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Abstract

This thesis investigates problems in a number of different areas of graph theory and its
applications in other areas of mathematics.

Motivated by the 1-2-3-Conjecture, we consider the closed distinguishing number of a
graph G, denoted by dis[G]. We provide new upper bounds for dis[G] by using the
Combinatorial Nullstellensatz. We prove that it is NP-complete to decide for a given
planar subcubic graph G, whether dis[G] = 2. We show that for each integer t there is
a bipartite graph G such that dis[G] > t. Then some polynomial time algorithms and
NP-hardness results for the problem of partitioning the edges of a graph into regular
and/or locally irregular subgraphs are presented. We then move on to consider Johnson
graphs to find resonance varieties of some classes of sparse paving matroids. The last
application we consider is in number theory, where we find the number of solutions of
the equation x2

1 + · · · + x2
k = c, where c ∈ Zn, and xi are all units in the ring Zn. Our

approach is combinatorial using spectral graph theory.

Keywords: Edge-partition problems, Semiregular number, Adjacency matrix, Reso-
nance variety, Closed distinguishing labeling, Computational complexity, Combinatorial
Nullstellensatz, Sparse paving matroid and Johnson graph.
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Chapter 1

Introduction

Graph theory is a rapidly developing field with extensive applications in other fields of

modern mathematics. Many theorems in graph theory are related to different ways of

coloring (labeling) graphs. For example, the famous four-color theorem states that every

planar graph is four-colorable. In this thesis, at first we study the closed distinguishing

labelings of a graph which is motivated by the 1-2-3-Conjecture. Then motivated by the

1-2-3-Conjecture over regular graphs, we consider the problem of partitioning the edges

of a graph into regular and/or locally irregular subgraphs. We then turn our attention to

the Johnson graphs to find resonance varieties of some classes of sparse paving matroids.

We provide some examples of sparse paving matroids with non-trivial resonance varieties,

which generalizes the previous examples. Finally, with the help of spectral graph theory

and labeling of Cayley graphs, we solve a counting problem in number theory.

1.1 Labeling of graphs

A vertex coloring is an assignment of labels or colors to each vertex of a graph such

that no edge connects two identically colored vertices. It is NP-complete to decide if

a given graph admits a k-coloring for a given k ≥ 3. The 1-2-3-Conjecture, posed in

2004 by Karoński, Łuczak, and Thomason [5], states that one may label the edges of any

connected graph on at least 3 vertices from the set {1, 2, 3} (call the label function w)

so that the function f(v) =
∑

u∈N(v)w(uv) is a proper vertex colouring.

Motivated by the 1-2-3-Conjecture, Axenovich et al. [1], introduced closed distinguishing

1



Introduction 2

labelings of a graph. An assignment of numbers to the vertices of a graph G is said to

be closed distinguishing if for any two adjacent vertices v and u the sum of labels of

the vertices in the closed neighborhood of the vertex v differs from the sum of labels of

the vertices in the closed neighborhood of the vertex u unless they have the same closed

neighborhood. The closed distinguishing number of a graph G, denoted by dis[G], is the

smallest integer k such that there is a closed distinguishing labeling for G using integers

from the set {1, 2, . . . , k}. Define also dis(G) using N(u) instead of N [u] and call the

corresponding coloring open distinguishing. We prove that it is NP-complete to decide,

for a given planar subcubic graph G, whether dis[G] = 2. We also prove the same result

for a given bipartite subcubic graph. Among other results, we show that for each integer

t there exists a bipartite graph G such that dis[G] > t. This give a partial answer to a

question raised by Axenovich et al. that how dis[G] function depends on the chromatic

number of a graph. Finally, using the Combinatorial Nullstellensatz we improve the cur-

rent upper bound and give various upper bounds for the closed distinguishing number of

graphs.

A graph is locally irregular if its adjacent vertices have distinct degrees. The irregu-

lar chromatic index, denoted by χ′irr(G), is the minimum number k such that the graph

G can be partitioned into k locally irregular subgraphs. Let G be a regular graph. It

follows immediately that χ′irr(G) = 2 if and only if one may label the edges of G from

the set {1, 2} so that the function f(v) =
∑

u∈N(v)w(uv) is a proper vertex colouring.

Since the status of the 1-2-3-Conjecture regarding regular graphs is still not clear, the

aforementioned observation is of interest.

A graph G is weakly semiregular if there are two numbers a and b, such that the de-

gree of every vertex is a or b. The weakly semiregular number of a graph G, denoted by

wr(G), is the minimum number of subsets into which the edge set of G can be partitioned

so that the subgraph induced by each subset is a weakly semiregular graph. We present

a polynomial time algorithm to determine whether the weakly semiregular number of a

given tree is two. On the other hand, we show that determining whether wr(G) = 2 for

a given bipartite graph G with at most three numbers in its degree set is NP-complete.

Among other results, for every tree T , we show that wr(T ) ≤ 2 log2 ∆(T ) +O(1).

A graph G is a [d, d + s]-graph if the degree of every vertex of G lies in the interval

[d, d+s]. A [d, d+1]-graph is said to be semiregular. The semiregular number of a graph

G, denoted by sr(G), is the minimum number of subsets into which the edge set of G
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can be partitioned so that the subgraph induced by each subset is a semiregular graph.

We prove that the semiregular number of a tree T is d∆(T )
2 e. On the other hand, we

show that determining whether sr(G) = 2 for a given bipartite graph G with ∆(G) ≤ 6

is NP-complete.

1.2 Resonance varieties of matroids

Let A = (A•, d) be a commutative, differential graded algebra (or simply CDGA) over

complex numbers. So A =
⊕

i≥0A
i is a graded Q-vector space, with a multiplication

map · : Ai ⊗Aj → Ai+j where u · v = (−1)ijv · u, and a differential d : Ai → Ai+1 where

d(u · v) = du · v + (−1)iu · dv, for all u ∈ Ai and v ∈ Aj .

We will assume that A0 = Q, and Ai is finite-dimensional, for all i ≥ 0. So we can

identify the vector space H1(A) = Z1(A)/B1(A) with the cocycle space Z1(A). For each

element a ∈ Z1(A) ∼= H1(A), we have the following cochain complex,

(A•, δa) : A0 δ0
a // A1 δ1

a // A2 δ2
a // · · · , (1.1)

where δia(u) = a · u+ du, for all u ∈ Ai. It is easy to see that δi+1
a δia(u) = 0.

For each integer i ≥ 0, define the degree-i resonance variety

Ri(A) = {a ∈ H1(A) | H i(A•, δa) 6= 0}. (1.2)

The study of resonance varieties has led to interesting connections with other branches

of mathematics. For example, generalized Cartan matrices [7], Latin squares [11] and

the Bethe Ansatz [2].

The main motivation to the try to find the resonance varieties comes from the tan-

gent cone formula which relates the degree-one resonance varieties to the characteristic

varieties of G, where G is a finitely presented 1-formal group.

Let M be a matroid (or any combinatorial object like graph). By the Brieskorn-Orlik-

Solomon Theorem [7], it is known that the resonance varieties associated with a matroid

depend only on combinatorics of the matroid. So it is natural to try to find the resonance

varieties of the matroid. For degree 1, there is a full characterization [4]. For cohomolog-

ical degree greater than 1, the full characterization is at present far from being solved.
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There has been some work, for example [3], but little is known. For instance, Papadima

and Suciu in [8], proved that for the sum of two matroids M1 and M2 we have

Rk(M1 ⊕M2) =
⋃

p+q=k

Rp(M1)×Rq(M2).

A paving matroid is a matroid in which every circuit has size at least as large as the ma-

troid’s rank. A sparse paving matroid is a paving matroid in which its dual is a paving

matroid. It has been conjectured that almost all matroids are sparse paving matroids

[6]. In chapter 4, with the help of Johnson graphs and combinatorial techniques we find

the resonance varieties of some classes of sparse paving matroids.

The Johnson graphs are a special class of graphs defined from systems of sets. Let

E be a finite set of size n, and let 0 < r < n. The Johnson graph J(n, r) is the graph

with vertex set {X ⊆ E : |X| = r} in which any two vertices are adjacent if and only if

they have r − 1 elements in common. It is known that B ⊆ {X ⊆ E : |X| = r} is the

collection bases of a sparse paving matroid if and only if {X ⊆ E : |X| = r} − B is an

independent set in J(n, k).

Let M be a sparse paving matroid of rank r. Let a =
∑n

i=1 αiei and fa : I
r−1 → I

r

be defined by left multiplication by a. We show that a ∈ Rr−2(M) if and only if fa is

not injective. Using the structure of Johnson graphs we show that if the intersection of

all of the minimum circuits of M is non-empty, then Rr−2(M) is trivial. Also, we find

Rr−2(M), if the intersection of all of the minimum circuits of M except one of them

is non-empty. Among other results, we show that if the rank of M is large enough in

comparison to the number of minimum circuits, then Rr−2(M) is trivial.

1.3 On the addition of squares of units modulo n

Another application of graph theory we consider is in number theory. The problem of

finding explicit formulas for the number of representations of a natural number n as the

sum of k squares is one of the interesting and classical problems in number theory. For

example, if k = 4, then Jacobi’s four-square theorem states that this number is 8
∑

m|cm

if c is odd and 24 times the sum of the odd divisors of c if c is even.
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Let a1, . . . , ak be arbitrary elements in the ring Zn. Recently, Tóth [9] found formu-

las for the number of solutions of the equation a1x
2
1 + · · ·+ akx

2
k = c, where c ∈ Zn, and

xi all belong to Zn.

Now, consider the equation

x2
1 + · · ·+ x2

k = c,

where c ∈ Zn, and xi are all units in the ring Zn. We denote the number of solutions of

this equation by Ssq(Zn, c, k). Yang and Tang [10] obtained a formula for Ssq(Zn, c, 2).

Here we provide an explicit formula for Ssq(Zn, c, k), for an arbitrary k.

The idea may be sketched as follows: first, it is easy to show that if m,n are coprime

numbers, then Ssq(Zmn, c, k) = Ssq(Zm, c, k)Ssq(Zn, c, k). So it is enough to find a

formula for Ssq(Zpα , c, k) where p is a prime number. Let Z×2
n = {x2;x ∈ Z×n }. Let

p be an odd prime number. There is a natural map between solutions of the above

equation and (0, c)-walks in the directed Cayley graph Cay(Zpα ,Z×2
pα ), defined by send-

ing (±x1, . . . ,±xk) to the walk 0, x2
1, x

2
1 + x2

2, . . . , x
2
1 + · · ·+ x2

k. Thus, enumerating the

number of solutions amounts to 2k times enumerating these walks. By exploiting the

structure of this graph, one can reduce this calculation to the case that α = 1. The num-

ber of walks can then be identified as a particular entry in the kth power of the adjacency

matrix of this graph; in this case the adjacency matrix can be described explicitly, and

hence one can obtain an exact formula. An exact formula for Ssq(Z2α , c, k) can be found

by direct counting.
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Chapter 2

On the algorithmic complexity of

adjacent vertex closed distinguishing

number of graphs

2.1 Introduction

In 2004, Karoński et al. in [19] introduced a new coloring of a graph which is generated

via edge labeling. Let f : E(G)→ N be a labeling of the edges of a graph G by positive

integers such that for every two adjacent vertices v and u, S(v) 6= S(u), where S(v)

denotes the sum of labels of all edges incident with v. It was conjectured that three

integer labels {1, 2, 3} are sufficient for every connected graph, except K2 [19] (1-2-3

Conjecture). Currently the best bound that was proved by Kalkowski et al. is five [18].

For more information we refer the reader to a survey on the 1-2-3 Conjecture and related

problems by Seamone [27] (also see [4, 6, 8, 10, 12, 24, 30]). Different variations of dis-

tinguishing labelings of graphs have also been considered, see [5, 7, 17, 20–22, 25, 26, 28].

On the other hand, there are different types of labelings which consider the closed neigh-

borhoods of vertices. In 2010, Esperet et al. in [13] introduced the notion of locally

identifying coloring of a graph. A proper vertex-coloring of a graph G is said to be

locally identifying if for any pair u, v of adjacent vertices with distinct closed neighbor-

hoods, the sets of colors in the closed neighborhoods of u and v are different. In 2014,

Aïder et al. [1] introduced the notion of relaxed locally identifying coloring of graphs. A

7



Algorithmic complexity of adjacent vertex closed distinguishing number of graphs 8

vertex-coloring of a graph G (not necessary proper) is said to be relaxed locally identify-

ing if for any pair u, v of adjacent vertices with distinct closed neighborhoods, the sets

of colors in the closed neighborhoods of u and v are different. Note that a relaxed locally

identifying coloring of a graph that is similar to locally identifying coloring for which the

coloring is not necessary proper. For more information see [14, 16, 27].

Motivated by the 1-2-3 Conjecture and the relaxed locally identifying coloring, the closed

distinguishing labeling as a vertex version of the 1-2-3 Conjecture was introduced by

Axenovich et al. [3]. For every vertex v of G, let N [v] denote the closed neighborhood of

v. An assignment of numbers to the vertices of a graph G is closed distinguishing if for any

two adjacent vertices v and u the sum of labels of the vertices in the closed neighborhood

of the vertex v differs from the sum of labels of the vertices in the closed neighborhood

of the vertex u unless N [u] = N [v] (i.e. they have the same closed neighborhood). The

closed distinguishing number of a graph G, denoted by dis[G], is the smallest integer

k such that there is a closed distinguishing assignment for G using integers from the

set {1, 2, . . . , k}. For each vertex v ∈ V (G), let L(v) denote a list of natural numbers

available at v. A list closed distinguishing labeling is a closed distinguishing labeling f

such that f(v) ∈ L(v) for each v ∈ V (G). A graph G is said to be closed distinguishing

k-choosable if every k-list assignment of natural numbers to the vertices of G permits

a list closed distinguishing labeling of G. The closed distinguishing choice number of

G, dis`[G], is the minimum natural number k such that G is closed distinguishing k-

choosable. In this work we study closed distinguishing number and closed distinguishing

choice number of graphs.

In this work, we also consider another parameter, the minimum number of integers

required in a closed distinguishing labeling. For a given graph G, the minimum number

of integers required in a closed distinguishing labeling is called its strong closed distin-

guishing number diss[G]. Note that a vertex-coloring of a graph G (not necessary proper)

is said to be strong closed distinguishing labeling if for any pair u, v of adjacent vertices

with distinct closed neighborhoods, the multisets of colors in the closed neighborhoods

of u and v are different.
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2.2 Closed distinguishing labeling

In this section we study the closed distinguishing number and the closed distinguishing

choice number of graphs. We prove theorems in Section 2.5.

2.2.1 The difference between dis[G] and dis`[G]

It was shown [3] that for every graph G with ∆ ≥ 2, dis[G] ≤ dis`[G] ≤ ∆2 − ∆ + 1.

Also, there are infinitely many values of ∆ for which G might be chosen so that dis[G] =

∆2−∆ + 1 [3]. We prove that the difference between dis[G] and dis`[G] can be arbitrary

large and show that for every number t there is a graph G such that dis`[G]−dis[G] ≥ t.

Theorem 2.2.1. For every positive integer t there is a graph G such that dis`[G] −
dis[G] ≥ t.

2.2.2 The complexity of determining dis[G]

Let T 6= K2 be a tree. It was shown [3] that dis`[T ] ≤ 3 and dis[T ] ≤ 2. Here,

we investigate the computational complexity of determining dis[G] for planar subcubic

graphs and bipartite subcubic graphs.

Theorem 2.2.2. Let G be a planar subcubic graph G. It is NP-complete to decide

whether dis[G] = 2.

Although for a given tree T , we can compute dis[T ] in polynomial time [3], but the

problem of determining the closed distinguishing number is hard for bipartite graphs.

Theorem 2.2.3. Let G be bipartite subcubic graph G. It is NP-complete to decide

whether dis[G] = 2.

Note that in the proof of Theorem 2.2.3, which follows in Section 2.5, we reduced Not-

All-Equal to our problem and the planar version of Not-All-Equal is in P [23], so the

computational complexity of deciding whether dis[G] = 2 for planar bipartite graphs

remains unsolved.

Theorem 2.2.4. For every integer t ≥ 3, it is NP-complete to decide whether dis[G] = t

for a given graph G.

Note that Theorems 2.2.2,2.2.3 and 2.2.3 are in NP.
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2.2.3 Upper bounds for dis`[G] and dis[G]

It was shown that for every graph G with ∆ ≥ 2, dis[G] ≤ dis`[G] ≤ ∆2 − ∆ + 1 [3].

Here, we improve the previous bound.

Theorem 2.2.5. Let G be a simple graph on n vertices with degree sequence ∆ = d1 ≥
d2 ≥ . . . ≥ dn = δ and ∆ 6= 1. Define s := d1 + · · ·+ d∆ −∆.

(i) dis`[G] ≤ s+ 1 ≤ ∆2 −∆ + 1.

(ii) dis`[G] ≤ m, where m is the number of edges.

(iii) If there are exactly t vertices with degree ∆, then

dis`[G] ≤ min{∆2 − 2∆ + t+ 1,∆2 −∆ + 1}.

(iv) If there is a unique vertex with degree ∆, then dis`[G] ≤ ∆2 − 3∆ + 4.

(v) If G is a strongly regular graph with parameters (n, k, λ, µ), then

dis`[G] ≤ k(k − λ− 1) + 1.

(vi) dis`[G] ≤ (
n− 1

2
)2 + 1.

2.2.4 Lower bound for dis[G]

Let G be a bipartite graph with partite sets A and B which is not a star. Let, for

X ∈ {A,B}; ∆X = max
x∈X

d(x) and δX,2 = min
x∈X,d(x)≥2

d(x). It was shown [3] that

dis[G] ≤ min{c
√
|E(G)|, b∆A − 1

δB,2 − 1
c+ 1, b∆B − 1

δA,2 − 1
c+ 1},

where c is some constant. Thus, for a given bipartite graph G, dis[G] = O(∆) [3].

Regarding dis[G] as a function, Axenovich et al. [3] said: "One of the challenging

problems in the area is to determine how dis[G] depends on the chromatic number of a

graph. The situation is far from being understood even for bipartite graphs." We give

a negative answer to this problem and show that for each t there is a bipartite graph G

such that dis[G] > t.

Theorem 2.2.6. For each integer t, there is a bipartite graph G such that dis[G] > t.
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2.2.5 Split graphs

A split graph is a graph whose vertex set may be partitioned into a clique K and an inde-

pendent set S. It is well-known that split graphs can be recognized in polynomial time,

and that finding a canonical partition of a split graph can also be found in polynomial

time. We prove the following result.

Theorem 2.2.7. If G is a split graph, then dis[G] ≤ (ω(G))2.

2.3 Strong closed distinguishing number

In this section, we focus on the strong closed distinguishing number of graphs. For any

graph G, we have the following.

diss[G] ≤ dis[G] ≤ dis`[G] (2.1)

For a given connected bipartite graph G = [X,Y ], except K2, define f : V (G)→ {1,∆}
such that:

f(v) =

1, if v ∈ X

∆, if v ∈ Y

Let x ∈ X and y ∈ Y . If
∑

v∈N [x] f(v) =
∑

v∈N [x] f(v), then ∆ deg x + 1 = ∆ + deg y.

Hence ∆(deg x− 1) = deg y− 1. Thus, diss[G] ≤ 2. So, by Theorem 2.2.6, the difference

between dis[G] and diss[G] can be arbitrary large. Here we increase the gap.

Theorem 2.3.1. For each n, there is a graph G with n vertices such that dis[G] −
diss[G] = Ω(n

1
3 ).

Let G be an r-regular graph and f : V (G) → {a, b} be a closed distinguishing labeling.

Define:

g(v) =

a′, if f(v) = a,

b′, if f(v) = b.

It is easy to check that if a′ 6= b′, then g : V (G) → {a′, b′} is a closed distinguishing

labeling. Thus, for an r-regular graph G, diss[G] = 2 if and only if dis[G] = 2.
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a b

d c

Figure 2.1: G = C4

Let a and b be two numbers and a 6= b, we show that for a given 4-regular graph

G, it is NP-complete to decide whether there is a closed distinguishing labeling from

{a, b}.

Theorem 2.3.2. For a given 4-regular graph G, it is NP-complete to decide whether

diss[G] = 2.

2.4 Notation and Tools

All graphs considered in this chapter are finite, undirected, with no loops or multiple

edges. If G is a graph, then V (G) and E(G) denote the vertex set and the edge set of G,

respectively. Also, ∆(G) denotes the maximum degree of G and simply denoted by ∆.

For every v ∈ V (G), dG(v) and NG(v) denote the degree of v and the set of neighbors

of v, respectively. Also N [v] = N(v) ∪ {v}. For a given graph G, we use u ∼ v if two

vertices u and v are adjacent in G.

Let G be a graph and K be a non-empty set. A proper vertex coloring of G is a

function c : V (G) → K, such that if u, v ∈ V (G) are adjacent, then c(u) 6= c(v). A

proper vertex k-coloring is a proper vertex coloring with |K| = k. The smallest number

of colors needed to color the vertices of G for obtaining a proper vertex coloring is called

the chromatic number of G and denoted by χ(G). Let G be the graph of Figure 2.1. Let

ψ : V (G) → {1, 2} be defined by ψ(a) = ψ(c) = 1 and ψ(b) = ψ(d) = 2. Then ψ is a

proper vertex coloring and it is easy to see that χ(G) = 2. Also, one can verify that the

labeling ψ is closed distinguishing for G and so dis[G] = 2.

A k-regular graph is a graph whose each vertex has degree k. A regular graph G with

n vertices and degree k is said to be strongly regular if there are integers λ and µ such
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that every two adjacent vertices have λ common neighbors and every two non-adjacent

vertices have µ common neighbors and is denoted by SRG(n, k, λ, µ).

The Cartesian productH�G of graphsG andH is the graph with vertex set V (G)×V (H)

where vertices (g, h) and (g′, h′) are adjacent if and only if either g = g′ and hh′ ∈ E(H),

or h = h′ and gg′ ∈ E(G).

We say that a set of vertices is independent if there is no edge between these vertices.

The independence number, α(G), of a graph G is the size of a largest independent set of

G. Also, a clique in a graph G is a subset of its vertices such that every two vertices in

the subset are connected by an edge. The clique number ω(G) of a graph G is the number

of vertices in a maximum clique in G. A split graph is a graph whose vertex set may be

partitioned into a clique K and an independent set S. We suppose, without loss of gener-

ality, that K is maximal, that is no vertex in S is adjacent to all vertices in K. The pair

(K,S) is then called a canonical partition of G. For such a partition, we have ω(G) = |K|.

We use the notation f(x) = Θ(g(x)), if for sufficiently large values of x, we have

ag(x) ≤ f(x) ≤ bg(x), for some positive a and b values. The notation f(x) = O(g(x))

is used, if for sufficiently large values of x, we have |f(x)| ≤ a|g(x)|, for some positive

value a. The notation f(x) = Ω(g(x)) is used, if for sufficiently large values of x, we

have |f(x)| ≥ a|g(x)|, for some positive value a.

Consider a formula Φ = (X,C), where the two setsX = {x1, . . . , xn} and C = {c1, . . . , cm}
are the sets of variables and clauses of Φ, respectively. We say that a formula Φ is in

conjunctive normal form (CNF) if it is a conjunction of clauses, where a clause is a dis-

junction of literals. For example, (x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ ¬z) is a formula

in conjunctive normal form with the the set of variables {x, y, z} and the set of clauses

{(x∨¬y∨z), (x∨y∨z), (x∨¬y∨¬z)}. Also, a literal is either a variable or the negation of

a variable. For instance, the clause (x∨¬y∨ z) contains three literals x,¬y, z. Through-
out the work, when we consider a formula, we mean a formula in conjunctive normal form.

The following problems are NP-complete.

Cubic Monotone NAE (2,3)-Sat.

Instance: Set X of variables, collection C of clauses over X such that each clause c ∈ C
has | c |∈ {2, 3}, every variable appears in exactly three clauses and there is no negation
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in the formula.

Question: Is there a truth assignment for X such that each clause in C has at least

one true literal and at least one false literal?

Monotone Not-All-Equal 3-Sat.

Instance: Set X of variables, collection C of clauses over X such that each clause c ∈ C
has | c |= 3 and there is no negation in the formula.

Question: Is there a truth assignment for X such that each clause in C has at least

one true literal and at least one false literal?

In computational complexity theory, P, is a complexity class. It contains all decision prob-

lems that can be solved by a deterministic Turing machine using a polynomial amount

of computation time, or polynomial time. NP is the set of decision problems solvable in

polynomial time by a non-deterministic Turing machine. NP-hardness in computational

complexity theory, is the defining property of a class of problems that are, informally, "at

least as hard as the hardest problems in NP". More precisely, a problem H is NP-hard

when every problem L in NP can be reduced in polynomial time to H. A decision problem

is NP-complete when it is both in NP and NP-hard.

We follow [29] for terminology and notation where they are not defined here. The main

tool we use in the proof of Theorem 2.2.4 is the Combinatorial Nullstellensatz.

Proposition 2.4.1. (Combinatorial Nullstellensatz [2]) Let F be a field, let d1, . . . , dn ≥
0 be integers, and let P ∈ F [x1, . . . , xn] be a polynomial of degree d1 + · · ·+dn with a non-

zero xd1
1 . . . xdnn coefficient. Then P cannot vanish on any set of the form E1 × . . .× En

with E1, . . . , En ⊂ F and |Ei| > di for i = 1, . . . , n.

2.5 Proofs

Here we prove that the difference between dis[G] and dis`[G] can be arbitrary large.

Proof of Theorem 2.2.1

For every integer t, t ≥ 4, we construct a graph G such that dis`[G] − dis[G] ≥ t.

Our construction consists of four steps.
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Step 1. Consider 2t−1 copies of the complete graphK2t and call them K1,K2, . . . ,K2t−1.

For every i, 1 ≤ i ≤ 2t− 1, let {vi1, vi2, . . . , vit, ui1, ui2, . . . , uit} be the set of vertices of the

complete graph Ki.
Step 2. For each (i, j, k), where 1 ≤ i < j ≤ t and 1 ≤ k ≤ 2t− 1, put two new vertices

xki,j and yki,j , and put the edges xki,jy
k
i,j , x

k
i,jv

k
i and yki,jv

k
j . Similarly, for every (i, j, k),

where 1 ≤ i < j ≤ t and 1 ≤ k ≤ 2t− 1, put two new vertices aki,j and b
k
i,j , and put the

edges aki,jb
k
i,j , a

k
i,ju

k
i and bki,ju

k
j .

Step 3. For every (i, i′, k), where 1 ≤ i ≤ t, 1 ≤ i′ ≤ t and 1 ≤ k ≤ 2t− 1, put two new

vertices gki,i′ and h
k
i,i′ , and put the edges gki,i′h

k
i,i′ , g

k
i,i′v

k
i and hki,i′u

k
i′ .

Step 4. Finally, put a new vertex p and join the vertex p to each vertex in {gki,i′ : 1 ≤
i ≤ t, 1 ≤ i′ ≤ t, 1 ≤ k ≤ 2t− 1}. Call the resulting graph G.

Next, we discuss the basic properties of the graph G. Let f be a closed distinguish-

ing labeling for G.

Lemma 2.5.1. We have:

d(vki ) = d(uki ) = 4t− 2, for each i, k, 1 ≤ i ≤ t and 1 ≤ k ≤ 2t− 1,

d(xki,j) = d(yki,j) = d(aki,j) = d(bki,j) = 2, for each i, j, k, 1 ≤ i < j ≤ t and 1 ≤ k ≤ 2t−1,

d(gki,i′) = 3, d(hki,i′) = 2, for each i, i′, k, 1 ≤ i ≤ t, 1 ≤ i′ ≤ t and 1 ≤ k ≤ 2t− 1.

Lemma 2.5.2. Let M = {xki,j , yki,j , aki,j , bki,j : 1 ≤ i < j ≤ t, 1 ≤ k ≤ 2t − 1}. There is a

function f ′ : M → {1, 2, . . . , t}, such that for each k,

∑
l∈N [vk1 ]∩M

f ′(l), . . . ,
∑

l∈N [vkt ]∩M

f ′(l),
∑

l∈N [uk1 ]∩M

f ′(l), . . . ,
∑

l∈N [ukt ]∩M

f ′(l)

are 2t distinct integers.

Proof. Let k be a fixed number and f ′ : M → {1, 2, . . . , t} be an arbitrary labeling. For

each i, 1 ≤ i ≤ t we have:

|{l : l ∈ N [vki ] ∩M}| = |{l : l ∈ N [uki ] ∩M}| = t− 1.

Thus,

t− 1 ≤
∑

l∈N [vki ]∩M

f ′(l) ≤ t(t− 1).
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On the other hand, for each i, j, i 6= j, we have:

(N [vki ] ∩M) ∩ (N [vkj ] ∩M) = ∅.

Also, for each i, i′, 1 ≤ i, i′ ≤ t, we have:

(N [vki ] ∩M) ∩ (N [uki′ ] ∩M) = ∅.

Since N [vki ] ∩ M and N [vkj ] ∩ M are disjoint and t ≥ 4, one can define f ′ : M →
{1, 2, . . . , t} such that for each i, 1 ≤ i ≤ t,

∑
l∈N [vki ]∩M

f ′(l) = t− 1 + i− 1

and ∑
l∈N [uki ]∩M

f ′(l) = 2t− 1 + i− 1.

This completes the proof of Lemma.

Lemma 2.5.3. For each (i, j, k), where 1 ≤ i < j ≤ t and 1 ≤ k ≤ 2t−1, f(vki ) 6= f(vkj )

and f(uki ) 6= f(ukj ).

Proof. Consider the two adjacent vertices xki,j and y
k
i,j . Since f is a closed distinguishing

labeling for G, we have,

∑
l∈N [xki,j ]

f(l) 6=
∑

l∈N [yki,j ]

f(l).

Thus,

f(vki ) + f(xki,j) + f(yki,j) 6= f(vkj ) + f(xki,j) + f(yki,j).

Therefore, f(vki ) 6= f(vkj ). Similarly, by considering the two adjacent vertices aki,j and

bki,j , we have f(uki ) 6= f(ukj ).

By Lemma 2.5.3, f(v1
1), f(v1

2), . . . , f(v1
t ) are t distinct integers. So dis[G] ≥ t. Now, we

show that dis[G] ≤ t. Let f ′ be a labeling that has the conditions of Lemma 2.5.2 and

consider the following labeling for G:
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f : V (G)→ {1, 2, . . . , t},
f(vki ) = f(uki ) = i, for each i, k, 1 ≤ i ≤ t and 1 ≤ k ≤ 2t− 1,

f(gki,i′) = f(hki,i′) = 1, for each i, i′, k, 1 ≤ i ≤ t, 1 ≤ i′ ≤ t and 1 ≤ k ≤ 2t− 1,

f(p) = t, t ≥ 4,

f(l) = f ′(l), for each l ∈M .

Now, we show that f is a closed distinguishing labeling for G. We have:

∑
l∈N [p]

f(l) = t2(2t− 1) + t ≥ 4t,
∑

l∈N [gk
i,i′ ]

f(l) = t+ 2 + i ≤ 3t,
∑

l∈N [hk
i,i′ ]

f(l) = 2 + i′ ≤ 3t,

∑
l∈N [xki,j ]

f(l) = f ′(xki,j) + f ′(yki,j) + i ≤ 3t,
∑

l∈N [yki,j ]

f(l) = f ′(xki,j) + f ′(yki,j) + j ≤ 3t,

∑
l∈N [aki,j ]

f(l) = f ′(aki,j) + f ′(bki,j) + i ≤ 3t,
∑

l∈N [bki,j ]

f(l) = f ′(aki,j) + f ′(bki,j) + j ≤ 3t,

Since d(vki ) = d(uki ) = 4t − 2 and f(vki ) = f(uki ) = i, we have
∑

l∈N [vki ]

f(l) ≥ 4t and

∑
l∈N [uki ]

f(l) ≥ 4t.

For every two adjacent vertices vki and ukj , we have

∑
l∈N [vki ]\M

f(l) =
∑

l∈N [ukj ]\M

f(l).

Thus, by Lemma 2.5.2, the sum of labels of the vertices in the closed neighborhood of

the vertex vki differs from the sum of labels of the vertices in the closed neighborhood of

the vertex ukj . We have a similar result for every two adjacent vertices vki and vkj . For

other pairs of adjacent vertices, from the values shown above it is clear that for every

two adjacent vertices z, s, the sum of labels of the vertices in the closed neighborhood

of the vertex z differs from the sum of labels of the vertices in the closed neighborhood

of the vertex s. So, f is a closed distinguishing labeling for G. Thus dis[G] = t.

Next, we show that dis`[G] ≥ 2t. To the contrary assume that dis`[G] ≤ 2t − 1 and let

N = {uki : 1 ≤ i ≤ t, 1 ≤ k ≤ 2t− 1}. Consider the following lists for the vertices of the

graph G:

L(uki ) = {1 + k, 2 + k, 3 + k, . . . , 2t− 1 + k},
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L(l) = {1, 2, 3, . . . , 2t− 1}, for every l ∈ V (G) \N .

Assume that f is a closed distinguishing labeling for G from the lists that shown above

(i.e. for each vertex v, f(v) ∈ L(v)). Without loss of generality assume that f(p) = w.

Consider the set of vertices vw1 , vw2 , . . . , vwt , uw1 , uw2 , . . . , uwt . We have:

L(uwi ) = {1 + w, 2 + w, 3 + w, . . . , 2t− 1 + w},

L(vwi ) = {1, 2, 3, . . . , 2t− 1}.

Consider the following covering for the set of numbers L(uwi ) ∪ L(vwi ),

{1 + w, 1}, {2 + w, 2}, . . . , {2t− 1 + w, 2t− 1}.

By the pigeonhole principle and Lemma 2.5.3, there are indices r, i and j such that

f(vwi ), f(uwj ) ∈ {r + w, r}, so f(vwi ) = r and f(uwj ) = r + w. Therefore,

∑
l∈N [gwi,j ]

f(l) =
∑

l∈N [hwi,j ]

f(l).

This is a contradiction, so dis`[G] ≥ 2t. Here, we investigate the computational complex-

ity of determining dis[G] for planar subcubic graphs. We show that for a given planar

subcubic graph G, it is NP-complete to determine whether dis[G] = 2.

Proof of Theorem 2.2.2

It is clear that this problem is in NP. Let Φ be a 3SAT formula with clauses C =

{c1, . . . , cγ} and variables X = {x1, . . . , xn}. Let G(Φ) be a graph with the vertices

C ∪X ∪ (¬X), where ¬X = {¬x1, . . . ,¬xn}, such that for each clause c = (y ∨ z ∨ w),

c is adjacent to y, z and w, also every x ∈ X is adjacent to ¬x. Φ is called a strongly

planar formula if G(Φ) is a planar graph. It was shown that the problem of satisfiability

for strongly planar formulas is NP-complete [11] (for more information about strongly

planar formulas see [9]). We reduce the following problem to our problem.

Problem: Strongly planar 3SAT.

Input: A strongly planar formula Φ.

Question: Is there a truth assignment for Φ that satisfies all the clauses?
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Consider a strongly planar formula Φ with the variables X and the clauses C. We

transform this into a planar subcubic graph G such that dis[G] = 2 if and only if Φ is

satisfiable. For every x ∈ X consider a cycle C24γ , where γ is the number of clauses in

Φ (call that cycle Cx). Suppose that Cx = v1v2 . . . v24γv1 and color the vertices of Cx by

function `.

`(vi) =



red, if 1 ≤ i ≤ 12γ and i ≡ 1 (mod 6)

black, if 1 ≤ i ≤ 12γ and i ≡ 4 (mod 6)

black, if 1 + 12γ ≤ i ≤ 24γ and i ≡ 1 (mod 6)

blue, if 1 + 12γ ≤ i ≤ 24γ and i ≡ 4 (mod 6)

white, otherwise.

For every c ∈ C consider a path P8 with the vertices u1, u2, . . . , u8, in that order. Next

put two new isolated vertices u′ and u′′, and join the vertex u3 to the vertex u′ and join

the vertex u6 to the vertex u′′. Call that resultant graph Pc. Next, for every c ∈ C,

without loss of generality assume that c = (a ∨ b ∨ w), where a, b, w ∈ X ∪ (¬X). If

a ∈ X (a ∈ ¬X) then join the vertex u1, u1 ∈ Pc to one of the red (blue) vertices with

degree two of Ca. Similarly, if b ∈ X (b ∈ ¬X) then join the vertex u1, u1 ∈ Pc to one

of the red (blue) vertices with degree two of Cb. Furthermore, if w ∈ X (w ∈ ¬X) then

join the vertex u4, u4 ∈ Pc to one of the red (blue) vertices of degree two of Cw; also,
join the vertex u8, u8 ∈ Pc to one of the red (blue) vertices of degree two of Cw. In the

resulting graph for every red or blue vertex l with degree two, put a new isolated vertex

l′ and join the vertex l to the vertex l′. Also, for every black vertex l, put a new isolated

vertex l′ and join the vertex l to the vertex l′. So in the final graph the degree of every

blue, red or black vertex is three. Call the resultant subcubic graph G. Note that since

Φ is strongly planar (G(Φ) is planar), we can construct G such that it is a planar graph.

Assume that f : V (G) → {1, 2} is a closed distinguishing labeling for G. We have the

following lemmas:

Lemma 2.5.4. For every x ∈ X, we have:

. for every z ∈ V (Cx), if `(z) =red then f(z) = 2 and if `(z) =blue then f(z) = 1,

or

. for every z ∈ V (Cx), if `(z) =red then f(z) = 1 and if `(z) =blue then f(z) = 2.
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Proof. Let h1, h2, h3, h4, h5, h6, h7 ∈ V (Cx), and h1h2h3h4h5h6h7 be a path of length six

in Cx with `(h2) = `(h3) = `(h5) = `(h6) =white. Since f is a a closed distinguishing

labeling, we have:

∑
g∈N [h2]

f(g) 6=
∑

g∈N [h3]

f(g).

Thus, f(h1) 6= f(h4). Similarly, f(h4) 6= f(h7). Hence f(h1) = f(h7). Therefore,

the labels of red vertices are the same. Also, the labels of blue vertices are the same.

In Cx, we have `(v1) =red, `(v24γ−2) =blue and `(v24γ−1) = `(v24γ) =white. Thus,

f(v24γ−2) 6= f(v1). This completes the proof.

Define f ′ : X ∪ (¬X) → {1, 2} such that for every a ∈ X (a ∈ ¬X), f ′(a) = 2 if and

only if the values of function f for the red (blue) vertices in Ca are two.

Lemma 2.5.5. Let c be an arbitrary clause and c = (a∨b∨w), where a, b, w ∈ X∪(¬X).

We have 2 ∈ {f ′(a), f ′(b), f ′(w)}.

Proof. To the contrary assume that f ′(a) = f ′(b) = f ′(w) = 1. Since
∑

l∈N [u1] f(l) 6=∑
l∈N [u2] f(l), we have f(u3) = 1. Also since

∑
l∈N [u4] f(l) 6=

∑
l∈N [u5] f(l), we have

f(u6) = 1. Finally, since
∑

l∈N [u7] f(l) 6=
∑

l∈N [u8] f(l), we have f ′(w) = 2. But this is

a contradiction.

Let Γ : X → {true, false} be a function such that Γ(x) = true if and only if f ′(x) = 2.

By Lemma 2.5.5, Γ is a satisfying assignment for Φ.

Next, suppose that Φ is satisfiable with the satisfying assignment Γ. For every x ∈ X if

Γ(x) = true then for Cx define:

f(vi) =



2, if `(vi) =red

1, if `(vi) =blue

2, if `(vi) =white

1, if `(vi) =black and 1 ≤ i ≤ 12γ

2, if `(vi) =black and 1 + 12γ ≤ i ≤ 24γ,
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and if Γ(x) = false then for Cx define:

f(vi) =



1, if `(vi) =red

2, if `(vi) =blue

2, if `(vi) =white

2, if `(vi) =black and 1 ≤ i ≤ 12γ

1, if `(vi) =black and 1 + 12γ ≤ i ≤ 24γ.

Next, for every c = (a ∨ b ∨ w), if Γ(w) = true then for Pc, define:

f(vi) =

2, if vi = u′′

1, otherwise ,

otherwise, if Γ(w) = false then for Pc, define:

f(vi) =

2, if vi ∈ {u3, u6, u
′, u′′}

1, otherwise .

Finally, label remaining vertices by number 2. One can check that f is a closed distin-

guishing labeling for G. ♦

Next, we show that it is NP-complete to determine whether dis[G] = 2, for a given

bipartite subcubic graph G.

Proof of Theorem 2.2.3

We reduce Monotone Not-All-Equal 3Sat to our problem in polynomial time. It was

shown that the following problem is NP-complete [15].

Consider an instance Φ with the set of variablesX and the set of clauses C. We transform

this into a bipartite graph G, such that Φ has a Not-All-Equal satisfying assignment if

and only if there is a closed distinguishing labeling f : V (G)→ {1, 2}. For every x ∈ X
consider a cycle C12γ , where γ is the number of clauses in Φ (call that cycle Cx). Suppose
that Cx = v1v2 . . . v12γv1 and color the vertices of Cx by function `.

`(vi) =


red, if i ≡ 1 (mod 6)

blue, if i ≡ 4 (mod 6)

white otherwise.
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For every c = (x ∨ y ∨ z), c ∈ C, do the following three steps:

Step 1. Put two paths Pc = c1
1c

1
2c

1
3c

1
4c

1
5 and P ′c = c2

1c
2
2c

2
3c

2
4c

2
5. Also, put two isolated

vertices c′, c′′ and add the edges c′c1
3, c′′c2

3.

Step 2. Let {vi, vj , vk} be a set of vertices such that each of them has degree two, the

value of function ` for each of them is red, vi ∈ V (Cx), vj ∈ V (Cy) and vk ∈ V (Cz). Add
the edges c1

1vi, c
1
1vj , c

1
5vk.

Step 3. Let {vi′ , vj′ , vk′} be a set of vertices such that each of them has degree two, the

value of function ` for each of them is blue, vi′ ∈ V (Cx), vj′ ∈ V (Cy) and vk′ ∈ V (Cz).
Add the edges c2

1vi′ , c
2
1vj′ , c

2
5vk′ .

Next, in the resulting graph for every red or blue vertex u with degree two, put a new

isolated vertex u′ and join the vertex u to the vertex u′. This graph has no cycle of odd

order. Call the resultant bipartite subcubic graph G.

First, assume that f is a closed distinguishing labeling for G. For every x ∈ X, we have:

� for every u ∈ V (Cx), if `(u) =red then f(u) = 2, and if `(u) =blue then f(u) = 1,

or

� for every u ∈ V (Cx), if `(u) =red then f(u) = 1, and if `(u) =blue then f(u) = 2,

(see the proof of Lemma 2.5.4). Define Γ : X → {true, false} such that for every

x ∈ X, Γ(x) = true if and only if the values of function f for the red vertices in Cx are

two. By the structure of clause gadgets, for every clause c = (x ∨ y ∨ z),

∑
u∈N [c11]

f(u) 6=
∑

u∈N [c12]

f(u) and
∑

u∈N [c14]

f(u) 6=
∑

u∈N [c15]

f(u).

So, true ∈ {Γ(x),Γ(y),Γ(z)}. On the other hand,

∑
u∈N [c21]

f(u) 6=
∑

u∈N [c22]

f(u) and
∑

u∈N [c24]

f(u) 6=
∑

u∈N [c25]

f(u).

Thus, false ∈ {Γ(x),Γ(y),Γ(z)}. Therefore, Γ is a Not-All-Equal assignment.
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Next, suppose that Φ has a Not-All-Equal assignment Γ. For every x ∈ X if Γ(x) = true

then:

� for every u ∈ V (Cx), if `(u) =red then put f(u) = 2 and if `(u) =blue then put

f(u) = 1,

and if Γ(x) = false then:

� for every u ∈ V (Cx), if `(u) =red then put f(u) = 1 and if `(u) =blue then put

f(u) = 2.

For every white vertex l, put f(l) = 2. Also, for every clause c = (x∨ y ∨ z), c ∈ C, put:

f(c1
1) = f(c1

2) = f(c1
4) = f(c1

5) = f(c2
1) = f(c2

2) = f(c2
4) = f(c2

5) = 1.

Also, put f(c1
3) = 1 and f(c2

3) = 2 if and only if Γ(z) = false. Finally, label all remaining

vertices by number 2. One can see that the resulting labeling is a closed distinguishing

labeling for G. ♦

Here, we prove that for every integer t ≥ 3, it is NP-complete to determine whether

dis[G] = t for a given graph G.

Proof of Theorem 2.2.4

In order to prove the theorem, we reduce t-Colorability to our problem for each t ≥ 3.

It was shown [15] that for each t, t ≥ 3, the following problem is NP-complete.

Problem: t-Colorability.

Input: A graph G.

Question: Is χ(G) ≤ t?

Let G be a given graph and t be a fixed number. We construct a graph G∗ in polyno-

mial time such that χ(G) ≤ t if and only if G∗ has a closed distinguishing labeling from

{1, 2, . . . , t}. Our construction consists of two steps.

Step 1. Consider a copy of the graph G. For every vertex v ∈ V (G) put ∆(G)−dG(v)+1

new isolated vertices uv1, . . . , uv∆(G)−dG(v), z
v and join them to the vertex v. Call the re-

sulting graph G′. In the resulting graph the degree of each vertex is ∆(G) + 1 or 1.
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Step 2. Let |V (G)| = n, |V (G′)| = n′ + n and α = (n′ + 1)(t− 1) + 2. Consider a copy

of the complete graph Kα with the set of vertices {x1, x2, . . . , xα}. For each i, 1 ≤ i < α,

put n′+1 new isolated vertices and join them to the vertex xi. Finally, for each v ∈ V (G)

join the vertex xα to the vertices v, uv1, . . . , uv∆(G)−dG(v). Call the resulting graph G∗. In

the final graph for each i, 1 ≤ i < α, dG∗(xi) = α+ n′ and dG∗(xα) = α+ n′ − 1.

Let f : V (G∗)→ {1, 2, . . . , t} be a closed distinguishing labeling. We have the following

lemmas:

Lemma 2.5.6. For every vertex v ∈ V (G), f(v) = f(uv1) = · · · = f(uv∆(G)−dG(v)) = 1.

Proof. Consider the set of vertices V (Kα) = {x1, x2, . . . , xα}. Since f is a a closed

distinguishing labeling,

∑
l∈N [x1]

f(l),
∑

l∈N [x2]

f(l), . . . ,
∑

l∈N [xα]

f(l),

are α distinct numbers. Thus,

∑
l∈N [x1]
l/∈V (Kα)

f(l),
∑

l∈N [x2]
l/∈V (Kα)

f(l), . . . ,
∑

l∈N [xα]
l/∈V (Kα)

f(l),

are α distinct numbers. For each i, 1 ≤ i < α,

n′ + 1 ≤
∑
l∈N [xi]
l/∈V (Kα)

f(l) ≤ (n′ + 1)t.

Since there are exactly α− 1 values in this range, we have

{
∑
l∈N [xi]
l/∈V (Kα)

f(l) : 1 ≤ i < α} = {n′ + 1, n′ + 2, . . . , (n′ + 1)t}.

Thus

∑
l∈N [xα]
l/∈V (Kα)

f(l) ≤ n′.

On the other hand,
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∑
l∈N [xα]
l/∈V (Kα)

f(l) ≥ |{l : l ∈ N [xα], l /∈ V (Kα)}| = n′.

Therefore

∑
l∈N [xα]
l/∈V (Kα)

f(l) = n′

and for every vertex v ∈ V (G∗), f(v) = f(uv1) = · · · = f(uv∆(G)−dG(v)) = 1. This

completes the proof of Lemma.

Lemma 2.5.7. Let v and v′ be two adjacent vertices in G. We have f(zv) 6= f(zv
′
).

Proof. For two adjacent vertices v and v′ in G we have
∑

l∈NG∗ [v] f(l) 6=
∑

l∈NG∗ [v′] f(l).

By Lemma 2.5.6 and since dG∗(v) = dG∗(v
′), we have f(zv) 6= f(zv

′
).

By Lemma 2.5.7, the following function is proper vertex t-coloring for G:

c : V (G)→ {1, 2, . . . , t} such that c(v) = f(zv)

On the other hand, if G is t-colorable (and c is a proper vertex t-coloring for the graph

G), define:

f(v) = f(uv1) = · · · = f(uv∆(G)−dG(v)) = 1 and f(zv) = c(v), for every vertex v ∈ V (G),

f(l) = t, for every vertex l ∈ T (note that T = {x1, x2, . . . , xα}).

Also, for every vertex xi, 1 ≤ i < α, label the set of vertices {l : l ∈ N [xi], l /∈ V (Kα)},
such that in the final labeling

{
∑
l∈N [xi]
l/∈V (Kα)

f(l) : 1 ≤ i < α} = {n′ + 1, n′ + 2, . . . , (n′ + 1)t}.

One can check that f is a closed distinguishing labeling. ♦

In the next theorem we give some upper bounds by using the Combinatorial Nullstellen-

satz.

Proof of Theorem 2.2.5
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Let V (G) = {x1, . . . , xn} and Si :=
∑

xj∈N [xi]

xj . Define the following polynomial:

f(x1, . . . , xn) =

N [xt]6=N [xs]∏
xt∼xs
t<s

(St − Ss).

One can check that f(a1, . . . , an) 6= 0 if and only if (a1, . . . , an) is a closed distinguishing

coloring.

(i) Let xv be a vertex in G. The term xv appears in St if xv ∈ N [xt]. Hence the term xv

appears in (St−Ss) if xv ∈ N [xt]∪N [xs] and xv /∈ N [xt]∩N [xs]. Thus xv appears

in f(x1, . . . , xn) at most
∑

xj∈N(xv)(d(xj)− 1) times, which is less than or equal to

(d1− 1) + · · ·+ (d∆− 1). Hence for each monomial in f(x1, . . . , xn) like xa1
1 . . . xann ,

we have ai ≤ s. Let Ei = L(vi), such that |L(vi)| ≥ s+ 1 for 1 ≤ i ≤ n. Then by

the Combinatorial Nullstellensatz f(x1, . . . , xn) cannot vanish on E1 × . . . × En.
Then there exists (a1, . . . , an) ∈ E1 × . . . × En such that f(a1, . . . , an) 6= 0 which

completes the proof.

(ii) The degree of f(x1, . . . , xn) is m. Also, f(x1, . . . , xn) is not the zero polynomial.

So for each monomial like xa1
1 . . . xann we have ai ≤ m. It is easy to check that there

exists a monomial such that ai < m for 1 ≤ i ≤ n. Therefore, the Combinatorial

Nullstellensatz finishes the proof.

(iii) Since ∆ − 1 ≥ dt+1 ≥ dt+2 . . . ≥ d∆, it follows that s ≤ ∆2 − 2∆ + t. Also for

1 ≤ i ≤ n, di ≤ ∆. Hence s ≤ ∆2 −∆.

(iv) Let xv be the only vertex such that d(xv) = ∆. Assign 1 as the label for the vertex

xv. For every i, the term xi appears at most (d1− 1) + · · ·+ (d∆−1− 1) times. We

have:

d1 + · · ·+ d∆−1 − (∆− 1) ≤ ∆ + (∆− 2)(∆− 1)− (∆− 1) = ∆2 − 3∆ + 3.

(v) Let xv be a vertex in G. Let N(xv) = {xa1 , . . . , xak}. The term xv doesn’t appear

in (Sai − Sb), where xv ∈ N(xai) ∩ N(xb). Then for every 1 ≤ i ≤ n, the term

xi appears at most k(k − λ − 1) times in f(x1, . . . , xn). Then the Combinatorial
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Nullstellensatz completes the proof.

(vi) Let xv be a vertex in G such that d(xv) = α. Assume that N(xv) = {xa1 , . . . , xaα}.
Let V (G) − N [xv] = {xb1 , . . . , xbn−α−1}. Let xr, xt ∈ V (G) be adjacent. Then

xv appears in Sr − St if and only if exactly one of xr, xt belongs to N(xv) and

another one belongs to V (G) − N [xv]. So in f , the term xv appears at most

α(n − α − 1), which is less than or equal to [
n− 1

2
]2. Now the proof is complete

by the Combinatorial Nullstellensatz.♦

Here, we show that for each positive integer t there is a bipartite graph G such that

dis[G] > t.

Proof of Theorem 2.2.6

Let t be a fixed number. We construct a bipartite graph G such that dis[G] > t. Let

α = t2. Define:

V (G) = X ∪ Y ∪ Z,
X = {x1, x2, . . . , xα},
Y = {y1, y2, . . . , yα},
Z = {zA,B, z

′
A,B : A,B ⊆ {1, 2, 3, . . . , α}, A 6= ∅, B 6= ∅}.

E(G) =
⋃
A,B

{zA,Bz
′
A,B, zA,Bxi, z

′
A,Byj : i ∈ A, j ∈ B}.

The graph G is bipartite with parts X ∪ Y and Z. To the contrary assume that

f : V (G) → {1, 2, 3, . . . , t} is a closed distinguishing labeling. For every two vertices xi
and yj , we have:

xiz{i},{j}, z{i},{j}z
′
{i},{j}, yjz

′
{i},{j} ∈ E(G),

so

∑
l∈N [z{i},{j}]

f(l) 6=
∑

l∈N [z′{i},{j}]

f(l),
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thus f(xi) 6= f(yj). Let S1 and S2 be two subsets of {1, 2, 3, . . . , t} such that S1∩S2 = ∅.
Without loss of generality, we can assume that for each i, 1 ≤ i ≤ α, f(xi) ∈ S1 and for

every j, 1 ≤ j ≤ α, f(yj) ∈ S2.

Let TX = {f(x1), . . . , f(xα)} and TY = {f(y1), . . . , f(yα)}. We know that f(xi) ∈ S1

and f(yj) ∈ S2. Let |S1| = µ and |S2| ≤ t− µ. By the pigeonhole principle there exists

an element, say r, in S1 such that r appears at least
α

µ
times in TX . Similarly, there

exists an element, say p, in S2 such that p appears at least
α

t− µ
times in TY . Since

α = t2, we have:
α

µ
=
t2

µ
≥ t2

t
≥ p.

Also,
α

t− µ
=

t2

t− µ
≥ t2

t
≥ r.

Thus in TX there exists r at least p times, and in TY there exists p at least r times.

Consequently, one can find two sets A,B ⊆ {1, 2, 3, . . . , α} such that |A| = p, |B| = r,

for each i ∈ A, f(xi) = r and for each j ∈ B, f(yj) = p. Thus,

∑
l∈N [zA,B ]

f(l) =
∑

l∈N [z′A,B ]

f(l).

But this is a contradiction. Therefore, dis[G] > t. 2

Note that in the graph G which was constructed in the previous theorem, we have:

|V (G)| = 2α+ 2(2α − 1)2 = 2t2 + 2(2t
2 − 1)2.

It is interesting to find a bipartite graph G such that V (G) = O(tc) and dis[G] > t, where

c is a constant number. Next, we show that if G is a split graph, then dis[G] ≤ (ω(G))2.

Proof of Theorem 2.2.7

Let (K,S) be a canonical partition of G and assume that S = {v1, v2, . . . , v|S|}. For each
i, 1 ≤ i ≤ |S|, let Gi be the induced subgraph on the set of vertices K

⋃i
j=1 vj . Let

G0 be the induced graph on the set of vertices K and f0 : V (G0) → {1} be a closed

distinguishing labeling of G0 such that for every vertex u ∈ V (G0), f0(u) = 1. For i = 1

to i = |S| do the following procedure:
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. For each j, 1 ≤ j ≤ (ω(G))2, define

gij(x) =

fi−1(x) x ∈ V (Gi−1),

j x ∈ V (Gi) \ V (Gi−1).

For a fixed number j if there are two vertices x, y ∈ V (G0), such that NGi(x) 6= NGi(y)

and ∑
l∈NGi [x]

gij(l) =
∑

l∈NGi [y]

gij(l),

then gij(x) is not a closed distinguishing labeling for Gi. The graph G0 has
(
ω(G)

2

)
edges, so there are at most

(
ω(G)

2

)
restrictions. Thus, there is an index j such that for

every two vertices x, y ∈ V (G0), if NGi(x) 6= NGi(y), then

∑
l∈NGi [x]

gij(l) 6=
∑

l∈NGi [y]

gij(l).

For that j, put fi ← gij . (End of procedure.)

When the procedure terminates, the function f|S| is a closed distinguishing labeling for

G. This completes the proof.

Here, we show that for each n, there is a graph G with n vertices such that dis[G] −
diss[G] = Ω(n

1
3 ).

Proof of Theorem 2.3.1

Let t = 10k and consider a copy of the complete graph Kt2 with the set of vertices

{vi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ t, }. For each (i, j), 1 ≤ i ≤ t, 1 ≤ j ≤ t, put i+ j new vertices

xi,j1 , xi,j2 , . . . , xi,ji , y
i,j
1 , yi,j2 , . . . , yi,jj and join them to the vertex vi,j . Call the resultant

graph G. Note that for each (i, j), 1 ≤ i ≤ t, 1 ≤ j ≤ t, d(vi,j) = t2 + i+ j − 1.

First, we show that diss[G] = 2. Define:

f : V (G)→ {1,∆(G) + 1},

f(vi,j) = f(xi,j1 ) = f(xi,j2 ) = · · · = f(xi,ji ) = ∆(G) + 1, for every i and j,

f(yi,j1 ) = f(yi,j2 ) = · · · = f(yi,jj ) = 1, for every i and j.
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It is easy to check that f is a closed distinguishing labeling for G. Next, assume that

f : V (G)→ dis[G] is a closed distinguishing labeling for G. Consider the set of vertices

R = {vi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ t}. The function f is a closed distinguishing labeling

therefore,

{
∑

l∈N [vi,j ]

f(l) : 1 ≤ i ≤ t, 1 ≤ j ≤ t},

are t2 distinct numbers. Thus,

{
∑

l∈N [vi,j ]

l/∈R

f(l) : 1 ≤ i ≤ t, 1 ≤ j ≤ t},

are t2 distinct numbers. For each (i, j), 1 ≤ i ≤ t, 1 ≤ j ≤ t,

2 ≤ i+ j ≤
∑

l∈N [vi,j ]

l/∈R

f(l) ≤ (i+ j)dis[G] ≤ (2t)× dis[G].

So 2t× dis[G]− 2 + 1 ≥ t2. Thus dis[G] ≥ 5k. On the other hand,

|V (G)| = t2 +
t∑
i=1

t∑
j=1

(i+ j) ≤ t2 +
t∑
i=1

t∑
j=1

(2t) = O(t3) = O(k3).

This completes the proof.

Here, we show that for a given 4-regular graphG, it isNP-complete to determine whether

diss[G] = 2.

Proof of Theorem 2.3.2

Clearly, the problem is in NP. We prove the NP-hardness by a reduction from the

following well-known NP-complete problem [15].

3SAT.

Instance: A 3CNF formula Ψ = (X,C).

Question: Is there a truth assignment for X?

Let Ψ = (X,C) be an instance of 3SAT and also assume that α and β are two numbers

such that α 6= β. We convert Ψ into a 4-regular graph G such that Ψ has a satisfying
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Figure 2.2: The gadget I(v, u). Let G be a 4-regular graph and f : V (G) → {α, β}
be a closed distinguishing labeling. If I(v, u) is a subgraph of G, then f(v) 6= f(u).

assignment if and only if G has a closed distinguishing labeling from {α, β}. First, we

introduce a useful gadget.

Construction of the gadget Tk.

Consider a copy of the bipartite graph P2�C2k and let ` : V (P2�C2k) → {1, 2} be a

proper vertex 2-coloring. Call the set of vertices V (P2�C2k), the main vertices. Con-

struct the gadget Tk by replacing every edge vu of P2�C2k with a copy of the gadget

I(v, u) which is shown in Fig. 2.2.

Note that the gadget Tk has 4k main vertices and the degree of each main vertex is three.

Also, in Tk the degree of each vertex that is not a main vertex is four.

For each variable x ∈ X assume that the variable x appears in exactly µ(x) clauses

(positive or negative) and suppose that |C| = λ. Next, we present the construction of

the main graph.

Construction of the graph G.

Put a copy of T3λ and call it F . Also, for every variable x ∈ X, put a copy of the

gadget Tµ(x) and call it Dx. Furthermore, for every clause c ∈ C, put a copy of the path

P2 = c1c2. For every x ∈ X, define:

S2
x = {v ∈ V (Dx) : v is a main vertex and `(v) = 2},

S1
x = {v ∈ V (Dx) : v is a main vertex and `(v) = 1}.
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Also, define:

R2 = {v ∈ V (F ) : v is a main vertex and `(v) = 2},

R1 = {v ∈ V (F ) : v is a main vertex and `(v) = 1}.

Next, for every c ∈ C, without loss of generality assume that c = (a ∨ b ∨ s), where
a, b, s ∈ X ∪ (¬X). If a ∈ X (a ∈ ¬X) then join the vertex c1, to a vertex v ∈ S2

a

(v ∈ S1
¬a) of degree three. Also, if b ∈ X (b ∈ ¬X) then join the vertex c1, to a vertex

v ∈ S2
b (v ∈ S1

¬b) of degree three. Similarly, if s ∈ X (s ∈ ¬X) then join the vertex c1,

to a vertex v ∈ S2
s (v ∈ S1

¬s) of degree three.

Furthermore, join the vertex c2 to three vertices v, u, z ∈ R1 of degree three. Call the

resultant graph G′. Note that the degree of every vertex in G′ is three or four.

Now, consider two copies of the graph G′. For each vertex h with degree three in G′,

call its corresponding vertex in the first copy of G′, h′, and call its corresponding vertex

in the second copy of G′, h′′. Next, connect the vertices h′ and h′′ through a copy of the

gadget I(h′, h′′). Call the resulting 4-regular graph G. In the next, we just focus on the

vertices in the first copy of G′ and talk about their properties.

First, assume that f : V (G) → {α, β} is a closed distinguishing labeling. We have

the following lemmas about the vertices in the first copy of G′.

Lemma 2.5.8. For each x ∈ X, for every two vertices h, g ∈ S2
x, f(h) = f(g) and for

every two vertices h, g ∈ S1
x, f(h) = f(g). Also, for each two vertices h ∈ S2

x and g ∈ S1
x,

f(h) 6= f(g).

Proof. Let G be a 4-regular graph and f : V (G) → {α, β} be a closed distinguishing

labeling for G. Assume that I(v, u) is a subgraph of G. For two adjacent vertices z1 and

z2 in I(v, u) we have:

∑
l∈N [z1]

f(l) 6=
∑

l∈N [z2]

f(l).

Thus, f(v) 6= f(u). Consequently, in each copy of the gadget I(v, u), we have f(v) 6=
f(u). So, in the gadget Dx, for every two main vertices l1 and l2 that are connected

through a copy of gadget I(l1, l2), we have f(l1) 6= f(l2). On the other hand, the gadget

Dx is constructed from a bipartite graph by replacing each edge with a copy of the

gadget I(v, u). The main vertices of Dx can be partitioned into two sets, based on the

function ` which is a proper vertex 2-coloring for the base bipartite graph. In each part,
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the values of function f for the main vertices in that part are the same. So, for each

x ∈ X, for every two vertices h, g ∈ S2
x, f(h) = f(g) and for every two vertices h, g ∈ S1

x,

f(h) = f(g). Also, for each two vertices h ∈ S2
x and g ∈ S1

x, f(h) 6= f(g). ♦

Lemma 2.5.9. For every two vertices g, h ∈ R2, f(g) = f(h) and for every two vertices

g, h ∈ R1, f(g) = f(h). Also, for each two vertices v ∈ R2 and u ∈ R1, f(g) 6= f(h).

Proof. The proof is similar to the proof of Lemma 2.5.8.

Note that if f : V (G)→ {α, β} is a closed distinguishing labeling, then

f ′(v) =

β, if f(v) = α,

α, if f(v) = β.

is a closed distinguishing labeling for G. Now, without loss of generality assume that the

values of function f for the set of vertices R2 are β. Define Γ : X → {true, false} such
that for every x ∈ X, Γ(x) = true if and only if the values of function f for the set of

vertices S2
x are β. By Lemma 2.5.8, Lemma 2.5.9 and structure of G, it is easy to check

that Γ is a satisfying assignment.

Next, suppose that Ψ is satisfiable with the satisfying assignment Γ. Define the fol-

lowing values for the function f for the vertices in the first copy of G′:

. For every v ∈ S2
x, if Γ(x) = true then put f(v) = β and if Γ(x) = false then

put f(v) = α.

. For every v ∈ S1
x, if Γ(x) = true then put f(v) = α and if Γ(x) = false then

put f(v) = β.

. For every v ∈ R2, put f(v) = β and for every v ∈ R1, put f(v) = α.

. For every c ∈ C, put f(c1) = β and f(c2) = α.

Also, for every vertex l, l ∈ S2
x ∪ S1

x ∪ R2 ∪ R1 ∪ {c1, c2 : c ∈ C} in the second copy

of G′, put f(l) = 1 if and only if the value of function f for the vertex l in the first copy

of G′ is two. Finally, for each subgraph I(v, u), without loss of generality assume that
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f(v) = α and f(u) = β. Label the vertices of V (I(v, u)) \ {v, u} such that the labels

of black vertices are β and the labels of white vertices are α (see Fig. 2.2). It is easy

to check that this labeling is a closed distinguishing labeling for G. This completes the

proof.

2.6 Concluding remarks and future work

In this chapter, we worked on the closed distinguishing labeling which is very similar to

the concept of relaxed locally identifying coloring. A vertex-coloring of a graph G (not

necessary proper) is said to be relaxed locally identifying if for any pair u, v of adjacent

vertices with distinct closed neighborhoods, the sets of colors in the closed neighborhoods

of u and v are different and an assignment of numbers to the vertices of graph G is closed

distinguishing if for any two adjacent vertices v and u the sum of labels of the vertices in

the closed neighborhood of the vertex v differs from the sum of labels of the vertices in

the closed neighborhood of the vertex u unless they have the same closed neighborhood.

2.6.1 The computational complexity

We proved that for a given bipartite subcubic graph G, it is NP-complete to decide

whether dis[G] = 2. On the other hand, it was shown that for every tree T , dis`[T ] ≤ 3

[3]. Here, we ask the following question.

Problem 2.6.1. For a given tree T , for every vertex v ∈ V (T ), let L(v) be a list of size

two of natural numbers. Determine the computational complexity of deciding whether

there is a closed distinguishing labeling f such that for each v ∈ V (T ), f(v) ∈ L(v).

It was shown in [3] that for every tree T , dis[T ] ≤ 2. On the other hand, we proved that

for a given bipartite subcubic graph G it is NP-complete to decide whether dis[G] = 2.

In the proof of Theorem 2.2.3, we reduced Not-All-Equal to our problem and the planar

version of Not-All-Equal is inP [23], so the computational complexity of deciding whether

dis[G] = 2 for planar bipartite graphs remains unsolved.

Problem 2.6.2. For a given planar bipartite graph G, determine the computational

complexity of deciding whether dis[G] = 2.
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Let G be an r-regular graph. If dis[G] = 2 then for every two numbers a, b (a 6= b), G has

a closed distinguishing labeling from {a, b}. We proved that for a given 4-regular graph

G, it is NP-complete to decide whether dis[G] = 2. Determining the computational

complexity of deciding whether dis[G] = 2 for 3-regular graphs can be interesting.

Problem 2.6.3. For a given 3-regular graph G, determine the computational complexity

of deciding whether dis[G] = 2.

Summary of results and open problems in the complexity of determining whether dis[G] =

2 is shown in Table 1.

Table 2.1: Recent results and open problems

dis[G] = 2? Refrence
Tree P see [3]
Planar bipartite Open Problem 2.6.2
Bipartite subcubic NP-c Theorem 2.2.3
Planar subcubic NP-c Theorem 2.2.2
3-regular Open Problem 2.6.3
4-regular NP-c Theorem 2.3.2

2.6.2 Bipartite graphs

Let G be a bipartite graph with partite sets A and B which is not a star. Let, for

X ∈ {A,B}; ∆X = max
x∈X

d(x) and δX,2 = min
x∈X,d(x)≥2

d(x). It was shown [3] that

dis[G] ≤ min{c
√
|E(G)|, b∆A − 1

δB,2 − 1
c+ 1, b∆B − 1

δA,2 − 1
c+ 1},

where c is some constant. Thus, for a given bipartite graph G, dis[G] = O(∆) [3]. On

the other hand, we proved that for each integer t, there is a bipartite graph G such that

dis[G] > t (to see an example see Fig. 2.3). Here, we ask the following:

Problem 2.6.4. For each positive integer t, is there a bipartite graph G such that V (G) =

O(tc) and dis[G] > t, where c is a constant number.

What can we say about the upper bound in bipartite graphs? Perhaps one of the most

intriguing open question in this scope is the case of bipartite graphs.

Problem 2.6.5. Let G be a bipartite graph, is dis[G] ≤ O(
√

∆(G))?
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Figure 2.3: A bipartite graph G with the closed distinguishing number greater than
two.

We proved that the difference between dis[G] and dis`[G] can be arbitrary large. What

can we say about the difference in bipartite graphs?

Problem 2.6.6. For any positive integer t, is there any bipartite graph G such that

dis`[G]− dis[G] ≥ t?

For a given bipartite graph G = [X,Y ], define f : V (G)→ {1,∆} such that:

f(v) =

1, if v ∈ X

∆, if v ∈ Y

It is easy to see that f is a closed distinguishing labeling for G. Thus, for a bipartite

graph G, diss[G] ≤ 2. On the other hand, for a general graph G, the best upper bound

we know is diss[G] ≤ |V (G)|.

Problem 2.6.7. Is this true "for any graph G, diss[G] ≤ χ(G)?"

For each positive integer n, we proved that there is a graph G with n vertices such that

dis[G]− diss[G] = Ω(n
1
3 ). It would be desirable to increase the gap into Ω(

√
n).

Problem 2.6.8. Is this true? "For each positive integer n, there is a graph G with n

vertices such that dis[G]− diss[G] = Ω(
√
n)".

2.6.3 Split graphs

It is well-known that split graphs can be recognized in polynomial time, and that finding

a canonical partition of a split graph can also be found in polynomial time. In this work,
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we proved that if G is a split graph, then dis[G] ≤ (ω(G))2. Let G be a split graph and

(K,S) be a canonical partition of G. Assume that S = {v1, v2, . . . , v|S|}. Define:

f(u) =

1, if u ∈ V (K)

(∆ + 1)i−1, if u = vi and 1 ≤ i ≤ |S|

It is easy to check that f is a closed distinguishing labeling for G. Thus, diss[G] ≤ α(G).

However, one further step does not seem trivial.

Problem 2.6.9. Is it true that if G is a split graph, then dis[G] = O(ω(G))?

Problem 2.6.10. Can one decide in polynomial time whether dis[G] ≤ ω(G) for every

split graph G?
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Chapter 3

Algorithmic complexity of weakly

semiregular partitioning, and the

representation number of graphs

3.1 Introduction

This chapter consists of two parts. In the first part, we consider the problem of parti-

tioning the edges of a graph into regular and/or locally irregular subgraphs. In this part,

we present some polynomial time algorithms and NP-hardness results. In the second

part of the work, we focus on the representation number of graphs. It was conjectured

that the determination of rep(G) for an arbitrary graph G is a difficult problem [38].

In this part, we confirm this conjecture and show that if NP 6= P, then for any ε > 0,

there is no polynomial time (1 − ε)n2 -approximation algorithm for the computation of

representation number of regular graphs with n vertices.

3.2 Partitioning the edges of graphs

In 1981, Holyer [31] focused on the computational complexity of edge partitioning prob-

lems and proved that for each t, t ≥ 3, it is NP-complete to decide whether a given

graph can be edge-partitioned into subgraphs isomorphic to the complete graph Kt. Af-

terwards, the complexity of edge partitioning problems have been studied extensively by

40
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several authors, for instance see [21–23]. Nowadays, the computational complexity of

edge partitioning problems is a well-studied area of graph theory and computer science.

For more information we refer the reader to a survey on graph factors and factorization

by Plummer [40].

If we consider the Holyer problem for a family G of graphs instead of a fixed graph then,

we can discover interesting problems. For a family G of graphs, a G-decomposition of

a graph G is a partition of the edge set of G into subgraphs isomorphic to members of

G. Problems of G-decomposition of graphs have received a considerable attention, for

example, Holyer proved that it is NP-hard to edge-partition a graph into the minimum

number of complete subgraphs [31]. To see more examples of G-decomposition of graphs

see [15, 19, 33].

3.2.1 Related works and motivations

We say that a graph is locally irregular if its adjacent vertices have distinct degrees and

a graph is regular if each vertex of the graph has the same degree. In 2001, Kulli et al.

introduced an interesting parameter for the partitioning of the edges of a graph [34]. The

regular number of a graph G, denoted by reg(G), is the minimum number of subsets into

which the edge set of G can be partitioned so that the subgraph induced by each subset

is regular. The edge chromatic number of a graph, denoted by χ′(G), is the minimum size

of a partition of the edge set into 1-regular subgraphs and also, by Vizing’s theorem [45],

the edge chromatic number of a graph G is equal to either ∆(G) or ∆(G) + 1, therefore

the regular number problem is a generalization for the edge chromatic number and we

have the following bound: reg(G) ≤ χ′(G) ≤ ∆(G) + 1. It was asked [27] to determine

whether reg(G) ≤ ∆(G) holds for all connected graphs.

Conjecture 1. [27, The degree bound] For any connected graph G, reg(G) ≤ ∆(G).

It was shown [4] that not only there exists a counterexample for the above-mentioned

bound but also for a given connected graph G decide whether reg(G) = ∆(G)+1 is NP-

complete. Also, it was shown that the computation of the regular number for a given

connected bipartite graphG isNP-hard [4]. Furthermore, it was proved that determining

whether reg(G) = 2 for a given connected 3-colorable graph G is NP-complete [4].

On the other hand, Baudon et al. introduced the notion of edge partitioning into locally

irregular subgraphs [12]. In this case, we want to partition the edges of the graph G
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into locally irregular subgraphs, where by a partitioning of the graph G into k locally

irregular subgraphs we refer to a partition E1, . . . , Ek of E(G) such that the graph G[Ei]

is locally irregular for every i, i = 1, . . . , k. The irregular chromatic index of G, denoted

by χ′irr, is the minimum number k such that the graph G can be partitioned into k locally

irregular subgraphs. Baudon et al. characterized all graphs which cannot be partitioned

into locally irregular subgraphs and call them exceptions [12]. Motivated by the 1-2-3-

Conjecture, they conjectured that apart from these exceptions all other connected graphs

can be partitioned into three locally irregular subgraphs [12]. For more information

about the 1-2-3-Conjecture and its variations, we refer the reader to a survey on the 1-

2-3-Conjecture and related problems by Seamone [43] (see also [1, 2, 11, 14, 20, 42, 44]).

Conjecture 2. [12] For every non-exception graph G, we have χ′irr(G) ≤ 3.

Regarding the above-mentioned conjecture, Bensmail et al. [16] proved that every bipar-

tite graph G which is not an odd length path satisfies χ′irr(G) ≤ 10. Also, they proved

that if G admits a partitioning into locally irregular subgraphs, then χ′irr(G) ≤ 328.

Recently, Lužar et al. improved the previous bound for bipartite graphs and general

graphs to 7 and 220, respectively [36]. For more information about this conjecture see

[41].

Regarding the complexity of edge partitioning into locally irregular subgraphs, Baudon et

al. [13] proved that the problem of determining the irregular chromatic index of a graph

can be handled in linear time when restricted to trees. Furthermore, in [13], Baudon et

al. proved that determining whether a given planar graph G can be partitioned into two

locally irregular subgraphs is NP-complete.

In 2015, Bensmail and Stevens considered the problem of partitioning the edges of graph

into some subgraphs, such that in each subgraph every component is either regular or

locally irregular [18]. The regular-irregular chromatic index of graph G, denoted by

χ′reg−irr(G), is the minimum number k such that G can be partitioned into k subgraphs,

such that each component of every subgraph is locally irregular or regular [18]. They

conjectured that the edges of every graph can be partitioned into at most two subgraphs,

such that each component of every subgraph is regular or locally irregular [17, 18].

Conjecture 3. [17, 18] For every graph G, we have χ′reg−irr(G) ≤ 2.

Recently, motivated by Conjecture 2 and Conjecture 3, Ahadi et al. in [5] presented the

following conjecture.
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Conjecture 4. [5] Every graph can be partitioned into 3 subgraphs, such that each

subgraph is locally irregular or regular.

Note that in Conjecture 4, each subgraph (instead of each component of every subgraph)

should be locally irregular or regular. Also, note that it was shown that deciding whether

a given planar bipartite graph G with maximum degree three can be partitioned into

at most two subgraphs such that each subgraph is regular or locally irregular is NP-

complete [5].

In [5], Ahadi et al. considered the problem of partitioning the edges into locally regular

subgraphs. We say that a graph G is locally regular if each component of G is regular

(note that a regular graph is locally regular but the converse does not hold). The regular

chromatic index of a graph G denoted by χ′reg is the minimum number of subsets into

which the edge set of G can be partitioned so that the subgraph induced by each subset

is locally regular. From the definitions of locally regular and regular graphs we have the

following bound: χ′reg(G) ≤ reg(G) ≤ ∆(G) + 1. It was shown that every graph G can

be partitioned into ∆(G) subgraphs such that each subgraph is locally regular and this

bound is sharp for trees [5].

Lemma 3.2.1. [5] Every graph G can be partitioned into ∆(G) subgraphs such that each

subgraph is locally regular and this bound is sharp for trees.

In conclusion, we can say that the problem of partitioning the edges of graph into regular

and/or locally irregular subgraphs is an active area in graph theory and computer science.

What can we say about the edge decomposition problem if we require that each subgraph

(instead of each component of every subgraph) should be a graph with at most k numbers

in its degree set. With this motivation in mind, we investigate the problem of partitioning

the edges of graphs into subgraphs such that each subgraph has at most two numbers

in its degree set. In this work, we consider partitioning into weakly semiregular and

semiregular subgraphs.

3.2.2 Weakly semiregular graphs

A graph G is weakly semiregular if there are two numbers a, b, such that the degree of

every vertex is a or b. The weakly semiregular number of a graph G, denoted by wr(G),

is the minimum number of subsets into which the edge set of G can be partitioned so
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that the subgraph induced by each subset is weakly semiregular. This parameter is well-

defined for any graph G since one can always partition the edges into 1-regular subgraphs.

Throughout the paper, we say that a graph G is (a, b)-graph if the degree of every vertex

is a or b (in other words, if the degree set of the graph G is {a, b}).

Remark 1. There are infinitely many values of ∆ for which the graph G might be

chosen so that wr(G) ≥ log3 ∆(G). Assume that G is a graph (G can be a tree) such

that for each i, 1 ≤ i ≤ ∆, there is a vertex with degree i in that graph. Also, let

E1, E2, . . . , Ewr(G) be a weakly semiregular partitioning for the edges of that graph. The

degree set of the subgraph Gi = (V,Ei) has at most three elements. By adding wr(G)

such degree sets, one corresponding to each subset Ei, we get a degree set that contains

at most 3wr(G) elements. Hence, the degree set of the graph G contains at most 3wr(G)

elements. This completes the proof.

In this work, we focus on the algorithmic aspects of weakly semiregular number. We

present a polynomial time algorithm to determine whether the weakly semiregular num-

ber of a given tree is two. We prove the following theorem in Section 3.5.

Theorem 3.2.2. (i) There is an O(n2) time algorithm to determine whether the weakly

semiregular number of a given tree is two, where n is the number of vertices in the tree.

(ii) Let c be a constant, there is a polynomial time algorithm to determine whether the

weakly semiregular number of a given tree is at most c.

(iii) For every tree T , wr(T ) ≤ 2 log2 ∆(T ) +O(1).

Remark 2. If G is a graph with ∆(G) ≤ 4, then wr(G) ≤ 2. If the graph G is not

regular, then consider two copies of the graph G and for each vertex v with degree less

than 4, join the vertex v in the first copy of G to the vertex v in the second copy of the

graph G. By repeating this procedure we can obtain a 4-regular graph G′. A subgraph

F of a graph H is called a factor of H if F is a spanning subgraph of H. If a factor

F has all of its degrees equal to k, it is called a k-factor. A k-factorization for a graph

H is a partition of the edges into disjoint k-factors. For k ≥ 1, every 2k-regular graph

admits a 2-factorization [39], thus the graph G′ can be partitioned into two 2-regular

graphs G′1 and G′2. Let f : E(G′)→ {1, 2} be a function such that f(e) = 1 if and only

if e ∈ E(G′1). One can see that the function f can partition the edges of the graph G

into two (1,2)-graphs. Therefore, wr(G) ≤ 2. This completes the proof.

If G is a graph with at most two numbers in its degree set, then its weakly semiregular

number is one. On the other hand, if ∆ ≤ 4 by Remark 2, the weakly semiregular
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number of the graph is at most two. We show that determining whether wr(G) = 2 for

a given bipartite graph G with ∆(G) = 6 and at most three numbers in its degree set, is

NP-complete. The proof is in section 3.6.

Theorem 3.2.3. Determining whether wr(G) = 2 for a given bipartite graph G with

∆(G) = 6 and at most three numbers in its degree set, is NP-complete.

3.2.3 Semiregular graphs

A graph G is a [d, d+s]-graph if the degree of every vertex of G lies in the interval [d, d+s].

A [d, d+ 1]-graph is said to be semiregular. Semiregular graphs are an important family

of graphs and their properties have been studied extensively, see for instance [8, 9]. The

semiregular number of a graph G, denoted by sr(G), is the minimum number of subsets

into which the edge set of G can be partitioned so that the subgraph induced by each

subset is semiregular. We prove that the semiregular number of a tree T is d∆(T )
2 e. On

the other hand if ∆ ≤ 4 by Remark 2, the semiregular number of a graph is at most

two. We show that determining whether sr(G) = 2 for a given bipartite graph G with

∆(G) ≤ 6, is NP-complete. The proof is in section 3.7.

Theorem 3.2.4. (i) Let T be a tree, then sr(T ) = d∆(T )
2 e.

(ii) Let G be a graph, then sr(G) ≤ d∆(G)+1
2 e.

(iii) Determining whether sr(G) = 2 for a given bipartite graph G with ∆(G) ≤ 6, is

NP-complete.

Every semiregular graph is a weakly semiregular graph, thus by the above-mentioned

theorem, we have the following bound:

wr(G) ≤ sr(G) ≤ d∆(G) + 1

2
e. (3.1)

3.2.4 Partitioning into locally irregular and weakly semiregular sub-
graphs

Bensmail and Stevens [18] considered the outcomes on Conjecture 2 of allowing com-

ponents isomorphic to the complete graph K2, or more generally regular components.

In fact their investigations are motivated by the following question: "How easier can
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Conjecture 2 be tackled if we allow a locally irregular partitioning to induce connected

components isomorphic to the complete graph K2?" They conjectured that the edges of

every graph can be partitioned into at most two subgraphs, such that each component

of every subgraph is regular or locally irregular [18]. Motivated by this conjecture we

pose the following conjecture. Note that in Conjecture 5, each subgraph (instead of each

component of every subgraph) should be locally irregular or weakly semiregular.

Conjecture 5. Every graph can be partitioned into 3 subgraphs, such that each sub-

graph is locally irregular or weakly semiregular.

Note that if Conjecture 2 or Conjecture 4 is true, then Conjecture 5 is true. Also, if every

graph can be partitioned into 2 subgraphs such that each component of every subgraph

is a locally irregular graph or K2, then Conjecture 5 is true. We conclude this section by

the following hardness result. We provide the proof in section 3.8.

Theorem 3.2.5. Determining whether a given graph G, can be partitioned into 2 sub-

graphs, such that each subgraph is locally irregular or weakly semiregular is NP-complete.

3.2.5 Summary of results

A summary of results and open problems on edge-partition problems are shown in Table

3.1.

Table 3.1: Recent results on edge partitioning of graphs into subgraphs

= 2 (for trees) = 2 Upper bound
Regular subgraphs P (see [27]) NP-c (see [4]) ∆ + 1 (see [27])
Locally regular subgraphs P (see [5]) NP-c (see [5]) ∆ (see [5])
Weakly semiregular subgraphs P (Th. 3.2.2) NP-c (Th. 3.2.3) d∆+1

2 e (Th. 3.2.4)
Semiregular subgraphs P (Th. 3.2.4) NP-c (Th. 2.2.3) d∆+1

2 e (Th. 3.2.4)
Locally irregular subgraphs P (see [13]) NP-c (see [13]) 3 (Conj. 2)
regular-irregular subgraphs Open (see [5]) NP-c (see [5]) 3 (Conj. 4)
regular-irregular components P (see [18]) P (Conj. 3) 2 (Conj. 3)

3.3 Representation number

A finite graph G is said to be representable modulo r, if there exists an injective map

` : V (G)→ {0, 1, . . . , r−1} such that vertices v and u of the graph G are adjacent if and

only if |`(u) − `(v)| is relatively prime to r. The representation number of G, denoted
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by rep(G), is the smallest positive integer r such that the graph G has a representation

modulo r. In 1989, Erdős and Evans introduced representation numbers and showed

that every finite graph can be represented modulo some positive integer [24]. They used

representation numbers to give a simpler proof of a result of Lindner et al. [35] that, any

finite graph can be realized as an orthogonal Latin square graph (an orthogonal Latin

square graph is one whose vertices can be labeled with Latin squares of the same order

and same symbols such that two vertices are adjacent if and only if the corresponding

Latin squares are orthogonal). The existence proof of Erdős and Evans gives an unnec-

essarily large upper bound for the representation number [24]. During the recent years,

representation numbers have received considerable attention and have been studied for

various classes of graphs, see [6, 25, 26, 32, 37].

Narayan and Urick conjectured that the determination of rep(G) for an arbitrary graph

G is a difficult problem [38]. In the following theorem we discuss about the computational

complexity of rep(G) for regular graphs. The proof for this theorem is in Section 3.9

Theorem 3.3.1. (i) If NP 6= P, then for any ε > 0, there is no polynomial time (1−ε)n2 -
approximation algorithm for the representation number of regular graphs with n vertices.

(ii) For every ε > 0 there is a polynomial time ((1 + ε)
en

2
)-approximation algorithm for

computing rep(G) where Gc is a triangle-free r-regular graph.

3.4 Notation and tools

All graphs considered in this chapter are finite and undirected. If G is a graph, then

V (G) and E(G) denote the vertex set and the edge set of G, respectively. Also, ∆(G)

denotes the maximum degree of G and simply denoted by ∆. For every v ∈ V (G),

dG(v) and NG(v) denote the degree of v and the set of neighbors of v, respectively. Also,

N [v] = N(v) ∪ {v}. For a given graph G, we use u ∼ v if two vertices u and v are

adjacent in G.

The degree sequence of a graph is the sequence of non-negative integers listing the degrees

of the vertices of G. For example, the complete bipartite graph K1,3 has degree sequence

(1, 1, 1, 3), which contains two distinct elements: 1 and 3. The degree set D of a graph

G is the set of distinct degrees of the vertices of G. For k ∈ N, a proper edge k-coloring

of G is a function c : E(G) −→ {1, . . . , k}, such that if e, e′ ∈ E(G) share a common

endpoint, then c(e) and c(e′) are different. The smallest integer k such that G has a



Algorithmic Complexity of Weakly Semiregular Partitioning and the Rep Number 48

proper edge k-coloring is called the edge chromatic number of G and denoted by χ′(G).

By Vizing’s theorem [45], the edge chromatic number of a graph G is equal to either

∆(G) or ∆(G) + 1. Those graphs G for which χ′(G) = ∆(G) are said to belong to Class

1, and the other to Class 2.

Let G be a graph and f be a non-negative integer-valued function on V (G). Then a

spanning subgraph H of G is called an f -factor of G if dH(v) = f(v), for all v ∈ V (G).

Let G be a graph and let f , g be mappings of V (G) into the non-negative integers.

A (g, f)-factor of G is a spanning subgraph F such that g(v) ≤ dF (v) ≤ f(v) for

all v ∈ V (G). In 1985, Anstee gave a polynomial time algorithm for the (g, f)-factor

problem and his algorithm either returns one of the factors in question or shows that

none exists, in O(n3) time [7]. Note that this complexity bound is independent of the

functions g and f . We will use this algorithm in our proof. We follow [46] for terminology

and notation where they are not defined here.

3.5 Proof of Theorem 3.2.2

Here we prove Theorem 3.2.2.

(i) Let T be an arbitrary tree. Any subgraph of a tree is a forest, so if T can be

partitioned into two weakly semiregular forests T1 and T2, then there are two numbers

α, β (not necessary distinct) such that T1 is a (1, α)-forest and T2 is a (1, β)-forest (note

that a forest T is a (a, b)-forest if the degree of every vertex is a or b). Without loss of

generality, we can assume that 1 ≤ α ≤ β ≤ ∆(T ) ≤ n. Let D be the degree set of T ,

we have D ⊆ {1, 2, α, α + 1, β, β + 1, α + β}. So if |D| ≥ 8, then the tree T cannot be

partitioned into two weakly semiregular forests. On the other hand, one can see that if

|D| ≤ 7, then the number of possible cases for (α, β) is O(1).

In Algorithm 1, we present an O(n2) time algorithm to check whether T can be parti-

tioned into two weakly semiregular forests T1 and T2, such that the forest T1 is (1, α)-

forest and the forest T2 is (1, β)-forest. If the algorithm returns NO, it means that T

cannot be partitioned and if it returns YES, it means that T can be partitioned.

Here, let us to introduce some notation and state a few properties of Algorithm 1.

Suppose that |V (T )| = n and choose an arbitrary vertex v ∈ V (T ) to be its root. Perform

a breadth-first search algorithm from the vertex v. This defines a partition L0, L1, . . . , Lh

of the vertices of T where each part Li contains the vertices of T which are at depth i (at
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distance exactly i from v). Let p(x) denote the neighbor of the vertex x on the xv-path,

i.e. its parent. Also, let {v1 = v, v2, . . . , vn} be a list of the vertices according to their

distance from the root. We use form this list of vertices in the algorithm. See Algorithm

1.

Algorithm 1
1: Input: The tree T and two numbers α, β.
2: Output: Can T be partitioned into two weakly semiregular forests T1 and T2, such that T1

is (1, α)-forest and T2 is (1, β)-forest.
3: Let g : E(T )→ {red, blue, free} and put g(e)← free for all edges
4: Let f : E(T )→ {red, blue, free} and put f(e)← free for all edges
5: while there is an edge e such that g(e) = free do
6: For any edge e, put f(e)← free
7: s←YES
8: for i = 1 to i = n do
9: if there is no labeling like h for the set of edges Si = {vivj : j > i} with the colors red and

blue such that |{e : e ∈ Si, h(e) = red} ∪ {vip(vi) : f(vip(vi)) = red, i > 1}| ∈ {0, 1, α},
also |{e : e ∈ Si, h(e) = blue} ∪ {vip(vi) : f(vi) = blue, i > 1}| ∈ {0, 1, β} and for each
edge e ∈ Si, if g(e) 6= free, then g(e) = h(e) then

10: if g(vip(vi)) 6= free then
11: return NO
12: end if
13: if f(vip(vi)) = blue then
14: g(vip(vi))← red
15: s←NO
16: break the for loop
17: end if
18: if f(vip(vi)) = red then
19: g(vip(vi))← blue
20: s←NO
21: break the for loop
22: end if
23: end if
24: if s =YES then
25: Label the set of edges Si = {vivj : j > i} with the colors red and blue such that

|{e : e ∈ Si, h(e) = red} ∪ {vip(vi) : if f(vi) = red}| ∈ {0, 1, α}, also |{e : e ∈
Si, h(e) = blue} ∪ {vip(vi) : if f(vi) = blue}| ∈ {0, 1, β} and for each edge e ∈ Si, if
g(e) 6= free, then g(e) = h(e)

26: For each edge e in {vivj : j > i} assign the label of e to the variable f(e)
27: end if
28: end for
29: if s =YES then
30: return YES
31: end if
32: end while
33: return NO

Sketch of Algorithm 1

The algorithm starts from the vertex v1 and labels the set of edges S1 = {v1vj : j > 1}
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with labels red and blue such that the number of edges in S1 with label red is 0 or 1 or

α and the number of edges in S1 with label blue is 0 or 1 or β. The algorithm saves the

partial labeling in f . Next, at step i, i > 1 of the for loop, the algorithm labels the set

of edges Si = {vivj : j > i} with labels red and blue such that the number of edges in

Si ∪{vip(vi)} with label red is 0 or 1 or α and the number of edges in Si ∪{vip(vi)} with
label blue is 0 or 1 or β. If the algorithm runs the for loop completely, then we are sure that

the tree can be partitioned and if at step i, there is no labeling for Si, then it shows that

the label of edge vip(vi) should not be f(vip(vi)). So, the algorithm saves the correct label

of vip(vi) in g, erases the labels of edges, breaks the for loop and starts the for loop from

the beginning. In the next iteration of the for loop, the algorithm has some restrictions in

its labeling (if the label of an edge e in g(e) is not free, then its label must be equal to g(e)).

Therefore, at step i of the for loop, the algorithm should find a labeling like h for the set

of edges Si such that |{e : e ∈ Si, h(e) = red} ∪ {vip(vi) : f(vip(vi)) = red}| ∈ {0, 1, α},
also |{e : e ∈ Si, h(e) = blue} ∪ {vip(vi) : f(vi) = blue}| ∈ {0, 1, β} and for each edge

e ∈ Si, if g(e) 6= free, then g(e) = h(e). If the algorithm runs the for loop completely,

then we are sure that the tree can be partitioned and if at step i, there is no labeling

for Si, then it shows that the label of the edge vip(vi) should not be f(vip(vi)). Now, if

g(vip(vi)) = f(vip(vi)), it shows that T cannot be partitioned into two weakly semiregular

forests and if g(vip(vi)) = free, the algorithm saves the correct label of vip(vi) in g, erases

the labels, breaks the for loop and starts the for loop from the beginning. Note that if

the algorithm does not run the for loop completely, then the label of one edge in the

function g will be changed from free into red or blue. Thus, the while loop will be run at

most |E(T )| times. So, finally the algorithm finds a labeling or terminates and returns

NO.

Complexity of Algorithm 1

In Algorithm 1, if the for loop in Line 8, was completely run (if it was not broken in

Line 16, 21 or 11), then the algorithm will return YES in line 30. Otherwise, the label

of one edge in function g will be changed from free into red or blue. Thus, the while

loop will be run at most |E(T )| times. On the other hand, the for loop in Line 8, takes

at most O(n) times. Consequently, the running time of Algorithm 1 is O(n2), hence we

can determine whether T can be partitioned into two weakly semiregular forests T1 and

T2 in O(n2).

(ii) Let T be an arbitrary tree and c be a constant number. Any subgraph of a tree is

a forest, so if T can be partitioned into c weakly semiregular forests T1, T2, . . . , Tc, then

there are c numbers α1, α2, . . . , αc (not necessary distinct) such that Ti is (1, αi)-forest.
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Without loss of generality, we can assume that 1 ≤ α1 ≤ α2 ≤ . . . ≤ αc ≤ ∆(T ) ≤ n. For
each possible candidate for (α1, α2, . . . , αc) we run Algorithm 2. Since 1 ≤ α1 ≤ α2 ≤
. . . ≤ αc ≤ ∆(T ) ≤ n, the number of candidates is a polynomial in terms of the number

of vertices (in terms of n).

Here, let us to introduce some notation and state a few properties of Algorithm 2.

Suppose that |V (T )| = n and choose an arbitrary vertex v ∈ V (T ) to be its root.

Perform a breadth-first search algorithm from the vertex v. This defines a partition

L0, L1, . . . , Lh of the vertices of T where each part Li contains the vertices of T which

are at depth i (at distance exactly i from v). Let p(x) denote the neighbor of x on the

xv-path, i.e. its parent. Also, let {v1 = v, v2, . . . , vn} be a list of the vertices according

to their distance from the root. If Algorithm 2 returns NO, it means that T cannot be

partitioned and if it returns YES, it means T can be decomposed. See Algorithm 2.

In Algorithm 2, at each step the variable ` for each edge shows the set of forbidden colors

for that edge. In other words, at any time, for each edge e, `(e) is a subset of {1, 2, . . . , c}.

Assume that we want to find a labeling like h with the labels {1, 2, . . . , c} for the set

of edges incident with a vertex u such that for each k, 1 ≤ k ≤ c, |{e : e 3 u, h(e) =

k}| ∈ {γk} and for each edge e and color t, if t ∈ `(e), then h(e) 6= t. We claim that

this problem can be solved in polynomial time. Construct the bipartite graph H with

the vertex set V (H) = {a1, a2, . . . , ac} ∪ {e : e 3 u} such that ate ∈ E(H) if and only if

t /∈ h(e). In this graph we want to find an F -factor such that for each i, F (ai) = γk and

for each edge e, F (e) = 1. If the graph H has an F -factor then there is a labeling like h

for the the set of edges incident with the vertex u with the specified properties. In 1985,

Anstee gave a polynomial time algorithm for the F -factor problem and his algorithm

either returns one of the factors in question or shows that none exists, in O(n3) time [7].

Thus, Line 9 and Line 20 can be performed in polynomial time (Fact 1).

Complexity of Algorithm 2

In Algorithm 2, if the for loop in Line 8, was completely run (it was not broken in Line

16, 21 or 11), then Algorithm will return YES in line 30. Otherwise, a color will be

added to the set of forbidden colors of an edge. Thus, the while loop will be run at most

c|E(T )| times. On the other hand, by Fact 1, the for loop in Line 8, takes a polynomial

time to run. Consequently, the running time of Algorithm 1 is a polynomial in terms of

n.

Sketch of Algorithm 2
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Algorithm 2
1: Input: The tree T and c numbers α1, α2, . . . , αc.
2: Output: Can T be partitioned into c weakly semiregular forests T1, T2, . . . , Tc, such that Ti

is (1, αi)-forest.
3: Let f : E(T )→ {1, 2, . . . , c, free} and put f(e)← free for all edges
4: Let ` : E(T )→ {2{1,2,...,c}} and put `(e)← ∅ for all edges
5: while there is an edge e such that `(e) 6= {1, 2, . . . , c} do
6: For any edge e, put f(e)← free
7: s←YES
8: for i = 1 to i = n do
9: if there is no labeling like h for the set of edges Si = {vivj : j > i} with the colors

{1, 2, . . . , c} such that for each k, 1 ≤ k ≤ c, |{e : e ∈ Si, h(e) = k} ∪ {vip(vi) :
f(vip(vi)) = k, i > 1}| ∈ {0, 1, αk} and for each edge e ∈ Si and color t, if t ∈ `(e), then
h(e) 6= t then

10: if f(vip(vi)) ∈ `(vip(vi)) then
11: return NO
12: end if
13: if f(vip(vi)) /∈ `(vip(vi)) then
14: `(vip(vi))← `(vip(vi)) ∪ {f(vip(vi))}
15: s←NO
16: break the for loop
17: end if
18: end if
19: if s =YES then
20: Label the set of edges Si = {vivj : j > i} with the colors {1, 2, . . . , c} such that for

each k, 1 ≤ k ≤ c, |{e : e ∈ Si, h(e) = k} ∪ {vip(vi) : f(vip(vi)) = k, i > 1}| ∈
{0, 1, αk} and for each edge e ∈ Si and color t, if t ∈ `(e), then h(e) 6= t

21: For each edge e in {vivj : j > i} assign the label of e to the variable f(e)
22: end if
23: end for
24: if s =YES then
25: return YES
26: end if
27: end while
28: return NO

Performance of Algorithm 2 is similar to Algorithm 1, except that in Algorithm 2, at

each step the variable ` for each edge shows the set of forbidden colors for that edge. So

at any time, for each edge e, `(e) is a subset of {1, 2, 3, . . . , c}. This completes the proof.

(iii) Suppose that |V (T )| = n and choose an arbitrary vertex v ∈ V (T ) to be its root.

Perform a breadth-first search algorithm from the vertex v. This defines a partition

L0, L1, . . . , Lh of the vertices of T where each part Li contains the vertices of T which

are at depth i (at distance exactly i from v). Let {v1 = v, v2 . . . , vn} be a list of the

vertices according to their distance from the root. Do Algorithm 3 for the vertices of T

according to their indices.
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Algorithm 3
1: Input: The tree T .
2: Output: A decomposition of T into 2 log2 ∆(T ) +O(1) weakly semiregular subgraphs.
3: for i = 1 to i = n do
4: If i = 1, let a[0]a[1] · · · a[blog2 ∆c] be the binary representation of the number d(v1) (note

that for each r, a[r] is either a 1 or a 0) and label the set of edges {v1vj : j > 1}, such
that for each t, 0 ≤ t ≤ blog2 ∆c, if a[t] = 1, then the number of edges incident with v1

with label t is 2t.
5: If i > 1, vi ∈ Lk and k = 0( mod 2). Let a[0]a[1] · · · a[blog2 ∆c] be the binary representa-

tion of the number d(vi) − 1 and label the set of edges {vivj : j > i}, such that for each
t, 0 ≤ t ≤ blog2 ∆c, if a[t] = 1, then the number of edges in {vivj : j > i} with label
t+ blog2 ∆c+ 1 is 2t.

6: If i > 1, vi ∈ Lk and k = 1( mod 2). Let a[0]a[1] · · · a[blog2 ∆c] be the binary representa-
tion of the number d(vi)− 1 and label the set of edges {vivj : j > i}, such that for each t,
0 ≤ t ≤ blog2 ∆c, if a[t] = 1, then the number of edges in {vivj : j > i} with label t is 2t.

7: end for

In Algorithm 3, for each t, 0 ≤ t ≤ blog2 ∆c, the set of edges with label t forms a (1, 2t)-

graph. Also, the set of edges with label t+ blog2 ∆c+ 1 forms a (1, 2t)-graph. Thus, one

can see that the above-mentioned labeling is partitioning of edges into 2 log2 ∆(T )+O(1)

weakly semiregular subgraphs. This completes the proof.

3.6 Proof of Theorem 3.2.3

It was shown [4] that the following version of Not-All-Equal (NAE) satisfying assignment

problem is NP-complete.

Cubic Monotone NAE (2,3)-Sat.

Instance: Set X of variables, collection C of clauses over X such that each clause c ∈ C
has | c |∈ {2, 3}, every variable appears in exactly three clauses and there is no negation

in the formula.

Question: Is there a truth assignment for X such that each clause in C has at least

one true literal and at least one false literal?

We reduce Cubic Monotone NAE (2,3)-Sat to our problem in polynomial time. Consider

an instance Φ, we transform this into a bipartite graph G in polynomial time such that

wr(G) = 2 if and only if Φ has an NAE truth assignment. We use three auxiliary gadgets

Hc, Ic and B which are shown in Figure 3.1 and Figure 3.2.
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Figure 3.1: The two gadgets Hc and Ic. The graph Ic is on the right hand side of
the figure.

Our construction consists of three steps.

Step 1. Put a copy of the graph B, a copy of the complete bipartite graph K1,6 and a

copy of the complete bipartite graph K3,6.

Step 2. For each clause c ∈ C with | c |= 3, put a copy of the gadget Hc and for each

clause c ∈ C with | c |= 2, put a copy of the gadget Ic.
Step 3. For each variable x ∈ X, put a vertex x and for each clause c = y ∨ z ∨ w,
where y, z, w ∈ X add the edges acy, acz and acw. Also, for each clause c = y∨ z, where
y, z ∈ X add the edges bcy and bcz.

Call the resultant graph G. The degree of every vertex in the graph G is 1 or 3 or 6 and

the resultant graph is bipartite. Assume that the graph G can be partitioned into two

weakly semiregular graphs G1 and G2, we have the following lemmas.

Lemma 3.6.1. The graphs G1 and G2 are (1,3)-graph.

Proof. Without loss of generality, assume that the graph G1 is (α1, α2)-graph and the

graph G2 is (β1, β2)-graph. Since ∆(G) = 6, by attention to the structure of the graph

B, with respect to the symmetry, the following cases for (α1α2, β1β2) can be considered:

(16, 12), (15, 12), (24, 12), (14, 12), (13, 13). The graph G contains a copy of the complete

bipartite graph K1,6, so the case (24,12) is not possible, also, the graph G contains a copy

of complete bipartite graph K3,6, so the cases (16, 12), (15, 12), (14, 12) are not possible.

Thus, the graphs G1 and G2 are (1,3)-graph.

Lemma 3.6.2. For every vertex v with degree three all edges incident with the vertex v

are in one part.

Proof. Since the graphs G1 and G2 are (1,3)-graph, the proof is clear.
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Now, we present an NAE truth assignment for the formula Φ. For every x ∈ X, if all

edges incident with the vertex x are in the graph G1, put Γ(x) = true and if all edges

incident with the vertex x are in graph G2, put Γ(x) = false. Let c = y ∨ z ∨ w be an

arbitrary clause, if all edges acy, acz, acw are in the graph G1 (G2, respectively), then

by the construction of the gadget Hc, the degree of the vertex tc in the graph G2 (G1,

respectively) is at least 5 (5, respectively). This is a contradiction. Similarly, let c = y∨z
be an arbitrary clause, if all edges bcy, bcz are in the graph G1 (G2, respectively), then by

the construction of Ic, the degree of the vertex tc in the graph G2 (G1, respectively) is 6.

This is a contradiction. Hence, Γ is an NAE satisfying assignment. On the other hand,

suppose that Φ is NAE satisfiable with the satisfying assignment Γ : X → {true, false}.
For every variable x ∈ X, put all edges incident with the the vertex x in G1 if and only

if Γ(x) = true. By this method, one can show that the graph G can be partitioned into

two weakly semiregular subgraphs. This completes the proof.

Figure 3.2: The two gadgets P and B. The graph B is on the right hand side of the
figure.

3.7 Proof of Theorem 3.2.4

(i) Any subgraph of a tree is a forest, so in every decomposition of a tree T into some

semiregular subgraphs, each subgraph is a (1,2)-forest. Thus, sr(T ) ≥ d∆(T )
2 e. For

every bipartite graph H, we have χ′(H) = ∆(H) (see for example [46]). Assume that

f : E(T ) → {1, . . . ,∆(T )} is a proper edge coloring for T . The following partition is a

decomposition of T into d∆(T )
2 e semiregular subgraphs.

E(T ) =

d∆(T )
2
e⋃

i=1

{e : f(e) = i or f(e) = i+ d∆(T )

2
e}.

This completes the proof.
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(ii) Let G be an arbitrary graph. By Vizing’s theorem [45], the edge chromatic number of

a graph G is equal to either ∆(G) or ∆(G)+1. The following partition is a decomposition

of G into dχ
′(G)
2 e semiregular subgraphs.

E(G) =

dχ
′(G)
2
e⋃

i=1

{e : f(e) = i or f(e) = i+ dχ
′(G)

2
e}.

So the graph G can be partitioned into d∆(G)+1
2 e semiregular subgraphs.

(iii) We use a reduction from the following NP-complete problem [4].

Cubic Monotone NAE (2,3)-Sat.

Instance: Set X of variables, collection C of clauses over X such that each clause c ∈ C
has | c |∈ {2, 3}, every variable appears in exactly three clauses and there is no negation

in the formula.

Question: Is there a truth assignment for X such that each clause in C has at least

one true literal and at least one false literal?

We reduce Cubic Monotone NAE (2,3)-Sat to our problem in polynomial time. Consider

an instance Φ, we transform this into a bipartite graph G with ∆(G) ≤ 6 in polynomial

time such that sr(G) = 2 if and only if Φ has an NAE truth assignment. We use three

auxiliary gadgets Dc, Fc and P which are shown in Figure 3.2 and Figure 3.3.

Figure 3.3: The two auxiliary gadgets Fc and Dc. Dc is on the right hand side of the
figure.

Our construction consists of three steps.

Step 1. Put a copy of the graph P.
Step 2. For each clause c ∈ C with | c |= 3, put a copy of the gadget Fc and for each

clause c ∈ C with | c |= 2, put a copy of the gadget Dc.
Step 3. For each variable x ∈ X, put a vertex x and for each clause c = y ∨ z ∨ w,
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where y, z, w ∈ X add the edges acy, acz and acw. Also, for each clause c = y∨ z, where
y, z ∈ X add the edges bcy and bcz.

Call the resultant graph G. The degree set of the graph G is {2, 3, 4, 6} and the graph

is bipartite. Assume that G can be partitioned into two semiregular graphs G1 and G2,

we have the following lemmas.

Lemma 3.7.1. The graphs G1 and G2 are (2,3)-graph.

Proof. Without loss of generality assume that G1 is (α−1, α)-graph such that ∆(G1) = α

and G2 is (β − 1, β)-graph such that ∆(G2) = β. In the graph G any vertex of degree

six has a neighbor of degree three, Thus, α 6= 6 and β 6= 6. Also, there is no vertex of

degree five, and any neighbor of each vertex of degree six has degree three, so we can

assume that α 6= 5 and β 6= 5. In the graph P, the degree of the vertex v is four and

the degree of each of its neighbor is two (note that the graph G contains a copy of the

graph P). Thus, by the structure of P and since the graph G contains a vertex of degree

six, we have α 6= 4 and β 6= 4. On the other hand, since ∆(G) = 6, we have α = β = 3.

Hence, the graphs G1 and G2 are (2,3)-graph.

Lemma 3.7.2. For every vertex z with degree three or two all edges incident with the

vertex z are in one part.

Proof. Since the graphs G1 and G2 are (2,3)-graph, the proof is clear.

Now, we present an NAE truth assignment for the formula Φ. For every x ∈ X, if all

edges incident with the vertex x are in G1, put Γ(x) = true and if all edges incident with

the vertex x are in G2, put Γ(x) = false. Let c = y ∨ z ∨w be an arbitrary clause, if all

edges acy, acz, acw are in G1 (G2, respectively), then by the construction of the gadget

Fc and Lemma 3.7.2, the degree of the vertex tc in the graph G2 (G1, respectively) is

4 (4, respectively). This is a contradiction. Similarly, let c = y ∨ z be an arbitrary

clause, if all edges bcy, bcz are in G1 (G2, respectively), then by the construction of the

gadget Dc, the degree of the vertex tc in the graph G2 (G1, respectively) is 4. This is a

contradiction. Hence, Γ is an NAE satisfying assignment. On the other hand, suppose

that Φ is NAE satisfiable with the satisfying assignment Γ : X → {true, false}. For

every variable x ∈ X, put all edges incident with the the vertex x in G1 if and only if

Γ(x) = true. By this method, it is easy to show that G can be partitioned into two

semiregular subgraphs. ♦
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3.8 Proof of Theorem 3.2.5

Let G be a graph. We say that an edge-labeling ` : E(G) → N is an additive vertex-

colorings if and only if for each edge uv, the sum of labels of the edges incident to

u is different from the sum of labels of the edges incident to v. It was shown that

determining whether a given 3-regular graph G has an edge-labeling which is an additive

vertex-coloring from {1, 2} is NP-complete [3]. For a given 3-regular graph G, it is

easy to see that G has an edge-labeling which is an additive vertex-coloring from {1, 2}
if and only if the edge set of G can be partitioned into at most two locally irregular

subgraphs. Thus, determining whether a given 3-regular graph G can be decomposed

into two locally irregular subgraphs is NP-complete [3]. We will reduce this problem to

our problem. Let G be a 3-regular graph. We construct a graph G′ such that G can

be partitioned into two locally irregular subgraphs if and only if G′ can be partitioned

into 2 subgraphs, such that each subgraph is locally irregular or weakly semiregular. Let

G′ = G ∪ C4 ∪ P5 ∪K9,9
⋃8
i=4K1,i.

The degree set of G′ is D = {j : 1 ≤ j ≤ 9}, so |D| ≥ 9, thus G′ cannot be partitioned

into two weakly semiregular subgraphs. Now, assume that G′ can be partitioned into two

subgraphs I and R such that I is locally irregular and R is (α, β)-graph. The graph G′

contains a copy of C4, thus 2 ∈ {α, β}. Also, G′ contains a copy of P5, thus 1 ∈ {α, β}.
Hence R is a (1, 2)-graph. Note that K9,9 cannot be partitioned into two subgraphs

I and R such that I is locally irregular and R is (1, 2)-graph. Thus, G′ cannot be

partitioned into two subgraphs I and R such that I is locally irregular and R is weakly

semiregular. On the other hand, it is easy to see that the graph C4 ∪P5 ∪K9,9
⋃8
i=4K1,i

can be partitioned into two locally irregular subgraphs. Therefore, G can be partitioned

into two locally irregular subgraphs if and only if G′ can be partitioned into 2 subgraphs,

such that each subgraph is locally irregular or weakly semiregular. ♦

3.9 Proof of Theorem 3.3.1

(i) Let ε > 0 be a fixed number and G be a 3-regular graph with sufficiently large number

of vertices in terms of ε. Construct the graphH from the graph G by replacing every edge

ab of G by a copy of the gadget I(a, b) which is shown in Fig. 3.4. It was shown that it is

NP-complete to determine whether the edge chromatic number of a cubic graph is three

[30]. Assume that the number of vertices in the graph H is n. We show that if χ′(G) = 3
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then rep(Hc) ≤ (1 + ε)(n2 )3 and if χ′(G) > 3 then rep(Hc) ≥ (n2 )4, consequently, there

is no polynomial time θ-approximation algorithm for computing rep(Ac) when

(n2 )4

(1 + ε)(n2 )3
=

n

2(1 + ε)
> (1− ε)n

2
= θ.

By the structure of the gadget I(a, b), the graph H is 3-regular and triangle-free, also

by the structure of H, χ′(G) = χ′(H). Let a = pα1
1 . . . pαkk , set rad(a) := p1 . . . pk.

Let H be a triangle-free graph and rep(Hc) = pα1
1 . . . pαkk , and let f(i) be the label for

the vertex i. For each i, let g(i) := rad(f(i)), and let n = rad(pα1
1 . . . pαdd ). One can

check that function g is a representation labeling. Then rep(Hc) is square-free. Let

rep(Hc) =
∏d
i=1 pi, where for each i, i = 1, . . . , d, pi is a prime number. Assume that

r : V (Hc) −→ Zrep(Hc) is a representation for Hc. For each vertex v of Hc define a

d-triple (r1
v , . . . , r

d
v) ∈

∏d
i=1 Zpi such that riv = (r(v) mod pi). By the definition of the

function r, vw is an edge in H if and only if there exists an index i such that riv = riw.

For each edge e = xy of H, define S(e) = {i : rix = riy}. So for each edge e, S(e) is

non-empty and since the graph H is triangle-free, for every two incident edges e and

e′ we have S(e) ∩ S(e′) = ∅. Let c : E(H) −→ {1, . . . , d} be a function such that

c(e) = minS(e). It is clear that c is a proper edge coloring for the graph H. So

d ≥ χ′(H) (3.2)

Figure 3.4: The auxiliary graph I(a, b).

Define Mi = {e ∈ E(H), i ∈ S(e)} for every i, 1 ≤ i ≤ d. The set Mi contains all edges

of the graph H like e = vu such that v and u have a same i-th component. Since the

graph H is triangle-free, it follows that the set of edges Mi is a matching. Also, since

Hc is a triangle-free graph, each z ∈ Zpi appears at most 2 times as the i-th component

of vertices in the graph H. Also, each vertex of H which is not adjacent to any vertex

of Mi, has a unique i-th component. For each i denote the number of edges of Mi by mi

(note that |V (H)| = |V (Hc)| = n). We have:

pi ≥ mi + (n− 2mi) = n−mi. (3.3)
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Also, since every matching has at most n
2 edges, it follows that

pi ≥
n

2
. (3.4)

Now, let χ′(H) = 3 and f : E(H) −→ {1, 2, 3} be a proper edge coloring of H. The

edges of H can be partitioned into three perfect matchings f1, f2 and f3, where fi = {e :

f(e) = i}. For each i, i = 1, 2, 3, label fi = {e1
i , . . . , e

n
2
i }.

It follows from the prime number theorem that for any real α > 0 there is a n0 > 0 such

that for all n′ > n0 there is a prime p such that n′ < p < (1 + α)n′ (see [29] page 494).

Thus for a sufficiently large number n, there are three prime numbers p1, p2, p3 such that
n
2 ≤ p1 < p2 < p3 <

n
2 (1+ ε)

1
3 . For every vertex v of the graph H, call the edges incident

with the vertex v, eα1 , e
β
2 and eγ3 and let ψ : V (Hc) −→ Zp1p2p3 be a function such that

ψ(v) = (α, β, γ). Clearly, this is a representation, so rep(Hc) ≤ p1p2p3 < (1 + ε)(n2 )3.

On the other side, assume that χ′(G) > 3, so χ′(H) > 3. Thus, we have:

rep(Hc) =
d∏
i=1

pi

≥
4∏
i=1

pi By Equation (3.2),

≥ (
n

2
)4 By Equation (3.4),

This completes the proof.

(ii) Let Gc be a triangle-free r-regular graph. By Vizing’s theorem [45], the chromatic

index of Gc is equal to either ∆(Gc) or ∆(Gc) + 1. Thus, for every r-regular graph Gc,

r ≤ χ′(Gc) ≤ r + 1. Therefore, the set of edges of Gc can be partitioned into r + 1

matchings M1, . . . ,Mr+1. By an argument similar to the proof of part (i), we have:

rep(G) ≤ (1 + ε)
r+1∏
i=1

(n− |Mi|)

≤ (1 + ε)(n− rn

2(r + 1)
)r+1 By Equation (3.3),

≤ (1 + ε)e(
n

2
)r+1 By inequality (1 +

1

x
)x < e.

On the other hand:

rep(G) ≥ (
n

2
)r.
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Therefore we have a polynomial time (1 + ε) e2n approximation algorithm for computing

rep(G). ♦

3.10 Concluding remarks and future work

3.10.1 Trees

We proved that for every tree T , wr(T ) ≤ 2 log2 ∆(T ) + O(1). On the other hand,

there are infinitely many values of ∆ for which the tree T might be chosen so that

wr(T ) ≥ log3 ∆(T ). Finding the best upper bound for trees can be interesting.

Problem 3.10.1. Find the best upper bound for the weakly semiregular numbers of trees

in terms of the maximum degree.

We proved that there is an O(n2) time algorithm to determine whether the weakly

semiregular number of a given tree is two. Also, if c is a constant number, then there

is a polynomial time algorithm to determine whether the weakly semiregular number of

a given tree is at most c. However, one further step does not seem trivial. Is there any

polynomial time algorithm to determine the weakly semiregular number of trees?

Problem 3.10.2. Is there any polynomial time algorithm to determine the weakly semireg-

ular number of trees?

In this work we present an algorithm with running time O(n2) to determine whether the

weakly semiregular number of a given tree is at most two. Is there any algorithm with

running time O(n log n) for this problem?

Problem 3.10.3. Is there any algorithm with running time o(n2) for determining whether

the weakly semiregular number of a given tree is at most two?

3.10.2 Planar graphs

Balogh et al. proved that a planar graph can be partitioned into three forests so that

one of the forests has maximum degree at most 8 [10]. On the other hand, we proved

that for every tree T , wr(T ) ≤ 2 log2 ∆(T ) +O(1). Thus, for every planar graph G, we

have wr(G) ≤ 4 log2 ∆(G)+O(1). Also, it was shown that every planar graph with girth
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g ≥ 6 has an edge partition into two forests, one having maximum degree at most 4 [28].

Thus, for every planar graph G with girth g ≥ 6, we have wr(G) ≤ 2 log2 ∆(G) +O(1).

Finding a good upper bound for all planar graphs can be interesting.

Problem 3.10.4. Is this true "For every planar graph G, we have wr(G) ≤ 2 log2 ∆(G)+

O(1)"?

3.10.3 Representation Number

In this work, we proved that if NP 6= P, then for any ε > 0, there is no polynomial time

(1−ε)n2 -approximation algorithm for the computation of representation number of regular

graphs with n vertices. In 2000 it was shown by Evans, Isaak and Narayan [25] that if

n,m ≥ 2, then rep(nKm) = pipi+1 . . . pi+m−1 where pi is the smallest prime number

greater than or equal to m if and only if there exists a set of n− 1 mutually orthogonal

Latin squares of order m. It is interesting to investigate what our result implies about

the Orthogonal Latin Square Conjecture (there exists n − 1 mutually orthogonal Latin

squares of order n if and only if n is a prime power). That is, can our reduction be

extended from regular graphs to just nKm?
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Chapter 4

Resonance varieties of sparse paving

matroids

4.1 Introduction

Let A = (A•, d) be a commutative, differential graded algebra (or simply CDGA) over

the complex numbers. So A =
⊕

i≥0A
i is a graded Q-vector space, with a multiplication

map · : Ai ⊗Aj → Ai+j where u · v = (−1)ijv · u, and a differential d : Ai → Ai+1 where

d(u · v) = du · v + (−1)iu · dv, for all u ∈ Ai and v ∈ Aj .

We will assume that A0 = Q, and Ai is finite-dimensional, for all i ≥ 0. So we can

identify the vector space H1(A) = Z1(A)/B1(A) with the cocycle space Z1(A). For each

element a ∈ Z1(A) ∼= H1(A), we have the following cochain complex,

(A•, δa) : A0 δ0
a // A1 δ1

a // A2 δ2
a // · · · , (4.1)

where δia(u) = a · u+ du, for all u ∈ Ai. It is easy to see that δi+1
a δia(u) = 0.

For each integer i ≥ 0, we can define the degree-i resonance variety as:

Ri(A) = {a ∈ H1(A) | H i(A•, δa) 6= 0}. (4.2)

By [8], we have:

Ri(A⊗A′) ⊆
⋃

p+q=i

Rp(A)×Rq(A′). (4.3)

66
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Moreover, if the differentials of both A and A′ are zero, we have equality in the above

product formula.

The study of resonance varieties has led to interesting connections with other branches

of mathematics. For example, generalized Cartan matrices [6], Latin squares [10] and

the Bethe Ansatz [1].

The main motivation to the try to find the resonance varieties comes from the tan-

gent cone formula which relates the degree-one resonance varieties to the characteristic

varieties of G, where G is a finitely presented 1-formal group.

Let M be a matroid (or any combinatorial object like graph). It is of interest and an

interesting research topic to find the resonance varieties of M in terms of the combina-

torial data coming from the M . Falk and Yuzvinsky [2], have given a characterization

of R1(M). In degree greater than 1, there has been some works, for example [4], but

little is known. For instance, Papadima and Suciu in [8], proved that for the sum of two

matroids M1 and M2 we have

Rk(M1 ⊕M2) =
⋃

p+q=k

Rp(M1)×Rq(M2).

This chapter is organized as follows. Section 2 presents some preliminaries and some

basic properties. In this section we show that for a given a ∈ A1 and a sparse paving

matroid M of rank r, a belongs to Rr−2(M), if and only if the map fa is not injective.

In Section 3, we proceed with the study of fa. We correspond a matrix to this map. We

find basic properties of this matrix. In the last section we will look more closely at the

matrix expression of fa. We drive some interesting results. For example, we show that

if the rank of M is large enough in comparison to the number of minimum circuits, then

Rr−2(M) is trivial. We have a number of reduction theorems. Finally, we provide some

examples, which generalizes of current known examples.

4.2 Background and basic properties

A matroid M is a pair (E, I), where E is a finite set (called the ground set) and I is a

family of subsets of E (called the independent sets) with the following properties:

• The empty set is independent.
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• Every subset of an independent set is independent.

• If A and B are two independent sets and |A| > |B|, then there exists x ∈ B − A
such that B ∪ {x} is in I.

A subset of the ground set E that is not independent is called dependent. A maximal

independent set is called a basis. A circuit in a matroid M is a minimal dependent

subset. It is known that, any two bases of a matroid of M have the same number of

elements. This number is called the rank of M .

Let M be a matroid on the ground set [n] := {1, 2, . . . , n}, and let V = Qn, a vector

space with a basis e1, . . . , en. Let ∂ be the derivation on E := Λ(V ) defined by ∂(ei) = 1

for all 1 ≤ i ≤ n. Let I be generated by

{∂(eC) : circuits C ⊆ [n] of M}, (4.4)

where eC :=
∏
i∈C ei, with indices are in increasing order. The Orlik-Solomon algebra

A := A(M) is the quotient of an exterior algebra E by an ideal I = I(M) generated

by homogeneous relations indexed by circuits in M . The algebra E is graded. Let

I
i

= I ∩Ei, where I has the same generators as I. The projective Orlik-Solomon algebra

A is defined as follows. Let E be the subset of E generated by all differences ei − ej .

Then we set A :=
E

I
.

Since A is a quotient of an exterior algebra, multiplication by an element a ∈ E1 gives a

degree one differential on A, yielding a cochain complex:

A0 −→ A1 −→ · · · −→ Ar −→ · · ·

We denote this complex by (A, a), and its cohomology by H∗(A, a). Let p ≥ 0. The

degree-p resonance variety of A is the set

Rp(A) = {a ∈ A1 | Hp(A, a) 6= 0}.

Clearly, H∗(A, a) = H∗(A, ca), for all c ∈ Q×. Thus, each resonance variety Rp(A) is

homogeneous. Also, it is known that (see [3]), if M is a matroid of rank r, then

{0} ⊆ R0(M) ⊆ · · · ⊆ Rr(M) ⊆ V , (4.5)
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where V = {
∑n

i=1 αiei :
∑n

i=1 αi = 0}.

A paving matroid is a matroid in which every circuit has size at least as large as the

matroid’s rank. A sparse paving matroid is a paving matroid in which its dual is a

paving matroid. It has been conjectured ([7]) that almost all matroids are sparse paving

matroids, i.e. that lim
n→∞

sn
mn

= 1, where mn denotes the number of matroids on n ele-

ments, and sn the number of sparse paving matroids. Pendavingh and van der Pol [9]

proved that lim
n→∞

log sn
logmn

= 1. So it seems that any property of sparse paving matroid is

a property of almost all matroids.

In view of 4.5, the first thing we show is that R1(M) = · · · = Rr−3(M) = {0} and we

find Rr−2(M).

Proposition 4.2.1. Let M be a paving matroid of rank r. Then R1(M) = · · · =

Rr−3(M) = {0} and Rr−2(M) = {a | fa is not injective}, where fa : I
r−1 → I

r be

defined by left multiplication by a.

Proof. Since the rank of M is r and every circuit has size at least r, we have R1(M) =

· · · = Rr−3(M) = {0}.

For any non-zero a ∈ E1, there is a short exact sequence of complexes of E-modules,

0 −→ (I, a) −→ (E, a) −→ (A, a) −→ 0.

This gives a long exact sequence in cohomology and Hp(A, a) ∼= Hp+1(I, a) for all p,

since H•(E, v) = 0. Similarly, since A =
E

I
is the projective Orlik-Solomon algebra, we

have Hp(A, a) ∼= Hp+1(I, a) so we have Hr−2(A, a) ∼= Hr−1(I, a) = {u ∈ Ir−1 | ua = 0}.
Then Rr−2(M) = {a | Ir−1 → I

r is not injective}. Then a ∈ Rr−2(M) if and only if fa
is not injective.

Let E be a finite set, and let 0 < r < |E|. The Johnson graph J(E, r) is the graph with

vertex set (
E

r

)
:= {X ⊆ E : |X| = r},

in which any two vertices are adjacent if and only if they have r−1 elements in common;

equivalently, the vertices X and Y are adjacent whenever |X4Y | = 2.

Proposition 4.2.2. [5] The Johnson graph J(n, r) has
(
n
r

)
vertices, and
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(i) is regular of valency r(n− r),

(ii) with eigenvalues (n− i)(n− r− i)− i with multiplicity
(
n
i

)
−
(
n
i−1

)
(0 ≤ i ≤ r). In

particular, the smallest eigenvalue of J(n, r) is −r.

(iii) J(n, r) ∼= J(n, n− r).

Given a simple graph G = (V,E) a subset of vertices S ⊂ V is an independent set if and

only if there is no edge in E between any two vertices in S.

The next well-known theorem, establishes the relation between Johnson graphs and

sparse paving matroids.

Theorem 4.2.3. [9] Let B ⊆
(
E
r

)
is the collection of bases of a sparse paving matroid if

and only if
(
E
r

)
−B is an independent set in J(n, k).

Let B be a subset of [n]. Write sgniB := (−1)|{b∈B;i<b}|. For simplicity of notation,

we write ∂(A) or ∂(eA) instead of ∂(
∏
i∈A ei). Let M be a paving matroid of rank r,

thus R1(M) = · · · = Rr−3(M) = {0}, so here when we say resonance variety we mean

Rr−2(M). We say Rr−2(M) is trivial if Rr−2(M) has no non-local component.

4.3 Matrix expression

In this section, we write the map fa (Proposition 4.2.1) as a matrix. Then we find basic

properties of this matrix.

Proposition 4.3.1. Let M be a paving matroid on the ground set [n] of rank r. Then

I
r−1 has a generating set indexed by minimum circuits. If M is a sparse paving matroid,

then dim I
r

=
(
n−1
r

)
and A = {∂(A); |A| = r + 1 and 1 ∈ A} is a basis of Ir.

Proof. Let {C1, . . . , Ct} be the set of minimum circuits of M . First we prove that A is

an independent set. Let
∑
ci∂(Ci) = 0. Each ∂(Ci) has exactly one term without e1.

For 1 ≤ i < j ≤
(
n−1
r

)
, the term without e1 in ∂(Ci) is different with the term without

e1 in ∂(Cj). Then c1 = · · · = c(n−1
r ) = 0.

Now, we show that A is a generating set for Ir. Let A be a subset of [n] of cardinality

r + 1, such that 1 /∈ A. We know that ∂(∂(
∏
i∈A∪{1} ei)) = 0. Then

∂(
∑

j∈A∪{1}

sgnjA∪{1}

∏
i∈A∪{1}−{j}

ei) = 0.
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Therefore, ∂(A) can be written as a linear combination of elements of A.

Now, let M be a sparse paving matroid. It is enough to show that ∂(C1), . . . , ∂(Ct) are

independent. Let
∑t

i=1 ci∂(Ci) = 0. Without loss of generality, we can assume that

c1 6= 0. Let a ∈ C1. Then there exists 1 6= i and b ∈ Ci such that C1 − {a} 6= Ci − {b}
which contradicts the fact that |C1 ∩ Ci| ≤ r − 2.

Theorem 4.3.2. Let M be a sparse paving matroid of rank r with minimum circuits

{A1, . . . , At} such that for 1 ≤ i < j ≤ t, |Ai ∩Aj | < r − 2. Then Rr−2(M) is trivial.

Proof. Let a =
∑n

i=1 αiei ∈ Rr−2(M). Then there exists c1, . . . , ct such that a·
∑t

i=1 ci∂(Ai) =

0. Since for 1 ≤ i < j ≤ t, |Ai ∩Aj | < k − 2, it follows that there is no common term in

cia · ∂(Ai) and cja · ∂(Aj). Hence c1a · ∂(A1) = · · · = cta · ∂(At) = 0.

Let a =
∑n

i=1 αiei and A ∈
(
E
r

)
. The next proposition, computes the expression of

a · ∂(A) as a linear combination of A, where 1 ∈ A.

Proposition 4.3.3. Let a =
∑n

i=1 αiei and A ∈
(
E
r

)
such that 1 /∈ A. Then

a · ∂(A) =
∑
i/∈A

(−1)rsgniAαi∂(A ∪ {i}). (4.6)

Proof. Let A = {i1 < i2 < · · · < ir}. Then we have

a · ∂(A) = (
∑
i∈A

αiei) · ∂(A) + (
∑
i/∈A

αiei) · ∂(A).

Hence

a · ∂(A) = (−1)r−1(
∑
i∈A

αi)(
∏
i∈A

ei) + (
∑
i/∈A

αiei)(
∑
j∈A

sgnjA

∏
l∈A,l 6=j

el)

= (−1)r(
∑
i/∈A

αi)(
∏
i∈A

ei) + (
∑
i/∈A

αiei)(
∑
j∈A

sgnjA

∏
l∈A,l 6=j

el)

= (−1)r(
∑
i/∈A

αi)(
∏
i∈A

ei) + (
∑
i/∈A

∑
j∈A

αisgn
j
Aei

∏
l∈A,l 6=j

el).

Thus a · ∂(A) equals to

(−1)r(
∑
i/∈A

αi)(
∏
i∈A

ei) + (
∑
i/∈A

∑
j∈A

αisgn
j
A(−1)r−1sgniA−{j}

∏
l∈A∪{i},l 6=j

el). (4.7)
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A standard computation shows that

(−1)rsgniAsgn
j
A∪{i} = (−1)r−1sgnjAsgn

i
A−{j} (4.8)

Thus by (4.7) and (4.8)

a · ∂(A) = (−1)r(
∑
i/∈A

αi)(
∏
i∈A

ei) + (
∑
i/∈A

∑
j∈A

αi(−1)rsgniAsgn
j
A∪{i}

∏
l∈A∪{i},l 6=j

el).

Then

a · ∂(A) =
∑
i/∈A

(−1)rsgniAαi∂(A ∪ {i}). (4.9)

Assume 1 ∈ A. In this case, Equation (4.6) is an expression of a · ∂(A) in A.

The next proposition, computes the expression of a · ∂(A) in A, where 1 /∈ A.

Proposition 4.3.4. Let a =
∑n

i=1 αiei and A ∈
(
E
r

)
such that 1 /∈ A. Then

a · ∂(A) = α1∂(A ∪ {1}) +
∑

i/∈A,i 6=1

sgniAαi
∑

j∈A∪{i}

sgnjA∪{1,i}∂(A ∪ {1, i} − {j}). (4.10)

Proof. By Equation (4.6), we have

a · ∂(A) = (−1)rsgn1
Aα1∂(A ∪ {1}) +

∑
i/∈A,i 6=1

(−1)rsgniAαi∂(A ∪ {i}). (4.11)

Since A is a basis for Ir, we try to write ∂(A ∪ {i}) as a linear combination of elements

in A. We have

∂(A ∪ {i}) =
∑

j∈A∪{i}

sgnjA∪{i}

∏
l∈(A∪{i})−{j}

el.

We know that

∂(∂(A ∪ {1, i})) = 0.

Then

∂(
∑

j∈A∪{1,i}

sgnjA∪{1,i}

∏
l∈(A∪{1,i})−{j}

el) = 0.

Hence

∂((−1)r+1
∏

l∈A∪{i}

el) + ∂(
∑

j∈A∪{i}

sgnjA∪{1,i}

∏
l∈(A∪{1,i})−{j}

el) = 0.
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This means that

∂(A ∪ {i}) = (−1)r∂(
∑

j∈A∪{i}

sgnjA∪{1,i}

∏
l∈(A∪{1,i})−{j}

el).

Thus

∂(A ∪ {i}) = (−1)r
∑

j∈A∪{i}

sgnjA∪{1,i}∂(
∏

l∈(A∪{1,i})−{j}

el).

Finally we have

∂(A ∪ {i}) = (−1)r
∑

j∈A∪{i}

sgnjA∪{1,i}∂(A ∪ {1, i} − {j}).

Then by Equation (4.11), we have

a · ∂(A) = α1∂(A ∪ {1}) +
∑

i/∈A,i 6=1

sgniAαi
∑

j∈A∪{i}

sgnjA∪{1,i}∂(A ∪ {1, i} − {j}). (4.12)

Remark 3. Let 1 /∈ A. For the column A, the array in the row ∂(A ∪ {1}) is

α1 +
∑

i/∈A,i 6=1

sgniAsgn
i
A∪{1,i}αi = α1 +

∑
i/∈A,i 6=1

αi =
∑
i/∈A

αi.

The rest of the entries in the column A are monomials or zero.

Example 1. Let M be the sparse paving matroid on the ground set {1, . . . , 6} with

minimum circuits {1234, 1256, 3456}. It is easy to see that this matroid is the circuit

matroid of the graph

1

2

3

4 5 6
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Let a =
∑6

i=1 αiei, where
∑6

i=1 αi = 0. Then

A =



α5 0 α2

α6 0 −α2

0 α3 α2

0 α4 −α2

0 0 α1 + α2


Hence

ATA =


α2

5 + α2
6 0 α2α5 − α2α6

0 α2
3 + α2

4 α2α3 − α2α4

α2α5 − α2α6 α2α3 − α2α4 4α2
2 + (α1 + α2)2


Then

det(ATA) = (α2
5 +α2

6)(α2
3 +α2

4)(α1 +α2)2 +α2
2(α2

3 +α2
4)(α5 +α6)2 +α2

2(α2
5 +α2

6)(α3 +α4)2

Therefore a ∈ R2(M) if and only if
α5 = α6 = 0 or

α3 = α4 = 0 or

α1 = α2 = 0 or

α1 + α2 = α3 + α4 = α5 + α6 = 0.

Then the only non-trivial component of R2(M) is {a(e1 − e2) + b(e3 − e4) + c(e5 − e6) |
a, b, c ∈ R}. Also one can get the same result by just comparing the columns of A.

Definition 1. Let A and B be r-subsets of [n], such that 1 ∈ A−B. We say there is a

two-way step from A to B by (a, b, c) if A ∪ {a} = B ∪ {b, 1} − {c}.
If 1 /∈ A ∪ B, we say there is a special two-way step from A to B by (a, b, c, d) if A ∪
{1, a} − {d} = B ∪ {b, 1} − {c}.

Remark 4. If 1 ∈ A−B and |A ∩B| < r − 2, then there is no two-way step from A to

B. If |A∩B| = r− 2, then there exist exactly 2, two-way step from A to B by (b1, a, b2)

and (b2, a, b1), where A−B = {1, a} and B −A = {b1, b2}.

If 1 /∈ A ∪ B and |A ∩ B| < r − 2, then there is no special two-way step from A to B.

If |A ∩ B| = r − 2, then there exist exactly 4, special two-way step from A to B by

(b1, a2, b2, a1), (b1, a1, b2, a2), (b2, a2, b1, a1) and (b2, a1, b1, a2), where A − B = {a1, a2}
and B −A = {b1, b2}.
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Remark 5. Let M be the sparse paving matroid on the ground set [8] with minimum

circuits A1, . . . , At such that 1 ∈ (∩ki=1Ai − ∩ti=k+1Ai). Let B := ATA. Then B is the

following block matrix:

A1, . . . , Ak Ak+1, . . . , At( )
A1, . . . , Ak D E

Ak+1, . . . , At Et F

Here D is the diagonal k × k matrix, (D)ii =
∑

j /∈Ai α
2
j , and (E)ij is:{

αa(αb ± αc) if there is a two-way step from Ai to Aj by (a, b, c)

0 otherwise,

for 1 ≤ i ≤ k and k + 1 ≤ j ≤ t. Also, F is a (t− k)× (t− k) matrix, where

(F )ij =


(αa ± αb)(αc ± αd)

if i 6= j and there is a special two-way step
from Ai to Aj by (a, b, c, d)

(
∑

l∈Ac αl)
2 + (r − 1)

∑
l∈Ac−{1} α

2
l if i = j

0 otherwise,

for k + 1 ≤ i, j ≤ t.

Remark 6. If |C ∩ D| < r − 2 for any distinct C and D, then the matrix ATA is a

diagonal matrix.

Here are some elementary properties of this matrix.

Proposition 4.3.5. Let M be a sparse paving matroid with minimum circuits A1, . . . , At

of rank r. Then

(i) If A is a minimum circuit such that 1 ∈ A. Then in the column A, there are exactly

r non-zero elements.

(ii) If A is a minimum circuit such that 1 /∈ A. Then in the column A, there are exactly

r(n− r − 1) + 1 non-zero elements.

(iii) If there exists only one minimum circuit, say C, such that 1 /∈ C, then in each row

there exists at most two non-zero elements, which one of them must be from the

column C.
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(iv) Let C be a minimum circuit such that 1 /∈ C. Let 1 6= i /∈ C. Then ±αi appears in
exactly r places in the column C. To be exact ±αi appears in rows ∂(C∪{1, i}−{j})
for j ∈ C.

Proof. It follows immediately from the matrix expression of M .

Proposition 4.3.6. Let M be a sparse paving matroid of rank r. Let A and B be two

minimum circuits of M . Then

(i) If 1 ∈ A ∩ B, then in the matrix expression of M the columns A and B have no

intersection.

(ii) Let 1 ∈ A and 1 /∈ B. Let |A ∩ B| = r − 2, A− B = {1, a} and B − A = {b1, b2}.
Then in the matrix expression of M the columns A and B have two intersections

in rows A ∪ {b1} = B ∪ {1, a} − {b2} and A ∪ {c2} = B ∪ {1, a} − {b1}.

· · · A · · · B · · ·



...
...

A ∪ {b1} ±αb1 · · · ±αa B ∪ {1, a} − {b2}
...

...

A ∪ {b2} ±αb2 · · · ±αa B ∪ {1, a} − {b1}
...

...

(iii) Let 1 ∈ A and 1 /∈ B. If |A ∩ B| 6= r − 2, then in the matrix expression of M the

columns A and B have no intersection.

(iv) Let 1 /∈ A∪B. Let |A∩B| = r− 2, A−B = {a1, a2} and B −A = {b1, b2}. Then
in the matrix expression of M the columns A and B have four intersections in rows

A ∪ {1, b1} − {a1} = B ∪ {1, a2} − {b2}, A ∪ {1, b1} − {a2} = B ∪ {1, a1} − {b2},
A∪{1, b2}−{a1} = B ∪{1, a2}−{b1} and A∪{1, b2}−{a2} = B ∪{1, a1}−{b1}.
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· · · A · · · B · · ·



...
...

A ∪ {1, b1} − {a1} ±αb1 · · · ±αa2 B ∪ {1, a2} − {b2}
...

...

A ∪ {1, b1} − {a2} ±αb1 · · · ±αa1 B ∪ {1, a1} − {b2}
...

...

A ∪ {1, b2} − {a1} ±αb2 · · · ±αa2 B ∪ {1, a2} − {b1}
...

...

A ∪ {1, b2} − {a2} ±αb2 · · · ±αa1 B ∪ {1, a1} − {b1}
...

...

(v) Let 1 /∈ A∪B. If |A∩B| 6= r− 2, then in the matrix expression of M the columns

A and B have no intersection.

Proof. It follows immediately from the matrix expression of M .

4.4 Resonance varieties

In this section, we restrict our attention to the matrix expression of fa to find the reso-

nance varieties of sparse paving matroids. In this section, we show that if the intersection

of all of the minimum circuits of M is non-empty, then Rr−2(M) is trivial. Also, we find

Rr−2(M), if the intersection of all of the minimum circuits of M except one of them

is non-empty. Among other results, we show that if the rank of M is large enough in

comparison to the number of minimum circuits, then Rr−2(M) is trivial. We have a

number of reduction theorems. For example, we show that if the rank of the incidence

matrix of minimum circuits of a matroid is n, then Rr−2(M) = ∪ti=1R
r−2(M−Ai). Also,

we provide some examples which is a generalization of the current known examples.

We first prove that if the intersection of all minimum circuits of M is non-empty, then

all resonance varieties of M are trivial.

Theorem 4.4.1. Let M be a sparse paving matroid with minimum circuits A1, . . . , At

of rank r. If ∩ti=1Ai 6= ∅, Then Rr−2(M) is trivial.
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Proof. There is no loss of generality in assuming 1 ∈ ∩ti=1Ai. If we prove that a · ∂(A1),

. . . , a · ∂(At) are linearly independent, the assertion follows. Let 1 ≤ i < j ≤ t. Since

|Ai ∩ Aj | ≤ r − 2, it follows that if u /∈ Ai and v /∈ Aj , then Ai ∪ {u} 6= Aj ∪ {v}. Now

Equation (4.6) shows that in the matrix expression of a · ∂(A1), . . . , a · ∂(At) in A, there
is at most one element in each row, which completes the proof.

Definition 2. Let A1, . . . , At be subsets of [n]. Set mj := |{Ai; j ∈ Ai}|.

If there exists an integer j such that mj = t, then by Theorem 4.4.1, the resonance

is trivial. We have
∑n

j=1mj = rt. Then max{mj} ≥ rt/n. We can assume that

m1 = max{mj}. Let M − Ai be the sparse paving matroid on the ground set [n] with

minimum circuits {A1, . . . , At} − {Ai}.

Theorem 4.4.2. Let M be a sparse paving matroid with minimum circuits A1, . . . , At

of rank r. If for 1 ≤ i ≤ t we have |A1 ∩Ai| 6= r − 2, then Rr−2(M) = Rr−2(M −A1).

Proof. It follows immediately from the matrix expression of M .

Example 2. Let M be the sparse paving matroid on the ground set {1, . . . , 6} with

minimum circuits {126, 145, 235, 346}. The set A = {∂(1234), ∂(1235), ∂(1236), ∂(1245),

∂(1246), ∂(1256), ∂(1345), ∂(1346), ∂(1356), ∂(1456)} is a basis. Then

A =

126 145 235 346



0 0 −α4 −α2 ∂(1234)

0 0 α1 + α4 + α6 0 ∂(1235)

α3 0 −α6 α2 ∂(1236)

0 −α2 −α4 0 ∂(1245)

α4 0 0 −α2 ∂(1246)

α5 0 α6 0 ∂(1256)

0 −α3 α4 −α5 ∂(1345)

0 0 0 α1 + α2 + α5 ∂(1346)

0 0 −α6 −α5 ∂(1356)

0 −α6 0 α5 ∂(1456)

From A it is easy to see that the only non-local component of R1(M) is span{e1 + e3 −
e5 − e6, e2 + e4 − e5 − e6}.

The next definition is a generalization of Example 1.
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Definition 3. Let Mn be the sparse paving matroid on the ground set [2n] with minimum

circuits {A1, . . . , An}, where Ai = [2n]− {2i− 1, 2i}. The rank of Mn is 2n− 2.

Let LM be the union of local components for the matroid M.

Theorem 4.4.3. Let n be a natural number and a =
∑2n

i=1 αiei, where
∑2n

i=1 αi = 0.

Then R2n−4(Mn) = LMn ∪ SpanQ{e1 − e2, e3 − e4, . . . , e2n−1 − e2n}.

Proof. It follows immediately from the matrix expression of Mn.

Theorem 4.4.4. Let M be a sparse paving matroid on the ground set [n] with minimum

circuits {A1, . . . , At} of rank r. If m /∈ ∪ti=1Ai, then in any non-local component of

Rr−2(M) we have αm = 0.

Proof. We can assume that 1 ∈ ∩si=1Ai − ∪ti=s+1Ai. Consider the row ∂(A1 ∪ {m}). In

this row and the column A1, we have ±αm. In this row the rest of entries are zero. Then

αm = 0.

If max{mj} = t− 1, we have the following theorem.

Theorem 4.4.5. Let M be a sparse paving matroid on the ground set [n] with minimum

circuits {A1, . . . , At} of rank r. Suppose ∩ti=1Ai = ∅ and 1 ∈ ∩t−1
i=1Ai. Then

Rr−2(M) =
( t⋃
i=1

Rr−2(M −Ai)
)⋃

V, (4.13)

where V 6= ∅ if and only if M is isomorphic to Ms for some s.

Proof. By Theorems 4.4.1 and 4.4.4, we can assume that ∪ti=1Ai = [n] and ∪ti=1A
c
i = [n].

If there exists 1 ≤ i ≤ t− 1 such that |Ai ∩At| < r − 2, then Rr−2(M) is trivial.

Then for all 1 ≤ i ≤ t−1 we have |Ai∩At| = r−2. Consider the column At. Let x ∈ Act .
On the rows At ∪ {1, x} − {y} for y ∈ At, the entry is ±αx. Let At − Ai = {ai, bi}, and
let Ai − At = {1, ci}. The columns At and Ai intersect in only two rows, Ai ∪ {ai} =

At ∪ {1, ci} − {bi} and Ai ∪ {bi} = At ∪ {1, ci} − {ai}, where for both of rows the entry

on the column At is ±αci . This means that if x is outside of the sets At and ∩(Ai−At),
then αx = 0.
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First, we show that if x ∈ Act ∩ Ac1, then αx = 0. Since x /∈ A1, on the row A1 ∪ {x}
and the column A1, the entry is αx. On the same row and the column At, the entry is

zero, because the intersection of two column happens at rows At ∪ {1, c1} − {a1} and

At ∪ {1, c1}− {b1}. Hence αx = 0. Now, if x ∈ ∪t−1
i=1(Act ∩Aci ), then αx = 0. It is easy to

show that ∪t−1
i=1(Act ∩Aci ) =

(
At ∪ (∩t−1

i=1Ai)
)c
.

Assume that
(
At ∪ (∩t−1

i=1Ai)
)c
6= ∅. Let x ∈

(
At ∪ (∩t−1

i=1Ai)
)c
. Then αx = 0. Then

x ∈ Act and there exists i such that x /∈ Ai. Since ∪ti=1Ai = [n], it follows that there

exists j such that x ∈ Aj . Thus, x ∈ Aj −At. So Aj −At = {1, x}. Now, consider rows
At ∪ {1, x} − {aj} = Aj ∪ {bj} and At ∪ {1, x} − {bj} = Aj ∪ {aj}. This means that

αaj = αbj = 0. Then V = ∅.

Now, we show that if
(
At ∪ (∩t−1

i=1Ai)
)c

= ∅, then M is isomorphic to Ms for some s.

Thus At∪(∩t−1
i=1Ai) = [n], and so Act ⊆ ∩t−1

i=1Ai. Hence A
c
t ⊆ ∩t−1

i=1(Ai−At) =
⋂t−1
i=1{1, ci}.

Then it must be {1, c}. Then At = [n] − {1, c}, and so Ai = [n] − {ai, bi}. Obviously,

{a1, b1}, . . . , {at−1, bt−1}, {1, c} must be a partition for [n].

Theorem 4.4.6. Let M be the sparse paving matroid of rank r with minimum circuits

A1, . . . , At. Let L be the incidence matrix of sets A1, . . . , At. If rank(L) = n, then

Rr−2(M) = ∪ti=1R
r−2(M −Ai).

Proof. Let a =
∑n

i=1 αiei. First we prove that if a ∈ Rr−2(M) − ∪ti=1R
r−2(M − Ai),

then
∑

j∈Ai αj = 0 for 1 ≤ i ≤ t. We have two cases:

• 1 /∈ Ai. Consider the row Ai∪{1}. In this row the only non-zero term is
∑

j∈Aci
αj .

Then
∑

j∈Ai αj = 0.

• 1 ∈ Ai. Let s be an arbitrary element ofAci . In much the same way as in Proposition

4.3.4 and Remark 3, we can write a · ∂(A) as a linear combination of elements of

A′ = {∂(A); |A| = r+1 and s ∈ A} and in the row Ai∪{s} the only non-zero term

is
∑

j∈Aci
αj . Then

∑
j∈Ai αj = 0.

Now, if rank(L) = n, then the system of equations
∑

j∈Ai αj = 0 for any 1 ≤ i ≤ t, is a

non-singular system. Then Rr−2(M) = ∪ti=1R
r−2(M −Ai).

Next theorem shows that if the rank of M is large enough in comparison to the number

of minimum circuits, then Rr−2(M) is trivial.
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Theorem 4.4.7. Let M be a sparse paving matroid on the ground set [n] with minimum

circuits {A1, . . . , At} of rank r. If r > 2(t− 1), then Rr−2(M) is trivial.

Proof. It is enough to show that Rr−2(M) = ∪ti=1R
r−2(M−Ai). On the contrary assume

that Rr−2(M) − ∪ti=1R
r−2(M − Ai) 6= ∅. Let a ∈ Rr−2(M) − ∪ti=1R

r−2(M − Ai). Let

a =
∑n

i=1 αiei. If ∩ti=1Ai 6= ∅, then by Theorem 4.4.1, the result follows. Assume that

1 /∈ At. Let 1 6= i be an arbitrary element of Act . Thus ±αi appears r times in the

column At, in rows ∂(A∪{1, i}−{j}) with j ∈ At. By Proposition 4.3.6, there is j ∈ At
such that the only non-zero term in the row ∂(A∪{1, i}−{j}) is ±αi, which shows that

αi = 0 for all i ∈ Act . Then a ∈ ∪ti=1R
r−2(M −Ai) which is a contradiction.

Definition 4. Let A1 = {1, . . . , t}, . . . , Ak = {kt − t + 1, . . . , kt}. Let Ai1,...,ik−1
=

{i1, . . . , ik−1} ∪ {ik; i1 + · · ·+ ik−1 + ik ≡ 0 mod t, and ik ∈ Ak}. Now, let Mk,t be the

sparse paving matroid with the minimal circuits A = {Ai1,...,ik−1
; ij ∈ Aj}. For example,

the matroid M3,2 is isomorphic to A3. It is easy to see that M3,3 is the Pappus arrange-

ment. The rank of Mk,t is k. One can see that M3,t corresponds to the decomposition of

edges of the graph Kt,t,t into triangles.

The next example shows the matrix expression for M3,3 (Pappus arrangement).

Example 3. Let M be the sparse paving matroid on the ground set [9] with minimum

circuits {189, 239, 679, 156, 134, 246, 478, 357, 258}. In this matroid by multinet we know

that Rr−2(M) is spanned by e1 + e2 + e6− (e3 + e7 + e8) and e1 + e2 + e6− (e4 + e5 + e9).

Here Sijk := (
∑9

t=1 αi)− (αi + αj + αk).
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189 134 156 239 679 246 478 357 258



1234 0 −α2 0 −α4 0 α3 0 0 0

1235 0 0 0 −α5 0 0 0 −α2 α3

1236 0 0 0 −α6 0 −α3 0 0 0

1237 0 0 0 −α7 0 0 0 α2 0

1238 0 0 0 −α8 0 0 0 0 −α3

1239 0 0 0 S239 0 0 0 0 0

1245 0 0 0 0 0 −α5 0 0 α4

1246 0 0 0 0 0 S246 0 0 0

1247 0 0 0 0 0 −α7 −α2 0 0

1248 0 0 0 0 0 −α8 α2 0 −α4

1249 0 0 0 −α4 0 −α9 0 0 0

1256 0 0 −α2 0 0 −α5 0 0 −α6

1257 0 0 0 0 0 0 0 −α2 −α7

1258 0 0 0 0 0 0 0 0 S258

1259 0 0 0 −α5 0 0 0 0 −α9

1267 0 0 0 0 −α2 α7 0 0 0

1268 0 0 0 0 0 α8 0 0 −α6

1269 0 0 0 −α6 α2 α9 0 0 0

1278 0 0 0 0 0 0 −α2 0 −α7

1279 0 0 0 −α7 −α2 0 0 0 0

1289 −α2 0 0 −α8 0 0 0 0 α9

1345 0 −α5 0 0 0 0 0 α4 0

1346 0 −α6 0 0 0 −α3 0 0 0

1347 0 −α7 0 0 0 0 −α3 −α4 0

1348 0 −α8 0 0 0 0 α3 0 0

1349 0 −α9 0 α4 0 0 0 0 0

1356 0 0 −α3 0 0 0 0 −α6 0

1357 0 0 0 0 0 0 0 S357 0
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189 134 156 239 679 246 478 357 258



1358 0 0 0 0 0 0 0 −α8 −α3

1359 0 0 0 α5 0 0 0 −α9 0

1367 0 0 0 0 −α3 0 0 −α6 0

1368 0 0 0 0 0 0 0 0 0

1369 0 0 0 α6 α3 0 0 0 0

1378 0 0 0 0 0 0 −α3 α8 0

1379 0 0 0 α7 −α3 0 0 α9 0

1389 −α3 0 0 α8 0 0 0 0 0

1456 0 0 −α4 0 0 α5 0 0 0

1457 0 0 0 0 0 0 α5 −α4 0

1458 0 0 0 0 0 0 −α5 0 −α4

1459 0 0 0 0 0 0 0 0 0

1467 0 0 0 0 −α4 −α7 α6 0 0

1468 0 0 0 0 0 −α8 −α6 0 0

1469 0 0 0 0 α4 −α9 0 0 0

1478 0 0 0 0 0 0 S478 0 0

1479 0 0 0 0 −α4 0 −α9 0 0

1489 −α4 0 0 0 0 0 α9 0 0

1567 0 0 −α7 0 −α5 0 0 α6 0

1568 0 0 −α8 0 0 0 0 0 α6

1569 0 0 −α9 0 α5 0 0 0 0

1578 0 0 0 0 0 0 −α5 −α8 α7

1579 0 0 0 0 −α5 0 0 −α9 0

1589 −α5 0 0 0 0 0 0 0 −α9

1678 0 0 0 0 −α8 0 −α6 0 0

1679 0 0 0 0 S679 0 0 0 0

1689 −α6 0 0 0 −α8 0 0 0 0

1789 −α7 0 0 0 α8 0 −α9 0 0

Theorem 4.4.8. Let n, k be natural numbers. Then a = a1(e1 + · · · + et) + · · · +

ak(ekt−t+1 + · · ·+ ekt) belongs to Rk−2(Mk,t), if a1 + · · ·+ ak = 0.
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Proof. Let Bi = et(i−1)+1 + · · ·+ eti. Since (B2−B3) · · · (Bk−1−Bk) is not proportional

to (B1 −B2), it suffices to show that (B1 −B2)(B2 −B3) · · · (Bk−1 −Bk) = 0.

(B1 −B2)(B2 −B3) · · · (Bk−1 −Bk) =
k∑
i=1

(−1)k−iB1 · · · B̂i · · ·Bk

=
k∑
i=1

(−1)k−i
∑

tj∈Aj ,j 6=i

k∏
j=1,j 6=i

etj

=
∑
ij∈Aj

±∂(Ai1,...,ik−1
)

= 0.

Theorem 4.4.9. Let k be a positive integer, and let L be the subspace generated by

(e3 + e4)− (e1 + e2), (e5 + e6)− (e1 + e2), . . . , (e2k−1 + e2k)− (e1 + e2). Then

Rk(Mk,2) = L ∪
⋃
A∈A

Rk−2(M −A).

Proof. Let C be a minimum circuit. We know that if a ∈ Rk−2(M) − ∪Rk−2(M − A),

then a must satisfy the equation
∑

i∈C αi = 0. Now consider circuits {2, 4, . . . , 2n} and
{2, 4, . . . , 2n− 4, 2n− 3, 2n− 1}. Thus we have

α2n + α2n−2 = α2n−3 + α2n−1.

Now consider circuits {1, 4, 6, . . . , 2n − 2, 2n − 1} and {1, 4, 6, . . . , 2n − 4, 2n − 3, 2n}.
Thus we have

α2n + α2n−2 = α2n−3 + α2n−1.

Then α2n−2 = α2n−3. Similarly, we have α2i = α2i−1, which completes the proof.

Theorem 4.4.10. LetM be a sparse paving matroid on the ground set [n] with minimum

circuits {A1, . . . , At} of rank r. Let ∩ti=1Ai = ∅ and 1 ∈ ∩t−2
i=1Ai−(At−1∪At). If r < n−4,

then

Rr−2(M) =

t⋃
i=1

Rr−2(M −Ai). (4.14)

Proof. Let V = Rr−2(M)−
⋃t
i=1R

r−2(M −Ai). We prove by contradiction that V = ∅.
Let a =

∑n
i=1 αiei ∈ V . We need to consider three cases:
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• There exists i such that |At −Ai| = |At−1 −Ai| = 2.

Let Ai−At = {1, bi}, Ai−At−1 = {1, b′i}, At−Ai = {ci, di} and At−1−Ai = {c′i, d′i}.
Since r < n−4, there exists β ∈ Aci−{ci, c′i, di, d′i}. Then β ∈ Aci and β /∈ At−1∪At.
Consider the row Ai ∪ {β}. In this row the only non-zero element is αβ . Then

αβ = 0. Since ∪ti=1Ai = [n], it follows that there exists j such that β ∈ Aj . We

need to consider four cases:

– |Aj − At| > 2 and |Aj − At−1| > 2. In this case it is easy to see that the

column Aj has no intersection with the rest of columns, which means that

a ∈ ∪ti=1R
r−2(M −Ai), which is a contradiction.

– |Aj − At| = 2 and |Aj − At−1| > 2. Then Aj − At = {1, β}. Let At − Aj =

{cj , dj}. Now consider the column At and row At ∪ {1, β}− {cj}. In this row

the only non-zero entries are αcj and αdj . Then αcj = αdj = 0. Then all

entries of the column Aj are zero, which means that a ∈ ∪ti=1R
r−2(M − Ai),

which is a contradiction.

– |Aj −At| > 2 and |Aj −At−1| = 2. This case is similar to the second case.

– |Aj −At| = 2 and |Aj −At−1| = 2. Then Aj −At−1 = Aj −At = {1, β}. Let
At − Aj = {cj , dj} and At−1 − Aj = {c′j , d′j}. Now consider the column At

and rows At ∪ {1, β} − {cj} and At ∪ {1, β} − {dj}. In these rows the only

non-zero entries are αcj and αdj . Then αcj = αdj = 0, and similarly for At−1

we have αc′j = αd′j = 0. Then all entries of the column Aj are zero, which

means that a ∈ ∪ti=1R
r−2(M −Ai), which is a contradiction.

• There exists i such that |At −Ai| > 2 and |At−1 −Ai| > 2.

In this case it is easy to see that the column Ai has no intersection with the rest

of columns, which leads to a contradiction.

• For all 1 ≤ i ≤ t, we have either

(i) |At −Ai| = 2 and |At−1 −Ai| > 2 or

(ii) |At−1 −Ai| = 2 and |At −Ai| > 2.

Without loss of generality we can assume thatA1, . . . , Ak belong to (i) andAk+1, . . . , At−2

belong to (ii). Then we have two cases:
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– |At ∩ At−1| < r − 2. In this case two submatrices A1, . . . , Ak, At and

Ak+1, . . . , At−2, At−1 has no intersection. Then

V ⊂ Rr−2(M − {A1, . . . , Ak, At}) ∩Rr−2(M − {Ak+1, . . . , At−2, At−1}),

which is a contradiction.

– |At ∩ At−1| = r − 2. Let At − A1 = {c1, d1}. Let β ∈ Ac1 − {c1, d1}. Then

β /∈ A1 and β /∈ At. In the row A1 ∪ {β} the only term is αβ (in the column

A1). Hence αβ = 0. We have two cases:

∗ β ∈ At−1. Then β ∈ At−1−At. Let At−1−At = {β, λ} and At−At−1 =

{β′, λ′}. Then by considering columns At−1, At, we have aβ = aβ′ = aλ =

aλ′ = 0. It means that V ⊂ Rr−2(M − {A1, . . . , Ak, At}) ∩ Rr−2(M −
{Ak+1, . . . , At−2, At−1}), contradicts our assumption.

∗ β /∈ At−1. Since ∪ti=1Ai = [n], there exists i 6= 1, t−1, t such that β ∈ Ai.
Without loss of generality we can assume that β ∈ A2. Then A2 −
At = {1, β} and At − A2 = {c2, d2}. The column A2 has no intersection

with other columns except the column At which shows that ac2 = ad2 =

0. Then all entries of the column Aj are zero, which means that a ∈
∪ti=1R

r−2(M −Ai), which is a contradiction.

Theorem 4.4.11. LetM be a sparse paving matroid on the ground set [n] with minimum

circuits {A1, . . . , At} of rank r. If m /∈ ∪t−1
i=1Ai, then in any non-local component of

Rr−2(M), we have αm = 0.

Proof. If m ∈ Act , then by Theorem 4.4.4, we have αm = 0. Now, let m ∈ At. If 1 ∈ At,
then in the row A1 ∪ {m} the only non-zero element is αm. Then αm = 0. Now assume

that 1 /∈ At. Let 1 ∈ ∩ki=1Ai − ∪ti=k+1Ai. By Theorem 4.4.5, it is easy to check the

case of t = k + 1. So t > k + 1. Consider the column At−1. In this column αm appears

r-times, in rows At−1 ∪ {1,m} − {p}, where p ∈ At−1. In these rows the only possible

intersection happen with At. If r > 2, then αm = 0. The case r = 2 is trivial.
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Chapter 5

On the addition of squares of units

modulo n

5.1 Introduction

Let Zn be the ring of residue classes modulo n, and let Z×n be the group of its units.

Let c ∈ Zn, and let k be a positive integer. Brauer [1] gave a formula for the number

of solutions of the equation x1 + · · · + xk = c with x1, . . . , xk ∈ Z×n . Sander [4] found

the number of representations of a fixed residue class mod n as the sum of two units

in Zn, the sum of two non-units, and the sum of mixed pairs, respectively. Kiani and

Mollahajiaghaei [3] generalized the results of Sander to an arbitrary finite commutative

ring, as sum of k units and sum of k non-units, with a combinatorial approach.

The problem of finding explicit formulas for the number of representations of a natu-

ral number n as the sum of k squares is one of the most interesting problems in number

theory. For example, if k = 4, then Jacobi’s four-square theorem states that this number

is 8
∑

m|cm if c is odd and 24 times the sum of the odd divisors of c if c is even. See [5]

and the references given there for historical remarks.

Recently, Tóth [5] obtained formulas for the number of solutions of the equation

a1x
2
1 + · · ·+ akx

2
k = c,

88
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where c ∈ Zn, and xi and ai all belong to Zn.

Now, consider the equation

x2
1 + · · ·+ x2

k = c, (5.1)

where c ∈ Zn, and xi are all units in the ring Zn. We denote the number of solutions of

this equation by Ssq(Zn, c, k). Yang and Tang [7] obtained a formula for Ssq(Zn, c, 2).

In this chapter we provide an explicit formula for Ssq(Zn, c, k), for an arbitrary k. Our

approach is combinatorial with the help of spectral graph theory.

The idea may be sketched as follows: first, it is easy to show that if m,n are coprime

numbers, then Ssq(Zmn, c, k) = Ssq(Zm, c, k)Ssq(Zn, c, k). So it is enough to find a

formula for Ssq(Zpα , c, k) where p is a prime number. Let Z×2
n = {x2;x ∈ Z×n }. Let

p be an odd prime number. There is a natural map between solutions of the above

equation and (0, c)-walks in the directed Cayley graph Cay(Zpα ,Z×2
pα ), defined by send-

ing (±x1, . . . ,±xk) to the walk 0, x2
1, x

2
1 + x2

2, . . . , x
2
1 + · · ·+ x2

k. Thus, enumerating the

number of solutions amounts to 2k times enumerating these walks. By exploiting the

structure of this graph, one can reduce this calculation to the case that α = 1. The

number of walks can then be identified as a particular entry in the k-th power of the

adjacency matrix of this graph; in this case the adjacency matrix can be described explic-

itly, and hence one can obtain an exact formula. An explicit formula for Ssq(Z2α , c, k)

can be found by direct counting.

5.2 Preliminaries

In this section we present some graph theoretical notions and properties used in the

paper. See, e.g., the book [2]. Let G be an additive group with identity 0. For S ⊆ G,

the Cayley graph X = Cay(G,S) is the directed graph having vertex set V (X) = G and

edge set E(X) = {(a, b); b − a ∈ S}. Clearly, if 0 /∈ S, then there is no loop in X, and

if 0 ∈ S, then there is exactly one loop at each vertex. If −S = {−s; s ∈ S} = S, then

there is an edge from a to b if and only if there is an edge from b to a.

Let Z×2
n = {x2;x ∈ Z×n }. The quadratic unitary Cayley graph of Zn, G2

Zn = Cay(Zn;Z×2
n ),

is defined as the directed Cayley graph on the additive group of Zn with respect to Z×2
n ;

that is, G2
Zn has vertex set Zn such that there is an edge from x to y if and only if
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y − x ∈ Z×2
n . Then the out-degree of each vertex is |Z×2

n |.

0

1

4

2

3

Figure 5.1: G2
Z5

Let G be a directed graph without multiple edges, and let V (G) = {v1, . . . , vn}. The

adjacency matrix AG of G is defined in a natural way. Thus, the rows and the columns

of AG are labeled by V (G). For i, j, if there is an edge from vi to vj then avivj = 1;

otherwise avivj = 0. We will write it simply A when no confusion can arise. For the

graph G2
Zn the matrix A is symmetric, provided that -1 is a square mod n.

We write Jm for them×m all 1-matrix. The identitym×mmatrix will be denoted by Im.

The complete directed graph on m vertices with a loop at each vertex is denoted by

K+
m. Thus, the adjacency matrix of K+

m is Jm.

A walk in a graph G is a sequence v0, e1, v1, e2, . . . , en, vn so that vi ∈ V (G) for ev-

ery 0 ≤ i ≤ n, and ei is an edge from vi−1 to vi, for every 1 ≤ i ≤ n. We denote by

wk(G, i, j) the number of walks of length k from i to j in the graph G.

One application of the adjacency matrix is to calculate the number of walks between

two vertices.

Lemma 5.2.1. [2, Lemma 8.1.2] Let G be a directed graph, and let k be a positive integer.

Then the number of walks from vertex i to vertex j of length k is the entry on row i and

column j of the matrix Ak, where A is the adjacency matrix.

The next theorem provides the connection between Ssq(Zpα , c, k) and wk(G2
Zpα , 0, c).

Theorem 5.2.2. Let p be an odd prime number and α be a positive integer. Then

Ssq(Zpα , c, k) = 2kwk(G
2
Zpα , 0, c).
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Proof. Consider the graphG2
Zpα . Let (x1, . . . , xk) ∈ (Z×pα)k such that x2

1+x2
2+· · ·+x2

k = c.

Then 0, x2
1, x

2
1 + x2

2, . . . , x
2
1 + x2

2 + · · ·+ x2
k = c is a walk of length k from 0 to c.

Now, let 0 = a0, a1, . . . , ak = c be a walk of length k. Then ai−ai−1 = y2
i , where yi ∈ Z×pα

for i = 1, . . . , k. Hence y2
1 +y2

2 +· · ·+y2
k = c. Then the set {(εky1, . . . , εkyk); εi ∈ {1,−1}}

is a set of solutions of size 2k, which proves the theorem.

The tensor product G1 ⊗ G2 of two graphs G1 and G2 is the graph with vertex set

V (G1⊗G2) := V (G1)×V (G2), with edges specified by putting (u, v) adjacent to (u′, v′)

if and only if u is adjacent to u′ in G1 and v is adjacent to v′ in G2. It can be easily

verified that the number of edges in G1 ⊗ G2 is equal to the product of the number of

edges in the graphs G and H.

Lemma 5.2.3. [6] The adjacency matrix of G⊗H is the tensor product of the adjacency

matrices of G and H.

The rest of chapter is organized as follows. In Section 5.3 we reduce the case Ssq(Zn, c, k)

to the cases Ssq(Zp, c, k) and Ssq(Z2α , c, k). We show that if p is an odd prime number,

then G2
Zpα
∼= G2

Zp ⊗ K
+
pα−1 . Section 5.4 is devoted to the study of Ssq(Zp, c, k), where

p ≡ 1 mod 4. In this section, we write Ak as a linear combination of matrices A, Jp
and Ip, and then we obtain a formula for Ssq(Zpα , c, k). Similarly, we find a formula

for Ssq(Zpα , c, k), where p ≡ 3 mod 4, in Section 5.5. Last section, provides an explicit

formula for Ssq(Z2α , c, k) by direct counting.

5.3 General results

In this section, we reduce the case Ssq(Zn, c, k) to the cases Ssq(Zp, c, k) and Ssq(Z2α , c, k).

The next lemma shows that the function n→ Ssq(Zn, c, k) is multiplicative.

Lemma 5.3.1. Let m,n be coprime numbers. Then Ssq(Zmn, c, k) = Ssq(Zm, c, k) ·
Ssq(Zn, c, k).

Proof. For given representations

a2
1 + · · ·+ a2

k ≡ c mod m,
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b21 + · · ·+ b2k ≡ c mod n

with a1, . . . , ak ∈ Z×m and b1, . . . , bk ∈ Z×n the Chinese remainder theorem guarantees the

unique existence of ci mod mn (i = 1, . . . , k) such that

ci ≡ ai mod m

and

ci ≡ bi mod n.

Moreover we have:

c2
1 + · · ·+ c2

k ≡ c mod m

and

c2
1 + · · ·+ c2

k ≡ c mod n.

Then

c2
1 + · · ·+ c2

k ≡ c mod mn.

Conversely each representation c2
1 + · · ·+ c2

k mod mn yields representations a2
1 + · · ·+a2

k

mod m and b21 + · · ·+ b2k mod n by setting ai :≡ ci mod m and bi :≡ ci mod m, which

completes the proof.

Lemma 5.3.2. Let p be an odd prime number, and let m be the ideal generated by p in

the ring Zpα. Let u ∈ Z×2
pα and r ∈ m. Then u+ r ∈ Z×2

pα .

Proof. For this to happen, it is enough to show that 1+ r belongs to Z×2
pα . We know that

r is a nilpotent element of Zpα . Let λ be a sufficiently large integer. Then (1 + r)p
λ

= 1.

Hence, (1 + r)p
λ+1 = 1 + r.

Theorem 5.3.3. Let p be an odd prime number, and let α be a positive integer. Then

G2
Zpα
∼= G2

Zp ⊗K
+
pα−1.

Proof. Let m be the ideal generated by p, and Zpα =
⋃p
i=1(m + ri), where m + ri is

a coset of the maximal ideal m in Zpα . The ring Zpα/m is isomorphic to the field Zp.
Then for each r ∈ Zpα there is a unique i and nr ∈ m such that r = ri + nr. Let

ψ : G2
Zpα −→ G2

Zp ⊗K
+
pα−1 be defined by ψ(r) := (ri +m,nr). Obviously, this map is a

bijection. Now, let (r, r′) be a directed edge in G2
Zpα . We show that (ψ(r), ψ(r′)) is also a

directed edge in G2
Zp⊗K

+
pα−1 . By definition, ψ(r) = (ri+m,nr) and ψ(r′) = (rj+m,nr′).

We have r′−r ∈ Z×2
pα . Thus, rj−ri+nr′−nr ∈ Z×2

pα . Hence by Lemma 5.3.2, rj−ri ∈ Z×2
pα .
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Then rj − ri +m ∈ (Zpα/m)×2. Since the number of edges of G2
Zpα and G2

Zp ⊗K
+
pα−1 are

the same, the proof is complete.

By the aforementioned theorem, we see

AkG2
Zpα

= AkG2
Zp
⊗Ak

K+

pα−1

= AkG2
Zp
⊗ Jkpα−1 .

5.4 Ssq(Zpα, c, k) where p ≡ 1 mod 4

In this section, we find Ssq(Zpα , c, k), where p is a prime number with p ≡ 1 mod 4.

Recall that an strongly regular graph with parameters (n, k, λ, µ) is a simple graph with

n vertices that is regular of valency k and has the following properties:

• For any two adjacent vertices x, y, there are exactly λ vertices adjacent to both x

and y.

• For any two non-adjacent vertices x, y, there are exactly µ vertices adjacent to both

x and y.

Let p be a fixed prime number with p ≡ 1 mod 4. The Paley graph Pp is defined

by taking the field Zp as vertex set, with two vertices x and y joined by an edge if and

only if x− y is a nonzero square in Zp. For example, P5 is isomorphic to C5.

As is well known (see e.g., [2, P. 221]), the Paley graph is strongly regular with pa-

rameters (p, p−1
2 , p−5

4 , p−1
4 ). The fact that Paley graph is strongly regular shows that A2

can be written as a linear combination of matrices A, Jp and Ip.

Lemma 5.4.1. [2, P. 219] Let p be a prime number such that p ≡ 1 mod 4. Then the

adjacency matrix of the Paley graph Pp satisfies

A2
Pp = −APp + (

p− 1

4
)Jp + (

p− 1

4
)Ip. (5.2)

Although the graph G2
Zp is a directed graph and Pp is a simple graph, they share the

same adjacency matrix. Then An
G2

Zp
can be written as a linear combination of AG2

Zp
, Ip
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and Jp.

Let

An+1 = an,pA+ bn,pJp + cn,pIp. (5.3)

Then

An+2 = an,pA
2 +

p− 1

2
bn,pJp + cn,pA.

Now, by Equation (5.2), we have

An+2 = (an,pa1,p + cn,p)A+ (
p− 1

2
bn,p + an,pb1,p)Jp + (an,pc1,p)Ip.

Then we see that
an+1,p = an,pa1,p + cn,p, a1,p = −1, a2,p = p+3

4 ;

bn+1,p = p−1
2 bn,p + an,pb1,p, b1,p = p−1

4 , b2,p = (p−1
4 )(p−3

2 );

cn+1,p = an,pc1,p, c1,p = p−1
4 , c2,p = −p−1

4 .

From the first and last equations, we have the following homogeneous linear recurrence

relation

an,p =
p− 1

4
an−2,p − an−1,p.

Let τ =
−1 +

√
p

2
. Since a1 = −1 and a2 = p+3

4 , we deduce

an,p =
( 1
√
p

)(
τn+1 + (−1)n(τ + 1)n+1

)
. (i)

Now, we have the following for all n ≥ 1,

cn,p =
(τ(τ + 1)
√
p

)(
τn + (−1)n−1(τ + 1)n

)
. (ii)

Also, for all n ≥ 1 we have

bn,p =
(p− 5)(τ(τ + 1))n−1

8
+
(τ(τ + 1)
√
p

)(
(τ + 1)τn−2 + (−1)n−2τ(τ + 1)n−2

)
. (iii)

We can now find Ssq(Zp, c, k).

Ssq(Zp, c, k) =


2k(bk−1,p + ck−1,p), if c = 0;

2k(ak−1,p + bk−1,p), if c = x2, for some x ∈ Z×p ;

2kbk−1,p, otherwise.

(5.4)
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The last theorem of this section provides a formula for Ssq(Zpα , c, k).

Theorem 5.4.2. Let p be a prime number such that p ≡ 1 mod 4. Let k and α be

positive integer and k > 1. Then

Ssq(Zpα , c, k) =


p(α−1)(k−1)2k(bk−1,p + ck−1,p), if c ≡ 0 mod p;

p(α−1)(k−1)2k(ak−1,p + bk−1,p), if c = x2, for some x ∈ Z×pα ;

p(α−1)(k−1)2kbk−1,p, otherwise,

where ak−1,p, ck−1,p and bk−1,p are defined by equations (i), (ii) and (iii), respectively,

(putting n = k − 1).

Proof. By Theorem 5.3.3 and Lemma 5.2.3, AG2
Zpα

= AG2
Zp
⊗AK+

pα−1
. Then

AkG2
Zpα

= AkG2
Zp
⊗ Jkpα−1

= AkG2
Zp
⊗ p(α−1)(k−1)Jpα−1 .

Then Equation (5.4) and Lemma 5.2.1 complete the proof.

5.5 Ssq(Zpα, c, k) where p ≡ 3 mod 4

In this section, we find Ssq(Zpα , c, k), where p is a prime number with p ≡ 3 mod 4.

The main idea is similar to that used in the previous section. We try to write A2
G2

Zp
as a

linear combination of matrices AG2
Zp
, Ip and Jp.

The field Zp, has no square root of -1. Then for each pair of (x, y) of distinct ele-

ments of Zp, either x− y or y−x, but not both, is a square of a nonzero element. Hence

in the graph G2
Zp , each pair of distinct vertices is linked by an arc in one and only one

direction. Therefore, AG2
Zp

+ AT
G2

Zp
= Jp − Ip. The entry on row a and column b of the

matrix A2
G2

Zp
equals to the size of the set (a + Z×2

p ) ∩ (b − Z×2
p ). The goal of following

lemmas is to find |(a+ Z×2
p ) ∩ (b− Z×2

p )|.

Lemma 5.5.1. Let a and b be elements of Zp. Then |(a+Z×2
p )∩ (b−Z×2

p )| = |(a− b+

Z×2
p ) ∩ −Z×2

p |.
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Proof. Let ψ : (a+Z×2
p )∩ (b−Z×2

p ) −→ (a−b+Z×2
p )∩−Z×2

p be defined by ψ(r) = r−b.
Obviously, ψ is well-defined and injective. Now, let c ∈ (a − b + Z×2

p ) ∩ −Z×2
p , so there

exists s ∈ Z×2
p such that c = a−b+s. Then ψ(c+b) = c, which completes the proof.

Lemma 5.5.2. Let a be a non-zero element of Zp. Then |(a2 + Z×2
p ) ∩ −Z×2

p | = |(1 +

Z×2
p ) ∩ −Z×2

p | and |(−a2 + Z×2
p ) ∩ −Z×2

p | = |(−1 + Z×2
p ) ∩ −Z×2

p |.

Proof. Let ψ : (a2 + Z×2
p ) ∩ −Z×2

p −→ (1 + Z×2
p ) ∩ −Z×2

p be defined by ψ(r) = ra−2.

Obviously, ψ is well-defined and injective. Now, let c ∈ (1 + Z×2
p ) ∩ −Z×2

p . Thus, there

exists s ∈ Z×p such that c = 1 + s2. Then ψ(ca2) = c, which completes the proof.

The proof for the second part is similar.

Then by Lemmas 5.5.1 and 5.5.2, one can see that A2 is a linear combination of matrices

A, Jp and Ip. We show this in Lemma 5.5.5.

Lemma 5.5.3. |(1 + Z×2
p ) ∩ (−Z×2

p )| = p+1
4 .

Proof. We know that
(

(1 + Z×2
p ) ∩ (−Z×2

p )
)
∪
(

(1 + Z×2
p ) ∩ (Z×2

p )
)

= 1 + Z×2
p , and(

(1 + Z×2
p ) ∩ (−Z×2

p )
)
∩
(

(1 + Z×2
p ) ∩ (Z×2

p )
)

= ∅. Then |(1 + Z×2
p ) ∩ (−Z×2

p )| =
p−1

2 − |(1 + Z×2
p ) ∩ (Z×2

p )|. Now, a ∈ (1 + Z×2
p ) ∩ (Z×2

p ) if and only there exist b, c ∈ Z×p
such that a = 1 + b2 = c2. Thus, (c− b)(c+ b) = 1. Hence c = u+u−1

2 and b = u−u−1

2 , for

u ∈ Z×p − {1,−1}. Then (1 + Z×2
p ) ∩ (Z×2

p ) = {(u+u−1

2 )2;u ∈ Z×p } − {1}.

If (u+u−1

2 )2 = (v+v−1

2 )2, then we have two cases:

(i) u+u−1

2 = v+v−1

2 . A trivial verification shows that u = v or u = v−1.

(ii) u+u−1

2 = −v+v−1

2 . Then u = −v or u = −v−1.

Then |(1 + Z×2
p ) ∩ (Z×2

p )| = p−1−2
4 , and the lemma follows.

The following lemma may be proved in much the same way as Lemma 5.5.3.

Lemma 5.5.4. |(−1 + Z×2
p ) ∩ (−Z×2

p )| = p−3
4 .
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Lemma 5.5.5. Let p be a prime number with p ≡ 3 mod 4. Let A be the adjacency

matrix of the graph G2
Zp . Then

A2 = −A+ (
p+ 1

4
)Jp − (

p+ 1

4
)Ip. (5.5)

Proof. Let a, b ∈ Zp. By Lemma 5.5.1,

(A)ab = |(a+ Z×2
p ) ∩ (b− Z×2

p )| = |(a− b+ Z×2
p ) ∩ (−Z×2

p )|.

If there is an edge from a to b, then by Lemmas 5.5.2 and 5.5.4,

(A)ab = |(−1 + Z×2
p ) ∩ (−Z×2

p )| = p− 3

4
.

If a 6= b and there is no edge from a to b, then by a similar argument, we have (A)ab = p+1
4 .

If a = b, then by Lemma 5.5.1,

(A)ab = |(a+ Z×2
p ) ∩ (b− Z×2

p )| = |(Z×2
p ) ∩ (−Z×2

p )| = 0,

which establishes Equation (5.5).

Let

An+1 = an,pA+ bn,pJp + cn,pIp.

Hence

An+1 = an,pA
2 + bn,p

p− 1

2
Jp + cn,pA.

Then

An+1 = (cn+1,p − an,p)A+ (an,p
p+ 1

4
+ bn+1,p

p− 1

2
)Jp + (−an,p

p+ 1

4
)Ip.

Thus, we have
an+1,p = cn,p − an,p, a1,p = −1, a2,p = 3−p

4 ;

bn+1,p = p−1
2 bn,p + an,p

p+1
4 , b1,p = p+1

4 , b2,p = p+1
4 (p−1

2 − 1);

cn+1,p = −an,p p+1
4 , c1,p = −p+1

4 , c2,p = p+1
4 .

From the first and last equations, we have the following homogeneous linear recurrence

relation

an+1,p + an,p +
p+ 1

4
an−1,p = 0.
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Let ζ =
−1 + i

√
p

2
. Since a1,p = −1 and a2,p = 3−p

4 , we deduce

an,p =
i
√
p

(ζ
n+1 − ζn+1), (i’)

where i =
√
−1. Then

cn,p =
i
√
p

(
ζn+1ζ − ζn+1

ζ
)
. (ii’)

Thus, for bn,p we have the following non-homogeneous linear recurrence relation

bn,p =
p− 1

2
bn−1,p −

i
√
p

(
ζn+1ζ − ζn+1

ζ
)
.

Then by the usual methods we have,

bn,p =
1

p

(
(
p− 1

2
)n+1 + ζn+2 + ζ

n+2
)
. (iii’)

Then the number of solutions of Equation (5.1) is

Ssq(Zp, c, k) =


2k(bk−1,p + ck−1,p), if c = 0;

2k(ak−1.p + bk−1,p), if c = x2, for some x ∈ Z×p ;

2kbk−1,p, otherwise.

Let Fp,c(t) =
∑∞

k=0 Ssq(Zp, c, k)tk be the ordinary generating function of Ssq(Zp, c, k).

Then we have

Fp,c(t) =


1
p( 1

1−(p−1)t −
1−p+(−p−1)t
1+2t+(p+1)t2

), if c = 0;

1
p( 1

1−(p−1)t −
1−p+(p−1)t

1+2t+(p+1)t2
), if c = x2, for some x ∈ Z×p ;

1
p( 1

1−(p−1)t −
1+(p−1)t

1+2t+(p+1)t2
), otherwise.

Theorem 5.5.6. Let p be a prime number such that p ≡ 3 mod 4. Let α be a positive

integer. Then

Ssq(Zpα , c, k) =


p(α−1)(k−1)2k(bk−1,p + ck−1,p), if c ≡ 0 mod p;

p(α−1)(k−1)2k(ak−1,p + bk−1,p), if c = x2, for some x ∈ Z×pα ;

p(α−1)(k−1)2kbk−1,p, otherwise,

where ak−1,p, ck−1,p and bk−1,p are defined by equations (i’), (ii’) and (iii’), respectively,

(putting n = k − 1).
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Proof. The proof is similar to that of Theorem 5.4.2.

5.6 Ssq(Z2α, c, k)

In this section we find Ssq(Z2α , c, k). For α = 1 and α = 2, this number is easy to find.

Lemma 5.6.1. Let n = 2α such that α > 2. Then Z×2
n =

{
8k + 1; k ∈ {0, . . . , n8 − 1}

}
.

Proof. Obviously,
{

8k + 1; k ∈ {0, . . . , n8 − 1}
}
⊇ Z×2

n . It suffices to show that the set

Z×2
n has exactly n/8 elements. Define the equivalence relation between odd elements of

Zn as follows. We say a ∼ b if and only if a2 ≡ b2 mod 2α. It is easy to check that

each equivalence class has exactly 4 elements. Hence the number of equivalence classes

is n/8, which is equal to the size of Z×2
n .

Now, we are able to find Ssq(Z2α , c, k).

Theorem 5.6.2. Let n = 2α, c ∈ Zn and k ≥ 1. Then

Ssq(Z2α , c, k) =


1, if α = 1 and c ≡ k mod 2;

2k, if α = 2 and c ≡ k mod 4;

22k+(α−3)(k−1), if α > 2 and c ≡ k mod 8;

0 otherwise.

Proof. α ≤ 2 is trivial. Let α > 2. Let A = {(y1, . . . , yk); 8
∑k

i=1 yi = c − k} and

B = {(x1, . . . , xk);
∑k

i=1 x
2
i = c}. Then by Lemma 5.6.1, and since each equivalent class

has 4 elements, there exists a 4k to 1 and onto map from B to A. By Lemma 5.6.1, one

can check that, if c ≡ k mod 8, then |A| = (2α−3)k−1, which establishes the formula.

Remark 7. Let n = pα1
1 . . . pαtt . Then by Lemma 5.3.1, we conclude that

Ssq(Zn, c, k) =

t∏
i=1

Ssq(Zpαii , c, k),

which can be computed easily by Theorems 5.4.2, 5.5.6 and 5.6.2.
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Chapter 6

Conclusion

6.1 On the algorithmic complexity of adjacent vertex closed

distinguishing number of graphs

In Chapter 2, we proved that for each integer t, there is a bipartite graph G such that

dis[G] > t. The size of the graph G is exponential. So we ask the following question:

Problem 6.1.1. For each positive integer t, is there a bipartite graph G such that V (G) =

O(tc) and dis[G] > t, where c is a constant number.

What can we say about the upper bound in bipartite graphs? Perhaps one of the most

intriguing open question in this scope is the case of bipartite graphs.

Problem 6.1.2. Let G be a bipartite graph, is dis[G] ≤ O(
√

∆(G))?

The polynomial method is a relatively new and powerful method in combinatorics and

graph theory. We provided some number of upper bounds by using a beautifully simple

application of the Combinatorial Nullstellensatz. One may ask can we find lower bounds

using the polynomial or algebraic method?
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6.2 Algorithmic complexity of weakly semiregular partition-

ing, and the representation number of graphs

In Chapter 3, we proved that for every tree T , wr(T ) ≤ 2 log2 ∆(T )+O(1). On the other

hand, there are infinitely many values of ∆ for which the tree T might be chosen so that

wr(T ) ≥ log3 ∆(T ). Finding the best upper bound for trees can be interesting. Also, it

would be desirable to generalize the upper bound to an arbitrary simple graph.

We proved that there is a polynomial time algorithm to determine whether the weakly

semiregular number of a given tree is at most c. Is there any polynomial time algorithm

to determine the weakly semiregular number of trees?

6.3 Resonance varieties of sparse paving matroids

In Chapter 4, we provided some theorems about the resonance varieties of sparse paving

matroid. We found Rr−2(M), if the intersection of all of the minimum circuits of M

except one of them is non-empty. Also, we proved that if the rank of M is large enough

in comparison to the number of minimum circuits, then Rr−2(M) is trivial.

It would be desirable to generalize these results to an arbitrary matroid.

Also, we expressed the map fa as a matrix. What is still lacking is an explicit description

of the matrix.

6.4 On the addition of squares of units modulo n

In Chapter 5, we found an explicit formula for the number of representation of an element

in the ring Zn as the sum of k invertible squares. It would be interesting to generalize

this formula to an arbitrary ring. This question is at present far from being solved.

Let (t1, . . . , tk) ∈ Nk. Consider the following equation

xt11 + · · ·+ xtkk = c, (6.1)
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where c ∈ Zn, and xi are all units in the ring Zn. It would be desirable to find an explicit

formula for the number of solutions of this equation.
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