Based on the large quantity of 

analysis of experimental data, the relationships between bubble characteristics, bed expansion 

and particles, superficial gas velocity, the distance above gas distributor were obtained and 
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certain patterns could be observed:  

(i) Bubble size increases linearly with the distance above gas distributor, particles with a larger 

size tend to have a bigger bubble size for a given bed height. 

(ii) Bubbles of Geldart A type of particles can reach a maximum size due to more chance of 

break-up.  

(iii) Bubble rise velocity is proportional to the distance above gas distributor and larger bubbles 

rise faster than small bubbles. 

(iv) Geldart A type of particles have a bigger bed expansion than Geldart B type of particles 

due to huge amount of small bubbles in the bed. 

(v) A new correlation of bubble diameter is proposed and it shows a better prediction of bubble 

size compared to Darton’s equation of bubble diameter.   

(vi) A method for estimation of bed density was developed based on the new correlation of 

bubble diameter. 
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Nomenclature 

Ab, A              Surface area of a single bubble, cm2 

AD     The diameter of hole on the distributor, m 

dp, d      Particle size, μm 

D     Bubble diameter, m 

De       Equivalent bubble diameter, cm 

e     Bed expansion  

Fd     Drag force, N 

Fb     The buoyant force, N 

g     Acceleration of gravity, m/s2 

H0     Initial bed height, m 

He     Expanded bed height, m 

H, h     Bed height (The distance above gas distributor), m 

∆t       Time interval between consecutive frames, s 

ub                Bubble rise velocity, cm/s 

Umf     The minimum fluidization velocity, cm/s 

U     Superficial gas velocity, m/s 

U     Velocity of fluid, m  

Vb     Bubble volume, cm3 

w     Bed width, cm 

xi                 Abscissa of bubble center, cm 

yi, yi-1     Ordinate of bubble center, cm 
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ρp       The density of particles, kg/m3 

ρg      The density of fluidizing gas, kg/m3 

ρf       The density of fluidizing medium, kg/m3 

μ     Viscosity of fluidizing gas, Pa.s 

 

Greek letters 

ρ 

μ 
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3.1 Introduction  

Gas-solid fluidization technology, as an environmentally friendly alternative, has been widely 

applied in many industrial process, among which coal separation exhibits remarkable 

advantages over wet cleaning technology, such as no need for water, less air pollution, no slurry 

treatment and so on (Dwari, Rao 2007 and Houwelingen, Jong 2004). This specific gravity 

separation is achieved based on the difference of densities between medium solids and raw 

coal. In industrial process, density of fluidized bed can be adjusted by varying gas velocities. 

However, this adjustment controlled by gas velocity is not enough to meet the demand of low 

bed density. Therefore, binary mixture was introduced into the medium to substitute for single-

component particles to lower down the bed density. In this way, a wider range of raw coal can 

be chosen to avoid energy-consuming pre-treatment processes.  

The intense mixing between gas and particles enables gas-solid fluidization to yield higher 

mass and heat transfer rate between bubble phase and solid phase. The bubbles are generated 

when gas velocity exceeds the minimum fluidization velocity. In gas-solid fluidization, bubble 

behaviours have a significant effect on the fluidization quality, which ensures the efficiency of 

industrial processes (Lim, Gilbertson and Harrison 2007). 

However, there are very few studies about bubble dynamics of mixtures of the particles in the 

past. The mixtures of particles can be divided into two categories: the same particles with 

different sizes and different particles with the same size. The first mixture is focusing on the 

effect of particle size on bubble dynamics, while the second is investigating the effect of 

particle density on bubble dynamics. Particles with larger size have the tendency to form bigger 

bubbles (Han et. al 2017), while the effect of particle density on bubble dynamics has not been 
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thoroughly studied.  

There are limited studies on bubble dynamics as a function of fluidized bed properties in gas-

solid fluidization in the literature. Furthermore, most of them are focusing on the bubble 

characteristics of single-component beds. Particle size effect seems to be of main concern in 

the study of bubble dynamics.   

Various measurement systems have been developed to determine the bubble properties in 

fluidized beds, including different probes and photography. Several probe measurement 

systems, belonging to intrusive measurement technologies, have been utilized in recent years, 

which includes needle type capacitance probes (Werther, Molerus 1973), optical probes 

(Yasui and Johnson 1958, Andreux and Chaouki 2005) and electro-resistivity and 

conductivity probes (Park and Kang 1969). Photography technologies belonging to non-

intrusive measurement technologies, are mainly composed of direct photography (Geldart 

1970), X-ray photography (Rowe and Partridge 1965) and electrical capacitance tomography 

(Halow, Fasching, Nicoletti and Spenik 1993, McKeen and Pugsley 2003). In recent years, 

2D fluidized bed has been widely utilized for the investigation of bubble dynamics in gas-

solid fluidization due to its small thickness, which allows detail observation of bubbles in the 

fluidized bed. 

Kage et al. (1991) performed the research of bubble sizes and bubble rising velocities in a 

gas-solid fluidized bed with mixtures of particles with different sizes but the same density 

using optic fiber probes. A new approach of determining bubble diameter in gas-solid 

fluidized bed with two-component particles was proposed. Muddle et al. (1994) investigated 

bubble behaviour of single-component particles in a 2D gas-solid fluidized bed using image 
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analysis technology. Special attention was paid to bubble properties and the results showed 

that determination of wake angle and wake area was possible. Busciglio et al. (2012) carried 

out a series of experiments to measure bubble characteristics in binary mixtures of corundum 

and glass particles with different sizes but the same density by means of digital imaging. 

They did statistical analysis to describe bubble dynamics.  

However, research studying the bubble dynamics of mixtures of particles with the same size 

but different densities as a function of fluidized bed properties is scarce. The main goal in this 

study is to measure bubble characteristics of binary mixtures of particles with the same size 

but different densities using image processing technology. In this work, bubble size, bubble 

rising velocity, bubble distribution and bed expansion were measured. Additionally, a 

correlation of determining bubble diameter in mixtures of particles with different densities 

was developed. 

 

3.2 Experimental set-up and methods  

3.2.1 Experimental set-up 

Figure 3.1 shows the schematic diagram of the experimental setup. The fluidized bed designed 

for present study on bubble dynamics is made of Perspex (1500 mm height, 370 mm width and 

thickness of 19 mm), which provides detail observation of bubble behaviors inside the bed. 

There are three pressure measurement ports along the bed wall located at bed height of 0 mm, 

180 mm and 550 mm. Two lights were placed in front of the fluidized bed to enhance the 

contrast between the bubble and dense phases, allowing more small bubbles being visualized. 

The bubble behaviors were recorded by a digital camera (Canon T3i), which was placed on the 
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opposite side of the bed. All videos were recorded at the steady state condition (complete 

fluidization). 

 

 

Figure 3.1 Schematic diagram of experimental equipment. 

A sintered plastic gas distributor placed at the bottom of fluidized bed is designed with 10 

micron holes. Below the gas distributor is the wind box used to ensure uniform distribution of 

inlet gas across the distributor. Air was used as the fluidizing gas and controlled by three air 

rotameters ranging from 0 m3/h to 5 m3/h. 

Four binary mixtures composed of magnetite powder and sand with the same particle size 
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ranging from 150 μm to 300 μm and two single-component particles (magnetite powder, sand) 

were chosen. Binary mixtures having four compositions of 20%, 40%, 60% and 80% based on 

volume fraction of sand were used in the experiments. These 6 groups of experiments were 

studied at varying excess gas velocities of 7.05 cm/s, 4.37cm/s and 1.63cm/s with fixed bed 

height of 60 cm. Each binary mixture was fully mixed prior to the experiment. The properties 

of particles and binary mixtures are summarized in Table 3.1.  

Table 3.1 Properties of particles and binary mixtures 

Particle type  ρp (kg/m3) dp (μm) Geldart type 

Magnetite powder 4650 150-300 B 

Magnetite+Sand (20%) 4250 150-300 B 

Magnetite+Sand (40%) 3850 150-300 B 

Magnetite+Sand (60%)  3450 150-300 B 

Magnetite+Sand (80%) 3050 150-300 B 

Sand  2650 150-300 B 

 

Table 3.1 shows that densities of binary mixtures are between density of magnetite powder and 

density of sand and they are decreasing with increasing volume fraction of sand.   

 

 

3.2.2 Image processing  

The bubble behaviors in the fluidized bed were videotaped after steady state condition was 

reached. The camera employed can record video at a frequency of 29 Hz, which implies 29 
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frames per second. Each frame is a 1088 X 1920 pixel picture. The pixel ranging from 0 to 

255 is called grey-value which indicates brightness. Grey-value 0 is black while grey-value 

255 means white. Each position in the picture has its own grey-value. In this way, pictures are 

transferred to a matrix, which can be analyzed using MATLAB (Matrix Laboratory).  

The experimental procedure for image processing can be summarized into several steps : 1. 

Split the video into consecutive frames. 2. Transfer original RGB images into grey images. 3. 

Set a threshold to transfer grey images into binary images. 4. Do the subtraction of grey-value 

between fluidizing particles images and ungassed particles image to determine bubble 

properties. 5. Depict the contour of bubbles and obtain bubble characteristics applying a 

package of software ‘Regionprops’. A video used as the base was recorded before air was 

introduced into the bed. Then grey-value’s difference between the base image and images of 

the fluidized bed of every position was obtained. A non-zero grey-value difference implies a 

position where bubble exists due to different grey-values between the dense and bubble 

phases. 

 

        (a)                (b)                 (c)                (d) 

Figure 3.2 Image processing procedure: (a) Original RGB image (b) Grey image (c) Binary 
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image (d) Image with circles.  

 

3.2.3 Bubble size  

The bubble phase was discriminated from the dense phase based on the grey-value difference. 

However, a threshold needs to be determined to improve the discrimination between these 

two phases because of the distraction of noise points. In this study, the threshold was 

determined to be 10 to exclude noise points. The area of a bubble (Ab) is the number of pixels 

forming this bubble. Every single bubble was transmitted to a circle with the same area using 

a software called Regionprops. According to the bubble area, the equivalent bubble diameter 

De can be calculated from the following equation: 

𝐷𝑒 = 2√
𝐴𝑏

𝜋
                                  (1) 

 

3.2.4 Bubble rising velocity  

The camera applied in this investigation recorded videos of 29 frames per second. Therefore, 

the time interval (∆t) between every two consecutive frames is 1/29 second. The coordinates 

(xi, yi) of bubble center in each frame can be determined automatically by means of the image 

processing technology. In this way, the axial distance (yi-yi-1) that every single bubble moves 

between every two consecutive frames was obtained. Then the bubble rising velocity can be 

calculated from the following equation: 

𝑢𝑏 =
𝑦𝑖−𝑦𝑖−1

∆t
                                  (2) 

 

3.3 Results  

3.3.1 The minimum fluidization velocity (Umf) 
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The minimum fluidization velocity is the fluid velocity at incipient fluidization of a packed 

bed filled up with particles. It is a critical variable for designing fluidized beds. In this study, 

the minimum fluidization velocity (Umf) is determined by measuring the pressure drop as a 

function of superficial gas velocity (shown in Figure 2.3). 

 

Figure 3.3 Pressure drop against superficial gas velocity 

Pressure drop remains nearly constant after superficial gas velocity exceeds certain limit. This 

limit is determined as the minimum fluidization velocity, at which particles inside the bed 

begin to fluidize. Figure 3.4 shows that the minimum fluidization velocity of the binary 

mixtures decreases with increasing volume fraction of lighter (sand) particles. It reveals that 

the minimum fluidization velocity of heavy particles can be reduced by addition of lighter 

particles, which means sand particles are easier to be fluidized than magnetite powder. The 

fluidizing gas can support the weight of whole bed of particles when it reaches the minimum 

fluidization velocity. Therefore superficial gas velocity which makes particles completely 

fluidized is also decreasing with increasing volume fraction of the sand particles.  
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Figure 3.4 The minimum fluidization velocities of binary mixtures. 

Many correlations for predicting minimum fluidization velocity have been developed, such as 

correlations of Narsimhan (1965), Wen and Yu (1966) and Coltters and Rivas (2004). 

According to these correlations, the minimum fluidization velocity has a main dependency of 

particles and gas properties, such as densities, particles sphericity and diameter, and voidage 

at Umf (Coltters and Rivas 2004).  

Noda et al. (1986) proposed a new correlation for the prediction of the minimum fluidization 

velocity for binary mixtures by the modification of the equation of Wen and Yu (1966). The 

equation of Wen and Yu for the minimum fluidization velocity for single-component systems 

is described as follows: 

                     𝐴𝑟 = 24.5𝑅𝑒𝑚𝑓
2 + 1650𝑅𝑒𝑚𝑓                          (3) 

where  

𝐴𝑟 = 𝑑3𝜌𝑔(ρ𝑓 − ρ𝑔)
𝑔

𝜇2                              (4) 

𝑅𝑒𝑚𝑓 =
𝑑ρ𝑔𝜇𝑚𝑓

𝜇
                                     (5) 

The diameter and density of binary mixtures in this work need to be modified to apply 
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equation (3).  

ρ̅ = ρ𝑚𝑉𝑚 + ρ𝑠𝑉𝑠                                   (6) 

d̅ = √(𝑑𝑚
33

+ 𝑑𝑠
3)                                  (7) 

Then the equation can be rewritten as  

                       𝐴𝑟 = 𝐴𝑅𝑒𝑚𝑓
2 + 𝐵𝑅𝑒𝑚𝑓                              (8) 

where A and B are constants.  

Noda et al. determined these two parameters, which are given by  

A = 36.2(
𝑑𝑚

�̅�

ρ𝑓

ρ𝑚
)−0.196                               (9) 

 B = 1397((
𝑑𝑚

�̅�

ρ𝑓

ρ𝑚
)0.296)                             (10) 

A comparison between Umf of these correlations and experimental Umf is shown in Table 3.2. 

Table 3.2 Comparison for minimum fluidization velocity 

  Umf predicted (cm/s) This work 

Particles  P(kg/m3) Wen/Yu Noda et al.  Experiment 

Magnetite+Sand (20%) 4250 7.01 8.23 9.51 

Magnetite+Sand (20%)               3850 6.36 7.69 8.37 

Magnetite+Sand (20%) 3450 5.70 7.12 7.24 

Magnetite+Sand (20%) 3050 5.04 6.53 5.93 

 

Table 3.2 shows that modified correlation proposed by Noda et al. for binary systems fits 

experimental data better than the equation of Wen and Yu, which implies hydrodynamics of 

binary fluidization are different from that of single-component systems.  
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3.3.2 Bubble size evolution   

When particles in the fluidized bed are fluidized by an upward flow of gas, bubbles are 

formed by excess gas flow based on the superficial gas velocity exceeding the minimum 

fluidization velocity. Bubbles formed at the bottom rise through the bed to the surface. 

During this process, bubbles continually coalesce and break up reaching a balance of varying 

bubble diameters (Horio and Nonaka 1987).  

Mori and Wen (1975) proposed a correlation of bubble diameter and growth in fluidized beds 

based on initial bubble diameter and maximum bubble diameter. Furthermore, the bubble 

diameters calculated from this correlation are in good agreement with the bubble sizes observed. 

The proposed correlation for predicting bubble diameters of Mori and Wen is given by; 

𝐷𝐵𝑀−𝐷𝐵

𝐷𝐵𝑀−𝐷𝐵0
= exp(−0.3 ℎ

𝐷𝑡
⁄ )                            (11) 

where  

                     𝐷𝐵0 = 0.00376(𝑈 − 𝑈𝑚𝑓)2                           (12) 

For the porous plate distributor 

                     𝐷𝐵𝑀 = 0.652{𝐴𝑡(𝑈 − 𝑈𝑚𝑓)}0.4                        (13) 

Where DB is the bubble diameter, DBM is the maximum bubble diameter, DB0 is the initial 

bubble diameter, Dt is the bed diameter, At is the cross-sectional area of the bed, and h is the 

distance above gas distributor. 

Darton’s equation (Darton et al. 1977) for bubble diameter is the most widely used by 

researchers due to its good coverage under all conditions. However, this correlation excluded 

mechanism of bubbles splitting and breakage. Therefore, a continuously increasing pattern of 

bubble diameter was obtained from their work (Karimipour and Pugsley 2011). However, in 
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real cases, bubbles splitting and breakage do exist and are of critical importance for bubble size 

evolution. The equation of Darton et al. is as follows: 

                     𝐷𝑒 = 0.54𝑔−0.2(𝑈 − 𝑈𝑚𝑓)0.4(ℎ + 4𝐴𝐷
0.5)0.8              (14) 

A new correlation for the estimation of bubble diameter was proposed in this work by the 

modification of the equation of Darton and it is given by 

𝐷𝑒 = ∅(U − 𝑈𝑚𝑓)0.204(ℎ + 4𝐴𝐷
0.5)0.759/1.2              (15) 

where  

∅ = {

0.252     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐵 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                           (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

0.153     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐴 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                          (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

  

where U is the superficial gas velocity, Umf is the minimum fluidization velocity, AD is the 

diameter of the hole on the gas distributor. 

Figure 3.5 illustrates that bubble diameter is increasing with the distance above gas distributor. 

In addition, bubble diameter is also proportional to excess gas velocity. Bubbles of binary 

mixtures have similar growth patterns with bubbles of single-component particles as a function 

of excess gas velocity and bed height. Bubbles coalesce as they rise through the bed and grow 

larger. Another reason for larger bubbles at higher level is due to the lower hydrostatic pressure 

at higher elevations. Coalescence dominates the growth compared to decreasing bed 

hydrostatic pressure. More gas is introduced into the bed when the gas velocity is higher, which 

means more chance for coalescence to form big bubbles.  
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Figure 3.5 Bubble size of binary mixtures as a function of the distance above gas distributor. 

 

Figure 3.6 shows the comparison of bubble diameter between two single-component particles 

and four binary mixtures. It is clear that bubble diameters of binary mixtures are reduced by 

the addition of light (sand) particles. Magnetite powder has larger bubbles while sand particles 

have smaller bubble diameter. The bubble diameters of four binary mixtures fall in between 

magnetite powder and sand particles and bubble sizes are decreasing with increasing volume 

fraction of sand particles. According to the results found in bubble sizes of single-component 

particles, light sand particles have smaller bubbles than heavy magnetite powder. Therefore, 

bubble size can be reduced when light sand particles are added. The fluidizing gas has to 

overcome the gravity of particles by upward drag force exerted on particles. For heavy particles, 

it is harder to be fluidized so that gas tends to accumulate in the gas phase and form larger 

bubbles.  
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Figure 3.6 Bubble size of single-component particles and binary mixtures. 

Figure 3.7 (a) describes the bubble size distribution of single-component particles of magnetite 

and Figure 3.7 (b) illustrates the bubble size distribution of binary mixture with 20% (vol.%) 

of sand. It is clear that small bubbles population grows larger by the addition of light sand 

particles and these small bubbles homogeneously spread out throughout the bed. Therefore, the 

addition of light sand particles gives magnetite powder a better fluidization quality. In addition, 

according to Figure 3.6, the average bubble sizes of binary mixtures are reduced due to the 

increased ratio between small bubbles and large bubbles.  
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Figure 3.7 Bubble distribution of magnetite and binary mixture (sand 20%). 

 

A new correlation for estimation of bubble diameter was proposed by Han et al. by the 

modification of Darton’s equation, which is shown as equation (15).  

𝐷𝑒 = ∅(U − 𝑈𝑚𝑓)
0.204

(ℎ + 4𝐴𝐷
0.5)

0.759
/1.2                 (15) 

where  

∅ = {

0.252     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐵 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                           (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

0.153     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐴 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                          (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

  

Figure 3.8 shows a comparison between bubble diameters calculated from equation (10) and 

the experimental values. The red points, standing for calculated bubble sizes using equation 

(10), are increasing with bed height and lie in the center region of experimental values. 
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Therefore they are in good agreement with the average bubble diameters. So, the correlation 

for estimation of bubble diameter for single-component particles also gives a good prediction 

of bubble size of the binary mixtures, which means equation (10) can be suitable for both 

single-component and binary systems.  

(a) 

 

(b) 
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(c) 

 

Figure 3.8 Bubble diameters calculated from equation (10) compared with experimental data. 

 

3.3.3 Bubble rise velocity  

Davison and Harrison (1963) developed the most widely used equation for bubble velocity. 

The correlation for bubble rise velocity is given by 

                  𝑢𝑏 = 0.71√𝑔𝐷𝑒 + (𝑈 − 𝑈𝑚𝑓)                             (16) 

Where De is the bubble diameter, U is superficial velocity and Umf is the minimum 

fluidization velocity. 

Corresponding to this correlation, bubble rising velocity is dominated by the bubble diameter 

and the excess gas velocity.  

Werther (1978) investigated the bubble rise velocities of FCC catalyst and sand particles 

using a capacitance probe. A correlation for prediction of bubble rise velocity of Geldart A 

and B type of particles was proposed as follows: 

𝑢𝑏 = k√𝑔𝐷𝑒                                   (17) 
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For Geldart A type of particles:  

k = {

        1                     𝑑𝑝 ≤ 10                     

0.396𝑑𝑝
0.4   10 < 𝑑𝑝 < 100

    2.5                  𝑑𝑝 ≥ 100              

                       (18) 

For Geldart B type of particles: 

k = {

        0.64                     𝑑𝑝 ≤ 10                     

0.254𝑑𝑝
0.4     10 < 𝑑𝑝 < 100

1.6                 𝑑𝑝 ≥ 100              

                    (19) 

Where dp is the particle size. 

According to Werther’s equation, bubble rise velocity is depended on the bubble size and 

particle size. 

Figure 3.9 shows that bubble rise velocity is increasing with increasing distance above the gas 

distributor and proportional to excess gas velocity. Bubble rise velocity has the same growth 

pattern with that of single-component particles in terms of bed height and excess gas velocity. 

According to the equation of Davidson and Harrison and the equation of Werther, bubble rise 

velocity is dominated by the bubble size. Bubble rise velocity is increasing with increasing 

bubble size due to forces exerted on the bubbles. Specific analysis of forces acted on the 

bubbles is provided elsewhere (see Chapter 1).  
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Figure 3.9 Bubble rise velocity as a function of the distance above gas distributor. 

 

Figure 3.10 illustrates the bubble rise velocities of four binary mixtures and two single-

component particles. The bubble rise velocities of four binary mixtures are in between bubble 

rise velocity of magnetite powder and sand particles and the bubble rise velocities are 

decreasing with increasing volume fraction of sand particles. Magnetite powder still has the 

biggest bubble rise velocities, while sand particle has the minimum bubble rise velocity. The 

growth pattern of bubble rise velocity completely matches that of bubble size and the match 

between bubble rise velocity and bubble size verifies that bubble rise velocity is dominated by 

bubble size.   
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Figure 3.10 A comparison of bubble rise velocities between mixtures and single-component 

particles. 

 

3.3.4 Bed expansion  

3.3.4.1 Experimental  

The bed surface is forced up to a higher level when particles inside the bed are fluidized due to 

additional volume occupied by bubbles. Therefore, bed expansion is of critical importance to 

determine the amount of solid and gas bubbles. In this work, two methods were applied to 

measure the bed expansion. One method is direct observation of the expanded bed height while 

the other is through the pressure drop measurement. Ten pictures were taken during the first 

method to obtain average expanded bed height (He) with known initial bed height (H0). Then 

the bed expansion (e1) can be calculated based on the following formula: 

 𝑒 =
𝐻𝑒−𝐻0

𝐻0
                              (20) 

The average density of the whole bed is obtained by pressure drops along the bed. The 

relationship between pressure drop and expanded bed height can be described as follows: 

∆p = ρgh                                  (21) 
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Then expanded bed height He can be calculated and bed expansion (e2) will be obtained using 

equation (20). 

 

Figure 3.11 Bed expansion e1 as a function of excess gas velocity 

 

Figure 3.12 Bed expansion e2 as a function of excess gas velocity. 

 

Figure 3.11 and Figure 3.12 show the be expansion data obtained through these two methods. 
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It is observed that bed expansion is proportional to excess gas velocity. The reason is that higher 

excess gas velocity means more gas bubbles rising through the bed. Then the space occupied 

by gas bubbles increases resulting in a bigger bed expansion. In addition, binary mixtures with 

bigger volume fraction of lighter (sand) particles tend to have bigger bed expansions, which is 

because of the fact that sand particles have larger small bubbles population contributing to 

larger volume of bubble phase compared to magnetite powder. These patterns are more obvious 

in the bed expansion data of the second method. The experimental bed expansion data obtained 

from the direct observation might have some errors due to intense fluctuation of bed surface 

during the measurements.  

 

3.3.4.2 Theoretical  

Bubbles grow bigger and move faster when they rise through the fluidized bed. Therefore, there 

are specific bubble size and bubble rise velocity at each position. An iteration method was used 

to obtain expanded bed height. The fluidized bed was divided into equally spaced sections with 

a height of Hi. Each section has its own serial number “n” as a marker. Bubble diameter di and 

bubble velocity vi in each part can be calculated using bubble size equation (15) and bubble 

velocity equation (16).  

Based on mass balance on the gas phase, the number of bubbles in each part can be obtained 

using following equations:  

𝐷𝑒 = ∅(U − 𝑈𝑚𝑓)
0.204

(
𝐻𝑖

2
+ (𝑛 − 1)𝐻𝑖 + 4𝐴𝐷

0.5)
0.759

/1.2           (22) 

where 
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∅ = {

0.252     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐵 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                           (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

0.153     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐴 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                          (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

   

A single bubble volume will be: 

𝑉𝑏𝑖 =
1

4
𝜋𝐷𝑖

2𝑤                                   (23) 

where w is the thickness of the fluidized bed. 

Then the bubble rising velocity will be: 

𝑢𝑏𝑖 = 0.71√𝑔𝐷𝑖 + 𝑈 − 𝑈𝑚𝑓                           (24) 

The time bubble stays in each part will be: 

𝑡 =
𝐻𝑖

𝑢𝑏𝑖
                               (25) 

Then the number of bubbles in each part will be: 

𝑛𝑖 =
(𝑈𝑔−𝑈𝑚𝑓)𝑡

𝑉𝑏
                            (26) 

Then the dense phase volume will be: 

𝑉𝑑𝑖 = 𝐴𝐻𝑖 − 𝑛𝑖𝑉𝑏𝑖                         (27) 

where A is cross-sectional area of the fluidized bed  

The summation of each dense phase volume will be the volume of ungassed fluidized bed, 

which is: 

 𝑉𝑑 = ∑ 𝑉𝑑𝑖
𝑛
1                            (28) 

The volume of ungassed fluidized bed is H0A . The difference between 𝑉𝑑 and H0A is the 

dense phase in expanded area, of which the bed height is H’.  

The bubble diameter 𝐷′ can be obtained using equation (15). 

Then the bubble volume of expanded area will be n’V’b 

The summation of each bubble phase will be: 
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𝑉𝑏 = ∑ 𝑛𝑖𝑉𝑏𝑖 + n′𝑉′𝑏
𝑛
1                        (29) 

Then the bed volume after expansion will be the summation of dense phase and bubble phase: 

𝑉𝑒 = 𝐴𝑤 + 𝑉𝑏,                      (30) 

 𝐻𝑒 =
 𝑉𝑒

𝐴
,                         (31) 

Therefore, the bed expansion e3 will be calculated using equation (20). 

 

Figure 3.13 Bed expansion e3 as a function of excess gas velocity 

 

Figure 3.13 shows that bed expansion increases linearly with increasing excess gas velocity. 

However, the calculation of bed expansion is completely depend on the distance above the gas 

distributor, which means it cannot reflect the relationship between bed expansions of different 

particles.  

In addition, the frames of fluidizing particles recorded can clearly give us the number of 

bubbles n and bubble size Di of each bubble. Each single bubble volume can be calculated from 

the equation (23). Then the total volume of bubble phase will be: 
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𝑉𝑏 = ∑ 𝑉𝑏𝑖
𝑛
1                                (32) 

Then the bed expansion e4 can be obtained from equations (30), (31) and (20). 

 

Figure 3.14 Bed expansion e4 as a function of excess gas velocity 

Figure 3.14 illustrates that the bed expansion obtained from fames showed bigger bed 

expansions at 0.6 and 0.8 volume fraction of sand particles while bed expansions at 0.6 volume 

fraction did show a bigger value at lowest excess gas velocity. It is the undetected small bubbles 

population that led to this discrepancy. Small bubbles of which bubble sizes are lower than 1.9 

cm have a high possibility of not being recorded due to the limited thickness of the bed.   
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Table 3.3 Comparison between experimental bed expansion and theoretical bed 

expansion 

Particles  Ug-Umf  

(cm/s) 

Experimental bed expansion 

e1            e2 

Theoretical calculation 

  e3           e4  

Mixture(sand 

20%) 

(150-300 μm) 

1.63 0.065 0.052 0.051 0.048 

4.37 0.125 0.078 0.110 0.106 

7.05 0.204 0.133 0.158 0.143 

Mixture(sand 

40%) 

(150-300 μm) 

1.63 0.081 0.071 0.051 0.082 

4.37 0.149 0.085 0.110 0.104 

7.05 0.192 0.161 0.158 0.165 

Mixture(sand 

60%) 

(150-300 μm) 

1.63 0.092 0.065 0.051 0.083 

4.37 0.153 0.110 0.110 0.119 

7.05 0.228 0.171 0.158 0.204 

Mixture(sand 

80%) 

(150-300 μm) 

1.63 0.093 0.090 0.051 0.090 

4.37 0.163 0.113 0.110 0.135 

7.05 0.217 0.165 0.158 0.192 

 

Table 3.3 shows a good agreement between the experimental bed expansion and theoretical bed 

expansion data. The bed expansion value obtained through the first method tends to have a 

bigger value due to the errors caused by the intense fluctuation of the bed surface.  
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3.3.5 Bed density estimation of binary gas-solid fluidization systems 

The density of fluidized bed at a certain level is given by 

�̅�𝑏𝑒𝑑 = 𝜌𝑏𝑢𝑏𝑏𝑙𝑒 × (
𝑉𝑏𝑢𝑏𝑏𝑙𝑒

𝑉𝑡𝑜𝑡𝑎𝑙
) + 𝜌𝑑𝑒𝑛𝑠𝑒 × (

𝑉𝑑𝑒𝑛𝑠𝑒

𝑉𝑡𝑜𝑡𝑎𝑙
)                 (33) 

The gas volumetric flowrate in bubble phase (Davidson, 1985) is as follows: 

𝐺𝑏 = (𝑈𝑔 − 𝑈𝑚𝑓)A                                (34) 

In the two-phase theory of fluidization, the bubble phase density is very close to the density 

of fluidizing gas, then the dense phase density can be taken as: 

𝜌𝑑𝑒𝑛𝑠𝑒 = 𝜌𝑝(1 − 𝜀𝑚𝑓) + 𝜌𝑔𝜀𝑚𝑓                            (35) 

where 

𝜀𝑚𝑓 =
𝐻𝑚𝑓−𝐻0

𝐻0
                                  (36) 

The gas bubble volume at a certain level is given by 

𝑉𝑏 = 𝐴𝑏 × ∆ℎ =
𝐺𝑏∆ℎ

𝑢𝑏
                                 

(37) 

The bubble rise velocity can be calculated using equation (9), which is: 

𝑢𝑏 = 0.71√𝑔𝐷𝑒 + (𝑈𝑔 − 𝑈𝑚𝑓)                            (9) 

Then the equation (34) will be: 

                𝑉𝑏 = 𝐴𝑏 × ∆ℎ =
𝐺𝑏∆ℎ

𝑢𝑏
=

(𝑈𝑔−𝑈𝑚𝑓)A∆h

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
                     (38) 

In addition, the dense volume will be: 

𝑉𝑑 = 𝐴𝑑∆ℎ = (𝐴 − 𝐴𝑏)∆ℎ = (𝐴 −
(𝑈𝑔−𝑈𝑚𝑓)A

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
)∆ℎ             (39) 

So, the density of fluidized bed (equation (33)) is as follows: 

�̅�𝑏𝑒𝑑 = 𝜌𝑏𝑢𝑏𝑏𝑙𝑒 × (
𝑉𝑏𝑢𝑏𝑏𝑙𝑒

𝑉𝑡𝑜𝑡𝑎𝑙
) + 𝜌𝑑𝑒𝑛𝑠𝑒 × (

𝑉𝑑𝑒𝑛𝑠𝑒

𝑉𝑡𝑜𝑡𝑎𝑙
) = 𝜌𝑏𝑢𝑏𝑏𝑙𝑒 × (

𝑉𝑏

𝐴∆ℎ
) + 𝜌𝑑𝑒𝑛𝑠𝑒 × (

𝑉𝑑

𝐴∆ℎ
) 

       = 𝜌𝑏 (
(𝑈𝑔−𝑈𝑚𝑓)

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
) + 𝜌𝑑(1 −

(𝑈𝑔−𝑈𝑚𝑓)

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
) 
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= 𝜌𝑑 + (𝜌𝑏 − 𝜌𝑑)
(𝑈𝑔−𝑈𝑚𝑓)

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
 (40) 

Integrating equation (40) and equation (35), 

�̅�𝑏𝑒𝑑 = 𝜌𝑑 + (𝜌𝑏 − 𝜌𝑑)
(𝑈𝑔−𝑈𝑚𝑓)

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
  

= 𝜌𝑝(1 − 𝜀𝑚𝑓) + 𝜌𝑔𝜀𝑚𝑓 + (𝜌𝑔 − 𝜌𝑝(1 − 𝜀𝑚𝑓) − 𝜌𝑔𝜀𝑚𝑓)
(𝑈𝑔−𝑈𝑚𝑓)

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
  

= (1 − 𝜀𝑚𝑓)(𝜌𝑝 − 𝜌𝑔) (1 −
(𝑈𝑔−𝑈𝑚𝑓)

0.71√𝑔𝐷𝑒+(𝑈𝑔−𝑈𝑚𝑓)
) + 𝜌𝑔                     (41) 

where De can be calculated using equation (15), which is  

𝐷𝑒 = ∅(U − 𝑈𝑚𝑓)
0.252

(ℎ + 4𝐴𝐷
0.5)

0.0.759
/1.2                      (15) 

where 

∅ = {

0.252     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐵 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                           (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

0.153     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐴 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                          (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

   

εmf can be calculated using equation (36), which is  

𝜀𝑚𝑓 =
𝐻𝑚𝑓−𝐻0

𝐻0
                                  (33) 

The minimum fluidization velocity of binary fluidization can be calculated using the 

correlation of Noda et al. by the modification of the equation of Wen and Yu which is: 

                       𝐴𝑟 = 𝐴𝑅𝑒𝑚𝑓
2 + 𝐵𝑅𝑒𝑚𝑓                             (8) 

where  

𝐴𝑟 = 𝑑3𝜌𝑔(ρ𝑓 − ρ𝑔)
𝑔

𝜇2 (4) 

𝑅𝑒𝑚𝑓 =
𝑑ρ𝑔𝜇𝑚𝑓

𝜇
 (5) 

where A and B are constants.  

Noda et al. determined these two parameters, which are given by  

A = 36.2(
𝑑𝑚

�̅�

ρ𝑓

ρ𝑚
)−0.196                             (9) 

B= 1397((
𝑑𝑚

�̅�

ρ𝑓

ρ𝑚
)0.296)                             (10) 
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Therefore, once the minimum fluidization velocity is determined, the bed density of fluidized 

bed can be calculated using equations (38), (29) and (33). 

 

3.4 Conclusions  

Bubble dynamics and bed expansion of binary fluidization systems have been investigated 

experimentally using image process technology. The effect of the addition of light particles on 

bubble diameter, bubble velocity and bed expansion was obtained through the comparison 

between binary fluidization systems and single-component fluidization systems. The main 

conclusions are as follows: 

(i) The density of fluidized bed can be decreased significantly applying a binary 

fluidization system where lighter particles are added. In addition, the minimum 

fluidization velocity of binary mixtures can be reduced by the addition of lighter 

particles. The decrease of these two parameters can bring down the energy cost.  

(ii) Bubble diameter of binary mixtures is increasing with the distance above gas distributor 

and excess gas velocity, but decreasing with volume fraction of light particles, which 

means binary fluidization can give a good fluidization with small bubbles population 

and their homogeneous distribution.  

(iii) Bubble rise velocity is also increasing with the distance above gas distributor and excess 

gas velocity and decreasing with volume fraction of light particles.  

(iv) Binary fluidization systems are able to give bigger bed expansion compared to single-

component systems, which indicates a high quality of fluidization with large number of 

small bubbles. 
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(v) The correlation for estimation of bubble diameter for single-component fluidization 

systems was approved to be also able to give good prediction of bubble size of binary 

fluidization systems. In addition, a method for prediction of bed density of binary 

fluidization systems was also developed. 

(vi) Binary fluidization systems have the ability of controlling the bed densities and 

generating good fluidization environment. Therefore, binary fluidization system is a 

high-efficiency method in dry coal beneficiation and other industrial processes.  
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Nomenclature  

Ab, A    Surface area of a single bubble, cm2 

AD     The diameter of hole on the distributor, m 

At     Cross-sectional area of the bed, cm 

DBM    The maximum bubble diameter, cm 

DB0     Initial bubble diameter, cm 

Dt     Bed diameter, cm 

dp, d    Particle size, μm 

De     Equivalent bubble diameter, cm 

D, DB    Bubble diameter, m 

e     Bed expansion  

Fb     The buoyant force, N 

Fd     Drag force, N 

g     Acceleration of gravity, m/s2 

H, h     Bed height (The distance above gas distributor), m 

H0     Initial bed height, m 

He     Expanded bed height, m 

∆t     Time interval between consecutive frames, s 

U     Superficial gas velocity, m/s 

u     Velocity of fluid, m  

ub     Bubble rise velocity, cm/s 

Umf     The minimum fluidization velocity, cm/s 
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Vb     Bubble volume, cm3 

w     Bed width, cm 

xi     Abscissa of bubble center, cm 

yi, yi-1    Ordinate of bubble center, cm 

ρp     The density of particles, kg/m3 

ρg     The density of fluidizing gas, kg/m3 

ρf     The density of fluidizing medium, kg/m3 

μ     Viscosity of fluidizing gas, Pa.s 

 

Greek letters 

ρ 

μ 
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Chapter 4 General conclusions  

Gas-solid fluidization has been approved to be an environmental friendly approach in dry coal 

beneficiation. The effects of bubble behaviors on the quality of fluidization are significant. In 

the first part, bubble dynamics of four different particles (including magnetite powder, sand 

particles and FCC catalyst) covering the range of 75 μm to 300μm in a 2D fluidized bed have 

been studied using image processing technology. In addition, bed expansion as a parameter 

indicating the amount of bubble phase has also been analyzed. The two-dimensional fluidized 

bed is able to give detail observation of bubble behaviour due to its small thickness. These 

parameters involved in bubble dynamics are the minimum fluidization velocity, bubble size 

and bubble velocity. The results show that magnetite powder has the largest minimum 

fluidization velocity, while FCC catalyst is in possession of the smallest minimum fluidization 

velocity. In terms of bubble size and bubble rise velocity, Geldart B type particles (magnetite 

powder and sand particles (150-300μm)) have bigger bubble size and bubble rise velocity than 

Geldart A type of particles (sand particles (75-125μm) and FCC catalyst). In addition, bubble 

size and bubble rise velocity are also increasing with the distance above the gas distributor, 

excess gas velocity and particle size. Bubble rise velocity is dominated by bubble size due to 

the forces exerted on bubbles. Given the equation for estimation of bubble diameter (Darton et 

al. 1977) excludes the effect of particles size and bubble splitting on bubble diameter, a new 

improved correlation for prediction of bubble diameter was proposed as follows: 

𝐷𝑒 = ∅(U − 𝑈𝑚𝑓)
0.2036

(ℎ + 4𝐴𝐷
0.5)

0.7591
/1.2 

where  
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∅ = {

0.2522     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐵 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                           (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

0.1529     𝑓𝑜𝑟 𝐺𝑒𝑙𝑑𝑎𝑟𝑡 𝐴 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                          (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 𝑎𝑛𝑑 𝑠𝑎𝑛𝑑 (150 − 300𝜇𝑚))

 

According to the comparison between experimental data from other researchers’ work and 

predicted values using this equation, the new correlation for bubble size is capable of giving a 

better prediction of bubble diameter.  

Bed expansion as a significant parameter for determining the amount of bubble phase was also 

studied experimentally. In this work, direct observation of bed expansion and bed expansion 

induced by pressure drop were applied for analysis. The results show that Geldart A type 

particles (FCC catalyst and sand particles (75-125μm)) tend to have a bigger bed expansion 

than Geldart B type particles (magnetite powder and sand particles (150-300μm)), which means 

larger bubble population of Geldar A type of particles. Theoretical and experimental 

determination of bed expansion showed the same pattern.  

The second part of the experiments was designed to investigate bubble dynamics and bed 

expansion in binary systems. The binary mixtures used as the medium solids can lower the bed 

density significantly compared to the adjustments by gas velocity. Four binary mixtures with 

different compositions of volume fraction of light sand particles were considered. A 

comprehensive comparison of the minimum fluidization velocity, bubble size, bubble rise 

velocity and bed expansion between binary fluidization systems and single-component system 

was accomplished. The results show that the minimum fluidization velocity of binary mixture 

is decreasing with increasing volume fraction of light (sand) particles. The comparison of 

bubble size illustrates that magnetite powder has the largest minimum fluidization velocity, 

while sand particles have the smallest value in the range of parameters used in this study. As 



81 

 

for bubble size and bubble rise velocity, magnetite powder still has the largest value, while sand 

particles have the smallest and binary mixtures’ bubble diameter and bubble rise velocity fall 

in between. Moreover, bubble size and bubble rise velocity have the same growth pattern with 

bed height, excess gas velocity and volume fraction of sand particles. The proposed correlation 

for estimation of bubble diameter for single-component fluidization systems was verified to 

provide a good prediction of bubble diameter for binary fluidization systems. In addition, the 

bed expansion of binary mixtures increases with the volume fraction of lighter (sand) particles. 

In brief, the addition of light sand particles can give smaller minimum fluidization velocity, 

smaller bubble size and bubble rise velocity but bigger bed expansion, which means that binary 

fluidization can provide higher quality of fluidization for dry coal beneficiation and other 

industrial processes. A method for estimation of bed density for single-component fluidization 

systems and binary fluidization systems was developed based on the new correlation of bubble 

diameter proposed. 
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