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Abstract

Practical Kohn–Sham density-functional calculations require approximations to the

exchange-correlation energy functional, EXC[ρ], or the exchange-correlation potential,

vXC(r), defined as the functional derivative of EXC[ρ] with respect to the electron den-

sity, ρ. This thesis focuses on the following problems: (i) development of approximate

exchange-correlation potentials by modelling the exchange-correlation charge distribu-

tion; (ii) accurate approximation of functional derivatives of orbital-dependent function-

als; (iii) generation of exchange-correlation potentials from many-electron wavefunctions;

(iv) analysis of accurate exchange-correlation potentials in atoms and molecules.

The advantage of modelling the exchange-correlation potential through the exchange-

correlation charge distribution, qXC(r), is that it produces potentials with correct asymp-

totic behavior. We present an important caveat for attempts to enforce Coulombic

asymptotics of vXC(r) by normalizing the exchange-correlation charge distribution. We

also formulate integrability conditions that a model qXC(r) must satisfy in order for the

corresponding vXC(r) to be a functional derivative of some density functional.

Functional derivatives of orbital-dependent functionals cannot be derived in closed

form and have to be evaluated numerically using the optimized effective potential (OEP)

method. We propose a way to avoid the OEP equation in finite-basis-set Kohn–Sham cal-

culations employing orbital-dependent functionals. To this end, we develop a hierarchy

of approximations to the functional derivative of a given orbital-dependent exchange-

correlation functional. The highest level in the hierarchy is practically indistinguishable

from the true OEP and is obtained from the requirement that the Kohn–Sham and the

generalized Kohn–Sham densities be equal. By imposing the same requirement on the

Kohn–Sham and wavefunction densities we devise and implement a method for calcu-

lating vXC(r) from a given electronic wavefunction. Our method is free from numerical

limitations and basis-set artifacts of conventional schemes that fit the effective potential

vXC(r) to a given ground-state electron density. In the remainder of the thesis, we apply

our techniques to elucidate the mechanism of formation of the step structure of the exact

vXC(r) and analyze exchange-correlation potentials derived from restricted Hartree–Fock

wavefunctions of stretched diatomic molecules.

Keywords: quantum chemistry, density-functional theory, exchange-correlation po-

tential, exchange-correlation charge distribution, sum rules, functional derivative, orbital-

dependent functionals, optimized effective potential, ab initio calculations, correlated

wavefunctions
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Chapter 1

Theoretical background

“A journey of a thousand miles begins

with a single step.”

— Laozi, Tao Te Ching

1.1 Density-functional theory

Density-functional theory (DFT) has become the standard tool for electronic structure

calculations of atoms, molecules, and periodic systems. The secret of its success lies in

the attractive ratio of accuracy to computational cost. The foundation of modern-day

DFT was laid out in a landmark paper [1] by Pierre Hohenberg and Walter Kohn in

1964.

Historically, DFT was preceded by wavefunction theory (WFT). Electronic wave-

functions can be obtained by solving the time-independent non-relativistic Schrödinger

equation in the fixed-nuclei approximation,

ĤΨ = EΨ, (1.1)

where Ψ(x1,x2, . . . ,xN) is the ground-state N -electron wavefunction, Ĥ is the electronic

Hamiltonian, E is the ground-state electronic energy, and xi ≡ (ri, σi) signify space and

spin coordinates of an electron. The wavefunction Ψ has a probabilistic interpretation

and encompasses all information about the system. Because electrons are fermions, any

legitimate Ψ must change its sign after an interchange of coordinates of any two electrons,

a fundamental property of fermionic wavefunctions known as antisymmetry:

Ψ(x1,x2, . . . ,xN) = −Ψ(x2,x1, . . . ,xN). (1.2)
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In the absence of external fields, the Hamiltonian for an N -electron system in the

field of M nuclear point charges is given by

Ĥ = T̂ + V̂ee + V̂en = −1

2

N∑
i=1

∇2
i +

N∑
i<j

1

|ri − rj|
+

N∑
i=1

vext(ri). (1.3)

In this equation T̂ describes the kinetic energy of the electrons, V̂ee is the electron-electron

repulsion component of the Hamiltonian, and V̂en is a contribution due to the external

Coulomb potential of the nuclei,

vext(r) = −
M∑
j=1

Zj
|r−Rj|

, (1.4)

acting on each electron. Each nucleus is characterized by the charge Zj and the position

vector Rj. For brevity, atomic units are employed here and below [2].

Unfortunately, it is impossible to solve the Schrödinger equation with the Hamiltonian

of Eq. (1.3) analytically, except for N = 1. This means that many-electron wavefunc-

tions have to be approximated in all practical realizations of WFT. The cornerstone of

approximate WFT methods, the Hartree–Fock (HF) theory, uses an antisymmetrized

product of spin orbitals {φi(xi)}, or a Slater determinant, as an ansatz for the unknown

wavefunction Ψ(x1,x2, . . . ,xN):

ΨHF(x1,x2, . . . ,xN) = Â

[
N∏
i=1

φi(xi)

]

= (N !)−1/2

∣∣∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) · · · φN(x1)

φ1(x2) φ2(x2) · · · φN(x2)
...

...
. . .

...

φ1(xN) φ2(xN) · · · φN(xN)

∣∣∣∣∣∣∣∣∣∣
,

(1.5)

where (N !)−1/2 is a normalization factor and Â is the antisymmetrizer operator. The

spatial part of the spin orbitals is usually expanded using a set of auxiliary basis func-

tions whose coefficients are variationally optimized. More advanced methods [3–6] use a

linear combination of Slater determinants to represent the wavefunction. This generally

improves the accuracy of calculations, but at the same time adds extra computational

cost. Such methods scale unfavorably with the system’s size, which makes them compu-

tationally expensive for large systems relevant to chemists, for example, polymers and

biomolecules. It is the advent of DFT and its rapid development that caused a break-
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through in computational quantum chemistry. At present, accurate DFT calculations

can be routinely performed on hundreds of atoms using personal computers, and linear

scaling techniques for DFT in conjunction with supercomputing facilities allow one to

study systems that involve millions of atoms [7, 8].

To understand the main idea of DFT, let us take a closer look at Eq. (1.3). Observe

that the external potential, vext, is one of the two quantities that encode system-specific

information in the Hamiltonian, the other one being the total number of electrons, N .

Because these quantities suffice to set up the Hamiltonian, they implicitly determine the

ground-state wavefunction and hence the ground-state energy of the system:

E = E[vext, N ], (1.6)

where the square brackets indicate that E is a functional of vext and N . Hohenberg and

Kohn proved a theorem [1] that states: the external potential is uniquely determined by

the ground-state electron density,

ρ(r) = N

∫
· · ·
∫
|Ψ(x1,x2, . . . ,xN)|2dσ1dx2 . . . dxN . (1.7)

For simplicity, we will refer to this quantity as “electron density” or “density” and will

keep in mind that, unless noted otherwise, it corresponds to the ground state. Because

the electron density integrates to the total number of electrons, the Hamiltonian and, as

a consequence, the ground-state wavefunction together with all associated properties are

also unique functionals of the electron density. In particular, for the ground-state energy

one can write

E = E[ρ], (1.8)

which means that there exists a unique functional that relates the electron density to the

ground-state energy. One can further partition Eq. (1.8) as

E[ρ] =

∫
vext(r)ρ(r)dr + F [ρ], (1.9)

where F [ρ] is the universal density functional in the sense that it does not contain any

system-specific information. However, an analytical expression for F [ρ] in terms of the

density is unknown, and it has to be approximated.

Hohenberg and Kohn [1] also justified the use of the variational principle for the

energy functional of Eq. (1.9):

E0 ≤ E[ρ̃], (1.10)
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where ρ̃ is a trial density and E0 denotes the exact ground-state energy. Eq. (1.10) sug-

gests that the ground-state energy can be obtained (or approximated) by searching over

a set of admissible densities. In case an input density minimizes the energy functional,

it is guaranteed to be the ground-state density, and its corresponding energy is then the

ground-state energy. Importantly, the variational principle only holds for densities that

have an associated external potential (v-representable densities) [9].

1.2 Kohn–Sham method

By analogy with the Hamiltonian of Eq. (1.3), one can split F [ρ] as

F [ρ] = T [ρ] + Vee[ρ], (1.11)

where T is the kinetic energy of electrons and Vee is the energy due to the electron-electron

repulsion. Neither of these functionals is known as an explicit functional of the electron

density. Using the fact that the major piece of Vee is the classical Coulomb repulsion,

J [ρ] =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
dr, (1.12)

one can convert Eq. (1.11) into

F [ρ] = T [ρ] + J [ρ] + Encl[ρ], (1.13)

where Encl[ρ] is a term that includes non-classical effects of electron exchange and cor-

relation. Thus, the problem reduces to approximating T [ρ] and Encl[ρ] of which T [ρ]

constitutes a much larger contribution to F [ρ].

Kohn and Sham [10] proposed to approximate the unknown T [ρ] using a fictitious

system of non-interacting electrons whose electron density is the same as the density of

the real (interacting) system. One of the properties of this non-interacting system (to

be denoted by the subscript “s”) is that its exact wavefunction can be represented by a

Slater determinant for which the kinetic energy of N electrons is equal to

Ts[ρ] = −1

2

N∑
i=1

∫
φ∗i (r)∇2φi(r)dr (1.14)
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and the N -electron density is given by

ρ(r) =
N∑
i=1

|φi(r)|2. (1.15)

For an interacting and a non-interacting system with a shared density, the non-interacting

kinetic energy is, of course, not equal to its interacting counterpart. However, Eq. (1.14)

can approximate the interacting kinetic energy to very good accuracy. This is the starting

point of the Kohn–Sham (KS) theory.

The next step is to rewrite Eq. (1.13) as

F [ρ] = Ts[ρ] + J [ρ] + EXC[ρ], (1.16)

where EXC[ρ] is the exchange-correlation energy functional defined as

EXC[ρ] = Encl[ρ] + T [ρ]− Ts[ρ]. (1.17)

A perfect description of the quantity EXC is given in a popular DFT textbook [11] by

Wolfram Koch and Max Holthausen: “a junkyard where everything is stowed away which

we do not know how to handle exactly”. Observe that, contrary to its name, it contains

a non-negligible kinetic energy component. Kohn and Sham proceed by minimizing the

total energy functional of Eq. (1.9) with F [ρ] given by Eq. (1.16) with respect to ρ. This

gives a set of N one-electron Schrödinger equations known as the canonical KS equations:[
−1

2
∇2 + veff(r)

]
φi(r) = εiφi(r). (1.18)

The orbitals {φi} are related to the electron density by Eq. (1.15). The local effective

potential veff(r) is called the KS potential and includes the following components:

veff(r) = vext(r) + vH(r) + vXC(r). (1.19)

Here, vH is the Hartree (electrostatic) potential,

vH(r) =
δJ [ρ]

δρ(r)
=

∫
ρ(r′)

|r− r′|
dr′, (1.20)

and vXC is a functional derivative of the exchange-correlation energy functional, or the
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exchange-correlation potential,

vXC(r) =
δEXC[ρ]

δρ(r)
. (1.21)

The KS potential depends on the density constructed from the KS orbitals {φi}, so the

KS equations must be solved iteratively through the following steps: (i) compute the

external potential of the system and set up an initial guess for {φi}; (ii) calculate ρ using

Eq. (1.15) and construct the vXC and vH terms; (iii) solve Eq. (1.18) to obtain a new set

of {φi}; (iv) repeat steps (ii) and (iii) until self-consistency is reached.

The KS orbitals generally have no direct physical meaning, except for the highest-

occupied orbital whose eigenvalue is equal to the negative of the ionization potential

of the system [12–14]. This is because they are introduced merely as a mathematical

construct to obtain the correct density. At the same time, it was empirically found that

{φi} have an interpretive value. In particular, accurate KS eigenvalues agree quite well

with experimental vertical ionization potentials [15].

The beauty of the KS theory is that it effectively replaces the N -electron Schrödinger

equation with a more tractable one-electron problem. The KS equations are formally

exact. In practice, however, one has to approximate the unknown vXC. This constitutes

the main challenge of the KS method because no systematic way to improve the accuracy

of such approximations exists.

1.3 Functionals and functional derivatives

The mathematical formulation of DFT employs the concepts of the functional and the

functional derivative. Here, we introduce these objects and briefly discuss their

properties.

Loosely speaking, a function is a rule for assigning a number (a set of numbers) to

another number. A functional is a prescription that maps a function (a set of functions)

into a number. In simple terms, a functional is a function that takes another function

(several functions) as an argument, which is formally written as

f 7→ F [f ]. (1.22)

Many physical theories deal with the problem of finding extrema of a given functional

in a domain of functions. This is the subject of calculus of variations. Recall that the

extremum of a function can be found using its derivative. Similarly, in order to find the
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extremal function for a functional, one needs to calculate its functional derivative.

Consider a density-functional approximation to some component of the electronic

energy, F [ρ]. The functional derivative of F , δF [ρ]/δρ(r), is defined by∫
δF [ρ]

δρ(r)
h(r)dr = lim

ε→0

F [ρ+ εh]− F [ρ]

ε
, (1.23)

where is ε is a real number, h is an arbitrary integrable function, and the product εh

is called the variation of ρ. The right-hand side of the above equation is known as the

Gâteaux differential in the direction h [16]:

DhF [ρ] = lim
ε→0

F [ρ+ εh]− F [ρ]

ε
. (1.24)

If this limit exists for all functions h, the functional F is said to be Gâteaux differentiable

at a point ρ, and one can write

DhF [ρ] =

{
d

dε
(F [ρ+ εh])

}
ε=0

. (1.25)

The Gâteaux differential is analogous to the directional derivative in ordinary vector

calculus, and the functional derivative can be thought of as an extension of the gradient

of a function of several variables to an infinite number of variables:

δF [ρ]

δρ(r)
←− ∇F (x1, x2, . . . , xn) =

(
∂F

∂x1

,
∂F

∂x2

, . . . ,
∂F

∂xn

)
. (1.26)

Eqs. (1.23)–(1.25) suggest a two-step method for obtaining the functional deriva-

tive of a given functional F [ρ]. First, evaluate its Gâteaux differential as prescribed by

Eq. (1.25). Second, cast the result in the form

DhF [ρ] =

∫
v(r)h(r)dr. (1.27)

The term v(r) is the sought-for functional derivative, that is, δF [ρ]/δρ(r). It is itself a

functional of ρ for each value of r, which is sometimes indicated by writing v([ρ]; r). Let

us now illustrate this method with two examples.

Consider the Thomas–Fermi approximation for the kinetic energy,

TTF[ρ] = CTF

∫
ρ5/3(r)dr, (1.28)

where CTF is a constant. Using Eq. (1.25) we write (the arguments of h and ρ are omitted
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for brevity here and in the next example)

DhTTF[ρ] =

{
d

dε
CTF

∫
(ρ+ εh)5/3dr

}
ε=0

=

{
5

3
CTF

∫
(ρ+ εh)2/3dr

}
ε=0

=
5

3
CTF

∫
ρ2/3hdr.

(1.29)

Comparing this with Eq. (1.27) we obtain the functional derivative of TTF[ρ]:

δTTF[ρ]

δρ(r)
=

5

3
CTFρ

2/3(r). (1.30)

The exchange-correlation energy functional of Eq. (1.17) is usually approximated in

the form of an integral involving density-dependent ingredients. Let us derive a general

expression for the functional derivative of an approximate EXC[ρ] given by

EXC[ρ] =

∫
fXC(ρ,∇ρ,∇2ρ)dr, (1.31)

where fXC(ρ,∇ρ,∇2ρ) is a model function termed the exchange-correlation energy den-

sity.

We start by evaluating the Gâteaux differential:

DhEXC[ρ] =

{
d

dε

∫
fXC(ρ+ εh,∇(ρ+ εh),∇2(ρ+ εh))dr

}
ε=0

=

∫ [
∂fXC

∂ρ
h+

∂fXC

∂∇ρ
· ∇h+

∂fXC

∂∇2ρ
∇2h

]
dr.

(1.32)

We then apply integration by parts to the second term,∫
∂fXC

∂∇ρ
· ∇hdr = −

∫
∇ ·
(
∂fXC

∂∇ρ

)
hdr, (1.33)

and to the third term (two integration steps are needed in this case),∫
∂fXC

∂∇2ρ
∇2hdr =

∫
∇2

(
∂fXC

∂∇2ρ

)
hdr. (1.34)

Here, we assumed that h(r) is a well-behaved function that vanishes at infinity. Com-

bining Eqs. (1.32)– (1.34) we get

DhEXC[ρ] =

∫ [
∂fXC

∂ρ
−∇ ·

(
∂fXC

∂∇ρ

)
+∇2

(
∂fXC

∂∇2ρ

)]
hdr. (1.35)
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Therefore,
EXC[ρ]

δρ(r)
=
∂fXC

∂ρ
−∇ ·

(
∂fXC

∂∇ρ

)
+∇2

(
∂fXC

∂∇2ρ

)
, (1.36)

which implies that the functional derivative of the functional of Eq. (1.31) may depend

on the density derivatives up to the fourth order.

Properties of the functional derivative resemble those of the ordinary derivative:

(i) linearity,
δ(aF + bG)[f ]

δf(r)
= a

δF [f ]

δf(r)
+ b

δG[f ]

δf(r)
, (1.37)

where a and b are constants, (ii) the product rule,

δ(FG)[f ]

δf(r)
=
δF [f ]

δf(r)
G[f ] +

δG[f ]

δf(r)
F [f ], (1.38)

and (iii) the chain rule,
δF [f ]

δf(r)
=

∫
δF [G]

δG(r′)

δG[f ](r′)

δf(r)
dr′. (1.39)

If the argument of F depends on a parameter λ, that is, f ≡ f(r, λ), we have

∂F

∂λ
=

∫
δF [f ]

δf(r)

∂f(r)

∂λ
dr, (1.40)

which follows from Eq. (1.39).

1.4 Explicit and implicit density functionals

We have seen that KS DFT is in principle an exact theory, which in practice requires an

approximation to the unknown vXC. The conventional approach is to model it indirectly

through EXC and then derive vXC according to Eq. (1.21) using the method explained in

the previous section. It is customary to partition EXC into the exchange contribution,

EX, and the correlation contribution, EC, and approximate them separately.

The simplest density-functional approximation is the local density approximation

(LDA),

ELDA
XC [ρ] =

∫
fLDA

XC (ρ(r))dr, (1.41)

whose exchange-correlation energy density function, fLDA
XC = fLDA

X + fLDA
C , depends only

on the electron density. This function is obtained from the uniform electron gas theory:

either in the form of an exact analytic expression [17] (LDA for exchange) or as an

accurate parametrization [18] of the exact numerical values from quantum Monte-Carlo
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simulations (LDA for correlation). The LDA is generally more accurate than the HF

theory in calculations of thermochemical properties and predicts reasonable equilibrium

molecular geometries and lattice constants of solids.

The exact exchange-correlation functional is highly non-local, which means that it

is sensitive to changes of the density not only at a point r, but also at remote points.

This suggests that the next level of accuracy can be reached by incorporating this non-

locality in density-functional approximations. The successor of the LDA, the generalized

gradient approximation (GGA), achieves this by the use of the density gradient, ∇ρ, that

contains information about the behavior of the density in an infinitesimal neighborhood

of a point r:

EGGA
XC [ρ] =

∫
fGGA

XC (ρ(r),∇ρ(r))dr. (1.42)

The GGA-based approximate functionals, or GGAs, are vastly better than the LDA. In

fact, it is the development of the first GGAs that marked the wide acceptance of DFT

by the chemical community. Nevertheless, GGAs remain far from the chemical accuracy

(1 kcal/mol) and have serious flaws, for example, the inability to describe non-covalent

interactions [19, 20].

The LDA and GGAs are similar in the sense they are both explicit functionals of the

electron density. This feature can be viewed as a restriction because one is free to use

quantities that are indirectly determined by the density, for example, the KS orbitals.

Such a strategy brings us to implicit, or orbital-dependent functionals,

EXC[ρ] =

∫
f({φi})dr, (1.43)

where {φi} is the set of the N occupied KS orbitals and f is an analytic expression written

in terms of {φi}. The function f must satisfy two properties: (i) it must be invariant with

respect to a unitary transformation of the orbitals; (ii) it must be gauge-independent.

The idea to use orbitals is in perfect alignment with the spirit of KS DFT that originates

from the proposal to introduce the orbital-dependent kinetic energy functional Ts of

Eq. (1.14).

The most important orbital-dependent functional in the KS theory is the exact-

exchange functional,

Eexact
X [ρ] = −1

4

∫
dr

∫
|γ(r, r′)|2

|r− r′|
dr′, (1.44)

where

γ(r, r′) =
N∑
i=1

φi(r)φ∗i (r
′) (1.45)
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is the KS one-electron reduced density matrix (1-RDM). Equation (1.44) is the exact

formula for the exchange energy of the KS determinant. The same expression for exchange

is also used in the HF theory, where it is evaluated using the HF orbitals. The exact-

exchange functional is normally combined with local and semilocal approximations for

exchange and correlation. Such combinations, called hybrid functionals [21], have the

following form in the simplest case:

EXC[ρ] = a0E
exact
X [ρ] + (1− a0)EDFA

X [ρ] + EDFA
C [ρ], (1.46)

where a0 is an adjustable parameter and the superscript “DFA” indicates that EDFA
X and

EDFA
C are approximations to the corresponding exact density functionals.

Another group of orbital-dependent functionals includes the so-called meta-GGAs of

the form

EmGGA
XC [ρ] =

∫
fmGGA

XC (ρ(r),∇ρ(r),∇2ρ(r), τ(r))dr, (1.47)

where ∇2ρ(r) is the Laplacian of the electron density, and

τ(r) =
1

2

N∑
i=1

|∇φi(r)|2 (1.48)

is the KS positive-definite kinetic energy density with the property that it integrates to

the KS kinetic energy Ts of Eq. (1.14). The other form of the KS kinetic energy density

is the Laplacian kinetic energy density,

τL(r) = τ(r)− ∇
2ρ(r)

4
= −1

2

N∑
i=1

φ∗i (r)∇2φi(r), (1.49)

with the same property.

The advantage of orbital-dependent functionals is that they offer more freedom in the

design of new approximations. However, they also have one fundamental shortcoming

compared to explicit functionals. Recall that, in order to set up the KS equations for

an approximate EXC, one needs to obtain its functional derivative with respect to the

electron density. For orbital-dependent functionals, this quantity cannot be evaluated

in closed form by functional differentiation. To understand where the difficulty arises,

let us apply the chain rule for functional derivatives to an arbitrary orbital-dependent
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functional (we write it here as EXC[{φi}] to emphasize the dependence on the orbitals):

vXC(r) =
δEXC[{φi}]
δρ(r)

=
N∑
i=1

∫
δEXC

δφi(r′)

δφi(r
′)

δρ(r′)
dr′ + c.c., (1.50)

where “c.c.” denotes the complex conjugate of the preceding sum. Working out the

first factor inside the integral, δEXC/δφi, is a trivial task, while the remainder, δφi/δρ,

cannot be obtained in closed form by functional differentiation because there is no explicit

mapping between ith orbital and the electron density. Fortunately, one can evaluate the

functional derivative of Eq. (1.50) numerically using the optimized effective potential

(OEP) method.

The OEP method was devised in 1953 by Sharp and Horton [22] who developed an

approximation to the non-local exchange operator of the HF theory by having posed the

following question: What is the effective local potential that minimizes the HF energy

expression? They showed that such a potential satisfies an integral equation, now called

the OEP equation. Numerical solutions of the OEP equation to spherical atoms were re-

ported by Talman and Shadwick [23] in 1976. A few years later, Sahni and coworkers [24]

demonstrated that the OEP potential is the exact exchange potential of KS DFT, that

is, the functional derivative of the exact-exchange functional of Eq. (1.44).

Several equivalent forms of the OEP equation have been derived [25–28]. The most

common one is the following:

N∑
i=1

∫
φ∗i (r

′)
[
vOEP

XC (r′)− ûXC

]
GKS,i(r, r

′)φi(r)dr′ + c.c. = 0, (1.51)

where the KS Green’s function, GKS,i(r, r
′), is given by:

GKS,i(r, r
′) =

∞∑
i=1
j 6=i

φj(r)φ∗j(r
′)

εj − εi
, (1.52)

and ûXC is a non-local operator such that

ûXCφi(r) =
δEXC[{φi}]
δφ∗i (r)

. (1.53)

It is important to note that the OEP equation is not limited to the exact exchange

and is applicable to any orbital-dependent functional. However, the term “OEP” is often
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(loosely) used to denote the functional derivative of the exact-exchange functional for

historical reasons.

There are two reasons why the OEP method does not eliminate completely the main

challenge of orbital-dependent functionals—the evaluation of their functional derivatives.

First, existing methods for solving the OEP equation directly [29, 30] are not numerically

reliable. Second, the OEP problem is ill-posed in finite basis sets, which means that

the finite-basis-set representation of the OEP cannot be uniquely determined [31]. As a

result, the OEP equation is often avoided in practical calculations with orbital-dependent

functionals.

One way to circumvent the OEP equation is to replace the functional derivative

δEXC[{φi}]/δρ(r) by the non-local orbital-specific operator of Eq. (1.53), an approach

called the generalized Kohn–Sham (GKS) scheme [32]. When applied for the exact-

exchange functional, the GKS scheme leads to the one-electron equations of the HF

theory. The advantage of this approach is that it can be easily implemented and works

quite well for total energies. However, the eigenvalue spectrum of the non-local operator

ûXC is not the same as that of the multiplicative operator vOEP
XC (r) = δEXC[{φi}]/δρ(r).

Another approach is to solve the OEP equation in an approximate way. The simplest

approximation to the exact exchange potential was suggested [22] by the creators of the

OEP method, Sharp and Horton, and goes back to an earlier result of Slater [33]. This

approximation is called the Slater potential and has the following form:

vOEP
X (r) ≈ vHF

S (r) = − 1

2ρHF(r)

∫
|γHF(r, r′)|2

|r− r′|
dr′, (1.54)

where the HF electron density, ρHF(r), and the HF 1-RDM, γHF(r, r′), are given by the

same equations as their KS counterparts (Eqs. (1.15) and (1.45), respectively) but are

constructed using the HF orbitals. The accuracy of the Slater potential is not adequate

for practical purposes. Nevertheless, it is conceptually significant and serves as a building

block for more accurate approximations.

The first truly successful approximation to the exact-exchange OEP was developed by

Krieger, Li, and Iafrate [34] in 1990 and is known under the name “the KLI potential”:

vOEP
X (r) ≈ vKLI

X (r) = vHF
S (r) +

1

ρ(r)

occ.∑
i=1

|φi(r)|2
〈
φi|vKLI

X − K̂|φi
〉
, (1.55)

where the operator K̂ is nothing but ûXC of Eq. (1.53) evaluated for the exact-exchange

functional and the orbitals {φi} are obtained self-consistently with vKLI
X . The KLI po-
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tential retains all important analytical features of the exact exchange potential but is

considerably simpler to compute. Observe that the KLI potential is the sum of the

Slater potential and the correction term. Competitors of the KLI approximation that

appeared later [35–37] only differ by this correction term and have comparable accuracy.

1.5 Potential-driven Kohn–Sham density-functional

theory

We have outlined the approach that dominates KS DFT: constructing an approximate

EXC[ρ] whose functional derivative, vXC, is subsequently used to solve the KS equa-

tions. An appealing alternative is to model vXC directly and then integrate it to obtain

the corresponding exchange-correlation energy. This approach is often referred to as

potential-driven KS DFT, and approximations to the exchange-correlation potential are

called model potentials. Compared to the conventional functional-based approach, work-

ing directly with the exchange-correlation potential makes it easier to reproduce desired

properties of the exact vXC. These properties usually include the Coulombic asymptotic

decay [14, 38, 39], the shell structure [40], and the derivative discontinuity [12, 13, 41].

The long-range behavior of the exact vXC is Coulombic [14, 38, 39, 42],

vXC(r) ∼ −1

r
(r →∞), (1.56)

where the asymptotic notation f(x) ∼ g(x) (x→∞) means that limx→∞[f(x)/g(x)] = 1.

At the same time, functional derivatives of common DFAs fall off faster (exponentially).

The exponential asymptotic decay distorts the shape and energies of the highest occu-

pied molecular orbital (HOMO) and of the other molecular orbitals, which leads to the

incorrect description of molecular response properties such as the ionization potential (if

approximated by the negative of the HOMO energy of the neutral system), electronic ex-

citation energies, and polarizabilities. Several model potentials [43–45] were specifically

designed to mimic the Coulombic decay of the exact vXC. The most prominent example

of such potentials is the approximation of van Leeuwen and Baerends (LB94) [43]. Their

idea was to modify the exponentially decaying LDA potential for exchange,

vLDA
X (r) = −4

3
CXρ

1/3(r), (1.57)

where CX = (3/4)(3/π)1/3, by adding a gradient-dependent term (the position variable
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is suppressed for brevity):

vLB94
X = vLDA

X − ρ1/3 βξx2

1 + 3βξxsinh−1(ξx)
, (1.58)

where x = |∇ρ|/ρ4/3 is a dimensionless reduced density gradient, β is an empirical

parameter, and the factor ξ = 21/3 arises from conversion to the spin-unpolarized form.

Besides the −1/r decay, the gradient correction imparts the LB94 exchange potential

with the pronounced shell structure.

The most important methodological question of potential-driven KS DFT is how to

assign an energy to a given model potential. To this end, one needs to recover the

corresponding energy functional by means of functional integration. The basic technique

for integration of model potentials was pointed out by van Leeuwen and Baerends [46].

In their technique, known as the line integral method, the potential is integrated along

a path in the space of electron densities,

EXC[ρ] =

∫
dr

∫ 1

0

vXC([ρλ], r)
ρλ(r)

∂λ
dλ, (1.59)

where ρλ(r) ≡ ρ(r, λ) is a density parameterization which defines the path. Let us now

define two classes of model potentials. An integrable potential is a potential that can

be derived from some density functional. In other words, an integrable potential is a

functional derivative. A non-integrable or stray potential, on the contrary, does not have

a parent functional. In fact, most existing model potentials are stray [47], including the

LB94 exchange potential of Eq. (1.58). The final result of Eq. (1.59) depends on whether

a potential is integrable or stray. For integrable potentials, Eq. (1.59) will always produce

the same exchange-correlation energy regardless of the chosen density path ρλ(r). This

is not the case for stray potentials for which such an energy depends on a path and hence

cannot be uniquely assigned [48]. The path dependence of the exchange-correlation

energy is not the only problem of stray potentials. They also lack translational and

rotational invariance [49], cannot be used for geometry optimizations [47], and may lead

to unphysical results [50–52] in calculations of molecular response properties. Thus, it is

crucial to be able to identify stray potentials and make them integrable.

The basic integrability test for model exchange-correlation potentials was derived by

Ou-Yang and Levy [53] and reads:

δvXC(r)

δρ(r′)
=
δvXC(r′)

δρ(r)
. (1.60)
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This result of Ou-Yang and Levy can be understood as follows: in order for a potential

to be a functional derivative of some density functional, the functional derivative of this

potential with respect to the electron density must be a symmetric function with respect

to the interchange of its variables r and r′. Gaiduk and Staroverov [54] later considered

the explicitly density-dependent potential of the type

vXC ≡ vXC(ρ,∇ρ,∇2ρ) (1.61)

and demonstrated that in this case Eq. (1.60) is equivalent to

∂vXC

∂∇ρ
= ∇ ∂vXC

∂∇2ρ
. (1.62)

The condition of Eq. (1.62) is satisfied for any integrable model potential of the type (1.61)

and is violated otherwise. The significance of this equation is that it can be converted

into a practical recipe [54] for turning stray potentials into functional derivatives.

The area where the use of model potentials has been most fruitful [55–58] is calculation

of molecular response properties and particularly vertical electronic excitation spectra for

atoms and molecules. Electronic excitation energies are either approximated as orbital

energy differences or, more commonly, computed using adiabatic linear-response time-

dependent density-functional theory (TDDFT) [59]. Popular density functionals severely

underestimate [57, 60] high-lying (Rydberg) transitions, a failure that can be corrected

by model potentials. Gaiduk et al. [61, 62] recently proposed a method for generation of

model potentials from standard density functional approximations by the HOMO depop-

ulation. Their scheme amounts to correcting the mid- and long-range behavior of vXC(r)

and improves the accuracy of Rydberg excitations by an order of magnitude without

affecting valence transitions. Another recent illustration of utility of model potentials in

calculations of excitation energies was reported by Chai and coworkers [63]. They showed

that asymptotically corrected model potentials can be reliably used to estimate Rydberg

excitation energies and their accuracy is comparable to that of sophisticated multiparam-

eter empirical functionals (for example, the M06-2X functional of Ref. 64) specifically

tuned to reproduce these properties. Unfortunately, available model potentials still need

to be improved [63, 65] for accurate description of charge-transfer excitations.

The superior performance of model potentials in terms of molecular response proper-

ties results from the high quality of the KS orbitals they produce. Baerends, Gritsenko,

and coworkers [66–68] analyzed eigenspectra of the exact exchange-correlation potential,

an accurate model potential (the statistical average of orbital potentials (SAOP) [56]),
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and approximate density functionals. They found that the SAOP approximates the true

vXC(r) much better than local, semilocal, and hybrid functionals. This is reflected in

good agreement between experimental vertical excitation energies and virtual-occupied

orbital energy gaps, reasonable shapes of virtual orbitals, and the single-orbital nature

of most excitations, meaning that the transition density is dominated by one occupied-

virtual orbital transition. One might expect the same picture for any other accurate

model potential. Importantly, the use of hybrid functionals leads to the unoccupied or-

bitals that are too diffuse. This is because such functionals are normally applied using

the GKS scheme discussed in Sec. 1.4. Recall that in this scheme the multiplicative

operator vXC(r) is replaced by non-local orbital-specific potentials. In the case of global

hybrids, Kim and coworkers [69] demonstrated that the transition to the KS scheme with

the local OEP potential significantly improves the shape of the unoccupied KS orbitals

and, as a result, the accuracy of TDDFT excited state calculations, and does not im-

pact ground-state properties such as atomization energies and potential energy barrier

heights.

Finally, we note that exchange-correlation potentials are important not only in the

framework of potential-driven DFT but can also guide the development of approximate

density functionals. Recall that in the conventional functional-based approach one ap-

proximates the exchange-correlation energy density. This quantity is such that its corre-

sponding exchange-correlation energy remains unchanged upon addition of an arbitrary

function that integrates to zero. On the other hand, vXC(r) is uniquely determined by the

electron density and can be plotted as a function of r. In many cases, failures of an ap-

proximate density functional can be understood by analyzing the shape of its functional

derivative, vXC(r). Accurate exchange-correlation potentials can also be directly used to

design new density functionals. For example, one can generate vXC(r) from correlated ab

initio densities [70, 71] and use these potentials to constrain the functional derivative of a

flexible functional form whose expansion coefficients are subsequently optimized [72–74].

1.6 Electrostatic approach to modelling the exchange-

correlation potential1

An alternative to the direct design of asymptotically correct model potentials is to ap-

proximate the so-called exchange-correlation charge distribution, qXC(r), defined [75–77]

1Reproduced in part from S. V. Kohut and V. N. Staroverov, “Apparent violation of the sum rule
for exchange-correlation charges by generalized gradient approximations”, J. Chem. Phys. 139, 164117
(2013), with the permission of AIP Publishing.

17

http://dx.doi.org/10.1063/1.4826259
http://dx.doi.org/10.1063/1.4826259


in terms of the exchange-correlation potential by the Poisson equation,

qXC(r) = − 1

4π
∇2vXC(r). (1.63)

The quantity qXC(r) specifies a fictitious charge distribution whose electrostatic potential

is equal to vXC(r), that is,

vXC(r) =

∫
qXC(r′)

|r− r′|
dr′. (1.64)

Because Eqs. (1.63) and (1.64) are borrowed from electrostatics where they link the

electric potential with its corresponding charge distribution, this approach is called the

electrostatic approach to modelling the exchange-correlation potential.

The exchange-correlation charge distribution has many interesting properties [78–82],

one of which is the following. Let

QXC =

∫
qXC(r) dr (1.65)

be the total exchange-correlation charge. Then the value of QXC determines the rate of

asymptotic decay of the corresponding vXC(r). Specifically, using the big-O notation,

vXC(r) =
QXC

r
+O(r−m) (r →∞), (1.66)

where m > 1. To understand the physical origin of this result, consider a spatially

localized but otherwise arbitrary charge distribution q(r). At a point r such that r �
r′, the electrostatic potential induced by this distribution can be represented by the

multipole expansion [83]

v(r) =
Q

r
+

r ·Q(1)

r3
+

r ·Q(2) · r
r5

+ . . . , (1.67)

where Q =
∫
q(r′) dr′ is the total charge or the monopole moment (a rank-zero tensor),

Q(1) =
∫

r′q(r′) dr′ is the dipole moment (a rank-one tensor), Q(2) is the quadrupole

moment (a rank-two tensor), and so forth. According to Eq. (1.67), the leading term in

the asymptotic expansion of v(r) is Q/r. If Q = 0, then v(r) must decay faster than any

Coulombic potential [84].

For example, the exact vXC(r) in an atom or molecule decays Coulombically [Eq. (1.56)].

This immediately suggests that the exact qXC(r) satisfies the sum rule [75–78]

QXC ≡
∫
qXC(r) dr = −1. (1.68)
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The exact correlation potential is known to fall off as [14, 85]

vC(r) ∼ − α

2r4
(r →∞), (1.69)

where α is a system-dependent constant. This means that the exact correlation charge

distribution qC(r), defined in terms of vC(r) by analogy with Eq. (1.63), has the normal-

ization property [78]

QC ≡
∫
qC(r) dr = 0. (1.70)

Finally, Eqs. (1.56) and (1.69) together imply that the exact exchange potential is

Coulombic [85],

vX(r) ∼ −1

r
(r →∞) (1.71)

and hence the exact exchange charge satisfies [76, 78]

QX ≡
∫
qX(r) dr = −1 (1.72)

since QXC = QX +QC.

The promise of the electrostatic approach is that it is well suited for enforcing correct

asymptotic behavior of vXC(r). The sum rule of Eq. (1.68) suggests the following strategy:

(i) find a suitable analytic expression for qXC(r) that integrates to −1; (ii) insert it into

Eq. (1.64) to obtain an approximate exchange-correlation potential. This strategy has

already been used [86, 87] to develop model potentials with correct long-range decay.

1.7 Outline of the study

The goal of my graduate research was to explore a promising direction in potential-driven

KS DFT (electrostatic approach of Sec. 1.6) as well as to advance several existing prob-

lems in this field. The scope of this thesis includes four domains: (i) development of ap-

proximate exchange-correlation potentials by modelling the exchange-correlation charge

distribution, (ii) accurate approximation of functional derivatives of orbital-dependent

functionals, (iii) generation of exact exchange-correlation potentials, and (iv) analysis of

accurate exchange-correlation potentials in atoms and molecules.

In Chapter 2, we revisit the sum rules for exchange-correlation charge distributions

and discuss practical implications of an important caveat that arises during evaluation of

the total exchange-correlation charge for functional derivatives of GGAs. In Chapter 3,

we derive an integrability test for the exchange-correlation potential expressed in the form
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of an explicitly density-dependent exchange-correlation charge distribution. Chapter 4

describes a method for constructing a hierarchy of model potentials approximating the

functional derivative of a given orbital-dependent exchange-correlation functional with

respect to the electron density. The accuracy of the highest ladder in the proposed hier-

archy is such that it can be regarded as the finite-basis-set OEP for all practical purposes.

In Chapter 5, we present an algorithm for calculating the exchange-correlation potential

from a given electronic wavefunction. Our algorithm is free from numerical instabilities

of conventional density fitting schemes and can be used to probe the functional deriva-

tive of the true exchange-correlation functional. In Chapter 6, we apply the method of

Chapter 5 to study the origin of the step structure of the exact exchange-correlation po-

tential in heteronuclear diatomic molecules. Finally, the focus of Chapter 7 is on the step

structure of exchange-correlation potentials reconstructed from restricted Hartree–Fock

wavefunctions of stretched diatomic molecules and, specifically, its relation to spurious

fractional charges in stretched diatomic molecules.
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[41] L. J. Sham and M. Schlüter, “Density-functional theory of the energy gap”, Phys.

Rev. Lett. 51, 1888 (1983).

[42] Z. Qian and V. Sahni, “Analytical asymptotic structure of the Pauli, Coulomb,

and correlation-kinetic components of the Kohn–Sham theory exchange-correlation

potential in atoms”, Int. J. Quantum Chem. 70, 671 (1998).

[43] R. van Leeuwen and E. J. Baerends, “Exchange-correlation potential with correct

asymptotic behavior”, Phys. Rev. A 49, 2421 (1994).

[44] N. Umezawa, “Explicit density-functional exchange potential with correct asymp-

totic behavior”, Phys. Rev. A 74, 032505 (2006).

[45] Q. Wu, P. W. Ayers, and W. Yang, “Density-functional theory calculations with

correct long-range potentials”, J. Chem. Phys. 119, 2978 (2003).

[46] R. van Leeuwen and E. J. Baerends, “Energy expressions in density-functional the-

ory using line integrals”, Phys. Rev. A 51, 170 (1995).

[47] A. P. Gaiduk and V. N. Staroverov, “How to tell when a model Kohn–Sham po-

tential is not a functional derivative”, J. Chem. Phys. 131, 044107 (2009).

[48] A. P. Gaiduk, S. K. Chulkov, and V. N. Staroverov, “Reconstruction of density

functionals from Kohn–Sham potentials by integration along density scaling paths”,

J. Chem. Theory Comput. 5, 699 (2009).

[49] A. P. Gaiduk and V. N. Staroverov, “A generalized gradient approximation for

exchange derived from the model potential of van Leeuwen and Baerends”, J. Chem.

Phys. 136, 064116 (2012).
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Chapter 2

Apparent violation of the sum rule

for exchange-correlation charges by

generalized gradient approximations

2.1 Introduction

It is well known [1] that exchange-correlation potentials derived from the local density ap-

proximation (LDA) and all commonly used generalized gradient approximations (GGAs)

decay faster than −const/r. This implies that exchange-correlation charge distribution

[Eq. (1.63)] derived from the LDA or any common GGA must be such that the total

exchange-correlation charge, QXC, integrates to 0. However, Liu et al. [2] reported values

QXC < 0 for exchange-correlation potentials reconstructed from LDA and GGA elec-

tron densities by the Zhao–Morrison–Parr method [3]. This inconsistency was one of the

original motivations for this work.

Another reason for revisiting the sum rules expressed by Eqs. (1.68), (1.70), and

(1.72) has to do with recent advances in the theory of model Kohn–Sham potentials. It

is now firmly established that the proper Coulombic decay of vXC(r) is crucial for ac-

curate description of excited states and many ground-state properties [4–9]. According

to Eq. (1.56), any approximate exchange-correlation potential with QXC = −1 should

decay as −1/r. This suggests using the function qXC(r) as a handle on the asymptotic

behavior of vXC(r). In fact, several workers have already attempted to devise approx-

imate exchange potentials with proper −1/r decay by modeling the corresponding ex-

Reproduced in part from S. V. Kohut and V. N. Staroverov, “Apparent violation of the sum rule
for exchange-correlation charges by generalized gradient approximations”, J. Chem. Phys. 139, 164117
(2013), with the permission of AIP Publishing.
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change charge and then enforcing the sum rule of Eq. (1.72). For example, Andrade

and Aspuru-Guzik [10] altered the shape of the qX(r) corresponding to the exchange

LDA potential [Eq. (1.57)] to enforce Eq. (1.72) and obtained an asymptotically cor-

rected model potential that produced accurate fundamental energy gaps in atoms and

molecules. Gidopoulos and Lathiotakis [11] have employed Eq. (1.72) as a constraint

within the optimized effective potential method to obtain approximate Kohn–Sham po-

tentials with correct asymptotic decay.

Here we uncover and discuss an important caveat that must be taken into consid-

eration when using the sum rules for exchange and correlation charges as constraints

for devising model Kohn–Sham potentials. Our findings concern all GGAs and other

types of density-functional approximations whose functional derivatives are singular at

the nuclei.

2.2 Numerical tests of the sum rules

Our first objective is to test Eqs. (1.68), (1.70), and (1.72) for exchange and correlation

charge distributions derived from density-functional approximations. To simplify the task

we restrict ourselves to spherically symmetric atoms, for which the exchange-correlation

potential is effectively one-dimensional and Eq. (1.63) reduces to

qXC(r) = − 1

4πr2

∂

∂r

(
r2∂vXC

∂r

)
. (2.1)

The total exchange charge is then given by

QXC = 4π

∫
r2qXC(r) dr, (2.2)

Similar equations hold, of course, for exchange and correlation separately.

We selected the following density-functional approximations: LDA for exchange (LDAx),

LDA for correlation (LDAc) in the Perdew–Wang parametrization [12], the exchange

part of the model potential of van Leeuwen and Baerends [13] (LB94x), the exchange

part of the Perdew–Burke–Ernzerhof [14] (PBEx) GGA, and Becke’s 1988 exchange [15]

(B88x) GGA. For each approximation, the exchange-correlation charge distribution was

derived by Eq. (2.1) from the corresponding potential. The LDAx, LDAc, PBEx, and

B88x potentials were obtained as functional derivatives of the respective functionals using

Eq. (13) of Ref. 16, whereas the LB94x potential was used as is (since it has no parent

functional [13, 17]).
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Table 2.1: Total exchange (correlation) charges for various density-functional approxi-
mations obtained by numerical integration of the corresponding exchange (correlation)
charge distributions. The results are for Hartree–Fock–Roothaan electron densities ex-
panded in Slater-type basis sets [18]. All reported significant figures are accurate.

Atom LDAx LDAc LB94x PBEx B88x

H 0.000000 0.000000−1.000000 0.036513 0.039568

He 0.000000 0.000000−1.000000 0.040220 0.042832

Be 0.000000 0.000000−1.000000 0.037994 0.040885

Ne 0.000000 0.000000−1.000000 0.036788 0.039814

Mg 0.000000 0.000000−1.000000 0.036576 0.039624

Ar 0.000000 0.000000−1.000000 0.036017 0.039123

Ca 0.000000 0.000000−1.000000 0.036090 0.039189

Kr 0.000000 0.000000−1.000000 0.035685 0.038824

Sr 0.000000 0.000000−1.000000 0.035648 0.038791

Xe 0.000000 0.000000−1.000000 0.035456 0.038617

All tests were performed for the Hartree–Fock–Roothaan ground-state atomic elec-

tron densities, which were constructed from the Slater-type basis-set orbital expansions

reported by Bunge et al. [18]. The asymptotic tail of every trial density used in this work

is therefore truly exponential,

ρ(r) = O(e−ar) (r →∞), (2.3)

where a = 2ζ, and ζ is the exponent of the most diffuse Slater-type orbital. Starting

from the basis-set representation of the input density, vXC(r) and qXC(r) were computed

analytically using the mathematica [19] program. The resulting distributions qXC(r)

were integrated numerically using the built-in function NIntegrate whose parameters

were adjusted to ensure an absolute accuracy of 10−7 in QXC values. The results appear

in Table 2.1.

Consider first the LDAx values. The spin-unpolarized form of the LDAx potential is

given by Eq. (1.57). In the tail of an atomic density, where Eq. (2.3) holds, this potential

is exponential,

vLDA
X (r) = −O(e−ar/3) (r →∞). (2.4)

For reasons explained in Sec. 2.1, we expect QLDA
X = 0 for all atoms. The data of Table 2.1

confirm this prediction.
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The LDAc potential is given by vLDA
C = ∂(ρεLDA

C )/∂ρ, where εLDA
C is the LDAc energy

per electron as defined by Eqs. (8)–(10) of Ref. 12. It is straightforward to show that the

asymptotic form of the LDAc potential for an exponential density of Eq. (2.3) is again

exponential,

vLDA
C (r) = −O(e−ar/3) (r →∞). (2.5)

Therefore, QLDA
C should be zero for all atoms, which is what we obtained (Table 2.1).

The spin-unpolarized form of the gradient-corrected LB94x potential is defined by

Eq. (1.58). The LB94x potential was specifically designed [13] to have the asymptotic

behavior of the exact exchange potential,

vLB94
X (r) ∼ −1

r
(r →∞). (2.6)

Therefore, the total LB94x charge should be −1 for all atoms. Actual numerical calcu-

lations reproduce this value to all digits of accuracy (Table 2.1).

Now let us try to rationalize the results for the GGAs. Every GGA for the exchange

energy has the form

EGGA
X [ρ] =

∫
εLDA

X (ρ)F (x) dr, (2.7)

where x = |∇ρ|/ρ4/3 is a dimensionless reduced density gradient, εLDA
X (ρ) = −CXρ

4/3,

and FX(x) is an enhancement factor in the spin-unpolarized form. For PBEx,

FPBE
X (x) = 1 +

µx2

1 + µx2/κ
, (2.8)

where µ = 0.21951/4(3π2)2/3 and κ = 0.804. Using this definition one finds that, for

ρ(r) = O(e−ar),

vPBE
X (r) = −O(e−ar/3) (r →∞). (2.9)

The potential decays faster than const/r and so, according to Eq. (1.66), QPBE
X should

be zero. However, our calculations give QPBE
X > 0 for all atoms (Table 2.1).

Similarly, for the B88x functional [15] with

FB88
X (x) = 1 +

1

CX

bξx2

1 + 6bξx sinh−1(ξx)
, (2.10)

where b = 0.0042, one finds [20] that, for ρ(r) = O(e−ar),

vB88
X (r) = −O(r−2) (r →∞). (2.11)
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Figure 2.1: Radial exchange-charge distributions derived from the LDAx and two GGAs
for the exact hydrogenic density. All three distributions can be reliably integrated, but
only the LDAx curve yields the correct total charge QX = 0 (Table 2.1).

Thus, we should have QB88
X = 0, but actual numerical calculations yield QB88

X > 0 for all

atoms (Table 2.1), manifestly at odds with theory.

2.3 Resolution of the paradox

To account for the apparent violation of the sum rule for the PBEx and B88x exchange

charges, we first considered the possibility that the non-zero values of QPBE
X and QB88

X in

Table 2.1 are results of numerical integration errors. Such errors are not inconceivable

and in fact unavoidable when one attempts to integrate a pathological function with

singularities or rapid oscillations. Figures 2.1 and 2.2 show, however, that the PBEx and

B88x radial distributions 4πr2qX(r) are as well-behaved as the LDAx distribution, for

which the accuracy of our numerical integration is beyond doubt.

Then we observed that, unlike the LDAx, LDAc and LB94x potentials, the functional

derivatives of GGAs are singular at the nucleus. Specifically, one can show [21] that for

exchange GGAs in an atom,

vGGA
X (r) ∼ −c

r
(r → 0), (2.12)

where c > 0 is a system-dependent constant (see Ref. 16 for a fully worked-out expres-
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Figure 2.2: Same as in Fig. 2.1 for a Hartree–Fock–Roothaan density of the ground-state
krypton atom.

sion). This allows us to express a GGA exchange potential in an atom

vGGA
X (r) = ṽX(r)− c

r
, (2.13)

where ṽX(r) is the singularity-free part. Let us substitute this expression into Eq. (1.63)

and recall that
1

4π
∇2

(
−1

r

)
= δ(r), (2.14)

where δ(r) is Dirac’s δ-function. It transpires that the exchange-correlation charge cor-

responding to a GGA potential has the general form

qGGA
X (r) = q̃X(r)− cδ(r), (2.15)

where q̃X(r) is a well-behaved function arising from the singularity-free part ṽX(r), and

−cδ(r) is the contribution arising from the singularity of vGGA
X (r) at the nucleus. Standard

numerical integration algorithms deliver the charge Q̃X =
∫
q̃X(r) dr, but cannot sample

the point-charge contribution at r = 0, because vGGA
X (r) is undefined there. As a result,

the sum rule appears to be violated.

This shows that to evaluate the total exchange for a GGA correctly, it is not enough

to integrate the distribution qGGA
X (r) numerically. One must also determine the value of
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c and combine it with the numerical integral,

QX = Q̃X − c. (2.16)

The point charge c is approximation- and system-dependent and, for a given density, can

be determined as

c = − lim
r→0

rvGGA
X (r). (2.17)

As an illustration, let us calculate the value of c for the PBEx potential using the

exact density of the hydrogen atom, ρ(r) = e−2r/π. Substituting this ρ(r) into the

spin-polarized analytic expression for the PBE exchange potential and using Eq. (2.17)

we obtain

cPBE
X =

28/3π1/3CXκ
2µ

(κ+ 24/3π2/3µ)
2 ≈ 0.036513, (2.18)

where CX, κ, and µ are parameters of the PBEx functional defined above. This value

exactly matches the apparent total PBEx charge Q̃PBE
X shown in Table 2.1. By Eq. (2.16),

the true PBEx charge for the hydrogen atom is zero, consistent with the exponential decay

of the PBEx potential. A similar calculation for the B88x exchange charge in the H atom

gives cB88
X ≈ 0.039568, also in perfect agreement with Table 2.1. Thus, the paradox of

nonzero apparent exchange charges obtained from the PBEx and B88x potentials is fully

resolved.

One should keep in mind that, although all common GGAs give rise to potentials that

decay quadratically or faster, the GGA form by itself does not preclude the −1/r decay

of vX(r). GGAs leading to exchange potentials with correct asymptotic behavior have

been constructed, for instance, in Refs. 20 and [22]. Such GGAs are not common because

they give poor exchange energies but, in the present context, serve as very interesting

test cases that provide further insights into the relationship between the apparent and

true total exchange charges and the behavior of vX(r) at large and small r.

Consider, for instance, the (impractical) exchange GGA suggested by the analysis of

Engel, Chevary, Macdonald, and Vosko [20] (ECMV). The enhancement factor form this

GGA may be written as

FECMV
X (x) = 1 +

x

2CX

. (2.19)

Using Eq. (2.19) one can show [16, 20] that, in the tail of an exponential density,

vECMV
X (r) ∼ −1

r
(r →∞). (2.20)

According to Eq. (1.66), we should have QECMV
X = −1. In reality, accurate numerical
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integration of qECMV
X (r) for all atoms gives a total charge of zero (not shown in Table 2.1),

as if vECMV
X (r) were an exponentially decaying potential. This does not mean, of course,

that Eq. (1.66) is wrong, but that we are missing a large point-charge contribution to

QECMV
X . One can show that the ECMV potential is purely Coulombic near the nucleus,

vECMV
X (r) ∼ −1

r
(r → 0), (2.21)

so that cECMV
X = 1. Upon inclusion of the point-charge contribution we obtainedQECMV

X =

−1 for every atom, as it should be.

2.4 Conclusion

We have shown analytically and numerically that the value of the total exchange-correlation

charge, QXC, determines the rate of the asymptotic decay the corresponding exchange-

correlation potential via Eq. (1.66). The subtle aspect of applying this rule is that, to

obtain the correct values of QXC it is necessary to analyze the behavior of the potential

at the nucleus (every nucleus in a molecule). If the potential has a Coulombic singularity

at a nucleus (as GGAs do), the corresponding exchange-correlation charge will contain a

non-zero point charge contribution which cannot be accounted for by numerical quadra-

tures. This point charge contribution must be evaluated explicitly by Eq. (2.17).

As for the nonzero values of QXC reported by Liu et al. [2] for the LDA and GGA

exchange-correlation potentials, we believe that they were a combined result of numerical

errors of the Zhao–Morrison–Parr procedure and residual contributions of the Coulombi-

cally decaying Fermi–Amaldi potential which was used as a fixed reference to represent

each vXC(r). This explanation is consistent with the fact that most values of QXC in

Table I of Ref. 2 are close to −1.

The relationship between the magnitude of QXC and the asymptotic behavior of

vXC(r) has important practical implications. For example, to construct a model exchange-

correlation potential with the correct −1/r asymptotic decay , it is sufficient to model

a distribution qXC(r) that integrates to −1. This can be accomplished by taking an

exchange-correlation charge distribution that integrates to zero (e.g., LDAx) and reshap-

ing it [10], or by adding a point exchange-correlation charge at the nucleus (in which

case vXC(r) will be singular at r = 0). The overall effect of the latter approach should be

qualitatively similar to the effect of depopulating the highest-occupied molecular orbital

of the system in a self-consistent Kohn–Sham calculation [23, 24]. At the same time, it

is not possible to obtain a Coulombic potential by taking the LDA exchange-correlation

36



charge distribution and simply scaling it, because the total exchange-correlation charge

will remain zero.

An approximate Kohn–Sham potential obtained from a model exchange-correlation

charge distribution using Eq. (1.63) will generally not be a functional derivative of any

energy expression. Although it is possible to assign reasonable energy values to non-

integrable Kohn–Sham potentials in many different ways [25–27], a better strategy would

be to find the constraints on qXC(r) which ensure that the corresponding vXC(r) is a func-

tional derivative. In Chapter 3, we derive these constraints in the form of an analytical

test that a model function qXC(r) must pass in order for the corresponding vXC(r) to be

a functional derivative of some energy functional.
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Chapter 3

Integrability conditions for model

potentials constructed using the

exchange-correlation charge

distribution

3.1 Introduction

Two methodological challenges of potential-driven KS DFT are: (i) how to assign an

energy to a given model potential and (ii) how to identify and construct integrable model

potentials. The first problem was solved by the line integral method [1] of van Leeuwen

and Baerends [Eq. (1.59)]. The second problem was addressed by Ou-Yang and Levy [2]

followed by van Leeuwen and Baerends [1] who derived the basic integrability condition

for model potentials:
δvXC(r)

δρ(r′)
=
δvXC(r′)

δρ(r)
. (3.1)

The above equation can serve as the starting point for deriving more practical integrabil-

ity conditions for potentials restricted to certain analytic forms. Consider, for example,

an explicitly density-dependent potential, vXC ≡ vXC(ρ,∇ρ,∇2ρ). For such a potential,

evaluating both sides of Eq. (3.1), followed by their comparison, leads to the integrability

condition of Eq. (1.62) [3].

In this chapter, we derive analytic integrability conditions for model potentials ex-

pressed in the form of the electrostatic integral of Eq. (1.64). To this end, we first obtain

integrability conditions for a broad class of non-local potentials. Next, we apply these

conditions to work out integrability constraints on the exchange-correlation charge dis-
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tribution. Derivations presented in this work require the knowledge of several properties

of the Dirac delta function and its derivatives, which are summarized in Appendix A.

3.2 Integrability conditions for non-local model po-

tentials

Consider a model potential of the form

vXC(r) =

∫
g(r, r′)dr′, (3.2)

where g(r, r′) is some function of the electron density and its derivatives. Such a potential

is said to be non-local because it contains information about the density not only at a

point r but also at all other points r′. Approximations of this type have not been proposed

to date. Their development is one of the most promising routes in potential-driven KS

DFT. This is because functional derivatives of common density-functional approximations

(DFAs) fail to reproduce the nonlocality of the exact vXC(r) [4]. Here, we derive analytic

integrability conditions for vXC(r) of the type (3.2).

Our starting point is the function g(r, r′) of the following form:

g(r, r′) ≡ g(ρ(r), ρ(r′),∇ρ(r),∇ρ(r′),∇2ρ(r),∇2ρ(r′)). (3.3)

The next step is to apply Eq. (3.1) to vXC(r) of Eq. (3.2) where g(r, r′) is given by

Eq. (3.3). Let us first evaluate the right-hand side of Eq. (3.1). It is straightforward to

show that

δvXC(r)

δρ(r′)
=

∂g

∂ρ(r′)
−∇r′ ·

∂g

∂∇r′ρ(r′)
+∇2

r′
∂g

∂∇2
r′ρ(r′)

+
(
A(r′)−∇r′ ·B(r′) +∇2

r′C(r′)
)
δ(r− r′)

+ (2∇r′C(r′)−B(r′)) · ∇r′δ(r− r′) + C(r′)∇2
r′δ(r− r′),

(3.4)

where δ(r−r′) denotes the Dirac delta function and the functions A(r′), B(r′), and C(r′)

are given by

A(r′) =

∫
∂g′

∂ρ(r′)
dr, (3.5)

B(r′) =

∫
∂g′

∂∇ρ(r′)
dr, (3.6)
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and

C(r′) =

∫
∂g′

∂∇2ρ(r′)
dr, (3.7)

respectively. Here, g′ is essentially the same function as g with the exception that its

variables are interchanged:

g′ ≡ g(r→ r′, r′ → r). (3.8)

Evaluating the left-hand side of Eq. (3.1), we obtain:

δv(r′)

δρ(r)
=

∂g′

∂ρ(r)
−∇r ·

∂g′

∂∇rρ(r)
+∇2

r

∂g′

∂∇2
rρ(r)

+
(
A(r)−∇r ·B(r) +∇2

rC(r)
)
δ(r′ − r)

+ (2∇rC(r)−B(r)) · ∇rδ(r
′ − r) + C(r)∇2

rδ(r
′ − r),

(3.9)

where the functions A(r), B(r), and C(r) are defined by Eqs. (3.5)–(3.7). Both Eqs. (3.4)

and (3.9) are expressions that involve the Dirac delta function. In order to compare such

expressions, one needs to multiply each of them by an arbitrary well-behaved function

k(r) and then integrate over r. It is tedious but not difficult to verify that Eqs. (3.4) and

(3.9) are equal if and only if
∂g

∂ρ(r′)
−∇r′ ·

∂g

∂∇r′ρ(r′)
+∇2

r′
∂g

∂∇2
r′ρ(r′)

=
∂g′

∂ρ(r)
−∇r ·

∂g′

∂∇rρ(r)
+∇2

r

∂g′

∂∇2
rρ(r)

∂g

∂∇rρ(r)
= ∇r

∂g

∂∇2
rρ(r)

.

(3.10)

This system of equations is the integrability test for potentials of the type of Eq. (3.2)

with g(r, r′) given by Eq. (3.3). It should be noted that the first equation of the system is

nothing but the requirement that the function D(r, r′) = ∂g
∂ρ(r′)

−∇r′ · ∂g
∂∇r′ρ(r′)

+∇2
r′

∂g
∂∇2

r′ρ(r′)

must be symmetric in r and r′. Also, note that, when g ≡ g(ρ(r),∇ρ(r),∇2ρ(r)), the

system correctly reduces to the integrability condition derived by Gaiduk and Staroverov

in Ref. 3 (Eq. (1.62) of Chapter 1). Let us illustrate the use of Eq. (3.10) with an example.

Consider the following functional:

E[ρ] =

(∫
|∇r′ρ(r′)|2ρ(r′)dr′

)2

, (3.11)

whose functional derivative is given by

δE[ρ]

δρ(r)
= −2

[
|∇rρ(r)|2 + 2ρ(r)∇2

rρ(r)
] ∫
|∇r′ρ(r′)|2ρ(r′)dr′. (3.12)
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Eq. (3.12) can be viewed as a non-local potential of Eq. (3.2) with

g(r, r′) = −2
[
|∇rρ(r)|2 + 2ρ(r)∇2

rρ(r)
]
|∇r′ρ(r′)|2ρ(r′). (3.13)

It is easy to see that this g(r, r′) passes the integrability test of Eq. (3.10). Let us first

obtain the function D(r, r′) = ∂g
∂ρ(r′)

−∇r′ · ∂g
∂∇r′ρ(r′)

+∇2
r′

∂g
∂∇2

r′ρ(r′)
for g(r, r′) of Eq. (3.13):

D(r, r′) =
∂g

∂ρ(r′)
−∇r′ ·

∂g

∂∇r′ρ(r′)
+∇2

r′
∂g

∂∇2
r′ρ(r′)

=

2
[
|∇rρ(r)|2 + 2ρ(r)∇2

rρ(r)
] [
|∇r′ρ(r′)|2 + 2ρ(r′)∇2

r′ρ(r′)
] (3.14)

This function is symmetric in r and r′ as required in order to pass the integrability test.

Next, we show that the second condition of Eq. (3.10) is also satisfied:

∂g

∂∇rρ(r)
= ∇r

∂g

∂∇2
rρ(r)

= −4|∇r′ρ(r′)|2ρ(r′)∇rρ(r). (3.15)

Thus, both conditions of the Eq. (3.10) are satisfied, which is the expected result for the

function g(r, r′) that corresponds to a functional derivative.

3.3 Integrability conditions at the level of the exchange-

correlation charge distribution

We have demonstrated that a trial potential of Eq. (3.2) with the explicitly density-

dependent g(r, r′) of Eq. (3.3) is a functional derivative of an energy functional if and

only if Eq. (3.10) is satisfied. Let us adapt these integrability conditions for the exchange-

correlation potential written in terms of a model exchange-correlation charge distribution

qXC(r′),

vXC(r) =

∫
qXC(r′)

|r− r′|
dr′, (3.16)

where qXC(r′) ≡ qXC(ρ(r′),∇ρ(r′),∇2ρ(r′)). The function g(r, r′) for such a potential is

nothing but

g(r, r′) =
qXC(r′)

|r− r′|
. (3.17)

We only need to consider the first condition of Eq. (3.10) because qXC(r′) does not depend

on ρ(r),∇rρ(r), and∇2
rρ(r), and, as a result, the second condition of Eq. (3.10) is satisfied

for any qXC(r′).
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Using the identities

∇r′

(
1

|r− r′|

)
= −∇r

(
1

|r′ − r|

)
=

r− r′

|r− r′|3
(3.18)

and

∇2
r′

(
1

|r− r′|

)
= ∇2

r

(
1

|r′ − r|

)
= −4πδ(r′ − r) (3.19)

we end up with the following expression for D(r, r′) = ∂g
∂ρ(r′)

−∇r′ · ∂g
∂∇r′ρ(r′)

+∇2
r′

∂g
∂∇2

r′ρ(r′)
:

D(r, r′) =
1

|r− r′|

[
∂qXC

∂ρ(r′)
−∇r′ ·

(
∂qXC

∂∇r′ρ(r′)

)
+∇2

r′

(
∂qXC

∂∇2
r′ρ(r′)

)]
+

(r− r′)

|r− r′|3
·
[
2∇r′

(
∂qXC

∂∇2
r′ρ(r′)

)
− ∂qXC

∂∇r′ρ(r′)

]
+

∂qXC

∂∇2
r′ρ(r′)

4πδ(r′ − r)

(3.20)

or, more compactly,

D(r, r′) =
X(r′)

|r− r′|
+

(r− r′)

|r− r′|3
· Y (r′) + 4Z(r′)πδ(r′ − r), (3.21)

where

X(r′) =
∂qXC

∂ρ(r′)
−∇r′ ·

(
∂qXC

∂∇r′ρ(r′)

)
+∇2

r′

(
∂qXC

∂∇2
r′ρ(r′)

)
, (3.22)

Y (r′) = 2∇r′

(
∂qXC

∂∇2
r′ρ(r′)

)
− ∂qXC

∂∇r′ρ(r′)
, (3.23)

and

Z(r′) =
∂qXC

∂∇2
r′ρ(r′)

. (3.24)

In order for a trial potential of the type (3.16) to be a functional derivative of some

energy expression, the function D(r, r′) of Eq. (3.21) must be symmetric with respect

to the interchange of the variables. Therefore, in order to find explicit integrability

constraints on X, Y , and Z, one needs to solve the following equation:

D(r, r′) = D(r′, r), (3.25)

where D(r′, r) is obtained from D(r, r′) by the simple interchange of the variables. The

function D of Eq. (3.21) is an expression involving the Dirac delta function. Recall that

comparison of such expressions can only be made after one multiplies both of them by

an arbitrary well-behaved function k(r) and integrates over r. By doing so, we obtain
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the following solution to Eq. (3.25) after some algebra:{
Y (r′) = −Y (r)

X(r′) = X(r)
(3.26)

which is equivalent to {
Y (r′) = 0

X(r′) = constant
(3.27)

Observe that there is no restrictions on the function Z. This is because the term

4Z(r′)πδ(r′ − r) is symmetric in r′ and r for any Z(r′) owing to the properties of the

Dirac delta function.

The above equation permits us to conclude that the integrability constraints on a

model function qXC(ρ,∇ρ,∇2ρ) are as follows:
2∇
(
∂qXC

∂∇2ρ

)
=
∂qXC

∂∇ρ
∂qXC

∂ρ
−∇ ·

(
∂qXC

∂∇ρ

)
+∇2

(
∂qXC

∂∇2ρ

)
= constant.

(3.28)

To simplify Eq. (3.28), we insert the first equation of the system into the second one to

obtain: 
2∇
(
∂qXC

∂∇2ρ

)
=
∂qXC

∂∇ρ
∂qXC

∂ρ
− 1

2
∇ ·
(
∂qXC

∂∇ρ

)
= constant

(3.29)

This set of conditions is a ready-to-use analytic integrability test for model potentials of

Eq. (3.16).

Consider, for instance, the LDA exchange potential of Eq. (1.57). The exchange

charge distribution associated with vLDA
X can be derived using Eq. (1.63) and reads:

qLDA
X = γρ−

2
3∇2ρ− 2

3
γρ−

5
3 |∇ρ|2, (3.30)

where γ = 1
9π
CX. Partial derivatives of qLDA

X with respect to the density ingredients are

equal to
∂qLDA

X

∂ρ
= −2

3
γρ−

5
3∇2ρ+

10

9
γρ−

8
3 |∇ρ|2, (3.31)

∂qLDA
X

∂∇ρ
= −4

3
γρ−

5
3∇ρ, (3.32)
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and
∂qLDA

X

∂∇2ρ
= γρ−

2
3 . (3.33)

It is easy to see that Eq. (3.29) is satisfied for the LDA exchange charge distribution,
2

(
−2

3
γρ−

5
3∇ρ

)
= −4

3
γρ−

5
3∇ρ

−2

3
γρ−

5
3∇2ρ+

10

9
γρ−

8
3 |∇ρ|2 − 1

2

(
−4

3
γρ−

5
3∇2ρ+

20

9
γρ−

8
3 |∇ρ|2

)
= 0 = constant,

(3.34)

which is consistent with the fact that the LDA exchange potential is a functional deriva-

tive of the LDA exchange energy functional. The test is also passed by the func-

tional derivative of the Coulomb repulsion energy, the Hartree electrostatic potential

of Eq. (1.20), that can be cast in the form of Eq. (3.16) (qH = ρ):

∂qH

∂∇ρ
= 0

∂qH

∂∇2ρ
= 0

∂qH

∂ρ
= 1 = constant

(3.35)

3.4 Conclusion

The exchange-correlation potential obtained from a model exchange-correlation charge

distribution with the proper normalization is unlikely to be a functional derivative of

some energy functional on its own. Potentials that are not functional derivatives often

lead to the wrong description [5–9] of observable physical properties. Therefore, it is

desirable to impose the integrability constraint when developing exchange-correlation

potentials by modelling the exchange-correlation charge distribution.

We have devised analytic integrability conditions that allow one to tell if a model

exchange-correlation charge function gives rise to an integrable exchange-correlation po-

tential. Our conditions can be converted into a method for explicit construction of func-

tional derivatives starting from model exchange-correlation charge distributions using the

approach of Ref. 3.
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Chapter 4

Hierarchy of model Kohn–Sham

potentials approximating functional

derivatives of orbital-dependent

functionals

4.1 Introduction

Although orbital-dependent functionals offer many advantages over local density ap-

proximations (LDAs) and generalized gradient approximations (GGAs), they also pose

distinctive challenges. In particular, proper implementation of the Kohn–Sham (KS)

density-functional scheme with an orbital-dependent functional requires computing the

multiplicative effective exchange-correlation potential, vXC(r) = δEXC/δρ(r). If the func-

tional EXC is implicit, this potential cannot be obtained by direct functional differenti-

ation of EXC with respect to ρ(r) and has to be determined indirectly by solving the

optimized effective potential (OEP) integral equation [1, 2]. Unfortunately, the structure

of the OEP equation is such that it is not well-suited for solving in finite (Gaussian) basis

sets [3–13].

There are two pragmatic alternatives to the OEP method in basis-set calculations with

orbital-dependent functionals. One is to use OEP approximations such as the Krieger–

Li–Iafrate [14] (KLI) potential, the Becke–Johnson potential [15], and others [16–29].

However, existing OEP approximations are not always sufficiently accurate, cannot be

Reproduced in part from S. V. Kohut, I. G. Ryabinkin, and V. N. Staroverov, “Hierarchy of
model Kohn–Sham potentials for orbital-dependent functionals: A practical alternative to the optimized
effective potential method”, J. Chem. Phys. 140 18A535 (2014), with the permission of AIP Publishing.
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assigned energy values in an unambiguous manner [30–34], and cannot be improved

systematically. The other strategy is to abandon the effective potential vXC(r) altogether

and replace it by a functional derivative of EXC with respect to the orbitals [35–38].

This approach is not always satisfactory either because the derivatives δEXC/δφi(r) are

different for different orbitals, so the resulting eigenvalue spectrum is qualitatively distinct

from the spectrum obtained with a multiplicative potential.

In this work, we present a fresh take on the problem. We describe a method for

constructing a ladder of increasingly accurate model KS potentials for various orbital-

dependent functionals including exact exchange, hybrid functionals, and meta-GGAs.

The distinctive feature of our approach is that the model potentials at the top of the

proposed hierarchy require self-consistent solutions of the generalized KS equations as

input, and are practically indistinguishable from OEPs.

Throughout this work, we compare all our models to the exact numerical solutions

of the OEP and KLI equations reported by Engel and coworkers [39–41] for atoms and

by Makmal et al. [42] for molecules. To simulate the basis-set limit represented by

these KLI and OEP benchmarks we use the original universal Gaussian basis set [43]

(UGBS) and its polarized versions, UGBSnO, with n = 1 or 2. A UGBSnO basis is a

UGBS augmented with polarization functions using the “old” scheme as implemented in

gaussian 09, Revision B.1 [44].

4.2 Problem statement

If EXC[ρ] is an orbital-dependent functional, one cannot derive a closed-form expression

for vXC(r) by straightforward functional differentiation. Formally, vXC(r) can be found

by solving the OEP integral equation, but nearly all existing implementations of hybrid

functionals and meta-GGAs do not even attempt that approach. Instead, they tacitly

adopt the generalized KS (GKS) formalism [35–38] in which the KS equations are replaced

with the eigenvalue problem of the Hartree–Fock (HF) type,[
−1

2
∇2 + vext(r) + vH(r) + ûXC

]
φi(r) = εiφi(r), (4.1)

where ûXC is a one-electron operator defined by Eq. (1.53). In the case of the exact-

exchange functional, the GKS approach is equivalent to the HF self-consistent field (SCF)

scheme. Just like the KS equation, the GKS equations are solved by iteration until self-

consistency. (In finite-basis-set calculations, one does not have to compute vXC and

ûXCφi but only their matrix elements, which is a simpler task [45]. However, this does
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not resolve the problem that the functional derivative δEXC/δρ for implicit functionals

cannot be evaluated in closed form.)

The switch to the GKS scheme is usually made as a matter of convenience because the

quantity ûXCφi can be evaluated for any orbital-dependent functional. However, the self-

consistent GKS orbitals and orbital eigenvalues are not identical to their KS counterparts

except for one- and closed-shell two-electron systems.

Does it matter in practice that the KS scheme is replaced with the GKS scheme

when dealing with orbital-dependent functionals? The answer depends on the applica-

tion. Total electronic energies computed by the KS and GKS methods typically differ

by a few parts per million—much less than either the KS or GKS energy varies with

the one-electron basis set. Therefore, for the purpose of computing total energies, the

KS approach offers no practical advantage over the GKS scheme. At the same time, KS

orbital eigenvalues are often quite different from the corresponding GKS orbital eigen-

values. The energy gap between the highest-occupied and lowest-unoccupied molecular

orbitals (HOMO–LUMO gap) is often significantly smaller in the KS method than in the

GKS formalism, and the very nature of the frontier orbitals in the GKS and KS schemes

can be different (Table 4.1). This means that if one is interested in properties whose cal-

culation involves orbital eigenvalues (excitation energies, band structure, polarizabilities

etc.), then it may be essential to use a multiplicative exchange-correlation potential of

the KS scheme.

All in all, it is highly desirable to be able to compute KS effective potentials for

orbital-dependent functionals without having to cope with the OEP integral equation.

So far, this challenge has been tackled either by evaluating the functional derivative

vOEP
XC (r) = δEXC[{φi}]/δρ(r) approximately [14, 16–23, 48] or by devising functional-

specific “model potentials”—direct approximations to vOEP
XC (r) in terms of KS orbitals

and, possibly, other ingredients [15, 24–29].

vmodel
XC (r) ≈ vOEP

XC (r). (4.2)

The following section presents a new proposal which combines the most appealing feature

of existing OEP approximations and takes them to a new level of accuracy.

4.3 Hierarchy of model potentials

Here we show how to construct a hierarchy of model-potential approximations for any

given orbital-dependent functional. Our approach synthesizes some old [16, 49, 50] and
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Table 4.1: Orbital eigenvalues and total exact-exchange energies for the N2 molecule (R =
2.100a0) obtained with the HF and effective-potential methods. For ease of comparison,
all KS eigenvalues were shifted to satisfy the HOMO condition εKS

HOMO = εHF
HOMO. The

HOMO and LUMO energies are highlighted in bold.

Energies (units of Eh)

HFa KLIb OEPc

Occupied orbitals

σg1s −15.6893 −14.3552 −14.3056

σ∗u1s −15.6860 −14.3541 −14.3044

σg2s −1.4633 −1.2765 −1.2771

σ∗u2s −0.7840 −0.7275 −0.7191

πu2p −0.6082 −0.6551 −0.6318

σg2p −0.6346 −0.6082 −0.6082

Unoccupied orbitals

π∗g2p 0.1252 −0.2942 −0.2668

σ∗u2p 0.0986 −0.1594 −0.1402

Total energies

E −108.9868 −108.9818 −108.9814

a Computed using the UGBS1O basis.
b From Ref. 41.
c Computed by the Yang–Wu method [46, 47] using the UGBS1O basis for the

orbitals and the potential. This OEP has defects near the nuclei. In the basis-set
limit, the total OEP energy would be below the KLI value.

recent [51, 52] ideas, and advances them significantly. Because the exact-exchange OEP is

by far the best-studied and the most important effective potential, we focus our exposition

on the exact-exchange functional as the prototype of all orbital-dependent approxima-

tions.

4.3.1 Orbital-averaged effective potentials

A crude approximation to the functional derivative of an orbital-dependent functional

can be obtained as follows. Consider the one-electron operator ûXC defined by Eq. (1.53).

In the case of exact exchange, ûXC is the Fock integral operator,

K̂φi(r) =
δEexact

X

δφ∗i (r)
= −1

2

∫
γ(r, r′)

|r− r′|
φi(r

′) dr′, (4.3)
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where we define K̂ with a sign opposite to that used traditionally in the HF theory. For

a τ -dependent functional of Eq. (1.47), ûXC is a differential operator [37],

ûXC =
∂f

∂ρ
−∇ · ∂f

∂∇ρ
− 1

2

(
∇∂f
∂τ

)
· ∇ − 1

2

∂f

∂τ
∇2, (4.4)

where f is the energy density. In either case, ûXC is non-multiplicative. For such operators

one can generalize [38, 52] the old idea due to Slater [49] and define an average of the

quantities (ûXCφi)/φi (i = 1, 2, . . . , N) weighted by |φi|2/ρ. We call the result an orbital-

averaged effective potential (OAEP),

vOAEP
XC (r) =

1

ρ(r)

N∑
i=1

φ∗i (r)ûXCφi(r), (4.5)

a multiplicative operator that is the same for all orbitals. In particular, the OAEP

corresponding to Eexact
X is the original Slater potential [49],

vS(r) =
1

ρ(r)

N∑
i=1

φ∗i K̂φi = − 1

2ρ(r)

∫
|γ(r, r′)|2

|r− r′|
dr′. (4.6)

For explicit density functionals such as GGAs, the OAEP coincides with the functional

derivative vXC(r) of the parent functional, but for an orbital-dependent functional the

OAEP is only an approximation to vXC(r). The extent to which an OAEP is close to the

true functional derivative vXC(r) depends on the functional. Here it suffices to say that

the exact-exchange functional represents the most unfavorable case. For example, the

exact-exchange OEP reduces in the uniform-electron-gas limit to vLDA
X = −kF/π, where

kF = (3π2ρ)1/3, whereas the corresponding OAEP reduces in the same limit to (3/2)vLDA
X ,

a nominal 50% error [53]. A similar error for hybrids and meta-GGAs is expected to be

much smaller.

In this work, we define the total KS effective potential in the OAEP approximation

as

vOAEP
eff (r) = vext(r) + vKS

H (r) + vHF
S (r), (4.7)

where vKS
H (r) ≡ vH([ρKS]; r) is the Hartree potential of the self-consistent KS density,

whereas vHF
S (r) ≡ vS([ρHF]; r) is the Slater potential constructed with the fixed HF or-

bitals. This choice is made for consistency with the definitions of veff(r) adopted for the

more accurate model potentials introduced later in this work.

Examples of atomic and molecular OAEPs are shown in Fig. 4.1. Although the

OAEP is generally not a very realistic approximation to the exact-exchange OEP, total
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energies obtained from such crude approximations may be reasonable [54]. Even the KS

eigenvalues computed with the Slater potential are closer to the OEP eigenvalues than

to HF orbital energies (see Sec. 4.5 below).

The eigenfunctions of an OAEP are of course generally different from the HF and

OEP orbitals. We will now show that one can devise a better model by asking the

question: what is the effective KS potential whose eigenfunctions are GKS orbitals?
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Figure 4.1: Atomic and molecular exact-exchange OEPs and their crude approximations:
the OAEP (Slater) and exchange-only LDA potentials constructed with the HF/UGBS1O
orbitals. The potentials for Li2 are shown along the internuclear axis.
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4.3.2 Orbital-consistent effective potentials

Della Sala and Görling [16] derived an OEP approximation called the localized HF (LHF)

potential by assuming that the KS exact-exchange-only and HF Slater determinants are

identical. We can derive another OEP approximation by making a more restrictive as-

sumption that the occupied canonical KS exact-exchange-only orbitals and the occupied

canonical HF orbitals are the same,

φKS
i = φHF

i , (i = 1, 2, . . . , N). (4.8)

We call the potential defined by this property an orbital-consistent effective potential

(OCEP), where the “consistency” refers to the assumed equivalence of the KS and GKS

orbitals. Although Eq. (4.8) is generally impossible to satisfy exactly, let us ignore this

concern for a moment and examine the consequences of our assumption.

Consider again the exact-exchange functional of Eq. (1.44). The GKS equations

corresponding to this functional are the HF equations,[
−1

2
∇2 + vext(r) + vHF

H (r) + K̂

]
φHF
i (r) = εHF

i φHF
i (r), (4.9)

where vHF
H (r) is the Hartree potential of ρHF(r). Let us multiply Eq. (4.9) by φHF

i , sum

over i from 1 to N , and divide through by ρHF. The result may be written as

τHF
L (r)

ρHF(r)
+ vext(r) + vHF

H (r) + vHF
S (r) = −ĪHF(r), (4.10)

where τHF
L is the Laplacian form of the HF kinetic energy density,

τHF
L (r) = −1

2

N∑
i=1

φHF*
i ∇2φHF

i , (4.11)

vHF
S (r) is the OAEP defined by Eq. (4.6) and built with the HF orbitals, and ĪHF is the

HF average local ionization energy defined [55, 56] by

ĪHF(r) = − 1

ρHF(r)

N∑
i=1

εHF
i |φHF

i (r)|2. (4.12)

(Note that in Ref. 51 this quantity was defined with an opposite sign; here we revert to the

original sign convention of Ref. 55). Now suppose there exists a multiplicative exchange

potential whose occupied orbitals are the same as the HF orbitals. By definition, this
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potential (OCEP) satisfies the exchange-only KS equations,[
−1

2
∇2 + vext(r) + vKS

H (r) + vOCEP
X (r)

]
φKS
i (r) = εKS

i φKS
i (r), (4.13)

where vKS
H (r) is the Hartree potential of ρKS(r) and the eigenvalues εKS

i are yet unknown.

Performing similar manipulations on Eq. (4.13) as above we transform it into

τKS
L (r)

ρKS(r)
+ vext(r) + vKS

H (r) + vOCEP
X (r) = −ĪKS(r), (4.14)

where

τKS
L (r) = −1

2

N∑
i=1

φKS*
i ∇2φKS

i (4.15)

and

ĪKS(r) = − 1

ρKS(r)

N∑
i=1

εKS
i |φKS

i (r)|2. (4.16)

Finally, we subtract Eq. (4.10) from Eq. (4.14). Under the assumption expressed by

Eq. (4.8), most terms cancel out and the remaining ones give

vOCEP
X (r) = vHF

S (r) + ĪHF(r)− ĪKS(r). (4.17)

We define the total KS effective potential in the OCEP approximation as

vOCEP
eff (r) = vext(r) + vKS

H (r) + vOCEP
X (r). (4.18)

The OCEP approximation of Eq. (4.17) was anticipated by Bulat et al. [57] on the basis

of comparison of KS and HF average local ionization energies in atoms.

To compute an OCEP, we first carry out an HF SCF calculation on the system. Then,

starting with some initial guess for the unknown {εKS
i } and {φKS

i } we construct vOCEP
eff (r)

by Eq. (4.18). Then we solve the KS eigenvalue problem with vOCEP
eff (r) and use the

solutions to construct a new OCEP. The procedure is repeated until the KS orbitals and

orbital eigenvalues are self-consistent. An alternative definition of vOCEP
eff (r), in which

vKS
H (r) is replaced with vHF

H (r), was also tested and abandoned because of somewhat

slower SCF convergence.

Since the OCEP and its orbital eigenvalues are defined up to a constant shift, we

eliminate this ambiguity by shifting all eigenvalues εKS
i so that the energy of the highest

56



occupied level satisfies the condition

εKS
HOMO = εHF

HOMO. (4.19)
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Figure 4.2: Atomic and molecular exact-exchange OEPs and their second-level approxi-
mations: OCEP (computed using the UGBS1O basis) and KLI.

It is known [58–61] that the exact exchange OEP decays asymptotically as −1/r in

all directions except on nodal surfaces of the HOMO, where the decay is C − 1/r with C

being a system-dependent constant. By analyzing the r →∞ limits of ĪHF(r) and ĪKS(r)

and taking into account Eq. (4.19), one can show that the OCEP formally exhibits the

same type of behavior as the exact OEP (and KLI/LHF potentials): namely, it decays
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as the Slater potential (−1/r) in all directions except on nodal surfaces of the HOMO,

where it approaches C − 1/r with C = εKS
HOMO−1 − εHF

HOMO−1 6= 0. Thus, condition (4.19)

also imparts the OCEP with correct asymptotic behavior.

The computational cost of the OCEP SCF approximation includes the cost of an

HF SCF calculation but, in contrast to the KLI/LHF SCF methods, requires only one

evaluation of the Slater potential. We have computed OCEPs for several atoms and

molecules and found that they are very reasonable approximations to OEPs. A typical

OCEP is similar to a KLI potential (Fig. 4.2).

Note that the conventional definitions [57] of ĪHF(r) and ĪKS(r) by Eqs. (4.12) and

(4.16) are meaningful only in terms of canonical HF and KS orbitals and their eigen-

values. It can be shown [62] that there exists a generalized definition of the average

local ionization energy which is invariant under unitary transformations of the occupied

orbitals. Written in terms of the generalized definition, the OCEP would be manifestly

invariant, sharing this property with the LHF and Becke–Johnson potentials, and in

agreement with the conclusions of Ref. 57.

4.3.3 Density-consistent effective potentials

The third and highest level of the proposed hierarchy of OEP approximations is the

density-consistent effective potential (DCEP). This model is similar in spirit to the OCEP

but is based on a less restrictive assumption that only the ground-state electron densities

in the KS and GKS schemes are equal. For the exact-exchange functional this amounts

to imposing the condition

ρKS(r) = ρHF(r). (4.20)

The special case of the DCEP for the exact-exchange functional was recently presented

in Ref. 51 under the name of Hartree–Fock exchange-correlation (HFXC) potential. Here

we will use the general name DCEP for consistency with the OAEP and OCEP, and

to emphasize the fact that the principle behind the HFXC model is not limited to the

exact-exchange functional.

Assuming that an effective potential satisfying Eq. (4.20) exists, we can capitalize on

the results of Sec. 4.3.2 to derive an expression for the DCEP in a few simple steps. First

we use a basic property of the Laplacian form of the kinetic energy density to write

τHF
L = τHF − 1

4
∇2ρHF, (4.21)

where τHF = (1/2)
∑N

i=1 |∇φHF
i |2 is the positive-definite form of the HF kinetic energy

58



density. Then we substitute Eq. (4.21) into Eq. (4.10) to obtain

τHF

ρHF
− 1

4

∇2ρHF

ρHF
+ vext + vHF

H + vHF
S = −ĪHF. (4.22)

Similarly we rewrite Eq. (4.14) as

τKS

ρKS
− 1

4

∇2ρKS

ρKS
+ vext + vKS

H + vDCEP
X = −ĪKS. (4.23)

The assumed equality of the KS and HF densities does not imply the equality of the
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Figure 4.3: DCEPs (HFXC potentials) computed using the UGBS1O basis are virtually
exact representations of benchmark exact-exchange OEPs both for atoms and molecules.
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orbitals, so here φKS
i 6= φHF

i and τKS
L 6= τHF

L . Subtracting Eq. (4.22) from (4.23) and using

equality (4.20) we arrive at [51]

vDCEP
X (r) = vOCEP

X (r) +
τHF(r)

ρHF(r)
− τKS(r)

ρKS(r)
, (4.24)

where vOCEP
X (r) is given by Eq. (4.17).

To compute a DCEP, we combine Eq. (4.24) with the Hartree potential of ρKS(r) to

produce

vDCEP
eff (r) = vext(r) + vKS

H (r) + vDCEP
X (r). (4.25)

The KS density, orbitals and eigenvalues in the DCEP formula are then determined

by solving the KS equations iteratively until self-consistency is reached, exactly as in

the relaxed-orbital OCEP of Sec. 4.3.2. DCEPs are expected to have the same type of

asymptotic behavior and orbital-rotation invariance as OCEPs.

We experimented with a minor modification of the DCEP method which consists

in replacing the variable vKS
H (r) with the fixed vHF

H (r). It turned out that our original

choice [51] of vKS
H (r) in Eq. (4.25) leads to better SCF convergence and gives more accurate

results than the use of vHF
H (r). We also caution against replacing ρKS(r) with ρHF(r) in

Eq. (4.24) because the resulting mismatch between τKS and ρHF will cause the ratio

τKS/ρHF to behave erratically in the asymptotic region.

As shown in Ref. 51 and in Fig. 4.3 of this work, the DCEP is an extraordinarily

accurate representation of the OEP, even when compared to the best existing models.

The reason for this is the non-obvious fact that the OEP and DCEP equations are nearly

equivalent. To show this we follow Miao [63] and treat the HF method as a perturbation

of the KS scheme by writing the canonical HF orbitals as

φHF
i (r) = φKS

i (r) + λψi(r) +O(λ2), (4.26)

where λ is a perturbation parameter and ψi(r) is the first-order correction. The pertur-

bation is the difference between the Fock and KS operators, and the first-order correction

ψi is known as the “orbital shift” [60, 61]. Now let us multiply Eq. (4.26) by its complex

conjugate and sum the products from i = 1 to N . The result is

ρHF(r) = ρKS(r) + λ

[
N∑
i=1

ψ∗i (r)φKS
i (r) + c.c.

]
+O(λ2), (4.27)
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Figure 4.4: Three model potentials of the proposed hierarchy computed using the
UGBS1O basis and shown along the internuclear axis of the ground-state H–C≡N
molecule. Note the absence of any defects near the nuclei. The exact OEP is not
available, but we presume it to be almost indistinguishable from the DCEP curve.

where c.c. stands for “complex conjugate”. But if φKS
i are the OEP eigenfunctions,

then [60, 64, 65]
N∑
i=1

ψ∗i (r)φKS
i (r) + c.c. = 0, (4.28)

which is one of several forms of the OEP equation, so Eq. (4.27) becomes

ρHF(r) = ρKS(r) +O(λ2). (4.29)

This means that the HF and OEP densities are equal to first order in λ. It follows that a

multiplicative potential that reproduces the HF ground-state density must be very close

to the OEP. Furthermore, if we operate on both sides of the equality ρHF = ρKS with

−(1/2)∇2 and use the KS and HF equations to simplify the result, we obtain the DCEP

Eq. (4.24). Thus, the DCEP and OEP equations are intimately related.

The OAEP, OCEP, and DCEP approximations to the OEP can be readily computed

for molecules (see, for instance, Fig. 4.4). But before we proceed to comparing the

OAEP, OCEP, and DCEP models in practical calculations, let us elaborate on the basic

assumptions underlying the OCEP and DCEP approximations.
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4.4 The effect of freezing the Kohn–Sham orbitals

and densities

In deriving the OCEP approximation of Eq. (4.17) we assumed that HF orbitals and

the KS orbitals generated by an OCEP are exactly the same. However, a multiplicative

potential whose eigenfunctions are identical with the HF orbitals cannot exist in the

basis-set limit except for one- and closed-shell two-electron systems. If it did exist, then

the exact-exchange energy computed with the OCEP orbitals would be equal to the HF

energy. That would be a contradiction because the multiplicative potential which delivers

the lowest possible total energy is the OEP and, in the basis-set limit, the OEP energy

is strictly above the HF energy except for systems with a single occupied spatial KS

orbital [66]. (The equality EOEP = EHF is possible in finite basis sets [4], but that is

irrelevant here.) Equation (4.8) is also not expected to hold exactly in finite-basis-set

calculations because of discretization errors. This is why it makes sense to relax the KS

orbitals in the OCEP SCF scheme.

It is nevertheless instructive to explore what happens to the OCEP approximation if

the strict equality of the KS and HF orbitals is enforced. This can be done by building

ĪKS(r) in each SCF iteration with the HF orbitals instead of the current KS orbitals

generated by the OCEP. Using Eq. (4.8) once again we can rewrite the OCEP constructed

with the HF orbitals (OCEP-HF) as

vOCEP-HF
X (r) = vHF

S (r) +
1

ρHF(r)

N∑
i=1

(εKS
i − εHF

i )|φHF
i (r)|2. (4.30)

The eigenvalues {εKS
i } in Eq. (4.30) are still unknown but can be determined by iteration

as in the OCEP SCF method. As in the OCEP and DCEP methods, the total effective

KS potential in the OCEP-HF scheme is obtained by combining the exchange potential

with vKS
H (r). The OCEP-HF method is identical with the model potential discussed by

us briefly in Ref. 52.

The OCEP-HF model assumes that the ith HF orbital correlates with the ith KS

orbital of the OCEP-HF Hamiltonian, which is not always the case (Table 4.1). Thus, if

Eq. (4.30) is implemented näıvely, then for molecules such as N2 the OCEP-HF will not

be axially symmetric and will break the degeneracy of the πu2p orbitals. In order to avoid

unphysical symmetry breaking, one has to keep track of which HF orbital corresponds

to which eigenfunction of the OCEP-HF. An additional complication arises when the

HOMO in the HF scheme becomes the LUMO in the KS method. By contrast, the
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Table 4.2: Various definitions of the factors Qij in Eq. (4.31)

Model Qij

KLI 〈φi|vX − K̂|φi〉δij
ELP, LHF, CEDA 〈φi|vX − K̂|φj〉
GLLBa K[ρ]

√
εHOMO − εi

OCEP-HF (εKS
i − εHF

i )δij
a K[ρ] is a numerical coefficient defined in Ref. 25.

OCEP approximation does not require pairing up HF and KS orbitals and does not

break spatial symmetry.

The OCEP-HF can be also thought of as the KS potential operator (vX) whose eigen-

functions are as close as possible to the eigenfunctions of the corresponding GKS operator

(K̂). The OCEP-HF should therefore be close to the “effective local potential” [19] (ELP)

defined as the multiplicative operator that provides the best fit to the Fock exchange op-

erator K̂ in a least-squares sense. The ELP is itself numerically equivalent [20] to the

“transformed LHF” potential [16] and to the common energy denominator approxima-

tion [17] (CEDA). Our calculations indicate that the OCEP-HF, KLI, and ELP poten-

tials are virtually interchangeable, but at the same time distinct from the relaxed-orbital

OCEP (cf. Fig. 4.2).

A model exchange potential similar to the OCEP-HF, but with φKS
i in place of φHF

i ,

was also obtained by Nagy [50] in the process of an “alternative derivation” of the KLI

potential. Nagy’s method for computing her potential was restricted to few-electron

atoms, so numerical results for only one atom (Be) were ever published [50].

Thus, the OCEP-HF belongs to the same class of model potentials as KLI, ELP, LHF,

CEDA, and the model of Gritsenko, van Lenthe, van Leeuwen, and Baerends (GLLB) [25].

All these potentials have the form

vX(r) = vS
X(r) +

1

ρ(r)

N∑
i,j=1

Qijφ
∗
i (r)φj(r), (4.31)

where the quantities Qij are defined in Table 4.2. As emphasized by Nagy [50], the

relationship between Eq. (4.30) and the KLI approximation is particularly close because

〈φHF
i |vX − K̂|φHF

i 〉 = 〈φHF
i |ĥ− F̂ |φHF

i 〉 ≈ εKS
i − εHF

i , (4.32)

where ĥ is the exchange-only KS Hamiltonian and F̂ is the one-electron Fock operator.
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As with the OCEP method, there is no guarantee that the KS ground-state den-

sity generated by a DCEP is exactly equal to the HF density in finite-basis-set calcula-

tions. But unlike the OCEP scheme, the DCEP can satisfy its underlying assumption

[Eq. (4.20)] exactly in the basis-set limit, provided the particular ρHF(r) is non-interacting

v-representable.

4.5 Total energies and orbital eigenvalues

Now we put the proposed hierarchy of model exchange potentials to test in Gaussian-

basis-set calculations on atoms and molecules. All results of this section were obtained

using density-functional integration grids containing at least 300 radial points and enough

angular points to ensure that the total energies are converged to all digits reported.

The total electronic energy was computed as

E = Ts +

∫
ρ(r)vext(r) dr + EH + EX, (4.33)

where Ts = −(1/2)
∑N

i=1〈φi|∇2|φi〉 is the KS kinetic energy, EH = (1/2)
∫
ρ(r)vH(r) dr

is the Hartree energy and EX is the exchange energy. The first three terms on the right-

hand side of Eq. (4.33) were always computed analytically for a given set of orbitals. The

exchange contribution was obtained in two different ways: analytically by Eq. (1.44) and

by numerical integration using the Levy–Perdew virial relation [67–69],

Evir
X =

∫
vX(r) [3ρ(r) + r · ∇ρ(r)] dr. (4.34)

The total electronic energies obtained through Eqs. (1.44) and (4.34) are denoted Econv

and Evir, respectively. For the exact OEP, Econv = Evir [70, 71].

The quantity

∆Econv = Econv − EOEP, (4.35)

where EOEP is the benchmark OEP energy, is often used as a measure of the accuracy of

a model exchange potential. Another useful measure is the virial energy discrepancy [39,

72],

∆Evir = Evir − Econv. (4.36)

The difference ∆Evir can be either positive or negative and is more sensitive to the quality

of exchange potentials than ∆Econv [54].
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The values of ∆Econv and ∆Evir obtained with various OEP approximations for 20

atoms (half of which have open shells) are given in Table 4.3. The H and He atoms are

not included because all OEP approximations of Table 4.3 are exact for any system with

a single occupied spatial KS orbital. Judging by the magnitudes of ∆Econv and ∆Evir,

the OCEP, ELP, and KLI are roughly two orders of magnitude more accurate than

the OAEP model, and the DCEP is roughly two orders of magnitude better than the

OCEP, ELP, and KLI. Observe that the conventional exact-exchange energies obtained

from the OCEP-HF model are slightly lower than the energies from the KLI and ELP

approximations.

For any model exchange potential the value of ∆Econv should be non-negative in the

basis-set limit because Econv is bounded below by the true OEP energy. The DCEP/UGBS

values of ∆Econv, however, are slightly negative for some atoms in Table 4.3. We inter-

pret this result as a manifestation of the finiteness of the UGBS because, in finite basis

sets, the matrix of a multiplicative operator can be identical with the matrix of some

non-multiplicative operator [73], and so the exact-exchange KS scheme can yield Econv

values below the basis-set-limit OEP energy (cf. Ref. 4).

Exchange-only KS energies should also satisfy [67] the conventional virial theorem,

Ts + Econv = 0, (4.37)

which can be used as another test of OEP approximations [39]. Let us rewrite Eq. (4.37)

as

(Ts + Evir)−∆Evir = 0, (4.38)

where ∆Evir is defined by Eq. (4.36), and note that both terms on the left-hand side of

Eq. (4.38) should vanish separately. In an atom, the sum Ts +Econv may be nonzero for

two different reasons: because of finiteness of the basis set and because the potential vX

is not the functional derivative of the exchange functional. By contrast, ∆Evir vanishes in

any basis set as long the exchange potential is the functional derivative (one can verify this

property of ∆Evir numerically for any approximate exchange functional). Therefore, if we

interpret −∆Evir as the functional-derivative error, then Ts +Evir may be interpreted as

the basis-set error. We found that Ts+Econv has more or less the same values as −∆Evir in

Table 4.3 (much greater for OCEPs than for DCEPs), while the magnitudes of Ts+Evir are

small (mostly between 0.01 and 1 mEh) and are roughly the same for OCEPs and DCEPs.

This suggests that ∆Evir indeed reflects deviations of the corresponding potentials from

the true OEPs.

65



Table 4.4 summarizes results of exact-exchange KS calculations on many-electron

molecules for which benchmark-quality numerical OEP energies are available [42]. The

DCEP/UGBS1O energies for Li2 and BH are slightly lower than the numerical OEP

values of Makmal et al. [42]. In the case of LiH, the DCEP/UGBS1O energy is 11 µEh

above the OEP energy reported by Makmal et al., but our DCEP estimate can be lowered

by 18 µEh by using the larger UGBS2O basis. At the same time, a switch from UGSB1O

to UGBS2O increases the DCEP energy of BH by 27 µEh, underscoring the fact that the

DCEP energy is not variational.

Finally, Table 4.5 compares typical KS eigenvalue spectra obtained with standard

OEP approximations and the model potentials of this work. The agreement between the

OEP and DCEP (HFXC) eigenvalues is excellent, just as the agreement between total

energies. Note the close agreement between the KLI and OCEP-HF eigenvalues, which

once again suggests that these two approximations are very similar.

4.6 Conclusion

The proposed hierarchy of approximations to the exact-exchange OEP can be summarized

as the following list ordered by increasing accuracy:

OAEP < OCEP ≈ OCEP-HF < DCEP ≈ OEP

The first-level approximation, OAEP, is equivalent to Slater’s statistical average of the

Fock operator. The second-level approximation, OCEP, is numerically similar to the

KLI, LHF, ELP, and related models. The frozen-orbital modification of the OCEP,

called OCEP-HF, is slightly more accurate than the OCEP, but its advantage is offset

by the inconvenience of having to keep track of the correspondence between the HF and

KS orbitals. Finally, the third-level approximation, DCEP, is practically identical to the

true functional derivative of the exact-exchange functional, OEP. One way to understand

the superiority of DCEPs is to note that the OCEP and LHF models assume that the

KS orbitals are unitary transformations of the HF orbitals, whereas the DCEP model

does not make that restrictive assumption.

The relationship between the analytic expressions of the three models is that of Chi-

nese boxes: the OAEP is built into OCEP, while the OCEP is subsumed by the DCEP.

Despite vast differences in accuracy, all three levels of this nested hierarchy have the same

computational cost and are easily affordable for atoms and molecules.
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Hierarchies of model potentials similar to the above can be constructed for any func-

tional of occupied orbitals. Starting with vOAEP
XC (r) constructed with the self-consistent

GKS orbitals, we would have

vOCEP
XC (r) = vOAEP

XC (r) + ĪGKS(r)− ĪKS(r) (4.39)

and

vDCEP
XC (r) = vOCEP

XC (r) +
τGKS(r)

ρGKS(r)
− τKS(r)

ρKS(r)
, (4.40)

in obvious notation. As with exact exchange, the method requires solving the GKS

equations and constructing the corresponding OAEP. The latter task can be simplified

using the techniques developed by our group recently [52, 74].

The most important message of this work is that instead of tackling the complicated

OEP integral equation one can obtain its solution almost exactly by constructing a model

potential (DCEP). The DCEP approach works so well because the DCEP and OEP equa-

tions are formally identical to the first order of perturbation of the KS Hamiltonian. As

a numerically excellent approximation to the functional derivative δEXC/δρ of an orbital-

dependent functional, the DCEP model can serve as an uncompromising alternative to

the OEP procedure in atomic and molecular calculations with finite basis sets.
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Chapter 5

Exchange-correlation potentials

from many-electron wavefunctions

5.1 Introduction

Most existing methods for generating exact exchange-correlation potentials fit the func-

tion vXC(r) to a given ground-state density, ρ(r), via the Kohn–Sham (KS) equations

either by iterative updates [1–4] or through some constrained optimization [5–7]. The

target densities are usually obtained from ab initio wavefunctions which are themselves

discarded. Because small changes in ρ(r) can induce large changes in vXC(r) [8], potential-

reconstruction methods that use only ρ(r) as input suffer from numerical instabilities.

Moreover, electron densities generated using ubiquitous Gaussian basis sets correspond

to exchange-correlation potentials that wildly oscillate and diverge [9–12], a result that

is formally correct but unwanted. Kohn–Sham potentials can be also constructed by

many-body methods [13–17], but these techniques are quite elaborate and often require

solving an integral equation for vXC(r), which is a challenge by itself.

Here, we propose a radically different method for computing the exchange-correlation

potential of a given many-electron system, which avoids the above difficulties. In this

method, the functional derivative of the exact EXC[ρ] is obtained directly from the sys-

tem’s electronic wavefunction. The approach represents a nontrivial generalization of our

Reproduced in part from I. G. Ryabinkin, S. V. Kohut, and V. N. Staroverov, “Reduction of
electronic wave functions to Kohn–Sham effective potentials”, Phys. Rev. Lett. 115, 083001 (2015),
with the permission of The American Physical Society.

Reproduced in part from I. G. Ryabinkin, S. V. Kohut, R. Cuevas-Saavedra, P. W. Ayers, and V.
N. Staroverov, “Response to “Comment on ‘Kohn–Sham exchange-correlation potentials from second-
order reduced density matrices’ ”[J. Chem. Phys. 145, 037101 (2016)]”, J. Chem. Phys. 145, 037101
(2016), with the permission of AIP Publishing.
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technique for constructing Kohn–Sham potentials corresponding to Hartree–Fock (HF)

electron densities [18, 19] devised in Chapter 4 (the density-consistent effective potential)

and is conceptually related to the wavefunction-based analysis of Kohn–Sham potentials

developed by Baerends and co-workers [20–24].

5.2 Derivation of the method

The basic idea of our approach is to derive two expressions for the local electron energy

balance, one of which originates from the Kohn–Sham equations, the other from the

Schrödinger equation. When one expression is subtracted from the other under the as-

sumption that the Kohn–Sham and wavefunction-based densities are equal, the system’s

electrostatic potentials cancel out and the difference gives an explicit formula for vXC(r).

For simplicity, the treatment presented in this chapter is restricted to electronic singlet

ground states described with closed-shell Kohn–Sham determinants, and assumes that

all basis functions and orbitals are real (although the notation for complex conjugate is

retained).

Accomplishing the first part of this plan is easy. In the Kohn–Sham scheme, the

ground-state density of a singlet N -electron system is obtained as ρKS(r) =
∑

i ni|φi(r)|2,

where ni = 0 or 2 are occupation numbers of the corresponding Kohn–Sham orbitals

(N =
∑

i ni). The orbitals are obtained by solving the equation[
−1

2
∇2 + vext(r) + vKS

H (r) + vXC(r)

]
φi(r) = εiφi(r), (5.1)

where vext(r) is the electrostatic potential of the nuclei and vKS
H (r) is the electrostatic

potential of ρKS(r). If we multiply Eq. (5.1) by niφ
∗
i (r), sum over i, and divide through

by ρKS(r), we obtain

τKS
L (r)

ρKS(r)
+ vext(r) + vKS

H (r) + vXC(r) = ε̄KS(r), (5.2)

where τKS
L (r) = −(1/2)

∑
i niφ

∗
i (r)∇2φi(r) is the Kohn–Sham kinetic energy density and

ε̄KS(r) =
1

ρKS(r)

∑
i

niεi|φi(r)|2 (5.3)

is the average local Kohn–Sham orbital energy [25].
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The second part of the plan is to reduce the N -electron Schrödinger equation to a

local energy balance expression analogous to Eq. (5.2). There is more than one way to

do this. Holas and March [26] had considered a contracted Schrödinger equation for this

purpose, but their proposal led to a complicated integral equation for vXC(r) involving

the three-electron reduced density matrix (3-RDM). The Baerends group [20–24] used an

expression involving (N − 1)-electron conditional amplitudes. The method we propose

here is motivated by Löwdin’s approach [27] to the problem of finding the optimal finite

one-electron basis set for a configuration interaction (CI) expansion.

Suppose we have an N -electron ground-state wavefunction Ψ expressed in terms of

orthonormal orbitals {ψi}. Then the total electronic energy may be written as

E =
∑
ij

γij〈ψj|ĥ|ψi〉+
∑
ikjl

Γikjl〈ψjψl|r−1
12 |ψiψk〉, (5.4)

where ĥ(r) = −(1/2)∇2+vext(r) is the one-electron core Hamiltonian, γij =
∑

σ〈Ψ|â
†
jσâiσ|Ψ〉

(σ = α, β is the spin index) are matrix elements of the spin-free 1-RDM, and Γikjl =

(1/2)
∑

σσ′〈Ψ|â†jσâ
†
lσ′ âkσ′ âiσ|Ψ〉 are matrix elements of the spin-free 2-RDM.

Our objective is to turn Eq. (5.4) into a local energy balance equation. We start by

minimizing E with respect to the functions {ψi}, subject to the constraint 〈ψj|ψi〉 = δji,

while keeping γij and Γikjl fixed. The corresponding Euler–Lagrange equation is

δE

δψ∗j (r)
=
∑
i

λijψi(r), (5.5)

where λij are yet undetermined Lagrange multipliers. We evaluate the functional deriva-

tive in Eq. (5.5), multiply the result by ψ∗j (r
′), sum over j, and obtain

ĥ(r)γ(r, r′) + 2

∫
Γ(r, r2; r′, r2)

|r− r2|
dr2 =

∑
ij

λijψi(r)ψ∗j (r
′). (5.6)

where

γ(r, r′) =
∑
ij

γijψi(r)ψ∗j (r
′) (5.7)

and

Γ(r, r2; r′, r′2) =
∑
ikjl

Γikjlψi(r)ψk(r2)ψ∗j (r
′)ψ∗l (r

′
2) (5.8)

are the coordinate representations of the spin-free 1-RDM and 2-RDM, respectively.
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We denote the left-hand side of Eq. (5.6) by G(r, r′) and treat it as the kernel of an

integral operator defined by

Ĝψj(r) =

∫
G(r, r′)ψj(r

′) dr′. (5.9)

Then λij can be determined from Eqs. (5.6) and (5.9) as

λij = 〈ψi|Ĝ|ψj〉. (5.10)

The operator Ĝ, known as the generalized Fock operator or orbital Lagrangian, arises in

various problems of quantum chemistry [27–31].

For our purposes, we need only the r = r′ part of Eq. (5.6) which after division by

ρWF(r) = γ(r, r) becomes

τWF
L (r)

ρWF(r)
+ vext(r) +

2

ρWF(r)

∫
P (r, r2)

|r− r2|
dr2 = ε̄WF(r), (5.11)

where τWF
L (r) = −(1/2) [∇2γ(r, r′)]r′=r is the interacting kinetic energy density, P (r, r2) =

Γ(r, r2; r, r2) is the pair function, and

ε̄WF(r) =
1

ρWF(r)

∑
ij

λijψi(r)ψ∗j (r). (5.12)

One can always write the pair function as

P (r, r2) =
1

2
ρWF(r)

[
ρWF(r2) + ρWF

XC (r, r2)
]
, (5.13)

which defines ρWF
XC (r, r2), the exchange-correlation hole density. Substituting Eq. (5.13)

into Eq. (5.11) we obtain

τWF
L (r)

ρWF(r)
+ vext(r) + vWF

H (r) + vWF
S (r) = ε̄WF(r), (5.14)

where vWF
H (r) is the electrostatic potential of ρWF(r) and

vWF
S (r) =

∫
ρWF

XC (r, r2)

|r− r2|
dr2 (5.15)

is the Slater exchange-correlation-charge potential [32]. The above quantity is also
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known in the literature [22, 23, 33] as the exchange-correlation hole potential, vhole
XC .

Equation (5.14) is the wavefunction counterpart of Eq. (5.2).

Observe that the sum in Eq. (5.12) does not change if we replace every λij with

λ∗ji. This means that ε̄WF(r) is determined by the Hermitian (symmetric) part of Ĝ. If

desired, one can define the self-adjoint operator F̂ = (Ĝ+ Ĝ†)/2 and solve the Hermitian

eigenvalue problem F̂ fi(r) = λifi(r). This optional step allows one to cast Eq. (5.12) as

ε̄WF(r) =
1

ρWF(r)

∑
i

λi|fi(r)|2, (5.16)

which is formally analogous to Eq. (5.3). The quantity ε̄WF(r) as given by Eq. (5.16) was

introduced by our group earlier under the name of “average local electron energy” [34].

Now let us subtract Eq. (5.14) from Eq. (5.2), substitute the identity τL = τ −∇2ρ/4

for τKS
L and for τWF

L with τKS = (1/2)
∑

i ni|∇φi|2 and τWF(r) = (1/2) [∇r′∇rγ(r, r′)]r′=r,

and apply the condition ρKS(r) = ρWF(r). This yields the central equation of this work:

vXC(r) = vWF
S (r) + ε̄KS(r)− ε̄WF(r) +

τWF(r)

ρWF(r)
− τKS(r)

ρKS(r)
. (5.17)

Since τKS and ε̄KS are initially unknown, Eq. (5.17) must be solved iteratively in con-

junction with the Kohn–Sham equations. The transition from τL to τ is not strictly

necessary but beneficial for numerical calculations because τ does not diverge at the

nuclei as does τL.

It may seem like nothing beyond the inverted Kohn–Sham equation [Eq. (5.2)] can

be achieved if one adds to it the local energy balance equation for the wavefunction

quantities [Eq. (5.14)]. Of course, if the symbol ε̄WF is taken to mean the left-hand side

of Eq. (5.14) (that is, ε̄WF is computed as the sum of four ingredients), then Eq. (5.17)

is trivially the same as Eq. (5.2) for ρKS = ρWF. We wish to emphasize that in our

approach ε̄WF is defined according to Eq. (5.16). The left-hand side of Eq. (5.14) and the

right-hand side of Eq. (5.16) are not equal in finite basis sets (Fig. 5.1), a fact that plays

a crucial role. When ε̄WF is properly understood as the right-hand side of Eq. (5.16),

Eq. (5.17) becomes a nontrivial relation between vXC and wavefunction quantities. It is

both legitimate and profitable to regard Eq. (5.17) as an equation for vXC in terms of

vWF
S , ε̄WF of Eq. (5.16), and τWF/ρWF. By computing these wavefunction quantities from

a 2-RDM and then solving Eq. (5.17) for vXC, one can obtain accurate approximations

to vXC and the associated KS determinant, as we will demonstrate in the next section.
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Figure 5.1: Quantity ε̄WF computed from the HF/6-31G wavefunction by Eqs. (5.14)
and (5.16).
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Figure 5.2: Exchange-correlation and correlation (inset) potentials for the He atom cal-
culated from FCI wavefunctions using various basis sets.

5.3 Numerical tests

Note that as r → ∞, the term vWF
S vanishes, but the other ingredients remain nonzero:

ε̄KS, τKS
L /ρKS, and −τKS/ρKS approach εHOMO [35], while ε̄WF, τWF

L /ρWF, and −τWF/ρWF

approach −Imin [34], where Imin is the first ionization energy of the system as determined

by the extended Koopmans theorem [36]. To ensure that vXC(r) as given by Eq. (5.17)
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Figure 5.3: Exchange-correlation potentials for the Ne and Be atoms calculated from
compact CASSCF wavefunctions using various basis sets.

properly vanishes at infinity, we shift all current values of εi in each Kohn–Sham iteration

to satisfy the condition

εHOMO = −Imin, (5.18)

which also imparts ρKS(r) with proper asymptotic decay.

The proposed algorithm is as follows.

1. Obtain a wavefunction for the system of interest. Calculate ρWF, τWF, vWF
S , ε̄WF,

and Imin.

2. Generate an initial guess for the occupied Kohn–Sham orbitals {φi} and their eigen-

values {εi}.

3. Using the current guess for {φi} and shifted {εi}, construct the potential vXC by

Eq. (5.17).

4. Solve the Kohn–Sham equations using the current vXC and the same basis as in

step 1. This gives new sets {φi} and {εi}.

5. Return to step 3 and iterate until the potential vXC is self-consistent.

The method was implemented in the gaussian 09 suite of programs [37], which

already contains subroutines for constructing the generalized Fock matrix as part of

the multiconfigurational self-consistent-field (MCSCF) module. The values of Imin were

computed as in Ref. 30, while ρWF and τWF were assembled from natural orbitals. Any

reasonable density-functional approximation may be used to generate an initial guess for
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{φi} and {εi}. The potential was considered converged when all Kohn–Sham density

matrix elements from consecutive iterations differed by less than 10−10 in the root-mean-

square sense. The method works best with basis sets that are not heavily contracted in

the core region.

An added benefit of generating vXC(r) from a wavefunction is that one can readily ob-

tain the corresponding exchange-correlation energy, EKS
XC, which is inaccessible when only

the electron density is known. We computed this energy as EKS
XC = EWF

XC +Tc, where EWF
XC

is the ab initio exchange-correlation energy defined as EWF
XC = (1/2)

∫
ρWF(r)vWF

S (r) dr

and Tc = T − Ts is the difference between the ab initio and Kohn–Sham total kinetic

energies, evaluated analytically. Also of interest is the integrated density difference,

∆ρ =
∫
|ρKS(r) − ρWF(r)| dr, evaluated for the self-consistent vXC(r). Because the con-

dition ρKS(r) = ρWF(r) is imposed in our approach only in the derivation of Eq. (5.17),

∆ρ strictly vanishes only in the basis-set limit. Insistence on reproducing ρWF(r) exactly

in Gaussian basis sets would be misplaced because (i) it brings out unwanted oscillations

and divergences of vXC(r) and (ii) the potential that yields a given density in a finite

basis is not unique anyway [38, 39].

To test the method, we computed exchange-correlation potentials for the three atoms

(He, Be, and Ne) for which exact potentials are available in the literature [40, 41] using

full CI (FCI) and complete active space (CAS) SCF wavefunctions and standard Gaus-

sian basis sets [42]. For He, already the potential extracted from the FCI wavefunction

in the cc-pVTZ basis set is very close to the exact vXC(r), and the cc-pVQZ and cc-pV5Z
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FCI exchange-correlation potentials are visually indistinguishable from the benchmark

(Fig. 5.2 and Table 5.1). Even the correlation potential for He, vC(r) = vXC(r)−vH(r)/2,

which is almost two orders of magnitude smaller than vXC(r), is very accurate at the

FCI/cc-pV5Z level (Fig. 5.2). For Be, the sequence of potentials from CAS(2,4) wave-

functions quickly approaches the exact vXC(r) with increasing basis set size (Fig. 5.3),

as do the corresponding Ts values (Table 5.1). By contrast, Tc and EKS
XC converge slowly

because they depend not only on vXC(r) but also on the accuracy of the wavefunction

through the value of T . Potentials for the Ne atom constructed from CAS(8,8) wavefunc-

tions also improve rapidly with the size of the basis set (Fig. 5.3). Thus, even compact

correlated wavefunctions can produce accurate Kohn–Sham potentials, provided that the

basis set is of good quality.

The method works equally well for molecules. It is known that, in molecules, the onset

of strong correlation induced by bond stretching manifests itself in characteristic mid-

bond peaks of vXC(r) [23, 43–45]. Using our method, we readily reproduced these peaks

in a number of stretched diatomics exemplified by N2 (Fig. 5.4). Exchange-correlation

potentials for polyatomic molecules can also be generated by our method (Fig. 5.5).

It is remarkable that Kohn–Sham potentials computed from wavefunctions are always

well-defined and free from spurious features. Conventional methods for extracting vXC(r)

from densities, when implemented in matrix form, would not deliver such unambiguous

results because there is no one-to-one correspondence between densities and potentials
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in finite basis sets [38]. Furthermore, when density-to-potential mapping techniques are

rigorously applied to electron densities generated in Gaussian basis sets, one obtains

unphysical potentials [9–12]. Neither of these complications affects our approach.

5.4 Conclusion

In conclusion, we have developed a practical method for folding a many-electron wave-

function into the corresponding exchange-correlation potential. The key ingredient of our

approach is the generalized Fock matrix which is commonly available in ab initio codes

as a by-product of computing MCSCF wavefunctions, nuclear gradients, and first-order

properties. The method possesses several advantages over existing techniques for con-

structing exchange-correlation potentials: it delivers vXC(r) in a simple analytic form,

avoids the ambiguity of associating a given electron density with a Kohn–Sham potential

in a finite basis set, is stable with respect to changes in basis sets, convergence thresholds

and other details of the calculation, and produces potentials without oscillations and

divergences when using Gaussian basis sets.
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Chapter 6

Origin of the step structure of

molecular exchange-correlation

potentials

6.1 Introduction

Consider the dissociation of a heteronuclear diatomic molecule AB into neutral atoms A

and B. The isolated atoms A and B have different external potentials and hence different

Kohn–Sham highest-occupied molecular orbital (HOMO) energies, εAHOMO and εBHOMO. In

the exact Kohn–Sham scheme, these energies are such that εAHOMO = −IA and εBHOMO =

−IB, where IA and IB are the first ionization energies of A and B, respectively [1–4].

Suppose for the sake of definiteness that IA < IB. Then for the isolated atoms

εAHOMO > εBHOMO. On the other hand, if A and B are viewed as constituent parts of a

dissociated AB molecule, then the variational principle for the total energy implies [4] that

the HOMO levels of A and B must be equal, εAHOMO = εBHOMO. In approximate DFT, the

equalization in the dissociated molecule is attained by transferring a fractional electron

charge from A to B, which is physically incorrect. In the exact DFT, the equilibration

is accomplished via the elevation of a region of vXC(r) around nucleus B by a constant

equal to [4, 5]

εAHOMO − εBHOMO = IB − IA. (6.1)

In other words, the exchange-correlation potential well of the atom B with the higher

Reproduced in part from S. V. Kohut, A. M. Polgar, and V. N. Staroverov, “Origin of the step
structure of molecular exchange-correlation potentials”, Phys. Chem. Chem. Phys. 18, 20938 (2016),
with the permission of The Royal Society of Chemistry.
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ionization energy becomes upshifted by IB − IA relative to the well of atom A in the

separated AB system. This upshift creates a characteristic step structure of the exact

vXC(r), also known as the “counterionic field”, which prevents the electron density from

flowing toward the atom with the higher ionization energy. Moreover, when A and B

are not bonded, the step is enhanced by a peak separating the potential wells of the

two atoms [4]. In commonly used density-functional approximations for vXC(r), these

features are absent, which is why one often finds that atoms in stretched molecules carry

fractional charges [6].

The steps and barriers of molecular exchange-correlation potentials have been ex-

tensively studied both analytically and numerically by Baerends, Gritsenko, and co-

workers [7–11] and later by other groups [12–17]. The approach of Baerends, Gritsenko

and co-workers is based on an exact partitioning of vXC(r) derived from first princi-

ples [18–21],

vXC(r) = vhole
XC (r) + vc,kin(r) + vresp(r). (6.2)

Here vhole
XC (r) is the exchange-correlation hole potential of the interacting system, vc,kin(r)

is the kinetic correlation potential (the difference of interacting and noninteracting kinetic

energies per electron), and vresp(r) is the “response potential”

vresp(r) = vN−1(r)− vN−1
s (r), (6.3)

where vN−1
s (r) is defined in terms of the system’s Kohn–Sham orbitals and orbital ener-

gies [19], and vN−1(r) is defined in terms of wavefunction quantities [19, 21].

By examining the analytic properties of each component of vXC(r), Gritsenko and

Baerends identified [8] vresp(r) as the term responsible for the localized upshift of the

potential around the atom with the higher ionization energy in a molecule. They also

illustrated their conclusions numerically using the following method [7–10]: (i) obtain

an accurate ground-state electron density from a high-quality correlated wave function;

(ii) construct the corresponding vXC(r) by fitting it to the density using an iterative

local update procedure, which also gives the Kohn–Sham orbitals and orbital energies

associated with vXC(r); (iii) calculate vhole
XC (r) and vc,kin(r) from the wavefunction and the

Kohn–Sham orbitals; (iv) finally, obtain the response term as the difference

vresp(r) = vXC(r)− vhole
XC (r)− vc,kin(r). (6.4)

This indirect path to vresp(r) has to deal with various numerical and basis-set arti-

facts [7, 8, 21, 22] associated with fitting exchange-correlation potentials to target electron
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densities. These artifacts then show up in plots of the response potential as spurious

or exaggerated wiggles, dips near the nuclei, and other distortions [7–10].

In Chapter 5, we derived a new analytic expression [Eq. (5.16)] for the wavefunction

component of vresp(r) in terms of eigenfunctions of the generalized Fock operator for the

interacting wavefunction of the system. This expression allows one to generate vresp(r)

without fitting vXC(r) to a target density. In this chapter, we use our expression for

vresp(r) to compute and plot this quantity with previously unavailable accuracy and

detail. Our results provide the clearest and most direct illustration to date that the

localized upshifts of vXC(r) are encoded in the wavefunction component of the response

term.

6.2 Calculation of the response potential

In Ref. 23, Cuevas-Saavedra and Staroverov showed that the response potential may be

obtained as

vresp(r) = ε̄KS(r)− ε̄WF(r), (6.5)

where ε̄KS(r) and ε̄WF(r) are the Kohn–Sham average local electron energy (ALEE) and

the wavefunction ALEE defined in Chapter 5 by Eqs. (5.3) and (5.16), respectively. These

quantities are referred to as ALEEs because each of them may be written as the sum of

a local kinetic energy per electron and an effective potential [24].

The quantities ε̄WF(r) and ε̄KS(r) are formally related to the components of Eq. (6.3)

by the formulas [23]

vN−1(r) = −ε̄WF(r)− I, (6.6)

where I is the first vertical ionization energy of the interacting system, and

vN−1
s (r) = −ε̄KS(r) + εHOMO, (6.7)

where εHOMO is the exact Kohn–Sham HOMO eigenvalue. These relations hold exactly

for exact wavefunctions, when εHOMO = −I.

The wavefunction part of the response term, ε̄WF(r), can be constructed in several

different ways [23]: (i) from the Dyson orbitals and ionization energies of the system [21],

(ii) as the sum of a local kinetic energy per electron and v(r) + vH(r) + vhole
XC (r) [24]

(which follows from the expression [19] for vN−1(r) in terms of conditional probability

amplitudes), and (iii) from the eigenfunctions and eigenvalues of the generalized Fock
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operator [24] by Eq. (5.16). Of these expressions, the first one is clearly impractical; the

second requires at most the diagonal part of the two-electron reduced density matrix (2-

RDM) but produces plots that are distorted by Gaussian basis-set artifacts (unphysical

oscillations and divergences similar to those reported for the inverted Kohn–Sham equa-

tion [25, 26]); the third expression requires no more than the 2-RDM and is numerically

robust. It is this last representation of ε̄WF(r) that we will employ in this work.

Thus, to construct vresp(r) by our method we need to evaluate its two components:

ε̄KS(r) by Eq. (5.3) and ε̄WF(r) by Eq. (5.16). The component ε̄WF(r) involves only wave-

function quantities and can be directly computed from a 2-RDM. The component ε̄KS(r),

however, involves the Kohn–Sham orbitals and orbitals energies of the system, which

are determined by vXC(r) and are initially unknown (note that construction of vresp by

Eq. (6.4) also required Kohn–Sham orbitals for the term vc,kin). In Chapter 5, we showed

that these unknowns can be numerically extracted from the 2-RDM through iterative so-

lution of a nonlinear equation relating vXC(r), φi(r), and εi to certain wavefunction-based

quantities. This equation has the general form of Eq. (6.2) with special representations

for the kinetic correlation and response terms. Explicitly,

vXC(r) = vhole
XC (r) +

τWF(r)

ρWF(r)
− τKS(r)

ρKS(r)
+ ε̄KS(r)− ε̄WF(r), (6.8)

where vhole
XC (r) is the same ingredient as vWF

S (r) of Eq. (5.15) and ε̄WF(r) is given specif-

ically by Eq. (5.16). Comparing this expression to Eq. (6.2), one can write the kinetic

correlation potential as

vc,kin(r) =
τWF(r)

ρWF(r)
− τKS(r)

ρKS(r)
, (6.9)

where the quantities τWF(r), τKS(r), ρWF(r), and ρKS(r) are defined in Sec. 5.2 of Chap-

ter 5. We will refer to our iterative technique as RKS (Ryabinkin, Kohut, and Staroverov).

A similar technique was described by Cuevas-Saavedra, Ayers, and Staroverov in Ref. 27;

it differs from the RKS procedure in details of the calculation of ε̄WF(r), but otherwise

is equivalent.

The RKS procedure involves the following steps. First, we run an ab initio calcula-

tion on the system of interest and compute the wavefunction ingredients ρWF(r), τWF(r),

vhole
XC (r), and ε̄WF(r) of Eq. (5.16) from the resulting 2-RDM. Then we generate a reason-

able initial guess for φi(r) and εi using any standard density-functional approximation,

substitute this guess into Eq. (6.8), solve the Kohn–Sham eigenvalue problem [Eq. (1.18)]

in the same one-electron basis that was used to generate the wavefunction quantities, and

repeat the cycle until the potential vXC(r) is converged. Our convergence criterion is that
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the Kohn–Sham density matrices from two consecutive iterations differ by less than 10−10

in the root-mean-square sense. Matrix elements of all ingredients of vXC(r) are computed

by standard numerical integration techniques used in density-functional methods. The

Coulomb potential, vH(r), appearing in Eq. (1.19) is constructed using the current Kohn–

Sham density ρKS(r); the matrix elements of vH(r) are computed analytically in terms of

integrals involving one-electron basis functions. Other details of the RKS method may

be found in Sec. 5.3 of Chapter 5.

A special note should be made on the meaning of potentials obtained by the RKS

method in finite basis sets. The exchange-correlation potential obtained by the RKS

method for a given 2-RDM is the true vXC(r) corresponding to ρWF(r) only when all the

ingredients of Eq. (6.8) are generated and handled in a complete basis set. In a finite basis

set, the RKS method produces a well-defined, smooth, oscillation-free approximation to

the basis-set-limit vXC(r) at the level of that finite basis. The density ρKS(r) arising

as a byproduct of the RKS method is not exactly equal to ρWF(r) in a finite basis set,

but it tends to ρWF(r) in the basis-set limit [27, 28]. For wavefunctions computed in

large Gaussian basis sets, exchange-correlation potentials obtained by the RKS method

are visually indistinguishable from the corresponding exact potentials, and ρKS(r) is

practically identical to ρWF(r) [27–30].

6.3 Results and discussion

We chose to revisit the LiH molecule (Re = 1.5949 Å) whose exchange-correlation poten-

tials were studied earlier by Gritsenko et al. [7, 8, 20]. Although the steps and barriers

of the exact vXC(r) are qualitatively reproduced by the RKS method even for relatively

crude correlated wavefunctions and modest basis sets [27, 28], in this work we decided to

aim for higher accuracy. To this end, we employed full configuration interaction (FCI)

wavefunctions for LiH generated in the fully uncontracted version of Jensen’s pc-2 basis

set, referred to as u-pc-2: (10s,4p,1d) for Li and (6s,2p,1d) for H [31, 32], with pure d

functions. We uncontracted the basis set to make it sufficiently flexible in atomic core

regions [27].

Figure 6.1 shows that, in agreement with previous studies [7, 8, 20], the step structure

of the exact vXC(r) for a stretched LiH molecule (R = 3Re) originates in the response

term, and that the barrier separating the exchange-correlation potential wells for Li and

H arises mostly from the kinetic-correlation contribution.

Let us now examine each of the two components of the response potential, ε̄KS(r)

and ε̄WF(r). One can show [24] that, for an exact wavefunction, both ε̄KS(r) and ε̄WF(r)
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Figure 6.1: Exchange-correlation potential and its components obtained for LiH from
the FCI/u-pc-2 wavefunction. The exchange-correlation potential well of the H atom is
elevated by IH − ILi relative to the well of Li.

asymptotically approach the negative of the first vertical ionization energy of the system,

lim
r→∞

ε̄KS(r) = lim
r→∞

ε̄WF(r) = −I. (6.10)

Moreover, for any one-electron system, both ε̄KS(r) and ε̄WF(r) are constants everywhere.

For an approximate wavefunction, ε̄KS(r) approaches εHOMO, whereas ε̄WF(r) ap-

proaches [27] the negative of the first vertical ionization energy computed by the extended

Koopmans theorem [33–40] (EKT), −IEKT. The EKT ionization potentials computed

from the FCI/u-pc-2 wavefunction are very good approximations to the exact IH and ILi

values (Table 6.1).

Because ILi < IH, the first ionization energy of the separated LiH is ILiH = ILi. There-

fore, both the Kohn–Sham and wavefunction ALEEs in separated LiH must approach

Table 6.1: Ionization energies of the isolated Li and H atoms computed by the EKT from
the FCI/u-pc-2 wavefunction and the corresponding exact values from Ref. 41.

I, Eh

Atom EKT Exact

H 0.4999 0.5000

Li 0.1979 0.1981
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−ILi in every direction. That is precisely what ε̄KS(r) does in the HOMO-dominated

regions ΩLiH
HOMO of a stretched LiH molecule (Fig. 6.2),

ε̄KS(r ∈ ΩLiH
HOMO) = −ILi. (6.11)

The wavefunction ALEE behaves quite differently (Fig. 6.2): it agrees with ε̄KS(r) in the

region dominated by the HOMO of the Li atom,

ε̄WF(r ∈ ΩLi
HOMO) = −ILi, (6.12)

but dips to −IH in the region dominated by the HOMO of the H atom,

ε̄WF(r ∈ ΩH
HOMO) = −IH, (6.13)

before returning to the −ILi asymptote (not shown). This occurs because the Li and H

atoms in a stretched LiH molecule are almost isolated, so physically the ALEE should

be −ILi and −IH in the HOMO-dominated regions of the Li and H atoms, respectively.

Around the H atom, the difference between ε̄KS(r) and ε̄WF(r) attains a constant value

of (IH − ILi), which is precisely the height of the step exhibited by vresp(r). Thus, the

localized upshift of the exact vXC(r) in a stretched diatomic is due to the step behavior

of the quantity ε̄WF(r) which assumes values equal to the negative ionization energies
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Figure 6.2: The Kohn–Sham ALEE of Eq. (5.3) and wavefunction ALEE of Eq. (5.16)
obtained from the FCI/u-pc-2 wavefunction for a stretched LiH molecule. ILi and IH are
the EKT ionization energies from Table 6.1.
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of the constituent atoms in the HOMO-dominated regions of these atoms. A parallel

theoretical explanation of the step in terms of quantities vN−1(r) and vN−1
s (r) may be

found in Ref. 8.

The step structure of ε̄WF(r) is not developed at short internuclear distances when

the two atoms strongly overlap, but becomes more and more pronounced with increasing

bond length, tending to a well-defined step when the atoms are completely separated

(Fig. 6.3).

The step structure of ε̄WF(r) is a manifestation of long-range correlation effects, so it

would be absent in the Hartree–Fock (HF) theory. This is illustrated with plots of ε̄WF(r)

obtained from the HF/u-pc-2 wavefunctions of LiH (Fig. 6.4). Similar to the Kohn–Sham

ALEE, the HF ALEE exhibits no steps at any internuclear distance.

Finally, Fig. 6.5 shows the entire response term as a function of internuclear distance

in the dissociating LiH molecule. Observe that the response potentials in Fig. 6.5 do

not have any wiggles or dips commonly seen when the Kohn–Sham potentials are fitted

to Gaussian-basis electron densities.[22] This is because our expression for vresp(r) is a

difference of two well-behaved terms given by Eqs. (5.3) and (5.16), neither of which

oscillates or diverges even when the orbitals φi(r) and fj(r) are represented in terms of

Gaussian basis functions.

It is also instructive to verify that the atomic charges on Li and H in a separated

LiH are actually zero when the density of the system is generated by a Kohn–Sham

potential with a proper step structure. To this end, we computed ρKS(r) corresponding
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to various exchange-correlation potentials of dissociating LiH and then extracted the

atomic charges on Li and H by fitting them to reproduce the dipole moment of the

molecule. Calculations using the exchange-correlation potentials generated from FCI/u-

pc-2 wavefunctions correctly predict that the atomic charges on Li and H tend to zero

with increasing bond length (Table 6.2). This is to be contrasted with large spurious
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Figure 6.5: The response potential constructed by Eq. (6.5) from the FCI/u-pc-2 wave-
function of LiH for various internuclear distances.
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Table 6.2: Atomic charges in LiH for various internuclear distances (R) obtained from
the exchange-correlation potentials generated by the RKS method using the FCI and
HF wavefunctions in the u-pc-2 basis set. BLYP and B3LYP charges computed with the
same basis set are included for comparison. All calculations are spin-restricted.

Atomic charges qLi = −qH, a.u.

R/Re FCIa HFa BLYP B3LYP

1.0 0.754 0.782 0.722 0.741

1.5 0.620 0.710 0.591 0.629

2.0 0.388 0.695 0.496 0.550

2.5 0.109 0.677 0.422 0.479

3.0 0.020 0.646 0.373 0.426

3.5 0.005 0.613 0.343 0.390

∞ 0.000 0.432 0.234 0.263

a Direct calculations from wavefunction-based densities give nearly the
same values.

charges obtained from the exchange-correlation potentials corresponding to the HF/u-

pc-2 wavefunction or from standard density-functional approximations.

Although we focused on a small molecule (LiH) described at the FCI level, similar

results are obtained for any heteronuclear diatomic using any approximate wavefunction

that includes static correlation effects. Consider, for instance, ε̄WF(r) computed for the

NaCl molecule from the 8-electron, 8-orbital complete active space self-consistent field

(CASSCF) wavefunction in the 6-31G* basis set (Fig. 6.6). Even at this modest level

of theory, the correlated-wavefunction ALEE has a fully developed step structure at 3Re

(Re = 2.3609 Å), complete with tell-tale step between the Na and Cl atoms.

We have also observed that it is particularly easy to see the step structure of ε̄WF(r)

for a stretched molecule when the correlated wavefunction is computed in a very compact

basis set such as STO-3G. This is because the HOMO-dominated region of the atom with

the higher ionization energy described with a compact basis set is more localized and has

better-defined boundaries than when the same atom is described with a high-quality

basis.

6.4 Conclusion

The exact exchange-correlation potential of a dissociating heteronuclear diatomic molecule

AB builds up a counterionic field that prevents the formation of spurious fractional
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charges on the separated atoms. Gritsenko and Baerends [8] traced the origin of this

field to the response term of vXC(r) by showing that the two components of vresp(r) as-

sume different constant values (related to the ionization energies of the isolated atoms)

in the HOMO-dominated regions of the atoms in a stretched molecule. In this work,

we illustrated this mechanism in detail by computing the two components of vresp(r)

and displaying their behavior as functions of internuclear distance. Our analysis most

directly demonstrates that the step structure of vXC(r) is linked to the step-like drop of

ε̄WF(r), the wavefunction component of vresp(r), in the HOMO-dominated region of the

atom with the higher ionization energy.
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Chapter 7

Step structure in molecular

exchange-correlation potentials

obtained from restricted

Hartree–Fock wavefunctions

7.1 Introduction

The step structure is a feature of the exact exchange-correlation potential of Kohn–

Sham (KS) density-functional theory (DFT). This feature manifests itself in stretched

heteronuclear diatomic molecules as a localized upshift of the potential well of the atom

with the higher ionization energy. Steps of the exchange-correlation potential, vXC, and

their implications have been extensively studied by several groups [1–10]. The role of

the step structure is to ensure that molecules properly dissociate into neutral atoms.

Because standard semilocal density-functional approximations fail to reproduce the step

structure of the exact vXC, unphysical fractional charges are often observed on molecular

fragments at separation [3, 11–14]. In particular, Ruzsinszky and coworkers [13] showed

that, in the spin-unrestricted local density approximation for exchange, fractional-charge

dissociation occurs in 174 out of all possible 276 distinct pairs XY (X 6= Y) obtained by

combining the first 24 open sp-shell atoms. Perdew, Ruzsinszky, and coworkers [13] also

established a simple test that allows one to predict fractional dissociation in diatomics

by comparing orbital energies of isolated atomic fragments. The problem of fractional

charges is also known in the literature as the density delocalization error [15] of semilocal

functionals.
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In Chapter 6, we applied the RKS method presented in Chapter 5 to study the origin

of the step structure of the exact vXC. Our numerical examples were based on nearly

exact exchange-correlation potentials generated from full configuration interaction (FCI)

wavefunctions of LiH. Here, we show that the step structure also arises in approximate

exchange-correlation potentials obtained from restricted Hartree–Fock (RHF) wavefunc-

tions of some stretched heteronuclear diatomic molecules, such as CO, and illustrate the

relation between the step structure and the density delocalization error. These potentials

have another unanticipated feature—exaggerated bumps in vXC near one of the atoms,

which will be referred to as horns in the following discussion. We demonstrate that these

horns can be explained by analyzing the difference between the RHF and KS densities.

7.2 Molecular dissociation in the restricted Hartree–

Fock description

Perdew, Ruzsinszky, and coworkers [13] analyzed the role of atomic orbital energies in

the dissociation of heteronuclear diatomic molecules. Let us recapitulate their results.

Consider a pair of separated atomic fragments X and Y (X 6= Y) in one-determinantal

description. Let q′ be any non-negative fractional charge (0 ≤ q′ < 1) on X. Next,

suppose that a fraction of electron δq > 0 is transferred from X+q′ to Y−q
′
. The charge

transfer raises the energy of the system if

εLU(Y−q
′
) > εHO(X+q′), (7.1)

where εLU(Y−q
′
) is the lowest-unoccupied molecular orbital (LUMO) of Y−q

′
and εHO(X+q′)

is the highest-occupied molecular orbital (HOMO) of X+q′ . If the condition of Eq. (7.1)

is not satisfied, the charge transfer is energetically favorable and will continue until the

eigenvalues on both sides of Eq. (7.1) equalize at some charge q′ = q. Perdew and cowork-

ers used Eq. (7.1) in the context of KS DFT, but the same equation is applicable to the

Hartree–Fock theory. This is because Eq. (7.1) was derived using Janak’s theorem [16],

which is valid for any one-determinantal method.

Orbital energies of neutral atoms (q′ = 0) within the unrestricted Hartree–Fock theory

(UHF) generally satisfy the above condition. This is why fractional charges on separated

atoms are generally not observed [3, 12, 13, 17] in the UHF method. On the other hand,

the condition of Eq. (7.1) is usually violated [3, 11–14] in restricted and unrestricted

calculations with semilocal density-functional approximations (DFAs). One can show

that the fractional-charge dissociation problem is intrinsically linked to the many-electron
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Table 7.1: RHF/cc-pcVTZ NPA atomic charges (q) in stretched heteronuclear diatomic
molecules XY made up of atoms X and Y possessing an even number of electrons each
and orbital energy differences of these atoms in the singlet state at the same theory level.
All values are in atomic units.

XY Re
c q(X)d εLU(1Y0)− εHO(1X0)

BeO 2.515 0.000 +0.3032

BeS 3.291 0.000 +0.2405

CO 2.132 0.000 +0.3497

CS 2.904 0.000 +0.2870

SiO 2.853 0.000 +0.2365

CaO 3.443 0.000 +0.1895

CaS 4.380 0.000 +0.1268

MgO 3.305 0.000 +0.2470

MgS 4.050 0.000 +0.1843

a Natural population analysis of Reed and coworkers [24].
b All the molecules are stretched to 5Re.
c From Ref. [25], three decimal places are retained.
d X is the less electronegative atom.

self-interaction error [13, 18]. A functional is said to be many-electron self-interaction

free if it is able to describe the piecewise linear behavior [19, 20] of the exact energy

functional as a function of the number of electrons. Semilocal density functionals cannot

realistically reproduce this linear variation of the total energy with respect to the number

of electrons. Not only does this lead to spurious fractional charges in stretched molecules,

but also to incorrectly shaped potential energy surfaces [17, 21] and unbound anions [22,

23].

Equation (7.1) can also be used to rationalize molecular dissociation in the restricted

Hartree–Fock (RHF) description. We computed RHF atomic charges for eighteen com-

mon heteronuclear diatomic molecules. Table 7.1 demonstrates that the RHF method

properly dissociates nine of them into neutral atoms. For BeO and CO, this has been

pointed out earlier by Yoshimine [26] and Green [27], respectively. Importantly, these

nine molecules share one characteristic: they consist of atoms with an even number of

electrons.

Recall that the RHF theory can only be applied to closed-shell systems because it

constraints all spatial orbitals to be doubly occupied. Thus, one can obtain physically

correct RHF atomic charges in a stretched heteronuclear diatomic molecule if separated

atoms in such a molecule can be represented as closed-shell singlets. This is clearly
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Table 7.2: Same as in Table 7.1 but for molecules XY consisting of atoms X and Y with
an odd number of electrons. Orbital energy differences are now calculated for the singlet
ions 1X+ and 1Y−.

XY Re q(X) εLU(1Y−)− εHO(1X+)

LiF 2.955 0.992 −0.0659

BH 2.329 0.381 −0.2719

BN 2.421 0.465 −0.2583

BF 2.386 0.809 −0.1453

HCl 2.409 0.229 −0.3675a

NF 2.489 0.376 −0.3146

NaCl 4.461 0.979 −0.0496

AlH 3.115 0.528 −0.1908

AlCl 4.025 0.948 −0.0623

a εLU(H+) = εHO(H0).

possible for molecules that include atoms with an even number of electrons. Additionally,

the condition of Eq. (7.1) evaluated for singlet atoms is satisfied for all the molecules XY

of Table 7.1, which means that a fraction of charge transferred from X to Y does not

lower the energy of the system. These two reasons explain zero charges of Table 7.1.

By contrast, the remaining nine molecules dissociate into fractionally charged atoms

(Table 7.2). These molecules consist of atoms with an odd number of electrons. Owing

to the requirement that all spatial orbitals must be doubly occupied, the RHF theory

cannot separate such molecules into neutral atoms but will instead produce a pair of

singlet ions. The energy of this ionic system can be further lowered via charge transfer,

which is why one observes spurious fractional charges in Table 7.2. This is predicted by

Eq. (7.1) when it is applied to the HOMO and LUMO orbital energies of singlet ions.

(The corresponding eigenvalue differences are negative for all the molecules of Table 7.2).

The observation that the RHF theory dissociates some heteronuclear diatomic molecules

to fractionally charged species instead of singly charged ions was first made by King and

Stanton [28] in 1969.

The extent of the charge transfer is proportional to the orbital energy difference:

the higher the difference, the more electron charge is needed to equalize the orbital

energies. This is illustrated in Fig. 7.1. For example, the atomic charges in stretched

NaCl (qNa = 0.979 a.u.) are very close to a purely ionic bond. This is a consequence

of the very low HOMO-LUMO energy difference of the corresponding ions—very small

amount of electron charge transferred from Cl− to Na+ is sufficient to close the gap.
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Figure 7.1: Atomic charges of Table 7.2 plotted against the corresponding orbital energy
differences.

To summarize, we have seen that, in the RHF picture, two dissociation scenarios are

observed for a representative set of heteronuclear diatomic molecules. The dissociation

outcome depends on the composition of their constituent atoms. For diatomics that are

composed of atoms with an odd number of electrons, one obtains spurious fractional

atomic charges. For diatomics that include atoms with an even number of electrons,

neutral atoms are predicted. Our next step is to analyze the shape of exchange-correlation

potentials generated from molecular RHF wavefunctions corresponding to each of these

scenarios.

7.3 Observations

We generated exchange-correlation potentials for two isoelectronic molecules, CO and BF.

While the RHF theory predicts neutral atoms in the dissociation limit for CO, unphysical

fractional charges are found in stretched BF. We used a modification [29] of the RKS

algorithm of Chapter 5 to fold molecular RHF wavefunctions into exchange-correlation

potentials. This modified version (referred to as mRKS later) uses a special representation

for the kinetic term and is otherwise identical to the original RKS procedure [Eq. (5.17)].

Other relevant computational details are given in Sec. 7.7.
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Figure 7.2: Exchange-correlation potentials obtained from the RHF/cc-pCVTZ wave-
function of CO at the experimental equilibrium geometry and at 3Re. The exchange-
correlation potential becomes upshifted and develops exaggerated bumps around the O
atom when the internuclear distance is increased.

The mRKS equation [Eq. (7.6)] has the same form as a vXC partitioning equation of

Baerends, Gritsenko, and coworkers [30–33]. For convenience, we rewrite vmRKS
XC in this

form and adhere to the terminology of Baerends and coworkers,

vmRKS
XC (r) = vhole

XC (r) + vresp(r) + vc,kin(r). (7.2)

Here,

vresp(r) = ε̄KS(r)− ε̄WF(r) (7.3)

is the response potential and

vc,kin(r) =
τWF
P (r)

ρWF(r)
− τKS

P (r)

ρKS(r)
(7.4)

is the kinetic correlation potential. The quantity vhole
XC and the components of vresp and

vc,kin are defined in Sec. 7.7.

Figure 7.2 shows that the exchange-correlation potential generated from the RHF/cc-

pCVTZ wavefunction of a CO molecule (Re = 2.132a0) develops a localized upshift (step)

around the O atom upon the increase of the internuclear distance. The step is emphasized

by a peak near the bond midpoint and accompanied by pronounced exaggerated bumps

(horns) near the O atom. These horns arise due to the kinetic correlation potential.
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Figure 7.3: Same as in Fig. 7.2 but for BF. No peculiar steps, peaks, or bumps are present
in the vXC of a stretched BF molecule.

We have verified numerically that the steps and horns appear in other basis sets and

therefore do not represent basis-set artifacts. Moreover, these features are also seen in

other molecules of Table 7.1, such as BeO and SiO (not shown).

In striking contrast with Fig. 7.2 is Fig. 7.3 that shows the exchange-correlation poten-

tial generated from the same wavefunction but for a stretched BF molecule (Re = 2.386a0).

As one can see, no peculiar steps, peaks, or bumps are present in the vXC of BF. Thus,

the exchange-correlation potentials of stretched CO and BF are qualitatively different

despite the apparent similarity between the molecules.

7.4 Decomposition of the exchange-correlation po-

tential and explanation of the steps

Figures 7.4 and 7.5 compare individual components [Eq. (7.2)] of the mRKS exchange-

correlation potential for stretched CO and BF molecules, respectively. These components

include: (i) the exchange-correlation hole potential, (ii) the response potential, and (iii)

the kinetic correlation potential.

In Chapter 6, we demonstrated that the step structure originates from the step behav-

ior of the response potential. Figure 7.4 confirms that this is the case for stretched CO

whose vresp develops a step near the O atom. On the other hand, the response potential

of stretched BF is not elevated in the vicinity of the F atom (Fig. 7.5).
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Let us take a closer look at the role played by the step structure in the dissociation

of CO. Recall that the condition of Eq. (7.1) is satisfied by the RHF frontier eigenvalues

of the singlet C and O atoms because the RHF theory predicts zero atomic charges in

stretched CO. For the same reason, this condition must also be satisfied by the mRKS

frontier eigenvalues in the KS description. However, we have observed that the mRKS

HOMO and LUMO energies of isolated singlet C and O atoms violate the condition of

Eq. (7.1). The mRKS potential of stretched CO remedies this situation by developing

a step structure that elevates the potential well of O and, in effect, changes the LUMO

so that Eq. (7.1) is satisfied. Because for isolated C and O εHO
mRKS(1C) = εLU

mRKS(1C)

and εHO
mRKS(1O) = εLU

mRKS(1O), orbital energies of O in a stretched CO molecule must

be upshifted by εHO
mRKS(1C) − εHO

mRKS(1O) to “undo” the relation εHO
mRKS(1C) > εLU

mRKS(1O)

that would otherwise cause the fractional-charge dissociation. Such a mechanism is not

needed for BF since Eq. (7.1) is violated both for the RHF and mRKS atomic orbital

energies in this case.

The step structure of vresp of CO is also developed when this quantity is computed

from correlated wavefunctions. This is illustrated in Fig. 7.6 in which we compare vresp

for the RHF and the full-valence CASSCF wavefunction of a CO molecule at 3Re. Both

wavefunctions correctly predict neutral atoms in the dissociation limit of CO. Thus, the

step structure can arise at any level of theory free from the density delocalization error

and cannot be attributed to electron correlation effects.
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Figure 7.5: Same as in Fig. 7.4 but for BF.

7.5 Analysis of the densities and explanation of the

horns

We now turn to the analysis of the horns in the vXC generated from the RHF wavefunction

of a stretched CO molecule (Fig. 7.1). Because the exchange-correlation potential is

determined by the electron density, our approach here is to compare the RHF density

of CO and BF to densities predicted by typical DFAs. Specifically, we will look at

the density obtained in the spin-restricted fashion (R) using the Becke-Lee-Yang-Parr

(BLYP) functional [34, 35] for exchange and correlation.

To this end, we computed and analyzed density difference profiles for CO and BF

(Figs. 7.7 and 7.8). This quantity is defined as

δρ(r) = ρRBLYP(r)− ρRHF(r). (7.5)

Recall that the RHF theory predicts zero atomic charges in stretched CO. Unlike the RHF

method, the RBLYP approximation dissociates a CO molecule into fractionally charged

C cation and O anion. As a consequence, the RBLYP density has a greater magnitude

and is more diffuse around the O atomic site. This is reflected by peaks around the O

atom in Fig. 7.7. In order to reproduce the shape of the RHF electron density of stretched

CO, the corresponding exchange-potential potential develops pronounced positive regions

(horns) to push the KS density away from the O atom. This device is not needed for a BF

molecule because its RHF and RBLYP densities qualitatively agree at any internuclear
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separation (Fig. 7.8). As a general remark, HF electron densities are often more accurate

than their self-consistent KS analogues. The quality of approximate density functionals

can be improved by evaluating DFA energies using HF densities, a method known as

density-corrected DFT. This method yields accurate potential energy surfaces [17, 21,

36] and electron affinities [23].

7.6 Conclusion

The exact exchange-correlation potential of a stretched heteronuclear diatomic molecule

displays a localized upshift in the domain of the atom with the higher ionization energy.

The purpose of this upshift and the resulting characteristic step structure is to suppress

formation of unphysical fractional charges on separated atoms. We have showed that,

for certain molecules such as CO, the RHF method correctly predicts dissociation into

neutral atoms and that, in such cases, the corresponding KS effective potential has a

qualitatively correct step structure and exaggerated bumps (horns) in atomic core regions

of a stretched molecule. We have analyzed both features and explained their origin. Our

results suggest that the step structure of a KS potential is not an electron correlation

effect and that it can arise at any level of theory capable of describing the system without

a density delocalization error.
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Figure 7.7: Density difference profiles [Eq. (7.5)] for CO at the experimental equilibrium
geometry and at 3Re. The cc-pCVTZ basis set was used to generate the profiles.

Spurious fractional charges are often avoided by means of DFAs that use the exact

exchange as an ingredient, for example, global hybrid functionals such as the hybrid

Perdew–Burke–Ernzerhof (PBE0) functional [37] and range-separated hybrid functionals

such as the long-range corrected PBE (LC-ωPBE) [38, 39]. The findings of the present

work suggest that functional derivatives of these approximate density-functionals may

also exhibit the step structure. This in turn raises the question about the effect of the

fraction of the exact exchange on the height and position of the step in the exchange-

correlation potential. We plan to address this question in our future work.

7.7 Computational details

The mRKS method is based on the following equation:

vmRKS
XC (r) = vhole

XC (r) + ε̄KS(r)− ε̄WF(r) +
τWF
P (r)

ρWF(r)
− τKS

P (r)

ρKS(r)
, (7.6)

where vhole
XC (r) is the exchange-correlation hole potential defined in Chapter 5 under the

name “the Slater exchange-correlation potential” [Eq. (5.15)], ε̄KS(r) is the KS average

local electron energy given by Eq. (5.3), ε̄WF(r) is the wavefunction (WF) ALEE of

Eq. (5.16), ρKS(r) is the KS electron density, and ρWF(r) is its wavefunction counterpart.

The remaining quantities, τKS
P (r) and τWF

P (r), were termed the Pauli kinetic energy den-

sities in Ref. 29. These quantities are related [29] to the positive-definite kinetic energy
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Figure 7.8: Same as in Fig. 7.7 but for BF.

densities τKS(r) and τWF(r) used in the original RKS equation [Eq. (5.17)]:

τKS
P (r) = τKS(r)− τKS

W (r) (7.7)

and

τWF
P (r) = τWF(r)− τWF

W (r), (7.8)

where τKS
W = |∇ρKS|2/8ρKS and τWF

W = |∇ρWF|2/8ρWF are the respective von Weizäcker

kinetic energy densities. We used the cc-pCVTZ basis set of Dunning and coworkers [40]

for both parts of the mRKS algorithm: (i) to compute molecular RHF wavefunctions

and (ii) to solve the KS equations with the vXC of Eq. (7.6). All calculations were

spin-restricted.

We stress that our Eq. (7.6) is not identical to the partitioning equation of Baerends’

group because we construct the vresp and vc,kin terms differently. Another important point

is that the mRKS approach is not designed for solving the KS inversion problem, that

is, matching ρKS to ρWF. The converged mRKS potential reproduces a given ρWF only in

a complete basis set. In finite-basis-set calculations, ρKS and ρWF are very close but not

equal. See Ref. [29] for a comprehensive discussion on the meaning of mRKS potentials

calculated in finite basis sets.

118



Bibliography

[1] A. Karolewski, R. Armiento, and S. Kümmel, “Polarizabilities of polyacetylene
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Chapter 8

Summary and outlook

“Were I to await perfection, my book

would never be finished.”
— Tai T’ung, taken from Gaussian 09

Practical implementation of Kohn–Sham density-functional theory employs approx-

imations to the unknown exchange-correlation potential. This fundamental quantity is

usually obtained indirectly by modelling the exchange-correlation functional. While this

indirect route works well for many applications, for example, geometry optimization and

calculation of total energies, it fails whenever properties of interest are susceptible to

the shape of the exchange-correlation potential, which is the case for molecular response

properties such as electronic excitation energies and molecular polarizabilities. The eas-

iest way to fix this is to approximate the potential directly [1–5] and constrain it to

reproduce a set of analytic properties [6–8]. This approach is beset by methodological

difficulties, but many of them have been eliminated in recent years [9–12].

Among all the properties of the exact exchange-correlation potential, Coulombic

asymptotic decay is the most important. Functional derivatives of common approximate

functionals built from the density ingredients fall off much faster because of the exponen-

tial decay of the electron density. In this light, the electrostatic approach to modelling the

exchange-correlation potential becomes very attractive. In this approach, the potential is

approximated using a model exchange-correlation charge distribution, qXC(r) whose nor-

malization guarantees the −1/r decay of the underlying vXC(r) [13–15]. We presented

an important caveat for attempts to devise asymptotically correct exchange-correlation

potential by modeling qXC(r). We also derived integrability conditions that a model

qXC(r) must satisfy in order for the corresponding vXC(r) to be a functional derivative of
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some energy expression. These findings provide the basis for future potential devel-

opment in the framework of the electrostatic approach.

Orbital-dependent functionals, such as hybrids and meta-GGAs, are the most ac-

curate density-functional approximations to date. The challenge associated with these

functionals is the evaluation of their functional derivatives with respect to the electron

density. This can only be done indirectly by solving the OEP equation [16, 17], a path

that leads to numerical instabilities in finite basis sets. We proposed a method for con-

structing a hierarchy of model potentials for approximating the functional derivative of

a given orbital-dependent exchange-correlation functional. Overall, our method can be

regarded as a robust substitute for the OEP equation in finite-basis-set calculations.

The highest-level approximation in our hierarchy is derived assuming the equality of

the KS and GKS electron densities. In the case of the exact-exchange functional, this is

equivalent to the assumption that the KS density and HF wavefunction density are equal.

Following this line of thought, we generalized our method to wavefunctions of arbitrary

type and devised a technique for calculating the exchange-correlation potential from

a given electronic wavefunction. Our technique, which we call the Ryabinkin–Kohut–

Staroverov (RKS) method, is free from numerical limitations and basis-set artifacts of

conventional density-fitting schemes [1, 18, 19] and is simpler than procedures based on

many-body perturbation theory [20–22]. The RKS method and its improved version

(mRKS) [23] that uses a special representation for the kinetic term open practically un-

limited opportunities for the analysis of the exchange-correlation potential in systems

that present challenges for standard density-functional approximations, for example, dis-

sociating molecules, weakly bound dimers, and transition-metal complexes. In this work,

we focused on molecular dissociation and studied the mechanism of formation of the step

structure [24, 25] of the exact exchange-correlation potential in stretched heteronuclear

diatomic molecules. We also demonstrated that this feature of vXC(r) is not an electron

correlation effect because it can arise in the case of non-correlated Hartree–Fock wave-

functions. We will now outline other possible applications and extensions of the RKS

method.

Our pilot implementation of the RKS technique employs the HF and CASSCF wave-

functions. While the HF theory does not include electron correlation and is only impor-

tant conceptually (for example, it provides an exact expression for the exchange energy

in terms of the orbitals [Eq. (1.44)]), the CASSCF method has been used in a number

of chemical problems [26] such as photochemistry and excitation spectra, to mention a

few. As good as it is, the CASSCF theory requires the active space specification from

the user. There are many ways to choose orbitals for the active space, and the optimal
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choice may not be evident a priori. The CASSCF model that uses a moderate active

space also lacks [27] dynamic correlation; this is why CASSCF calculations are often

followed by a perturbation theory calculation [28, 29] that adds the dynamic compo-

nent of electron correlation. Therefore, it is crucial to implement the RKS method for

the “gold standard” [30] of quantum chemistry—the coupled cluster theory using single

and double substitutions from the HF determinant plus triple excitations non-iteratively

[CCSD(T)] [31, 32]. This theory is free from the artifacts of the CASSCF model and

has become the method of choice for accurate calculations of bond energies and molec-

ular properties. It is also beneficial to extend the RKS algorithm to a simple low-cost

correlated method, for example, the Møller–Plesset second-order (MP2) perturbation

theory [33], because this will allow one to study correlation effects in large systems such

as biomolecules.

Very little is known about the behavior of the exact correlation potential. Benchmarks

are only available for a few spherical atoms [34, 35], and more benchmark data for a

broader range of systems would be of great value. This is where the RKS method could

be helpful; one can use it to generate high-quality molecular correlation potentials, vC(r),

according to the equation:

vC(r) = vXC(r)− vX(r), (8.1)

where vXC(r) is the exchange-correlation potential obtained from a correlated ab initio

wavefunction and vX(r) is the same quantity but constructed for a HF wavefunction. In

Chapter 4, we showed that, for an adequate theory level, the above equation converges to

the exact correlation potential upon the increase of the basis set. It would be interesting

to compare isosurface plots for RKS correlation potentials with those for electronic struc-

ture ingredients used in DFT (electron density and its derivatives, kinetic energy density,

etc.) to identify any possible similarity in their behavior. An open question is also the

influence of the wavefunction’s quality on the correlation potential. This research avenue

will provide important insights for the development of density-functional approximations

for correlation.

The KS theory does not provide direct physical interpretation for the KS orbitals

and the corresponding orbital energies, except for the energy of the highest-occupied KS

orbital [6, 8, 36]. However, one often finds [37, 38] that the occupied KS orbital energies,

{εKS
i }, computed with an accurate exchange-correlation potential are in good agreement

with experimental vertical ionization potentials, {Ii},

εKS
i ≈ −Ii. (8.2)
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This empirical observation is supported by theoretical analysis in terms of an exact

vXC partitioning equation that involves the Dyson orbitals and the corresponding single-

electron removal energies [37]. As for the unoccupied KS orbitals, their energies, {εKS
a },

are also meaningful in that they can be used to estimate [39–41] the excitation energies,

{ωia}:
εKS
a − εKS

i ≈ ωia. (8.3)

The above relationship between the exact (very accurate) KS orbital energy differences

and excitation spectra of atoms and molecules can be deduced [42] from the coupled-

perturbed equations of TDDFT combined with the KS analogue of the Koopmans the-

orem derived in Ref. 37. It should be possible to satisfy (to a large extent) Eqs. (8.2)

and (8.3) using the eigenvalues of accurate exchange-correlation potentials obtained from

high-quality ab initio correlated wavefunctions by the RKS method, but the degree of

agreement remains a mystery and needs to be systematically studied.

In Chapter 7, we used the RKS method to show that the step structure [24, 25]

of the exact exchange-correlation potential can be observed in approximate exchange-

correlation potentials reconstructed from restricted HF wavefunctions. Our preliminary

results demonstrate that the step structure is also exhibited by functional derivatives of

hybrid density-functional approximations [Eq. (1.46)]. The effect of the fraction of the

exact exchange on the height and position of these steps is unclear and constitutes an

interesting research question.
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Appendix A

Properties of the Dirac delta

function

The Dirac delta function or simply delta function naturally arises in the context of

quantities that (i) are zero everywhere except for a single point at which they become

infinite and (ii) integrate to a finite value. In order to deal with such quantities, which

include, for example, the density of a point mass and the probability density of a discrete

distribution, it is convenient to introduce the delta function.

The one-dimensional Dirac delta function, δ(x), is defined by the following properties:

δ(x− x0) = 0 x 6= x0∫ a

b

f(x)δ(x− x0)dx =

f(x0), a < x0 < b

0, otherwise

(A.1)

for any function f(x) that is continuous at x = x0. If one takes f(x) = 1, it is easy to

see that the integral of δ(x) over a point is unity:∫ a

b

δ(x− x0)dx = 1. (A.2)

Strictly speaking, the delta function is not an ordinary function, but rather belongs to

a broader class of generalized functions, or distributions [1]. It is only meaningful as

part of the integral
∫
. . . δ(x − x0)dx “acting” on some function f(x). This permits to

interpret this integral as an operator that associates f(x) with its value at a particular

point x0.
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Basic properties of the delta function include:

• Scaling

The behavior of the delta function upon scaling by a non-zero real number a is as

follows:

δ(ax) =
1

|a|
δ(x). (A.3)

More generally, the delta function of a function of x is given by

δ[f(x)] =
∑
i

δ(x− xi)
|df/dx|xi

, (A.4)

where {xi} are the roots of f(x).

• Symmetry

The delta function is an even function,

δ(x− x0) = δ(x0 − x), (A.5)

which follows from the scaling property of Eq. (A.3).

• Product with ordinary functions

f(x)δ(x− x0) = f(x0)δ(x− x0) (A.6)

Properties of derivatives of the delta function are extensively used in our work. These

quantities are defined by the following fundamental equation:∫ b

a

f(x)
dn

dxn
δ(x− x0)dx = −

∫ b

a

d

dx
f(x)

dn−1

dxn−1
δ(x− x0)dx. (A.7)

By applying integration by parts and using the property of Eq. (A.6) one further obtains:

−
∫ b

a

d

dx
f(x)

dn−1

dxn−1
δ(x− x0)dx =

∫ b

a

d2

dx2
f(x)

dn−2

dxn−2
δ(x− x0)dx

= . . .

= (−1)n
∫ b

a

dn

dxn
f(x)δ(x− x0)dx

= (−1)n
dnf

dxn
[x0].

(A.8)
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In our notation, dnf
dxn

[x0] signifies the nth-order derivative of f(x) evaluated at a point x0.

From this follows that ∫ b

a

f(x)
d

dx
δ(x− x0)dx = − df

dx
[x0] (A.9)

and ∫ b

a

f(x)
d2

dx2
δ(x− x0)dx =

d2f

dx2
[x0]. (A.10)

The first derivative of the delta function is an odd function which means that

dδ

dx
[x0] = −dδ

dx
[−x0]. (A.11)

This property is not to be confused with what is implied by Eq. (A.5):

d

dx
[δ(x− x0)] =

d

dx
[δ(x0 − x)]. (A.12)

In the first equation, differentiation is followed by evaluating the derivative at a point x0

while in the second one the functions are differentiated after replacing the variable.

Another useful property of the first derivative of the delta function is that its sign changes

if one switches to differentiation with respect to x0:

d

dx
[δ(x− x0)] = − d

dx0

[δ(x− x0)]. (A.13)

The three-dimensional delta function in Cartesian coordinate space is defined similarly

to Eq. (A.1). One can verify that it can be written as a product of one-dimensional delta

functions in each direction:

δ(r− r′) ≡ δ(x− x0)δ(y − y0)δ(z − z0). (A.14)

This representation is used for generalizing all properties of the one-dimensional delta

function to three dimensions. The properties relevant to this work can be rewritten as

follows:

δ(ar) =
δ(r)

|a|3
, (A.15)

δ(r− r′) = δ(r′ − r), (A.16)∫
f(r)δ(r− r′)dr = f(r′), (A.17)∫

f(r)∇rδ(r− r′)dr = −∇rf [r′], (A.18)
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∫
f(r)∇2

rδ(r− r′)dr = ∇2
rf [r′], (A.19)

∇rδ[r− r′] = −∇rδ[r
′ − r], (A.20)

∇r[δ(r− r′)] = ∇r[δ(r
′ − r)], (A.21)

and

∇r[δ(r− r′)] = −∇r′ [δ(r− r′)], (A.22)

where we retain the same notation as before.
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