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Abstract 

Uremic toxin retention and an altered gut microbiota are suspected to influence cytochrome 

P450s (CYPs) contributing to the unpredictable pharmacokinetics in chronic kidney disease 

(CKD). We aim to characterize dysbiosis and uremia to elucidate associations between CYP 

expression and CKD progression. Rats fed control or CKD-inducing diet were subsequently 

sacrificed across five time points over 42 days. CYP expression and activity were compared to 

alterations in the 1) plasma and liver metabolome and 2) bacterial microbiota. CYP3A2 and 

CYP2C11, respectively, were downregulated in CKD by ≥76% (p<0.001) simultaneously or 

slightly premature to CKD onset defined by creatinine. Metabolite profiles were altered before 

the gut microbiota and gut-derived uremic toxins including indoxyl sulfate, phenyl sulfate and 

4-ethylphenyl sulfate correlated with CYP3A2 or CYP2C11. Identified bacterial genera, 

Turicibacter and Parabacteroides, characterized CKD and require future study. In conclusion, 

CYP3A2 and CYP2C11 are downregulated prior to dysbiosis but correlate with select uremic 

toxins. 
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Chapter 1  

1 Introduction 

1.1 Preface 

Understanding biological systems is quickly becoming a multidimensional and 

multidisciplinary effort. With the wealth of technological advances in biological 

methodology, study of whole-organism physiology has become a reality. The combination 

of “omics” methods such as metabolomics and sequencing of the microbiome has provided 

the opportunity to compare whole-system host physiological processes. Our era of public 

databases and data sharing allows blinded discovery of complex biological fingerprints 

without requiring the identity of any individual sequence or metabolite. This exploratory 

and hypothesis-forming science supports big questions about phenotype and disease states 

with relation to dependent bodily systems such as the gut microbiome and host metabolome 

(Nicholson et al., 2005). In this thesis, detectable host gut bacteria and metabolomic 

profiles are characterized and related to altered drug metabolism over the progression of 

chronic kidney disease (CKD). 

1.2 Renal Physiology 

The kidney is an essential organ responsible for excretion of harmful biological waste 

products while simultaneously maintaining water, electrolyte, nutrient and pH balance 

(Reese et al., 2011). Nephrons, the functional units of the kidney, filter water, urea and all 

other molecules excluding large proteins and red blood cells at the glomerulus. 

Immediately following filtration, reabsorption back into the bloodstream begins in the 

proximal tubule where active transport of sodium stimulates the reabsorption of water, 

chloride, glucose and amino acids (Reese et al., 2011). Most water reabsorption occurs in 

the descending limb of the loop of Henle, effectively concentrating the urine. Further 

reabsorption of sodium and chloride ions occurs in the water impermeable ascending limb. 

The distal tubule performs fine adjustments in salt and ion concentrations by activation of 



2 

 

the renin-angiotensin-aldosterone system (RAAS) (Reese et al., 2011). In short, macula 

densa cells detect decreased sodium levels of the filtrate in the distal tubule and signal to 

juxtaglomerular cells of the afferent or efferent arteriole to produce renin. Renin released 

into the bloodstream sends a signalling cascade through angiotensinogen, angiotensin I, 

angiotensin II and finally aldosterone to increase the reabsorption of sodium at the distal 

tubule. The filtrate then reaches the collecting duct where it may be further influenced by 

antidiuretic hormone (ADH) or atrial natriuretic peptide (ANP) depending on the persisting 

imbalance of either nutrients or arterial pressure, respectively (Reese et al., 2011). Urea, a 

small molecule responsible for removing harmful ammonia is recycled from the collecting 

duct filtrate and used to increase the osmolarity at the earlier descending loop of Henle 

allowing for more water to be reabsorbed (Reese et al., 2011). After the urea helps reabsorb 

water, it returns to the final filtrate and is excreted in the urine. Besides maintaining water, 

pH and electrolyte balance, the kidney eliminates toxic metabolites, controls blood pressure 

and produces renin, erythropoietin, prostaglandins and activated vitamin D (Reese et al., 

2011). 

1.3 Chronic Kidney Disease 

1.3.1 Prevalence 

Chronic kidney disease (CKD) is a progressive and irreversible loss of kidney function 

heavily associated with age, obesity and diabetes (Levey et al., 2003; O’Hare et al., 2007; 

Zhou et al., 2008; Kopple, 2010; Hahr & Molitch, 2015). An estimated three million 

Canadians (12.5%) are affected by renal insufficiency or complete renal failure but 

inconsistencies in identifying earlier stages of CKD suggest prevalence may be even higher 

(Jha et al., 2013; Arora et al., 2013). In 2015, the number of Canadians aged 65 years or 

older (16.1%) was higher than those aged 0-14 for the first time in history, and projections 

suggest this will increase to 20.1% by 2024 (Statistics Canada, 2015). In addition to an 

aging population, a staggering 24.8% of Canadians over 18 years of age have a body mass 

index classified as obese which increased by 17.5% from 2003 (OECD, 2011). As a result, 

the prevalence of insulin resistance in the form of diabetes mellitus, the most common 

cause of CKD, is also expected to increase (Hahr & Molitch, 2015; Wouters et al., 2016). 
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Thus, the national health care burden of CKD is extensive and projected to increase along 

with these associated demographics (Manns et al., 2007). Alongside Canada, 16% of the 

global population is affected by CKD in other aging or obese countries such as Taiwan, 

USA, Japan, Portugal, Belgium and South Korea (Jha et al., 2013). More recently, 

developing countries such as Nepal, Sri Lanka, Mexico and many locations in India are 

experiencing prevalent CKD because of insufficient health care and access to renal 

therapies (Abraham et al., 2016). 

1.3.2 Causes & Comorbidities 

There is no singular blanketing CKD pathophysiology due to the many causes and 

comorbidities across individuals. Kidney damage is most commonly mediated by 

hypertension or diabetic nephropathy although acute kidney injury (AKI), lupus nephritis 

or genetic variations such as polycystic kidney disease may translate into CKD later in life 

(Levey et al., 2003). 

Hypertension is both a stimulus and consequence of CKD. Persistently increased blood 

pressure can induce thickening and subsequent narrowing of the arterioles entering the 

glomerulus. This decreases the glomerular pressure reducing the amount of filtrate entering 

the proximal tubule and sequentially decreases urine output (Hall et al., 2014). A healthy 

kidney experiencing reduced glomerular pressure produces renin to retain sodium and 

water to increase blood volume and heart rate. The injured kidney will also activate the 

RAAS system but this increases the blood flow through narrow arteries promoting fluid 

retention (Sereno et al., 2016). Thus, an increased fluid volume worsens glomerular 

pressure, further contributing to hypertension and leading to edema, cardiovascular stress 

and heart disease (Tedla et al., 2011). Additionally, lack of blood flow to the kidney can 

cause glomerulosclerosis or hardening of the capillaries required for filtration. This triggers 

ischemia and eventually nephron death (Sugiyama et al., 1996; Tedla et al., 2011).  

Diabetic nephropathy (DN) is an anticipated outcome for 40% of diabetics (Gross et al., 

2005; Hahr & Molitch, 2015). Although controversial, some research suggests that strictly 

maintaining glucose levels reduces the rate at which pathologies such as mesangial cell 

expansion and proliferation, podocyte death and glomerulosclerosis manifest. However, 
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other factors such as hormone regulation and inflammation are also suspected to have a 

role in DN onset (Schena, 2005). DN can be organized into four severity classes, the final 

being glomerulosclerosis which eventually leads to nephron death (Tervaert et al., 2010).  

1.3.3 Detection & Progression 

CKD is an irreversible disease because following nephron death, undamaged nephrons 

acquire the added filtration load in a condition called glomerular hyperfiltration (Kopple, 

2010). This usually occurs in early stages of CKD when the kidney has reduced but 

adequate function. Unfortunately, overworked nephrons eventually succumb to 

glomerulosclerosis, vascular sclerosis and tubulointerstitial fibrosis responsible for the 

transition into late-stage CKD.  

To eliminate variance caused by multiple pathologies, the National Kidney Foundation has 

clinically defined CKD as a progressive loss of renal function by measuring glomerular 

filtration rate (GFR). The GFR is the volume of filtrate produced by glomeruli over time 

and surface area expressed in units of ml/min/1.73m2. Normal GFR ranges between 120-

130 ml/min/1.73m2, but this decreases with age by about 1ml/min/1.73m2 per year (Levey 

et al., 2003). An estimated GFR (eGFR) is arguably the least invasive and most effective 

method of CKD assessment. It relates patient age, sex, race and body mass with a 

measurement of the disease marker creatinine by a common eGFR calculation. Creatinine 

is a normal by-product of non-enzymatic creatine degradation that remains relatively 

constant from day to day (Wyss & Kaddurah-Daouk, 2000). Creatinine remains the 

biomarker of choice because of its unhindered filtration through the glomerulus and 

minimal reabsorption (Lopez-Giacoman, 2015). However, creatinine has limited accuracy 

not only because it is dependent on diet and muscle mass but it is also secreted via the 

proximal tubule. In severe CKD, hypersecretion of creatinine can exaggerate the estimate 

of GFR (Shemesh et al., 1985). Examples of eGFR calculations are the Modification of 

Diet in Renal Disease (MDRD) equation and Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) equation, the latter of which is newer and has received more 

support for its improved accuracy over the MDRD method (Stevens et al., 2010; Arora et 

al., 2013). 
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Changes in GFR can be preceded by proteinuria which is known to indicate CKD risk 

earlier than GFR, especially in diabetic patients (Gross et al., 2005). Proteinuria is the 

amount of albumin or any other protein normally unable to escape the bloodstream that is 

allowed to enter the urine due to structural epithelial malfunctions at the glomerulus 

(Satchell & Tooke, 2008). Albuminuria is solely the loss of albumin. Microalbuminuria is 

considered moderately increased and macroalbuminuria severely increased levels of 

albumin (Hahr & Molitch, 2015). Albuminuria is commonly expressed as a ratio of 

albumin to creatinine where a level under 30mg/g is normal, 30-200mg/g is indicative of 

early to moderate CKD and a level over 200mg/g is indicative of late-stage CKD (Levey 

et al., 2003). 

Kidney disease has five clinically identified stages defined by the National Kidney 

Foundation (Levey et al., 2003) (Figure 1.1). Stage 1 represents kidney damage detectable 

by albuminuria but expressing a normal GFR >90ml/min/1.73m2. Stage 2 is kidney damage 

with GFR between 60-89ml/min/1.73m2. To be categorized as having moderate CKD, a 

patient must have a GFR <60ml/min/1.73m2 or kidney damage that has persisted for over 

three months. This definition can also be classified as Stage 3 with a GFR between 30-

59ml/min/1.73m2. Severe CKD begins in Stage 4 with a GFR between 15-

29ml/min/1.73m2 and requires extensive pharmaceutical interventions to combat 

comorbidities such as hypertension, diabetes and cardiovascular diseases (CVD). End-

stage renal disease (ESRD) specifically refers to patients requiring renal replacement 

therapies such as dialysis or kidney transplantation to sustain life and generally include 

Stage 5 CKD patients with kidney failure or a GFR <15ml/min/1.73m2. Dialysis modalities 

include hemodialysis or peritoneal dialysis where the blood of a patient is filtered through 

a dialysis membrane simulating the filtering function of a kidney (Luo et al., 2011). 
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Figure 1.1. Prevalence and clinical stages of CKD. A) Canadian and worldwide prevalence 

of all CKD and CKD stages 1-5. B) Description, GFR and albuminuria guidelines with 

respect to CKD stages 1-5. # Prevalence estimate cannot be reported due to low sample 

size and variability (coefficient of variation > 33.3%); ≈ 0.1% world population. Adapted 

from (Levey et al., 2003; Smink et al., 2012; Arora et al., 2013; Hill et al., 2016). 
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1.3.4 Clinical Manifestations & Uremia 

Nephron loss causes a host of nutrient imbalances that can prove fatal if left untreated. 

Metabolic acidosis and hypocalcaemia will cause bone decalcification and osteodystrophy 

if left unchecked (KDIGO Work Group, 2009). Even more dangerous is the imbalance of 

potassium, sodium and water that can lead to hyperkalemia, peripheral edema, 

hypertension and heart disease (KDIGO Work Group, 2009). The leading cause of death 

in CKD is CVD inflicted by hypertension and largely unknown mechanisms that may be 

related to vitamin D deficiency, anemia, uremia, dyslipidemia, low-grade inflammation or 

hormone imbalances (Gansevoort et al., 2013). Currently, there is no cure for CKD and 

therapeutics focus on the treatment of comorbidities with the aim of delaying disease 

progression into ESRD. 

Uremic syndrome however, remains a clinically challenging symptom to alleviate and 

drives the progression of CKD into ESRD (Meyer & Hostetter, 2007). Uremic syndrome 

manifests when harmful molecules called uremic toxins are permitted to circulate in the 

plasma at abnormally high concentrations regardless of dialysis interventions (Lisowska-

Myjak, 2014). Uremia is the pathological environment of the blood plasma in CKD patients 

experiencing retention of urea and other organic compounds due to a loss of renal clearance 

(Meyer & Hostetter, 2007). The state of uremia has been associated with the activation of 

the immune response and gut microbial alterations (Vitetta & Gobe, 2013), cardiovascular 

events (Ito & Yoshida, 2014), bone toxicity (Barreto et al., 2009a), neurological disorders 

(Bugnicourt et al., 2013) and a host of other manifestations affecting every organ of the 

body (Vanholder & De Smet, 1999; Lisowska-Myjak, 2014). As of 2012, concentrations 

of 88 uremic toxins were identified as abnormal in CKD patients and can be sorted into 

three classes dependent on molecular size and protein binding (Duranton et al., 2012). Free 

water-soluble metabolites such as creatinine and urea have the lowest molecular mass 

(<0.5kDa) and are largely removable by dialysis. Middle molecules range from 0.5-60kDa 

and include small proteins, hormones and cytokines. Protein-bound uremic toxins are often 

of low molecular weight but are bound to larger protein carriers in circulation. Dialysis 

membranes will not allow the removal of albumin; thus, uremic toxins bound to albumin 

are especially difficult to remove from the plasma. Out of the over 88 recognized uremic 
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toxins, 25% are protein-bound and have proven clinically challenging to eliminate with 

traditional dialysis strategies (Duranton et al., 2012). 

1.3.5 Animal Models of CKD 

Models of CKD in rats include 5/6th nephrectomy, diabetic nephropathy and adenine-

induced CKD. The most common 5/6th nephrectomy method surgically removes the top 

and bottom thirds of one kidney and the entire contralateral kidney effectively simulating 

the loss in kidney function although potentially inducing post-surgery stress (Ali et al., 

2013). Diabetic nephropathy models of diabetes-induced kidney disease usually use the 

administration of streptozotocin to cause pancreatic β cell death. Additionally, the diabetic 

nephropathy model although most exemplary of human CKD caused by diabetes, requires 

a timely experimental period to successfully cause CKD that may not occur simultaneously 

across all animals. The newer adenine-induced model of CKD is a less invasive orally 

administered model suggested to provide a more consistent rate of CKD onset than the 

5/6th nephrectomy (Terai et al., 2008). The adenine model of CKD also shows the best 

promise as a progressive CKD model suitable for temporal evaluation due to its timely 

onset in comparison with the diabetic model. Additionally, the adenine model has been 

used to study alterations in DMEs of the liver in the past, providing a clear example of 

severe CKD after 42 days of oral administration (Feere et al., 2015; Velenosi et al., 2016). 

Mechanistically, adenine and its metabolite 2,8-dihydroxyadenine precipitate when 

concentrated at the kidney. This mechanically damages the kidney tubules comparable to 

that inflicted by kidney stones and is thus a tubular model of kidney damage (Engle et al., 

1996; Morishita et al., 2011; Succar et al., 2017).  

1.4 Hepatic Physiology 

Where the kidney is made up of functional units, the liver is made up of cells lining hepatic 

sinusoids organized around hepatic veins. Parenchymal hepatocytes make up the majority 

of the liver volume alongside non-parenchymal sinusoidal endothelial, stellate and Kupffer 

cells which together are responsible for the multitude of hepatic functions (Porth, 2011).  
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Select roles of the liver are important with respect to CKD and kidney physiology. Firstly, 

the liver is responsible for the continuation of the RAAS signalling pathway by production 

of angiotensinogen, the hormone stimulated in response to the release of renin by the 

kidney (Reese et al., 2011). Secondly, the liver’s ability to produce carrier proteins 

synthesized with the purpose of transporting signalling molecules is relevant in CKD. 

Albumin, a highly versatile carrier protein responsible for much of the endogenous and 

xenobiotic transport within the plasma, is the most abundant plasma protein produced by 

the liver (Berg et al., 2012). Since it cannot pass through the glomerulus, albumin can retain 

bound molecules in the plasma, preventing their excretion via the kidney and is particularly 

exaggerated in CKD (Meyer & Hostetter, 2007). The liver is also known for its major roles 

in metabolism. The liver not only handles lipid, carbohydrate and amino acid synthesis and 

degradation but also xenobiotic metabolism (Porth, 2011). An endogenous example is the 

catabolic degradation of amino acids by aminotransferases which release ammonia that is 

excreted as urea through the kidney (Berg et al., 2012). Next, exogenous metabolism by 

specific enzymes produced in the liver will be explicitly discussed. 

1.5 Drug Metabolizing Enzymes 

Approximately 75% of all exogenous molecules require metabolic transformation into 

active metabolites or waste products before being excreted (Williams et al., 2004). The 

functional units are drug metabolizing enzymes (DMEs) and can be categorized into three 

groups. Phase I and II DMEs are responsible for the direct biotransformation of 

endogenous and exogenous molecules usually by increasing hydrophilicity to ease 

distribution and excretion. The cytochrome P450 superfamily dominates Phase I and are 

found ubiquitously, but concentrated in the intestine, lungs, kidney and most abundantly in 

hepatocytes. Phase II DMEs consist of multiple conjugating enzyme superfamilies such as 

sulfotransferases (SULT), UDP-glucuronosyltransferases (UGT) and glutathione S-

transferases (GST) amongst others. Phase III comprises membrane transport proteins 

belonging to the ATP binding cassette (ABC) family or solute carrier (SLC) family (Xu et 

al., 2005). Together, DMEs build the framework for drug absorption, distribution, 

metabolism and excretion (Sheweita, 2000; Williams et al., 2004). 
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1.5.1 Cytochrome P450s 

CYP enzymes are heme-containing membrane-bound proteins found primarily in the 

endoplasmic reticulum of cells. The common mono-oxygenase is essential for accepting 

an oxygen moiety in a process where electrons, provided by an NADPH-dependent P450 

oxidoreductase (POR), are required for CYP function (Johnson & Stout, 2005). The 

enzymatic goal is to transform lipid-soluble molecules via oxidation into more water-

soluble products. However, the promiscuous substrate-binding nature of CYP enzymes 

mean a single CYP enzyme is capable of multiple reactions utilizing various forms of 

oxidation and reduction (Gad, 2009). The substrate specificity is so broad that ~75% of all 

hepatic xenobiotic metabolism is mediated by CYP enzymes (Williams et al., 2004; 

Wienkers & Heath, 2005). 

There are 57 CYP enzyme genes identified in humans categorized into 18 families 

determined by their amino acid composition. For example, the enzyme CYP3A4 is broken 

down into four components: CYP referring to the cytochrome P450 superfamily, gene 

family #3, subfamily A, and individual isoform #4. CYPs can also be organized with 

respect to the number of drugs or endogenous molecules they are capable of metabolizing. 

Subfamilies CYP1, CYP2 and CYP3 predominately metabolize xenobiotics while most 

other families primarily carry out specific endogenous metabolism of hormones, vitamins 

and bile acids (Gad, 2009). 

Out of the 57 CYP genes, the CYP3A family, CYP2C9, CYP2D6, CYP2C19 and the CYP1A 

family are responsible for ~95% of all CYP mediated drug metabolizing activity (Wienkers 

& Heath, 2005). Specifically, single enzymes CYP3A4 and CYP2C9 are responsible for 

the metabolism of ~43% of all clinically used drugs, thereby making them well-studied in 

the literature and the focus of this work (Zanger & Schwab, 2013). To study human CYP 

enzymes, gene sequence, evolutionary divergence and gene clustering information is used 

to determine the orthologous pairs between human and non-human species. Therefore, 

CYP3A4 and CYP2C9 genes are usually represented as CYP3A2 and CYP2C11 in rat 

models or Cyp3a11 and Cyp2c29/Cyp2c37 in mouse models, respectively (Nelson et al., 

2004; Pan et al., 2016).  
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1.5.2 Induction & Regulation 

CYP enzyme expression and activity is not only determined by a number of factors 

including genetic polymorphisms, sex and age, but also by continually fluctuating 

bioavailability of substrate (Zanger & Schwab, 2013). Evidence for genetic polymorphisms 

of CYP3A4 are slowly emerging, but remain elusive in comparison to CYP2C9 which has 

multiple single nucleotide polymorphisms (SNPs). The two most common in European 

ancestry are CYP2C9*2 and CYP2C9*3 while CYP2C9*5 is considered rare (Schwarz et 

al., 2008). Warfarin, a known CYP2C9 substrate and anticoagulant drug used in CKD, 

must be administered at a fraction of a normal dose if an individual expresses CYP2C9*2 

or CYP2C9*3 to avoid drug toxicity and adverse effects like bleeding (Gong et al., 2011; 

Klein & Zanger, 2013; Vear et al., 2014). Females tend to have higher levels of CYP3A4 

than males, but age slowly decreases activity in both sexes (Sotaniemi et al., 1995). 

CYP2C9 is relatively static across sexes but increases as juveniles mature (Yang et al., 

2010; Zanger & Schwab, 2013; Vear et al., 2014).  

Substrate bioavailability regulates the expression and activity of CYPs by utilizing a 

plethora of induction pathways. Specifically, CYP3A4 and CYP2C9 can be regulated at 

the transcriptional level by substrate induction of either pregnane X receptor (PXR) or 

constitutive androstane receptor (CAR) (Tirona et al., 2003; Chen et al., 2005). PXR and 

CAR are nuclear receptors containing both a ligand-binding and DNA-binding domain. 

Upon ligand-binding, PXR or CAR translocate into the nucleus to form a heterodimer with 

retinoid X receptor (RXR) before binding to the proximal promotor region of the CYP3A 

or CYP2C gene to upregulate its production (Kliewer et al., 2002). To optimize CYP2C9 

induction, hepatocyte nuclear factor 4 alpha (HNF-4α) is also required to bind to a 

promotor of the CYP2C9 gene (Jover et al., 2009). HNF-4α, along with a list of other 

constitutive elements promote or inhibit CYP3A4 expression in the absence of inducers 

(Honkakoski & Negishi, 2000; Tirona et al., 2003; Zanger & Schwab, 2013). In addition 

to the PXR/CAR induction mechanisms, peroxisome proliferator-activated receptor alpha 

(PPARα) (Thomas et al., 2013), glucocorticoid and vitamin D receptor (VDR) pathways 

(Wang et al., 2013) are slowly being recognized as influencers of CYP3A4 and CYP2C9 

expression (Zanger & Schwab, 2013). More recently, microRNA (miRNA) has shown to 
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influence CYP3A4 directly and indirectly through nuclear receptors PXR, HNF-4α and 

VDR (Pan et al., 2009; Wei et al., 2014). Besides miRNA, mechanisms of post-

transcriptional or post-translational regulation of CYP3A4 and CYP2C9 are largely 

understudied. 

Disease states and associated inflammation are suspected to alter DMEs via changes in 

levels of hormones, regulatory cytokines and other metabolites. Specifically, disease 

modulation of CYP enzymes is usually a downregulation of activity or expression and 

occurs by alteration of basal and inducible transcriptional mechanisms. Inflammation 

activates the NF-κB pathway and inhibits RXR, thus acting as an antagonist for PXR, CAR 

and other transcription factors responsible for CYP induction (Jover et al., 2002; Zhou et 

al., 2006; Morgan, 2009). Models of diabetes mellitus suggest a unique induction of 

CYP3A4 activity and PXR expression by the increased levels of free fatty acids present in 

the serum (Kim & Novak, 2007; Hu et al., 2014). A model of nutritionally induced obesity 

in mice and rats exhibited increased liver triacylglycerol levels as well as decreased liver 

Cyp3a11 and Cyp2c29, although nuclear factors and inflammatory factors were unchanged 

(Yoshinari et al., 2006). The accumulation of normally excreted metabolites is a common 

theme in the suspected cause of disease-associated CYP regulation (Fisher et al., 2009). 

Most drugs are substrates for CYP enzymes (Williams et al., 2004; Wienkers & Heath, 

2005). Pharmaceutically, this creates the dangerous potential for drug interactions. 

Rifampicin is a classic example of a PXR ligand that induces both CYP3A4 and CYP2C9 

expression (Goodwin et al., 1999). A drug co-administered with rifampicin requiring 

CYP3A4 or CYP2C9 metabolism will be extensively metabolized resulting in decreased 

plasma concentration and reduced efficacy (Lynch et al., 2007). In the case of a prodrug 

such as losartan used to treat hypertension, activation will be inhibited if the CYP enzyme 

responsible for the activation is inhibited by a co-administered drug (Lynch et al., 2007). 

This same idea can apply to dietary molecules that influence CYPs. A clinically relevant 

example is the CYP3A4 inhibition by grapefruit juice. When grapefruit juice is co-

administered with drugs dependent on CYP3A4 metabolism, the result is abnormally high 

bioavailability (Bailey et al., 1998). Drug interactions in combination with the multiple 

influences of CYP expression result in high intra- and inter-individual variability in 
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pharmacokinetics. The clinical outcome can be drug toxicity in the form of adverse drug 

reactions (ADR) or drug ineffectiveness. This will be discussed in the context of CKD in 

section 1.5.4. 

1.5.3 Altered Drug Metabolism in CKD 

It is evident that renal drug clearance is hindered by CKD due to a reduced GFR. However, 

it was not until 2009 that non-renal, hepatic drug clearance became clinically relevant for 

kidney disease patients in the Guidance for Industry and not until 2011 that KDIGO 

(Kidney Disease: Improving Global Outcomes) identified non-renal clearance as a usually 

forgotten aspect of pharmacokinetic studies necessary for dose recommendations (Matzke 

et al., 2011). Reviewed by Nolin and colleagues in 2008, eleven drugs known to be 

metabolized by hepatic CYP3A4 showed altered clinical pharmacokinetics in CKD 

patients (Nolin et al., 2008). More recently, eight drugs extensively metabolized by 

CYP3A4 and another three drugs metabolized via CYP2C9 presented reduced non-renal 

clearance in CKD (Ladda & Goralski, 2016). Aliskiren, carvedilol, erythromycin and 

telithromycin are a few CYP3A4 xenobiotic substrates that are commonly administered 

and exhibit altered pharmacokinetics in CKD patients (Ladda & Goralski, 2016). CYP2C9 

is the major metabolizer of warfarin, a drug commonly used in CKD as a blood thinner to 

reduce the risk of stroke or atrial fibrillation associated with cardiovascular diseases. A 

50% reduction in warfarin metabolism in CKD is suspected to be caused by inhibited or 

decreased CYP2C9 (Nolin et al., 2008). This is further supported by Gong and colleagues 

who established that renal function is a determinant of warfarin dosing although warfarin 

is excreted through non-renal pathways suggesting altered DMEs are responsible for 

warfarin pharmacokinetic changes in CKD (Gong et al., 2011). Over 75 drugs exhibit 

reduced non-renal clearance in CKD patients (Yeung et al., 2014). However, it remains 

largely undecided whether levels of DMEs are altered in humans and responsible for the 

altered pharmacokinetics seen in CKD (Nolin, 2015). Early human studies utilized the 

erythromycin breath test to identify impaired CYP3A4 metabolism in ESRD patients 

(Dowling et al., 2003; Nolin et al., 2006). Simply, radiolabeled carbon dioxide end-product 

is measured from the breath of subjects given a known dose of radiolabeled erythromycin, 

a known CYP3A4 specific substrate. When further studies showed DME transporters also 
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influence erythromycin disposition in vitro, the breath test was scrutinized for its indication 

of CYP3A4 activity and blamed for subsequent contradictory results (Frassetto et al., 2007; 

Ladda & Goralski, 2016). Interestingly, using a specific probe drug suggests human 

CYP3A4 activity may not be significantly changed in CKD (Nolin et al., 2009; Thomson 

et al., 2015). Moreover, the most recent meta-analysis study suggested there was only 

modest downregulation of human CYP3A4 in comparison to other CYP enzymes over 

CKD progression (Yoshida et al., 2016). However, extensive animal models of severe 

CKD show severely decreased gene expression, protein expression and enzymatic activity 

of CYP enzymes including CYP3A2 and CYP2C11 as well as Phase II and DME 

transporters (Leblond et al., 2001; Velenosi et al., 2012; Ladda & Goralski, 2016). 

Therefore, the hypothesis remains that altered pharmacokinetics in humans with CKD 

stems from altered DME expression or activity. Research today focuses on the mechanisms 

regulating CYPs in animal models of CKD to further elucidate their function with respect 

to disease. 

1.5.4 Pharmacy & Outcomes in CKD 

Altered CYP function is particularly worrisome in CKD patients because this population 

is elderly, receiving polypharmacy and potentially on dialysis (Sharif-Askari et al., 2014; 

Ladda & Goralski, 2016). These factors increase the risk of a CKD patient experiencing an 

adverse drug event (ADE) or ADR inflicted by a medical intervention, usually by the 

administration of a drug (Bates et al., 1995; Edwards & Aronson, 2000; Munar & Singh, 

2007). ADEs are often due to inappropriate dosing that either enhances the activity of the 

drug and exceeds the intended therapeutic range or fails to meet the therapeutic range 

potentially reducing efficacy and allowing the symptom to persist. 

As there is no cure for CKD, co-morbidities that exist in moderate to severe CKD are 

primarily treated with medications. In total, patients require an average of 7-12 drugs daily 

to manage associated comorbidities and the likely causes of CKD (Talbert, 1994). In a 

study of 512 CKD patients, the risk of ADR was increased when patients were taking over 

8 medications, of which anticoagulant drugs including warfarin caused the highest 

incidence (Sharif-Askari et al., 2014). Secondly, if the patient is on dialysis, a drug’s 
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pharmacokinetics can differ pre- and post-dialysis, further complicating the appropriate 

dose (Velenosi & Urquhart, 2014). Thirdly, most CKD patients are over 65 years of age 

and are likely to be taking additional medications aside from those required to treat kidney 

disease specific comorbidities. As such, the elderly population alone increases the risk of 

ADEs (Sharif-Askari et al., 2014; Davies & O’Mahony, 2015). Thus, dosing 

considerations in each CKD patient requires an individual drug plan and continuous 

monitoring (Corsonello et al., 2005; Matzke et al., 2011). Ultimately, the combination of 

unavoidable polypharmacy and unpredictable drug metabolism is the suspected driver of 

ADEs and ADRs seen in CKD patients (Manley et al., 2005).  

It is therefore important to assess the probable causes of pharmacokinetic alterations in 

CKD. In the following sections, suspected factors contributing to changes in DME 

regulation in CKD will be discussed including the intestinal microbiome and uremia.  

1.6 The Microbiome 

The microbiome is the entire community of bacterial species and their corresponding genes 

that co-exist within the human host gastrointestinal (GI), urogenital and respiratory systems 

as well as on the exterior surfaces of the skin (Cho & Blaser, 2012; Ursell et al., 2012). 

Compared to the human genome, the microbiome is approximately 150 times larger and 

contains many genes that aid in symbiotic functions humans are incapable of carrying out 

on their own (Qin et al., 2010). Bacterial acquisition occurs in infants during and 

immediately following birth (Lloyd-Price et al., 2016). During childhood through to 

adulthood the microbiome is continually shaped in response to a regular diet and 

environmental insults. These are largely associated with geography and race/ethnicity, and 

by two years of age, a “core microbiome” or stable abundance of each major bacterial 

group is established (Huttenhower et al., 2012; Ursell et al., 2014; Lloyd-Price et al., 2016). 

However, the microbiome is far from static and small short-term changes can occur within 

hours of a dietary alteration, largely not affecting the core microbiome (David et al., 2013).  
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1.6.1 Microbiota Methodology 

A decade ago, bacterial species analysis was performed primarily by culture and PCR 

methods limited by the knowledge of individual bacterial species and associated primers. 

However, there are thousands of species residing in a single fecal sample and a large 

proportion of bacteria are unculturable with current techniques making it increasingly 

difficult to assess the bacterial composition or “microbiota” as a complete community 

(Stewart, 2012). Culture-independent methods like Sanger sequencing, although developed 

in the 1970s (Sanger et al., 1977) was a long and laborious process and was rarely utilized 

for sequencing the microbiota (Hiergeist et al., 2015). Around 2005, the first high-

throughput next generation sequencing (NGS) techniques improved the cost and efficiency 

of sequencing, promoting an interest in the microbiome (Gloor et al., 2010; Hiergeist et 

al., 2015). However, in addition to high error rates per-read, the first NGS methods (e.g. 

pyrosequencing) remained expensive and unattainable for many research groups (Gloor et 

al., 2010). Within the last 10 years NGS methods such as Illumina MiSeq have provided 

the ability to assess the microbiota with higher throughput and accuracy at an attainable 

cost (Caporaso et al., 2012; Ramezani et al., 2015). Phylogenetic microarrays are another 

popular method of bacterial sequencing and both NGS and phyloarrays involve a reference 

gene. Usually the 16S small ribosomal subunit rRNA gene is used due to its combination 

of both highly conserved regions used for primer design applicable across all bacterial 

species and the adjacent variable regions utilized for species identification (Janda & 

Abbott, 2007). Unlike phyloarrays that are limited to the known 16S sequences applied to 

the plate, NGS methods allow all 16S genes within a sample to be sequenced regardless of 

previous identification (Vaziri et al., 2012). This is important because unidentified bacteria 

are necessary to understand species richness and diversity indices that are otherwise 

skewed without them.  

Although methodology is constantly improving, gene sequencing results still heavily rely 

on the sequencing method used. In this work, the Illumina MiSeq platform was used to 

perform paired-end sequencing of the 16S rRNA gene focusing on the V4 variable region 

for maximum fecal bacteria coverage (Gloor et al., 2010). Through a process called bridge 

amplification, clusters of DNA are formed on a flow-cell within the sequencer. 
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Sequencing-by-synthesis and dye-terminated primer extension uses fluorescent signals to 

indicate what nucleotide is being added along the amplicon as it is made. Final instrument 

outputs are called reads and after data processing are matched with their most likely 

bacterial sequence. The final product is called an operational taxonomic unit (OTU) and 

generally needs to match the expected bacterial sequence with 97% accuracy (Cho & 

Blaser, 2012; Ursell et al., 2012). OTUs are quantifiable and used to understand the relative 

abundance of each species and diversity indices of a sample. Today, large scale endeavours 

such as the Human Microbiome Project (HMP) and the European project (MetaHIT) 

provide the foundation for bacterial databases (Turnbaugh et al., 2007; Cho & Blaser, 

2012; Huttenhower et al., 2012). 

Due to the vast number of bacteria at varying levels of identification and the large 

proportion yet to be identified, bacterial classification is usually presented as the most 

confirmed tier of the taxonomy ladder. Taxa are arranged in the ecological order of 

kingdom, phylum, class, order, family, genus, species followed by strain if applicable. 

Nomenclature for kingdom through genus taxa are capitalized and only species or strain 

names are italicized (e.g. Escherichia coli; E. coli).  

1.6.2 Gut Microbiota & Host Physiology 

The gut microbiota is the collection of bacteria residing in the lumen or mucosal layer of 

the upper to lower intestine and comprises up to 5000 bacterial species (Nieuwdorp et al., 

2014; Ramezani et al., 2015). Ninety percent of the residential bacteria are dominated by 

phyla Firmicutes and Bacteroidetes and further split into five most prevalent genera 

Bacteroides, Clostridium, Lactobacillus, Escherichia and Bifidobacterium (Nicholson et 

al., 2005; Eckburg et al., 2005; Huttenhower et al., 2012; Goodrich et al., 2014; Mafra & 

Fouque, 2015). It is suggested with some controversy that global intestinal enterotypes or 

common diversity profiles exist in the human population (Arumugam et al., 2011; Knights 

et al., 2014; Moeller & Ochman, 2014). It is agreed however, that different species reside 

in the upper GI tract than those found in the colon and most are obligate anaerobes 

responsible for digestion, immune functions and gut physiology (Eckburg et al., 2005; 

Turnbaugh et al., 2007). Gut bacteria found in the lumen elicit the metabolism of dietary 
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fibres, sugars, alcohols and carbohydrates unable to be metabolized by the host (Nieuwdorp 

et al., 2014). Dietary fibre and some carbohydrates are largely indigestible until bacterial 

fermentation to short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate 

(den Besten et al., 2013). Commensal, or harmless co-existing bacteria, residing in the 

intestinal mucosal layer also support immune function of the host by ultimately inhibiting 

intestinal wall inflammation and subsequent bacterial translocation that could cause 

infection. Some bacteria produce anti-microbial peptides to fend off pathogenic microbes 

while others stimulate immune cell maturation of the host (Belkaid & Hand, 2014; Yip et 

al., 2015). SCFAs produced by bacteria limit the proliferation of effector CD4+ T cells and 

stimulate macrophage suppression of pro-inflammatory molecules (Felizardo et al., 2016). 

Gut bacteria also determine host physiology. Studies utilizing germ-free mice raised in 

sterile environments, show reduced intestinal angiogenesis and ensuing malformed villi 

(Belkaid & Hand, 2014). 

Ties between gut bacteria and host physiology spark questions regarding health and 

disease. Healthy fluctuations in symbiotic gut bacterial abundances are difficult to assess 

as most research focuses on deleterious disease states. In a large cohort of 1106 human 

stool samples, the largest influencers of gut composition were medications, blood 

parameters (e.g. red blood cell count, uric acid, hemoglobin), bowel properties (e.g. Bristol 

stool score, time since previous relief), health and diet (Falony et al., 2016). Dysbiosis is 

the altered bacterial composition associated with a non-infectious disease state (Lloyd-

Price et al., 2016). Many diseases including inflammatory bowel disease, obesity, 

cardiovascular disease, asthma and more recently cancer exhibit dysbiosis (Cho & Blaser, 

2012; Carding et al., 2015; Lloyd-Price et al., 2016). Often the probable cause of dysbiosis 

is indistinguishable from its added clinical manifestations (Vanholder & Glorieux, 2015). 

Luckily, a dignified method of bacterial replacement, usually in the form of fecal microbial 

transplantation (FMT), is used to assess the deleterious effects of diseased bacterial 

compositions by giving dysbiotic bacterial culture to a healthy individual (Manichanh et 

al., 2010). FMT gained popularity after multiple studies showed inducible adiposity when 

intestinal bacteria from obese mice were introduced to lean counterparts (Turnbaugh et al., 

2008). In humans, FMT from healthy, lean individuals into obese individuals improved 

peripheral insulin sensitivity (Vrieze et al., 2012). Even increased susceptibility to 
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atherosclerosis was seen in mice receiving FMT from mice with atherosclerosis-induced 

dysbiosis (Gregory et al., 2015). Thus, the gut microbial community is capable of driving 

disease states. 

1.6.3 Dysbiosis in CKD 

In the 1106 stool sample cohort described above, one of the largest associated factors of 

altered bacterial composition was GFR and thus it comes as no surprise that CKD patients 

exhibit a differing bacterial composition from healthy individuals (Falony et al., 2016). 

Actinobacteria, Firmicutes (especially subphylum Clostridia), and Proteobacteria phyla of 

CKD patients contain changes in specific bacterial genera when assessed using 

phylogenetic microarray (Vaziri et al., 2012). Similar to the microarray results, bacterial 

sequencing showed altered Actinobacteria, Bacteroidetes, Firmicutes (Clostridia), 

Proteobacteria and Verrucomicrobia in ESRD patients (Wong et al., 2014). Unfortunately, 

the only study assessing early renal decline in humans showed bacterial alterations 

occurred solely in the Clostridiales order within the phylum Firmicutes (Barrios et al., 

2015). Rat feces show similar overall composition to those of humans with Actinobacteria, 

Bacteroidetes, Firmicutes, and Proteobacteria among the phyla with the highest 

abundances (Vaziri et al., 2012). When subjected to severe CKD, rat models show 

decreases in both Firmicutes and Bacteroidetes and decreased overall diversity (Vaziri et 

al., 2012). Obesity, a risk factor for CKD, is shown to have decreased levels of 

Bacteroidetes when compared as a proportion to Firmicutes in obese mice (Ley et al., 

2005). A summary of specific gut bacterial alterations in CKD has been reviewed 

(Ramezani et al., 2015). 

Although still unclear, most studies suggest the altered gut composition is a result of CKD 

pathophysiology; however, once established, the altered gut composition has a supportive 

role in CKD progression. CKD patients experience reduced gut motility, dietary changes, 

and a host of pharmaceutical insults which all have explainable impacts on the host gut 

microbial composition. For example, clinicians may recommend the removal of some 

fruits, vegetables or fibre from the diet to combat hyperkalemia which is one contributing 

factor to the reduced abundance of SCFA-producing bacteria in CKD (Wong et al., 2014; 
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Vaziri, 2016). Less obvious is the uremia-associated gut wall inflammation suspected to 

effect bacterial changes in CKD patients. The gut wall integrity is compromised in CKD 

shown by gap-junction alterations likely brought on by inflammation (Lau et al., 2016). 

The gut wall then becomes permeable to uremic toxins including urea, a substrate for 

bacteria with urease activity, which converts urea to ammonia. Ammonia is spontaneously 

transformed into ammonium hydroxide increasing the luminal pH and further damaging 

the gut lumen (Felizardo et al., 2016; Vaziri, 2016). This increase in pH naturally selects 

for species capable of surviving in alkaline environments exhibited by Wong and 

colleagues who demonstrated that bacteria established in ESRD patients favoured a uremic 

environment (Vaziri et al., 2013; Wong et al., 2014). 

Alternatively, manifestations including systemic ramifications of dysbiosis are evident in 

CKD by endotoxin and bacterial DNA fragments found in the bloodstream. Not only would 

a leaky gut lumen explain dysbiosis, but also elucidate the parallel movement of bacteria 

into the blood-stream presented as endotoxemia in CKD and CVD patients (Feroze et al., 

2012; Lau et al., 2016). Appealing to the idea of targeting dysbiosis as a therapy, pro- and 

prebiotics are being investigated as novel dysbiosis treatments (Koppe et al., 2015). A 

recent clinical trial demonstrated positive effects in reducing select uremic toxins in pre-

dialysis CKD patients after a 6 week symbiotic therapy comprised of pre- and probiotics 

(Rossi et al., 2016). Although minor improvements have been suggested in overall CKD 

health, pro- or prebiotic treatment with intent to improve DME function has yet to be 

studied.  

1.6.4 Gut-Derived Uremic Toxins 

Gut-derived uremic toxins are uremic toxins produced by the commensal gut community 

under disease circumstances. An elegant study of germ-free versus conventionally raised 

mice first established that gut bacteria were required to produce host plasma metabolites 

such as indoxyl sulfate (IS) and phenyl sulfate (PS) (Wikoff et al., 2009). Out of the over 

88 uremic toxins identified in CKD, IS and PS are two highly retained, protein-bound, gut-

derived uremic toxins difficult to remove via dialysis (Duranton et al., 2012). Thereafter, 

a feasible connection between uremia and the altered gut microbiota in CKD was formed 
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(Meyer & Hostetter, 2012). In addition to indole and phenol metabolites, other by-products 

of bacterial metabolism include branched-chain fatty acids, SCFAs, ammonia, choline, 

hydrogen sulfide, amines [e.g. trimethylamine-N-oxide (TMAO)] mercaptanes and carbon 

dioxide (Macfarlane & Macfarlane, 2012).  

Indoxyl sulfate begins as dietary tryptophan, transformed into indole by tryptophanase-

possessing gut bacteria including species within the genera Bacteroides, Bifidobacterium, 

Clostridium, Lactobacillus and Parabacteroides (Zhang & Davies, 2016). Indole circulates 

in the plasma until it is shuttled to the liver to be hydroxylated by CYP enzymes and 

sulfated by SULTs before returning to the plasma as indoxyl sulfate (Figure 1.2). Phenyl 

sulfate begins as dietary tyrosine before being sulfated in the liver. Bacteria capable of 

phenol metabolism belong to the Bacteroides, Bifidobacterium, Lactobacillus, 

Enterobacter, and Clostridium genera (Ramezani et al., 2015). Both IS and PS are normally 

excreted via the proximal kidney tubule, but are retained if kidney function is inhibited by 

reduced GFR or CKD-associated inhibition of transporters (Niwa, 2013). In a study of 

bacterial functionality in human ESRD, 12 of 19 microbial families with an increased 

abundance compared to healthy individuals possessed urease activity. Another four 

possessed the ability to produce indole. Two of four families that showed a decrease due 

to ESRD were capable of SCFA production (Wong et al., 2014). This data highlights the 

influence of CKD-induced uremia on the gut through altering the luminal environment and 

selecting for uremic toxin-producing bacteria, ultimately furthering disease progression 

through added uremic toxin production (Figure 1.2). Although biological manifestations of 

each gut-derived uremic toxin are unique and still being elucidated, IS has been of 

particular interest due to its association with overall mortality and multiple comorbidities 

through mechanisms of endothelial dysfunction, renal and cardiac fibrosis, immune 

activation and regulation of various other proteins with functions across all organ systems 

(Barreto et al., 2009b; Vanholder et al., 2014; Ramezani et al., 2015). With uremic toxins 

like IS so heavily linked to CKD progression and comorbidities, therapeutic options like 

pro- and prebiotics are suspected to improve the gut microbiota and systematically reduce 

uremia (Koppe et al., 2015).  
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1.6.5 Metabolomics 

Metabolomics is the study of the entire metabolic profile of a biological matrix utilizing 

high-throughput diagnostic tools such as mass spectrometry (MS) or nuclear magnetic 

resonance (NMR) spectroscopy. Endogenous as well as exogenous metabolites including 

uremic toxins, food metabolites, hormones and other small molecular weight molecules 

can be studied by metabolomics. The field is indispensable for understanding the final 

outputs of cellular processes and provides a picture of cellular mechanisms when analyzed 

alongside gene expression. In this work, metabolomics using MS coupled with advanced 

chromatography tools were used to measure metabolites present in plasma and liver 

homogenates.  

In short, MS involves the ionization of a sample to obtain a mass-to-charge (m/z) ratio at a 

specific retention time unique to each molecule within a sample. To effectively measure 

many metabolites in a complex biological sample, ultra-performance liquid 

chromatography (UPLC) is often used in conjunction with MS to first separate metabolites 

by hydrophobicity before entering the mass spectrometer for ionization. The electrospray 

ionization (ESI) utilized in this work, uses high voltage to form an aerosol from a liquid 

sample. The aerosol is the point at which the molecules of the sample are ionized either in 

positive or negative ionization mode determined by either the addition or removal of a 

hydrogen ion, respectively. Whether a molecule ionizes better in positive or negative mode 

is determined by its molecular composition so generally both modes are used to capture as 

many metabolites as possible. After ionization, the metabolites travel parallel and in the 

center of four quadrupoles where brief alterations in the applied current alters the 

movement of the metabolites travelling through them. The mass of the metabolite 

ultimately determines if it reaches the other end of the quadrupole without being pushed or 

pulled out of the center. Systematically, by altering the window of current applied to the 

quadrupole, each m/z ratio is scanned at high mass accuracy. Following the quadrupole, 

the metabolites enter the collision cell where the parent metabolite may be broken into 

smaller fragments for additional information during identification later in analysis. In this 

work, the MS was run using the MSe Waters method that continuously switches from MS 

to MS/MS data acquisition using a low collision energy for production of parent molecules, 
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and ramping high collision energy, for production of fragments. The parent molecule is 

also called function 1 and the fragmentation data is called function 2. These fragments then 

enter the final time-of-flight (TOF) chamber which further separates the fragments by mass 

but using the time it takes for the ionized molecule to hit a detector after accelerating all 

molecules with the same force. Thus, the measured time required for the metabolite to 

reach the detector is dependent on the mass of the molecule. Ultimately this provides the 

m/z ratio, retention time and fragmentation pattern for each detected metabolite within a 

sample.  

Using this instrument, both targeted and untargeted metabolomics can be conducted. 

Untargeted metabolomics refers to detection and measurement of metabolites within a 

sample without defining metabolites of interest prior to the experiment and is particularly 

useful for understanding the uremic milieu of CKD (Zhao, 2013).  

Due to the large metadata output from metabolomics analysis, complex statistical analysis 

must be utilized (Saccenti et al., 2014). Principle component analysis (PCA) is a common 

multivariate method of displaying samples with respect to their relative metabolite 

compositions in a map-like format for visual verification of differing compositions. PCA 

was also used to visualize patterns of OTUs from the microbiota sequencing data. 

Metabolite features such as the accurate mass, retention time and fragmentation pattern 

captured via MS can be used to identify the metabolite when referenced to an online 

database such as the Human Metabolome Database (HMDB; www.hmdb.ca/) (Wishart et 

al., 2013).  

1.7 Mechanistic DME Regulation in CKD 

The mechanisms suggested for CYP downregulation in CKD are minimally understood, 

but have implicated uremia and uremic toxins, bacterial gut alterations, hormone alterations 

and associated inflammation. The next subsections break down two mechanistic pathways 

of DME alteration in CKD, uremia (section 1.7.1) and dysbiosis (section 1.7.2). 
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1.7.1 Uremia & DMEs 

Since the discovery of uremic toxins, uremia has been considered a top candidate for the 

primary influencer of CYP enzyme manipulation in CKD because multiple mechanisms 

spanning pre-transcription to direct inhibition have been suggested (Velenosi et al., 2014; 

Volpe et al., 2014; Nolin, 2015). In addition to IS and PS, uremia provides a vast number 

of metabolites, many of which are unsuccessfully removed by dialysis and inflict 

pathological effects on other organs including the liver and cardiovascular systems (Niwa, 

2013; Lin et al., 2015). The proposed mechanisms of uremia on DME expression include 

i) reduced nuclear receptor binding and epigenetic histone deacetylation (Velenosi et al., 

2014), ii) NF-κB modulation via inflammatory cytokines or parathyroid hormone (PTH) 

(Michaud et al., 2006, 2008) and iii) direct inhibition by various uremic toxins (Guévin et 

al., 2002; Sun et al., 2004; Barnes et al., 2014; Volpe et al., 2014). However, uremic toxins 

may not be the sole regulator of DMEs. Preliminary studies using intestinal adsorbent AST-

120 in rats with severe CKD show effective removal of uremic toxins without recovery of 

CYP3A2 or CYP2C11 function (Velenosi, 2015). In addition, most of the mechanistic 

studies described above, do not sufficiently provide support for 100% of the observed DME 

alteration.  

1.7.2 Bacteria & DMEs 

The altered gut composition of CKD is suggested to influence DME regulation. Two 

mechanisms are described here. The first is through increased production of uremic toxins. 

In short, increases in uremic toxin-producing bacteria are suspected to increase the load of 

uremic toxins, which are responsible for DME downregulation through mechanisms 

relating to the increased concentration of uremic toxins themselves (see section 1.7.1). 

Thus, removal of uremic-toxin producing bacteria may lessen the strain of uremia in CKD 

(Koppe et al., 2015), but this notion has yet to be evaluated in the context of DME 

alteration.  

It is also possible that bacterial species are required for DME regulation independent of 

uremia. When bacterial species are lost due to CKD, associated dysbiosis may result in 
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faulty DME regulation. This mechanism was first hypothesized after recognizing the 

antibiotic ciprofloxacin diminished the intestinal diversity and impacted CYP expression 

(Toda et al., 2009). However, at the time, it was unclear if this decreased CYP expression 

was due to the drug acting as a direct inhibitor of CYP expression or killing the necessary 

bacteria for CYP function. Shortly thereafter, germ-free mice lacking gut bacteria showed 

reduced drug metabolizing Cyp3a11 and Cyp2c29 expression; however the microbiota was 

recovered upon colonization with gut bacteria from conventionally raised mice (Toda et 

al., 2009; Claus et al., 2011). An extensive gene expression study further showed that 

germ-free mice without gut bacteria have 87% downregulation of Cyp3a11 but unaffected 

Cyp2c29 (Selwyn et al., 2015).  

Displacement of commensal bacteria in a dysbiotic state may remove the normally applied 

suppression of the inflammatory response. Essentially, bacterial SCFAs are implicated 

with many immunomodulatory effects including T cell inactivation, downregulation of 

TNFα/β, IL-6 and IL-1β, and inhibition of macrophage NF-κB nuclear translocation 

required for its activation (Lührs et al., 2002). As previously demonstrated, inflammation 

through activation of the NF-κB pathway can block DME expression via inducible PXR 

regulation (Gu et al., 2006). Mechanistically, molecules derived from bacteria like 

lithocholic acid (LCA) promote PXR activation responsible for CYP induction (Staudinger 

et al., 2001; Toda et al., 2009). Thus, one of the ways dysbiosis might affect drug 

metabolism is through loss of beneficial bacteria or beneficial molecules produced by 

bacteria required for DME induction.  

It is important to note however, that dysbiosis is suspected to be caused by deleterious 

effects of uremic toxins on the gut wall. This highlights the proposed positive feedback 

manifestation of dysbiosis and uremia in CKD (Figure 1.2) (Vanholder & Glorieux, 2015). 

Assessment of both dysbiosis and uremia along the progression of CKD is suspected to 

shed light onto which factor may be primarily influential in DME alteration.  
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Figure 1.2. Pathophysiological summary of uremia and dysbiosis in CKD. A) Pathway of 

uremic toxins: IS, PS, p-cresol sulfate and TMAO. B) The cyclic gut-kidney relationship. 

Uremic toxins and associated inflammation are suspected to impede the integrity of the gut 

lumen allowing urea and other toxins to cross the leaky intestinal barrier and increase the 

luminal pH promoting growth of uremic-toxin-producing bacteria and overall dysbiosis. 

This promotes further production of uremic toxins associated with disease progression and 

CKD comorbidities. Images were modified from Servier Medical Art 

(www.servier.co.uk/medical-art-gallery).  

A 

B 
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1.8 Hypothesis & Objectives 

1.8.1 Rationale 

Currently the literature demonstrates non-renal drug clearance is altered in CKD. It is less 

clear why proteins such as DMEs are altered. Suggested mechanisms include alterations of 

the gut microbiota or uremic toxins. Thus, studies are needed to link gut-derived uremic 

toxins (e.g. IS) and gut bacteria with DMEs. Human DME orthologs have been studied in 

rat models of CKD but these studies focus only on severe or late-stage CKD leaving a gap 

in our understanding of when CKD factors and DME expression changes (Leblond et al., 

2001; Velenosi et al., 2012; Ladda & Goralski, 2016). Additionally, very few studies have 

looked at both bacterial alterations and metabolomics within one CKD cohort, none of 

which have focused on DMEs (Ursell et al., 2014; Nallu et al., 2016). To our knowledge, 

no studies have assessed the effect of CKD on hepatic DMEs over disease progression in 

attempt to understand when uremic toxins are changing relative to DME alterations. 

Additionally, this thesis will be the first to encompass metabolomics, 16S bacterial 

sequencing and DME analysis over CKD progression.  

1.8.2 Hypothesis & Objectives 

Although both the uremic and microbial environments are altered in CKD patients, their 

roles in DME regulation remain unclear. The pathophysiological factors of uremia and 

dysbiosis have never been tested temporally over the progression of CKD. The basic 

principle of causality dictates that for a factor (e.g. uremia or dysbiosis) to be causative, it 

must exist or apply the effect before the outcome (e.g. DME regulation) in time (Otero et 

al., 2014). Elucidating the series of events that occur over CKD progression may provide 

support for current hypotheses, which suggest uremic toxins or bacterial alterations are 

causal factors in DME regulation. Alternatively, results may fail to support current 

hypotheses by finding DME changes occur before the suspected causal factors. Thus, this 

thesis aims to reveal the timing in which each pathophysiological factor changes in the 

attempt to support the hypothesis that uremic toxins and/or bacterial alterations are 

mechanistically involved in the regulation of DMEs in CKD. Specifically, we aim to 
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characterize plasma and liver uremic toxins, the gut microbial composition and DME 

fluctuation over the progression of an adenine-fed rat model of CKD. We hypothesize that 

adenine-induced CKD will cause uremia and gut microbial changes detectable prior to the 

anticipated downregulation of CYP3A2 and CYP2C11 DMEs.  
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Chapter 2  

2 Materials & Methods 

2.1 Animal Model & Study Design 

Animal work was approved by the Western University Animal Care Committee and 

experiments were conducted in accordance with the Canadian Council on Animal Care 

(Appendix A). Sixty-six male Wistar rats (initially 150g) were obtained from Charles River 

Laboratories, Inc. (Wilmington, MA) and randomized into six groups defined by time of 

sacrifice (day 0, 3, 7, 14, 28 and 42). Each time point consists of a minimum six control 

and six CKD rats along with six control rats on day 0. Rats were housed in a conventional 

animal care facility with a 12h light cycle. Rats were paired with a same-group cage mate 

to minimize coprophagy alterations of the gut microbiota. All rats were acclimated for 

seven days prior to starting either 0.5% adenine supplemented Teklad 22/5 Rodent Diet 

(Harlan Laboratories Inc., Madison, WI) for CKD rats or standard chow pair fed to match 

caloric intake for control rats (Prolab® RMH 3000, LabDiet, St. Louis, MO). Water was 

provided ad libitum to both groups. Body weights were monitored daily (Table 3.1) until 

sacrifice via isoflurane anesthetization followed by decapitation. Blood was collected in 

heparinized tubes. Liver was snap-frozen in liquid nitrogen. Caecal samples were obtained 

on a sterile, single culture swab (BD, Sparks, MD) touched to an open incision at the 

enlarged proximal end of the rat caecum. All samples were stored at -80°C until further 

analysis excluding the right kidneys which were stored in 10% formalin until histological 

embedding.  

2.2 Disease Markers & Histology 

Conventional CKD markers urea (mmol/L) and creatinine (µmol/L) were measured in rat 

plasma using standard methods by the Pathology and Laboratory Medicine group (PaLM, 

London, ON; www.lhsc.on.ca/palm/). Kidney tissue and histological images were prepared 

as previously described (Feere et al., 2015). Briefly, kidneys were fixed in 10% formalin 
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(Anachemia Canada Co., Montreal, QC) before undergoing tissue slide preparation at the 

Department of Pathology (Western University, ON). Light microscopy and photographs of 

prepared haematoxylin and eosin (H&E) stained slides were obtained under identical 

exposure, saturation and contrast on a Leica DM1000 light microscope paired with a Leica 

DFC295 colour camera and Leica Application Suite v3.8.0 software.  

2.3 Real-Time PCR 

In preparation for quantitative (real-time) PCR, total mRNA was extracted from rat liver 

using TRIzol reagent (Life Technologies, Burlington, ON) following the manufacturers 

protocol before quantification and purity testing using a Nanodrop 2000 

(ThermoScientific, West Palm Beach, FL). One µg of total RNA underwent reverse 

transcription (Bio-Rad C1000) for cDNA synthesis using qScript cDNA Supermix (Quanta 

Biosciences, Gaithersburg, MD). Amplified cDNA was diluted 1:40 before running 5µL 

in triplicate on a 384-well plate with 7µL mastermix containing primers and PerfeCTa 

SYBR green fastmix (Quanta Biosciences, Gaithersburg, MD). Rat primers for CYP3A2 

(forward)     [5’-GCTCTTGATGCATGGTTAAAGATTTG-3’] and (reverse) [5’-

ATCACA GACCTTGCCAACTCCTT-3’] and CYP2C11 (forward) [5’-CCCTGAG 

GACTTTTGGGATGGGC-3’] and (reverse) [5’-AGGGGCACCTTTGCTCTTCCTC-3’] 

(Invitrogen) were previously validated by cycle threshold (Ct) and melt-curve analysis 

(Velenosi et al., 2014). β-Actin was used as the housekeeping gene (forward) [5’-

ACGAGGCCCAGAGCAAGA-3’] and (reverse) [5’-TTGGTTACAATGCCGTGTTCA-

3’], samples were run on a Bio-Rad CFX384 Real-Time System (Hercules, CA, USA) and 

relative RNA expression was assessed through the ΔΔCt method (Livak & Schmittgen, 

2001; Rao et al., 2013).  

2.4 Western Blotting 

2.4.1 Microsomal Isolation & BCA Assay 

Hepatic microsomal fractions were prepared by differential centrifugation followed by 

Pierce BCA assay as previously described (Feere et al., 2015). Briefly, approximately 1/6 

of each rat liver was homogenized using a T10 Basic Ultra-TURRAX (Sigma Aldrich, St. 
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Louis, MO) on ice in 1mL of buffer [1.15% KCl + 1mM ethylenediaminetetraacetic acid 

(EDTA)] for 5 min. Samples were centrifuged at 4°C in an ultracentrifuge (Beckman 

Coulter Optima L-90K, Fullerton, CA), first at 9000×g for 20 min to collect the supernatant 

which was further spun at 105,000×g for 1 hour. Total microsomal pellet was suspended 

in 500µL storage buffer (0.1M potassium phosphate buffer + 20% glycerol, pH=7.4) and 

subsequently separated into two aliquots of approximately equal amounts before storing at 

-80°C. A Pierce BCA Protein Assay kit (Thermo Scientific) was used to assess total protein 

content from diluted microsomal fractions (1:100) in a 96-well plate. Concentrations of 

1000, 500, 250, 125, 62.5, 0 µg/mL protein standard (Sigma Aldrich) provided a sufficient 

standard curve to measure all samples by chemiluminescence on a plate reader 

(SpectraMax-M5). The original microsomal fraction was aliquoted to 5µg/µL total protein 

and stored at -80°C until western blot analysis. 

2.4.2 Gel Electrophoresis & Blotting 

Western blot analysis was performed as previously depicted with minor alterations (Feere 

et al., 2015). Electrophoresis was optimized on a 15-well 10% polyacrylamide resolving 

gel with 4% stacking gel containing 0.1% sodium dodecyl sulfate (SDS) and polymerized 

using ammonium persulfate and tetramethylethylenediamine (TEMED) (Bio Basic Inc, 

Markham, ON). A total of 4µL loading volume contained 4.8µg of protein per well. The 

samples were diluted in sample buffer (10% SDS, 26% glycerol and 0.5% bromophenol 

blue) and reduced with beta-mercaptoethanol at 80°C for 20 min. The gel was run at 60V 

for 20 min followed by 120V for 45mins in Bio-Rad Running Buffer. Protein was 

transferred to a nitrocellulose membrane for 1.5 hours with 120V in Bio-Rad Transfer 

Buffer. The membrane was washed with PBS + 0.1% tween (PBS-T) before blocking with 

PBS-T + 5% skim milk powder + 0.6% bovine serum albumin (BSA) for 1 hour followed 

by three washes of PBS-T. Primary CYP3A2 rabbit anti-rat antibodies (Millipore, 

Temecula, CA) were diluted 1:8000 with PBS-T + 0.6% BSA. CYP2C11 mouse anti-rat 

antibody (Millipore, Temecula, CA) was diluted 1:5000 with PBS-T + 5% skim milk 

powder. β-Actin housekeeping primary antibody, conjugated to horseradish peroxidase 

(HRP), was made in mouse (Sigma Aldrich), diluted 1:50000 with PBS-T + 0.6% BSA and 

made fresh before each use. After 4°C overnight incubation with primary antibody and 
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subsequent PBS-T washes, secondary antibody (rabbit or mouse) linked to HRP (Santa 

Cruz Biotechnology Inc., Santa Cruz, CA) at 1:10000 dilution in PBS-T + 0.6% BSA were 

incubated with the blots for no longer than 1 hour. Imaging was performed on the Bio-Rad 

VersaDoc Imaging System (Hercules, CA) and accompanying QuantityOne (v4.6.3) 

software after final washing steps and 1 min incubation of 1 mL chemiluminescent agent 

Luminata Forte western blot HRP substrate (Millipore, Billerica, MA). After imaging of 

CYP3A2, the blot was washed, stripped of protein (Restore Western Blot Stripping Buffer, 

ThermoScientific, Rockford, IL) and washed with PBS-T once more before the application 

of the β-Actin or CYP2C11 primary antibody before repeating the washes and imaging 

steps. Densitometry data was normalized to β-actin, presented as a percent of day 0 control 

samples and standardized across blots by a communal pooled sample run on every blot. 

Western blot analysis was completed in duplicate for both CYP3A2 and CYP2C11. 

2.5 Enzymatic Activity 

Enzymatic activity was analyzed by incubating microsomal fractions with testosterone, a 

known substrate of CYP3A2 and CYP2C11 (Chovan et al., 2007). The respective products 

6βOH-testosterone and 16αOH-testosterone were measured via mass spectrometry (MS) 

in a 96-well plate assay adapted from (Feere et al., 2015). In a final volume of 75µL, 

0.2mg/mL microsomal protein and reaction buffer (50 mM potassium phosphate with 2 

mM MgCl2 pH 7.4) was incubated with 1µL testosterone (Steraloids Inc., Newport, RI) 

substrate at concentrations of 12.5, 25, 75, 200 and 400µM for 10 min at 37°C. Reaction 

volume is completed by incubation with 1mM NADPH (Sigma Aldrich) and shaken at 

37°C for exactly 20 min before sequestration using 225µL ice-cold acetonitrile with 

80ng/mL flurazepam as an internal standard (Cerilliant, Round Rock, TX). Plates were 

shaken, centrifuged at 4000×g for 10 min, supernatant diluted 1 in 5 with milliQ water and 

stored at 4°C no longer than 24 hours until analysis. Enzymatic products were separated 

on an ultra-performance liquid chromatography (UPLC) Phenomenex Kinetex phenyl-

hexyl column (1.7µm particle size, 50mm × 2.1 mm) maintained at 40°C in a Waters 

ACQUITY UPLC I-Class System (Milford, MA). Mobile phase flow was set to 0.5 ml/min 

and consisted of UPLC-grade water (A) and acetonitrile (B) both containing 0.1% formic 

acid with a gradient as follows: 0–0.5 mins, 25% B; 0.5–2 mins 25–35% B; 2–2.5 mins 
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35–80% B; 2.5–3.5 mins held at 80% B; 3.5 mins 25% B. Analytes were detected using 

quadrupole time-of-flight mass spectrometry (UPLC-QTof/MS) on a Waters XevoTM G2S-

QTof/MS and Waters ACQUITY I-Class UPLC with parameters as previously described 

(Feere et al., 2015). The positive mode mass-to-charge ratio (m/z) for 6βOH-testosterone 

and 16αOH-testosterone (m/z = 305.2117) were quantified using standard curves of 

purchased 6βOH-testosterone (0.04–50μM) and 16αOH-testosterone (0.09–100μM) 

(Steraloids Inc., Newport, RI) using QuanLynx v4.1 software. Michaelis-Menten curves 

generated with GraphPad Prism (v5.0 for Windows; GraphPad Software Inc., San Diego, 

CA) were used to find the maximum enzymatic reaction rate (Vmax), Michaelis-Menten 

constant (Km) and average intrinsic clearance (Vmax/Km) for each group. 

2.6 Untargeted Metabolomics 

2.6.1 Sample & Batch Preparation 

Plasma and liver biological matrices each run on two different chromatography columns 

totaling four metabolomics runs. The first column, a Waters ACQUITY UPLC HSS T3 

(1.8μm particle size, 100 mm × 2.1 mm) reverse-phase liquid chromatography (RPLC) 

column best encompasses hydrophobic molecules while the second hydrophilic interaction 

liquid chromatography (HILIC) column, a Waters ACQUITY BEH Amide (1.7μm particle 

size, 100 mm × 2.1 mm), best separates hydrophilic molecules. Plasma and liver samples 

were prepared as previously described (Velenosi et al., 2016) by adding 3:1 ice-cold 

acetonitrile with 2.5µM chlorpropamide internal standard (Sigma Aldrich) to 100µL of rat 

plasma or 200mg ± 5mg homogenized liver sample. Samples were vortexed, incubated at 

-20°C for 20 min then centrifuged at 14,000×g for 5 min. Supernatant was either diluted 

1:5 in water for RPLC or directly injected for HILIC. Sample injection order was 

randomized and a quality control sample made from pooled samples was run every ten 

injections to monitor instrument drift. All samples were run in a single batch for each 

biological matrix and column.  
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2.6.2 Chromatography & Mass Spectrometry 

Both RPLC and HILIC columns were maintained as previously stated (Velenosi et al., 

2016) at 45°C and mobile phase flow set to 0.45 ml/min consisting of UPLC-grade water 

(A) and acetonitrile (B), both containing 0.1% formic acid. A gradient of 0-2 min 60% B; 

2-6 min 85% B; 6-8 min 99% B; 8-10 min 1% B was used. The HILIC column followed a 

gradient of 0–0.5 mins 99% B; 0.5–6 mins 99–50% B; 6–8 mins 50–30% B; 8–8.5 mins 

30–99% B. Samples were run separately in succession for both positive and negative 

electrospray ionization (ESI) modes on the UPLC-QTof/MS instrument described in 

section 2.5. Mass spectrometer method consisted of capillary voltage 2kV, cone voltage 

40V, source temperature at 150°C, desolvation gas flow 1200L/h at 600°C, and cone gas 

flow 50L/h. Data acquisition was conducted in centroid mode using the MSe method as 

described in section 1.6.5, with 0.05s scan time over a range of 50-1200 m/z with collision 

energy of 0V for MS (function 1) and ramped from 15V-50V for MS/MS (function 2) 

fragmentation. For mass accuracy, lockspray solution leucine-enkephalin (500ng/mL) was 

used as the lockmass and set at a flow rate of 10µL/min, measured every 10s and averaged 

over 3 scans. Data was collected by MassLynx v4.1 software (Waters). In anticipation of 

detecting previously identified uremic toxins IS, PS and 4-ethylphenyl sulfate, a standard 

curve of these metabolites was added to the front and back of both RPLC runs in plasma 

and liver.   

2.6.3 Data Processing 

Data processing for each run and ESI mode was performed separately in R studio (v3.2.3). 

MassLynx data files were converted from raw to mzData files using convert.waters.raw 

package v1.0 (github.com/stanstrup/convert.waters.raw). Pooled samples were used to find 

the optimal peak picking parameters, retention time corrections and grouping parameters 

simultaneously with the isotopologue parameter optimization (IPO) package v1.0.0 

(github.com/rietho/IPO/blob/master/vignettes/IPO.Rmd). Minimum peak width ranged 

from 2 to 5 seconds, maximum peak width ranged from 10 to 20 seconds and a static ppm 

of 15 were used as starting parameters for the IPO process. The resulting IPO parameters 

unique for each mode were inputted into the XCMS package v1.50.1 (Smith et al., 2006) 

to pick appropriate peaks, integrate the area under the curve and replace zero values for all 
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samples within the dataset. The CAMERA package v1.32.0 was used to annotate possible 

isotopes and adducts (Kuhl et al., 2012). XCMS and CAMERA packages were used to 

integrate positive and negative ESI modes before normalizing to internal standard 

chlorpropamide and applying a threshold of 30% variability of the quality control. Through 

an in-house R script positive and negative modes were combined to make one dataset ready 

for statistical software with masses identified in both modes retained in the mode with 

greater intensity (Urquhart Laboratory, unpublished). 

2.6.4 Metabolite Identification 

The accurate monoisotopic mass (m/z) and fragmentation spectrum of each metabolite was 

used to identify potential metabolite matches within the METLIN, MassBank or Human 

Metabolome Database (HMDB) (Wishart et al., 2013). This was carried out by first 

searching the parent m/z ratio in the corresponding ionization mode across all possible 

adducts with a molecular weight tolerance of ±0.01Da. The MOL file for each suspected 

metabolite was downloaded from the HMDB website and uploaded using MassFragment, 

a MassLynx software add-on, to compare expected fragmentation patterns with the 

experimental fragmentation pattern. Fragmentation profiles of metabolites representing the 

most experimental fragments were purchased for identity confirmation. 

A categorical system of metabolite identification has been adapted from previously defined 

levels 1 through 4 (Salek et al., 2013). To confirm a suspected metabolite’s identity, a 

purchased standard was run and compared to a sample known to have the unidentified 

signal. If the retention time, accurate mass and fragmentation pattern matched across the 

experimental sample and purchased standard, it was considered “level 1 identified”. Level 

2 identified metabolites exhibited HMDB and METLIN database matches with delta ≤ 

5ppm and conformation to at least one of the following criteria: a matching online database 

fragmentation spectrum, or matching m/z ratio in a publication where it was similarly 

identified. Level 2 identification is typically used when analytical standards are unavailable 

or the cost prohibits level 1 identification. Level 3 identified metabolites required only a 

HMDB and METLIN match with delta ≤ 5ppm. Metabolites with multiple matches, zero 

matches or deltas ≥ 5ppm were considered unknown. 
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Metabolite standards were obtained as follows: indoxyl sulfate from Gold Biotechnology 

(Olivette, MO), phenyl sulfate and 4-ethyl phenyl sulfate were synthesized as previously 

described (Velenosi et al., 2016), allantoin, L-carnitine, 2,8-dihydroxyadenine and equol 

4/7 glucuronide were purchased from Toronto Research Chemicals (Toronto, ON), 

creatinine from Sigma Aldrich and pantothenic acid from Supelco (Bellefonte, PA). 

2.7 Gut Microbial Sequencing 

2.7.1 Illumina Sequencing 

DNA was extracted from caecum swabs using the PowerSoil-96 Well DNA isolation kit 

from MoBio using convenience modifications of the Earth Microbiome Project protocol 

(Gilbert et al., 2014). Unique barcoded primers named 515F and 806R (Caporaso et al., 

2011; Gilbert et al., 2014) amplified the V4 variable region of the 16S rRNA gene. A total 

of 12 forward and 24 reverse primers barcodes were used to provide 288 unique primer 

combinations. The primers are as follows: forward primer [5’-ACACTCTTT 

CCCTACACGACGCTCTTCCGATCTnnnn(8)GTGCCAGCMGCCGCGGTAA-3’] and 

reverse primer [5’-CGGTCTCGGCATTCCTGCTGAACGCTCTTCCGATCTnnnn 

(8)GGACTACHVGGGTWTCTAAT-3’] where the 5’ end is the Illumina adaptor 

sequence, the nnnn indicates four random nucleotides, (8) represents one of the 36 

barcoded sequences eight nucleotides in length and the 3’ end is the primer region for V4 

(Supplementary Table 1. Appendix B) (Gloor et al., 2010). Amplification was carried out 

in 42µL total volume with 20µL primer mix (3.2pmol/µL per primer), 20µL GoTaq Hot 

Start Mastermix (Thermo Scientific) and 2µL template DNA then run for 2 min at 95°C 

followed by 25 cycles of 1 min at 95°C; 1 min at 52°C and 1 min at 72°C excluding a final 

elongation. Barcoded PCR products were quantified with a Qubit dsDNA assay kit on a 

Qubit 2.0 (Life Technologies), normalized by amount of DNA, pooled then purified with 

a PCR clean-up column. The cleaned DNA is amplified once more with primers OLJ139 

[5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA3’] and 

OLJ140 [5’CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATT 

CCTGCTGAAC3’] (Majerczyk et al., 2010) before paired-end, high-throughput 
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sequencing on the Illumina MiSeq platform at the London Regional Genomics Centre 

(LRGC, lrgc.ca, London, ON).  

2.7.2 Data Processing 

Paired reads, each 220bp long were processed with the Illumina_SOP protocol accessed 

through Github with minor convenience revisions (https://github.com/ggloor/miseq_bin). 

After demultiplexing, raw reads were first overlapped with a minimum 30 nucleotides 

using Pandaseq (v2.5) (Masella et al., 2012) then filtered with in-house Perl and UNIX 

scripts to ensure exact barcode matching and primer matching with up to two allowable 

mismatches (Gloor et al., 2010). OTUs were clustered using the uSearch (v7.0.1090) script 

(Edgar, 2010) at 97% identity and the most abundant sequence was applied for annotation 

via the mothur script (Schloss et al., 2009) to search the Silva 16S rRNA gene reference 

database (Silva.nr_v119) (Quast et al., 2013; Yilmaz et al., 2014). In mothur, a bootstrap 

cut-off of 70% was used for taxonomical identification and redundancy. A total of 1199 

OTUs were retained across all samples (Supplementary Table 2. Appendix B). Due to study 

time-period differences, only days 3, 14, 28 and 42 could be used for sequencing analysis. 

In R studio (v3.2.3) the zCompositions (v1.0.3-1) package (Martín-Fernández et al., 2003) 

was used for zero-replacement before data was centre-log ratio (clr) transformed for 

compatibility with downstream univariate and multivariate statistics (Gloor & Reid, 2016; 

Gloor et al., 2016b).  

2.8 Statistical Analysis 

2.8.1 Disease Markers, Real-Time PCR, Western Blotting & 
Enzymatic Activity Assay 

DME measurements and disease markers urea and creatinine are presented as mean ± SEM 

and analyzed by 2-way ANOVA paired with Sidak’s multiple comparisons test. *p < 0.05 

compared to matching day control indicates significance.  

2.8.2 Untargeted Metabolomics 

Principal component analysis (PCA) was used to evaluate the initial separation between 

CKD and control over time for each of the four analytical runs using MassLynx software 
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and the EZInfo v2.0 package (Umetrics, Umeå, Sweden). Placement of each sample within 

a PCA plot is determined by the entire detectable metabolite composition within each 

sample with relation to all other samples. Samples within close proximity are considered 

“clustered” and represent samples with similar compositions. Data for each of the four runs 

was Pareto scaled to remove emphasis on metabolites with large magnitude of variance. 

Outliers were removed utilizing a Hotelling’s analysis with a maximum allowable T2 range 

of 35 (Wiklund, 2008). Pooled samples are confirmed to show little variance and a clear 

separation is identified between control and condition before applying statistics. Each 

statistical method: multivariate, univariate and correlations to each DME, was performed 

independently on the same metabolomics dataset for each of the four runs with the aim to 

isolate metabolites related to CYP alterations. Each of the 1] multivariate, 2] univariate and 

3] correlation analyses are described below. 

1] Multivariate analysis was performed on all four runs, on all 5 days in comparison with 

same day control. EZInfo was used to generate orthogonal partial least squares discriminant 

analysis (OPLS-DA) of the original PCA (Figure 2.1). OPLS-DA, unlike PCA, is a 

supervised comparison between known groups. To assess multivariate OPLS-DA 

sufficiency, each comparison received goodness of fit values R2 and Q2. R2 is the goodness 

of fit estimated for the model and Q2 is the level of prediction accuracy the model infers if 

the experiment were to be repeated. The values are dependent and thus can be expressed 

as a ratio (R2/Q2) with the expectation that R2/Q2 < 2 or Q2 > 0.5 (Triba et al., 2015). The 

metabolites characteristic of treatment were then plotted as an S-plot with axis of 

“p(corr)[1]” representing the treatment difference and “p[1]” representing the magnitude 

of the metabolite’s influence. Strict thresholds were applied (VIP > 0.8; p(corr)[1] > 0.4 or 

< -0.4) by finding the variable importance in projection (VIP) and the p(corr)[1] axis as a 

general measure of magnitude and difference between treatments (Farrés et al., 2015) 

(Figure 2.1). Only metabolites that met or exceeded the S-plot thresholds on two or more 

consecutive time points were retained for comparison with univariate and correlative 

analyses. 

2] Univariate analysis on the original metabolomics datasets were used to assess the 

relative concentration of each metabolite over time and course of the disease. Open access 
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online software MetaboAnalyst 3.0 was used to perform a p-value corrected (FDR = 0.05) 

independent 2-way ANOVA on each metabolite via the “Time Series” and “Two-factor 

independent samples” applications (Wishart et al., 2013). No additional data filtering, 

normalization or transformation was performed. Pareto scaling was applied for 

consistency. Significance (p<0.05) was required for both “Time” and “Disease” to retain 

the metabolite for comparison with multivariate and correlative analyses.  

3] Spearman correlations were conducted between each metabolite and the mRNA, protein 

or enzymatic activity levels of each enzyme. Spearman correlation analysis of 

metabolomics results have been conducted in the past to compare metabolites to other 

metabolites (Camacho et al., 2005), metabolites to bacterial abundances (Theriot et al., 

2014; McMillan et al., 2015), and metabolites to gene expression (Bartel et al., 2015; 

Auslander et al., 2016). Original processed metabolomics dataset for each run was matched 

by sample to the corresponding DME dataset and a correlation coefficient (r) obtained 

before comparison to the final multivariate and univariate subsets. R-values were manually 

filtered with high stringency (r > 0.65 or r < -0.65) since more than 50% of the dataset 

satisfied p<0.0001. After filtering, correlation analysis provided the smallest subset of the 

three analysis methods. Metabolites on this list that did not also satisfy univariate analysis 

were removed from the correlation subset. Metabolites that did not satisfy multivariate 

analysis are indicated but retained to capture biologically relevant changes independent of 

magnitude.  
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Figure 2.1. Example of multivariate analysis workflow utilizing OPLS-DA and S-plots. A 

PCA is made using EZInfo software (1), comparisons are chosen for OPLS-DA, an OPLS-

DA plot of sample distribution is made and R2 and Q2 thresholds are applied (2). Successful 

OPLS-DA plots are further analyzed by observing metabolite contributions towards either 

condition by S-plot (3) where VIP and p(corr)[1] thresholds are applied. From the S-plot, 

a list of m/z ratios and retention times (4) in addition to fragmentation pattern are searched 

within online databases such as HMDB in attempt to identify the metabolite. 
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2.8.3 Caecal Microbiota 

Multivariate PCA was performed in EZInfo as described for untargeted metabolomics 

except no scaling was utilized to emphasize large variations. Although applied infrequently 

in the microbiology field (Hong et al., 2011; Stewart et al., 2015), R2 and Q2 values are 

important for understanding the variability in the PCA and were calculated for consistency 

with metabolomics analysis. To obtain univariate differences between CKD and control 

groups, the effect size and overlap for each bacterial taxonomic group was calculated for 

each time point individually using the R package ALDEx2 (v1.2.0) 

(bioconductor.org/packages/release/bioc/html/ALDEx2.html) (Fernandes et al., 2014; 

Gloor et al., 2016a). Severe thresholds were applied to both effect size (> 1.5 or < -1.5) 

and overlap (< 6.5%) for each bacterial abundance (Macklaim et al., 2013; Halsey et al., 

2015; Gloor et al., 2016a). OTUs that met or exceeded the thresholds were graphed and 

significance was defined as satisfying the effect size and overlap thresholds with 95% 

confidence. Where applicable, genera were manually searched for species and strain 

information by Targeted Loci Nucleotide BLAST application through NCBI 

(blast.ncbi.nlm.nih.gov/Blast.cgi).  
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Chapter 3  

3 Results 

3.1 Model Validation 

First, I validated the adenine-fed CKD model by measuring plasma CKD markers urea and 

creatinine alongside kidney histological analysis across all time points. CKD markers urea 

and creatinine both showed significant increase in CKD rat plasma by day 14 (Figure 

3.1.A-B). This increase continued to a 9-fold and 11-fold difference between CKD and 

control for urea and creatinine, respectively, on day 42. Kidney histology showed enlarged 

tubules, inflammatory cells and fibrosis by day 14 through to day 42 (Figure 3.1.C-H). 

Animal weights did not change between groups (Table 3.1).  
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Figure 3.1. Assessment of CKD in Wistar rats orally administered 0.5% adenine over 42 

days. (A) Plasma urea (mM) and (B) serum creatinine (µM) concentrations of control and 

CKD rats presented as mean ± SEM. *p < 0.05 when compared to matching day control; n 

≥ 6. H&E stained rat kidney sections from day 42 control (C) and CKD days 3 (D), 7 (E), 

14 (F), 28 (G) and 42 (H). Arrows indicate enlarged nephron tubules and areas of fluid 

retention. Inflammatory cells and areas of atrophy are evident on days 14, 28 and 42.  
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Table 3.1. Weight in grams of control and CKD rats over 42 days. 

 Control CKD 

Weight (g) 

Day 0 206.5 ± 1.4   (n=41) 207.1 ± 1.8   (n=36) 

Day 3 188.6 ± 1.1   (n=41) 186.1 ± 1.5   (n=36) 

Day 7 201.0 ± 1.5   (n=24) 202.4 ± 1.9   (n=26) 

Day 14 227.3 ± 2.0   (n=18) 227.9 ± 3.3   (n=19) 

Day 28 257.3 ± 2.6   (n=12) 258.3 ± 5.0   (n=13) 

Day 42 274.5 ± 8.4   (n=6) 254.7 ± 12.7   (n=7) 
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3.2 Hepatic CYP3A2 & CYP2C11 mRNA Expression over 

CKD Progression 

Having confirmed the adenine-fed rats were developing CKD, the mRNA expression of 

DMEs CYP3A2 and CYP2C11 were assessed in the liver. CYP3A2 mRNA expression was 

minimally decreased on day 3, recovered on day 7, then declined substantially by day 14 

(-83%, p<0.001) which persisted to day 42 (-99%, p<0.001) (Figure 3.2.A). CYP2C11 

mRNA expression was unchanged on day 3 but largely increased in the control group on 

day 7 leaving CKD rats well below normal (-76%, p<0.001) (Figure 3.2.B). On day 14 (-

84%, p<0.001), day 28 (-96%, p<0.001), and day 42 (-98%, p<0.001) the CKD CYP2C11 

mRNA expression remained low in comparison to control.  

3.3 Hepatic CYP3A2 & CYP2C11 Protein Expression over 

CKD Progression 

To ascertain whether protein expression was changed with respect to mRNA expression, 

CYP3A2 and CYP2C11 protein quantification was carried out by western blotting. 

Decreases in CYP3A2 protein levels were seen on day 14 (-63%, p<0.001), day 28 (-86%, 

p<0.001) and day 42 (-85%, p<0.01) (Figure 3.2.C). CYP2C11 protein quantification also 

shows depletion in CKD but starting on day 7 (-42%, p<0.05) through to day 42 (-83%, 

p<0.001) (Figure 3.2.D). A non-specific CYP3A2 band was not quantified. 

3.4 Hepatic CYP3A2 & CYP2C11 Enzymatic Activity over 

CKD Progression 

Sequentially, CYP3A2 and CYP2C11 enzymatic activity was assessed from liver 

microsomes. CYP3A2 intrinsic activity in CKD rats decreased on day 3, recovered on day 

7 and fell again 3.6-fold by day 14, 13-fold by day 28 and nearly 14-fold lower than 

controls by day 42 (Figure 3.2.E). The intrinsic activity of CYP2C11 showed a 4.6-fold 

difference between CKD and control as early as day 7 and up to 12.8-fold difference by 

day 42 (Figure 3.2.F). Vmax, Km and intrinsic clearance are summarized (Table 3.2).  
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Figure 3.2. Relative mRNA expression, protein expression and enzymatic activity levels 

of CYP3A2 and CYP2C11. CYP3A2 (A) and CYP2C11 (B) mRNA expression and protein 

expression, CYP3A2 (C) and CYP2C11 (D), with representative western blots. Values 

were relative to β-actin represented as the mean ± SEM, normalized to control day 0 and 

arbitrarily defined as 100%. A non-specific band in CYP3A2 immunoblot was not 

quantified. Enzymatic activity of CYP3A2 (D) and CYP2C11 (E) in control and CKD rats 

represented as the mean intrinsic clearance Vmax/Km [(pmol/min/mg protein)/µM] of 

testosterone metabolite ± SEM. *p < 0.05 when compared to matching day control; n ≥ 6.  
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Table 3.2. CYP3A2 and CYP2C11 enzymatic activity over CKD progression. 6βOH-

testosterone (CYP3A2) and 16αOH-testosterone (CYP2C11) production of liver 

microsomes measured following incubation with NADPH and testosterone. *p<0.05 

compared to matching day control; n ≥ 6. 
 

6βOH-testosterone (CYP3A2) 

                 Vmax
a                    Km

a Intrinsic Clearance (Vmax/Km)a 

Control CKD Control CKD Control CKD 

Day 0 35938±2841 35938±2841 29.5±9.02 29.5±9.02 1275±393.87 1275±393.87 

Day 3 56184±5640 26425±2097* 40.1±14.46 29.8±9.13 1422±540.42 894±288.25* 

Day 7 49912±1806 42396±4911 40.2±5.218 42.7±17.48 1272±214.04 1036±489.05 

Day 14 38223±2797 12804±1983* 49.4±12.34 59.4±29.88 804±207.09 222±152.72* 

Day 28 61702±3069 10102±1289* 66.6±10.43 141.6±44.74* 936±86.36 71±21.50* 

Day 42 45706±2266 7849±1297* 58.5±9.46 135.6±56.32* 795±139.12 58±24.76* 

 16αOH-testosterone (CYP2C11) 

                 Vmax
a                    Km

a Intrinsic Clearance (Vmax/Km)a 

Control CKD Control CKD Control CKD 

Day 0 17983±1210 17983±1210 14.2±4.56 14.2±4.56 1365±518.05 1365±518.05 

Day 3 25892±2353 15453±1195 21.8±8.28 13.8±5.13 1202±298.73 1123±357.65 

Day 7 41420±2488 27114±3431 14.3±4.09 23.5±12.17 2907±541.70 1206±607.94* 

Day 14 51824±2556 17521±2406* 16.9±3.75 18.6±11.18 3199±377.15 948±523.91* 

Day 28 72358±2064 16236±1548* 20.1±2.45 21.2±8.52 3679±548.84 797±273.19* 

Day 42 62571±3147 6658±513* 16.2±3.71 22.6±7.21 4005±570.00 312±179.33* 

aVmax, Km and intrinsic clearance (Vmax/Km) were obtained by Michaelis-Menten kinetics.  

  



48 

 

3.5 Plasma & Liver Metabolomics 

Having demonstrated changes in mRNA, protein levels and enzymatic activity in the CYP 

enzymes, I next performed an untargeted metabolomics analysis by MS to assess changes 

in metabolite composition. Principle component analysis (PCA) clearly separated CKD 

and control for both rat plasma and liver samples (Figure 3.3). Early disease stages are 

arbitrarily defined as day 3-14 and late stages days 28 and 42. A loadings biplot for each 

run shows the position of each loading/metabolite (Figure 3.4). OPLS-DA plots were 

generated for each of the twenty comparisons across all four runs. OPLS-DA plots 

comparing control versus CKD at each time point for the plasma RPLC run provide an 

example for the other three runs (Figure 3.5). R2 and Q2 parameters were used to 

accompany the interpretation of OPLS-DA plots and R2/Q2 ratio < 2 represent results with 

high reproducibility between control and CKD on each day (Table 3.3). Metabolites in rat 

plasma were well separated from control as early as day 3 when using RPLC (Figure 

3.3.A). Liver RPLC showed far less separation between control and CKD before day 28 

(Figure 3.3.B). The HILIC column showed separation back to day 7 except for poor Q2 

values on day 14 in both plasma and liver samples (Figure 3.3.C-D). 
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Figure 3.3. Unsupervised principle component analysis (PCA) plots of rat plasma (A) and 

liver (B) metabolome separated by RPLC. PCA of plasma (C) and liver (D) metabolome 

separated by HILIC. Each point is either control (), early stage CKD defined by day 3, 7 

and 14 (), or late stage CKD defined by days 28 and 42 (). Each axis is either the first 

[1], second [2] or third [3] principle component showing the two components representing 

the largest variation between groups and displayed as a percentage of component 

contribution. Placement of each sample is determined by the metabolite composition within 

each sample and clustered samples share similar compositions. Data is centered and Pareto-

scaled. Select rat samples were removed as outliers (A) no outliers, (B) a day 3 and day 42 

control, (C) a day 28 CKD sample, and (D) a day 7 control sample. 
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Figure 3.4. Loadings biplot of rat plasma (A) and liver (B) metabolome separated by RPLC 

and plasma (C) and liver (D) metabolome separated by HILIC. Each point is either a sample 

control (), early stage CKD defined by day 3, 7 and 14 (), late stage CKD defined by 

days 28 and 42 (), or a metabolite loading (). Metabolites PS (i), EPS (ii) and IS (iii) 

are indicated. Each axis is either the first [1], second [2] or third [3] principle component 

showing the two components representing the largest variation between groups and 

displayed as a percentage of component contribution. Data is centered and Pareto-scaled. 

Select rat samples were removed as outliers (A) no outliers, (B) a day 3 and day 42 control, 

(C) a day 28 CKD sample, and (D) a day 7 control sample. 
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Figure 3.5. OPLS-DA plots generated from the PCA of rat plasma separated by RPLC for 

day 3 (A), day 7 (B), day 14 (C), day 28 (D) and day 42 (E). Each point is a control () or 

CKD () sample. Each axis is the first [1] and second [2] principle component representing 

the largest variation between supervised groups and displayed as a percentage of 

component contribution. 
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Table 3.3. Multivariate OPLS-DA parameters R2 and Q2. R2 and Q2 values for plasma and 

liver metabolomics using RPLC and HILIC across all time points.  

ǂ Values indicate poor predictability. *Abnormal values, considered poor predictability. Comp No. = 

principle component number. 

  Rat Plasma 

RPLC HILIC 

D
a

y 
4

2
 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.9859 0.9175 1.0745 [1] 0.9821 0.5936 1.6546 

[2] 0.9859 0.9493 1.0385 [2] 0.9821 0.8064 1.2180     
[3] 0.9821 0.8677 1.1319 

D
a

y 
2

8
 

Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.9982 0.6410 1.5572 [1] 0.9734 0.8402 1.1586 

[2] 0.9982 0.8176 1.2210 [2] 0.9734 0.9491 1.0255         

D
a

y 
1

4
 

Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.8940 0.5438 1.6439 [1] 0.7248 0.2872ǂ 2.5240ǂ 

[2] 0.8940 0.5203 1.7181 [2] 0.7248 0.5121 1.4152         

D
a

y 
7
 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.9628 0.5418 1.7770 [1] 0.9169 0.5979 1.5336 

[2] 0.9628 0.7150 1.3466 [2] 0.9169 0.8431 1.0876         

D
a

y 
3
 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.8680 0.5969 1.4542 [1] 0.9873 0.2812ǂ 3.5112ǂ 

[2] 0.8680 0.5420 1.6016 [2] 0.9873 0.6354 1.5538     
[3] 0.9873 0.7510 1.3146 

 Rat Liver 

RPLC HILIC 

D
a

y 
4

2
 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.9753 0.7750 1.2585 [1] 0.9832 0.8722 1.1273 

[2] 0.9753 0.8708 1.1200 [2] 0.9832 0.9194 1.0694 

[3] 0.9753 0.9214 1.0585 
    

D
a

y 
2

8
 

Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.9691 0.7830 1.2377 [1] 0.9900 0.9034 1.0958 

[2] 0.9691 0.9284 1.0438 [2] 0.9900 0.9286 1.0661         

D
a

y 
1

4
 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.8357 0.0070*ǂ 118.877*ǂ [1] 0.9712 0.4582ǂ 2.1194ǂ 

[2] 0.8357 0.2953ǂ 2.8298ǂ [2] 0.9712 0.6679 1.4541     
[3] 0.9712 0.7677 1.2651 

D
a

y 
7
 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.9973 0.3534ǂ 2.8218ǂ [1] 0.9512 0.5142 1.8498 

[2] 0.9973 0.7233 1.3787 [2] 0.9512 0.7394 1.2864 

[3] 0.9973 0.8425 1.1837 
    

D
a

y 
3
 Comp No. R2 Q2 R2/Q2 Comp No. R2 Q2 R2/Q2 

[1] 0.8938 0.5384 1.6601 [1] 0.9512 0.5142 1.8498 

[2] 0.8938 0.5749 1.5548 [2] 0.9512 0.7394 1.2864     
[3] 0.9873 0.7510 1.3146 
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3.6 DME & Uremic Toxins 

After establishing changes in the metabolomic profile by PCA, metabolites were correlated 

to CYP mRNA, protein and enzymatic activity after satisfying multivariate and univariate 

analysis. 204 m/z ratios were identified across all four runs that correlated with either 

CYP3A2 or CYP2C11 (Supplementary Table 3. Appendix B). Of these 204 m/z ratios, 9 

metabolites were identified at identification level 1 using purchased standards. These 

metabolites include: Allantoin, L-carnitine, creatinine, 2,8-dihydroxyadenine, equol-4/7-

O-glucuronide, 4-ethylphenyl sulfate, IS, pantothenic acid (vitamin B5) and PS (Table 3.4). 

IS, PS and 4-ethylphenyl sulfate concentrations across both plasma and liver samples using 

RPLC were quantified via standard curve. All three metabolites show significantly 

increased concentrations (p<0.0001) on days 28 and 42 for both plasma and liver tissue 

(Figure 3.6). 
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Table 3.4. Metabolites classified level 1 from CKD and control rat plasma and liver 

untargeted metabolomics.  

aMass error was obtained using the 4th decimal place m/z from the Human Metabolome Database (HMDB). 

bP = Plasma; L = Liver. cMetabolites satisfying univariate analysis and Spearman correlation to same-sample 

CYP3A2 or CYP2C11 data with correlation coefficients (r value) listed. 2-way independent ANOVA was 

conducted via MetaboAnalyst v3.0 (Wishart et al., 2013) using FDR<0.05 to correct for multiple 

comparisons and satisfaction required p<0.05 across both “Time” and “Disease”. dMultivariate analysis 

required VIP > 0.8 and 0.4 < p(corr)[1] < -0.4 indicating adequate separation by OPLA-DA and S-plot.  
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1 2 181.0328 0.57 
C4H6N4O3 

(M+Na) 
Allantoin P RPLC (+) -0.7254 -0.7073 FALSE 

1 5 
157.0359 0.56 

C4H6N4O3 
(M-H) 

Allantoin 
L RPLC (-) -0.7284 -0.7920 FALSE 

157.0360 0.57 P RPLC (-) -0.7391 -0.7921 FALSE 

1 1 162.1123 0.53 
C7H15NO3 

(M+H) 
L-Carnitine P RPLC (+) 0.6694 0.8657 TRUE 

1 0 114.0662 3.24 
C4H7N3O 

(M+H) 
Creatinine P HILIC (+) -0.7029 -0.6590 TRUE 

1 1 168.0515 4.56 
C5H5N5O2 

(M+H) 
2,8-

Dihydroxyadenine 
P HILIC (+) -0.7336 -0.6860 FALSE 

1 2 417.1182 1.85 
C21H22O9 

(M-H) 

Equol 4/7-O-

Glucuronide 
L RPLC (-) -0.7265 -0.8050 TRUE 

1 3 

201.0221 1.06 

C8H10O4S 

(M-H) 

4-Ethylphenyl 

Sulfate 

L HILIC (-) -0.6689 n/a TRUE 

201.0221 2.13 L RPLC (-) -0.7387 n/a TRUE 

201.0221 2.10 P RPLC (-) -0.6813 n/a TRUE 

1 3 
212.0016 1.65 

C8H7NO4S 

(M-H) 
Indoxyl Sulfate 

L RPLC (-) -0.7201 n/a TRUE 

212.0017 1.65 P RPLC (-) -0.7072 n/a TRUE 

1 0 220.1179 2.23 
C9H17NO5 

(M+H) 
Pantothenic Acid P HILIC (+) n/a -0.7160 TRUE 

1 3 

172.9909 1.27 

C6H6O4S 
(M-H) 

Phenyl Sulfate 

L HILIC (-) -0.6914 -0.6770 TRUE 

172.9906 1.59 L RPLC (-) -0.726 -0.6840 TRUE 

172.9907 1.38 P HILIC (-) -0.6848 -0.6500 TRUE 

172.9906 1.57 P RPLC (-) -0.6902 n/a TRUE 
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Figure 3.6. Quantitative analysis of metabolites IS, PS and EPS. Plasma IS (A), PS (C), 

EPS (E) (µM) and liver IS (B), PS (D) and EPS (F) (pmol/mg liver tissue) concentrations 

obtained via untargeted metabolomics. Results are presented as mean ± SEM, *p < 0.0001 

when compared to same day control; n≥6.  
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3.7 Caecal Microbiota 

To understand if the gut microbiota was changing in parallel with metabolite changes, next-

generation Illumina sequencing was used to assess the bacterial composition of the caecum. 

Following data processing of Illumina sequencing reads, 1199 bacterial OTUs were 

identified (Supplementary Table 2. Appendix B). Unsupervised PCA analysis separated 

caecum samples primarily by time, regardless of disease state along the first principle 

component (Figure 3.7.A). The PCA also clearly separated CKD and control groups at day 

28 and 42 on the second principle component (day 28: R2 = 0.97; Q2 =0.71 and day 42: R2 

= 0.98; Q2 =0.70) (Figure 3.7.B). The ALDEx2 R package (Fernandes et al., 2014; Gloor 

et al., 2016a) was used to compare the relative bacterial abundances responsible for the 

observed clustering on each day. Using effect size and overlap statistical thresholds, 

relative abundance of each OTU was tabulated and assessed for trends (Table 3.5). Only 

two bacterial OTUs changed between control and CKD on two or more consecutive days 

with respect to effect size and overlap. The first OTU was from the phylum Firmicutes and 

genus Turicibacter and was significantly higher in CKD rats compared to control animals 

on days 14, 28 and 42 (Figure 3.8.A) with an increasing trend associated with disease 

progression. The second OTU from phylum Bacteroidetes and genus Parabacteroides 

showed a significant decrease in control rats over time, but CKD rats did not show a similar 

decrease on days 28 and 42 (Figure 3.8.B). 
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Figure 3.7. Unsupervised principle component analysis (PCA) of control and CKD rat 

caecum bacterial sequences coloured by (A) day 0 () 3 (), 14 (), 28 () and 42 () 

or by (B) treatment, CKD () or control (). Data is centered without scaling.  
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Table 3.5. Relative abundances of caecal bacteria. Taxonomy of bacteria with relative 

abundance effect sizes > 1.5 or < -1.5 and overlap of < 6.5% across days 3, 14, 28 and 42 

obtained using R v3.2.3 package ALDEx2 v1.2.0; n ≥ 6 per group.  

Phylum Class Order Family Genus 
Effect 

Sizea 

Overlap 

(%) 

OTU # | 

% Identity 

Day 3 

Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia -1.97744 0.02% 52|73 

Day 14 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 1.57949 1.82% 15|96 

Firmicutes Clostridia Clostridiales Clostridiaceae_1 Clostridium* -1.91316 2.86% 7|100 

Firmicutes Clostridia Clostridiales Lachnospiraceae Acetatifactor -1.28995 5.45% 105|77 

Firmicutes Clostridia Clostridiales Lachnospiraceae unclassified 1.59802 2.86% 1089|100 

Firmicutes Clostridia Clostridiales Lachnospiraceae unclassified 2.79302 0.02% 5|100 

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Allobaculum -1.59115 4.43% 17|100 

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Turicibacter -1.62785 2.08% 31|100 

Day 28 

Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 3.33811 0.02% 35|100 

Bacteroidetes Bacteroidia Bacteroidales S24-7 unclassified 1.35053 3.65% 37|100 

Bacteroidetes Bacteroidia Bacteroidales S24-7 unclassified 1.73352 1.56% 1131|100 

Bacteroidetes Bacteroidia Bacteroidales unclassified unclassified -1.42179 4.94% 0|86 

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides -1.64147 6.23% 38|100 

Firmicutes Clostridia Clostridiales Lachnospiraceae unclassified 2.67131 0.02% 95|99 

Firmicutes Clostridia Clostridiales Ruminococcaceae unclassified 1.35584 6.25% 33|100 

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Allobaculum 1.54968 2.34% 71|100 

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Allobaculum 1.85920 0.26% 42|100 

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Allobaculum 1.89318 0.02% 81|100 

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Allobaculum 3.59784 0.02% 17|100 

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Turicibacter -1.87746 1.04% 31|100 

Day 42 

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides -2.04878 0.02% 38|100 

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides -1.77505 5.73% 32|100 

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides -1.54895 5.45% 48|100 

Bacteroidetes Bacteroidia Bacteroidales S24-7 unclassified 1.40509 4.16% 134|100 

Bacteroidetes Bacteroidia Bacteroidales S24-7 unclassified 1.63886 3.38% 50|100 

Bacteroidetes Bacteroidia Bacteroidales S24-7 unclassified 1.85022 3.38% 8|100 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus -2.02905 3.38% 30|100 

Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus -1.56150 4.69% 83|100 

Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillibacter 1.31799 5.71% 20|100 

Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 1.31819 4.16% 139|98 

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Allobaculum 1.40698 4.94% 81|100 

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Turicibacter -2.17912 0.26% 31|100 

unclassified unclassified unclassified unclassified unclassified -1.86555 5.45% 54|100 

aPositive effect sizes indicate bacteria with higher relative abundance in control while negative values 

indicate bacteria with a higher relative abundance in CKD. Bolded values indicate bacteria with -2 > effect 

size > 2 and overlap < 0.03%. *Clostridium_sensu_stricto_1.  
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Figure 3.8. Average relative abundance of genus Turicibacter (A) and genus 

Parabacteroides (B) displayed as an average relative abundance ratio of all OTUs ± 95% 

confidence interval using R v3.2.3 package ALDEx2 v1.2.0. *Effect size < -1.5 and overlap 

< 6.5% compared to same day control; n ≥ 6.   
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Chapter 4  

4 Discussion 

The pharmacokinetics of many drugs are unpredictably altered in CKD and these patients 

are susceptible to ADEs (Corsonello et al., 2005; Manley et al., 2005). Hepatic DMEs such 

as CYP3A4 and CYP2C9 are responsible for the non-renal drug clearance of nearly half of 

all marketed pharmaceuticals. It is therefore suggested that DMEs play a role in the altered 

pharmacokinetics of CKD. Although studies on the downregulation of CYPs in CKD 

patients are ongoing, animal models clearly identify downregulation associated with loss 

of renal clearance and subsequent retention of uremic toxins where mechanistic studies 

currently suggest a wide array of pathways from pre-transcriptional regulation through to 

direct inhibition of DMEs by uremic toxins, inflammatory factors and hormones (Guévin 

et al., 2002; Sun et al., 2004; Michaud et al., 2006, 2008; Barnes et al., 2014; Velenosi et 

al., 2014; Volpe et al., 2014; Yeung et al., 2014). Uremic toxins are also suggested to 

change the environment of the gut, altering the relative abundance of gut bacteria favouring 

uremic-toxin producing microbes and creating a state of dysbiosis in CKD patients (Wong 

et al., 2014; Felizardo et al., 2016; Vaziri, 2016). Further, metabolites or toxins produced 

by the altered microbiota may fuel the cycle of CKD progression and potentially DME 

downregulation. However, the pathophysiological factors of uremia and dysbiosis had yet 

to be tested temporally. In this thesis, uremia and dysbiosis have been characterized over 

CKD progression to identify potential causes of DME downregulation. Metabolite and 

bacterial profiles were compared to the expression and activity of CYP3A2 and CYP2C11 

in an attempt to support my hypothesis that uremic toxins and/or bacterial alterations are 

temporally associated with changes in DME regulation. 

4.1 Conclusions 

4.1.1 CKD Characterization 

As expected, urea and creatinine levels increased non-linearly in response to adenine-

induced CKD (Kobayashi et al., 2014; Feere et al., 2015). Both disease markers urea and 
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creatinine confirmed CKD induction by day 14 which increased in severity through to the 

end of the study and matched with kidney histology (Figure 3.1). Pathohistological features 

including enlarged nephron tubules, areas of fluid retention, inflammation, atrophy and 

adenine deposits were seen in diseased kidneys after day 14 as observed in previous studies 

using this model (Ali et al., 2013). Body weights were unchanged between groups, due to 

the validity of the pair-feeding method (Figure 3.2). 

4.1.2 DMEs over CKD Progression 

CYP3A2 and CYP2C11 DMEs were both negatively impacted by CKD on all three levels 

of detection as previously observed (Hashimoto et al., 1997; Velenosi et al., 2012). The 

enzymatic activity and protein levels mirror what is seen in mRNA expression suggesting 

that DMEs are influenced at a transcriptional level, influencing the production of protein 

and ultimately enzyme activity. CYP3A2 has stable expression in control rats while in 

CKD, levels decrease starting on day 14. These observations suggest a constitutive factor 

required for expression is being removed, inhibited or downregulated. Although further 

studies are required, this could be mediated by the increase in uremic toxins discussed in 

section 4.1.4 (Wright et al., 1997). In contrast, CYP2C11 shows an increase in control rats 

as early as day 7 but a failure to increase in CKD rats. The increase in control CYP2C11 

has been noted previously in healthy male rat juveniles where it is suspected to reflect the 

increase of endogenous substrate testosterone during puberty (Wright et al., 1997; Yun et 

al., 2010). The testosterone levels in male Wistar rats are known to increase starting at 25 

days of age and peaking at 60 days of age (Ghanadian et al., 1975). The estimated age of 

our rats is 60 days of age on day 28 of the study which aligns with our observed peak in 

CYP2C11 mRNA on day 28 (Figure 3.2.B). This may suggest we are capturing the end of 

puberty and testosterone peak where CKD may be inhibiting the testosterone peak in these 

adolescent rats. Additionally, CKD is known to impact male patients by causing 

hypogonadism associated with decreased levels of testosterone further suggesting a 

hormonal role in CYP regulation  (Carrero et al., 2011). CYP2C11 is also influenced by 

alterations in the normally cyclic levels of growth hormone (GH) where continuous GH 

release or complete loss of GH production will both downregulate CYP2C11 (Kaufhold et 

al., 2002). Interestingly, one-third of pediatric CKD patients experience GH insensitivity 
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and stunted stature (Cayir & Kosan, 2015; Akchurin et al., 2017). It is therefore possible 

that the rat CYP2C11 downregulation is due to insufficient levels of substrate testosterone 

or irregular production of GH. However, testosterone was not identified as a correlated 

metabolite and GH was not targeted for analysis.  

Perhaps the differing trends seen between CYP3A2 and CYP2C11 are attributed to nuclear 

receptor differences. CYP2C11 is shown to be less dependent on HNF-4α induction, and 

CKD-induced receptor binding inhibition is less extensive for CYP2C11 than it is CYP3A2 

(Honkakoski & Negishi, 2000; Velenosi et al., 2014; Feere et al., 2015). Alternatively, it 

is possible that the inactivation of shared nuclear receptor PXR  or reduced receptor binding 

capacity of RNA polymerase II is more severe for CYP2C11; however, this has yet to be 

tested (Mikamo et al., 2003; Velenosi et al., 2014; Feere et al., 2015).  

Enzymatic activity effectively produced the same trend as mRNA and protein results for 

both enzymes. However, CYP3A2 Km showed a significant increase between CKD and 

control on days 28 and 42. The increased Km suggests the concentration of substrate 

testosterone required to obtain the same half-maximal velocity (Vmax/2) has increased. This 

could be explained by i) the upregulation of another enzyme with substrate specificity for 

testosterone, or more likely, ii) an alternate CYP3A2 substrate associated with CKD days 

28 and 42 was bound to CYP3A2 prior to microsome isolation and had a stronger binding 

affinity than testosterone (Berg et al., 2012). This occurred in another study using 4-

hydroxylation of triazolam (Toda et al., 2009) although the reason was unexplained. 

Overall, we can conclude that both CYPs studied herein are negatively regulated in CKD 

at the transcriptional and expression levels, and CYP2C11 changes occur earlier than those 

of CYP3A2. 

4.1.3 Metabolome over CKD Progression 

Untargeted metabolomics analyzed by PCA showed that plasma RPLC allowed for the 

greatest magnitude of separation between control and CKD rats when compared to plasma 

HILIC separation. By PCA visualization, plasma samples showed greater separation in 

earlier stages of disease (days 3-14) than the liver samples. Unlike the plasma samples, 

liver metabolites were better differentiated with the HILIC column. This suggests CKD 
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first inflicts a uremic environment in the plasma before infiltrating the liver, which is the 

physiological expectation since the reduced GFR in CKD directly increases uremic toxin 

concentration at the glomerulus before the blood is cycled through the liver. This also tells 

us that uremic changes overlap with the early changes in CYP3A2 and CYP2C11, 

supporting the hypothesis that uremic toxins are involved with DME regulation. 

4.1.4 Uremic Toxins Correlated with DMEs 

Metabolites from each run were subjected to correlation analysis with CYP3A2 or 

CYP2C11 mRNA, protein or enzymatic activity levels. Of the 204 m/z ratios retrieved, 8 

of the 9 identified at level 1 classification were seen to increase with CKD progression 

[allantoin, creatinine, 2,8-dihydroxyadenine, pantothenic acid (vitamin B5), IS, PS, equol-

4/7-O-glucuronide and 4-ethylphenyl sulfate]. L-carnitine was the only level 1 metabolite 

that showed a positive correlation with CYP downregulation and thus decreased over CKD 

progression. 

Allantoin and creatinine are non-protein bound metabolites successfully eliminated by 

dialysis (Meyer & Hostetter, 2007). This makes them potentially less harmful than their 

protein-bound counterparts, and in general, the implications of non-protein bound uremic 

toxins with relation to drug metabolism or altered pharmacokinetics has largely been 

overlooked. Allantoin is an expected component of uremia because it is the primary 

elimination product of uric acid and increases are observed in the plasma and urine of CKD 

rats induced by 5/6th nephrectomy or adenine (Akiyama et al., 2012; Zhao et al., 2013a, 

2013b). Here we also find allantoin in rat liver, suggesting further infiltration due to 

advanced uremia. Allantoin is generally not produced by humans because we lack uricase 

activity although allantoin has been detected in CKD patients (Toyohara et al., 2010; Niwa, 

2013). Allantoin in humans is suggested to reflect the presence of uric acid-converting 

reactive oxygen species; however, it could provide evidence for uric acid translocation into 

the gut. Bacteria in our gut possess uricase activity and are capable of producing allantoin, 

although studies are needed to confirm this hypothesis (Zhao et al., 2013a; Wong et al., 

2014). 
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As discussed (see section 1.3.3), creatinine is a product of creatine and the most common 

marker of glomerular function used as a clinical tool to calculate eGFR. CYP3A2 and 

CYP2C11 both correlate with creatinine and urea, the two disease markers defining CKD 

in this model. Since creatinine increases with respect to CKD and DMEs correlate with 

CKD onset, creatinine by default will correlate with DME downregulation. However, 

creatinine involvement with DME regulation has been overlooked and little is known about 

its pathophysiological impact in CKD. Studies have established that of all creatinine in a 

patient experiencing renal failure, a variable 16-66% undergoes metabolic clearance (Wyss 

& Kaddurah-Daouk, 2000). Interestingly, up to 68% of creatinine cleared by metabolism 

is hypothesized to be converted back to creatine by creatininase-possessing bacteria of the 

gut, suggesting creatinine translocation across the gut lumen (Wyss & Kaddurah-Daouk, 

2000). The creatine can then i) return to the plasma via enteric cycling explaining raised 

levels of creatine in CKD patients, ii) or continue to be metabolized by gut bacteria to end-

products 3,1-methylhydantoin or glycolate (Wyss & Kaddurah-Daouk, 2000). 

Alternatively, creatinine can undergo oxidation to methylguanidine or methylurea of which 

methylguanidine has been identified as a harmful uremic toxin, progressing CKD when 

administered to rats (Wyss & Kaddurah-Daouk, 2000). Ultimately, more information on 

the toxic or adverse effects of creatinine and its degradation products need to be established 

with respect to DME regulation in CKD (Storm et al., 2013).  

2,8-Dihydroxyadenine, the adenine metabolite responsible for the induction of CKD, is 

also associated with CYP3A2 and CYP2C11. 2,8-Dihydroxyadenine induces CKD in a 

mechanistic, concentration-dependent manor and thus, DMEs correlating with CKD onset 

are expected to correlate with 2,8-dihydroxyadenine (Terai et al., 2008). Since DMEs are 

downregulated in other models of CKD, it is unlikely that 2,8-dihydroxyadenine is 

impacting DME regulation directly (Leblond et al., 2002; Velenosi et al., 2014; Feere et 

al., 2015). 

Pantothenic acid (vitamin B5) is an essential nutrient found in many foods, including the 

provided rat chow, that is metabolized into coenzyme A, a molecule necessary for healthy 

biochemical synthesis and energy metabolism (Berg et al., 2012). However, pantothenic 

acid has rarely been associated with toxic effects nor has any tolerable upper dosage been 



65 

 

established (Institute of Medicine, 1998; Kelly, 2011). An elegant study of organic anion 

transporter 1 (Oat1) suggests pantothenic acid requires Oat1 transport since it is 

accumulated in the plasma of Oat1 knockout mice (Wikoff et al., 2011). Additionally, 

administration of probenecid, a drug known to inhibit Oat transporters, increases plasma 

pantothenic acid levels (Kelley, 1975; Niwa, 2013). The proposed inhibition of OATs in 

CKD is associated with high-affinity uremic substrates, effectively incapacitating OAT 

function and likely causing the increase of pantothenic acid by inhibiting its movement 

though excretory pathways (Nigam et al., 2015). Pantothenic acid has not been studied as 

a modulator of DMEs possibly because it is considered non-toxic. However, studies are 

required to confirm the presence of seemingly non-toxic endogenous metabolites like 

pantothenic acid are not modulating DMEs. 

Gut derived uremic toxins that have prospect for being involved in DME downregulation 

from this study include IS, PS, 4-ethylphenyl sulfate, equol-4/7-O-glucournide and 

products of L-carnitine metabolism. IS and PS are two highly retained gut-derived uremic 

toxins (Wikoff et al., 2011; Leong & Sirich, 2016) both found in CKD patients and animal 

models (Itoh et al., 2012; Zhao et al., 2013a; Velenosi et al., 2016). IS and PS are linked 

to CKD comorbidities such as CVD (Hung et al., 2017) and have been associated with 

uremic influences of drug metabolism both through transcriptional regulation (Guévin et 

al., 2002), and IS as a direct inhibitor of CYP activity (Volpe et al., 2014). Thus, IS and 

PS found in this study support previously described roles in modifying CYP regulation in 

CKD. 

Equol-4/7-O-glucouronide (EOG) and 4-ethylphenyl sulfate (EPS) are both soy-derived 

uremic toxins seen in animal models fed a soy-based chow (Kikuchi et al., 2010; Velenosi 

et al., 2016). The rat chow in this experiment used 22% crude protein content of which 

daidzein and genistein aglycone equivalents (ranging from 350 to 650 mg/kg) were present. 

These isoflavones undergo bacterial transformation into equol derivatives such as EOG 

and EPS in the gut. EOG has only been found in animal models of CKD (Velenosi et al., 

2016) where EPS has been detected in dialysis patients, although without significant 

changes compared to healthy individuals (Itoh et al., 2012). Interestingly, EPS has a similar 

structure to p-cresyl sulfate, a metabolite usually found concomitant with IS and repeatedly 
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found in CKD (Itoh et al., 2013; Zhang & Davies, 2016). Due to the similar structure, the 

function of EPS is suspected to act similarly to p-cresyl sulfate which has been associated 

with deleterious human liver microsomal CYP3A4 regulation by direct inhibition (Barnes 

et al., 2014; Zhang & Davies, 2016; Gryp et al., 2017). It has yet to be assessed whether 

EPS can also directly inhibit the regulation of CYP3A2 or CYP2C11 in rats. 

L-Carnitine is a required nutrient primarily obtained through the diet in meat, eggs and 

protein-rich foods including soy (Klaassen & Cui, 2015). In contrast to an increase in L-

carnitine observed in the heart and kidney of adenine-induced CKD rats (Velenosi et al., 

2016), here we see a decrease in L-carnitine in the plasma in conjunction with 

downregulated CYPs in the liver. This could suggest a removal of L-carnitine as it is 

transformed into TMAO as seen previously (Koeth et al., 2013). L-Carnitine and choline 

are the precursors to TMA, a bacteria by-product that is converted to TMAO in the liver 

by flavin-containing monooxygenases (FMO) (Koeth et al., 2013). TMAO is associated 

with increased risk of developing atherosclerosis and thus, of increasing interest as a 

harmful uremic toxin in CKD and CVD (Koeth et al., 2013; Aron-Wisnewsky & Clément, 

2015). TMAO detection needs a sensitive MS method sometimes referred to as target 

enhancement, usually utilizing a triple quadropole MS rather than a QTof which is better 

for sensitivity (Heaney et al., 2016). Therefore, TMAO was missed by our untargeted 

methods because the sensitivity was insufficient (Heaney et al., 2016). Neither L-carnitine 

nor TMAO have been tested as DME regulatory factors but have been mentioned in 

relation to drug metabolism and provide potential candidates for future studies (Selwyn et 

al., 2015). 

The identification and correlation of these uremic toxins support their involvement in DME 

regulation. However, as discussed in section 1.7.1, administration of AST-120 in CKD, 

reduces uremic toxin levels (Kikuchi et al., 2010), but CYP3A2 expression is not recovered 

(Velenosi, 2015). This protection by AST-120 suggests factors other than uremic toxins 

may be involved. The quantified IS, PS and EPS concentrations over CKD progression 

observed in this thesis adds support to this idea (Figure 3.6). Severe concentrations (over 

150µM for IS) are not observed until following day 28, well after we observe a decrease 

in CYPs. Preliminary studies using Huh7 human hepatoma cells show that protein-bound 
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IS at concentrations of 180±20µM were required to reduce CYP3A4 expression by 50% 

(Velenosi, 2015). In addition, a similar study found that concentrations of IS required to 

downregulate CYP3A4 activity were above the abnormal range seen in CKD patients, 

which was defined as the highest ever recorded IS level in a CKD patient at >940µM 

(Vanholder et al., 2003; Volpe et al., 2014). Although the studies differ dramatically, 

collectively they suggest that other hypotheses such as immunological factors, PTH or 

undiscovered pathways might be initiating DME downregulation, and it is not until severe 

stages of CKD that uremic toxins contribute to the dramatic reduction in CYP expression 

seen here and by others (Velenosi et al., 2012). In conclusion, it is temporally plausible 

that uremic toxins contribute to DME downregulation, but other factors may be involved 

prior to uremic toxin influences.  

Interestingly, of the metabolites found by correlation to CYP3A2 or CYP2C11, the five 

metabolites that are potentially associated to DME downregulation in the literature are all 

gut-derived uremic toxins. This supports the need to understand the changes in the gut 

microbial environment and assess if bacterial alterations are impacting the presence of 

these toxins. 

4.1.5 Microbiome over CKD Progression 

The gut microbiota, sampled by caecum swab, was phylogenetically analyzed using 16S 

sequencing. Multivariate analysis showed the microbiota was most significantly influenced 

by time and secondarily by disease state. This correlation suggests that the microbiota 

changes caused by CKD induction are less profound than age-associated bacterial changes. 

Additionally, in comparison to the metabolomic PCA, microbial clustering with respect to 

disease state was poor and showed little to no separation before day 14. This observation 

suggests the uremic environment in the plasma and the liver are altered well before 

dysbiosis occurs. Interestingly however, the metabolite concentrations of IS, PS and EPS 

all dramatically increase after day 28 when changes are simultaneously observed in the gut 

microbiota. This lends support to the idea that uremia may be driving the change in gut 

microbial abundance through a damaged gut wall (Figure 4.1) (Magnusson et al., 1991; 

Felizardo et al., 2016; Vaziri, 2016). The late and dramatic increase in gut-derived uremic 

toxins also suggests dysbiosis contributes in the cycle of worsening uremia, likely adding 
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to the uremic milieu by increasing bacteria capable of uremic toxin production (Wong et 

al., 2014; Vanholder & Glorieux, 2015; Felizardo et al., 2016). Referencing the KEGG 

results of Wong and colleagues, all bacterial families significantly changed on days 28 and 

42 contained strains capable of producing at least one of the following genes: urease, 

tryptophanase, phosphotransbutyrylase or butyrate kinase, although the bacteria are 

inconsistently characteristic of control or CKD rats (Wong et al., 2014). The sole bacterial 

genus significantly changed due to disease state prior to day 14 resided in the bacterial 

order Clostridiales, which matched the findings of Barrios and colleagues who sequenced 

the gut microbiota of 855 people and correlated only bacteria from the Clostridiales order 

with eGFR in early renal decline (Barrios et al., 2015).  

Although interesting to examine the individual days for OTUs differing due to CKD, only 

two bacterial genera, Turicibacter and Parabacteroides, were significant on two or more 

consecutive days, best correlating with DME trends. Turicibacter was the most consistently 

changed bacteria, changing as early as day 14 through to day 42 with an increasing trend 

as CKD progressed. Identifying the genus Turicibacter in CKD animals is a novel finding. 

All Turicibacter are gram-positive, strictly anaerobic, rod-shaped bacteria of which very 

little is known. Turicibacter was first identified and named in 2002 by the University of 

Zürich, Switzerland where the bacteria were found in the blood of a febrile 35-year-old 

male with acute appendicitis (Bosshard et al., 2002). Shortly thereafter, another febrile 

patient diagnosed with acute appendicitis had Turicibacter cultured from their blood; this 

time a 79-year-old female in Sweden (Bosshard et al., 2002). In 2007, Turicibacter was 

associated with pouchitis in ulcerative colitis patients which is a complication of 

proctocolectomy (Falk et al., 2007). We also know Turicibacter sp. are found in healthy 

human feces from a FMT study where human feces were transplanted into colons of germ-

free rats to ascertain whether rats should be used as a transplantation model (Licht et al., 

2007). Turicibacter was one such bacteria that survived two weeks after transplantation via 

stool gavage.  

Only 4 strains, all within the same species sanguinis, have been published to date: MOL361 

(Bosshard et al., 2002), PC909 (Cuív et al., 2011), ZCY83 (Cao et al., 2015), H121 

(Auchtung et al., 2016). A BLASTn search of our Turicibacter sequence matched the 
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MOL361 species with 100% identity (NR_028816.1). Turicibacter is anaerobic and 

therefore, considerably difficult to culture. Of the strains successfully cultured, none have 

tryptophanase activity suggesting these bacteria are not involved in producing indole 

derivatives such as IS (Bosshard et al., 2002). The Erysipelotrichaceae family of which 

Turicibacter belongs does contain strains capable of butyrate and phosphotransbutyrylase 

activity, although this has yet to be confirmed in the Turicibacter genus (Wong et al., 2014). 

Assuming all rats were exposed to Turicibacter for the study duration, we suggest our 

findings indicate CKD animals are more susceptible to gut colonization by Turicibacter. 

The BLASTn results for the Parabacteroides genus OTU suggested 99% sequence identity 

to two stains of the species distasonis: strain ATCC 8503 (NR_074376.1) and JCM 5825 

(NR_041342.1). In 2006, Bacteroides distasonis was reclassified as Parabacteroides 

distasonis and thus, all subsequent information pertains to either classification (Sakamoto 

& Benno, 2006). Parabacteroides is a gram-negative, anaerobic, non-spore-forming genus. 

P. distasonis is present in the human gut and has been identified via PCR in fecal samples 

long before the existence of next-generation sequencing methods (Franks et al., 1998). P. 

distasonis is classified in the KEGG pathway database as an opportunistic pathogen 

capable of anaerobic infection (Xu et al., 2007). In a study of gut microbiota in Crohn’s 

disease, P. distasonis was more abundant in the control group, contradictory to expected 

findings (Mondot et al., 2011). More recently, components of P. distasonis have shown 

improvement of irritable bowel disease (IBD) in mice and have been suggested as a 

potential therapeutic for reduction of inflammation in IBD (Kverka et al., 2011). However, 

analysis of bacteria capable of generating phenol and indole compounds found P. 

distasonis proficient at producing p-cresol (Gryp et al., 2017) and IS (Zhang & Davies, 

2016). In general, it seems P. distasonis is potentially both harmful or beneficial depending 

on translocation, relative abundance and physiological state of the host. Our results show 

a unique trend where CKD rats have a stable level of Parabacteroides and controls slowly 

reduce the abundance of this genus after 28 days. Given the multitude of associations with 

disease, Parabacteroides may be taking advantage of the dysbiotic state in CKD when it is 

normally removed in controls by other healthy bacteria as a part of the progression in age-

associated microbial changes. 
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This data shows that DME regulation in CKD is initially mediated by changes independent 

of an altered gut microbiota; however, late and dramatic increases in both uremic toxins 

and the bacterial environment suggest the gut microbiota may influence DMEs in severe 

CKD. It also remains possible that in this late stage CKD, gut microbes are influencing 

DMEs through uremic-independent methods such as inflammatory factor production as 

suggested by germ-free studies that also see downregulation of CYPs (Toda et al., 2009; 

Claus et al., 2011; Selwyn et al., 2015). 

4.1.6 Summary 

In conclusion, global plasma and liver alterations of the metabolome over disease 

progression provide support for uremic toxins playing a role in DME downregulation. 

Alternatively, the early detection of DME downregulation and late surge of gut-derived 

uremic toxin concentrations suggest other factors are involved in DME regulation in early 

stages of CKD (Figure 4.1). A temporal association was established between severe CKD, 

caecal dysbiosis and increase in gut-derived uremic toxins IS, PS and EPS. This association 

supports the positive-feedback loop of uremia and dysbiosis suspected to drive severe CKD 

(Figure 4.1). 
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Figure 4.1. Temporal associations of uremia and dysbiosis with CYP3A2 and CYP2C11 

expression over CKD progression. Days (3 through 42) refer to rat study time points carried 

out in this thesis. CKD was characterized by urea and creatinine beginning on day 14 and 

correlating with the decrease in CYP3A2 expression. CYP2C11 expression decreased as 

early as day 7. Although plasma uremia may be involved as early as day 7 indicated by 

untargeted multivariate analysis, quantified uremic toxins were significantly increased only 

on days 28 and 42. Similarly, gut bacterial dysbiosis was detectable on days 28 and 42 

supporting the hypothesis of a positive-feedback cycle involving uremia and the gut 

microbiota. This study suggests there are likely other factors influencing DMEs in early 

stages of CKD. Images were modified from Servier Medical Art 

(http://www.servier.co.uk/medical-art-gallery). 
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4.2 Limitations 

The greatest limitation of this study is that causative conclusions cannot be made from vast 

cross-sectional data such as those obtained from sequencing or metabolomics. Results from 

these discovery-based methods instead provide whole-system comprehension of complex 

mechanistic processes and allows for discovery of previously unknown biological factors 

that drive future experiments assessing causation. 

4.2.1 Animal Model & Study Design 

Utilizing in vivo animal models is accompanied with limitations when used to understand 

human physiology. Human CYP expression is comparable to rat and mouse CYP 

expression through orthologous enzymes that largely perform the same tasks, yet some 

substrates are species-specific indicating the enzyme activities are not identical to their 

human orthologs (Nelson et al., 2004; Pan et al., 2016). Secondly, the induction of CKD 

is achievable through different methods. Adenine-induced CKD is a less invasive orally 

administered model in comparison to the more common 5/6th nephrectomy model and 

although not linear, it is suggested to provide a more consistent rate of CKD onset than 

5/6th nephrectomy (Terai et al., 2008). Applying a steady rate of CKD onset was important 

for our temporal study design. Conceptually however, the adenine model has been 

questioned as a CKD model because it could also represent an acute kidney injury (AKI) 

model. Adenine metabolites precipitate when concentrated, mechanically damaging the 

kidney tubules comparable to kidney stones (Engle et al., 1996; Morishita et al., 2011; 

Succar et al., 2017). Though separately defined in nephrology for clinical diagnosis, AKI 

is a risk factor for CKD and CKD is a risk factor for AKI, and thus, the adenine model 

continues to be used for either condition (Chawla et al., 2014). The adenine model also 

reduces the amount of food ingested during the first days of adenine-induction, requiring 

that pair-feeding be established. This is especially important for CYP expression analysis 

since CYPs are influenced by short-term fasting (Lammers et al., 2015). Lastly, it is 

unknown how adenine and its metabolites will affect the gut microbial environment apart 

from CKD. When ingested, adenine absorption is proposed to occur within the small 

intestine, earlier in the intestinal tract than the caecal sampling site (Salati et al., 1984). It 
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is noteworthy that the adenine metabolite 2,8-dihydroxyadenine was only detected in the 

plasma and not in the liver of CKD rats suggesting 2,8-dihydroxyadenine is unlikely to be 

impacting the liver. 

4.2.2 Time Point Inclusion 

Initial results from this study evaluated only rats sacrificed on day 0, 3, 14, 28 and 42 and 

suggested CYP expression and uremic toxin levels were changing between days 3 and 14. 

In the attempt to obtain as much information about the transition between early and late 

CKD, a second study included rats subjected to identical conditions for 7 days. Upon 

completion of the second study, preliminary CYP3A2 mRNA expression results showed 

day 0 control rats had decreased expression in comparison with the other control groups 

and essentially increased after 3 days (Figure 4.2). It was later identified that DME 

expression is impacted by short-term fasting (Lammers et al., 2015). Thus, a third study 

compared only control ad libitum fed animals with animals receiving the CKD pair-fed 

amount of control food. After 72 hours, it was found that DME levels of animals receiving 

reduced feed were equivalent to levels observed in day 3 control rats. Therefore, day 0 rats 

from the final study were carried onward as the control day 0 group for the remainder of 

the investigation (Figure 4.2).  
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Figure 4.2. Short-term fasting effects on CYP3A2 mRNA expression. A) Preliminary 

CYP3A2 mRNA expression data comparing rats fed ad libitum to rats pair-fed lower food 

volumes matching those consumed by CKD rats. Values are expressed as the mean ± SEM 

relative to housekeeping gene β-actin and normalized to the ad libitum group. *p<0.05 

using a one-way ANOVA with Holm-Sidak’s multiple comparisons test. B) CYP3A2 

mRNA expression results before and after accounting for short-term fasting effects by 

waiting to sacrifice 72 hours after pair-feeding is initiated. 
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However, this time sensitivity impacted bacterial sampling. All animals from which 

bacteria are sampled, ideally must eat and live in the same area and be exposed to all 

experiences that may introduce foreign bacteria to the same extent if the sample size is 

small and bacterial differences are expected to be detectable. Ideally, particularly in animal 

studies, this means the animals should all be bought at the same time in one shipment if 

being compared together. Since the animals from day 7 and day 0 were obtained from the 

supplier at different times than the original study, the gut microbiota variability was too 

large to assess as a whole and therefore removed from bacterial analysis, reducing the 

number of time points available for evaluation. 

4.2.3 “Omics” Method Limitations 

Although broadly encompassing, both the Illumina sequencing and untargeted 

metabolomics methods are limited. Even though the 16S rRNA gene is currently the gene 

of preference, it is highly conserved, limiting its resolution and accuracy to the genus level 

(Poretsky et al., 2014). Also, the development of short, overlapping pair-end reads enabled 

the use of 16S gene sequencing on the MiSeq platform given only a small section of the 

16S gene required sequencing (Poretsky et al., 2014). However, this requires that out of 

the nine variable regions (V1-V9), only a select few can be covered by the read length 

capabilities of the MiSeq (Caporaso et al., 2012). It has been identified that using different 

variable regions (V1 through V6) results in different subsets of identifiable bacteria 

(Chakravorty et al., 2007; Youssef et al., 2009). Therefore, the V4 variable region was 

chosen based on the most bacteria that could be detected and likely present within a caecal 

sample (Caporaso et al., 2011).  

Similarly, untargeted metabolomics can identify a vast number of metabolites in a single 

sample, but each metabolite is only detectable if the combination of sample preparation, 

UPLC column, chromatography and MS configuration are satisfactory for that metabolite. 

As an example, TMAO is likely present in our rat plasma samples, but is not detected 

because the MS method needs to be adjusted for sensitivity (Heaney et al., 2016). To obtain 

as many metabolite masses as possible, two columns of differing hydrophobicity and both 

positive and negative ionization modes were used. 
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4.2.4 Statistics 

In addition to method limitations, analysis methods were also limiting. Little continuity in 

genera abundance across time points was primarily caused by small sample size of <7 per 

group. The inter-individual variability, in addition to machine and sampling variability, 

effectively masked small changes caused by condition and required broad shifts in bacterial 

abundance to prove significance (Poretsky et al., 2014; Gloor et al., 2016a). Without 

increasing sample size, this could be somewhat circumvented by using a sequencing 

method with less error and greater read depth (e.g. Illumina HiSeq), potentially providing 

more bacterial associations (Caporaso et al., 2012). 

Correlative analysis between metabolites and DME levels was the second-best option after 

a univariate model capable of acquiring an independent, FDR corrected, 2-way ANOVA 

with multiple comparisons for each time point between CKD and same day control. 

Although an independent, FDR corrected 2-way ANOVA is obtainable via MetaboAnalyst 

v3.0, p-values do not indicate on which days the significance is occurring. To answer the 

question of when the metabolite is changing over time, multiple comparison analysis using 

Sidaks multiple comparisons test is generally applied to the 2-way ANOVA. However, 

MetaboAnalyst v3.0 is incapable of multiple comparison testing and alternative software 

including GraphPad are unable to hold the vast amount of information present in a 

metabolomics dataset. It is also possible that a custom R script be written to obtain this 

same goal. However, for this study, there were limited options for identifying at what day 

each metabolite was changing and related to CYP3A2 (day 14) and CYP2C11 (day 7) 

expression. Alternatively, Spearman correlation analysis was used to identify metabolites 

that exhibit a similar trend to DME changes over CKD progression. Unfortunately, this 

correlation analysis assumes that metabolite concentrations influencing DMEs are directly 

proportional to DME levels, potentially limiting the results. 

4.3 Future Studies 

This thesis has emphasized the need for research around DMEs in early stages of CKD. 

Specifically, it needs to be elucidated if DMEs are truly changed in humans with CKD, 

apart from animal models. Alternatives to the erythromycin breath test are essential to 
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understanding human CYP3A4 regulation. In the meantime, DME studies can improve the 

rodent-to-human physiological gap by employing humanized mouse models of CYP3A4 

or CYP2C9 along with other DMEs or transporters (Becker & Hewitson, 2013; Ladda & 

Goralski, 2016).  

Although it is established that dialysis can effectively change the bioavailability of drugs 

in humans, it has yet to be determined if dialysis changes DME levels (Atkinson & Umans, 

2009). In theory, if only protein-bound uremic toxins are affecting drug pharmacokinetics, 

dialysis will not improve DME levels. An in vitro study looked at CYP expression and 

activity following the implement of pre-dialysis versus post-dialysis serum in rat 

hepatocytes and showed a decrease in DMEs after only pre-dialysis serum suggesting 

uremic toxins involved in DME downregulation can be removed via dialysis (Michaud et 

al., 2008). Additional information on what metabolites are being removed, perhaps through 

MS methods, would help researchers identify metabolites worth targeting for causation 

analysis. In vivo models of dialysis have been established and would provide an interesting 

avenue for studying DME levels before and after dialysis (Mortier et al., 2002; Zareie et 

al., 2005).  

It would also prove helpful if the list of mechanistic causes of DME downregulation were 

assessed together to understand the extent to which each mechanism is contributing to the 

entire downregulation of DMEs. For example, one could introduce suspected uremic toxins 

such as IS, PS, EPS, EOG and TMAO to human cells in vitro or human liver microsomes 

ex vivo and subsequently test for direct inhibition of human CYP3A4 or CYP2C9 

expression alongside nuclear receptor binding alterations and detection of PTH and 

inflammatory factors.  

Studies are needed to assess the implications of specific bacteria on disease states. It is 

unclear if Turicibacter is normally found in the gut at very low abundance or a foreign 

bacterium infiltrating a weak host. It is also unknown if this bacterium is pathological or 

commensal in nature. It would be beneficial to confirm that CKD is not inducible via 

bacterial alterations such as infection with Turicibacter. This assessment could be 

accomplished by FMT to introduce CKD microbiota, potentially from human CKD 
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patients to germ-free mice to see if i) the mouse acquires CKD regardless of initial kidney 

damage, and ii) if the presence of CKD-associated bacteria can cause DME downregulation 

in the absence of uremia. In conjunction, caecal or fecal metabolomics would provide 

information about what metabolites reach the gut lumen and aid in dysbiosis.  

4.4 Relevance & Conclusions 

In general, future CKD therapies should be targeted not only to improve disease 

comorbidities and prolong the progression into ESRD, but also improve drug disposition 

to ensure the pharmaceuticals received are providing the highest efficacy attainable while 

avoiding drug toxicity. Emerging therapies still directed towards improving 

pathophysiology and uremia include uremic toxin removal (e.g. AST-120) and pro- or 

prebiotics to stimulate the reversal of dysbiosis (Ranganathan et al., 2006; Koppe et al., 

2015; Rossi et al., 2016; Yamamoto et al., 2016). Currently there is no prospect for FMT 

to benefit CKD patients, although it has proved largely successful for C. difficile infections 

and theoretically translatable to CKD (Persky & Brandt, 2000; Al Khodor & Shatat, 2016). 

Our results suggest that future therapeutic research for DME regulation be targeted in the 

areas of uremic toxin removal as a priority over the reestablishment of the gut microbiota 

because our results suggest uremic toxins provide a more likely candidate for early stage 

DME alteration. 

Ultimately, understanding the effects of uremia and bacteria with respect to CKD can help 

assess whether uremic toxins or the gut microbiota are potential therapeutic targets in DME 

regulation. Whether it be adsorption of uremic toxins or combating bacterial dysbiosis, 

providing emphasis for one method may drive future research in the direction of greatest 

efficacy. On a larger scale, knowledge of how DMEs fluctuate with respect to metabolites 

and bacteria could lead to improved clinical testing, dosing and prevention of adverse 

reactions. 
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Appendix B: Supplementary Information 

 

Supplementary Table 1. Table of barcoded primers used for Illumina sequencing. Refer 

to excel file (.xlsx) titled “Barcoded Primers for Illumina Sequencing”. 

Supplementary Table 2. Table of 1199 operational taxonomic units identified from 

Illumina sequencing. Refer to excel file (.xlsx) titled “Final OTU Table from Illumina 

Sequencing”. 

Supplementary Table 3. Table of 204 m/z ratios found by untargeted mass spectrometry 

from CKD and control rat plasma and liver samples and RPLC or HILIC chromatography. 

Refer to excel file (.xlsx) titled “Final Metabolite Table from UPLC-MS”. Metabolites 

satisfying univariate analysis and Spearman correlation to same-sample CYP3A2 or 

CYP2C11 mRNA, protein or enzyme activity data. Spearman correlation coefficients (r 

value) are listed. 2-way independent ANOVA was conducted via MetaboAnalyst v3.0 

using FDR<0.05 to correct for multiple comparisons and satisfaction required p<0.05 

across both Time and Disease. Multivariate analysis required VIP > 0.8 and 0.4 < p(corr)[1] 

< -0.4 indicating adequate separation by OPLA-DA and S-plot. Mass error was obtained 

using the 4th decimal place m/z from the Human Metabolome Database (HMDB). 

Italicized suspected metabolites refer to a group of plausible metabolites of similar 

structure. For definitions of identification levels refer to section 2.6.4.  
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