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Abstract 

This study investigated the relationship between motor thalamo-cortico-cerebellar fibre path 

integrity and overt responsiveness in patients with disorders of consciousness (DOC). 

Additionally, we investigated the potential of imaging these motor tracts at ultra-high fields. 

Study I and II aimed to map the white matter connections of motor execution fibres in DOC 

patients. Our results showed significant reductions in motor fibre path integrity across DOC 

diagnostic categories. Study III and IV aimed to develop a 7T MRI Diffusion Tensor 

Imaging (DTI) sequence. We optimized this sequence to image motor fibre paths in DOC 

patients. We concluded that, in healthy controls, probabilistic tractography of these tracts at 

ultra-high fields was superior to tractography at lower magnetic fields. Further investigation 

is needed to determine the advantages of imaging these motor tracts at ultra-high fields in 

patients with disorders of consciousness. 
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Chapter 1  

1. Introduction 

1.1 Consciousness 

Consciousness is a multifaceted concept that scientists and philosophers alike have tried to 

disentangle and define for years. In the scientific literature, it is defined by two main pillars: 

arousal and awareness (Laureys, Owen & Schiff, 2004). Arousal is defined as the level of 

wakefulness, usually indicated by eye opening and sleep-wake patterns. Sleeping is a state 

of low arousal (closed eyes) whilst being awake is a state of high arousal. Arousal is 

supported by the brainstem and reticular activating system (Laureys, Boly, Moonen & 

Maquet, 2009). Awareness is defined as being cognizant of one’s self, and having the 

ability to respond to one’s environment (Laureys et al., 2004). The exact cortical systems 

supporting awareness are still unknown, however it has been suggested that this pillar of 

consciousness depends on the integrity of the cortex and its subcortical projections 

(Laureys, 2009). Multiple theories suggest that thalamocortical (Laureys et al., 2000; 

Schiff, 2008; Fernández-Espejo et al., 2012) and fronto-parietal mechanisms (Noirhomme 

et al. 2010; Jin & Chung 2012; Fernández-Espejo et al. 2012) generate the conscious 

experience. 

1.2 Disorders of consciousness 

In most states, individuals show equal levels of arousal and awareness. For example, in 

healthy individuals, the relationship between these two components is positively 

correlated across sleep stages (dream activity during REM-sleep being the exception) 

from deep sleep to conscious wakefulness. Comatose patients are an extreme version of 

this linear and positive relationship: they are unaware because they cannot be awakened. 

The logic then follows that one must be awake to be aware (Laureys, 2005). In a few rare 

cases, however, wakefulness and arousal can be dissociated. This disconnection appears 

in the form of prolonged disorders of consciousness (PDOC), a spectrum of disorders 

including the vegetative state (VS) and the minimally conscious state (MCS), where 

either one or both pillars are impaired (see Figure 1). These impairments are usually 
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caused by acute traumatic (e.g. motor vehicle accident) or non-traumatic brain injuries 

(e.g. stroke, cardiac arrest) and in rarer cases by degenerative brain disorders or 

congenital malformations of the nervous system (Multi-Society Task Force on PVS, 

1994). 

1.2.1 Coma 

The comatose state is characterized by an absence of arousal and an absence of 

awareness. These patients lie with their eyes closed and show no volitional or reflexive 

behaviours, even after deep noxious stimuli (Posner, Saper, Schiff, & Plum, 2007). To be 

diagnosed as comatose, patients must be in this state for at least 60 minutes. Coma is 

typically a time-limited condition: after two to four weeks, patients either slowly recover 

arousal and awareness, progress into the vegetative state or are diagnosed as brain dead. 

In some cases, some patients do not recover arousal or awareness but also do not show 

signs of brain death, as they fall into a state of chronic coma. This, however, is an 

extremely rare condition (Di Perri et al., 2014; Monti, 2012; Schnakers, Majerus, & 

Laureys, 2004).  Positron emission tomography (PET) scans reveal that global grey 
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Figure 1: Adapted from Laureys (2005). Figure illustrating the linear and positive relationship between 

awareness and arousal during sleep stages (purple) with extremes cases of coma illustrated in orange and 

dissociated states of consciousness in red. 
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matter glucose metoblism is reduced by 50-70% in coma patients who suffered a 

traumatic or ischemic brain injury. In patients who suffered anoxic injuries, their global 

glucose metabolism can be reduced up to 75% of the normal range. (Laureys et al., 2004; 

Schnakers et al., 2004; Laureys et al., 2009).  

1.2.2 The vegetative state  

The vegetative state, also sometimes referred to as “unresponsive wakefulness state” 

(UWS), was first described by Jennett and Plum in 1972. This state is characterized by a 

normal circadian rhythm and the presence of sleep-wake cycles indicated by spontaneous 

periods of eye-opening and closing. Behaviourally, these patients show reflexive trunk 

and limb movements and may respond to noxious stimuli with flexor withdrawal or 

grimacing (Jennett & Plum, 1972; Jennett, 2002) however they show no sustained signs 

of awareness. In other words, none of their behaviours are volitional or consistently 

generated by/directed towards their environment. The VS is declared as permanent 

contingent on two factors: i) the type of acute injury sustained and ii) the length of the 

VS. For individuals who sustained a traumatic brain injury (TBI), the VS is declared 

permanent after 12 months. For non-traumatic brain injuries (anoxic or hypoxic), the VS 

is declared permanent after 3 months (Multi-Society Task Force on PVS, 1994; Giacino, 

2004). PET scans of VS patients reveal a reduction of approximately 40% of global 

cortical metabolism. Although this metabolic reduction is similar to the reduction seen in 

coma patients, VS patients show close to normal metabolic function in the brainstem, 

which explains their preserved basic nervous functions (i.e. sleep-wake cycles, 

thermoregulation, respiration) (Laureys, Faymonville, & Maquet, 2002; Laureys, 2009; 

Monti, 2012).  

1.2.3 The minimally conscious state 

The minimally conscious state is characterized again by normal levels of arousal but 

contrary to the VS, MCS patients show reproducible signs of awareness. Behaviourally 

this is usually presented in the form of visual pursuit, low-level responses with gestures 

and verbalizations or even simple command-following (Giacino et al., 2002; Schnakers et 

al., 2004; Monti, 2012). When assessing MCS patients, it is important to note that 
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although they are able to demonstrate reproducible signs of awareness, these behaviours 

fluctuate greatly and are often followed by prolonged periods of unresponsiveness. The 

criteria for an MCS diagnosis requires that these behaviours be contingent on 

environmental triggers, for example crying in response to a noxious stimulus or object 

reaching (Giacino et al., 2002; Schnakers, Giacino, & Laureys, 2010). One of the earliest 

signs of progression into the MCS and recovery of consciousness is visual pursuit 

(Giacino & Kalmar, 2005; Vanhaudenhuyse et al., 2007). PET scans of MCS patients 

show a reduction of cortical metabolism of 20-40% (Schnakers et al., 2004). Despite 

prognosis being more favourable for MCS patients, some of these patients can remain in 

the minimally conscious state for prolonged periods of time, without fully recovering 

(Giacino & Kalmar, 1997; Schnakers & Majerus, 2012). 

1.3 Diagnosing disorders of consciousness 

Determining if patients with disorders of consciousness are awake is quite simple. VS 

and MCS patients have preserved reticular activating systems and thus display 

behavioural sleep-wake patterns through periods of eye-opening and closing. A valid 

assumption would be that if one’s eyes are open, they are awake. Another way of 

detecting arousal in these patients is with electroencephalography (EEG). Different stages 

of arousal are marked by different cortical electrical patterns, which can easily be 

detected using this technique. EEG has been shown to be able to detect sleep-like patterns 

in these patients (Cologan & Schabus, 2012; de Biase et al., 2014). Across the spectrum, 

DOC patients show similar levels of arousal but differ on their level of awareness. In 

other words, patients higher on the DOC spectrum show more signs of awareness through 

reproducible, volitional behaviours. One way to measure these behaviours, and thus 

having a measure of the patient’s level of awareness, is to ask these patients to produce 

observable responses to certain stimuli.  

Command following is considered a reliable measure for differentiating VS and MCS 

patients because it is expected that a patient who retains awareness has the volition to 

respond to these commands (such as an MCS patient) whereas a patient who does not 

respond to command retains no awareness. A patient’s level of awareness cannot yet be 

estimated objectively; clinicians must interpret a panoply of signs and make inferences 
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about levels of awareness based on the presence or absence of behaviours. Many bedside 

behavioural systems have been developed to quantify and standardize the assessment of 

awareness in DOC patients (Majerus, Gill-Thwaites, Andrews & Laureys, 2005; 

Schnakers et al., 2008). Some scales have been developed to assess consciousness within 

the first few hours of the injury, whilst others are more sensitive to changes in 

consciousness over time. One thing they do have in common is that these scales will be 

composed of subscales, which assess different behaviours from different modalities, 

ranging from low-level reflexive movements to high-level command following and 

communication.  

 The Coma Recovery Scale – Revised (CRS-R; Giacino, Kalmar & Whyte, 2004) is often 

considered the gold-standard for behavioural assessments of DOC patients because it 

does not require formal training from the authors, it is free and it encompasses multiple 

facets of behaviours for these patients (Giacino & al., 2004). The assessment is 

comprised of six subscales: Auditory Function Scale, Visual Function Scale, Motor 

Function Scale, Oromotor/Verbal Function Scale, Communication Scale and the Arousal 

Scale. In total, there are 23 items to measure these six facets of behavior; these items are 

organized in a hierarchical manner where the lowest items indicate reflexive movements 

and high items denote cognitively-mediated behaviours (Kalmar & Giacino, 2005). The 

total score on the CRS-R dictates diagnosis. However, there are certain items (i.e. 

behaviours) that determine diagnosis regardless of the patient’s performance in other 

categories. The CRS-R is usually the tool of choice because although it is a bit more time 

consuming than other assessments, the CRS-R has demonstrated high agreement between 

raters and in the same rater over time, showing that raters are able to accurately 

distinguish between VS, MCS and emergence from MCS (EMCS; Giacino et al., 2004; 

Kalmar & Giacino, 2005). The increased sensitivity of this scale to detecting MCS 

patients makes it the most efficient behavioural tool to date for differential diagnosis 

(Kalmar & Giacino, 2005). The CRS-R subscales and items are outlined in Table 1, along 

with the diagnosis they denote. 
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Table 1: CRS-R subscales, behavioural items and diagnostic criteria 

Scale Score Diagnosis 

Auditory Function Scale   

Consistent Movement to Command 4 MCS 

Reproducible Movement to Command 3 MCS 

Localization to Sound 2 VS 

Auditory Startle 1 VS 

None 0 VS 

Visual Function Scale   

Object Recognition 5 MCS 

Object Localization: Reaching 4 MCS 

Visual Pursuit 3 MCS 

Fixation 2 MCS 

Visual Startle 1 VS 

None 0 VS 

Motor Function Scale   

Functional Object Use 6 EMCS 

Automatic Motor Response 5 MCS 

Object Manipulation 4 MCS 

Localization to Noxious Stimulation 3 MCS 

Flexion Withdrawal 2 VS 

Abnormal Posturing 1 VS 

None/Flaccid 0 VS 

Oromotor/Verbal Function Scale   

Intelligible Verbalization 3 MCS 

Vocalization/Oral Movement 2 VS 

Oral Reflexive Movement 1 VS 

None 0 VS 

Communication Scale   

Functional: Accurate 2 EMCS 

Non-Functional: Intentional 1 MCS 

None 0 VS 

Arousal Scale   

Attention 3 MCS 

Eye opening w/o Stimulation 2 VS 

Eye opening w/ Stimulation 1 VS 

Unarousable 0 VS 
Adapted from Giacino et al., 2004; Kalmar & Giacino, 2005. VS = vegetative state; MCS = minimally conscious 

state; EMCS = Emergence from MCS 

1.3.1 Diagnostic challenges in DOC 

As previously discussed, differential diagnosis of vegetative state and minimally 

conscious state patients depends on accurate assessment of levels of arousal and 



7 

 

awareness. Behavioural scales, like the CRS-R, are the tools of choice for clinicians, 

however, there are many challenges associated with their sensitivity and specificity. 

Retrospective studies have identified several cases of misdiagnosed VS patients, after 

using behavioural tests. In 1993, Childs et al., found that 37% of their DOC sample (18 

out of 44 VS patients) were diagnosed as VS after clinical consensus when in fact they 

were MCS (Childs, Mercer & Childs, 1993). Similar findings were reported by Andrews 

et al. (1996) where 43% of their patient group (17 out 40 patients) were misdiagnosed 

with standard behavioural assessments (Andrews et al., 1996). A more recent study, by 

Schnakers et al. (2009), used the CRS-R as their diagnostic tool and reported a 

misdiagnosis rate of 41% (18 out of 44 patients). 

Often not considered during these assessments are the external factors that may affect 

these bedside tests. As previously mentioned, patients in the VS often display an array of 

spontaneous and reflexive movements. The subjective nature of classifying a vocalization 

or an eyeblink as reflexive or intentional can affect the final diagnosis (Guldenmund et 

al., 2012). Furthermore, any comorbid impairments resulting from the aetiology of the 

injury (e.g. blindness/deafness, motor impairments, seizures) can directly affect a 

patient’s performance while under behavioural assessment (Guldenmund et al., 2012). 

The rapid and unpredictable shifts in patients’ levels of arousal and awareness may also 

mislead the assessment of true levels of awareness. These behavioural assessments only 

capture a fraction of a patient’s day. As such, if the assessment co-occurs with a period of 

fatigue or low awareness, misinterpretation of the patient’s true capabilities can skew the 

scores (Guldenmund et al., 2012).  

These issues of misdiagnosis, and the confounding variables associated with them, have 

important implications for this clinical population. The final diagnosis will often 

determine a patient’s prognosis, future care and legal rights. Accuracy in differential 

diagnosis is paramount, particularly for VS patients, as the diagnosis may serve to help 

inform decisions about the removal of life-sustaining treatments (Fins, 2003). 
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1.3.2 Covert Awareness 

Behavioural assessments of consciousness are useful for differential diagnosis, prognosis 

and decisions about patient treatment plan. However, an inherent flaw in these tests is 

that they only tell one side of the consciousness story: the observer’s side. To gain a full 

perspective on the disconnection between arousal and awareness, we also need to tell the 

experiencer’s story. Studies using neuroimaging techniques such as functional magnetic 

resonance imaging (fMRI) and EEG have contested the assumption that patients who 

exhibit no overt behavioural signs of command following should be classified as unaware 

(Fernández-Espejo & Owen, 2013; Owen et al., 2006). A subgroup of patients has been 

shown to demonstrate no behavioural evidence of consciousness (i.e. are behaviourally 

indistinguishable from VS patients) however, when they are subject to neuroimaging 

paradigms, they show signs of retained or residual awareness. These patients are often 

referred to as ‘covertly aware’. (Fernández-Espejo & Owen, 2013). This subgroup of 

patients was first identified by Owen et al. (2006), when they used fMRI to study a 

patient behaviourally diagnosed as VS. They used two mental imagery tasks to assess if 

she had any pockets of preserved awareness. The first task, a motor imagery task, 

required the patient to imagine herself playing tennis (i.e. moving her arm back and forth 

as if hitting the ball) and the second task required the patient to perform spatial 

navigation on command. That is to say, the patient was required to imagine herself 

walking around her home. These two imagery tasks recruit different areas of the cortex 

that are distinguishable in fMRI. The motor imagery task recruits mainly the 

supplementary motor area (SMA), whilst spatial navigation recruits primarily the 

parahippocampal gyrus and posterior parietal cortex. In both tasks, the behaviourally VS 

patient produced neural activity that was not significantly different from the activity 

recorded in healthy controls. These results show that despite showing behavioural signs 

of unawareness, it is possible for certain patients to have retained the ability to 

understand spoken commands and to modulate their neural activity in response to these 

commands (Owen & al., 2006). Since this study, the prevalence rate of covertly aware 

patients has been estimated at around one in five patients (20%) as more and more studies 

use mental imagery tasks to detect evidence of residual cognition. (Fernández-Espejo & 

Owen, 2013; Monti et al., 2010). Similar results have been replicated in a different 
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neuroimaging modality, EEG. Cruse et al. (2011) assessed 16 VS patients and asked them 

to imagine moving their right-hand (in a squeezing movement) or to imagine moving 

their toes (in a wiggling movement). These movements produce discernible patterns of 

electrical cortical activity in EEG. They found that three of the 16 VS patients (19%) 

were able to consistently imagine these two behaviours on command across trials. 

Motor execution and motor imagery have been well documented in terms of their 

functional and structural connectivity (Jeannerod, 1995; Roland et al., 1980). Motor 

execution primarily recruits white matter fibres that connect the ventrolateral nuclei of 

the thalamus to the primary motor cortex (M1) and motor imagery will primarily recruit 

white matter fibres that extend from the ventrolateral nuclei of the thalamus to the SMA. 

Due to the similar functional and structural connectivity of these two processes, they have 

often been thought to be concurrent. Covertly aware patients however, challenge this 

assumption and support the idea that these two motor processes are independent. This is 

the main hypothesis explaining why these patients are able to perform motor imagery 

tasks but remain behaviourally unresponsive. 

A recent study by Fernández-Espejo, Rossit & Owen (2015) sought to elucidate the 

mechanisms behind this dissociation. They studied two patients with DOCs and described 

both the functional and structural connectivity of these patients along with their clinical 

profiles. The patients performed the tennis motor imagery task described above and its 

motor execution counterpart. Their functional and structural results were compared to a 

group of healthy controls. When studying the patterns of activity across the thalamus, M1 

and SMA, they found increased activation in the thalamus and M1 during motor 

execution as compared to motor imagery. Specifically, they identified an excitatory 

coupling between the thalamus and M1, suggesting excitatory signals from the thalamus 

to M1 are crucial for motor execution. Additionally, when assessing the integrity of these 

two white matter paths using diffusion tensor imaging (DTI), they found a significant 

dissociation in these two paths in a patient who could not overtly respond to commands 

but showed strong evidence of covert awareness. The path between the thalamus and M1 

(motor execution) showed significantly more damage than the path between the thalamus 

and the SMA (motor imagery). In contrast, these two fibre paths were indistinguishable 
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in a patient who could behaviourally follow commands and communicate with gestures. 

This study suggests that the connection between the thalamus and M1 is crucial for motor 

execution and that damage to this specific tract could explain why covertly aware patients 

cannot overtly respond to commands. 

1.4 Diffusion Tensor Imaging in DOC patients 

The neuroimaging techniques discussed above such as fMRI and EEG have been useful 

in characterizing different DOC diagnostic categories based on brain activity during 

certain tasks and have been especially useful in the discovery of covertly aware patients. 

However, these tasks rely on patient participation and run the risk of false negatives if the 

patient cannot perform the scheduled tasks due to exhaustion or a period of unawareness. 

Task-free imaging techniques such as FDG-PET, resting state fMRI or even structural 

imaging allow researchers to identify patterns of activity or structure across diagnostic 

groups that can help to classify a patient’s level of awareness. The main advantage of 

these task-free techniques is their independence from a patient’s ability to perform any 

task and therefore can be conducted regardless of the patient’s state of arousal. The 

structural imaging technique of interest for this study is Diffusion Tensor Imaging 

(Basser et al., 1994; Basser et al., 1994).  

1.4.1 What is Diffusion Tensor Imaging? 

This technique is a model of Diffusion Weighted Imaging (DWI; Le Bihan & Breton, 

1985; Merboldt, Hanicke & Frahm, 1985; Taylor & Bushell, 1985; Le Bihan et al., 1986), 

which is a type of Magnetic Resonance Imaging (MRI). DTI characterizes the boundaries 

of structures and tissue based on the diffusion rate of water molecules (i.e. whether they 

diffuse isotropically or anisotropically). In the cortex, white matter (WM) has been found 

to be highly anisotropic, grey matter (GM) is usually expected to be less anisotropic and 

cerebrospinal fluid is characterized by unrestricted diffusion (isotropic diffusion; 

(Pierpaoli et al., 1996; Song et al., 2002; Hagmann et al., 2006). DTI models the principal 

diffusion direction of each voxel in the 3D image by colour-coding the main eigenvector: 

voxels with a principal eigenvector along the x-axis (left – right) are coloured red, voxels 

with a principal eigenvector along the y-axis (rostral-caudal) are coloured green and 

http://journal.frontiersin.org/article/10.3389/fnins.2013.00031/full#B98
http://journal.frontiersin.org/article/10.3389/fnins.2013.00031/full#B98
http://journal.frontiersin.org/article/10.3389/fnins.2013.00031/full#B114
http://journal.frontiersin.org/article/10.3389/fnins.2013.00031/full#B163
http://journal.frontiersin.org/article/10.3389/fnins.2013.00031/full#B100
http://journal.frontiersin.org/article/10.3389/fnins.2013.00031/full#B145
http://journal.frontiersin.org/article/10.3389/fnins.2013.00031/full#B159
http://journal.frontiersin.org/article/10.3389/fnins.2013.00031/full#B61
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voxels with a principal eigenvector along the z-axis (superior-inferior) are coloured blue 

(see Figure 2). 

There are two types of measure one can use to quantitatively describe diffusion in tissue. 

These measures can quantify diffusion across the cortex or diffusion in specific WM 

tracts of interests. 

Measures of diffusion magnitude. Mean diffusivity, also sometimes referred to as the 

apparent diffusion coefficient (ADC), is a measure of diffusion magnitude. MD refers to 

the amount of diffusion in a single voxel and/or all voxels in a tract of interest, and 

provides information about the molecular diffusion rate. In the context of pathology, 

when the MD of a WM fibre tract is low, this indicates low diffusivity in the tract of 

interest which could signify increased cell restriction due to an obstruction such as a solid 

tumour. Conversely, when the MD or trace of a pathway of interest is high, this means 

there is high diffusivity in this tract (i.e. increased free diffusion) and this could indicate 

damaged tissue due to axonal atrophy for example (Soares et al., 2013; Stieltjes et al., 

2013). 

Measures of diffusion anisotropy. Measures of diffusion anisotropy are used to quantify 

the shape of diffusion in a voxel and across all voxels in a tract of interest. The most 

common measure of this kind is fractional anisotropy (FA), because it measures the 

fraction of the diffusion that is anisotropic in the voxel(s) of interest. In other words, it 

Figure 2: Principal eigenvector colour map (from pilot participant in Study III). Leftmost panel: sagittal view; Middle 

panel: Coronal view; Rightmost panel: axial view. Red: WM fibre from left-right; Green: WM fibres from rostral-

caudal; Blue: WM fibres from superior-inferior. 



12 

 

measures the magnitude of directionality of anisotropic diffusion. When studying clinical 

populations, FA is a popular measure to use as it is considered a measure of WM 

integrity: low FA indicates low anisotropy, hence a damaged fibre tract whereas high FA 

indicates high anisotropy, illustrating a more intact fibre tract (Alexander et al, 2007; 

Stieltjes et al., 2013). 

1.4.2 Diffusion imaging in the context of severe brain injury 

Post-mortem studies conducted on DOC patients’ brains have described the 

neuropathology behind this chronic state of unawareness in some detail. For example, 

Adams et al. (1999) studied 35 traumatic brain injury patients who, at the time of their 

death, met diagnostic criteria for the vegetative state. The most common structural 

abnormalities identified at post-mortem were found to be thalamic damage, diffuse 

axonal injury (DAI), ischemic damage and brainstem damage. A follow-up study by the 

same authors, added 14 non-traumatic VS cases. In this aetiological subgroup, diffuse 

ischemic damage was common to most non-traumatic patients (64%) whilst damage in 

the thalamus was present in all non-traumatic patients (Adams et al., 2000). Jennett et al. 

(2001) used a similar methodology in a severely disabled group of patients (due to acute 

head injury), most of whom met criteria for the minimally conscious state before death. 

When comparing the post-mortem findings of this MCS group to the VS groups reported 

by Adams et al. (1999) and Adams et al., (2000), the authors reported that diffuse axonal 

injury and thalamic damage, the most common abnormalities in VS patients, were not as 

prominent in the MCS group. Brainstem damage, however, was equally present in both 

groups. Jennett et al. (2001), along with a review by Graham et al. (2005), concluded that 

although diffuse axonal injury, global white matter and thalamic damage are common to 

both VS and MCS patients, it is in fact the magnitude of the damage that distinguishes 

these two conditions, not the location of the damage. 

The main advantage of diffusion tensor imaging, especially for clinical populations like 

brain injury patients, is that appraisal of the structural damage to cortical tissue can be 

done in vivo rather than post-mortem. To this effect, several DTI studies in DOC patients 

have confirmed the above findings. Notably, Newcombe et al. (2010) compared patients 

who were VS with either traumatic or non-traumatic aetiologies to healthy controls. They 
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reported significant decreases in FA and increases in MD in global brain white matter 

between these two aetiological groups. They also reported that both patient groups had 

significantly higher MD in thalamic regions as compared to controls but the aetiological 

subgroups showed no significant differences in these regions. In a follow-up study, 

Newcombe et al., 2011 compared the FA and MD parameters in preselected regions of 

interest (ROIs) and demonstrated similar results: patients in the VS had lower FA and 

MD in all regions of interest compared to other brain injury groups (Newcombe et al., 

2011).  

Although both studies support the notion that DTI can be used as a measure to 

characterize and differentiate WM organization in VS patients and controls, these two 

DTI studies did not include the full spectrum of DOC diagnoses. They did not include 

MCS or EMCS patients and therefore could not investigate these WM changes as 

potential biomarkers for differential diagnosis. Additionally, because they used global 

white matter ROIs, they could only characterize WM integrity across the cortex, rather 

than characterize integrity of specific WM paths. This lack of specificity precludes the 

possibility of identifying the location of the damage potentially responsible for the 

chronic state of these patients. It could be argued that any differences observed between 

patients and controls could be attributed to general damage sustained after the original 

insult. 

Another study performed probabilistic tractography in VS, MCS and EMCS patients and 

investigated the structural connectivity of the default mode network in comparison to 

healthy controls (Fernández-Espejo et al., 2012). They noted impairment in cortico-

cortical connections as well as in thalamo-cortical connections in DOC patients compared 

to controls. They also reported a main effect of diagnostic category in both tracts, with a 

more consistent trend of FA decrease as clinical severity increased in the thalamo-cortical 

tract. The FA values of these tracts significantly correlated with patient CRS-R scores. 

Fernández-Espejo et al. (2011) investigated more precise regions of interest than 

Newcombe et al. (2010, 2011): subcortical white matter, thalamic nuclei and the 

brainstem to try and differentiate VS and MCS patients. They compared histograms of 
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MD peak height in DOC patients and controls and across diagnostic categories. They 

identified changes in subcortical WM and thalamic regions which could predict patient 

diagnosis with 95% accuracy. These results opened the possibility of using DTI as a 

diagnostic tool when used alongside functional imaging and behavioural assessments. 

This study also identified potential biomarkers (subcortical and thalamic white matter) 

that could explain the chronic dissociation between arousal and awareness in these 

patients. 

These studies demonstrate that DTI is capable of measuring and quantifying damage, 

specifically in WM tracts, displayed in DOC patients when comparing them to controls. 

As of yet, it is unclear what specialized WM tracts, if any, can explain the chronic state of 

these patients. However, results from the studies presented above point towards 

mechanisms found in subcortical and thalamic regions. These imaging studies also 

demonstrate the potential of DTI, when used alongside behavioural assessments, to help 

identify structural diagnostic biomarkers which could aid in differential diagnosis. 

1.5 Diffusion tensor imaging at ultra-high magnetic field 
strengths 

Theoretically, if DTI metrics such as FA and MD are accurately estimating the true 

anisotropy and diffusion rate of water molecules in tissue, these measures should not vary 

when changing the field strength of the MRI scanner (Shaw et al., 2016). However, when 

increasing the magnetic field strength, such as going from 3T MRI to 7T MRI, several 

confounding factors are introduced along with the inherent increase in signal-to-noise 

ratio (SNR). For example, 7T MRI brings an increase in SNR thus allowing for reduced 

scan times, increased spatial resolution and in the case of DTI, increased diffusion 

weighting (Polders et al., 2011). This field strength however, will also introduce artifacts 

such as eddy-current distortions, magnetic susceptibility gradients and inhomogeneities in 

the static (B0) magnetic field. These artifacts may offset any advantages incurred by the 

jump in SNR (Choi et al., 2011; Zhan et al., 2013). Many have tried to describe how DTI 

metrics are affected by the increase in SNR and by the artifacts that accompany imaging 

at higher magnetic fields. 
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Polders et al. (2010; 2011) investigated the differences in FA and MD between 1.5T, 3T 

and 7T magnetic fields across the same participants. They reported an increase in SNR as 

the magnetic field strength increased as well as a decrease in uncertainty of FA and MD 

calculations as magnetic field strength increased. These decreases in uncertainty, the 

authors suggest, improve their usability in white matter fibre tracking in single subject 

and group-level analyses by effectively increasing their reliability. Multiple computer 

simulation studies have also reported similar results: as the SNR decreases, uncertainty in 

DTI metrics increases; specifically, they concluded that in acquisition protocols with low 

SNR and low diffusion weighting (around 1000s/mm2), FA calculations are 

overestimated (Pierpaoli et al. 1996; Jones & Basser, 2004). These studies concluded that 

to estimate the true anisotropy in an ROI or WM path of interest, SNR and diffusion 

weighting should be increased when possible. Interestingly, a handful of studies have 

investigated the effects of increased magnetic field strength on FA and have found that 

raw FA values increased as the field strength increased (Polders et al., 2009; Huisman et 

al., 2006; Qin et al., 2009). The authors of these studies could not elucidate these 

contradictive results and stated that more work in healthy individuals, clinical populations 

and computational models must be conducted to clarify the effects of higher SNR on DTI 

metrics. 

One important detail to note about these studies and simulations is that the measures of 

SNR, FA, and MD were all calculated using the basic hardware settings and requirements 

of each MRI scanner. Although multiple ROIs were involved in these estimations, the 

diffusion acquisition protocols were not optimized to image the preselected ROIs. 

Therefore, it remains to be determined how increasing the magnetic field strength affects 

DTI metrics when the acquisition protocol is optimized to image specific a priori ROIs. 

1.6 The present study 

1.6.1 Rationale 

Motor outputs are the most straightforward modality through which patients can follow 

commands, communicate and show signs of awareness. However, with the discovery of 

covertly aware patients, a lack of motor responses may not always be an accurate 
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indication of a patient’s true levels of retained consciousness. One hypothesis to explain 

this dichotomy is that the fibres connecting the thalamus to the primary motor cortex 

(M1) are disrupted. Recent DTI work has shown that the integrity of this fibre path is 

compromised in patients who cannot overtly respond to commands (Fernández-Espejo et 

al., 2015). Previous animal studies have shown that the ventrolateral nucleus of the 

thalamus primarily projects to the primary motor cortex (Rispal-Padel, Massion & 

Grangetto, 1973; Rausell & Avendaño, 1985; Zheng et al., 1986) however connections 

from this specific thalamic nucleus have yet to be tested in vivo in DOC patients. 

Previous studies have shown that the dorsomedial (DM) nucleus of the thalamus sustains 

much of the damage in VS patients (Fernández-Espejo et al., 2011; Fernández-Espejo et 

al., 2010; Maxwell et al., 2006; Maxwell et al., 2004). The authors propose a model to 

describe the relationship between damage to the dorsomedial thalamic nuclei and 

disorders of consciousness: downregulation of frontoparietal systems via suppression 

from the DM nuclei can lead to absence of awareness in the vegetative state. Conversely, 

metabolism in thalamo-cortical systems is relatively preserved (Fridman & Schiff, 2014; 

Schiff, 2010). This model, the mesocircuit hypothesis, postulates that when the central 

thalamus sustains damage, its excitatory connections with frontoparietal systems become 

inhibitory therefore precluding these mechanisms from supporting forebrain arousal 

systems (Fridman & Schiff, 2014; Schiff, 2008; Schiff, 2010). Schiff (2008) suggests 

certain frontoparietal regions are involved in this circuit, including the frontal eye fields 

(FEF), supplementary motor area (SMA), anterior cingulate cortex (ACC) and posterior 

parietal cortex (PPC). The central thalamus has been shown to activate during tasks 

requiring short-term shifts of attention and during tasks requiring high levels of alertness 

over extended periods of time (Schiff, 2008). It is then easy to see how selective damage 

to the central thalamus could impair a patient’s overall ability for cognitively mediated 

tasks or, depending on the extent of the damage, how it could affect the length of time a 

patient can sustain their attention to complete behavioural or neuroimaging tasks. 

Lant et al. (2015) investigated the structural integrity of this circuit in DOC patients and 

healthy controls. They used diffusion tensor imaging to track the cortico-cortical, 

subcortico-cortical and subcortico-subortical connections in this circuit and the default 
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mode network. Their cortical ROIs included the precuneus, temporoparietal junction, 

frontal medial cortex and dorsolateral prefrontal cortex; their subcortical ROIs included 

the thalamus, globus pallidus, putamen and caudate nucleus. They found that DOC 

patients showed significantly lower FA in cortico-cortical and subcortico-cortical 

connections when compared to controls. They reported similar results when comparing 

these two tracts in clinically conscious (MCS+EMCS) and clinically unconscious patients 

(VS). Clinically unconscious patients showed significantly lower FA than clinically 

conscious patients in both paths. None of the groups showed significant differences in the 

subcortico-subcortical tracts. 

It is clear that to truly understand external responsiveness in DOC patients, the integrity 

of the thalamic motor system and thalamic awareness system must be dissociated within 

patients. Identifying the specific thalamic nuclei involved in these systems, however, 

poses a challenge. Most of what we know about thalamic parcellation is based on ex vivo 

studies, including animal studies and post-mortem studies (Lambert et al. 2016). These 

mainly characterize the chemoarchitecture and cytoarchitecture of the various cellular 

populations in the thalamus, to delineate specialized nuclei (Lambert, 2016; Morel, 

2007). In vivo, low resolution (i.e. 1.5T/3T MRI) human resting state and task-dependent 

fMRI studies have not been able to establish the role of specific thalamic nuclei due to 

their small size and the poor spatial resolution of lower magnetic fields (Behrens et al., 

2003b; Metzger et al., 2013). In these studies, the thalamus as a whole is used as a region 

of interest, which oversimplifies the specialized role of each nuclei in various facets of 

behavior. Furthermore, studies using diffusion weighted imaging have been able to 

parcellate the thalamus based on it cortical connections, however, these studies used a 

top-down approach to parcellation. That is to say, they placed their seeds in major 

cortical areas and identified clusters of thalamic voxels based on the cortical area with 

which they showed the highest connection probability (Behrens et al., 2003b; Johansen-

Berg et al., 2005). This approach, although a viable starting point to map thalamic 

connectivity in vivo, provides artificial boundaries between thalamic nuclei as they are 

based on gross anatomy and do not account for gradual architectural features between the 

nuclei (Lambert et al., 2016). As such, ultra-high magnetic fields (i.e. 7T MRI) have been 

proposed as the solution to parcellate this small subcortical region in vivo (Lenglet et al., 
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2012; Metzger et al., 2013). Indeed, several studies have been able to segment the 

thalamus, and surrounding regions such as the basal ganglia, using multimodal imaging at 

ultra-high fields (Calamante et al., 2012; Calamante et al., 2013; Lenglet et al., 2012; 

Xiao et al., 2016). In the context of disorders of consciousness, multimodal imaging at 

ultra-high fields in these patients would allow for the thalamic nuclei involved in the 

mesocircuit and motor execution loops, thus allowing the dissociation of these two 

systems within patients. 

1.6.2 Objectives and Hypotheses 

Study I. Using DTI, we aimed to determine if the disruption in the fibres between the 

thalamus and M1 reported by Fernández-Espejo et al. (2015) could be replicated in a 

larger sample of DOC patients and we sought to identify if any trends in damage to this 

tract correlate with patient diagnosis. This would help determine if damage to this 

particular path explains overt behavioural performance in a specific diagnostic group or if 

the damage explains motoric output performance across all diagnoses. We hypothesized 

that as clinical severity increased, so would the impairment in the thalamus-M1 fibre 

paths. We expected a direct relationship between overt signs of consciousness and 

impairment to the thalamus-M1 fibre paths. This would imply that all patients across the 

board are more conscious than they appear from behavioural assessments, and 

differentiating covertly aware patients from true VS patients is not possible based on 

observations from this VL-M1 fibre alone. 

Study II. We wanted to investigate if impairment in motor execution in these patients is 

due to selective damage to the thalamus-M1 path, or if damage to other motor paths could 

be responsible for a lack of overt responsiveness during assessments. The motor paths of 

interest in this study were: the connections between the thalamus and M1, M1 and the 

cerebellum and the thalamus and the cerebellum. Similar to Study I, we expected 

diagnostic categories to differ in the magnitude of abnormality to the motor tracts of 

interest not in the location. Additionally, we hypothesized that regardless of diagnosis, 

our sample of DOC patients would not show impairment in the fibres connecting the 

thalamus and cerebellum as DOC patients show damage primarily in supratentorial 

regions (Laureys et al., 2004; Thonnard et al., 2014). In accordance with previous 
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conclusions by Graham et al. (2005), we expected diagnostic categories to differ in the 

magnitude of their impairment to these tracts, not in the location of the impairment. 

Study III. We sought to develop 7T DTI acquisition sequences with a variety of 

acquisition parameters, and compare their success at reconstructing the motor fibre paths 

from Studies I and II. Three DTI acquisition sequences were compared, differing in terms 

of their gradient sampling directions and phase encoding directions. We hypothesized 

that acquisition sequences with more diffusion gradient sampling directions would be 

more successful at probabilistic tractography than the sequences with less sampling 

directions. Additionally, we hypothesized that acquisition sequences using two bipolar 

phase encoding directions would require less target masks to help the reconstruction of 

tractography streamlines. 

Study IV. In this study, we compared the reconstructions of motor paths at 7T and 3T in 

a group of healthy controls. We used the optimized 7T from Study III and its 3T 

counterpart, for both qualitative and quantitative comparison. Given the current state of 

the literature and what we know about the benefits and pitfalls of imaging at ultra-high 

fields, we cannot not predict the directionality of the DTI results from the optimized 7T 

sequence when compared to its 3T counterpart. 
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Chapter 2 

2. Generic Methods 

All studies in this thesis used the regions of interest and exclusion and termination masks 

described below. 

2.1.1 DTI Data Analysis 

Data preprocessing and analysis was performed using the FSL Diffusion Toolbox 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), following a similar pipeline as Fernandez-Espejo et 

al. (2012), Fernandez-Espejo et al. (2015) and Lant et al. (2015). There are four main 

steps to preprocessing DTI data: eddy-current correction, brain extraction tool (BET), 

dtifit and finally BEDPOSTX. Eddy-current corrections (Andersson & Sotiropoulos, 

2016) is used to correct subject movements and correct distortions induced by eddy 

currents. The BET (Smith, 2002) is used to strip non-brain tissue from a whole-head 

image. Dtifit is then run to fit the diffusion model (dictated by the protocol parameters) to 

each voxel. The main output from this step generates the fractional anisotropy (FA) map 

and the maps for the three eigenvectors (V1, V2 and V3 maps) which are used to analyze 

the diffusion data. The final step in diffusion data preprocessing is Bayesian Estimation 

of Diffusion Parameters using Sampling Techniques (BEDPOSTX; Behrens et al., 2003b; 

Behrens et al., 2007). BEDPOSTX uses Monte Carlo Markov Chain sampling to build a 

posterior distribution on diffusion parameters at each voxel. That is to say, BEDPOSTX 

uses MCMC to build a distribution by calculating every possible orientation of the 

principal eigenvector in a given voxel. Additionally, this feature determines the number 

of crossing fibres per voxel. BEDPOSTX creates all the files necessary to run 

probabilistic tractography. 

2.1.2 Mask Generation 

Primary motor cortex masks. The primary motor cortex masks (M1) were first created 

in the standard template MNI152 2mm brain in FSL. The center voxel for the left 

hemisphere mask was placed at x y z coordinates -27, -13, 64 and the center voxel for the 

right hemisphere mask was placed at coordinates 27, -13, 64, as previously reported in 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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Fernández-Espejo et al. (2015). Around these center voxels, spheres with a radius of 

6mm were created (Figure 3, panel A). Participant b=0 images were registered to the 

MNI152 2mm template image using FSL’s FLIRT (Jenkinson & Smith, 2001; Jenkinson 

et al., 2002). The resulting transformation matrix was inversed, and applied to each 

standard mask to unwarp them into each participant’s native diffusion space (Figure 3, 

panel B). 

Thalamic masks. The most dorsal edge of the anterior commissure was visually 

identified on the axial plane of each participant’s dataset (Figure 4, panel A). The center 

voxels of the masks were created three slices dorsal to the anterior commissure in the left 

and right ventrolateral nuclei (VL) of the thalamus (Figure 4, panel B). The anterior 

commissure was chosen as a reference landmark to help identify the ventrolateral nucleus 

based on the stereotactic atlas of the human thalamus by Morel (2007). These center 

coordinates were used to generate spherical masks, which had a radius of 4mm and were 

created in native space for each participant. We can confirm the position of the 

ventrolateral thalamic masks by looking at the principal eigenvector colour map (V1 

Figure 3: Axial view of cortical center voxels (blue) and spherical primary motor cortex masks (yellow) in standard 

MNI152 space (Panel A); Axial view of unwarped primary motor cortex masks in native space of a healthy control 

(Panel B). Central sulci are outlined in red. 

A B 
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map). In the V1 colour map, two main thalamic nuclei can be differentiated: the 

ventrolateral nuclei and the dorsomedial nuclei. The ventrolateral nuclei appear in purple 

(as in Figure 4, Panel B) as their M1 projections fall on the z-axis and the dorsomedial 

nuclei appear in green as their projections to the frontal lobe fall on the y-axis. 

Cerebellar masks. The cerebellar masks were generated using the SUIT atlas template 

of the human cerebellum and brainstem (Diedrichsen, 2006). The preprocessed masks of 

the left and right dentate nucleus (DN) from the SUIT atlas were used as a visual 

reference. The center voxels were placed in the participants’ native space region 

corresponding to the section when Vermis X start to protrude into the 4th ventricle 

(Figure 5, Panel B). Spherical masks with a radius of 6mm were generated. 

Exclusion and Termination masks. An exclusion mask discards any pathway that enters 

the mask. A termination mask terminates a pathway once it enters the mask. A 

termination mask was used to help guide the reconstruction of the pathway between the 

ventrolateral nuclei and the primary motor cortices (ipsilateral connections). In Study I 

and Study II, a mask was created along the entire hemispheric fissure, to separate both 

hemispheres. This was done to prevent the reconstruction from crossing into the 

Figure 4: Axial view of anterior commissure circled in Panel A; axial view of thalamic center voxels (blue) and 

ventrolateral thalamic nuclei masks (yellow) placed dorsal to the anterior commissure (Panel B). 

A B 
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contralateral hemisphere (henceforth called hemispheric mask). A second mask was 

created on the slice right after the most ventral part of the ventrolateral nuclei masks. This 

was done to prevent probtrackX from reconstructing a pathway that traveled into the 

brain stem (henceforth called brainstem mask). The hemispheric and brainstem masks 

were combined to create one mask using fslmaths and this so-called combination mask 

was used as a termination mask in the reconstruction of the VL-M1 tracts.  Furthermore, 

superior cerebellar peduncle mask spanning over four slices were created in each 

hemisphere. These were used as exclusion masks when reconstructing VL-DN tracts. 

These exclusions masks would exclude any fibres crossing into the opposing cerebellar 

hemisphere. Additionally, we used a termination mask immediately above the most 

dorsal slice of the thalamic masks – this stopped probtrackX from reconstructing fibres 

that entered cortical areas. Finally, when tracking M1-DN tracts, an exclusion mask was 

used to accurately reconstruct the pathway. Finally, a supratentorial mask was created 

along the hemispheric fissure, extending from the tentorium to the top of the cortex. This 

would then allow fibres from crossing into the opposing hemisphere through the middle 

cerebellar peduncles, the anatomically correct crossing point, rather than through the 

corpus callosum. This supratentorial mask was combined into one mask with the superior 

Figure 5: Axial view of Vermis X of the cerebellum protruding into the fourth ventricle circled in red in Panel A; axial 

view of cerebellar center voxels (blue) and cerebellar dentate nuclei masks (yellow; Panel B). 

A B 



24 

 

cerebellar peduncle masks described above. All cortical masks, exclusion masks and 

termination masks were binarized using fslmaths before tractography. Probabilistic 

tractography can only be run from voxels with a non-zero value. Binarizing the masks 

used in this study ensures that all voxels in these masks have a value of one and that 

voxels not included in the masks have a value of zero. 

In DOC patients, cortical areas are mostly preserved whilst subcortical areas sustain 

substantial damage and atrophy. It is often difficult to visually identify subcortical areas 

in patients, therefore unwarping masks from standard space becomes an unreliable 

practice. However, this is not a problem with healthy participants, accordingly, it is 

theoretically possible to unwarp subcortical and cerebellar masks into native space. That 

being said, to remain consistent across all participants, only the cortical masks were 

generated in MNI152 standard space and the thalamic and cerebellar masks were 

manually created in native diffusion space. 

2.1.3 Probabilistic Fibre Tracking 

Fibre tracking was estimated in native diffusion space for each participant between pairs 

of regions of interest (ROIs) using probtrackX (Behrens, 2003a; Behrens, 2007). 

probtrackX repeatedly samples from the distributions built up from BEDPOSTX. At each 

sample, pobtrackX calculates a streamline (i.e. path) between the seed voxels and all 

other regions/voxels in the brain. After a large number of samples, it can calculate a 

dominant streamline stemming from the seed voxels, as well as the probability of each 

brain voxel belonging to this streamline. Each voxel will receive a value, represented by 

the number of probtrackX samples that have passed through the voxel. Most brain voxels 

will have a value of zero (i.e. zero probability of belonging to the dominant streamline). 

The higher the value in a voxel, the more samples have passed through, implying high 

connectivity between the voxel and seed voxels. In Study I, the seeds include the 

ventrolateral thalamic nuclei (VL), the primary motor cortices (M1) while in Studies II, 

III and IV, the seeds include the VL, M1 and the dentate cerebellar nuclei (DN) Tracking 

was done in both directions between each ROI and the two probability paths resulting 

from each tracking pair were averaged and then thresholded. In Study I and II, the fibres 

connecting the ventrolateral thalamic nuclei and the primary motor cortices and the fibres 
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connecting the primary motor cortices to the dentate nuclei, were thesholded to removed 

pathways that had a probability distribution of less than 2%. For the fibres connecting the 

ventrolateral thalamic nuclei and the dentate nuclei, pathways with a probability 

distribution of less than 5% were removed. In Study III and IV, all reconstructed 

streamlines were thresholded at 2%. There is currently no convention about a precise 

thresholding percentage, however, thresholds between 2-5% have previously proven 

successful in both healthy and pathological populations (Behrens et al., 2007; Fernández-

Espejo et al., 2012; Kinoshita et al., 2015; Sala-Llonch et al., 2010). See Table 2 for 

tracking pairs. The fibres between VL and M1, VL and DN, M1 and DN will henceforth 

be referred to as VL-M1 tracts, VL-DN tracts and M1-DN tracts respectively. The 

resulting fibre tracts were visually inspected for correspondence with known anatomy 

and to ensure our approach did not remove anatomically viable fibres. We used the White 

Matter Atlas by Hermoye et al. (http://www.dtiatlas.org/) as a visual reference. 

Table 2: Description of pairs of tractography ROIs 

Pairs ROIsa Connection 

1 Left VL - Left M1 Ipsilateral 

  Right VL - Right M1 Ipsilateral 

2 Left VL - Right DN Contralateral 

  Right VL - Left DN Contralateral 

3 Left M1- Right DN Contralateral 

  Right M1 - Left DN Contralateral 
a VL = ventrolateral nuclei of the thalamus; M1 = primary motor 

cortices; DN = dentate nuclei of the cerebellum 

http://www.dtiatlas.org/
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Chapter 3 

3. Study I – Investigating the relationship between overt 
behavioural responses and fibre integrity of VL-M1 
tracts in patients with disorders of consciousness. 

Many animal studies using single-cell recordings, horseradish peroxide and fluorescent 

tracers have demonstrated that the ventrolateral nucleus of the thalamus projects to the 

primary motor cortex (Brodmann area 4; Rispal-Padel et al., 1973; Rausell & Avendaño, 

1985; Zheng et al., 1986). Lesion studies in the monkey found that when the ventrolateral 

thalamus was lesioned, cerebellar syndromes occurred, including ataxia and dysmetria 

(Bornshlegl & Asanuma, 1987). In humans, several diffusion tensor imaging studies have 

tried to reconstruct the fibres connecting the thalamus to the primary motor cortex, in 

vivo, in the hope of identifying specific thalamic nuclei contributing to human motor 

control. Behrens et al. (2003b) and Johansen-Berg et al. (2005) both conducted 

probabilistic tractography between cortical and sub-cortical regions: they placed their 

seed regions in various major cortical areas and segmented the thalamus based on clusters 

of voxels which had the highest connection probability with these cortical areas. They 

reliably segmented the thalamus into several nuclei, reporting that the ventrolateral 

nucleus of this structure had the highest connection probability with the primary motor 

cortex. Furthermore, Jakab et al. (2014) used the entire thalamus as a seed, and launched 

probabilistic tractography to the rest of the cortex. They identified that the ventrolateral 

nucleus of the thalamus projected to the primary motor cortex.  

In this study, we wanted to reconstruct the white matter fibres connecting the thalamus to 

the primary motor cortex in patients with disorders of consciousness and healthy controls. 

Specifically, we identified the ventrolateral nucleus of the thalamus using diffusion 

fractional anisotropy and primary eigenvector maps (see Chapter 2, section 2.1.2) and 

conducted probabilistic tractography between this seed and the primary motor cortex. 
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3.1 Materials and Methods 

3.1.1 Participants 

Patients. A convenience sample of 17 patients who had suffered traumatic brain injury or 

anoxic brain injury was recruited at the University of Western Ontario (UWO) between 

2012 and 2015 as part of a broader research programme. The Western University Health 

Sciences Research Ethics Board provided ethical approval for the study (Appendix C). 

The inclusion criteria for this study required patients to be diagnosed with a disorder of 

consciousness (i.e. VS, MCS or EMCS) therefore two patients were excluded due to their 

diagnosis of locked-in syndrome (LIS). An additional exclusion criterion was lack of 

eligibility for the MRI environment. The final sample consisted of eight males and seven 

females. Ages ranged from 19 to 57 years of age (M = 37.33, SD = 12.25). Eight patients 

were VS, five were MCS and two were EMCS. A summary of diagnoses, aetiologies and 

CRS-R scores and demographic information of the final sample can be found in Table 3. 

The functional datasets for this patient cohort have previously been reported (Beukema et 

al., 2016; Fernández-Espejo et al., 2015; Fiacconi and Owen, 2016; Gibson et al., 2014; 

Gibson et al., 2016; Lant et al., 2015; Naci et al., 2013), only the structural diffusion 

tensor imaging datasets will be reported in the present study. 

Controls. In addition, a cohort of 30 right-handed healthy controls, with no history of 

psychiatric or neurological disorders, was recruited at UWO between 2011 and 2014 for 

various research purposes. The UWO Health Sciences Research Ethics Board provided 

ethical approval for the study. Of these 30 healthy controls, 15 were chosen to match to 

the patient sample in terms of sex, imaging sequence and scanner system (see MRI 

acquisition below). The ages of the control group ranged from 18 to 29 years (M = 24.73, 

SD = 2.69).  For both the patients and healthy controls, functional and structural datasets 

were collected at the time of scanning. 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Fern%26%23x000e1%3Bndez-Espejo%20D%5BAuthor%5D&cauthor=true&cauthor_uid=26693399
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Table 3: Patient demographic and clinical information 

Patient ID Age Sex Diagnosis (CRS-R) Aetiologya  TPIb (years) 

VS1 38 M VS (7) TBI 12 

VS2 27 M VS (8) TBI 7 

VS3 44 F VS (7) TBI 20 

VS4 57 M VS (6) Anoxic 3 

VS5 20 F VS (8) Other 6 

VS6 19 M VS (7) Anoxic 2 months 

VS7 51 F VS (5) Anoxic 1 

VS8 52 F VS (6) Anoxic 6 

MCS1 33 M MCS (10) Anoxic 15 

MCS2 46 F MCS (10) Anoxic 19 

MCS3 27 M MCS (13) Anoxic 3 

MCS4 25 F MCS (9) TBI 6 

MCS5 40 M MCS (8) TBI 3 

EMCS1 49 F EMCS (22) TBI 12 

EMCS2 32 M EMCS (23) TBI 4 

Mean 37.33       7.81 

SD 12.25       6.32 
a TBI = traumatic brain injury; b TPI = time post-ictus     

3.1.2 MRI Acquisition 

The participant datasets were obtained at the Centre for Functional and Metabolic 

Mapping (CFMM), at Robarts Research Institute (London, Canada). Between October 

and December 2013, the CFMM upgraded their 3T Magnetom Trio system (Siemens, 

Erlangen, Germany) to a 3T Magnetom Prisma system (Siemens, Erlangen, Germany). 

This upgrade occurred during participant recruitment, as such, some participants were 

scanned on the first system whilst others were scanned on the second system. 

Furthermore, two different DTI protocols were used across participants due to the 

upgrade. The first sequence developed for the Magnetom Trio system included 64 non-

collinear directions with a b-value = 700 s/mm2 (TR = 8700ms, TE = 77ms, voxel size = 

2x2x2, no gap, 77 slices). After the upgrade to the Magnetom Prisma system, a matching 

protocol was created, where the images included 64 non-collinear directions with a b-

value = 700 s/mm2 (TR = 9600ms, TE = 77ms, voxel size = 2x2x2, no gap, 77 slices). A 

second protocol was designed for the Prisma system, in which the images included 137 

non-collinear directions with a b-value = 1500 s/mm2 (TR = 1980ms, TE = 71ms, voxel 

size = 2x2x2, no gap, 64 slices, multiband acceleration factor = 4).  
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Fourteen participants (seven patients, seven healthy controls) were scanned with the Trio 

system, 16 participants (eight patients, eight healthy controls) were scanned with the 

Prisma system. Finally, 18 participants (nine patients, nine healthy controls) were 

scanned with the 64 directions protocol and 12 participants (six patients and six healthy 

controls) were scanned with the 137 directions protocol.  

3.1.3 Statistical Analyses 

We calculated the fractional anisotropy (FA) values of each tract in each participant using 

the FSLUTILS program, fslmaths (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils). 

Considering we were unable to reconstruct the VL-M1 tracts of interest in three of the 15 

DOC patients (MCS1, VS5, VS8), we excluded them from all analyses reported below. 

We used IBM SPSS Statistics for Windows, Version 23 to run all statistical analyses. To 

investigate group level difference in fibre tract FA values, we performed repeated 

measures Analysis of CoVariance (ANCOVA) on lateralized paths. The within-subject 

factor had two levels, one for each hemisphere. Group (HC/DOC) was used as the 

between-subject factor when comparing these groups. Linear correlations between the 

dependent variables and age, sequence, scanner and global FA value were performed to 

determine which of these variables should be included as non-interest covariates. We 

tested these variables for covariance to control for the effects of different DTI sequences 

(64 directions or 137 directions), different scanner (Trio or Magnetom), the natural 

ageing of the brain and widespread damage sustained after severe brain injury on any 

differences in VL-M1 tract FA we observed in the data. Only age and global FA values 

showed significant effects and therefore were included in repeated measures ANCOVA.  

A similar approach was used for DOC comparisons. A 2-level within-subject factor was 

used, one level for each hemisphere. Diagnosis (VS/MCS/EMCS) and clinical level of 

consciousness (clinically conscious/clinically unconscious) served as between-subject 

factors. Linear correlations between the dependent variables and age, time post-ictus, 

aetiology and global FA value were performed to determine which of these variables 

should be included as covariates. None of these variables showed significant correlations 

with the dependent variables therefore no covariates were included in repeated measures 
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ANCOVAs involving DOC patients exclusively. Post-hoc independent samples t-tests 

were performed when within subject contrasts were significant.  

To investigate the relationship between a patient’s CRS-R score and their fibre tract FA 

value, we performed Spearman’s rank-order correlations between patient CRS-R scores 

and each dependent variable. We chose Spearman’s rank-order correlation because CRS-

R scores are ordinal variables. 

3.2 Results 

3.2.1 Normality testing  

Considering that we would be performing parametric tests for group level comparisons, 

we tested for homogeneity of variance between groups on each fibre tract as well as 

normality of fibre tract distribution. Both the left and right fibre tracts violated the 

homogeneity of variance assumptions between groups. Both healthy control tracts were 

normally distributed whilst only the right hemisphere fibre tract (right VL to right M1) 

was normally distributed in patients. The left hemisphere fibre tract (left VL to left M1) 

in patients was not normally distributed. ANCOVA has been shown to be robust when 

treating data that deviates from normality or homoscedasticity (Box & Andersen, 1955; 

Lindman, 1974). As for global FA values, this measure was normally distributed in both 

the patients and healthy controls and did not violate Levene’s test of homogeneity of 

variance. 

3.2.2 Difference between DOC patients and healthy controls 

Age and Global FA correlated with the dependent variables so these variables were 

included as covariates. Repeated measures ANCOVA revealed that DOC patients did not 

have significantly lower VL-M1 tract FA values than healthy controls (F1,23 = 2.769, p = 

.110, Partial η2 = .107, Observed power: .358). No significant effect of hemisphere or age 

and global FA was detected. See Figure 6. 
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3.2.3 Differences within DOC patients 

A repeated measures ANCOVA was performed within the patient group, to assess if there 

were any significant differences between VS, MCS and EMCS FA values. Diagnosis 

(VS/MCS/EMCS) was the between-subject factor. No covariates were included in this 

analysis. The effect of diagnosis trended towards significance (F1,9 = 3.494, p = .075, 

Partial η2 = .437, Observed power: .502). Additionally, no significant effects of 

hemisphere, age or global FA were observed. See Figure 7. 

 

Figure 7: Graphic representation of medians, maximums, minimums and quartiles 

(25th & 75th) of VS, MCS and EMCS patients. 

Figure 6: Graphic representation of medians, maximum, minimums and quartiles 

(25th & 75th) of DOC patients and healthy controls. 
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3.2.4 Difference between clinically conscious and clinically 
unconscious patients 

Due to the low and uneven number of patients in each diagnostic category, we separated 

patient into two larger groups, based on their capabilities to respond behaviourally. All 

VS patients were put into one group, henceforth called clinically unconscious (n = 6), and 

MCS and EMCS were put together in a second group, henceforth referred to as clinically 

conscious (n = 6). Clinical level of consciousness was used as the between-subject factor. 

Repeated measures ANCOVA revealed that clinically unconscious patients had 

significantly lower FA values than clinically conscious patients (F1,10 = 7.086, p = .024, 

Partial η2 = .415, Observed power: .671). No significant effects of hemisphere, age or 

global FA were observed. Additionally, there were no significant differences in time-post 

ictus (t10 = .115, p = .911) or age (t10 = -.396, p = .701) between clinically conscious and 

clinically unconscious patients. See Figure 8. 

3.2.5 Differences between clinically conscious patients and 
healthy controls 

Age and Global FA were included as covariates in the following analyses. When 

comparing clinically conscious (MCS + EMCS) patients to healthy controls, a repeated 

measures ANCOVA showed that clinically conscious patients had significantly lower FA 

values than healthy controls (F1,17 = 5.231, p = .035, Partial η2 = .235, Observed power: 

Figure 8: Graphic representation of medians, maximums, minimums and 

quartiles (25th & 75th) of clinically conscious and clinically unconscious 

patients. 



33 

 

.578). Furthermore, no significant effects of hemisphere, age or global FA were observed. 

See Figure 9.  

3.2.6 Differences between clinically unconscious patients and 
healthy controls 

Age and Global FA were again included in this analysis. After a repeated measures 

ANCOVA, clinically unconscious patients were revealed to have significantly lower FA 

values than healthy controls (F1,17 = 7.126, p = .016, Partial η2 = .295, Observed power: 

.711). There were no significant effects of hemisphere, age or global FA. See Figure 10. 

Figure 9: Graphic representation of medians, maximums, minimums and quartiles 

(25th & 75th) of clinically conscious patients and healthy controls. 

Figure 10: Graphic representation of medians, maximums, minimums and quartiles 

(25th & 75th) of clinically unconscious patients and healthy controls. 
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3.2.7 Differences between behaviourally responsive and non-
responsive patients 

Behaviourally responsive patients were defined as patients who scored a 3 or above on 

the CRS-R motor subscale (scored above “Reproducible Movement to Command”). 

These patients showed overt motoric output in response to command. In the following 

analysis, three patients were behaviourally responsive and nine were behaviourally non-

responsive. No covariates were included in this analysis. Repeated measures ANCOVA 

revealed no significant differences in either fibre tract FA values between behaviourally 

responsive and non-responsive patients (F1,10 = 1.769, p = .213, Partial η2 = .150, 

Observed power: .226). See Figure 11. 

3.2.8 Correlation between fibre tract FA values and CRS-R scores 

CRS-R scores were significantly correlated with the left (rho = .815, p = .001) and right 

(rho = .670, p = .017) fibre tract. See Figure 12 and 13 for the correlations between CRS-

R scores and the dependent variables. 

 

 

Figure 11: Graphic representation of medians, maximums, minimums and 

quartiles (25th & 75th) of behaviourally non-responsive and behaviourally 

responsive patients. 
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3.3 Discussion 

In this study, we assessed the integrity of white matter fibres between the ventrolateral 

thalamic nuclei and primary motor cortices in 12 DOC patients in vivo. Confirming 

previous work (Fernández-Espejo et al., 2015), significant abnormalities were observed 

in the integrity of VL-M1 fibres, when comparing DOC subgroups to healthy controls.  

Both clinically conscious (VS) and clinically unconscious (MCS+EMCS) DOC patients 

Figure 13: Spearman correlation between the right VL-M1 tract fractional anisotropy values and 

CRS-R scores in 12 DOC patients. 

Figure 12: Spearman correlation between the left VL-M1 tract fractional anisotropy values and 

CRS-R scores in 12 DOC patients. 
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showed significant impairment when compared to healthy controls and clinically 

unconscious patients showed significant impairment when compared to clinically 

conscious patients. In accordance with previous conclusions posited by Graham et al. 

(2005), clinically unconscious and clinically conscious patients differed in the magnitude 

of the abnormalities This is also evidenced by the positive correlation between patient 

VL-M1 tract FA values and CRS-R scores. This suggests that the integrity of this tract 

influences performance on the CRS-R. Furthermore, when comparing behaviourally 

responsive patients to patients who showed no evidence of overt responsiveness, we 

found no significant differences in VL-M1 FA values between these two groups. This, 

however, we explain largely in part to low power of the analysis as the groups were 

unequal in size (n = 3 and n = 9 respectively) and metrics from the unresponsive groups 

could easily mask any detectable differences from the small responsive group. 

Curiously, when comparing the DOC group as a whole (VS+MCS+EMCS) to the healthy 

control group, no significant differences were observed. This does not converge with our 

reported results of each clinical subgroup, where both clinically conscious and clinically 

unconscious patients showed significant reduction in FA compared to controls. Upon 

further inspection of the data, there seems to be a single data point in the DOC group that 

strongly deviates from the mean (Patient left VL-M1 FA, .085 vs DOC group left VL-M1 

mean [SD] FA .308 [.085]; Patient right VL-M1 FA, .080 vs DOC group right VL-M1 

mean [SD] FA, .291 [.094]). When this data point is removed, the analysis involving all 

DOC patients compared to controls then becomes significant. Furthermore, the analysis 

involving the comparison across diagnostic groups (VS/MCS/EMCS) also becomes 

significant when this data point is excluded. More investigation into the non-normality of 

this data point must be conducted to further assess its effect on group level analyses and 

the results reported above.  

We reconstructed the fibres carrying ascending information to the cortex (Parent & 

Hazrati, 1995). Structural impairment of this pathway would perturb communication 

between the thalamus and the primary motor cortex, thereby hindering patients’ abilities 

to volitionally generate motoric output to respond to command. The 12 patients described 

above showed significantly lower FA values in this specific tract beyond global white 
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matter damage, as evidenced by the lack of significant effect of global white matter 

damage in all analyses reported. Participant age also showed no effect in the repeated 

measures ANCOVA, which suggests that natural aging of the brain is not driving the 

significant reduction in FA seen in DOC patients compared to controls. At first glance, 

these results seem to support the specificity of this VL-M1 tract in explaining the lack of 

overt responsiveness in these patients. However, the mechanisms supporting this 

selective damage have yet to be described therefore our results should be interpreted with 

care. 
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Chapter 4 

4. Study II – Investigating the relationship between overt 
behavioural responses and motor loop fibre integrity in 
patients with disorders of consciousness. 

To expand on the results from Study I and to further our understanding of the neural 

underpinnings of motor execution in our patient group, we decided to conduct a follow-

up study. Using the same sample of DOC patients as above, we not only reconstructed 

the tract from the ventrolateral thalamus to M1 but also a closed motor loop: from M1 to 

the ventrolateral thalamus to the dentate nucleus (DN) in the cerebellum. The dentate 

nucleus projects to M1 (Allen & Tsukahara, 1974; Hoover & Strick, 1999) via the 

thalamus (Shinoda et al., 1985; Dum & Strick, 2003; Evrard & Craig, 2008). Specifically, 

the cerebellum processes behaviourally relevant information received from the primary 

motor cortex via the corticopontocerebellar tract (the feedforward open loop), before 

sending the information back out to M1via the ventrolateral thalamus (the feedback open 

loop). The feedback connection between the cerebellum and M1 has been shown to be 

involved in adaptive motor learning, and to adapt movements to changes in the 

environment (Glickstein, 2000). The exact location where pontocerebellar fibres 

terminate in the cerebellum is still unknown (Glickstein, 2007) which is why we chose 

the dentate nucleus as an ROI in both VL-DN and M1-DN fibres, to reconstruct a closed 

cortico-cerebellar motor loop. 

In this study, a total of nine DOC patients and five healthy controls were excluded from 

the original sample. These patients and controls had been scanned with the 64-direction 

protocol described in Study I and this acquisition protocol was unable to reconstruct two 

of our three tracts of interest. Therefore, we focused our analyses on the remaining six 

DOC patients from the sample used in Study I, who had all been scanned with the 

previously described 137-directions acquisition protocol and with whom we were able to 

reconstruct all three motor tracts for this study. We included in the study 15 healthy 

controls who had also been scanned with the 137-directions protocol. In this focused 

group of DOC patients, we wish to examine if localized impairment to the motor VL-M1 

tract explains DOC patients’ lack of overt responsiveness or if impairment to other 
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components of the motor loop contribute to this lack of overt volitional behaviours. As a 

result of the small sample size in this study, we will focus on describing the clinical 

profile in concordance with their individual diffusion results, rather than performing 

group-level analyses. 

4.1 Materials and Methods 

4.1.1 Participants 

Patients. The same convenience sample of 15 DOC patients from Study I was used in 

this follow-up study. The Western University Health Sciences Research Ethics Board 

provided ethical approval for the study (Appendix C). After data preprocessing and 

probabilistic tractography, nine patients were excluded from this study (see DTI 

Analyses). Therefore, the final sample for this study consisted of six patients, four of 

whom were female. Ages ranged from 25 to 52 years of age (M = 40.67, SD = 12.14). 

Three patients were VS, two were MCS and one was EMCS. A summary of diagnoses, 

aetiologies and CRS-R scores and demographic information of the final sample can be 

found in Table 4. 

Controls. For this follow-up study, 15 controls were chosen to match the patient sample 

in terms of imaging sequence (see DTI Analyses). The ages of this control group ranged 

from 18 to 29 years (M = 23.80, SD = 3.34) and this sample was composed of seven 

males and eight females.  

4.1.2 Clinical Descriptions  

Patient VS2 was a male who, seven years before the MRI session, at the age of 20, 

suffered a severe closed head injury in a motor vehicle accident. The patient’s Glasgow 

Coma Scale (GCS) score at the scene and from the ER were not available in the medical 

records provided to the UWO research team. A CT scan during his admission revealed 

bilateral intracerebral bleeds as well as left temporal and ventricular hemorrhage. The 

scan also showed a lacunar infarct in the right lentiform nuclei with ischemic changes in 

the deep white matter of the right occipitoparietal region. The patient also exhibited 

frequent focal seizures on admission. On admission to our study, VS2’s medical 
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diagnosis indicated a prolonged period of decreased levels of consciousness. Over a five-

day period in 2014, a total of five behavioural assessments by the Owen research team 

were conducted at the University of Western Ontario using the Coma Recovery Scale – 

Revised (CRS-R). In all of them the patient showed responses consistent with a diagnosis 

of VS. See Table 5 for details. This patient was unable to overtly respond to commands 

nor did they show evidence of covert command following. 

Patient VS7 was a female who suffered a myocardial infarction at the age of 50, one year 

before admission to this study. Acute records including the patient’s GCS score at the 

scene and from the ER, as well as CT scan upon admission were not available to the 

UWO research team. The medical diagnosis upon admission was that of the persistent 

vegetative state. According to records kept by the patient’s kin reporting their 

impressions throughout their relative’s hospitalization, it was noted that the attending 

physicians deemed all movements as reflexive (no intentional movements). During her 

five day stay at the University of Western Ontario, she was assessed five times using the 

CRS-R. In all of them the patient showed responses consistent with a diagnosis of VS. 

See Table 5 for behavioural features. This patient did not show evidence of behavioural 

command following or covert command following. 

Table 4: Patient demographic and clinical information 

Control ID Age Sex Diagnosis (CRS-R) Aetiologya TPIb (years) 

VS2 27 M VS (8) TBI 7 

VS7 51 F VS (5) Anoxic 1 

VS8 52 F VS (6) Anoxic 6 

MCS4 25 F MCS (9) TBI 6 

MCS5 40 M MCS (8) TBI 3 

EMCS1 49 F EMCS (22) TBI 12 

Mean 40.67       5.83 

SD 12.14       3.76 
a TBI = traumatic brain injury; b TPI = time post-ictus     

 Patient VS8 was a female who suffered from hypoxic ischemic encephalopathy at the 

age of 45, seven years before her MRI. The acute records provided to our research team 

did not include details about GCS score at the scene and from the ER or CT scan 

findings. However, their hospital admission diagnosis indicated that she was deeply 

comatose, responded momentarily to deep painful stimuli and presented decorticate 
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posture. Over a four-day period at the University of Western Ontario, she was 

behaviourally assessed four times using the CRS-R.  In all of them, the patient showed 

responses consistent with a diagnosis of VS. See Table 5 for behavioural features. This 

patient showed no evidence for behavioural or covert command following. 

Patient MCS4 was a female who suffered a closed head motor vehicle accident six years 

before the MRI scan at the age of 20. The acute records did not include details about 

patient’s GCS score at the scene and from the ER. A CT scan during her admission 

revealed a bilateral basal ganglia subarachnoid hemorrhage, intraventicular hemorrhage, 

a right caudate infarct, a right frontal hemorrhage, a small right parietal subdural 

hematoma and a left sacral fracture. At admission to our study, her medical records 

indicated severe cognitive impairments and severe motor/coordination impairments that 

would be consistent with a minimally conscious state. Over a five-day period at the 

University of Western Ontario, the patient was behaviourally assessed five times using 

the CRS-R and the above diagnosis was confirmed. The patient showed consistent visual 

pursuit and was thus diagnosed as MCS. See Table 5 for behavioural features. Patient 

MCS4 showed no evidence of behavioural command following nor did they show 

evidence of motor imagery; however, they did show consistent evidence of spatial 

navigation. 

Patient MCS5 was a male who suffered a closed head injury in a motor vehicle accident 

3 years before his MRI scan, at the age of 36 years old. The patient’s GCS score at the 

scene was 5 and was 3-5 in the ER, indicating consistent comatose state across both 

assessments. There is no information about his CT scan upon admission however it was 

reported that at the scene he was bleeding from his left ear canal, suffered a basal skull 

fracture and multiple facial bone fractures. On admission to our study, medical records 

show that his medical diagnosis was persistent vegetative state. However, over the five-

day period of tests at the University of Western Ontario, he was behaviourally assessed 

five times using the CRS-R and showed reproducible evidence of visual pursuit, which is 

consistent with a diagnosis of MCS. See Table 5 for behavioural features. Patient MCS5 

showed no evidence of behavioural or covert command following. 
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Table 5: Patient behavioural features from the CRS-R 

Finally, patient EMCS1 was female who, 13 years before her MRI scan, at the age of 36, 

suffered a closed head injury in a motor vehicle accident. The patient’s GCS at the scene 

  Patient ID  

  VS2 VS7 VS8 MCS4 MCS5 EMCS1 

Auditory Function Scale             

4-Consistent movement to command* 0 0 0 0 0 4 

3-Reproducible movement to command* 0 0 0 0 0 0 

2-Localization to sound 2 0 0 2 0 0 

1-Auditory startle 0 1 1 0 1 0 

0-None 0 0 0 0 0 0 

Visual Function Scale             

5-Object Recognition* 0 0 0 0 0 5 

4-Object localization: Reaching* 0 0 0 0 0 0 

3-Visual pursuit* 0 0 0 3 3 0 

2-Fixation* 0 0 0 0 0 0 

1-Visual startle 1 1 0 0 0 0 

0-None 0 0 0 0 0 0 

Motor Function Scale             

6-Funtional object use* 0 0 0 0 0 6 

5-Automatic motor response* 0 0 0 0 0 0 

4-Object manipulation* 0 0 0 0 0 0 

3-Localizatoin to noxious stimulation* 0 0 0 0 0 0 

2-Flexion withdrawal 2 0 2 0 0 0 

1-Abnormal posturing 0 1 0 1 1 0 

0-None/Flaccid 0 0 0 0 0 0 

Oromotor/Verbal Function Scale             

3-Intelligible verbalization* 0 0 0 0 0 0 

2-Vocalization/oral movement 0 0 0 0 0 2 

1-Oral reflexive movement 1 1 1 1 1 0 

0-None 0 0 0 0 0 0 

Communication Scale             

2-Functional: Accurate+ NA 0 0 0 0 2 

1-Non-functional: Intentional* NA 0 0 0 0 0 

0-None NA 0 0 0 0 0 

Arousal Scale             

3-Attention 0 0 0 0 0 3 

2-Eye opening w/o stimulation 2 0 2 2 2 0 

1-Eye opening w/ stimulation 0 1 0 0 0 0 

0-Unarousable 0 0 0 0 0 0 

TOTAL CRS-R SCORE 8 5 6 9 8 22 

 + Denotes emergence from MCS; * Denotes MCS; NA: Could not be evaluated/observed  
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was 3. Her GCS score in the ER was not recorded. There is no information about her 

admission CT scan although it was noted that the patient presented with global cerebral 

dysfunction, infrequent epileptic seizures and multiple contractures. Their medical 

records show that on admission to our study, EMCS1 was diagnosed as persistent 

vegetative/minimally responsive states. During the week of the patient’s scan, she was 

only assessed on two occasions, with the use of the CRS-R. On one day, she was 

diagnosed as EMCS because she showed evidence of functional object use with their 

right upper limb however on the second assessment day, she was diagnosed as MCS 

because she showed evidence of object manipulation instead. This patient visited the 

University of Western Ontario on two occasions prior to her scans, where she was 

assessed with the CRS-R: once three months prior and a second time two months before 

her scans. Both assessments showed diagnoses of EMCS, again because she reliably 

demonstrated functional object use. See Table 5 for behavioural features. As described 

above, patient EMCS1 showed consistent evidence of behavioural command following 

and she also showed consistent evidence of spatial navigation. She did not, however, 

show evidence for motor imagery. 

4.1.3 MRI Acquisition 

The participant datasets were obtained at the Centre for Functional and Metabolic 

Mapping (CFMM), at Robarts Research Institute (London, Canada). The DTI protocol 

used for this study was designed for the 3T Magnetom Prisma system, in which the 

images included 137 non-collinear directions with a b-value = 1500 s/mm2 (TR = 

1980ms, TE = 71ms, voxel size = 2x2x2, no gap, 64 slices, multiband acceleration factor 

= 4). In total, 21 participants (six patients and 15 healthy controls) were scanned with the 

137 directions protocol for this study. 

4.1.4 Statistical Analyses 

Single case-control statistical analyses were conducted using the BTD_Cov.exe program 

that accompanies the paper from Crawford, Garthwaite & Ryan (2011). This program 

compares a patient’s score to the score of the control group sample, in the presence of 

covariates. Linear correlations between the six dependent variables and age and global 
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FA values were performed, to determine which of these variables should be included as 

non-interest covariates. Age showed significant effects for both VL-M1 and M1-DN 

tracts. We excluded global FA as a variable in the following analyses because we are 

studying more fibres of interest. Global FA in not needed to control for the specificity of 

any impairment observed as we can test for impairment specificity by observing any 

differential effects at each fibre. Additionally, BTD_Cov.exe provides a point estimate 

(as well as the 95% confidence intervals) of the abnormality of the patient’s score. In 

other words, it provides an estimate of the percentage of the control population that 

would obtain a score lower than the patient’s (Crawford, Garthwaite & Ryan, 2011). 

Finally, this program also provides an interval estimate of the effect size (ES) of the 

difference between the case and control group. See Table 6 for fibre tract FA values for 

each patient and healthy control group means and standard deviations. We hypothesized 

that all the patients’ tracts would have lower FA values than the healthy control group’s 

mean FA and thus we established significance at one-tail α = .05.  

To investigate the relationship between a patient’s CRS-R score and their fibre tract FA 

value, we performed Spearman’s rank-order correlations between CRS-R scores and each 

dependent variable. 

Table 6: Healthy controls’ fibre tracts FA means and standard deviations and individual 

patient's fibre tract FA values 

  Fibre tracts 

Group   

LVL-

LM1 

RVL-

RM1 

LM1-

RDN 

RM1-

LDN 

LVL-

RDN 

RVL-

LDN 

Healthy controls Mean .398 .402 .416 .406 .352 .305 

  SD .024 .021 .021 .025 .029 .030 

DOC patients VS2 .296 .210 .294 .276 .353 .368 

  VS7 .085 .080 .260 .267 .290 .337 

  VS8 .000 .000 .000 .000 .242 .252 

  MCS4 .361 .422 .378 .417 .437 .406 

  MCS5 .305 .291 .332 .287 .365 .265 

  EMCS1 .389 .320 .390 .277 .437 .317 
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4.2 Results 

We reconstructed all three tracts in five of the six patients and all 15 healthy participants. 

In patient VS8, we could only reconstruct the VL-DN tract and therefore they could not 

be included in four of the six analyzes described below. As in Study I, we used mean FA 

as a measure of the structural integrity of each tract. We hypothesized that all the 

patients’ tracts would have lower FA values than the healthy control group’s mean FA 

and thus we established significance at one-tail α = .05.  

4.2.1 Differences between VS patients and healthy controls 

Patient VS2 showed FA values that were significantly different from the healthy group, 

bilaterally, on the VL-M1 tract, the M1-DN tract and showed lateralized significant 

differences in the right VL-DN tract. The FA value of this patient’s VL-DN tract was 

significantly higher compared to the control group. The left VL-DN tract did not differ 

from the healthy control group 

Patient VS7 showed significantly reduced FA bilaterally in the VL-M1 tract and M1-DN 

tract. They also showed significantly lower FA in the left VL-DN tract. The right VL-DN 

tract did not differ from the healthy control group. 

In patient VS8, we were unable to reconstruct the VL-M1 and M1-DN tracts; we were 

only able to reconstruct the VL-DN tract, which we include in the following analyses. 

Patient VS8 showed reduced FA in the left hemisphere of the VL-DN tract and showed a 

trend toward significant FA reduction in the right hemisphere of this tract. See Table 7. 

4.2.2 Differences between MCS/EMCS patients and healthy 
controls 

Patient MCS4 showed no significant reduction in FA values in either VL-M1 tracts or 

M1-DN tracts. Their left M1-DN tract however, trended towards significance. 

Additionally, patient MCS4 showed no significant reduction in FA values in the bilateral 

VL-DN tracts – they showed significantly higher FA values in both tracts compared to 

the healthy control group.  
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Table 7: P-values, point estimates and effect sizes of patient FA values 

Patient Fibre tract P-value Point estimate Effect size (UCI-LCI) 

VS2 Left VL-M1 0.00126 0.1257 -4.124 (-2.289 - -5.629) 

  Right VL-M1 0.00000 0.0001 -9.229 (-5.437 - -12.330) 

  Left M1-DN 0.00007 0.0066 -5.915 (-3.410 - -7.963) 

  Right M1-DN 0.00021 0.0209 -5.190 (-2.959 - -7.014) 

  Left VL-DN 0.48190 51.8102 0.048 (0.554 - -0.048) 

  Right VL-DN 0.03045 96.9551 2.105 (3.014 - 1.169) 

VS7 Fibre tract P-value Point estimate Effect size (UCI-LCI) 

  Left VL-M1 0.00019 0.0186 -11.905 (-5.234 - -17.468) 

  Right VL-M1 0.00002 0.0016 -15.277 (-7.550 - -21.650) 

  Left M1-DN 0.02805 2.8048 -5.250 (-0.263 - -9.676) 

  Right M1-DN 0.04163 0.0833 -4.697 (0.184 - -9.070) 

  Left VL-DN 0.03049 3.0486 -2.104 (-1.171 - -3.014) 

  Right VL-DN 0.15803 84.1970 1.074 (1.701 - 0.419) 

VS8 Fibre tract P-value Point estimate Effect size (UCI-LCI) 

  Left VL-M1 NA NA NA 

  Right VL-M1 NA NA NA 

  Left M1-DN NA NA NA 

  Right M1-DN NA NA NA 

  Left VL-DN 0.00133 0.1333 -3.761 (-2.285 - -5.218) 

  Right VL-DN 0.05083 5.0828 -1.810 (-0.963 - -2.631) 

MCS4 Fibre tract P-value Point estimate Effect size (UCI-LCI) 

  Left VL-M1 0.09776 9.7762 -1.470 (-0.639 - -2.164) 

  Right VL-M1 0.19774 80.2256 0.946 (1.541 - 0.259) 

  Left M1-DN 0.05931 5.9315 -1.800 (-0.867 - -2.571) 

  Right M1-DN 0.32813 67.1869 0.490 (1.035 - -0.103) 

  Left VL-DN 0.00660 0.0132 2.931 (4.105 - 1.732) 

  Right VL-DN 0.00273 99.7273 3.391 (4.720 - 2.040) 

MCS5 Fibre tract P-value Point estimate Effect size (UCI-LCI) 

  Left VL-M1 0.04482 4.4818 -3.158 (-0.154 - -5.828) 

  Right VL-M1 0.00474 0.4742 -5.241 (-1.756 - -8.202) 

  Left M1-DN 0.07172 7.1721 -2.681 (0.234 - -5.307) 

  Right M1-DN 0.01380 1.3801 -4.273 (-1.027 - -7.079) 

  Left VL-DN 0.32739 67.2609 0.472 (0.998 - -0.071) 

  Right VL-DN 0.10758 10.7575 -1.341 (-0.623 - -2.033) 

EMCS1 Fibre tract P-value Point estimate Effect size (UCI-LCI) 

  Left VL-M1 0.37681 62.3189 0.752 (4.709 - -3.280) 

  Right VL-M1 0.06461 6.4609 -3.814 (0.615 - -7.825) 

  Left M1-DN 0.31098 68.9024 1.186 (5.132 - -2.884) 

  Right M1-DN 0.04375 4.3745 -4.350 (0.175 - -8.405) 

  Left VL-DN 0.00652 99.3484 2.937 (4.113 - 1.736) 

  Right VL-DN 0.34981 65.0191 0.407 (0.927 - -0.128) 
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Patient MCS5 demonstrated bilateral FA reductions on both VL-M1 tracts and the right 

M1-DN tract. They showed no significant differences in the left M1-DN tract or either 

VL-DN tracts. 

Finally, patient EMCS1 showed a trend towards a significant FA reduction in the right 

VL-M1 tract, and a significant FA reduction in the right M1-DN tract. She showed no 

significant FA reduction in either the left VL-M1 or M1-DN tracts. Additionally, this 

patient showed no significant reduction in FA values in the left VL-DN tract – she 

showed significantly higher FA values compared to the healthy control in the left VL-DN 

tract. See Table 7. 

 

4.2.3 Correlation between fibre tract FA values and CRS-R scores 

CRS-R scores were significantly correlated with the left hemisphere FA values of each 

tract of interest: left VL-M1 fibre tract (rho = .975, p = .005), left M1-DN fibre tract (rho 

= .975, p - .005) and left VL-DN fibre tract (rho = .928, p = .008). CRS-R scores were 
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Figure 14: Raw fractional anisotropy score of each DOC patient and controls for each motor fibre path. 
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not significantly correlated with any of the right hemisphere fibre tract FA values (see 

Figure 15). 

Figure 15: Significant spearman correlations of CRS-R scores and fibre tract FA values for 

DOC patients. Panel A: left VL-M1 tract, n = 5; B: left M1-DN tract, n = 5; Panel C: left VL-

DN tract, n = 6. 

A 

B 

C



49 

 

4.3 Discussion 

In Study II, we reconstructed a closed motor cortico-cerebellar loop: we reconstructed 

efferent connections from the primary motor cortices to the cerebellum, efferent 

connections from the dentate nucleus of the cerebellum to the ventrolateral thalamus and 

as in Study I, afferent information to the primary motor cortex from the ventrolateral 

thalamus. We assessed the integrity of each of these loop segments in each DOC patient 

compared to a group of healthy controls using single-case comparison methodology. 

None of the patients in this study showed evidence of covert awareness in any fMRI or 

EEG task. 

In patient VS2, bilateral VL-M1 and M1-DN tracts showed significant impairments 

compared to controls. VL-DN tracts were intact in this patient. When described alongside 

their clinical profile, the structural impairment supports their overt capabilities: this 

patient showed consistent evidence of localization to sound. Their selective damage to 

VL-M1 and M1-DN would prevent them producing volitional, cognitively-mediated 

output in response to command. However, as they showed low level responses in a 

different modality, it may be reasonable to speculate that their intact VL-DN tracts 

support this ability, considering the cerebellum’s implication in orienting movements to 

changes in the environment (Tseng et al., 2007; Galea et al., 2011). When testing for 

localization to sound, CRS-R guidelines require the examiner to stand behind the patient, 

out of view and present an auditory stimulus (voice or noise) for five seconds on each 

side. For a patient to successfully complete this task, they must orient their head or eye in 

the direction of stimulus presentation on two trials (in the same direction), and scoring is 

not dependent on degree or duration of the head/eye movement (Giacino & Kalmar, 

2004). The patient is not overtly asked to orient their head/eyes in the direction of the 

stimulus. Their response is not goal-directed, it is reactionary. Acoustic processing 

(verbal and non-verbal sounds) has been found to involve the primary auditory cortices 

and surrounding lateral superior temporal cortices (Formisano et al., 2003; Wessinger et 

al., 2001; Zatorre & Belin, 2001). More complex auditory processing, such as lexico-

semantic processing, is supported by the anterior, middle, inferior and medial temporal 

areas in addition to inferior parietal and anterior inferior prefrontal regions (Binder et al., 
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2000; Longoni et al., 2005; Majerus et al., 2002; Martin, 1996). As such, the sound of 

paper rustling or a click is a much simpler stimulus to respond to, as opposed to 

generating movement in response to an auditory command. It has previously been shown 

that both VS and MCS respond similarly in response to auditory stimuli. Both diagnostic 

groups showed increased activation in auditory cortices, in addition to transverse 

temporal gyri and superior temporal gyrus. VS patients however, showed a much weaker 

activation in these areas compared to MCS patients (Boly et al., 2004). Furthermore, 

MCS patients demonstrated preserved functional connectivity between secondary 

auditory cortices, posterior temporal and prefrontal areas. The authors suggest that this 

preserved connection between auditory cortices and higher association areas allows MCS 

patients to process more complex auditory stimuli and to reliably demonstrate signs of 

command following. In the case of VS2, higher association motor areas like M1 may 

therefore not be required to generate movement in response to acoustic noise the 

environment. Higher association areas may only be recruited when processing stimuli 

requiring a cognitively-mediated response. We could therefore hypothesize that intact 

VL-M1 and/or M1-DN tracts are not essential to orient simple movements to low-level 

stimuli. It should be noted that localization to sound and auditory startle are two separate 

items. Auditory startle is a loud, unexpected stimulus used to elicit a reflexive response. 

Localization to sound is designed to assess if the patient can appraise that there is a 

change in their acoustic environment.  

Similar results were found in patients VS7 and VS8. Structurally, both patients showed 

bilateral impairment in the VL-M1 and VL-DN tracts. However, they showed lateralized 

impairments in the VL-DN tracts. Behaviourally, these two patients differed from patient 

VS2 in that they could not localize to sound. This further supports the idea that 

connections between the cerebellum and thalamus could support low-level movements, 

as simple as a glance, in response to stimuli that do not require cognitive mediation. 

Both MCS4 and MCS5 were diagnosed as MCS based on their ability for visual pursuit. 

Interestingly, they showed significant structural differences: MCS4 showed no significant 

impairment in any of the three tracts of interest, with the left M1-DN tract trending 
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towards significance while MCS5 showed significant impairment in bilateral VL-M1 

tracts and the right M1-DN tract. 

One explanation for MCS4’s intact motor tracts but lack of other signs of awareness 

could be related to their subcategorization within the MCS population. MCS patients can 

be divided into two groups: MCS+ and MCS-. MCS+ patient usually show more complex 

signs of return to consciousness, such as object reaching or intelligible verbalizations. 

(Bruno et al., 2011; Bruno et al., 2012). It is possible that MCS4 is MCS- and does not 

possess a level of awareness that would allow her to perform complex behaviours beyond 

visual pursuit which suggests that the CRS-R is capturing the real of awareness of this 

patient. Another characteristic of the MCS- subgroup is their consistent difficulty to focus 

their attention and maintain vigilance (Thonnard et al., 2014). This could point to 

impairment in the mesocircuit, as discussed in Chapter 1. With an intact cortico-

cerebellar motor loop, they may have the physical ability to generate overt responses but 

are unable to sustain sufficient levels of arousal to complete the tasks. It has previously 

been shown that a return of sustained arousal is most often followed by a return of motor 

functions (Schiff, 2010). This would call for further investigation of mesocircuit and 

cortico-subcortico-cerebellar paths within individual DOC patients to dissociate the 

involvement motor impairments from depressed arousal in patient overt responsiveness. 

However, the fact that MCS4’s cortico-cerebellar loop was intact would contradict the 

notion that they are MCS-, as preserved brain networks are characteristic of MCS+ 

patients (Bruno et al., 2011; Bruno et al., 2012). Another, simpler, explanation for an 

intact cortico-cerebellar loop but simultaneous lack of complex behaviours would be the 

fluctuating vigilance in MCS patients (whether MCS+ or MCS-). The visual function 

scale is the second scale to be assessed during administration of the Coma Recovery 

Scale-Revised. It is possible that after successfully completing visual pursuit, MCS4 was 

overcome by fatigue after the effort. As discussed in Chapter 1, many external factors can 

affect a patient’s performance on behavioural scales. Exhaustion is one of these 

exogenous variables, and may have precluded MCS4 from completing the rest of the 

assessment, despite possessing enough awareness and the physical ability to do so. 
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A simple explanation for MCS5’s clinical presentation would be supporting Graham et 

al. (2005)’s idea of magnitude, not location. Although MCS5 sustained damage similar to 

VS2, they did not sustain as much damage as VS2 and thus the residual motor 

capabilities allow MCS5 to demonstrate visual pursuit. We could speculate that MCS5 is 

truly and MCS- patient and does not possess the capabilities to perform complex 

behaviours beyond visual pursuit. 

Patient EMCS1, interestingly, displayed selective, lateralized damage to the right M1-DN 

tract and the impairment in their right VL-M1 tract trended towards significance. They 

did not show damage in either VL-DN tract. Behaviourally, EMCS1 was capable of: 

consistent movement to command, functional object use, and functional communication. 

Specifically, this patient was capable of these behaviours only with the right side of their 

body. That is to say, that their entire left M1-DN motor loop was intact, allowing for 

these overt responses, whilst their right VL-M1 and M1-DN tracts were significantly 

impaired, seemingly precluding the left side of their body from overt responsiveness. In 

this patient, their structural damage and behavioural profile provides further evidence for 

the hypothesis that in some patients, impairment of motor tracts may be affecting their 

overt capabilities to respond. 

Interestingly, we found lateralization effects in the relationship between impairment to 

the motor tracts studied above and CRS-R scores. Only the left hemisphere tracts 

significantly correlated with CRS-S scores, while none of the right hemisphere tracts 

showed significant effects. This confirms previous results by Lutkenhoff et al. (2015), 

who found increased left-lateralized damage to the thalamus in non-traumatic brain injury 

DOC patients. Although the functional significance of this lateralization has yet to be 

examined, the authors do stress the dependence of clinical behavioural assessments on 

residual language processing in these patients and highlight the need to develop non-

language based tasks when evaluating awareness. 

 A future direction for this study would be the description of the basal ganglia’s role in 

motor execution. The cortico-cerebellar loop described above works in conjunction with 

a smaller motor loop, involving the basal ganglia (Parent & Hazrati, 1995; Hoover & 
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Strick, 1999). The basal ganglia comprise the striatum, pallidum substantia nigra and 

subthalamic nucleus. This cluster of regions receive input from the primary motor cortex 

and feeds back into M1 through the ventrolateral thalamus, thus creating the cortico-basal 

ganglia-thalamo-cortical loop (Hoover & Strick, 1999). These two motor loops operate 

alongside each other in coordinating goal-directed behavior. The role of the cerebellum in 

motor control has been well established (Britsch et al., 1996; Lotze et al., 1999; Nair et 

al. 2003) but the exact role of the basal ganglia in motor control is still unclear (Parent & 

Hazrati, 1995). One of its proposed functions is the selection and triggering of 

coordinated voluntary movements. Indeed, patients with damage to one or all basal 

ganglia structures have shown hyperkinetic disorders, including chorea, ballism and tics 

or hypokinetic disorders such as akinesia, bradykinesia and rigidity (Albin, Young & 

Penney, 1989). In the above study, we did not reconstruct the cortico basal ganglia-

thalamo-cortical loop. Therefore, the involvement of the cerebellum in DOC 

responsiveness proposed earlier must remain speculative. Additional investigation of the 

implications of both these motor loops in motor control in DOC must be undertaken 

before robust conclusions can be made about the involvement of motor impairment in 

overt responsiveness in this clinical population. 
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Chapter 5 

5. Study III - Assessment of different diffusion tensor 

acquisition protocols at ultra-high fields 

Although understanding the type of information DTI provides and how to interpret this 

information is important, starting from ground zero and ensuring that the scanner 

acquisition parameters detect the correct information is vital. If the acquisition protocol 

cannot correctly model the tissue anisotropy, then any metrics or analyses that follow will 

be skewed, regardless of the field strength at which they were acquired. There are a 

handful of parameters that researchers and clinicians need to consider when acquiring 

diffusion data. These are parameters that researchers and clinicians can control and adjust 

to optimize the diffusion acquisition depending on the characteristics of the chosen field 

strength and regions of interest. 

The diffusion-weighting factor (b-value). A valuable tool in adjusting a DTI sequence’s 

capabilities at accurately detecting water diffusion is by changing the gradient amplitude, 

the duration of the sensitizing gradients and the time between the gradient pair. This 

diffusion weighting factor, or b-value, is measured in units of s/mm2, and can be 

expressed by the Stejskal-Tanner expression (Basser et al., 1994): 

𝑏 =  𝛾2𝐺2𝛿2(𝛥 − 𝛿/3) 

Where γ is the gyromagnetic ratio, G is the strength of the diffusion sensitizing gradients, 

δ is the duration of the gradient pulses and Δ is the time interval between the gradients. 

High b-values are achieved by increasing the strength, duration and time interval of the 

gradients. The higher the b-value, the more the image will be sensitive to diffusion, at the 

cost of the SNR (Descoteaux, Deriche, Knösche & Anwander, 2009; Figueiredo, 

Borgonovi & Doring, 2011). It has been noted that most DTI studies use relatively low b-

values, ranging from 700-1000 s/mm2 (Soares et al., 2013). Furthermore, the current 

clinical standards for diffusion weighted imaging use b-values of around 1000 s/mm2 

(Mukherjee, Chung, Berman, Hess, & Henry, 2008; Stieltjes et al., 2013). 
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An important factor to consider when determining the diffusion sensitivity of a DTI 

acquisition is the fibre tract(s)/voxel(s) of interest to be studied. If a path/voxel in a single 

orientation is to be estimated (e.g. lies primarily on one axis) then b-values of ≤ 1000 

s/mm2 are appropriate as they fit the tensor estimate and increase the SNR of the 

acquisition. On the contrary, if the path(s) of interest contain voxels with multiple fibre 

crossings, a high b-value (e.g. 3500 s/mm2) is appropriate to fit the data (Stieltjes et al., 

2013). Although low b-values increase the SNR of the acquisition, the information 

contained in these smaller measurements is inadequate to correctly estimate and resolve 

crossing WM fibres.  

Gradient sampling (diffusion directions). DWI treats each voxel as a perfect sphere. 

The minimum number of directions in which to apply excitation gradient to cover the 

entire surface of the sphere and collect diffusion information is six: anterior, posterior, 

superior, inferior, left and right. Measuring these six independent directions acquires 

enough information to determine the principal eigenvectors and eigenvalues. However, 

increasing the number of unique gradient directions (i.e. increasing the number of 

diffusion samples) leads to a more unbiased estimate of the tensor matrix, hence a more 

accurate reconstruction of fibre orientation. In 2004, Jones demonstrated that 30 unique 

diffusion directions are needed for a statistically rotationally-invariant reconstruction. In 

other words, when applying the gradient in 30 unique directions, the variance in the 

tensor parameters became independent of the orientation of the WM fibres. Conversely, 

when different tensor models are used, such as spherical deconvolution, up to 45 unique 

gradient directions can be needed (Tournier, Calamante, Connelly, 2009). Additionally, 

increasing the gradient diffusion samples increases the signal-to-noise ratio of the data 

(Ni, Kavcic, Zhu, Ekholm & Zhong, 2006). The number of directions to create a perfect 

estimate of the diffusion tensor is still unknown (Jones, Knösche, & Turner, 2013) as 

factors such as tensor model, and area of interest can affect the number of gradient 

sampling directions required to fit the tensor estimate accurately. Additionally, when the 

number of sampling directions increases, so does the diffusion acquisition time 

(Alexander et al., 2007; Ni et al., 2006) therefore the sampling directions can increase or 

decrease depending on the population being scanned and how long they can remain in the 

scanner.  
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Phase encoding direction(s). Single-shot echo planar imaging is most commonly used in 

diffusion MR imaging. Although this technique comes with many advantages, notably its 

rapid image acquisition, this technique can also cause severe distortions. These 

distortions present themselves in the form of inhomogeneities of the static magnetic (B0) 

field, the magnetic field that is parallel to the subject when they are in the supine position 

in the MR scanner. These inhomogeneities result in spatial and intensity distortions in the 

EPI images (Wu et al., 2008; Holland, Kuperman & Dale, 2010; Chang & Fitzpatrick, 

1992, Morgan et al., 2004; Andersson, Skare & Ashburner, 2003) along the phase 

encoding direction (i.e. along the axis in which the images were acquired). Several 

methods have been proposed to correct for these distortions, however there is no 

consensus on the optimal solution. Much like choosing the number of gradient diffusion 

directions, choosing the inhomogeneity correction method depends on the areas of 

interest (Wu et al., 2008; Holland et al., 2010). 

One approach gaining in popularity because of its ability to increase the SNR of the 

diffusion data, albeit at the expense of scan time, is the reverse gradient methods 

proposed by Bowtell et al. (1994) and extended by Andersson et al., (2003). This requires 

the acquisition of two EPI diffusion images: one along the main phase encoding axis (e.g. 

right to left, anterior to posterior or superior to inferior) and the second images along the 

same axis, but in the reversed direction (e.g. left to right, posterior to anterior or inferior 

to superior). These images are then superimposed to average the reconstructions and to 

estimate the field map of the undistorted image as they should look like in a homogenous 

field. This method will essentially double the scan time however it will also increase the 

SNR and ensure the minimization of EPI distortions. 

In this study, we designed three DTI acquisition protocols with a varying number of 

diffusion gradient sampling directions (65 directions, 137 directions and 139 directions) 

and phase encoding directions (single encoding direction (AP) or dual encoding 

directions (AP-PA)). We assessed how well each acquisition protocol performed 

probabilistic tractography of each fibre tract of the motor cortico-cerebellar loop. We 

hypothesized that the 137 and 139 directions acquisition protocols would outperform 65 

directions based on number of gradient sampling directions and that the 137 and 139 
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directions acquisition protocols would outperform 65 directions based on their phase 

encoding directions. 

5.1 Materials and Methods 

5.1.1 Participants 

Two healthy participants were recruited to undergo DTI acquisitions at 3T and at 7T. One 

subject was male, right-handed and 27 years of age; the second participant was female, 

left-handed and 23 years of age. The UWO Health Sciences Research Ethics Board 

provided ethical approval for the study (Appendix D and E). Anatomical T1, 

susceptibility weighted and FLAIR structural images were also acquired during these 

scans. 

5.1.2 MRI Acquisitions 

Pilot datasets were obtained at the Centre for Functional and Metabolic Mapping 

(CFMM) at Roberts Research Institute (London, Ontario). Three DTI protocols were 

acquired in each scanner, adding to a total of six DTI protocols used in the study. Three 

protocols were designed for the Siemens Magnetom Prisma 3T MRI system. The first of 

these protocols included 65 non-collinear directions with a b-value = 1000 s/mm2 (TR = 

7500ms, TE = 55ms, voxel size = 1.5x1.5x1.5mm, no gap, 84 slices), the second protocol 

included 137 non-collinear directions, with a b-value = 1000 s/mm2 (TR = 4080ms, TE = 

62.30ms, voxel size = 1.5x1.5x1.5. no gap, 84 slices, multiband acceleration factor = 2, 

PA-AP) and finally the third 3T DTI protocol included 139 non-collinear directions with 

a b-value = 2000s/mm2 (2 shells, TR = 4370ms, TE = 69.40ms, voxel size = 1.5x1.5x1.5, 

no gap, 84 slices, multiband acceleration factor = 2, PA-AP) (Appendix A). The other 

three DTI protocols were designed for the Siemens Magnetom 7T MRI system and 

similar in their parameters to the 3T protocols for a more accurate comparison. The first 

of the 7T protocols included 65 non-collinear directions, with a b-value = 1000s/mm2, 

(TR = 6000ms, TE = 49.2, voxel size = 1.5x1.5x1.5, no gap, 84 slices) and was 

approximately nine minutes long, the second protocol included 137 non-collinear 

directions with b-value = 1000s/mm2 (TR = 4000ms, TE = 53.4ms, voxel size = 

1.5x1.5x1.5, no gap, 84 slices, multiband acceleration factor = 2, AP-PA) and took 11 
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minutes to acquire images per phase encoding direction (approximately 22 minutes total) 

and the last 7T DTI protocol included 139 non-collinear with a b-value of 2000s/mm2 (2 

shells, TR = 4000ms, TE = 60.2ms, voxel size = 1.5x1.5x1.5, no gap, 84 slices, 

multiband acceleration factor = 2) and was approximately 12 minutes long in each phase 

encoding direction (approximately 24 minutes total; Appendix B). 

5.2 Results 

No quantitative measures were estimated at this point. Visual inspection of the 

streamlines from all three protocols was used to assess the results. We did not want to 

bias our estimation of the success probabilistic tractography of each protocol by 

comparing DTI metrics (FA and MD), therefore, we picked the optimized protocol solely 

based on the reconstructed streamlines. Criteria for a successful reconstruction included: 

the success of the streamline of reaching both target masks, little to no streamline 

deviation into neuroanatomically incorrect regions, and finally the necessity of exclusion 

or termination masks to aid in reconstructing an accurate streamline. We used the White 

Matter Atlas by Hermoye et al. (http://www.dtiatlas.org/) as a visual reference to ensure 

that the streamlines were anatomically sound. Since this study sought to optimize DTI 

parameters at 7T, only the streamlines from this magnetic field will be reported below. 

3T streamlines of the optimized protocol will be reported in Chapter 6. 

5.2.1 VL-M1 streamlines 

Fibres between the thalamus and primary motor cortices belong to the cortico-spinal 

tract. As such, the fibres connecting the ventrolateral thalamic nuclei and M1 pass 

through the posterior limb of the internal capsule, ascend into the superior thalamic 

radiations followed by the superior region of the corona radiata and terminate in the 

motor cortices, anterior to the central sulci. The neuroanatomical accuracy did not differ 

between streamlines. Furthermore, all three reconstructions required termination masks 

directly under the thalamic ROI mask, to prevent probtrackX from including voxels  

http://www.dtiatlas.org/
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outside the ROIs of interest which could skew any quantitative metrics. They did not 

differ in the amount of “help” required to reconstruct an accurate path. 

5.2.2 M1-DN streamlines 

We reconstructed fibres between the primary motor cortices and the dentate nuclei as part 

of the corticopontocerebellar tract, which is made up of two smaller tracts: corticoponto 

fibres and pontocerebellar fibres. The fibres from the primary motor cortices descend into 

the pontine nuclei through by way of the corona radiata and internal capsule (corticponto 

fibres). Then, the fibres cross at the middle cerebellar peduncles into the contralateral 

cerebellar hemisphere and terminate in the dentate nuclei. In terms of reconstructing 

Figure 17: VL-M1 streamline reconstructions in MNI152 standard space, anterior view. Panel A: 65 directions 

protocol; Panel B: 137 directions protocol; Panel C: 139 directions protocol. Streamlines in blue, target masks in red. 

B A C 

A B C D 

Figure 16: Anatomical accuracy of three 7T VL-M1 streamlines. 65 directions protocol in yellow, 137 directions 

protocol in light blue and 139 directions protocol in burgundy. Panel A: internal capsule (z = 38); Panel B: anterior 

thalamic radiations (z = 45); Panel C: corona radiata (z = 55); Panel D: primary motor cortices (z = 69) with central 

sulci in orange. 
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corticoponto fibres, both the 65 directions and 137 directions protocols accurately 

reconstructed M1 to pons fibres by passing through the corona radiata followed by the 

internal capsule. The 139 directions protocol did not perform as well: when descending 

into the corona radiata, the streamline in the left hemisphere reconstructed voxels passing 

through the corpus callosum thus prematurely crossing in to the opposite hemisphere. A 

supratentorial termination mask across the hemispheric fissure was required for this 

protocol. In terms of pontocerebellar fibres, both the 137 directions and 139 directions 

protocols performed equally well, by crossing at the middle cerebellar peduncles and 

terminating in the contralateral dentate nuclei. The 65 directions protocol successfully 

resolved this crossing at the middle cerebellar peduncles, however in the left hemisphere 

path, it also reconstructed ascending voxels from the contralateral cerebellum, traveling 

up the cortex. No exclusion nor termination mask could be placed in an anatomically 

sound region to prevent the streamline from reconstructing these “stray” voxels. We 

therefore judged the 137 directions as the best protocol for the M1-DN streamline as it  

accurately reconstructed fibres from the corticoponto and pontocerebellar tracts with aid 

from exclusion or termination. 

A B C D 

Figure 18: Anatomical accuracy of three 7T M1-DN streamlines. 65 directions protocol in yellow, 137 directions 

protocol in light blue and 139 directions protocol in burgundy. Panel A: dentate nuclei (z = 16); Panel B: where 139 

directions crosses through corpus callosum (z = 44); Panel C: corona radiata (z = 55); Panel D: primary motor cortices 

(z = 69) with central sulci in orange. 
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5.2.3 VL-DN streamlines 

Fibres between the ventrolateral nuclei and dentate nuclei descend from the thalamus, 

into the decussation of the cerebellar peduncle, cross into the contralateral hemisphere 

and terminate in the dentate nuclei by way of the superior cerebellar peduncle. Both the 

137 directions and 139 directions protocols performed equally: streamlines in both 

hemispheres required exclusion masks in the superior cerebellar peduncle that were 

ipsilateral the thalamic nuclei and contralateral to the dentate nuclei. That is to say, when 

tracking fibres between the left ventrolateral thalamic nucleus and right dentate nucleus, 

the superior cerebellar peduncle was placed in the left hemi sphere, and vice versa. 

Superior cerebellar peduncle exclusion masks were also placed in the 65 directions 

A B C 

Figure 19: M1-DN streamline reconstructions in MNI152 standard space, posterior view. Panel A: 65 directions 

protocol; Panel B: 137 directions protocol; Panel C: 139 directions protocol. Streamlines in blue, target mask in red. 

A B C 

Figure 20: Anatomical accuracy of three 7T VL-DN streamlines. 65 directions protocol in yellow, 137 directions 

protocol in light blue and 139 directions protocol in burgundy. Panel A: ventrolateral thalamic nucleus (z = 33); Panel 

B: crossing into superior cerebellar peduncle (z = 22); Panel C: dentate nucleus. 
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streamlines however, they did not aid in the reconstruction and neuroanatomically 

incorrect voxels were reconstructed in the opposite cerebellar hemisphere. 

5.3 Discussion 

In Study III, we visually assessed and compared the probabilistic tractography results of 

three diffusion tensor imaging sequences, at 7T MRI. Specifically, we reconstructed 

fibres from the primary motor cortex to dentate nucleus of the cerebellum, the dentate 

nucleus to the ventrolateral nucleus and finally fibres from the ventrolateral nucleus to 

the primary motor cortex.  

We confirmed our hypotheses for this study. The more information gained about the 

diffusion profile, the more accurate and less uncertain the probabilistic streamline 

reconstructions. We hypothesized that the 137 directions and 139 directions protocol 

would outperform the 65 directions protocol based on the number of gradient sampling 

directions and artifact correction with a dual phase encoding scheme. This was true for 

two of the three tracts of interest. For longer and more complex tracts such as the VL-DN 

and M1-DN tracts, the streamlines from the 65 directions protocol underperformed 

compared to the two other protocols.  

Using Monte Carlo simulations, Jones (2004) determined that at least 20 unique gradient 

sampling directions are required for a robust and rotationally invariant estimation of 

anisotropy, while at least 30 unique directions are required for a robust estimation of the 

A B C 

Figure 21: VL-DN 7T streamline reconstructions in MNI152 standard space, posterior view. Panel A: 65 directions 

protocol; Panel B: 137 directions protocol; Panel C: 139 directions protocol. Streamlines in blue, target mask in red. 
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diffusion tensor model. One could argue that sampling at 65, 137 or 139 directions would 

therefore not yield superior estimates of diffusion anisotropy or orientation if 30 sampling 

directions are enough for robust estimates. Increasing the number of sampling directions 

also increases acquisition time, making protocols with many diffusion encoding 

directions difficult for use in clinical settings. On the other hand, increasing the number 

of diffusion gradient sampling directions increases the signal-to-noise ratio (SNR) of the 

DTI acquisitions (Alexander et al., 2007; Ni et al., 2006). DTI acquisitions with 

insufficient SNR will bias the estimated diffusion tensor parameters (Jones & Basser, 

2004). Weak diffusions signals tend to be overestimated at low SNR which results in the 

underestimation of diffusion metrics (e.g. primary eigenvectors and mean diffusivity) and 

an underestimation of anisotropy measures (e.g. fractional anisotropy) (Mukherjee et al., 

2008). In this study, we can visually observe the effects of increased SNR (i.e. increased 

sampling directions) on the streamline reconstructions of each protocol: as sampling 

directions increase, the streamline becomes more “narrow”. This is not an indication of a 

more accurate reconstruction but rather an indication that the uncertainty of the 

reconstructed streamline based on principal diffusion direction is low (Behrens et al., 

2003b). This could help explain why the 65 directions protocol underperformed 

compared to the two other acquisitions: there was high uncertainty in the reconstructed 

streamlines of this protocol, so much so that even termination and exclusion masks could 

not help guide accurate reconstruction. Our results thus provide some evidence that more 

gradient sampling directions reduce the uncertainty of connections based on principal 

diffusion direction. The effects of SNR on estimation of DTI metrics have been well 

documented (Anderson, 2001; Pierpaoli & Basser, 1996; Bastin et al., 1998; Armitage & 

Bastin, 2001; Farrell et al., 2007). Although our results suggest that more gradient 

sampling directions, and de facto higher SNR, visually yield more accurate streamline 

reconstructions, quantitative analyses need to be conducted to determine the effect of the 

parameters on DTI metrics. 
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Chapter 6 

6. Study IV – Comparison of DTI streamlines and metrics 

at 3T and 7T MRI 

In this study, we validated the 7T DTI acquisition sequence from Study III in a larger 

healthy control group. We compared qualitative and quantitative results of this 7T 

acquisition to DTI from a similar 3T acquisition sequence. Our seeds of interest in this 

study include the ventrolateral nuclei (VL), primary motor cortices (M1) and dentate 

nuclei of the cerebellum (DN). This sequence was designed to aid in the parcellation of 

thalamic nuclei, to better understand their fibre paths connections to rest of the cortex in 

vivo. As discussed, previous DTI studies have preliminarily confirmed results from 

animal studies, concluding that the ventrolateral nucleus of the thalamus in primarily 

involved in motor performance due to its connection to the primary motor cortices and 

cerebellum. These human studies however, lacked specificity in their seeds or 

termination regions of their tractography streamlines. They either oversimplified thalamic 

connections by using the entire thalamus as a seed (rather than a specific nucleus) or used 

a top-down approach and seeded the cortex with the thalamus as the general termination 

region. This lack of specificity is in part due to the fact that thalamic nuclei have not been 

reliably parcellated at low magnetic fields (1.5T/3T) because of the low spatial resolution 

and the size of the thalamus (Behrens et al., 2003; Metzger et al., 2013). The goal of this 

study is to assess if imaging at ultra-high fields can aid in the identification of specific 

thalamic nuclei and in the reconstructions of fibre projections, as compared to imaging at 

low magnetic fields. 

6.1 Materials and Methods 

6.1.1 Participants 

A group of 10 right-handed healthy controls were recruited for this study. The ages of 

this control group ranged from 22 to 29 years (M = 24.70, SD = 2.36) and this sample 

was composed of six males and four females. The UWO Health Sciences Research Ethics 

Board provided ethical approval for the study (Appendix D and E). Anatomical T1, 
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susceptibility weighted and FLAIR structural images were also acquired during these 

scans. 

6.1.2 MRI Acquisitions 

Datasets of all participants were obtained at the Centre for Functional and Metabolic 

Mapping (CFMM) at Roberts Research Institute (London, Ontario). Participants were 

scanned once at 3T MRI then at 7T MRI on a separate day. The 137 directions protocol 

from Study III was acquired in each scanner, adding to a total of two DTI acquisitions per 

participant: 3T protocol included 137 non-collinear directions, with a b-value = 1000 

s/mm2 (TR = 4080ms, TE = 62.30ms, voxel size = 1.5x1.5x1.5. no gap, 84 slices, 

multiband acceleration factor = 2, PA-AP) and the 7T protocol included 137 non-

collinear directions with b-value = 1000s/mm2 (TR = 4000ms, TE = 53.4ms, voxel size = 

1.5x1.5x1.5, no gap, 84 slices, multiband acceleration factor = 2, AP-PA). 

6.1.3 Statistical Analyses 

We could reconstruct all three bilateral tracts of interest in all participants. Probabilistic 

tractography was visually assessed as described in Chapter 5 section 5.2. Fractional 

anisotropy, mean diffusivity and volume were calculated for each tracts and global 

fractional anisotropy was calculated for each participant in both scanners using the 

FSLUTILS program, fslmaths (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils). Using a 

paired sample t-test, we compared the metrics of each tract across scanners. To follow-up 

on fractional anisotropy comparisons, we used FMRIB’s Automated Segmentation Tool 

(Fast; Zhang et al., 2001) to acquire white matter masks from each participant’s 

anatomical T1 image. We multiplied this segmented white matter map by the fractional 

anisotropy mask and calculated whole brain fractional anisotropy. We then proceeded to 

average FA ratios for paired comparisons. That is to say, for each tract, we divided the 

raw FA values by global white matter and averaged these ratios across participants. We 

compared these new average tract FA values between scanners.  

We also calculated the amount of overlap between 3T and 7T ROI placement and 

streamline location by warping the masks and fibre paths into T1 anatomical space. To do 

so, we registered the 7T T1 anatomical images to the 3T T1 anatomical images in every 
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participant, using FMRIBS’s Linear Image Registration Tool (FLIRT; Jenkinson & 

Smith, 2001; Jenkinson et al., 2002). Then, we registered every participant’s b=0 image 

to the 3T-7T coregistered T1 image and used the resulting transformation matrix to warp 

each ROI ask from diffusion space into T1 anatomical. We followed up on these analyses 

by using the same procedure to transform ROI masks and path streamlines into MNI 

standard space. We registered participants’ b=0 to the MNI152 2mm brain template and 

used the resulting transformation matrix to warp ROI masks and fibre streamlines to MNI 

space. We used IBM SPSS Statistics for Windows, Version 23 to run all statistical 

analyses. 

6.2 Results 

6.2.1 Probabilistic tractography of motor tracts of interest 

3T Probabilistic Tractography. In 100% of participants (10/10 participants), a 

brainstem termination mask placed below the thalamic masks was necessary for an 

accurate reconstruction of ipsilateral VL-M1 fibres. For accurate M1-DN streamline 

reconstructions, 70% of participants (7/10 participants) required a mask to aid 

reconstructing this contralateral fibre tract. Four of these participants required a 

supratentorial exclusion mask along the hemispheric fissure to prevent the reconstructed 

fibre path from prematurely crossing into the opposite hemisphere through the corpus 

callosum. Two participants required a superior cerebellar peduncle exclusion mask as 

their streamline was crossing into the contralateral hemisphere through the superior 

peduncle instead of the middle cerebellar peduncle, which is the anatomically correct 

trajectory. One participant required a hemispheric supratentorial exclusion mask along 

with a superior cerebellar peduncle exclusion mask (only in the right hemisphere) to 

arrive at an anatomically correct streamline. When reconstructing the fibre tracts between 

the thalamic and dentate nuclei ROIs, 100% of participants required a superior cerebellar 

peduncle exclusion mask that was ipsilateral to the thalamic ROI and contralateral to the 

dentate ROI. When calculating streamlines between the left ventrolateral thalamic 

nucleus and right dentate nucleus, the superior cerebellar peduncle was placed in the left 

hemisphere. 
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7T Probabilistic Tractography. The fibre path between the ventrolateral thalami and 

M1 performed similarly to tracking at 3T: 100% of participants required a brainstem 

termination mask below the thalamic ROIs. When tracking fibres between the primary 

motor cortices and the dentate nuclei, pilot results from Study III replicated in 60% of 

participants (6/10 participants). These participants did not require any mask to aid in the 

reconstruction of this streamline. In the remaining four participants, some help was 

needed when tracking this path. Three of these participants required a hemispheric 

supratentorial exclusion mask as voxels were crossing into the opposite hemisphere via 

the corpus callosum. In the last subject, adjustment was needed in only one hemisphere: a 

superior cerebellar peduncle exclusion mask was necessary in the right hemisphere to 

correctly resolve crossing at the anatomically correct middle cerebellar peduncle. Fibre 

tracking from the ventrolateral thalami to the dentate nuclei also performed like 3T 

streamlines. All participants required a superior cerebellar peduncle exclusion masks to 

accurately reconstruct this path. 

6.2.2 Differences in fractional anisotropy 

Paired t-test comparisons of average raw FA values revealed significant differences at 

every comparison. 3T Global FA was significantly lower than 7T Global FA, t(9) = -

15.025, p < .001. Both left (t(9) = -6.234, p < .001) and right (t(9) = -3.537, p = .006) VL-

M1 tract FA values were significantly lower at 3T than 7T. Similar results were observed 

for M1-DN tracts: left 3T tract had significantly lower FA values than 7T tracts (t(9) = -

14.300, p < .001) and right 3T tracts also showed significantly lower FA values than their 

7T counterparts (t(9) = -6.702, p < .001). VL-DN tracts showed similar results: both 

hemispheres showed significantly reduced FA values at 3T compared to 7T (Left: t(9) = -

6.100, p <.001; Right: t(9) = -5.673, p < .001). See Table 8. 
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Table 8: Paired sample t-tests of mean fibre tract and global FA between scanners (raw 

scores) 

Pair Fibre tract Mean FA SD t df p-value 

1 3T Global FA 0.394 0.006 -15.025 9 .000* 

  7T Global FA 0.414 0.008       

2 3T LVL-LM1 0.441 0.02 -6.234 9  .000* 

  7T LVL-LM1 0.485 0.023       

3 3T RVL-RM1 0.432 0.024 -3.537 9 .006* 

  7T RVL-RM1 0.471 0.029       

4 3T LM1-RDN 0.470 0.017 -14.300 9 .000* 

  7T LM1-RDN 0.545 0.015       

5 3T RM1-LDN 0.477 0.023 -6.702 9 .000* 

  7T RM1-LDN 0.539 0.019       

6 3T LVL-RDN 0.420 0.034 -6.100 9 .000* 

  7T LVL-RDN 0.518 0.033       

7 3T RVL-LDN 0.411 0.034 -5.673 9 .000* 

  7T RVL-LDN 0.499 0.045       
*p < .05 

Paired t-test comparisons of average FA ratio values (Tract FA/WM FA) revealed similar 

results. Both left (t(9) = -4.755, p = .001) and right (t(9) = -3.025, p = .014) VL-M1 tract 

FA ratios were significantly lower at 3T than 7T. Similar results were observed for M1-

DN tracts: left 3T tract had significantly lower FA values than 7T tracts (t(9) = -8.310, p 

< .001) and right 3T tracts also showed significantly lower FA values than their 7T 

counterparts (t(9) = -6.091, p < .001). Both VL-DN tracts showed significantly reduced 

0.000

0.100

0.200

0.300

0.400

0.500

0.600

Global

FA

L VL-

M1

R VL-

M1

L M1-

DN

R M1-

DN

L VL-

DN

R VL-

DN

F
ra

ct
io

n
al

 A
n

is
o

tr
o

p
y

Fiber tracts

3T

7T

*

* *

* * * *

Figure 22: Average fibre tract FA value at 3T and 7T. *p < .05. 
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FA values at 3T compared to 7T (Left: t(9) = -5.637, p <.001; Right: t(9) = -5.149, p < 

.001). See Table 9. 

Table 9: Paired sample t-tests of mean fibre tract and global FA between scanners 

(ratios) 

Pair Fibre tract Mean FA ratio SD t df p-value 

1 3T Global FA .276 .009978763 -2.124 9 0.063 

  7T Global FA .282 .008399647       

2 3T LVL-LM1 1.602 .063269949 -4.755 9 .001* 

  7T LVL-LM1 1.722 .065766496       

3 3T RVL-RM1 1.568 .066984481 -3.025 9 0.014* 

  7T RVL-RM1 1.671 .08790794       

4 3T LM1-RDN 1.708 .098102257 -8.310 9 < .001* 

  7T LM1-RDN 1.934 0.066948044       

5 3T RM1-LDN 1.734 0.104389032 -6.091 9 < .001* 

  7T RM1-LDN 1.915 0.076900765       

6 3T LVL-RDN 1.527 0.134713547 -5.637 9 < .001* 

  7T LVL-RDN 1.837 0.097920299       

7 3T RVL-LDN 1.492 0.138181509 -5.149 9 .001* 

  7T RVL-LDN 1.772 0.16541819       
*p < .05 
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6.2.3 Differences in mean diffusivity 

Paired t-test comparisons of average mean diffusivity (MD) values revealed non-

significant differences at every comparison. The MD of 3T fibre tracts and the MD of 7T 

fibre tracts were not significantly different from each other. See Table 10. 

Table 10: Paired sample t-tests of mean fibre tract MD between scanners 

Pair Fibre tract Mean MD SD t df p-value 

1 3T LVL-LM1 0.000699 0.000011 1.811 9 0.104 

  7T LVL-LM1 0.000694 0.000016       

2 3T RVL-RM1 0.000711 0.000009 2.100 9 0.065 

  7T RVL-RM1 0.000697 0.000022       

3 3T LM1-RDN 0.000713 0.000017 0.291 9 0.778 

  7T LM1-RDN 0.000710 0.000033       

4 3T RM1-LDN 0.000706 0.000019 -0.024 9 0.981 

  7T RM1-LDN 0.000707 0.000019       

5 3T LVL-RDN 0.000722 0.000028 0.567 9 0.584 

  7T LVL-RDN 0.000714 0.000039       

6 3T RVL-LDN 0.000729 0.034000 -0.149 9 0.885 

  7T RVL-LDN 0.000731 0.045000       
*p < .05 
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6.2.4 Differences in volume 

Only two paired between scanner comparisons of tract volume were significant. The 

mean right M1-DN tract volume was significantly lower at 3T compared to 7T t(9) = -

3.714, p = .005. Opposite results were observed in the left VL-DN tract: mean tract 

volume at 3T was significantly higher than mean tract volume at 7T, t(9) = 3.371 p = 

.008. See Table 11. 

Table 11: Paired sample t-tests of mean fibre tract volumes between scanners 

Pair Fibre tract Mean volume SD t df p-value 

1 3T LVL-LM1 2916.980 463.061 -.003 9 .998 
 7T LVL-LM1 2917.662 519.706    

2 3T RVL-RM1 2967.073 321.774 .607 9 .559 
 7T RVL-RM1 2856.664 482.185    

3 3T LM1-RDN 6022.747 1025.578 -1.479 9 .173 
 7T LM1-RDN 6511.409 694.984    

4 3T RM1-LDN 5864.314 1038.388 -3.714 9 .005* 
 7T RM1-LDN 6844.981 638.883    

5 3T LVL-RDN 6265.175 2800.13 3.371 9 .008* 
 7T LVL-RDN 3291.145 958.579    

6 3T RVL-LDN 5088.359 2405.269 -0.436 9 .673 
 7T RVL-LDN 5736.842 2960.889    

*p < .05 

Figure 25: Average fibre tract volume at 3T and 7T, *p < .05. 
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6.2.5  Percentage overlap in ROI placement 

When comparing the percentage of overlap in ROI placement across scanners in T1 

anatomical space, little overlap was observed in thalamic and cerebellar ROIs. Between 

3T and 7T ventrolateral thalamic nuclei ROIs, there was a 10.55% and 15.35% overlap 

for the left and right hemispheres respectively. Between the dentate nuclei ROIs, overlap  

 

more than doubled: there was a 32.87% overlap in the left hemisphere and 30.30% 

overlap in the right hemisphere. Cortical M1 ROIs displayed the highest amount of 

overlap. Between the left 3T and 7T ROIs, we found a 45.49% overlap and a 42.87% 

overlap between the right 3T and 7T ROIs (See Figure 26). We performed the same 

analyses but this time in standard space (MNI152). The trend in results was similar for 

this analysis. Thalamic and cerebellar ROIs had lower percent overlap than cortical M1 

masks. Specifically, left and right thalamic ROIs had overlaps of 9.09% and 12.10% 

respectively while left and right dentate nuclei ROIs overlapped across scanners by 

18.29% and 21.06% respectively (See Figure 27). 
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M1: primary motor cortices; DN: dentate nuclei. 
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6.2.6 Percentage overlap in reconstructed fibre tracts 

When comparing the percentage of overlap in streamline location across scanners in T1 

anatomical space, the path with the highest average overlap between participants was the 

right VL-M1 tracts (34.15%). The left VL-M1 tracts averaged 29.25% overlap. Between 
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Figure 27: Average ROI overlap (%) across scanners in MNI152 standard space. VL: ventrolateral nuclei; M1: 

primary motor cortices; DN: dentate nuclei. 
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3T and 7T M1-DN streamlines, there was a 28.24% and 32.88% overlap for the left and 

right hemispheres respectively. Between the VL-DN paths, there was a 17.51% overlap 

in the left hemisphere and 20.66% overlap in the right hemisphere (See Figure 28). We 

performed the same analyses but this time in standard space (MNI152). The trend in 

results was similar for this analysis. VL-M1 tracts showed the highest amount of overlap 

with 42.10% and 42.67% for the left and right hemispheres respectively. The left and 

right M1-DN tracts had overlaps of 32.70% and 34.45% respectively while left and right 

VL-DN fibre paths overlapped across scanners by 22.12% and 24.17% respectively (See 

Figure 29). 

6.3 Discussion 

In Study IV, in 100% of participants, both the VL-M1 and VL-DN streamlines were 

reconstructed with the help of exclusion and terminations masks at 3T and 7T. For the 

M1-DN streamline, 70% of participants at 3T required at least one exclusion or 

termination mask, while at 7T this was true for only 40% of participants. In 30% of 

participants at 3T and 60% of participants at 7T, this M1-DN streamline did not require 

any aid from target masks to accurately reconstruct the fibre path. These probabilistic 

tractography results provide superficial evidence that the 7T sequence used in this study 

is adequate for imaging these motor tracts and can better resolve crossing fibres near the 
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Figure 29: Average streamline overlap (%) across scanners in MNI152 standard space. VL: ventrolateral 

nuclei; M1: primary motor cortices; DN: dentate nuclei. 
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cerebellum compared to its 3T counterpart. It is possible that ultra-high fields more easily 

reconstructed the M1-DN streamlines because of the increased SNR, leading to a more 

accurate tensor estimate and subsequently less uncertainty of the fibre pathway 

(Mukherjee et al., 2008). However, only quantitative analyses can elucidate 7T’s true 

gains for this sequence, as visual inspection of probabilistic streamlines is not sufficient. 

We found significant differences between 3T and 7T average FA values for each tract 

and for global FA values. Even when we used a ratio of the raw FA values and global 

white matter FA, significant differences were observed in every fibre tract, except for 

global fractional anisotropy. FA values at 7T were consistently significantly higher than 

FA values at 3T. This seems to contradict previous work (Pierpaoli & Basser, 1996; 

Pierpaoli et al. 1996; Jones & Basser, 2004) which have found higher FA values at low 

SNR. This trend is usually interpreted as an overestimation of the anisotropy measures – 

interestingly a few studies have found higher FA values at higher field strengths, however 

none could provide a definite explanation for the observations (Huisman et al., 2006; 

Polder et al., 2009; Qin et al., 2009). Indeed, as Huisman et al. (2006) propose, the fact 

that our results contradict previous Monte Carlo simulations showing the relationship 

between FA values and SNR (Pierpaoli & Basser, 1996) leads us to believe that 

differences in SNR between the 3T and 7T acquisitions are not responsible for the 

measured differences. However, the noise level modeled in simulation studies is a fixed 

parameter; conversely in the scanner, exogenous factors such a movement artifacts, eddy-

current distortions, chemical shift artifacts and field (B0/B1) inhomogeneities can all 

affect the true SNR profile of the acquisition (Farrell et al., 2007). 

On the one hand, perhaps B0 and B1 inhomogeneity artifacts were so severe at 7T that 

diffusion signal loss decreased the SNR of the acquisition, therefore increasing FA 

estimates compared to 3T estimates. Some studies have shown SNR loss of up to 15% at 

ultra-high fields because of these artifacts (Speck & Zhong, 2009). However, quality 

control of the diffusion data prior to any tractography or quantitative analyses did not 

reveal any serious artifacts of this sort. On the other hand, common 3T DTI acquisition 

parameters include 30 gradient diffusion directions and 2mm3 isotropic voxels 

(Mukherjee et al., 2008). In our own 3T acquisition, we increased the gradient sampling 
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directions to 137 and increased the spatial resolution with smaller voxel sizes (1.5mm3 

isotropic voxels) thereby theoretically increasing the SNR and reducing partial volume 

effects of the acquisitions (Alexander et al., 2007), perhaps then leading to higher SNR 

than at 7T. This could also explain our contradictory results. An important note to make 

is that a single measure of raw FA values of a fibre tract is arbitrary and meaningless 

when observed in isolation – this metric only become meaningful when compared across 

groups (e.g. clinical populations) or longitudinally to observe microstructural changes of 

a path over time. Therefore, the fact that our 7T average FA values are significantly 

higher than 3T average FA values cannot speak to the quality of the DTI sequence in 

each scanner. A more accurate measure of the scanner’s performance of estimating FA is 

modeling the uncertainty of the FA values of each tract (Farrell et al., 2007; Polders et 

al., 2010; Polders et al., 2011) at different SNR values. By doing this, the effects of SNR 

on the precision of DTI metrics can be evaluated. This is also a major limitation to our 

study. We did not measure the SNR of each scanner’s acquisition, nor did we calculate 

the uncertainty of our metrics and until these two analyses are performed, we cannot 

reliably interpret our observations of significant differences in FA values across magnetic 

fields. 

We proceeded to investigate the reliability of ROIs across scanners, to ensure that our 

seed placement did not affect the tractography results. We calculated the overlap between 

3T and 7T masks for each ROI (thalamic, cerebellar and cortical) and as reported, we 

found very low agreement in ROI placement between 3T and 7T acquisitions. Human 

error is a simple and easy explanation for these results as thalamic and cerebellar masks 

were manually created in the native diffusion space of each participant. However, 

acquisitions at both scanners had the same field of view and number of slices so 

theoretically the anatomical markers used to create these masks should occur at the same 

position in each scanner. For thalamic masks, the most dorsal slice of the anterior 

commissure was identified and center voxels for this ROI were place 3 slices (4.5 mm) 

dorsal to this landmark. For cerebellar masks, the slice where Vermis X protrudes into the 

4th ventricle was used as the landmark at which to place center voxels for this ROI. Upon 
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further inspection of the data, we noticed that in the 7T acquisitions, the participants’ 

heads were tilted forward as compared to the 3T acquisitions. This misalignment between 

both scanners is what we posit as the cause behind the low overlap between regions of 

interest. The forward tilt of the head at 7T would skew the placement of ROIs at that 

field, placing them much lower in anatomical space than they appeared in diffusion space 

(see Figure 30). These effects could only be observed once both 3T and 7T ROIs had 

been warped into native coregistered T1 and standard MNI152 space. Another important 

A B 

C D 

Figure 30: Representation of head tilt at 3T and 7T. HC1 at Panels A and B; HC2 at Panels C and D. Panels A and C 

are diffusion space from 3T acquisitions and Panels B and D are diffusion space from 7T acquisitions. The left 

ventrolateral thalamic nucleus ROI in yellow and the anterior commissure circle in orange. 
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detail to note is that 7T ROIs significantly differed to 3T ROIs on the z-axis plane. They 

did not differ on the x-axis or y-axis planes, thus supporting the head tilt hypothesis. This 

low agreement could be problematic for our probabilistic tractography results. If the 

ROIs are significantly different from each other, then perhaps our streamlines are 

reconstructing different fibre paths across scanners, which could speak to the differences 

we observed in tractography success. To measure if the difference in ROI placement 

affected streamline reconstructions, we warped the streamlines into T1 anatomical and 

MNI152 space to calculate the amount of overlap between 3T and 7T fibre paths. Our 

results lead us to conclude that the significant differences in ROI placement did in fact 

lead to significant differences in streamline location, mainly demonstrating differences in 

the z-axis plane (similar to the ROI overlap results). We reported mediocre agreement 

between 3T and 7T streamlines.  

We further reported comparisons in MD and volume of each fibre tract between scanners. 

We observed no differences between scanners of average MD values of any of the six 

tracts of interest. When considered alongside the observed differences in FA values 

however, this observation is curious. Fractional anisotropy and mean diffusivity have an 

inverse relationship (Alexander et al., 2007): as FA increases, MD decreases. As such, we 

would expect this relationship to persist in our own results. We would expect MD to be 

significantly higher at 3T than at 7T, considering FA at 3T was significantly lower than at 

7T. This is, however, was not the case. Mean diffusivity is not affected by incorrect 

estimation of the principal eigenvector in a given voxel as MD is the mean off all three 

diffusion directions (Soares et al., 2013). Fractional anisotropy on the other hand, is 

highly affected by incorrect estimation of the principal diffusion direction (i.e. it is highly 

affected by unresolved crossing fibres in a voxel). It has been shown that MD is a stable 

metric across different levels of SNR (Farrell et al., 2007) which leads us to conclude that 

there is a high level of uncertainty in our estimations of fractional anisotropy at either 3T 

or 7T (or both) potentially caused by incorrect estimation of principal eigenvectors. This 

would explain why we observed significant differences in this metric across scanners. 

These speculations can be addressed only once we model the uncertainty in both FA and 

MD estimations at different SNR levels. Finally, we only observed significant differences 

of fibre tract volume between 3T and 7T right M1-DN tracts and left VL-DN tracts. The 
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volume of fibre paths is calculated by multiplying the voxel volume of the acquisition 

(3.375mm3 in our case) by the number of voxels included in the streamline. This measure 

cannot speak to any differences in the microstructure of the fibre paths of interest 

however in the context of comparison of tractography streamlines, it could be useful. If 

the volume of tracts (i.e. the number of voxels of each tract) does not differ between 

scanners, then we could conclude that streamlines of similar sizes are being 

reconstructed. This would add additional support to the idea that although our ROI 

placements differed between scanners, the streamlines themselves overlapped adequately 

and did not significantly differ in terms of their size. 
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Chapter 7 

7. General Discussion 

The overall goals of this thesis were twofold: 

1) First, map the white matter connections of motor execution loops in patients with 

disorders of consciousness. 

2) Second, develop a 7T DTI sequence optimized to image these motor tracts in 

DOC patients, and assess if imaging at ultra-high fields incurs any gains in the 

identification of the ventrolateral thalamic nuclei and its cortical projections. 

The first two studies were designed to further the investigation into the neural 

underpinnings of motor performance in this patient group and expand results from 

Fernández-Espejo et al. (2015). Studies I and II showed preliminary evidence of the 

involvement of impairments to the motor system in overt responsiveness in DOC 

patients. Our results from these studies suggest that across diagnostic categories, DOC 

patients demonstrate some level of motor impairment. This impairment is contaminating 

their performance on behavioural assessments and prevents these patients from overtly 

demonstrating their true level of awareness. None of the patients described in these two 

studies demonstrated covert awareness, suggesting that motor function abnormalities are 

pervasive to all patients in this clinical population, not just those few who have 

manifested retained awareness with impaired motor execution functions. Based on our 

results, one could then ask the question: if all DOC patients have impaired motor 

abilities, are these truly disorders of consciousness or rather disorders of cortical motor 

systems? At first glance, we could conclude that these patients are in fact all aware of 

themselves and their surroundings, and simply lack the motor capabilities to interact with 

their environment. 

The involvement of the motor system in DOC, however, is only one piece of the puzzle. 

As demonstrated by post-mortem studies of this patient group (Adams et al., 1999; 

Adams et al., 2000; Jennett et al., 2001), widespread damage to the thalamus is the most 
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common injury in DOC patients. This highlights the need to investigate the thalamus’ 

role in DOC, specifically investigating the functions of different thalamic nuclei. As 

discussed above, parcellation of these subcortical nuclei is not possible at 3T due to the 

low spatial resolution and the small size of the regions under investigation (Behrens et al., 

2003; Metzger et al., 2013). Multimodal imaging at ultra-high fields, however, has been 

shown to be successful at segmenting the thalamus (Calamante et al., 2011; Lenglet et al., 

2012; Xiao et al., 2016) and opens the possibility to investigate multiple thalamic 

mechanisms in DOC patients. Future directions for Studies I and II to complete this 

puzzle would be to map out fibres from the dorsomedial nucleus of the thalamus and to 

reconstruct its cortical and subcortical connections, in accordance with Schiff’s (2008) 

mesocircuit hypothesis. This control fibre would help elucidate the role of the motor 

system and the role of the arousal system in differentiating a “true” VS from covert 

awareness. 

Beyond the implications for patients with disorders of consciousness, Studies I and II also 

inform current capabilities of acquiring diffusion data 3T and demonstrated the need for 

imaging at ultra-high fields in this clinical population. As described in Study II, more 

than half our sample of DOC patients and a third of our healthy control group had to be 

excluded from the study because we were unable to reconstruct VL-DN and M1-DN 

tracts. These excluded participants were scanned with a less informative diffusion 

sequence than the patients and controls described in Study II. This demonstrated the 

importance of acquisition parameters in diffusion tensor imaging and their impact in 

imaging clinical populations. Study III confirmed this conclusion: the less informative of 

the three tested protocols did not perform as well as the other two acquisition protocols of 

interest. Based on these results, we chose the acquisition protocol that required the least 

“help” possible in reconstructing neuroanatomically correct streamlines. In our fourth 

study, we proceeded to validate this protocol choice in a group of healthy participants, 

where we acquired the 7T acquisition of interest as well as the images from its 3T 

counterpart in each participant. We then proceeded to qualitatively and quantitatively 

compare the reconstructions of motor tracts across healthy participants. Study IV 

demonstrated preliminary evidence that acquisitions at 7T performed better probabilistic 

tractography than at 3T. Conversely, there was very low agreement in ROI mask 
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placement and streamline location across magnetic fields. More studies are needed to 

determine the cause of this low agreement and how this affects probabilistic tractography 

and DTI metrics. A main limitation of this study was the lack of investigation into the 

effects of the SNR of each scanner on DTI metric. Specifically, more studies need to be 

conducted to model the SNR of each acquisition and to model the SNR’s effect on raw 

fractional anisotropy values as well as the uncertainty of DTI metrics. This will determine 

if there is any true gain to be had when imaging at ultra-high fields, beyond tractography. 

This modeling will also help explain the unexpected relationship between FA and MD 

observed, and will elucidate how well either magnetic field estimated these metrics. The 

next step with the optimized 7T sequence would be to investigate tractography from 

different thalamic nuclei, specifically from the mediodorsal nucleus. Successful 

tractography in healthy controls from this thalamic nucleus would confirm the clinical 

relevance of this 7T sequence in allowing a double dissociation between motor execution 

fibres and mesocircuit fibres. 

It is important to stress that the analysis pipeline and diffusion protocols designed in this 

study were designed specifically to be used in a clinical population. This affected how we 

performed probabilistic tractography, influenced the possible diffusion parameters we 

could adjust to benefit our sequence and constrained our results from the beginning. 

Firstly, there are two main techniques in placing ROIs to initiate probabilistic 

tractography. Manual placement of ROIs, the method used in this thesis, is highly 

susceptible to human error and bias based on neuroanatomical priors. The second “brute 

force” method consists of seeding all voxels in the cortex to generate all possible white 

matter streamlines and manually selecting the tracts of interest (Mukherjee et al., 2008). 

Although this second technique is considered technically superior, this is not a viable 

option for the clinical population of interest in this thesis. Due to the global damage 

sustained by severe brain injury patients, using the brute force method of ROI generation 

would be unreliable as the white matter tracts in these patients severely deviate from 

healthy white matter streamlines. Additionally, due to the herniation process that occur in 

traumatic brain injury patients, manual placement of ROIs has been the most reliable way 

to ensure that the correct regions are being seeded and included in the streamlines of 

interest in the patients studied. In clinical populations, accurate estimation of white matter 
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microstructure is paramount if researchers and clinicians seek to characterize damage or 

disruption to white matter paths as part of the pathological process (Horsfield & Jones, 

2002). It has been established that increasing the number of gradient sampling directions 

will yield a better estimation of the diffusion tensor (Mukherjee, 2008). Conversely, a 

better estimation of the tensor leads to less uncertainty in streamline reconstructions 

(Behrens et al., 2003b) which is beneficial when the goal is to infer the microstructure of 

specific white matter paths. This, however, will also increase the scanning time which is 

not always possible when imaging a clinical population, especially patients with disorders 

of consciousness. We therefore were constrained to optimize parameters to fit a specific 

timeframe. In the end, the protocol used in Study IV took 22 minutes to run, 11 minutes 

in each phase encoding direction. 

Finally, future studies are needed to validate the optimized 7T sequence in DOC patients. 

Only then will we be able to determine if this 7T sequence brings any benefit above and 

beyond the capabilities at 3T MRI when characterizing white matter microstructure in a 

chronic brain injury patient. This will also demonstrate if this 7T sequence is adequate to 

parcellate thalamic nuclei to investigate other mechanisms which may be underlying 

DOC symptomology. 
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Appendix B: 7T diffusion tensor imaging protocols in healthy participants. 
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Appendix C: Ethics approval notice for data collection in patients with disorders of 
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Appendix D: Ethics approval notice for 3T data collection in healthy participants. 
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Appendix E: Ethics approval notice for 7T data collection in healthy participants. 
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Appendix F: Letter of information for 3T data collection in healthy participants. 
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Appendix G: Letter of information for 7T data collection in healthy participants 
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