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Abstract

Electroactive polymers exhibit a change in properties, typically size or shape, in re-

sponse to electrical stimuli. One class of electroactive polymer of particular interest

are the conjugated polymers, whose conjugated backbone structure imparts electrical

conductivity. However, this structure imposes processing limitations restricting their

form to 2D structures. To overcome this, we develop specially formulated polyaniline-

based blends via counter-ion induced thermal doping for the fabrication of 3D conduc-

tive structures via direct ink writing. This approach employs multi-material extrusion for

the production of structures with passive and active features, rapid device fabrication,

and improved design freedom. A model of the thermal doping and extrusion processes

is proposed that enables designers to predict the extruded track width and tune process

parameters as required. These processes have been applied to the fabrication of both

standalone polyaniline-based 3D structures and embedded strain sensors capitalizing

on the piezoresistive properties of polyaniline.

Keywords: conjugated polymers, additive manufacturing, polyaniline, direct ink writing,

fused filament fabrication, conductive electroactive polymers, piezoresistivity.
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There are many branches of manufacturing industry which greatly depend

for their success upon the designer’s art, and it is necessary that the indus-

trial designer should possess a knowledge of the processes of the manu-

facture in which his designs will be utilized, as well as of the properties and

capabilities of the material to which they will be applied.

– Sir Philip Magnus

Industrial education, K. Paul,

Trench & Co., 1888. pp. 24–25
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Chapter 1

Introduction

The sensing and actuation capabilities of electroactive polymers (EAP) in response to

electrical stimuli have attracted significant research interest (Bar-Cohen, 2004). One

class of electroactive polymer of particular interest in the research community are

the conjugated polymers (CP) (Blythe, 1984). CP are organic polymers character-

ized by their conjugated backbone structure that enables electrical conductivity via

charge delocalization. This combination of the electrical properties of semiconductors

and the mechanical properties of polymers has led to application of CP in batteries,

electrochromic devices, corrosion barriers, anti-static films, sensors and artificial mus-

cle actuators (Wallace et al., 2009; Castillo-Ortega et al., 2003). The polymer poly-

aniline (PANI) is one highly studied CP that exhibits environmental stability, biocompati-

bility, and ease of synthesis while maintaining a relatively low cost of synthesis (Adams

et al., 1994; Kamalesh et al., 2000). However, the unique structure of these materials

that allow for conductivity also greatly reduces their processability resulting in conven-

tional polymer processing techniques being unsuitable. The intractable nature of CP

has limited advances in fabrication techniques to 2D film deposition methods. While

there have been significant advances in 2D film deposition techniques the fabrication

of complex 3D structures for more advanced sensing applications has yet to be ex-

1



CHAPTER 1. INTRODUCTION 2

plored (Yoshioka and Jabbour, 2006; Ung et al., 2013).

One barrier to the widespread application of PANI is associated with its inability to

be conventionally melt-processed due to degradation in material properties before the

glass transition temperature being reached (Cao et al., 1992; Laska et al., 1995; Wang

et al., 1995). To achieve the required processability of PANI a counter-ion induced

thermal doping method has been employed. In this method, PANI is combined with a

protonic acid having a functional group large enough to disrupt the interchain bonding in

the PANI resulting in the formation of a viscous paste. Typically, this method has been

used in the formation of conductive composite materials by enabling PANI to be pro-

cessed with a bulk polymer such as poly(vinyl chloride) (PVC) (Proń et al., 1993). How-

ever, with further understanding of this thermal doping process it has been adapted to

obtain PANI-based pastes formulated for extrusion based additive manufacturing (AM)

methods. Through integration of conventional AM techniques and development of a

multi-material robotic paste extrusion system the rapid development of high-resolution

conductive 3D PANI structures may be realized, free of previous limitations.

1.1 Objectives

This project aims to develop a novel additive manufacturing method specifically tailored

for the fabrication of complex 3D conductive structures of PANI for actuators and trans-

ducers. To achieve this goal, the following research objectives are proposed:

• Develop synthesis method of PANI and paste preparation process optimized for

extrusion based additive manufacturing. The first objective is to develop a synthe-

sis method of PANI that will allow control over the properties of the polymer and

provides a lower cost supply of materials for process development. A treatment

method will be developed to enable the production of PANI-based pastes spe-

cially formulated for extrusion methods and investigate impact of mixing process
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parameters to tune the properties of the paste. Finally, characterization of the flow

properties of the paste based on mixing process parameters will be performed.

• Develop fabrication apparatus for production of PANI-based devices and mod-

elling to predict extruded track width. The second objective is to develop a fabri-

cation apparatus for the production of high-resolution 3D structures that can be

applied to sensors and actuators. This system should also maintain the function-

ality of a conventional FFF 3D printer to allow for concurrent deposition of ther-

moplastics and paste-based materials. Additionally, a model should be proposed

that incorporates the variation of key process parameters to predict the extruded

track width. This will allow any designer to implement the process with a basic

understanding of the process while still capitalizing on the unique potential of the

system.

• Demonstrate the novel application of 3D conductive PANI transducers fabricated

by additive manufacturing techniques. The third objective is to demonstrate the

use of this novel fabrication system for the direct production of functional PANI

devices. This device should contain passive and active structures created con-

currently and capitalize on the unique potential of the fabrication system and the

properties of PANI.

1.2 Major contributions

This thesis conveys the following major contributions to the scientific body of knowl-

edge:

• Novel PANI paste preparation method formulated for additive manufacturing. The

first-ever study of the counter-ion thermal doping method of PANI for the appli-

cation of additive manufacturing. This has been achieved through the characteri-
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zation of the relationship between thermal doping time and paste flow properties

with a focus on apparent viscosity.

• Multi-material direct ink writing extrusion system. Integrated a conventional fused

filament fabrication delta robot with a paste extrusion system to enable the con-

current deposition of fluid based materials and conventional additive manufactur-

ing filament based materials. This apparatus not only allows for the fabrication

of complex, high-resolution 3D conductive PANI structures but also the introduc-

tion of passive and active features with the ability to embed active materials in a

passive support structure.

• Modelling of PANI direct ink writing extrusion process. Adaptation of model for

the direct ink writing of bioinks to the applications of PANI-based paste extrusion

has been explored. This model incorporates key process parameters and mate-

rial properties to allow a user to design the fabrication process with application

specific parameters. The model predicts the extruded track width based upon

material flow properties and process parameters such as print speed, nozzle di-

ameter, and extrusion pressure.

• Embedded PANI piezoresistive strain sensor. The first ever example of the in-

situ embedding of a PANI-based sensor through AM techniques. This sensor

capitalizes on the piezoresistive property of PANI and embedded in a flexible

TPE support material to create a compliant sensor.

1.3 Organization of the thesis

The following chapter, Chapter 2, Background summarizes the fundamental knowledge

in CP structure, properties, and applications. Following discussion of the benefits and

associated limitations of PANI, a brief introduction is provided in AM techniques and
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how they may be adapted for fabrication of conductive polymer devices. In accordance

with the aforementioned objectives, the remainder of the thesis is organized as follows:

Chapter 3, PANI-DBSA paste preparation and characterization explores the develop-

ment of PANI-based pastes specially formulated for AM and their rheological character-

ization as a function of processing parameters. Next, Chapter 4, Direct ink writing ap-

paratus development and process modelling explores the integration of a conventional

FFF delta robot with a paste extrusion system to combine the resolution and design

freedom of AM techniques to develop a multi-material extrusion CNC delta robot. This

chapter also introduces the modelling and validation of the PANI paste extrusion pro-

cess. Chapter 5, Application of PANI in embedded strain sensor provides a study on

the practical engineering application of an embedded PANI-based piezoelectric strain

sensor. Finally, Chapter 6, Concluding remarks summarizes the primary conclusions of

the work, recapitulates the main contributions to knowledge, and provides recommen-

dations for future research.
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Chapter 2

Background

This chapter provides background information regarding fundamental research into CP,

specifically PANI, and highlights the unique properties of these materials that can be

exploited for the fabrication of transducers and other applications. Synthesis routes for

improving the processability of PANI are presented with a focus on counterion-induced

thermal doping. AM techniques are presented as a method to overcome the current

limitations in the fabrication of 3D PANI structures. The conventional additive methods

of fused filament fabrication and direct ink writing are presented as the recommended

methods to realize PANI-based transducers.

2.1 Conjugated polymers

2.1.1 Background

Research interest in conjugated polymers was initiated by the work of Shirakawa, Mac-

Diarmid, and Heeger in the development of polyacetylene (PA) for which they were later

awarded the Nobel Prize for this work (Shirakawa et al., 1977). Their work with PA led

to the discovery and development of a number of other CP including: polypyrrole (PPy),

polythiophene, poly(p-phenylene), and PANI. Conjugated polymers are intrinsically con-

7



CHAPTER 2. BACKGROUND 8

ductive based upon the nature of their polymer backbone structure, Figure 2.2. This

conjugated structure is composed of alternating single and double bonds along the

polymer chain. This new class of materials led to exciting research in the pursuit of capi-

talizing the electrical properties of conductors and semiconductors with the mechanical

properties of polymers. This research has focused largely on fundamental properties

of the materials towards improving their synthesis and conductivity, whereas research

towards applications accounts for approximately 20% of publications, Figure 2.1 (Wal-

lace et al., 2009). CP have been applied in energy storage applications as electrode

materials, corrosion protection, anti-static films, actuators, and sensors (Genies et al.,

1990; Wang et al., 2002; Crowley et al., 2008; Ćirić-Marjanović, 2013). However, the

structure that renders these materials conductive also results in poor stability and sol-

ubility resulting in limitations to processability. PA exhibits conductivity near copper

but has very poor environmental stability making practical application challenging, Fig-

ure 2.3 (Bhadra et al., 2009). This trade off between material properties, stability and

processability exists throughout the group of CP. PANI has been a widely studied CP

because it exhibits a balance between this issues, demonstrating sufficient conductiv-

ity, processability, superior environmental stability and biocompatibility while maintain a

low cost of production (Adams et al., 1994; Kamalesh et al., 2000).

As previously stated, the chemical structure of CP enables their conductivity. While

the underlying physics explaining this process are beyond the scope of this work, it is

important to understand factors that can impact their conductivity. In the case of PANI, it

can undergo redox reactions allowing it to exist at 6 oxidation states, where the degree

of protonation of the polymer chain directly effects conductivity. One of the key contribu-

tors to conductivity is the oxidation level and molecular arrangement (MacDiarmid et al.,

1987). The three main oxidation states are: fully reduced leucoemeraldine, fully oxi-

dized pernigraniline, and half oxidized/reduced emeraldine. Additionally, each of these

states can be modified by a process called doping through the addition of protons to the
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Figure 2.1: The distribution of CP research published (1990–2000) shows a focus on
synthesis and properties of the material, applications such as energy storage and trans-
ducers have also been investigated but not as widely (© Wallace et al., 2009, included
with permission).

structure, the insulating base form can be converted to a doped salt state, Figure 2.4.

The only oxidation state that exhibits conductive behaviour is emeraldine salt (ES). This

is because the conductivity of PANI is provided by the formation of polaron structures,

which can only be formed in this molecular arrangement, in this structure delocalization

of charge is achieved. MacDiarmid and Epstein (1995) and Avlyanov et al. (1995) have

determined that this secondary acid doping can have great impact on the electrical and

mechanical properties as well as the processability of PANI and can be used to develop

solution processable formulations. Other factors affecting the conductivity of PANI, to

a lesser degree, are molecular weight; due to the bulk conductivity being a function of

inter- and intra-molecular conductivity, percentage crystallinity and inter-chain separa-

tion, while the two main factors remain the oxidation state, type of dopant, and degree

of doping (Stejskal et al., 1998; Cao et al., 1989).
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Figure 2.2: The chemical structures of a fundamental group of conjugated polymers (©
Bhadra et al., 2009, included with permission).

2.1.2 Synthesis of PANI for improving processability

One issue with the ES oxidation state is its poor processability due to a large degree of

hydrogen bonding rendering it generally intractable, as such, it cannot be processed by

conventional techniques (Heeger, 1993). One of the main areas of research for PANI

has been the development of conductive composites, this trend is built around the elim-

ination of the need for conductive fillers like carbon black and carbon nanotubes (Bhat-

tacharya and De, 1999; Ruiz et al., 2012). Part of the requirement for these techniques

is the ability to commercialize the process, therefore they must be scalable and inex-

pensive. The two main routes pursued have been synthetic methods and blending

methods (Anand et al., 1998). In synthetic methods, the focus is typically the direct

polymerization of one or both of a matrix polymer and aniline to obtain a composite. In

blending methods, typically the composite constituents are combined in solution after

treatment of PANI to achieve the required solubility. From the blending methods came

the discovery of counterion-induced processability. Cao et al. (1992) showed that dop-

ing EB with functionalized protonic acids, dodecylbenzenesulfonic acid (DBSA) and
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Figure 2.3: Comparing the conductivities of some CP and common conductors shows
the wide range within the group of CP (© Bhadra et al., 2009, included with permission).

camphorsulfonic acid (CSA) for example, of the form, H+ (M– R) where H+ M– is the

acid group and R is an organic group, that the solubility of PANI in common solvents

could be achieved. This method was leveraged to solution process PANI to create com-

posites with matrix polymers of PC, PMMA, Nylon, polyvinylacetate, and ABS (Haba

et al., 2000; Pud, 2003). Ongoing research towards improving the processability of

PANI has focused on solution-based techniques and has not lead to significant de-

velopment of the foundational work in counterion-induced thermal doping (Jaymand,

Figure 2.4: The reversible redox doping reaction to convert from insulating EB to con-
ductive ES oxidation state through protonation/deprotonation of the polymer chain (©
Wallace et al., 2009, included with permission).
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2013).

2.1.3 Counterion-induced thermal doping

The discovery of the improved solution processability of PANI was further developed

by Levon et al. (1995), who introduced the concept of a method to dope PANI with

DBSA without the use of an auxiliary solvent. This was achieved through counterion-

induced thermal doping, where chemical complexation is achieved by combining the

constituents with applied heat. Heat is a key requirement in this process because

near room temperature there is strong self-association of DBSA and PANI causing

slow diffusion rates. With the addition of heat there is sufficient energy to accelerate

the diffusion process and overcome these self-association forces. The seminal work

by Titelman et al. (1997), outlines the stages of the thermal doping process and are

shown in Figure 2.5. Before heating, PANI particles are coated in DBSA creating core-

shell structure, and under heated mixing the temperature increases above the initial

heating temperature and the paste transitions to a semi-solid stage, and may undergo

some swelling effects (Ahlskog et al., 1995). At this point the exothermic doping re-

action is almost fully complete and additional heat generation is attributed to frictional

effects presented by the mixing apparatus. Optimal mixing temperatures have been

reported to initiate thermal doping to completion without degrading material properties.

Titelman et al. (1997) determined that the optimal initial mixing temperature is 143 ◦C

and at temperatures below 132 ◦C the reaction was incomplete and full doping was

not achieved. Additionally, Levon et al. (1995) and Zilberman et al. (1997) reported

that material degradation is initiated at 175 ◦C. Lastly, the exothermic peaks for these

reactions typically occurred between 5 − 15 min of mixing time.

The use of a functionalized protonic acid improves the processability of PANI in its

conductive state by disrupting interchain bond and lowering the glass transition tem-

perature. However, another interesting phenomena was seen by Levon et al. (1995),
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Figure 2.5: The temperature profile of PANI-DBSA during counterion-induced thermal
doping changes dramatically due to the exothermal complexation of the constituents (©
Titelman et al., 1997, included with permission).

where the alkyl side chains created separation in the polymer chains and prevented the

formation of close packing. This results in an anisotropic, layered structure that may be

exploited in the processing or final application.

Figure 2.6: Representation of the layered structure in PANI-DBSA complex formed dur-
ing counterion-induced thermal doping (© Levon et al., 1995, included with permission).
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Figure 2.7: Comparison of additive and subtractive manufacturing methods. (A) Sub-
tractive methods consist of removing material from a workpiece. (B) In additive man-
ufacturing there is controlled processing and deposition of material to build the struc-
ture (© Ambrosi and Pumera, 2016, included with permission).

2.2 Additive manufacturing

Additive Manufacturing (AM), commonly known as 3D printing, refers to the process of

joining materials to make parts from 3D model data, usually through the formation

of successive layers, as opposed to subtractive and formative manufacturing meth-

ods (ASTM Standard F2792-12A, 2012). A fundamental difference between AM and

subtractive methods is the reduction in waste by eliminating a sacrificial work piece

and only depositing material in the required locations to manufacture the part, Fig-

ure 2.7. AM can be used to simplify the manufacturing process by reducing the com-

plexity of the system, tool changes required, or even process changes. AM can be

classified into 4 main groups based upon the mechanism for layer deposition or adhe-

sion: photopolymerization, powder based, lamination, and finally extrusion (Ambrosi

and Pumera, 2016).

This review will focus on extrusion-based techniques with the aim of combining

counterion-induced thermal doping approaches and AM techniques for the fabrication

of PANI-based devices. Extrusion-based methods are amongst the mostly widely used



CHAPTER 2. BACKGROUND 15

AM techniques, these methods involve the deposition of material from a nozzle located

on a controllable printhead (Turner and Gold, 2015). The two types of AM that employ

extrusion are fused filament fabrication (FFF) or fused deposition modelling, and direct

ink writing (DIW) which is also referred to as robocasting (Lewis et al., 2006). The key

difference between these techniques is that FFF uses a heated printhead to melt and

extrude thermoplastic materials and the shape of the final part is achieved by cooling of

extruded filament allowing successive layers to be deposited on it, Figure 2.8A (Turner

et al., 2014). Whereas in DIW, a fluid-based material is forced through a nozzle and

undergoes a curing or drying process to maintain its extruded geometry. There are

a wide range of materials used in DIW including: colloidal inks, ceramic slurries, hy-

drogels, bio-inks, and polymeric melts, Figure 2.8B (Lewis, 2006). These materials

have been applied to tissue engineering scaffolds, microfluidic devices, batteries, and

sensors (Lewis, 2006; Kang et al., 2016). Material design is essential for the ability

to create high-resolution features and can be tuned for the application. For effective

ink design the extruded material must be able to span gaps, creating bridges, and pro-

duce high aspect-ratio features, while also avoiding unwanted voids between adjacent

extruded tracks. Further aspects of the AM techniques employed in this research are

discussed in greater detail in Chapter 4, Direct ink writing apparatus development and

process modelling, including: configuration, software, model preparation, and relevant

process parameters.

2.3 Chapter summary

This chapter provided the background information and framework for the research con-

ducted in this thesis. The unique properties of CP have lead to research into the im-

provement of their processability to achieve a wider range of applications, however,

methods to realize 3D PANI structures are limited. Synthesis routes for processable
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Figure 2.8: Schematics of FFF and DIW methods. (A) In FFF a thermoplastic filament
is fed through a heated nozzle to deposit a track of molten material which rapidly welds
to the previous layer. (B) In DIW a fluid-based material is forced through the nozzle
in a similar manner to create a layered structure which can be cured to finalize the
geometry (© Ambrosi and Pumera, 2016, included with permission).

PANI include counterion-induced thermal doping whereby through the heated mixing

of PANI with DBSA a viscous paste can be formed creating the potential for extrusion

via DIW. AM techniques were outlined and the methods of FFF and direct ink writing

were discussed as a methods towards the first realization of PANI-based transducers

consisting of high-resolution, 3D, and conductive structures.
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Chapter 3

Development and rheological

modelling of PANI-DBSA paste via

counterion-induced thermal doping

This chapter outlines the development of a PANI-based paste specially formulated for

DIW. A chemical oxidative synthesis route is outlined to maintain control over the prop-

erties of PANI used in paste preparation and greatly reduce the material cost. The

application of counterion-induced thermal doping to develop a process to produce PANI-

DBSA is presented. This process involves mixing of paste constituents while heating.

The characterization of the rheological behaviour of the material based on the process-

ing parameters is investigated. Finally, an empirical model relating the length of thermal

doping time to the flow behaviour of the resultant paste is proposed.

3.1 Polyaniline synthesis

PANI is commonly synthesized via chemical oxidative polymerization or electrochemi-

cal polymerization (Wallace et al., 2009). Chemical oxidative polymerization was em-

21
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0.25 M APS
in 1 M HCl

Add slowly
0.2 M Aniline

in 1 M HCl
Stir for 24 h
in ice bath

PANI-ES
in solution

Filter

PANI-EB
in solution Mix for 3 h

De-dope in
3% NH4OH

PANI-ES
powder

Rinse with
1 M HCl

Filter

Rinse with DI water
and acetone

Dry under vacuum
at 60 ◦C for 24 h

PANI-EB
powder

Figure 3.1: This schematic details the chemical oxidative polymerization procedure to
synthesize PANI.

ployed due to its ability to achieve scalable batches of PANI powder. The general

polymerization process involves the creation of aniline radicals in a low pH solution

and addition of an oxidizing agent to propagate the polymer chain and add dopant ions.

The polymerization process followed has been based upon IUAPAC suggested process

presented by Stejskal and Gilbert (2002) and is illustrated schematically in Figure 3.1.

The molar ratio of aniline to APS of 1:1.25 is used based on electron transfer from the

persulfate ion and to prevent over-oxidation (Armes and Miller, 1988). A 0.4 M solu-

tion of aniline (99%, Sigma Aldrich) is prepared in 1 M hydrochloric acid solution as

well as a 0.5 M solution of APS (reagent, Sigma-Aldrich) in 1 M HCl, when combined,

these solutions will reach the desired concentrations of 0.2 and 0.25 M respectively. A

low-pH solution is required for efficient polymerization PANI in order to form the anilin-

ium cation. Both solutions are placed in ice baths with the aniline solution positioned

on a magnetic stirrer and mixed at 350 rpm. Reaction temperature has been shown
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to affect the molecular weight of the product, where lower temperatures can achieve

higher molecular weights (Mullen et al., 2013). The polymerization is performed near

0 ◦C to achieve a balance of molecular weight, which can improve some properties of

PANI, and processability, high molecular weights can lead to gelation (Mottaghitalab

et al., 2006). Once both solutions have reached 0 − 4 ◦C, the APS solution is slowly

added to the aniline. Initially the solution develops a light pink colour demonstrating the

formation of an intermediate stage, then it transitions to a deep blueish purple due to

the formation of protonated pernigraniline oxidation state of PANI, and finally a deep

green precipitate forms demonstrating the formation of PANI-ES. The polymerization

of PANI is an exothermic reaction demonstrating a temperature rise of approximately

12 ◦C before being cooled back to the original reaction temperature. Following the ad-

dition of the APS solution the reaction is left to progress for 24 h under stirring. After

the reaction is complete, the green PANI-ES solution is filtered through a buchner filter

with VWR 413 filter paper with 5 µm particle retention. Vacuum filtration was employed

to quicken the filtering process. The precipitate is then rinsed with 1 M HCl to remove

any residual monomer, and other reaction products. The precipitate obtained is PANI

in its conductive ES state, however, it is doped with HCl and partially with hydrogen

sulfate due to participation of the oxidant in the polymerization. To have the ability to

choose a different dopant ion the PANI must be de-doped into the insulating EB oxida-

tion state. To de-dope the PANI the precipitate is mixed with a 3% ammonium hydroxide

solution for 2 hrs. The solution is filtered again, yielding a deep blue product, indicating

successful transition to the EB state. The precipitate is rinsed with deionized water

and acetone to remove reaction intermediates and oligomers (Roichman et al., 1999).

Finally, the PANI-EB precipitate is dried under vacuum at 70 ◦C overnight. The dried

PANI-EB is ground with a mortar and pestle and passed through a fine sieve ensure

any large particles can be processed further.

The yield of this reaction was found to be relatively low at approximately 65%. This
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Material Cost
[

$/g
]

PANI-EB (in-house) 1.55
PANI-EB (sigma-aldrich) 13.00 − 53.00
PANI-ES (sigma-aldrich) 11.30

Table 3.1: Material cost of PANI comparing in-house synthesis and purchasing from
commercial chemical suppliers.

loss may be partially attributed to the filtering process, where fine particles may pass

through the paper as well as material remnants adhered to the paper. It may also be

possible to improve the quality of the reaction; during the first filtering stage the filtrate

typically displayed a mild red-pink colour. This colouration can suggest the presence

of soluble oligomers or over-oxidized PANI, and is usually caused by excess oxidant in

the reaction (Stenhouse, 1864). This should not have a significant impact on the qual-

ity of PANI but has impacted the yield. However, the relatively low yield of the reaction

still provides drastic cost savings, Table 3.1. Depending on the molecular weight of the

PANI purchased from chemical suppliers the cost can vary but savings of over $10 per

gram are easily achieved and will only increase with improved reaction yields. These

cost estimations are limited to material costs and do not include the cost of equipment

or labour. However, the only equipment required is a balance, magnetic stirrer, and

glassware which are generally available in a well-equipped research lab. Additionally,

the strong dependence on polymerization process parameters and materials can have

a large impact on the resultant PANI properties. By maintaining full control over the pro-

duction of working material the properties of the material can be tuned specific for the

development of this new fabrication method and could introduce future research ques-

tions (i.e. the effect of molecular weight on conductivity of structures PANI structures

fabricated by AM).



CHAPTER 3. PANI-DBSA PASTE PREPARATION AND CHARACTERIZATION 25

3.2 PANI-DBSA paste preparation

Now that PANI has been obtained in its EB oxidation state the polymer can be re-doped

with any choice of dopant. To take advantage of the previously discussed counterion-

induced thermal doping method, DBSA is used as the dopant. To prepare the PANI-

DBSA paste first 5 g of PANI are added to 15 g of DBSA, this 1:3 mass ratio has been

adopted to reduce excess DBSA in the final complex (Price et al., 2010). Excess DBSA

acts as a plasticizer that may improve extrusion of the paste but will also be water sol-

uble which could limit applications of fabricated devices. Initially the PANI must be

dispersed by hand with a small spatula because due to the density difference between

the materials a dry, dirt-like mixture is obtained. With sufficient manual mixing the PANI

is incorporated throughout the DBSA forming the core-shell structure previously dis-

cussed, at this stage a viscous paste is obtain but it is a non-uniform dispersion. To

improve the homogeneity of the paste it is mechanically mixed with an overhead stand

mixer (Eurostar Control 100) and a dissolver blade. The paste is mixed for approxi-

mately 8 min at 850 rpm until a uniform paste is achieved. In the counterion-induced

thermal doping method heat is required to initiate the chemical complexation of the con-

stituents; during these initial mixing stages, no heat is added other than frictional heat

generated by the stand mixer, thus it is assumed there is minimal doping at this stage

in the process. To initiate the doping process the PANI-DBSA paste is mixed further on

a hotplate at 100 ◦C for a prescribed amount of time. During initial testing, it became

clear that without any heated mixing the paste had too low of viscosity to support its

own weight and allow for fabrication of 3D structures. However, the precise effect of

heating on PANI-DBSA paste has not yet been explored.
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3.3 PANI-DBSA paste characterization

3.3.1 Methodology

One of the key contributions of this work is the elucidation of the rheological behaviour

of PANI-DBSA at different stages of the thermal doping process. In many direct ink

writing applications, there is a mechanism available to control the flow characteristics

of the material, by adjusting the composition, for example, increasing the viscosity by

increasing the percentage of an additive. In this case, it is desirable to maintain the

same composition based on stoichiometric ratios but the flow characteristics may be

controlled by controlling the degree of doping in the paste. In the development of this

AM technique for PANI it is essential to understand how the doping reaction affects the

flow properties of the material and how they can be used in extrusion based applica-

tions. Previous reports have identified a paste to solid transition, as well as optimal

temperatures to complete the thermal doping reaction, but by analyzing the rheological

behaviour after various heating times then optimal conditions may be determined to

prepare PANI-DBSA paste for AM extrusion methods. It has been reported by Titelman

et al. (1997) that below 120 ◦C, the thermal doping reaction will not be fully completed,

thus to investigate formulations that have not fully reacted a lower temperature, 100 ◦C,

has been used. Future studies may investigate the effect of temperature on the doping

reaction and eventually transition to analyzing heat energy and rates per gram of the

material to normalize the process for a range of batch sizes.

The aim of this study was two-fold; first, to identify a rheological model describing

the flow characteristics of the material in response to various shear rates. Secondly,

material subjected to various amounts of heated mixing were tested to develop an em-

pirical model to describe the effect of thermal doping time on the flow characteristics of

the material. Additionally, the paste viscosity, and shear rate dependence can impact

the required extrusion pressure as well as the likelihood of post extrusion deforma-
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tion. An initial rheological study was conducted using a Rheometrics stress rheometer,

configured in the parallel plate geometry. To assess the material’s shear strain rate de-

pendence, a dynamic strain sweep was conducted from 0.1 − 100 rad/s at 1% strain.

This test was repeated for mixtures heated for 2, 3, 4, and 5 min, with 3 tests conducted

at each thermal doping time.

3.3.2 Results and discussion

Following the rheometry study, the paste flow was found to follow the Ostwald shear-

thinning power law model:

η = η0γ̇
n−1, (3.1)

logη = (n − 1) logγ + logη0, (3.2)

where η0 is the consistency constant that describes the viscosity of the fluid at a shear

rate of 1 s−1, and n, the power law index (Coussot, 2005). When this model is analyzed

on the log scale, the power law index describes the slope of the line and the consistency

constant determines the y-intercept (Equation 3.2). It was also shown that an increase

in heating time of the PANI-DBSA results in an increase in viscosity (Figure 3.2). This

increase in viscosity was expected as demonstrated by the aforementioned research

introducing the paste-to-solid transition. Curve fitting was performed in MATLAB using

nonlinear least squares and robust bisquare regression to determine the consistency

factor and power-law index for each heating time. The robust method applies a degree

of outlier rejection by searching for a model that fits the majority of data and assigning

a lower weight to data farther from this curve (Rousseeuw and Hubert, 2011). The 3

data sets obtained for each thermal doping time were combined to obtain represen-

tative power law coefficients for each time. Flow behaviour at each heating time was

captured well by the power law model with r 2 values greater than 0.98 for each thermal
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doping time above 0 min. The unheated sample had an r 2 value of 0.94, and while this

is a relatively good fit, the heating process may have promoted improved dispersion

as well as chemical complexation. Thus, without any pre-extrusion thermal doping ap-

plied, the paste was less homogenous and more likely to exhibit wider variations in flow

properties. Once the power-law coefficients corresponding to each heating time were

determined, the relationship between the coefficients and pre-extrusion thermal doping

time, in minutes, were found empirically. For η0 as a function of time, a 1-term exponen-

tial function was used with the addition of a y-offset. Similarly, the relationship between

n and pre-extrusion heating time was fitted to a 2-term exponential function. Using

these forms, the coefficients were determined for each variable and the relationship is

described by Equations 3.3 and 3.4 for η0 and n respectively,

η0 = 0.0685e2.0587t + 36.233 (3.3)

n = 0.5531e−0.01434t − 4.23 × 10−7e2.719t . (3.4)

Together these equations describe the flow behaviour of the paste in terms of heating

time and shear rate. This study shows an agreement with previous research suggest-

ing a distinct paste-to-solid transition. For this specific case, 20 g of material heated

at 100 ◦C, there appears to be an increase in viscosity initiated at approximately 3 min

and a sharp increase after 4 min. This transition was also observed during paste ex-

trusion, where material heated for 3 min or less had a tendency to flow under its own

weight. During rheological characterization, it was determined that the material heated

for 5 min was nearly solid due to the thermal doping reaction being near completion

and therefore, the material was not extrudable. The analyzed heating times provide an

overall view of the curing reaction at 100 ◦C that displays how the viscosity is changing

at stages of this reaction. Further investigation should focus on the 3–5 min range to
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Figure 3.2: Shear-thinning behaviour is observed for PANI-DBSA paste heated at
100 ◦C for different durations demonstrated the expected increase in viscosity with ther-
mal doping time.

assess the accuracy of the empirical model in this critical range.

3.4 Chapter summary

This chapter outlined the chemical oxidative polymerization of PANI-ES, and de-doping

into PANI-EB in preparation for CITD with DBSA. The preparation procedure of PANI-

DBSA paste was presented and the rheological behaviour of the paste was character-

ized. A rheological study was conducted which determined PANI-DBSA flow can be

modelled by the Ostwald shear-thinning power law. Additionally, this study investigated

the impact of thermal doping time on the flow properties of PANI-DBSA paste to de-
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velop empirical models describing the power law coefficients as a function of thermal

doping time. This understanding of the flow behaviour of PANI-DBSA paste can now

be applied to an extrusion model to provide designers with a tool to select application

specific process parameters.

List of references

Armes, S. P. and Miller, J. F. (1988), ‘Optimum reaction conditions for the polymer-

ization of aniline in aqueous solution by ammonium persulphate’, Synthetic Metals

22(4), 385–393.

Coussot, P. (2005), Rheometry of Pastes, Suspensions, and Granular Materials, John

Wiley & Sons, Inc., Hoboken, NJ.

Mottaghitalab, V., Spinks, G. M. and Wallace, G. G. (2006), ‘The development and

characterisation of polyaniline—single walled carbon nanotube composite fibres us-

ing 2-acrylamido-2 methyl-1-propane sulfonic acid (AMPSA) through one step wet

spinning process’, Polymer 47(14), 4996–5002.

Mullen, K., Reynolds, J. R. and Masuda, T., eds (2013), Conjugated Polymers, RSC

Polymer Chemistry Series, The Royal Society of Chemistry, Cambridge, GBR.

Price, A. D., Kao, V. C., Zhang, J. X. and Naguib, H. E. (2010), ‘Fabrication and percola-

tion behaviour of novel porous conductive polyblends of polyaniline and poly(methyl

methacrylate)’, Synthetic Metals 160(17–18), 1832–1837.

Roichman, Y., Titelman, G., Silverstein, M., Siegmann, A. and Narkis, M. (1999), ‘Poly-

aniline synthesis: influence of powder morphology on conductivity of solution cast

blends with polystyrene’, Synthetic Metals 98(3), 201 – 209.



LIST OF REFERENCES 32

Rousseeuw, P. J. and Hubert, M. (2011), ‘Robust statistics for outlier detection’, Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(1), 73–79.

Stejskal, J. and Gilbert, R. G. (2002), ‘Polyaniline. Preparation of a conducting poly-

mer(IUPAC Technical Report)’, Pure and Applied Chemistry 74(5), 857–867.

Stenhouse, J. (1864), ‘Action of chloride of iodine on certain organic substances’, Jour-

nal of the Chemical Society 17, 327–332.

Titelman, G. I., Zilberman, M., Siegmann, A., Haba, Y. and Narkis, M. (1997), ‘Thermal

dynamic processing of polyaniline with dodecylbenzene sulfonic acid’, Journal of

Applied Polymer Science 66(12), 2199–2208.

Wallace, G. G., Spinks, G. M., Kane-Maguire, L. A. and Teasdale, P. R. (2009), Con-

ductive Electroactive Polymers: Intelligent Polymer Systems, 3rd edn, CRC Press,

Boca Raton, FL.



Chapter 4

Direct ink writing apparatus

development and process modelling

In conjunction with the development and characterization of PANI paste formulations a

multi-material DIW apparatus for the fabrication of high-resolution 3D PANI-based struc-

tures was developed. Initially a syringe pump paste extrusion system was employed to

provide a proof of concept demonstration and encounter any major issues with the pro-

cess. Issues with paste flow controllability led to the adoption of a CNC pneumatic valve

that was integrated with the conventional FFF delta printer to obtain a multi-material

extrusion apparatus. Previous knowledge of PANI-DBSA paste flow properties was

combined with an extrusion model to predict the width of extruded tracks. The model

validation was conducted to provide the designer with a basis to modify vital fabrication

parameters such as print speed, pressure, and nozzle diameter to enable the design

of high-resolution 3D conductive PANI structures. Further development of this model

is required to account for post extrusion flow resulting in track widening, and a more

focused investigation on the change in flow properties during the critical paste to solid

transition exhibiting during the PANI-DBSA thermal doping process. Finally, sample

structures were presented to highlight the ability of the system to created multi-layered

33
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high-resolution PANI-DBSA structures.

4.1 Apparatus development

4.1.1 Fused filament fabrication delta robot

The framework for this fabrication system is provided by a commercially available FFF

3D printer in a delta configuration, as opposed to cartesian. In this configuration, there

are 3 independent stepper motors driving carriages along vertical rails, where each

carriage is connected to the end effector by rigid arms and a ball joint or spherical bear-

ings, Figure 4.1. The combination of vertical displacements of these carriages controls

the position of the end effector in the x-y plane and a simultaneous movement of each

carriage results in a displacement in the z-axis. The key advantages to the delta config-

uration is the low inertia of the moving parts allows for superior accuracy at higher print

speeds, quiet operation, and an automatic bed levelling feature. The delta kinematics

are programmed into the printer’s firmware (Bell, 2015). The firmware employed is a

branch of the open-source firmware “Marlin” designed for FFF 3D Printers using delta

configurations †.

The 3D printer is controlled by the Azteeg X3, an arduino based 3D printer controller.

This board is designed specifically for additive manufacturing applications and provides

all the essential ports and connections for position drive motors, extruder drive motors,

heating elements for the hot end and heated bed, and cooling fans. The printer is

shipped with the necessary wiring and components to extrude a single material through

a single hot end, but the board is designed for expansion to integrate an additional ex-

truder motor and hot end. The as-shipped printer is specified to have a layer resolution

of 100 µm. The smallest realizable feature is not specified but feature resolution has

†reprap.org/wiki/Marlin

reprap.org/wiki/Marlin
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Figure 4.1: Schematic of the standard configuration for delta 3D printers (© Bell, 2015,
included with permission).

been found to be highly dependent upon the selected process and geometry of the

feature. The combination of open-source software and expandable/modular hardware

allows for rapid modifications and retooling of the system for different applications. For

example, improving the resolution of the positioning stepper motors may realize finer

feature and layer resolutions.

4.1.2 General AM process

During the development of this process many changes were made, however the general

procedure remained the same and can be split into 4 main steps: paste preparation,

model and G-code preparation, paste extrusion, and post-extrusion thermal doping. As

discussed in Chapter 3 the paste extrusion step involves dispersing the PANI in DBSA

and mixing under applied heating to initiate thermal doping, effectively controlling the

flow characteristics of the paste. Next, a 3D model is produced, using 3D CAD soft-

ware, and imported to a commercial slicing software, where essential process parame-

ters are specified, from which, the tool paths and extrusion information are generated.

Once the tool paths are produced and the material is prepared, the structure can be
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fabricated using the CNC delta robot for position and a paste extrusion tool for material

deposition. It is important to note that at this point the material has only been partially

doped and remains in paste form. To finalize the complexation of the PANI and DBSA

a post-extrusion thermal doping process is required by applying heat to the sample,

this additional heating results in a paste-to-solid transition and an increase in the con-

ductivity of the material (Zilberman et al., 1997). These steps were under concurrent

development during the project and modifications were made to each step throughout,

however, the framework of the procedure remained consistent.

4.1.3 Initial paste extrusion system

As discussed above, the 3D printer was only equipped with a single conventional fila-

ment extruder and hot end. Initial proof of concept for direct ink writing of PANI-based

pastes was achieved through the integration of an aftermarket paste extruder. The

paste extruder design was similar to a syringe pump where a material cartridge is

loaded into the device and extrusion is controlled by a geared stepper motor driving

a lead screw. The key advantage to this system is that minimal modifications were

required to the existing printer for successful integration of the paste extruder. Since

the paste extruder is driven by a stepper motor the device can be directly connected to

the extruder output of the printer. A configuration parameter in the 3D printer firmware

is the steps per mm of the stepper motors, this value can be specified for both the

position and extruder drive motors. This value controls the number of steps required

for the stepper motor to move either 1 mm or extrude 1 mm of filament, and by adjust-

ing this value based on the motor steps per revolution, driver microstepping, and gear

ratio, the new extruder can be calibrated. Fine calibration calculations for this design

were not completed because of the exploratory nature of the testing. Instead a rough

calibration was achieved by specifying a steps per mm value suggested by the paste

extruder manufacturer, followed by adjusting a parameter in the slicing software for fil-
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ament diameter for finer adjustment of the extrusion rate. This method was effective

because the volume of extruded material is calculated by both the length and diameter

of the filament; by decreasing the filament diameter the extrusion rate will increase to

achieve the same volume flow rate and vice versa. With the fabrication of the mounting

clamp for a nozzle and the installation of tubing to connect the nozzle to the cartridge

the paste extruder integration was completed, Figure 4.2.

This apparatus enabled the relatively quick proof of concept towards the fabrication

of 3D conductive PANI structures, characterization of these structures, and identifica-

tion of any potential limitations in the system or material design. Following refinement

of the fabrication parameters the ability to create multi-layered structures was achieved

and the conductivity of these structures were analyzed, Figure 4.3. Additionally, this

allowed the initial examination of the effect of post fabrication thermal doping to finalize

the complexation of the PANI-DBSA paste and improve its conductivity. However, while

this system provided valuable experience in development of the fabrication process it

presented some limitations and challenges. The slow speed of the leadscrew driven

system and the expansion of the tubing that ran from the syringe pump base to the end

effector affected the controllability of the paste flow. As a result, there was an inherent

lag in the paste extrusion resulting in a disparity between the actual and the modelled

extrusion position. This lag also created challenges for multi-material printing where

the paste material would ooze from the nozzle while not in use. The tubing also re-

sulted in wasted material that could not be extruded. Finally, this system was prone to

clogging, while this is partially attributed to insufficient extrusion pressures, the paste

preparation process was also under development and agglomerations of particles may

have contributed to clogging as well.
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Figure 4.2: Fabrication apparatus consisting of (a) modified fused filament fabrication
delta robot, (b) integrated paste extrusion system, (c) polymer paste cartridge, and
(d)paste extrusion nozzle (© Holness and Price, 2016, included with permission).
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(a) (b)

Figure 4.3: (a) A fabricated PANI-DBSA structure prior to post-extrusion thermal dop-
ing, and (b) demonstration of electrical conductivity on the thermally doped sample (©
Holness and Price, 2016, included with permission).

4.1.4 Final paste extrusion system

To correct the material waste and flow control issues, the syringe pump system was

replaced with a computer controlled pneumatic valve (Nordson EFD). The maximum

output pressure of the pneumatic valve is 100 psi and with the addition of a high pres-

sure tool this can be scaled to 400 psi. This system provided increased accuracy in

paste deposition through discrete bursts of high pressure air providing a highly control-

lable flow. Additionally, the material barrel was able to be mounted directly on the end

effector, adjacent to the conventional hot end, eliminating the effect of expanding tub-

ing. Typical FFF systems use stepper motors to drive the filament through the hot end,

this required the output signal to be modified for communication with the pneumatic

valve. To integrate the pneumatic valve with the delta robot an auxiliary microcontroller

was added to read the standard stepper motor output and relay the signal to the digital

I/O port on the pneumatic valve to initiate and terminate an extrusion cycle Figure 4.4.

To initiate an extrusion the microcontroller reads the step and direction outputs from

the 3D printer controller. If a high signal is detected for both step and direction pins

a voltage is applied across the requisite pins of the pneumatic valve I/O port. This

allows the use of conventional slicing software to generate tool paths coupled with
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extrusion data while capitalizing on the advantages of the pneumatic paste extrusion

system. Sampling the direction pin was required because it is possible for retractions

to be commanded during the G-code preparation stage. A retraction is a AM technique

where the extruder direction is reversed to pull the filament out of the hot end a small

degree, this prevents unwanted material from oozing out of the nozzle when executing

travel moves. However, the pneumatic valve doesn’t recognize this feature and without

sampling the direction pin the paste extruder would only receive a step command and

extrude unnecessarily. If a retraction signal is detected, by switching of the direction

pin, a voltage is applied across the alarm pins of the pneumatic valve terminating the

extrusion. The complete pneumatic valve integration microcontroller program is avail-

able in Appendix A.2. The extrusion pressure is selected directly through the internal

controller on the pneumatic valve and is calibrated as a function of nozzle diameter,

print speed, and the paste’s apparent viscosity (Suntornnond et al., 2016).

The as-purchased 3D printer was not intended for paste extrusion or dual extru-

sion, as such, the original bulky hot end design and limited mounting space did not

allow for integration of an additional extruder. To mount both a conventional hot end

and paste extrusion tool, a significantly smaller hot end was purchased and mounting

brackets were designed for the new hot end, paste extrusion tool, and bed levelling

components were fabricated. These brackets were produced by FFF for speed of pro-

duction and ease of design iteration, however, a final design could be produced using

higher strength materials. One challenge in the design of the paste extruder mounting

bracket was the requirement to adjust the z-position of the tool. This requirement was

driven by the variation in disposable nozzle lengths. The current design allows the user

to loosely clamp the paste extrusion tool, manually adjust its z-position, and fully clamp

it into position. These modifications have enabled improved achievable line resolutions

of approximately 250 µm, compared to the syringe pump system, and the ability to ac-

curately control paste deposition enabling multi-material extrusion. The multi-material
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Figure 4.4: Schematic of multi-material extrusion direct ink writing system (© Holness
and Price, 2017, included with permission).

extrusion system combines a standard FFF hot end with the ability to print conventional

AM filament materials up to 245 ◦C, and while the focus of the paste extrusion tool is to

enable direct ink writing of PANI based compositions, there are no limits to the range of

fluids for which its use may be envisioned. Finally, the open-source nature of the com-

ponents used in this system provides low-level control of the entire process enabling a

high degree of modularity and adaptation for future design improvements, including in

situ thermal doping of PANI based formulations, non-planar tool paths, and installation

of additional paste extruders.

4.1.5 G-code preparation and modification

One of the challenges in multi-material AM is the different material properties require

different printing parameters for successful extrusion. This issue is addressed in the

slicing software, Simplify3D. This software allows designers to import multiple STL files

to the workspace and define unique process parameters for each model. This enables
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process optimization on a material specific level while minimizing any trade-off due to

the multi-material process. However, the slicing software and printer controller do not

allow for the definition of unique steps per mm settings for each extruder, to overcome

this challenge the G-code file is generated with two tools defined and is processed by a

python script (Appendix A.1). This script prompts the user to select the desired G-code

file and define the steps per mm for each tool. The script then searches the file for

instances of tool changes and inserts a line of code redefining the global steps per mm

setting following each tool change.

4.2 PANI-DBSA extruded track width study

4.2.1 Model development

After development of the PANI-DBSA paste, fabrication apparatus, and G-code prepara-

tion, further refinement of the process was required. A previous model was developed

by Suntornnond et al. (2016) to predict the track width of extruded bioinks under various

process parameters. Using the shear stress developed during capillary flow (through

the nozzle), the volume flow rate can be determined by an assumption that a constant

geometry track is deposited for a given nozzle speed. Combining this assumption with

the power law model for shear thinning fluids discussed in Chapter 3, the relationship

between process parameters and fluid viscosity is given by:

d (v ,∆P) = D2

√

1

32ηL
·

(

4n

3n + 1

)

·
∆P

v
, (4.1)

where, D, L, η, n, ∆P, and v represent nozzle diameter, nozzle length, apparent viscos-

ity, power law index, gauge pressure, and nozzle travel speed respectively. The track

width is shown to be directly proportional to the square root of the gauge pressure and
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inversely proportional to the square root of the travel speed:

d ∝
√
∆P, (4.2)

d ∝

√

1

v
. (4.3)

From the constant geometry assumption, the shear rate of the material through the

nozzle can be estimated by:

γ̇ =
4n

3n + 1
·

2v

D
, (4.4)

where n is determined from the recently developed relationship between thermal doping

time and flow properties, v is the print speed, and D is the nozzle diameter (Suntorn-

nond et al., 2016). Following the calculation of the shear rate, the apparent viscosity of

the paste can be calculated using the empirical models defining the shear thinning be-

haviour as described in Chapter 3. At this point all the relevant parameters are known

and the expected track width can be calculated.

4.2.2 Methods

To verify that the previously developed model can be extended to PANI-based pastes

and that the heating time effect can be accurately incorporated in the model, a study

of extruded tracks was conducted with material heated for 3.5 and 4 min where tracks

were deposited over a range print speeds and pressures. Extrusion speeds and pres-

sures were selected based on estimations from the track width model and due to

changes in material properties were dependent upon thermal doping time. Material

heated for 3.5 min was extruded at print speeds of 5, 10, and 15 mm/s and gauge

pressures of 200, 240, 280, 320, and 360 psi. Material heated for 4 min was extruded

at a print speed of 4 mm/s and gauge pressures of 280, 320, 360, and 400 psi. The

prescribed extrusion path was as a continuous track with 5-parallel lines as shown in
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(a) (b)

Figure 4.5: (a) An unmodified image of an extruded track and (b) the same image
following preprocessing in preparation for track width measurement.

Figure 4.7a. One width measurement was taken on each of the 3 central lines of a

single part extruded each combination of extrusion parameters. Extruded tracks were

analyzed via optical microscopy (Nikon Eclipse L150), and obtained images were pro-

cessed in ImageJ to determine the average track widths. To reduce the time required

to process the images a more automated workflow was employed that took advantage

of an open-source macro for ImageJ. This macro automatically identifies the edges of

the track and calculates the average track width as well as the roughness of the edges.

However, it was found that the edges could be more easily identified if the image was

converted to black and white. Following initial image processing the track widths could

be accurately identified and measured, Figure 4.5.

4.2.3 Results and discussion

The first validation of the model focused on extrusion of PANI-DBSA for a single ther-

mal doping time, as shown in Figure 4.6a. Material with the same flow properties was

extruded at various print speeds and gauge pressures to test the model’s ability to han-

dle those two print parameters. The model predicts the track width for speeds of 10
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and 15 mm/s for all pressures demonstrating r values of 0.81 and 0.82 respectively.

While this model does not provide an exact prediction of the expected track width it

does provide the designer with a reasonable estimate from which process parameters

can be adjusted experimentally. In calculation of r values for 15 mm/s the tracks ex-

truded at 15.5
√

psi were excluded because they were determined to be artificially high

due to non-characteristic effects, possibly due to a temporary nozzle blockage result-

ing in pressure buildup. As can be seen in Figure 4.6a, at 5 mm/s print speed there

was better agreement between the model and experimental results at low extrusion

pressures. In addition, at this print speed the model increasingly under-predicts track

width as the pressure increases. This disagreement is assumed to be caused by over-

extrusion, where the extruded track no longer maintains the assumed circular cross

section. If the vertical distance between the nozzle and substrate is small, then dur-

ing over-extrusion the nozzle becomes buried in extruded material and excess material

is forced outwards. This results in an extruded track with an elongated cross section

that is wider than it is thick. A future improvement to the model may be to modify the

geometry of the cross-section to account for the distance between the nozzle and the

substrate. Until future model refinements are applied, the limitations of the model may

be checked by comparing the predicted track width to the diameter of the nozzle. Initial

results suggest that tracks predicted to be significantly wider than the nozzle diameter

cannot be accurately reproduced experimentally.

The next parameter studied was the ability to account for different pre-extrusion

thermal doping times. Due to the significant change in viscosity between the samples

heated for different lengths of pre-extrusion thermal doping it was not possible to test

at the same pressures and speeds without encountering over- or under-extrusion in

one set of samples. Figure 4.6b shows the experimental and predicted track widths for

tracks extruded after 3.5 and 4 min of the thermal doping at 100 ◦C. There was less

agreement between the model and experimental data for tracks extruded after 4 min
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heating, especially at low extrusion pressures, demonstrating an r value of only 0.57.

The disagreement at low extrusion pressures may be due to pressure losses in the

system resulting in an extrusion pressure lower than the gauge pressure. The overall

poor correlation could suggest a change in the paste flow behaviour due to the paste

to solid transition during the thermal doping reaction. A large change in viscosity was

seen between 3 and 4 min of thermal doping and it is possible that this large change in

viscosity cannot be accounted for by the model in its current form.

Examples of extruded tracks in Figure 4.7 highlight how the change in process

parameters has significant impact on the extrusion track width. For example, tracks

extruded at 360 psi but at 5 and 10 mm/s, Figure 4.7c and d respectively show a large

change in track width that ultimately could not be accounted for by the model. Finally, in-

consistent extrusion occurred at 10 mm/s at 70 psi possibly caused by agglomerations

in the paste suggesting improvements to the paste preparation process are required. A

potential route to improve the accuracy of the track width model is to consider a more

representative cross-sectional geometry of the extruded tracks. For example, Turner

and Gold (2015) have proposed a rectangular cross-section for the extrusion of ther-

moplastics which considers the width and thickness of the extruded road. This model

also identifies the acceleration of the end effector as a contributor to over and under

extrusion leading to variations in extruded track widths, Figure 4.8. This effect has

been limited by measuring the track widths along long, steady extrusions. However, fu-

ture refinements of the model will focus on identifying the cross-section geometry and

controlling the extrusion pressure as a function of end effector acceleration.

4.3 Sample 3D PANI-based structures

This fabrication process, from modelling the material flow to iterations of the extrusion

system, has been driven by the goal of producing high-resolution conductive PANI-
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Figure 4.6: Experimentally observed track widths (points) extruded at a range print
speeds for paste heated for 3.5 min and 4 min depart from the prediction curve (solid
lines) under non-ideal conditions.
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(a) (b)

(c) (d)

Figure 4.7: A typical extruded track sample (a), and microscope images of inconsistent
extrusion (b), consistent extrusion (c), and over extrusion (d).

Figure 4.8: Illustration demonstrating the impact of end effector acceleration on track
width at the beginning and end of an extrusion (© Turner and Gold, 2015, included with
permission).
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based structures. Figure 4.9 shows examples of the features realizable by the extru-

sion system in its current state. In these examples the ability to create multi-layered

structures is highlighted as well as fine features such as sharp corners.

4.4 Chapter summary

This chapter outlined the development of a multi-extrusion DIW apparatus for the fab-

rication of high-resolution 3D PANI-based structures. Initially, a syringe pump paste

extrusion system was explored and allowed for a proof of concept towards the suc-

cessful production of 3D PANI structures. Issues with paste flow controllability led to

the adoption of a CNC pneumatic valve that was integrated with the conventional FFF

delta printer to obtain a multi-material extrusion apparatus. Previous knowledge of

PANI-DBSA paste flow properties was combined with an extrusion model to predict the

width of extruded tracks. The model validation was conducted to provide the designer

with a basis to modify vital fabrication parameters such as print speed, pressure, and

nozzle diameter to enable the design of high-resolution 3D conductive PANI structures.

Further development of this model is required to account for post extrusion flow result-

ing in track widening, and a more focused investigation on the change in flow proper-

ties during the critical paste to solid transition exhibiting during the PANI-DBSA thermal

doping process. Finally, sample structures were presented to highlight the ability of the

system to created multi-layered high-resolution PANI-DBSA structures.
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(a) 2-layer grid

(b) 5-layer S-pattern

Figure 4.9: The direct ink writing process for polyaniline has been employed to 3D print
multilayered (a) 20 mm × 20 mm piezosensor mats and (b) printing test patterns to as-
sess the viability of the process for the fabrication of fine features such as sharp corners.
The prescribed layer height is 200 µm, and the width of the S-pattern is approximately
2 mm.
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Chapter 5

Application of PANI in embedded

piezoresistive strain sensor by

multi-material AM techniques

This chapter outlines the first ever study of a PANI-based piezeoresistive strain sensor

fabricated by the in-situ embedding of the conductive PANI material in a flexible TPE

support material. The sensor is characterized by measuring the change in resistance

while longitudinal strain is applied. The sensor performance was assessed through

analysis of the gauge factor and sensor stability was investigated through cycling the

applied strain. Additionally, the effect of post-extrusion thermal doping time on the

piezeoresistive response of the sensor is analyzed.

5.1 Introduction

Since the relatively recent discovery of the intrinsic piezoresistive properties of PANI,

there has been further application of PANI to transducers and actuators capitalizing on

this effect (Lillemose et al., 2008; Pereira et al., 2012; Della Pina et al., 2014; Falletta
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et al., 2014). However, these devices are typically fabricated using conventional 2D film

deposition techniques and while there have been significant advances in these tech-

niques, performance of these devices may benefit from the ability to fabricate complex

3D conductive PANI structures. The realization of these structures is achieved through

the implementation of a modified FFF delta robot equipped with an integrated com-

puter controlled pneumatic valve for extrusion of high viscosity polymeric formulations.

Herein, an initial study of the piezoresistive response of a 3D embedded PANI-based

strain sensor is reported. This sensor was fabricated via a multi-material extrusion pro-

cess combining computer controlled direct ink writing of PANI-based pastes with con-

ventional additive manufacturing techniques to deposit passive and active structures

concurrently. The process parameters utilized during sensor fabrication were informed

by the extruded track width model developed in Chapter 4. The design of this sensor

was focused on initial assessment of the piezoresistive effect of the PANI-DBSA for-

mulation The impact of post fabrication thermal treatment on the performance of the

devices has been investigated in terms of the gauge factor and stability.

5.2 Methods

5.2.1 Sensor fabrication procedure

The sensor was modelled with overall dimensions of 12 × 60 × 1.8 mm where a rect-

angular prism of PANI-DBSA paste (4 × 60 × 0.6 mm) is deposited in the center of the

sensor that is fully encompassed by the support material, (Figure 5.1a). In this test, the

support material was composed of a commercial TPE with a yield strength of 9 MPa at

55% elongation. This material provided a compliant substrate and support to induce

strain at relatively low loads. Conventional 3D printing slicing software was used to gen-

erate the toolpaths for the respective materials by constructing a separate 3D model

for each material. This software also provided the ability to control all other relevant
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(a) (b)

Figure 5.1: (a) Modelled sensor after processing in slicing software and (b) sensor
during fabrication demonstrating embedding of PANI-DBSA paste in TPE support (©
Holness and Price, 2017, included with permission).

parameters, including print speed, layer heights, nozzle diameter, and infill percentage

to consider the limitations imposed by material properties. The support material was

extruded with a layer resolution of 200 µm, nozzle diameter of 400 µm, and print speed

of 20 mm/s. Whereas the PANI-DBSA was deposited with a layer resolution of 600 µm,

nozzle diameter of 430 µm, and print speed of 10 mm/s. Following modelling, G-code

preparation and calibration, the device is fabricated through concurrent extrusion of the

PANI-DBSA paste and TPE support material (Figure 5.1b). A higher resolution paste

deposition layer height is achievable in single material processes, but fabrication param-

eters require further calibration to realize these layer resolutions during multi-material

processes.

5.2.2 Post-extrusion thermal doping

Following fabrication, samples were heated on a hotplate at 120 ◦C for 2.5 and 5 min

respectively. This heating finalizes the thermal doping process and allows for character-
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ization of the electromechanical impact of different post-extrusion thermal doping times.

Additionally, a silver epoxy was applied to provide an electrical contact with the testing

apparatus; future designs will attempt to use extruded PANI-DBSA as the electrode.

5.2.3 Sensor performance characterization

To assess the piezoresistive performance of these sensors, longitudinal strain was ap-

plied by a custom rubber stretching apparatus composed of a stepper motor driven

leadscrew and carriage mounted on linear rails, Figure 5.2. The system contained

electrical contacts integrated in the sample clamps and the contacts were connected to

a Keithley 2611 SourceMeter for resistance measurement. The stepper motor control

was provided by Anaheim Automation DPN10601 programmable drivers. Resistance

measurements were recorded in 4-wire sensing mode with pairs of current and voltage

electrodes. A constant DC voltage of 5 V was applied for all samples. Cyclical loading

of the sample to 1% strain was applied at 0.1% intervals with resistance measurements

recorded at each step after a delay of 1 s to allow for the sensor to stabilize. This pro-

cess was repeated for 40 cycles to assess the stability of the sensor. To quantify the

performance of the sensors, the gauge factor has been calculated by:

GF =
∆R/R0

∆l/l0
=
∆ρ/ρ0

ε
+ 1 + 2ν, (5.1)

where the change in resistance due to geometric effects can be separated from the

intrinsic piezoresistivity of the material (Falletta et al., 2014). R0 is assigned to the first

resistance recorded at 0% strain on the first cycle and is also used as the reference

to determine ∆R. A limitation of the stretching apparatus software was that resistance

measurements could only be recorded during extension of the sample and not during

relaxation. For the initial characterization of these sensors, this limitation is acceptable;

however, Falletta et al. (2014) demonstrated a variation in gauge factor during exten-



CHAPTER 5. APPLICATION OF PANI IN EMBEDDED STRAIN SENSOR 56

sion compared to relaxation. Therefore, future analysis will consider the change in

resistance of the device during both stretching and relaxation to assess any significant

hysteresis.

5.3 Results and discussion

Samples heated for 5 min demonstrated a higher DC resistance than samples heated

for 2.5 min. This higher resistance suggests that the longer post-extrusion heating

time resulted in the samples being over cured, causing mechanical degradation, and

brittle structure. Figure 5.3 demonstrates the sampling procedure on a typical sample

during the stretching cycle with the data points representing resistance measurements

recorded during the first 2 stretching cycles. During the first stretch, there is an in-

crease in the relative change in resistance until it reaches a peak at the maximum

1% strain at which point the sample is relaxed to its initial length without taking any

electrical characterization and the stretching cycle is repeated. Figure 5.4 shows the

normalized change in resistance over 40 loading cycles for devices subjected to each

post-extrusion thermal doping time to assess the stability of the devices. Both heating

times showed a trend towards steady operation where the normalized resistance at 0%

strain increased with cycle number. Future studies should be conducted with higher

cycle numbers to provide more accurate characterization of longterm stability and per-

formance of the sensor. Additionally, the change in resistance for each cycle decreased

to a more steady value. The device heated for 2.5 min demonstrated larger changes

in normalized resistance than the 5 min device. While the 5 min device exhibited a

smaller change in resistance, it reached a state of consistent performance faster than

the 2.5 min device. The overall trend in both samples may be explained by the forma-

tion of many new cracks in the initial stages of cycling until a sufficient state of stress

relaxation was achieved where minimal new cracks formed and crack propagation was
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Figure 5.2: Strain sensor characterization was conducted on custom stretching appara-
tus consisting of: (a) a mounted PANI-DBSA sensor, (b) integrated electrical contacts
for in situ measurement of piezoresistive response, (c) driven stepper motor, and (d) lin-
ear carriage assembly.
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Figure 5.3: The resistance response during the first 2 stretching of a PANI-DBSA strain
sensor heated at 120 ◦C for 5 min with the data points representing measurements
recorded during the stretching cycles and peaks representing the end of a cycle.

minimal. The faster trend towards stability for the 5 min sensor may be due to its more

brittle structure being more susceptible to cracking thus reaching steady performance

faster. It is anticipated that with extended cycling the 2.5 min sensor would also reach

steady performance. Previous studies have shown that temperature effects can cause

a change in electrical and mechanical properties of PANI (Pud, 2003). These changes

can include an additional mechanical degradation that results in the annealing of the

amorphous phase providing improved order and an increase in conductivity (Davenas

and Rannou, 1999). Future sensor design will focus on the post-fabrication thermal

doping parameters to identify their effect on PANI-DBSA microstructure and the opti-

mal heating time and temperature for sensor performance.

The gauge factors have been estimated by fitting a linear regression to the normal-

ized resistance versus strain plots for the last 5 cycles from each final thermal doping

heating time across the range 1% strain loading cycle (Figure 5.5). While the linearity

of the device performance was poor, the response was repeatable throughout cycling,

especially in later cycles. The last 5 cycles were used in calculating the gauge fac-
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Figure 5.4: Stability of sensors over 40 loading cycles for samples heated at 120 ◦C
for 2.5 and 5 min. No lag was observed between mechanical loading and the electri-
cal response at the imposed loading rate (© Holness and Price, 2017, included with
permission).

tor because in the early cycles the gauge factor decreased with the formation of new

cracks until the device stabilized. In both devices, the early cycles still exhibited non-

linear behaviour but there was a significant change in the gauge factor between cycles.

For the 2.5 min sensor, the standard deviation of the normalized change in resistance

at 1% strain for the first 5 cycles is 0.080 compared to 0.0093 for the last 5 cycles.

Similarly, for the 5 min sensor, the standard deviation of the first 5 cycles was 0.056

and only 0.0045 for the last 5. These variations can be attributed to the early stages

of cycling being effected by crack formation under loading, especially at the extreme

of the loading cycle, whereas later cycles see fewer new cracks formed and less crack

propagation. Figure 5.5 also shows that the 5 min sensor reached more stable perfor-

mance faster than the 2.5 min sensor based on the proximity of the successive gauge

factor curves. Gauge factors of 6.42 (r 2 = 0.715) and 5.09 (r 2 = 0.883) were calculated

for 2.5 and 5 min devices respectively. As shown by the r 2 values for the calculated

gauge factors, the linearity of the sensor must be improved, and the linear fit was ap-
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Figure 5.5: Device gauge factors computed for the final 5 cycles for final thermal doping
at 120 ◦C for (a) 2.5 min and (b) 5 min (© Holness and Price, 2017, included with
permission).

plied only to estimate the gauge factor to assess the potential of these devices for

further development. Although slightly lower, these gauge factors are in a similar range

of those previously reported by Falletta et al. (2014), and still compare favourably to

gauge factors of commercial piezoresistive strain sensors.

To assess the performance of the devices at higher strains and potentially identify a

critical failure strain of the device, both final thermal doping time devices were subjected

to 5% strain with steps occurring at every 0.5% for 3 cycles. During these tests a critical

failure mode was identified as the delamination of the PANI-DBSA complex from the

TPE support material (Figure 5.6). This effect may be attributed to interfacial stresses

in the material arising from the disparity in mechanical properties of the two materials,

including poisson ratio and Young’s Modulus. To address this effect a better agreement

between the mechanical properties of the active and support materials may be required

to achieve higher strains and extend sensor life.
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Figure 5.6: Delamination of PANI-DBSA complex from TPE support was observed fol-
lowing 5% strain (© Holness and Price, 2017, included with permission).

5.4 Chapter summary

This chapter has outlined the first ever study of an PANI-based piezeoresistive strain

sensor fabrication by the in-situ embedding of the conductive PANI material in a flexible

thermoplastic elastomer. The sensor was fabricated using a novel multi-material paste

extrusion system enabling the concurrent deposition of passive and active structures.

It was shown that these sensors demonstrated an increase in resistance both during a

loading cycle and between successive cycles with a trend towards a stable operating

point. Additionally, the parameters selected for the final thermal doping process have

been shown to have a significant impact on the device performance both in terms of

stability and gauge factor. This effect can be attributed to the change in mechanical

and electrical properties of the material during the thermal doping process. Finally, the

interfacial stresses of the PANI-DBSA and support material must to be studied further

to avoid delamination and improve sensor stability. It is clear that the electromechani-

cal performance of these devices will highly depend on the thermal treatment applied

after fabrication. Future work will focus on characterizing the effect of post-fabrication

thermal doping on PANI-DBSA microstructure and crack propagation during cycling to

optimize sensor design for application-specific performance.
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Chapter 6

Concluding remarks

6.1 Summary of conclusions

This thesis explored the issues surrounding the development of a novel AM method

specifically tailored for the fabrication of complex 3D conductive structures of PANI

for the fabrication of actuators and transducers. The experience gained/knowledge

ascertained through these activities has prompted the following conclusions:

1. The development of a PANI-based paste specifically designed for AM processes

was explored. This process entailed the synthesis of PANI from its monomer to

maintain control over the material properties of the paste constituents. An em-

pirical rheological model was developed to describe the effect of the counterion-

induced thermal doping process on the flow properties of the paste. This model

demonstrated that PANI-DBSA paste follows the Ostwald shear-thinning power

law and describes the changes in both the consistency factor and power law in-

dex as a function of thermal doping time.

2. A novel fabrication apparatus for the extrusion of PANI-based pastes was devel-

oped. Through the integration of conventional AM techniques this multi-material

CNC extrusion system enables the deposition of high-resolution conductive PANI-
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based structures. Functional devices can now be fabricated through concurrent

deposition of filament-based passive structures and active PANI structures.

3. A model for the extrusion of PANI-DBSA paste was adapted from an existing

model for bio-ink extrusion. This model was extended to incorporate the effect

of counterion-induced thermal doping on the flow properties of the paste. This

model can be used to predict the width of extruded tracks as a function of funda-

mental process parameters, including print speed and gauge pressure. Design-

ers can use this model as starting point to select the required process parameters

for the desired track width that can be manually fine-tuned during fabrication to

account for any inaccuracies in the model. However, it is suggested that the track

width model cannot account for a special case of over-extrusion and designers

should avoid predicted track widths significantly larger than the nozzle diameter.

4. Finally, the development and characterization of an embedded PANI-based piezo-

resistive strain sensor was conducted. Through application of the multi-material

CNC extrusion system the sensor was fabricated by concurrent deposition of a

flexible TPE support material and the embedded active PANI-DBSA structure.

The sensor performance and stability was evaluated under cyclic longitudinal

loading. These tests demonstrated that after initial cycling the sensor perfor-

mance begins to stabilize and exhibits gauge factors in a similar order to previ-

ously reported results.

6.2 Summary of contributions

The most significant research contributions presented in this thesis are summarized as

follows:

• The first-ever study of the counterion-induced thermal doping method of PANI for
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the application of AM. Characterization of the PANI-DBSA paste flow properties

yielding an empirical model to describe the paste shear-thinning behaviour as a

function of thermal doping time.

• A novel apparatus for the AM of high-resolution conductive 3D PANI structures.

Through integration of a conventional FFF delta robot with a paste extrusion sys-

tem the concurrent deposition of fluid-based materials and conventional filament-

based materials has been achieved. This apparatus not only allows for the fab-

rication of complex, high-resolution 3D conductive PANI structures but also en-

ables transducer fabrication by embedding active materials in a passive support

structure.

• Adaptation of a model for the DIW of bioinks to the application of PANI-based

paste extrusion. This model incorporates key process parameters and material

properties to allow designers to tune the fabrication process with application spe-

cific parameters. The model predicts the extruded track width based upon mate-

rial flow properties and process parameters such as print speed, nozzle diameter,

and extrusion pressure.

• The first-ever example of the in-situ embedding of a PANI-based sensor by AM

techniques. This sensor capitalizes on the piezoresistivity of PANI to embed the

active material in a flexible TPE support to create a compliant sensor that demon-

strates potential as a practical application of this new fabrication system.

6.3 Recommendations for future research

The rheological study presented in this thesis provides an insight into the effect of the

thermal doping process on the rheological properties of the paste. However, this study

focused on thermal doping conducted at 100 ◦C for a range of times. A future study
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investigating the effect of thermal doping temperature on paste properties would be

valuable and could further elucidate the optimal processing parameters of PANI-DBSA

for AM techniques. Additionally, a transition in measurement equipment to measure

the heat transfer in the paste mixing system would allow the development of a thermal

doping model that could be scaled to any batch size.

The multi-material extrusion system in combination with counterion-induced ther-

mal doping overcomes previous limitations to the realization of 3D PANI structures.

This system may be improved through the addition of in-situ thermal doping. If heat is

applied directly at the nozzle, the post-extrusion thermal doping process may be elim-

inated. There may also be an improvement in the quality of the achievable structures.

For example, if a high-degree of doping is achieved at the nozzle, the extruded paste

may be near solid, improving its mechanical properties for the realization of high aspect

ratios, overhangs, and bridges.

The strain sensor study provided initial information towards the piezeoresistive re-

sponse of the PANI-based sensors. This study could benefit from a longer cycling

period to investigate the long-term stability of the devices and assess any temporal ef-

fects. This study also investigated the effect of post-fabrication thermal doping times

on the piezoresistive response, however another meaningful study may be to explore

the change in mechanical and electrical properties of the PANI-DBSA complex as a

function of post-fabrication thermal doping time and temperature.

One of the key advantages of this system is the design freedom enabled by the AM

workflow and fabrication apparatus. As such, more complex sensor designs should be

investigated to improve performance. For example, new sensor designs could aim to re-

solve strains applied in multiple directions, or contain multi-layered embedded elements

to analyze the pressure field throughout the structure.
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Appendix A

Software code listing

A.1 Steps per mm converter python script

1 import sys , fileinput , re

2 import tkinter as tk

3 from tkinter import filedialog

4

5 # Get the user to input the source file for conversion

6 root = tk.Tk()

7 root.withdraw ()

8 filename = filedialog . askopenfilename()

9

10 # Get the number of tools in the file

11 print (’How many tools are in the target file?’)

12 num_tools = int (input ())

13 extrude_speed = [0] * num_tools

14

15 # Get the steps per mm of each tool

16 for i in range (0, num_tools ):

17 print (’Input E steps per mm for tool ’ + str (i))

18 extrude_speed[i] = float(input ())

19

20 # Rewrite each line of the input file.

21 for line in fileinput .input (filename , inplace =1):

22 sys.stdout .write(line)

23 if re.search (’^T[0-9] ’, line):

24 i = int (line [1])

25 if i >= 0 and i < len (extrude_speed):

26 sys.stdout .write(’M92 E’ + str (extrude_speed[i]) + ’\n’)

27

28 print (’Conversion done!’)

steps.py

68



APPENDIX A. SOFTWARE CODE LISTING 69

A.2 Stepper motor to Ultimus V signal conversion

1 #define STEP 2

2 #define AL 5

3 #define DIR 3

4 #define OUT 4

5 #define LED 13

6 #define DISPENSE_TIME 25000

7 #define MIN_WAIT_TIME 10000

8

9 volatile long dispense_delay , wait_delay ;

10 long last_time , dt;

11 bool out , last_out ;

12

13 void setup () {

14 pinMode (STEP , INPUT_PULLUP);

15 pinMode (AL , INPUT_PULLUP);

16 pinMode (DIR , INPUT_PULLUP);

17 pinMode (OUT , OUTPUT );

18 pinMode (LED , OUTPUT );

19 digitalWrite(OUT , LOW );

20 attachInterrupt( digitalPinToInterrupt(STEP), step_rise , RISING );

21 last_time = micros ();

22 }

23

24 void loop () {

25 dt = micros () - last_time ;

26 last_time = micros ();

27 out = digitalRead (AL) && ! digitalRead (DIR );

28

29 if ( dispense_delay > 0)

30 dispense_delay -= dt;

31 else

32 out = false;

33

34 if (wait_delay > 0) {

35 wait_delay -= dt;

36 out = false;

37 }

38

39 if (last_out != out) {

40 digitalWrite(OUT , out );

41 digitalWrite(LED , out );

42 if (last_out ) wait_delay = MIN_WAIT_TIME;

43 last_out = out;

44 }

45 }

46

47 void step_rise () {

48 dispense_delay = DISPENSE_TIME;

49 }

Dispense_Communicator.ino
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