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Abstract 

Some patients with disorders of consciousness retain sensory and cognitive abilities that 

are not apparent from their outward behaviour. It is crucial to identify and characterise 

these covert abilities for diagnosis, prognosis, and medical ethics. This thesis uses 

neuroimaging techniques to investigate cognitive preservation and awareness in patients 

who are behaviourally non-responsive due to acquired brain injuries. In the first chapter, 

a large sample of healthy volunteers, including experienced athletes and musicians, 

imagined actions of varying complexity and familiarity. Motor imagery involving certain 

complex, familiar actions correlated with a more robust sensorimotor rhythm. In the 

second chapter, several patients with disorders of consciousness participated in multiple 

experiments based on neural responses to mental imagery, including one task featuring 

complex, familiar imagined actions. Although the patients did not generate enhanced 

sensorimotor rhythms for the complex, familiar motor imagery, the detection of covert 

cognition was more sensitive owing to the multi-modal nature of the assessment. In the 

final empirical chapter, a sample of healthy volunteers and a heterogeneous cohort of 

patients with disorders of consciousness completed a novel oddball task based on tactile 

stimulation. Critically, this task delineated an attentional hierarchy in the patient sample, 

and patients with the ability to follow commands were differentiated from those unable to 

do so by event-related potential evidence of attentional orienting. Due to the 

heterogeneity of aetiology and pathology in the disorders of consciousness, these patients 

vary in their suitability for neuroimaging, the preservation of neural structures, and the 

cognitive resources available to them. Assessments of several perceptual and cognitive 

abilities supported by spatially-distinct brain regions and indexed by multiple neural 

signatures are therefore required to accurately characterise a patient’s abilities and 

probable subjective experience. 

Keywords 

Mental imagery, attention, sensorimotor rhythm, event-related potential, awareness, 

disorders of consciousness. 
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Chapter 1  

1 General Introduction 

1.1 Disorders of consciousness 

Following a severe head injury, a person may enter a non-responsive state referred to as 

coma. Patients in a comatose state often require life-sustaining therapies and do not 

respond to external stimulation (Plum & Posner, 1972). Upon emergence from coma, 

some patients resume alternating periods of eye-opening and quiescence that resemble 

healthy sleep-wake cycles, alongside absent or inconsistent behavioural responsiveness 

(Bernat, 2006; Fernández-Espejo & Owen, 2013; Giacino, Fins, Laureys, & Schiff, 

2014). Patients who do not exhibit voluntary responses to external stimulation are 

diagnosed as being in a Vegetative State (Bernat, 2006; Jennett, 2002). Diagnostic 

criteria for the Vegetative State were initially described in 1972 (Jennett & Plum, 1972). 

Several international task forces have revisited these criteria since then (e.g., Andrews, 

1996; Multi-Society Task Force on PVS, 1994a; Royal College of Physicians Working 

Group, 1996, 2003). Across all iterations, however, there is consensus that patients in a 

Vegetative State lack awareness. To more accurately and sensitively describe the 

Vegetative State, it was recently proposed that this disorder be renamed Unresponsive 

Wakefulness Syndrome (Laureys et al., 2010). In 2002, formal diagnostic criteria for the 

Minimally Conscious State were proposed to describe patients who generate variable, but 

reproducible, voluntary responses to external stimulation (Giacino et al., 2002). Patients 

in a Minimally Conscious State possess awareness, and the ability to follow verbal 

commands may be indicated by a diagnostic qualifier of ‘Plus’ if present (Minimally 

Conscious State Plus), or ‘Minus’ if absent (Minimally Conscious State Minus; Bruno et 

al., 2012; Bruno, Vanhaudenhuyse, Thibaut, Moonen, & Laureys, 2011). Emergence 

from a Minimally Conscious State is indicated when a patient demonstrates functional, 

accurate communication or functional object use (Giacino et al., 2002). Together with 

coma and brain death, these altered states of awareness following brain injury comprise 

the disorders of consciousness (Table 1). 
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Table 1. Overview of the disorders of consciousness. 

Diagnosis Description Characteristic 
Behaviour 

Command Following 
and Communication 

Brain death Loss of all brainstem reflexes 
and absence of breathing 
(continuing apnoea) 

None None 

Coma Closed eyes without 
responsiveness to stimulation 
for no more than about four 
weeks 

None, although some 
patients may exhibit 
reflexive responses to 
pain 

None 

Vegetative State/ 
Unresponsive 
Wakefulness 
Syndrome 

Non-behavioural 
Minimally Conscious 
State  

 

Periods of eye-opening 
without reproducible, 
voluntary responses to 
stimulation 

Sometimes denoted as a non-
behavioural Minimally 
Conscious State when 
command following is 
demonstrated in a 
neuroimaging-based 
assessment  

None, or reflexive 
behaviour, including any 
of: 

Startle responses 
(auditory or visual);  

abnormal posturing;  

withdrawal (motor);  

reflexive oral movements; 
and/or  

localization to sound 

None 

Patients in a non-
behavioural Minimally 
Conscious State 
demonstrate command 
following in a 
neuroimaging-based 
assessment 

Minimally Conscious 
State (Plus or Minus) 

Periods of eye-opening with 
reflexive and voluntary 
behaviour 

Sometimes denoted as 
Minimally Conscious State 
Plus when behavioural 
command following is 
present, or Minimally 
Conscious State Minus when 
behavioural command 
following is absent 

Reproducible reflexive 
and voluntary behaviour, 
including at least one of: 

Visual fixation or pursuit; 

object localization, 
recognition, or 
manipulation;  

orientation to noxious 
stimulation; or  

automatic motor 
responses 

Minimally Conscious State 
Minus patients demonstrate 
none 

Minimally Conscious State 
Plus patients demonstrate 
at least one of: 

Reproducible or consistent 
movement to command; 

intelligible verbalization; 
or 

non-functional, intentional 
communication  

Emergence from a 
Minimally Conscious 
State   

Periods of eye-opening with 
reflexive and sophisticated 
voluntary behaviour 

 

Reproducible reflexive 
and voluntary behaviour, 
including at least one of: 

Accurate functional 
communication; and/or 

 functional object use 

At least one of: 

Accurate, functional 
communication; or 

functional object use 

Notes. All behavioural criteria are taken from the Coma Recovery Scale-Revised (Kalmar 

& Giacino, 2005). 
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Disorders of consciousness are often caused by traumatic brain injuries (Bernat, 2006; 

Pisa, Biasutti, Drigo, & Barbone, 2014). A patient may also enter these states following a 

non-traumatic brain injury, which commonly occurs from hypoxia secondary to cardiac 

arrest or stroke (Bernat, 2006; Tresch, Sims, Duthie, Goldstein, & Lane, 1991). 

Additionally, an adult patient with a neurodegenerative disease, such as Parkinson’s or 

Huntington’s, may progress to a Minimally Conscious State in the final stages of his or 

her illness (Walshe & Leonard, 1985). Regarding pathology, traumatic cases of disorders 

of consciousness usually include diffuse axonal injury in white matter alongside other 

neuronal damage from injuries such as cortical contusions, increased intracranial 

pressure, and cerebral haemorrhages (Adams, Graham, & Jennett, 2000). In non-

traumatic cases of disorders of consciousness involving hypoxia, extensive damage to 

cortical and thalamic grey matter is common (Dougherty, Rawlinson, Levy, & Plum, 

1981). Total grey matter volume, however, does not necessarily differentiate between the 

Vegetative State and Minimally Conscious State (Di Perri et al., 2016). The Vegetative 

State and Minimally Conscious State differ such that the Vegetative State usually 

corresponds with more severe pathological changes than the Minimally Conscious State 

(Bernat, 2006; Jennett, Adams, Murray, & Graham, 2001). Brainstem and hypothalamic 

structures are typically preserved in all patients with disorders of consciousness (Kinney 

& Samuels, 1994). In this thesis, all patient cohorts comprise convenience samples of 

adults with acquired brain injuries of traumatic, non-traumatic, or mixed (i.e., both 

traumatic and non-traumatic) aetiology. Although details are provided concerning the 

aetiology and pathology of each patient’s brain injuries, a group-level examination of 

these factors is not included because the convenience samples are small and highly 

heterogeneous. 

Disorders of consciousness are usually denoted with an acute or chronic time course. 

Some patients temporarily exhibit a Vegetative State or Minimally Conscious State as 

they recover from a head injury, while other patients remain in these states until the end 

of their lives. Assuming the same diagnosis, a patient with a non-traumatic brain injury is 

less likely to regain awareness than a patient with a traumatic brain injury (Multi-Society 

Task Force on PVS, 1994a, 1994b). Additionally, a patient’s likelihood of recovering 
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awareness decreases the longer the patient persists in the same conscious state. For 

example, the probability that an adult patient in a Vegetative State recovers awareness is 

less than 1% after 3 months following a non-traumatic brain injury and after 1 year 

following a traumatic brain injury (Multi-Society Task Force on PVS, 1994a, 1994b). For 

patients in a Minimally Conscious State for less than 1 month post-injury, up to 50% will 

return to an independent life after 1 year (Giacino, 2004). For patients who persist in a 

Minimally Conscious State for 1 month or longer, however, outcomes considerably vary 

after 2 to 5 years; some patients exhibit mild disabilities with total functional 

independence, while other patients remain severely disabled and completely dependent 

on others (Lammi, Smith, Tate, & Taylor, 2005). Notably, there are several reports of 

seemingly spontaneous recoveries of awareness beyond these timelines for patients with 

disorders of consciousness (e.g., Arts, van Dongen, van Hof-van Duin, & Lammens, 

1985; Rosenberg, Johnson, & Brenner, 1977; Wilson, Gracey, & Bainbridge, 2001). 

Additionally, there a few reports of patients who exhibited at least a partial recovery of 

awareness after treatment with targeted therapy, including deep brain stimulation and 

various drugs (e.g., Clauss & Nel, 2006; Georgiopoulos et al., 2010; Sarà et al., 2007; 

Tsubokawa et al., 1990). Nevertheless, there is currently no evidence-based, curative 

treatment available for disorders of consciousness, and patients with chronic disorders of 

consciousness are very unlikely to recover functional independence. 

It is difficult to estimate the life expectancy for patients with disorders of consciousness. 

This difficulty arises in part due to the self-fulfilling prophecy that patients with poor or 

uncertain prognosis may be provided with less life-sustaining therapy in the acute phase 

of treatment and less active medical management in the chronic phase (Becker et al., 

2001; Bernat, 2006; Weimer, Nowacki, & Frontera, 2016). In terms of acute treatment, 

there currently are prognostic indicators of only poor recovery available for patients in a 

coma or acute Vegetative State (Bates, 2001; Teasdale et al., 2014; Zandbergen, de Haan, 

Stoutenbeek, Koelman, & Hijdra, 1998). Likewise, there are no reliable prognostic 

indicators for patients in an acute Minimally Conscious State (Giacino & Kalmar, 2007; 

Lammi et al., 2005). For patients who lack indicators of poor recovery in this critical 

acute treatment phase, possible outcomes include death, chronic disorders of 

consciousness, various levels of disability, and full functional recovery (Teasdale et al., 
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2014; Zandbergen et al., 1998). Understandably, this uncertainty complicates the decision 

to continue or withdraw life-sustaining therapies. During the chronic treatment phase, 

medical comorbidities are common and often arise shortly after the patient is transferred 

to a rehabilitation unit for continuing care (Whyte et al., 2013). Examples of common 

medical complications include urinary tract infections and pneumonia, and patients with 

chronic disorders of consciousness may die from undetected or insufficiently managed 

infections. Nevertheless, medical complications become less frequent with time, and 

active management typically reduces reoccurrence and severity (Whyte et al., 2013). In 

fact, patients who sustain injuries early in adulthood with appropriate management of 

comorbidities can survive for years with artificial nutrition and hydration (Bernat, 2006). 

All patients described in this thesis exhibited chronic disorders of consciousness, and 

several of the patients presented with the same conscious state for a decade and longer.  

Prevalence data concerning disorders of consciousness are difficult to obtain due to 

variability in international diagnostic criteria and few large-scale, multi-centred 

investigations. A recent epidemiological review of primarily European centres obtained 

prevalence estimates of 0.2 to 3.4 cases per 100,000 inhabitants for patients in a 

Vegetative State and 1.5 per 100,000 inhabitants for patients in a Minimally Conscious 

State (Pisa et al., 2014). Traumatic aetiology accounted for 21.9% to 53.8% of all cases 

(Pisa et al., 2014). An older report estimated the prevalence of the Vegetative State in the 

United States of America and Europe at 1.4 to 6.7 per 100,000 inhabitants from 1 month 

post-injury, and this estimate decreased to 0.5 to 2.5 per 100,000 from 6 months post-

injury (Jennett, 2002). Unfortunately, there were no epidemiological studies of disorders 

of consciousness in Canada available at the time of writing. Nevertheless, brain injury is 

common in Canada; for example, about 15,300 Canadians were hospitalized due to 

traumatic brain injuries in 2003, accounting for about 8% of all admissions for trauma 

that year (Canadian Institute for Health Information, 2006). Additionally, the average 

direct medical cost of the first year post-injury in the same period was $31,000 per patient 

for those with traumatic injuries and $38,000 per patient for those with non-traumatic 

injuries (Chen et al., 2012). Although true disorders of consciousness are relatively 

uncommon, these disorders present challenging medical and scientific questions that are 
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subject to investigation from many special interest groups around the world (Gosseries, 

Zasler, & Laureys, 2014). 

Standards of care for patients with chronic disorders of consciousness are similar 

worldwide. Recommended care includes: nutrition via gastrointestinal tube feeding; 

range of motion exercises to counteract muscular contractures (spasticity); and 

tracheostomy with suctioning and other pulmonary hygiene interventions for airway 

protection (Sandel, 1996). This complex continuing care can be provided in a patient’s 

home or in an assisted living facility. In Canada and many other nations, substitute 

decision makers provide consent pertaining to medical care and other aspects of living for 

patients who lack the capacity to do so themselves (Rocker & Dunbar, 2000). The 

substitute decision maker is meant to: (1) express the choices the patient would make if 

he or she were able to do so; and (2) act in the patient’s best interest if the patient’s likely 

decision is unknown (Rocker & Dunbar, 2000). Substitute decision makers provided 

informed, written consent for all patients who participated in the research reported in this 

thesis in line with the guiding principles of the local Canadian ethics committees.  

Given that a full functional recovery is uncommon and unlikely for many patients with 

chronic disorders of consciousness, substitute decision makers and others involved in the 

patient’s medical care may consider assisted dying or the withdrawal of life-sustaining 

measures for the patient (Andrews, 2004; Cranford, 1984; Laureys, 2005a). Opinions on 

assisted dying and the legalities concerning the different forms of this practice vary (e.g., 

Schüklenk et al., 2011; Smedira et al., 1990; Solomon et al., 1993). To further 

complicate matters, the withdrawal of life-sustaining treatments for most patients with 

chronic disorders of consciousness necessitates the cessation of nutrition and hydration 

because these patients can usually breathe without assistance. Although not uncommon in 

some areas of medicine and in natural death by component patients, this practice is 

understandably controversial (Ganzini et al., 2003; Meilaender, 1984; Tsai, 2011). There 

have been a few cases involving patients with disorders of consciousness in the United 

States of America and Canada where referrals have been made to court to address 

disagreements about medical decision-making (e.g., Downar, Sibbald, Bailey, & 

Kavanagh, 2014; Quill, 2005; Rich, 2013). Although there are several moral, legal, and 
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ethical problems surrounding the withdrawal of life sustaining therapies for patients with 

disorders of consciousness in particular (see [Jennett, 2002] for a detailed discussion), the 

paramount consideration is that the wishes of the patient are respected (Gillon, 1998). If 

the patient’s wishes are unclear, medical societies and governing bodies worldwide 

recommend continued treatment even when recovery is unlikely (American Academy of 

Neurology, 1989; British Medical Association, 2001; Rocker & Dunbar, 2000). 

1.2 Differential diagnosis and restoration of communication 

To differentially diagnose disorders of consciousness—i.e., to determine whether a 

patient is in a Vegetative State or a Minimally Conscious State, a clinician must carefully 

assess the patient’s responsiveness to stimulation to infer whether the patient is 

conscious. Repeated assessments are necessary to distinguish between random or 

reflexive responses and reliable, voluntary responses. Given the difficulty of this clinical 

determination, several specialized instruments have been developed to facilitate the 

differential diagnosis of the Vegetative State and Minimally Conscious State in particular 

(Shiel, Gelling, Wilson, Coleman, & Pickard, 2004). The preferred neuropsychological 

instrument for this purpose is the Coma Recovery Scale-Revised (Kalmar & Giacino, 

2005). This instrument has been validated in patients with disorders of consciousness 

(Giacino, Kalmar, & Whyte, 2004) and found to most sensitively distinguish between the 

Vegetative State and Minimally Conscious State as compared to alternative instruments 

(Seel et al., 2010). The Coma Recovery Scale is also preferred to other behavioural 

assessments for disorders of consciousness because it requires less training and can be 

more readily adopted by clinicians who cannot access specialized neurorehabilitation 

units (Bernat, 2006; cf. Gill-Thwaites & Munday, 1999; Pape, Heinemann, Kelly, Hurder, 

& Lundgren, 2005). If different diagnoses are obtained across time, it is conventional to 

report a patient’s diagnosis according to that patient’s most sophisticated performance. In 

this thesis, each patient’s conscious state was determined using his or her best 

performance on the Coma Recovery Scale. Differential diagnoses across time are 

discussed when present, and all assessments were validated to ensure that no impossible 

or improbable combinations of Coma Recovery Scale scores were obtained (Chatelle et 

al., 2016).  
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Administration of the Coma Recovery Scale entails a neuropsychological assessment 

across several sensory domains categorised into six subscales (Kalmar & Giacino, 2005). 

As shown in Table 2, each test item probes the patient’s ability to exhibit behavioural 

responses following direct stimulation or verbal command. Within each subscale, 

involuntary and reflexive behavioural responses are evaluated first; these responses only 

require one or two trials to assess. If these involuntary responses are intact, increasingly 

complex, voluntary behavioural responses are then probed. The patient must demonstrate 

each voluntary response three or four times in an assessment for that response to be 

scored as reliable and intact. Assessment of each subscale ends when the patient does not 

reliably demonstrate a probed response, or when the patient reliably demonstrates all 

behavioural responses for that subscale (and thus obtains the highest possible score). For 

example, the first test item on the oromotor/verbal function subscale is oral reflexive 

movement. An intact response constitutes immediate movements of the tongue or jaw, 

such as clamping or chewing, after a tongue blade is introduced into the patient’s mouth. 

Only one trial is needed to probe this response; an intact response corresponds with a 

score of 1, while a lack of response corresponds with a score of 0. Additionally, the 

highest possible score (3) on the oromotor/verbal function subscale is intelligible 

verbalization. This behavioural response would only be probed if the patient first reliably 

demonstrated oral reflexive movement (a score of 1) and vocalization/oral movement (a 

score of 2). To reliably demonstrate intelligible verbalization, the patient must generate 

consonant-vowel-consonant sounds for at least two different words in response to 

prompts such as “What is your name?” and “How many fingers am I holding up right 

now?”. Notably, reliable intelligible verbalization is a voluntary response indicative of a 

Minimally Conscious State (Kalmar & Giacino, 2005). 
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Table 2. Summary of the JFK Coma-Recovery Scale-Revised subscales. 

This information has been published elsewhere (Kalmar & Giacino, 2005) and is 

reproduced here with permission from Taylor & Francis. Taylor & Francis is pleased to 

offer reuses of its content for a thesis or dissertation free of charge contingent on 

resubmission of permission request if work is published. 

Auditory Function 
4 – Consistent Movement to Command* 
3 – Reproducible Movement to Command* 
2 – Localization to Sound 
1 – Auditory Startle 
0 – None  

Oromotor/Verbal Function 
3 – Intelligible Verbalization* 
2 – Vocalization/Oral Movement 
1 – Oral Reflexive Movement 
0 – None  
 

Visual Function 
5 – Object Recognition* 
4 – Object Localization: Reaching* 
3 – Visual Pursuit* 
2 – Fixation*, a 
1 – Visual Startle 
0 – None  

Communication 
2 – Functional: Accurate† 
1 – Non-Functional: Intentional* 
0 – None  
 

Motor Function 
6 – Functional Object Use† 
5 – Automatic Motor Response* 
4 – Object Manipulation* 
3 – Localization to Noxious Stimulation* 
2 – Flexion Withdrawal 
1 – Abnormal Posturing 
0 – None/Flaccid  

Arousal  
3 – Attention 
2 – Eye Opening without Stimulation 
1 – Eye Opening with Stimulation 
0 – Unarousable 

Notes. *Denotes Minimally Conscious State; †Denotes emergence from a Minimally 

Conscious State. 

aSustained visual fixation does not necessarily reflect higher order cortical brain function 

in patients with disorders of consciousness and non-traumatic aetiology (Bruno et al., 

2010).
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A critical diagnostic marker in disorders of consciousness is whether a patient can follow 

commands. Patients who follow commands in a bedside behavioural examination are 

attributed with at least minimal consciousness, while patients who do not are regarded as 

‘unaware’, i.e., diagnosed as being in a Vegetative State (Andrews, 1996; Jennett & 

Plum, 1972; Multi-Society Task Force on PVS, 1994a; Royal College of Physicians 

Working Group, 1996, 2003). Unfortunately, a patient’s ability to outwardly respond may 

be compromised for many reasons, such as cognitive impairments due to brain injury or 

damage to the peripheral motor system (Giacino et al., 2014; Whyte et al., 2013). 

Accordingly, a patient could retain awareness and be inaccurately diagnosed as being in a 

Vegetative State because he or she does not overtly respond during a behavioural 

assessment (Gosseries, Di, Laureys, & Boly, 2014; Owen, 2013). The rate of 

misdiagnosis of a patient’s conscious state is high; as many as 43% of patients diagnosed 

as being in a Vegetative State have been found to exhibit signs of awareness after careful 

follow-up testing in a neurorehabilitation unit (Andrews, Murphy, Munday, & 

Littlewood, 1996; Candelieri, Cortese, Dolce, Riganello, & Sannita, 2011; Childs, 

Mercer, & Childs, 1993; Schnakers et al., 2009). Moreover, the consequences of such 

misdiagnoses are severe. For example, false negatives—i.e., inferring that a patient does 

not possess awareness when he or she does—could lead to the premature withdrawal of 

life sustaining therapies and inadequate medical management of the patient (Jox, Bernat, 

Laureys, & Racine, 2012; Peterson, Cruse, Naci, Weijer, & Owen, 2015). Similarly, false 

positives—i.e., inferring that a patient possesses awareness when he or she does not—

could lead to a missed opportunity to withdraw life sustaining therapies and needless 

financial and emotional suffering for the patient’s family (Jox et al., 2012; Peterson et al., 

2015). Due in large part to these legal, ethical, and moral challenges, the detection of 

awareness in patients with disorders of consciousness has been the subject of increasing 

research for about twenty years (Gosseries, Zasler, et al., 2014; Jennett, 2002; Peterson et 

al., 2013; Racine & Illes, 2007).  

To address the challenge of accurate diagnosis in disorders of consciousness, researchers 

and clinicians have used neurophysiological markers of sensory and cognitive function to 

complement behavioural assessments. Several neural markers have been identified that 

can facilitate the differential diagnoses of disorders of consciousness. For instance, 
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patients in a Vegetative State tend to have more metabolic dysfunction in frontoparietal 

networks than patients in a Minimally Conscious State (Cavinato et al., 2015; Demertzi, 

Soddu, & Laureys, 2013; Thibaut et al., 2012). At rest or during passive stimulation, 

patients in a Minimally Conscious State have increased cerebral metabolism and 

functional connectivity as compared to patients in a Vegetative State (Kotchoubey et al., 

2013; Laureys, Faymonville, Degueldre, et al., 2000; Laureys, Owen, & Schiff, 2004). 

Moreover, the structural integrity of thalamocortical pathways is higher in patients who 

demonstrate more behavioural signs of awareness (Fernández-Espejo et al., 2012; 

Laureys, Faymonville, Luxen, et al., 2000; Schiff, 2008). While these passive approaches 

have revealed valuable information about brain function and metabolism in patients with 

disorders of consciousness, researchers have also used neuroimaging techniques to 

determine whether a patient who is outwardly non-responsive can volitionally modulate 

his or her brain activity—and in so doing, provide evidence of his or her ability to follow 

commands. 

Neuroimaging techniques have been applied to determine whether patients with disorders 

of consciousness can modulate their brain activity in response to commands. Of these 

techniques, one of the most widely adopted involves asking a patient to engage in mental 

imagery during either a functional magnetic resonance imaging (fMRI) scan (Bardin et 

al., 2011; Boly et al., 2007; Fernández-Espejo & Owen, 2013; Gibson, Fernández-

Espejo, et al., 2014; Monti et al., 2010; Owen et al., 2006; Stender et al., 2014) or a 

recording session with electroencephalography (EEG; Coyle, Stow, McCreadie, 

McElligott, & Carroll, 2015; Cruse et al., 2011; Gibson, Fernández-Espejo, et al., 2014; 

Goldfine, Victor, Conte, Bardin, & Schiff, 2011; Horki et al., 2014). In this approach, the 

patient’s engagement in the mental task is quantified by his or her ability to generate 

reliable, temporally and/or spatially specific modulations of brain activity identified in 

validation studies (Adapa, Davis, Stamatakis, Absalom, & Menon, 2014; Boly et al., 

2007; Davis et al., 2007; Fernández-Espejo, Norton, & Owen, 2014; Naci, Cusack, Jia, & 

Owen, 2013; Owen & Coleman, 2007). A recent meta-analysis of studies comprising 

about 1,000 patients with disorders of consciousness indicated that approximately 15% of 

patients diagnosed as being in a Vegetative State exhibited so-called ‘covert’ command 

following in a neuroimaging-based assessment (Kondziella, Friberg, Frokjaer, Fabricius, 
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& Møller, 2016). Furthermore, these neuroimaging-based approaches have warranted the 

proposal of the non-behavioural Minimally Conscious State, which is indicated when a 

patient demonstrates covert command following alongside outward behaviour consistent 

with a Vegetative State (Gosseries, Zasler, et al., 2014).  

From a rehabilitation perspective, the ability to regulate one’s brain activity in response 

to command could be fostered to eventually allow a suitable patient to communicate. 

Indeed, a few cases of fMRI-based communication by patients with disorders of 

consciousness have been reported using fMRI (Bardin, Schiff, & Voss, 2012; Fernández-

Espejo & Owen, 2013; Forgacs et al., 2014; Monti et al., 2010; Naci & Owen, 2013). 

These findings raise the possibility that some patients diagnosed with disorders of 

consciousness could benefit from assistive devices known as brain-computer interfaces 

(Chatelle et al., 2012; Gibson, Owen, & Cruse, 2016; Naci et al., 2012). In brief, a brain-

computer interface allows a person to operate a computer without producing a motor 

response. Subject-specific patterns of brain activity can be identified using machine-

learning techniques and subsequently classified into predefined output, such as verbal 

responses of “yes” versus “no”, or movement of a computer mouse cursor (Mason & 

Birch, 2003; Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002). Brain-

computer interfaces based on EEG control signals are recommended for patients with 

disorders of consciousness because this signal can be non-invasively acquired at the 

bedside with low cost and few medical contraindications (Chatelle, Lesenfants, Guller, 

Laureys, & Noirhomme, 2015; Kübler & Kotchoubey, 2007; Naci et al., 2012). To date, 

there are two especially noteworthy reports of EEG-based brain-computer interface use 

by patients with disorders of consciousness; four patients demonstrated modest 

improvements across time in a simple video game (moving a ball to a basket with motor 

imagery; Coyle et al., 2015), and four other patients generated enhanced EEG markers of 

selective attention to target photos with feedback (Pan et al., 2014). Ultimately, a brain-

computer interface could provide a patient with a means to regulate his or her 

environment and communicate with other people. Moreover, the most consistently 

reported hope from family members of patients with disorders of consciousness is that 

the patient’s ability to communicate will be restored (Jox et al., 2015). From a clinical 

perspective, a patient is demonstrably capable of producing consistent and appropriate 
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responses to commands by executing accurate brain-computer interface control. 

Accordingly, brain-computer interfaces for patients with disorders of consciousness can 

also fulfil the important diagnostic functions of cognitive assessment and awareness 

detection (Boly et al., 2008; Kirschner, Cruse, Chennu, Owen, & Hampshire, 2015; 

Rodriguez Moreno, Schiff, Giacino, Kalmar, & Hirsch, 2010).  

Unfortunately, there are at least three factors that restrict the development and anticipated 

literacy of neuroimaging techniques intended to restore communication with patients who 

have disorders of consciousness. Firstly, disorders of consciousness typically arise from 

severe and diffuse acquired brain injury (Bernat, 2006). As a consequence, the sensory 

and cognitive abilities of all patients with disorders of consciousness are potentially 

compromised by their brain injuries and other medical complications (Giacino et al., 

2014; Whyte et al., 2013). For instance, patients with disorders of consciousness are 

susceptible to aphasia (Majerus, Bruno, Schnakers, Giacino, & Laureys, 2009), and many 

patients with disorders of consciousness lack oculomotor control (Kalmar & Giacino, 

2005). Furthermore, the neural mechanisms that underlie the ability to covertly and 

overtly follow commands using mental imagery are distinct (Fernández-Espejo, Rossit, & 

Owen, 2015; Osborne, Owen, & Fernández-Espejo, 2015). Accordingly, patients with 

injuries to the necessary neural circuitry may be unable to generate the brain responses 

needed to covertly communicate via mental imagery, despite being able to perform other 

cognitive tasks. For these reasons, the mental tasks intended to provide a patient with a 

means to communicate should be customized to the patient’s abilities. Consultation with 

caregivers and rehabilitation specialists, such as speech pathologists and occupational 

therapists, is also advised. 

Secondly, it is difficult to use methods intended to detect covert command following as 

methods that support functional communication. For example, healthy volunteers 

recently participated in both the EEG- and fMRI-based assessments of command 

following previously discussed (Cruse et al., 2011; Owen et al., 2006). The sensitivities 

of these two techniques were directly compared (Gabriel et al., 2015). In the fMRI 

assessments, most participants (85%) demonstrated covert command following, but few 

of the participants (60%) reliably communicated. Even fewer volunteers (30%) reliably 
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communicated using EEG (Gabriel et al., 2015). Additionally, many patients with 

disorders of consciousness generate brain responses that are variable over time and 

delayed relative to healthy volunteers (Bardin et al., 2012; Fellinger et al., 2011; Forgacs 

et al., 2014). Single-trial decoding techniques commonly used with brain-computer 

interfaces have successfully identified some time-dependent changes in patient data 

(King et al., 2013; Pokorny et al., 2013; Sorger, Reithler, Dahmen, & Goebel, 2012). 

Unfortunately, these techniques are not yet widely used in assessments of covert 

command following. Alternative mental tasks and analysis techniques specifically 

developed for future use with brain-computer interfaces are therefore recommended to 

improve the likelihood that suitable patients with disorders of consciousness will 

communicate using their brain responses. 

As a final consideration, it is not yet clear whether any level of confidence in neural data 

or brain-computer interface output will be sufficient for medical decision making 

(Bendtsen, 2013; Fins et al., 2008; Mackenzie, 2013; Peterson et al., 2013). For 

communicative applications, validation studies in healthy volunteers are necessary to 

ensure that the neural response of interest correlates with a volitional mental process. 

When these responses are subsequently assessed in patients, data quality must be 

carefully vetted. For example, most patients with disorders of consciousness lack 

voluntary motor control, and artefacts related to movement are common in their neural 

data. Similarly, data acquired at the bedside typically feature electrical noise from 

surrounding equipment that is especially problematic for EEG. In addition to these 

fundamental quality assurance measures, it is also necessary to quantify the likelihood 

that the patient generated a pattern of neural activity by chance (the null hypothesis), 

rather than in response to task demands (the alternative hypothesis). This quantification 

process is best achieved using an appropriate statistical analysis. At the time of writing, 

permutation testing is recommended to provide a confidence metric for the classification 

of medical information and the communicative output of a brain-computer interface 

(Billinger et al., 2013; Cruse et al., 2013; Goldfine et al., 2013; Noirhomme et al., 2014). 

Permutation testing estimates the distribution of the null hypothesis from the patient’s 

neural data, and thus directly quantifies the likelihood that the observed data arose on the 

basis of chance (Maris & Oostenveld, 2007; Nichols & Holmes, 2002). All three of these 
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measures are necessary to provide confidence in the quality and validity of any neural 

correlate of consciousness intended to inform patient care. 

1.3 Summary and aims 

Patients with disorders of consciousness exhibit profound behavioural impairments due to 

severe brain injury. Patients diagnosed as being in a Minimally Conscious State present 

with variable, but reproducible, responses to external stimulation (Giacino et al., 2002). 

In contrast, patients in a Vegetative State exhibit no voluntary behaviour and lack 

awareness of all external stimulation (Bernat, 2006). These disorders are relatively 

uncommon, although reliable prevalence estimates are difficult to obtain due to 

variability in international diagnostic criteria and the heterogeneity of the patients 

themselves (Jennett, 2002; Pisa et al., 2014). It is very unlikely (although not impossible) 

that a patient in a chronic Vegetative State will recover awareness (Multi-Society Task 

Force on PVS, 1994a, 1994b). Many of these patients remain severely disabled and 

completely dependent on others until the end of their lives (Bernat, 2006). Accordingly, 

the diagnosis of the Vegetative State carries significant legal and ethical consequences 

(Jennett, 2002).  

Unfortunately, it is challenging to differentially diagnose disorders of consciousness. 

Careful, repeated assessments are needed to distinguish between reflexive or random 

responses and reliable, voluntary responses (Bernat, 2006; Kalmar & Giacino, 2005). 

Moreover, a patient’s ability to respond may be comprised by many medical 

complications secondary to his or her brain injury (Whyte et al., 2013). To this end, 

behavioural examinations have been complemented and supplemented by neuroimaging. 

Distinct neural correlates of minimal versus absent awareness have been identified 

(Giacino et al., 2014; Laureys, 2005b; Owen, 2013). Most remarkably, a few patients 

diagnosed as being in a Vegetative State are able to appropriately and reliably modulate 

their brain activity in response to verbal commands (Bardin et al., 2012; Cruse et al., 

2011; Goldfine et al., 2011; Owen et al., 2006). As many as 15% of patients who 

completely lack overt responsiveness exhibit this ability to covertly follow commands 

(Kondziella et al., 2016). 
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A desirable next step for patients with disorders of consciousness is the restoration of 

their ability to communicate. The restoration of communication could allow patients to 

contribute to their care decisions and direct their activities of daily living (Jox et al., 

2015). Moreover, a patient’s ability to communicate at the bedside may be restored with 

EEG-based techniques (Chatelle et al., 2012; Naci et al., 2012). Initial reports of 

successful EEG-based brain-computer interface control by patients with disorders of 

consciousness are promising (Coyle et al., 2015; Pan et al., 2014). However, patients 

have only communicated using fMRI-based techniques so far (Bardin et al., 2012; 

Fernández-Espejo & Owen, 2013; Forgacs et al., 2014; Monti et al., 2010; Naci & Owen, 

2013). For these reasons, the primary benefit of neuroimaging techniques for most 

patients with disorders of consciousness is cognitive assessment and awareness detection 

rather than communication per se.  

The primary motivation of this thesis was the development and preliminary validation of 

EEG-based techniques to complement existing behavioural and fMRI-based assessments 

of patients with disorders of consciousness. All novel techniques were validated in 

healthy volunteers and patients with disorders of consciousness, and direct comparisons 

of EEG- and fMRI-based approaches were featured in all patient assessments. 

Furthermore, paradigms and analysis techniques were designed for future applications as 

brain-computer interfaces. Strategies to overcome the limitations of single-subject 

analyses of neuroimaging data using subject-specific mental tasks and distinct neural 

correlates are discussed in all chapters. Overall, this work provides novel advancements 

to the taxonomy of disorders of consciousness and the scientific understanding of 

consciousness via acquired brain injury. The specific aims and research questions of each 

experimental chapter are discussed in the following subsections. 

1.3.1 Do complex and familiar actions enhance the neural 
correlates of mental imagery? 

In brain-computer interface research involving motor imagery, volunteers are typically 

asked to imagine simple movements of their hands or feet (Kübler et al., 2005; Neuper, 

Scherer, Wriessnegger, & Pfurtscheller, 2009; Pfurtscheller, Neuper, Brunner, & Lopes 

da Silva, 2005). Examples of such actions include squeezing one’s hand into a fist and 
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wiggling one’s toes. Unfortunately, some healthy volunteers and patients with severe 

motor impairments are unable to sufficiently regulate their brain activity for brain-

computer interface control during this type of motor imagery (Blankertz et al., 2010; 

Guger, Edlinger, Harkam, Niedermayer, & Pfurtscheller, 2003; Hammer et al., 2011). It 

has been proposed that brain responses to imagined familiar and complex actions may be 

more consistent and robust and hence comprise better control signals for brain-computer 

interface applications (Curran & Stokes, 2003). Indeed, the inclusion of a well-known 

sport (tennis) and a familiar environment (one’s home) may have contributed to the 

success of the fMRI-based mental imagery tasks previously discussed for patients with 

disorders of consciousness (Owen et al., 2006). Moreover, one of the EEG-based 

adaptations of that paradigm (Cruse et al., 2011) may have lower sensitivity in healthy 

volunteers (Gabriel et al., 2015) because the imagery tasks require participants to engage 

in simple imagined hand squeezes and toe wiggles rather than more familiar or complex 

actions. 

The aim of Chapter 2 was to determine the influence of action complexity and familiarity 

on EEG-based motor imagery signals from healthy volunteers (Gibson, Chennu, Owen, 

& Cruse, 2014). Groups of experienced pianists, experienced ice hockey players, and 

novices performed motor imagery of actions from ice hockey and piano, alongside other 

common actions. Experienced athletes and musicians were selected for these experiments 

because the effects of motor learning are already well documented in these groups 

(Münte, Altenmüller, & Jäncke, 2002; Nakata, Yoshie, Miura, & Kudo, 2010). Indeed, 

expertise effects of motor learning in the brain are often described as enhanced 

efficiency; experienced athletes and musicians produce more focal patterns of brain 

activation than novices (Lotze, Scheler, Tan, Braun, & Birbaumer, 2003; Milton, 

Solodkin, Hlustík, & Small, 2007; Wei & Luo, 2010). It was accordingly predicted that 

healthy volunteers would generate brain responses that were more consistent in time for 

imagined familiar actions than for imagined unfamiliar actions. In terms of action 

complexity, imagery of actions that involve more complex motor sequences and multiple 

body parts correlates with greater hemodynamic changes in the brain and enhanced 

motor-evoked potentials, as compared to imagery of relatively simpler actions (Holper & 

Wolf, 2011; Kuhtz-Buschbeck et al., 2003; Roosink & Zijdewind, 2010). It was hence 
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predicted that complex motor imagery would correlate with more robust EEG responses 

than relatively simpler motor imagery, and that motor imagery of actions that were both 

complex and familiar would correlate with the most temporally reliable and robust EEG 

responses of all. 

1.3.2 Do multiple mental imagery tasks and neuroimaging 
modalities increase the likelihood of detecting covert 
awareness in patients with disorders of consciousness? 

Some patients with disorders of consciousness can volitionally modulate their brain 

activity by engaging in mental imagery during assessments with fMRI or EEG. However, 

patients with disorders of consciousness have acquired brain injuries and consequently 

vary in terms of their sensory and cognitive abilities. Indeed, brain injury may beget 

impairments in sensory processing, such as cortical blindness; sensory interpretation and 

motor output, as in agnosia, neglect, and apraxia; and higher-order cognition, including 

language and executive function (Anderson & Arciniegas, 2010; Satz, 1993). Patients 

with disorders of consciousness also vary in terms of their suitability for neuroimaging. 

For example, a patient cannot undergo an assessment with MRI if he or she cannot lie flat 

without suctioning for airway protection, or if he or she has certain types of metal 

implanted in his or her body. Likewise, a patient with a craniotomy (a surgical opening of 

the skull) is a poor candidate for assessment with EEG because the scalp above a skull 

breach generates aberrant EEG signals (Lee et al., 2010). Furthermore, all patients with 

disorders of consciousness can be difficult to assess with neuroimaging because they lack 

voluntary motor control; many patients do not remain still long enough to generate 

images and other time series of sufficient quality for meaningful analysis. Accordingly, 

assessments of several cognitive abilities, supported by spatially distinct brain regions 

and indexed by multiple neural signatures, are needed to accurately characterise a 

patient’s level of residual cognition and awareness (Gibson, Fernández-Espejo, et al., 

2014). 

In Chapter 3, a small cohort of patients with disorders of consciousness participated in 

assessments intended to detect covert command following using fMRI- and EEG-based 

correlates of mental imagery (Gibson, Fernández-Espejo, et al., 2014). The fMRI 
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assessments included a motor imagery task (“imagine playing tennis”) and a mental 

imagery task (“imagine visiting all the rooms in your house”; Owen et al., 2006). These 

two tasks engage different mental processes and are associated with spatially distinct 

patterns of brain activation. Specifically, the motor imagery task requires the participant 

to imagine swinging a tennis racket to hit a ball very hard, while the spatial navigation 

task requires the participant to visualize the layout and contents of his or her home in 

sequence. Consequently, the motor task requires motor planning and is associated with 

activation of the supplementary motor area, while the spatial navigation task requires the 

retrieval of autobiographical memories and is associated with activation of the 

parahippocampal gyrus (Boly et al., 2007; Monti et al., 2010; Owen et al., 2006). The 

EEG assessment in Chapter 3 included a conventional motor imagery task (“imagine 

squeezing your hand into a fist”; Cruse et al., 2011) and a custom motor imagery task for 

each patient. During the custom motor imagery task, patients were asked to imagine 

performing an action from a sport or other activity identified as familiar to them by their 

caregivers. Together, these three assessments allowed for direct comparisons within and 

between mental processes (motor imagery and spatial navigation) and imaging modalities 

(fMRI and EEG). In light of the findings of Chapter 2, it was expected that familiar motor 

imagery would result in more reliable EEG responses than conventional motor imagery 

(Gibson, Chennu, et al., 2014). More importantly, however, it was also expected that 

these distinct neural correlates of covert command following would provide corroborative 

evidence for each patient’s residual cognitive abilities. 

1.3.3 Does somatosensory attention identify awareness in patients 
with disorders of consciousness? 

The abilities of some patients appropriately categorized as being in a Vegetative State or 

Minimally Conscious State vary along a continuum that is not necessarily apparent from 

their diagnosis. For example, some patients diagnosed as being in a Vegetative State 

exhibit reflexive startle responses to auditory and visual stimulation, while other patients 

do not respond to any external stimulation (Kalmar & Giacino, 2005). Just as a given 

patient’s behavioural abilities can be quantified using specialized neuropsychological 

instruments, the neural correlates of a patient’s abilities can also be characterised in a 
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hierarchical fashion. For example, some patients diagnosed as being in a Vegetative State 

differentially process human speech as compared to signal-correlated noise, while other 

patients with the same diagnosis only differentially process sound and silence (Beukema 

et al., 2016). Several other EEG-based techniques exist to characterise a patient’s ability 

to engage in increasingly complex information processing (e.g., Bekinschtein et al., 2009; 

Chennu et al., 2013; Faugeras et al., 2012; Fischer, Luaute, & Morlet, 2010; Kotchoubey 

et al., 2005). Unfortunately, there are inconsistencies in the prognostic value of these 

techniques; for example, some investigators have reported positive prognostic value in 

EEG markers of higher-order attentional processing (Lew et al., 2003), while others have 

not (Steppacher et al., 2013). These discrepancies may have occurred because patients 

with the ability to covertly follow commands (i.e., those in a non-behavioural Minimally 

Conscious State) were not identified, or because all approaches primarily relied upon 

auditory information (Gibson, Chennu, et al., 2016).  

The aim of Chapter 4 was to assess covert cognition in patients with disorders of 

consciousness using multi-modal assessments of covert command following and 

attentional processing (Gibson, Chennu, et al., 2016). The patients underwent 

neuroimaging-based assessments of command following using fMRI. Specifically, the 

patients completed the spatial navigation and tennis imagery paradigms previously 

described (Owen et al., 2006). Additionally, all patients participated in a novel EEG 

paradigm intended to delineate a hierarchy of attentional processing using vibrotactile 

stimulation. Healthy volunteers completed the same vibrotactile attention task as a 

validation measure. Finally, all patients also completed an fMRI-based auditory selective 

attention task. The auditory selective attention paradigm has already been validated in 

patients with disorders of consciousness and healthy volunteers (Naci et al., 2013; Naci 

& Owen, 2013). Furthermore, the auditory selective attention task has similar demands as 

the EEG-based vibrotactile attention paradigm and thus provided an additional validation 

measure for the EEG approach. As in Chapter 3, it was expected that these distinct neural 

correlates of covert cognition would provide strong evidence for each patient’s abilities. 

Finally, it was also expected that the novel EEG technique would corroborate the 

identification of patients with the ability to covertly follow commands. 
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Chapter 2  

2 Complexity and familiarity enhance single-trial 
detectability of imagined movements with 
electroencephalography 

A version of this chapter has been published elsewhere (citation below) and is reproduced 

here with permission from the publisher, Elsevier (Appendix B). 

Gibson, R. M., Chennu, S., Owen, A. M., & Cruse, D. (2014). Complexity and familiarity 

enhance single-trial detectability of imagined movements with electroencephalography. 

Clinical Neurophysiology, 125, 1556–1567. 

http://dx.doi.org/10.1016/j.clinph.2013.11.034 

2.1 Introduction 

A particular EEG signal called the sensorimotor rhythm is a practical option for brain-

computer interfaces intended for use by patients with disorders of consciousness 

(Chatelle et al., 2012; Naci et al., 2012). Using as few as four surface electrodes placed 

over sensorimotor cortical areas, one can acquire a sensorimotor rhythm as a person 

kinaesthetically imagines moving a body part. Sensorimotor rhythms are quantified as 

power decreases known as event-related desynchronizations and power increases known 

as event-related synchronizations. Sensorimotor rhythms occur in the mu (7−12 Hz) and 

beta (13−30 Hz) frequency bands of the human electroencephalogram (Neuper & 

Pfurtscheller, 2001; Pfurtscheller & Neuper, 1997). Unlike other EEG-based brain-

computer interface paradigms, the imagination tasks used with sensorimotor rhythm-

based brain-computer interfaces impose low sensory demands on the user. Of particular 

importance for patients who are unable to fixate their eyes, sensorimotor rhythm-based 

brain-computer interfaces need not involve visual stimulation (Chatelle et al., 2012; 

Grosse-Wentrup & Schölkopf, 2013; Naci et al., 2012). Patients with chronic and 

extensive motor impairments, including tetraplegia and advanced Amyotrophic Lateral 

Sclerosis, can control sensorimotor rhythm-based brain-computer interfaces (Kübler et 

al., 2005; Pfurtscheller, Guger, Müller-Putz, Krausz, & Neuper, 2000). Indeed, patients 
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diagnosed as being in a Vegetative State or Minimally Conscious State can produce 

sensorimotor rhythms during motor imagery, even after several years of immobility 

(Cruse et al., 2011; Goldfine, Victor, Conte, Bardin, & Schiff, 2011; Horki et al., 2014). 

Owing in part to this ease of use by patients, brain-computer interfaces based on 

responses to motor imagery were the most widely studied type of brain-computer 

interface between 2007 and 2011 (Hwang, Kim, Choi, & Im, 2013). 

Despite the potential benefits of bedside sensorimotor rhythm-based brain-computer 

interfaces for patients with disorders of consciousness, there is substantial intra- and 

inter-subject variability in sensorimotor rhythm-based brain-computer interface 

performance (Naci et al., 2012; Pfurtscheller, Brunner, Schlögl, & Lopes da Silva, 2006; 

Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002). For reliable 

communication, classification accuracy of 70% is regarded as the lower limit of 

acceptable performance (Kübler et al., 2001). In 2003, about 49 of 100 healthy volunteers 

did not achieve performance accuracy above 70% with a simple sensorimotor rhythm-

based brain-computer interface (Guger, Edlinger, Harkam, Niedermayer, & Pfurtscheller, 

2003). In 2011, modest improvements were evident in an updated sensorimotor rhythm-

based brain-computer interface paradigm, such that only 30 of 80 volunteers did not 

achieve performance accuracy above 70% (Hammer et al., 2011). Unfortunately, some 

healthy volunteers and patients are still unable to achieve sufficient brain-computer 

interface control for communication via motor imagery, even using state-of-the-art 

sensorimotor rhythm-based brain-computer interfaces with optimized feedback protocols 

and online processing of the EEG data (e.g., Ang & Guan, 2017; Roussel, Negishi, & 

Mitsukura, 2016; Sollfrank et al., 2016). This phenomenon is sometimes referred to as 

brain-computer interface illiteracy, and it is estimated to affect about 10 to 30% of 

potential healthy users (Vidaurre & Blankertz, 2010). Brain-computer interface illiteracy 

is especially problematic for devices intended to restore communication to patients with 

disorders of consciousness because only a small portion (15%) of these patients are likely 

to have the covert cognitive abilities needed for brain-computer interface control 

(Kondziella, Friberg, Frokjaer, Fabricius, & Møller, 2016).  
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To address brain-computer interface illiteracy, some researchers have proposed that 

alterations should be made to the mental tasks used to drive sensorimotor rhythm-based 

brain-computer interfaces (Curran et al., 2004; Curran & Stokes, 2003; Scherer et al., 

2015). In published sensorimotor rhythm-based brain-computer interface research to date, 

users are typically instructed to imagine moving their hands, feet, or tongue (Kübler et 

al., 2005; Neuper & Pfurtscheller, 2001; Pfurtscheller et al., 2006). With only a few 

exceptions, users are asked to imagine very simple actions, such as repeatedly squeezing 

one of their hands into a fist. However, actions that are more complex or familiar could 

result in a more robust and consistent sensorimotor rhythm (Curran et al., 2004; Curran & 

Stokes, 2003). Similarly, comparisons in traditional sensorimotor rhythm-based brain-

computer interface research are often made between the sensorimotor rhythms generated 

for different imagined movements, such as the left versus right hands (Cruse et al., 2011; 

Guger et al., 2003; Kübler et al., 2005). Although these comparisons render acceptable 

classification accuracy in most healthy people (Bai et al., 2008; Guger et al., 2003), these 

types of comparisons may not be optimal for patients diagnosed with disorders of 

consciousness. Indeed, a patient’s ability to exhibit a particular voluntary action in 

response to command is the criteria for awareness during the administration of the Coma 

Recovery Scale (Kalmar & Giacino, 2005). If the patient is able to successfully 

demonstrate that action on three out of four occasions, the patient is diagnosed as at least 

minimally conscious (Kalmar & Giacino, 2005). Accordingly, contrasts in this chapter 

were made between one imagined action and periods of rest (mind-wandering), rather 

than between two distinct imagined actions. This technique is more practical for patients 

who are behaviourally non-responsive because sustaining more than one imagined action 

in working memory may impose excessive cognitive demands on some patients. 

Furthermore, this technique allows for an EEG-based assessment that is similar to 

standard clinical tools. 

In a series of three experiments, healthy, young adults imagined actions of varying 

complexity and familiarity during EEG recordings. All tasks employed an experimental 

set-up suitable for future clinical applications at the bedside. It was hypothesized that 

motor imagery involving more complex and familiar movements than previous 

investigations would improve classification accuracy and result in more users with 
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sensorimotor rhythms that could be reliably detected. If supported, the hypotheses of 

these three experiments could be extended to future clinical work with imagery tasks 

catered to the skills and hobbies of the target patient user. 

In Experiment 1 (Complexity), participants imagined simple hand actions (squeezes) of 

the sort typically used with sensorimotor rhythm-based brain-computer interfaces, 

alongside other more complex bimanual actions. Following previous work, “complex” 

motor imagery is defined as imagined actions that involve sequences of movements and 

more than one body part (Holper & Wolf, 2011). In accordance with prior evidence of 

increased brain activity during complex motor imagery (Holper & Wolf, 2011; Kuhtz-

Buschbeck et al., 2003; Roosink & Zijdewind, 2010), it was predicted that classification 

accuracy (versus rest) would be higher when the participant imagined complex actions 

than when the participant imagined relatively simpler actions.  

In Experiment 2 (Familiarity), groups of experienced pianists, experienced ice hockey 

players, and age-matched controls imagined squeezing their hands and performing 

actions from hockey and piano. This experiment featured experienced athletes and 

musicians because the effects of long-term motor learning have been extensively studied 

in these groups (Münte, Altenmüller, & Jäncke, 2002; Nakata, Yoshie, Miura, & Kudo, 

2010). Relative to novices, experienced athletes and musicians produce more focused 

patterns of brain activation (Lotze, Scheler, Tan, Braun, & Birbaumer, 2003; Milton, 

Solodkin, Hlustík, & Small, 2007; Olsson, Jonsson, Larsson, & Nyberg, 2008; Wei & 

Luo, 2010). Expert athletes and musicians also report more objectively accurate imagery 

than novices (Louis, Collet, Champely, & Guillot, 2012; Rieger, 2012). Accordingly, it 

was predicted that classification accuracy between rest and imagery would be highest for 

the athletes and musicians during the action with which they were most familiar, i.e., 

pianists imagining playing the piano, and hockey players imagining playing hockey 

(Fourkas, Bonavolontà, Avenanti, & Aglioti, 2008; Lotze et al., 2003; Olsson et al., 

2008; Wei & Luo, 2010).  

In Experiment 3 (Complexity and Familiarity), a potential synergistic influence of 

imagined action complexity and familiarity on the sensorimotor rhythm was examined. 
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Specifically, the experienced pianists from Experiment 2 imagined playing one simple 

piece of music and one relatively more complex piece of music on the piano. It was 

expected that classification accuracy would be highest for the complex piece versus rest 

comparison.  

2.2 Materials and methods 

2.2.1 Participants and stimuli 

2.2.1.1 Experiment 1: Complexity 

Sixteen healthy, right-handed young adults participated in the complexity study (five 

men; age range=17-20 years; median age of 18 years). For the simple imagined 

movement phase, the participants were instructed to imagine repeatedly squeezing their 

left hand, right hand, or both hands following the auditory cues of “left”, “right”, and 

“both”, respectively. For the complex imagined movements phase, the participants were 

instructed to imagine either playing the guitar, clapping their hands, or juggling using 

both hands. These tasks were cued with the words “guitar”, “clap”, and “juggle”, 

respectively. In each task phase, participants were also asked to mind-wander following 

the cue “relax”. The order of the simple and complex imagined movement phases was 

counter-balanced across participants. All auditory instructions were 1-second in length. 

2.2.1.2 Experiment 2: Familiarity 

Forty-eight healthy, right-handed young adults participated in the familiarity study. 

Sixteen participants were experienced ice hockey players (seven men; age range=18-29 

years; median age of 20 years); sixteen participants were experienced pianists (six men; 

age range=18-29 years; median age of 20 years); and sixteen participants had either 

limited or no experience playing the piano or hockey (eight men; age range=18-28 years; 

median age of 18 years). All hockey players had regularly played competitive ice hockey 

for at least ten years. All pianists had formal musical training and had regularly played 

and practiced piano for at least ten years.  

There were no significant differences in mean age of first play experience, mean years of 

total play experience, or mean self-reported hours of regular play per week between the 
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groups of athletes and musicians, pairwise ps>.51 (Bonferroni correction; Table 3). There 

were also no group differences in handedness (Oldfield, 1971), imagery ability (Gregg, 

Hall, & Butler, 2010), age, or sex, ps >.34 (Table 3). All participants were instructed to 

imagine making a slap shot (a bimanual action from hockey), playing a musical piece on 

the piano using both hands, or squeezing their right hand into a fist following the auditory 

cues of “hockey”, “piano”, and “right hand”, respectively. As in Experiment 1, 

participants were asked to mind-wander following the cue “relax”, and all instructions 

were 1-second in length. 

2.2.1.3 Experiment 3: Complexity and Familiarity 

The experienced pianists (n=16) from Experiment 2 completed Experiment 3 in the same 

recording session. In Experiment 3, the pianists were instructed to imagine playing 

ascending and descending C-major scales and B-major arpeggios over two octaves using 

both hands following the auditory cues of “scale” and “arpeggio”. The pieces of music 

were selected based on the curriculum of the Royal Conservatory of Music, which is a 

prominent musical education institution in Canada. In this curriculum, piano students are 

evaluated on scales and the key of C-major from the first grade level; arpeggios from the 

fourth grade level; and the key of B-major from the seventh grade level (Royal 

Conservatory of Music, 2008). Given the different grade levels at which the C-major 

scale and B-major arpeggio are evaluated in the Royal Conservatory of Music 

curriculum, the B-major arpeggio represents a more complex action than the C-major 

scale. The pianists reported high familiarity with both pieces and recalled both pieces 

from memory. As in Experiment 1, the participants were instructed to mind-wander 

following the cue “relax”, and all instructions were 1-second in length. The Experiment 3 

procedure was always conducted following the Experiment 2 procedure to prevent 

pianists from selecting the musical pieces from Experiment 3 for the piano imagery in 

Experiment 2. 
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Table 3. Demographic and other measures for Experiments 2 and 3 of Chapter 2. 

Variable 
 Pianists  Hockey Players  Controls  Total 
 M ± SD  M ± SD  M ± SD  M ± SD 

Demographics 
                

n 
 

16 
 

16 
 

16 
 

48 

Sex (# male) 
 

6 
 

7 
 

8 
 

21 

Age (years) 
 

20.6 ± 2.9 
 
     20.9 ± 3.4 

 
19.4 ± 2.7 

 
20.3 ± 3.0 

Laterality Quotient a  
 

70.9 ± 14.7 
 

70.9 ± 21.9 
 

67.8 ± 20.7 
 

69.9 ± 19.0 

Hockey Experience b 
              

Initial age (years) 
 

1.6 ± 3.0 
 

5.0 ± 1.7*, b 
 

2.6 ± 4.2 
 

3.1 ± 3.4 

Total years 
 

0.9 ± 1.8 
 
    15.4 ± 3.4*** 

 
0.4 ± 0.9 

 
5.6 ± 7.4 

Hours per week 
 

0.5 ± 2.0 
 

 9.2 ± 4.5*** 
 

0.8 ± 2.0 
 

3.5 ± 5.1 

Number of other sports played 
 

1.5 ± 1.2 
 
      2.9 ± 1.5* 

 
2.4 ± 1.6 

 
2.3 ± 1.5 

Piano Experience c 
               

Initial age (years) 
 

5.4 ± 2.0† 
 

1.6 ± 3.4 
 

3.7 ± 6.7 
 

3.6 ± 4.7 

Total years 
 

14.8 ± 3.6*** 
 

0.5 ± 1.2 
 

0.6 ± 1.4 
 

5.3 ± 7.1 

Hours per week 
 

8.9 ± 3.8*** 
 

0.3 ± 0.7 
 

0.6 ± 1.3 
 

3.2 ± 4.7 

Number of other instruments played 1.6 ± 1.0*** 
 

0.3 ± 0.5 
 

0.7 ± 0.6 
 

0.9 ± 0.9 

Imagery Ability d 
                

Kinaesthetic 
 

5.2 ± 1.0 
 

5.1 ± 1.1 
 

4.8 ± 1.3 
 

5.0 ± 1.1 

Visual 
 

5.8 ± 1.0 
 

5.6 ± 1.4 
 

5.4 ± 1.0 
 

5.6 ± 1.1 

Self-report ratings of imagery 
                

Vividness e 
 

3.9 ± 1.0 f 
 

3.7 ± 0.6 
 

3.8 ± 0.7 
 

3.8 ± 0.8 

  4.2 ± 1.1 g             

Notes. M=mean; SD=standard deviation. 
a The Laterality Quotient is a measurement of handedness (Oldfield, 1971). 
b Four pianists reported some leisure experience playing hockey (2-5 years total experience initiated at ages 
5-8), and four controls reported some leisure experience playing hockey (1-3 years total experience initiated 
at ages 5-13). 
c Three hockey players reported some leisure experience playing piano (1-4 years total experience initiated at 
ages 7-10), and five controls reported some leisure experience playing piano (0.5-5 years total experience 
initiated at ages 5-22). 
d Performance on the Movement Imagination Questionnaire-Revised Second version (Gregg et al., 2010) 
e Responses to the following question: "Please rate the overall vividness of your imagined actions during the 
task, such that: 1=not at all vivid, 2=slightly vivid, 3=somewhat vivid, 4=moderately vivid, 5=very vivid" 
f Responses from the pianists for the Experiment 2 imagery 
g Responses from the pianists for the Experiment 3 imagery 
***p<.001; *p<.05; †p<.1. 
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2.2.2 Procedure 

Before the EEG recording session, each participant completed a series of questionnaires. 

All participants completed the Edinburgh Handedness Inventory (Oldfield, 1971) and the 

Movement Imagery Questionnaire-Revised Second version (Gregg et al., 2010). 

Participants in Experiments 2 and 3 also completed a questionnaire regarding their 

experiences playing hockey, piano, and other sports and instruments. After Experiments 2 

and 3, participants rated the vividness of their imagined actions using a 5-point Likert 

scale (Table 3).  

All auditory cues were pre-recorded by a female speaker and presented to the participant 

using ER-1 insert earphones (Etymōtic Research Inc., Elk Grove Village, IL). Each trial 

began with an auditory cue and was followed by 5 to 8 seconds of silence before the 

onset of the next auditory cue. The duration of the silent interval was randomly selected 

from a uniform distribution on each trial. Experiments 1 and 2 were completed in four 

blocks of 48 trials (12 trials of each instruction per block). Experiment 3 was completed 

in three blocks of 48 trials (16 trials of each instruction per block), as there were only 

three (rather than four) trial types in the latter task. Each block of 48 trials was 

approximately six minutes in duration. All trials were presented in a pseudorandom order 

such that no more than two cues of the same type were consecutively presented, and the 

first trial of each block was always an imagined action trial (rather than a ‘relax’ trial). 

Participants were provided with short breaks between blocks to reduce fatigue. 

Participants were also instructed to imagine completing each action repeatedly from the 

offset of the auditory cue to the onset of the next auditory cue. This instruction was 

intended to account for potential differences in the duration of the imagined actions.  

2.2.3 Data acquisition and pre-processing 

In all three studies, the EEG data were recorded using the g.Gamma active electrode 

system (g.tec Medical Engineering GmbH, Austria). In Experiment 1, the EEG data were 

recorded with a four-channel montage housed in an electrode cap; the electrodes were 

placed at sites CP3, FC3, CP4, and FC4 (Sharbrough et al., 1991). In Experiments 2 and 

3, the EEG data were recorded from the same four scalp sites as in Experiment 1, and 
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additional electrodes were placed at sites TP7, FT7, CPz, FCz, TP8, and FT8 

(Sharbrough et al., 1991). The reported analyses for Experiments 2 and 3 consist of data 

from only the four electrodes used in Experiment 1, following previous work (Cruse et 

al., 2012; Guger et al., 2003).  

The EEG signals were acquired using a g.USBamp amplifier operating through a USB 

2.0 port. Stimuli presentation and physiological data recordings were performed using a 

Simulink® model in Matlab (Mathworks, Inc., Natick, MA). Simulink® ensures the 

precise synchronization of EEG activity with cue onset/offset (Guger et al., 2001). In all 

three studies, bipolar surface electromyographic recordings were obtained from the 

ventral surface of the forearms to detect overt movements. Online, the EEG data were 

filtered from 0.5 to 60 Hz with a 60 Hz notch filter using an infinite impulse response 

digital Butterworth filter. The electromyographic data were filtered from 5 to 250 Hz 

with a 60 Hz notch filter. The EEG recordings were referenced to the right earlobe with a 

forehead (Fpz) ground, and the right elbow was used for the electromyographic ground. 

All data were sampled at 600 Hz with impedances below 5 kΩ at the beginning of the 

EEG recording.  

Offline data processing was conducted with EEGLAB (Delorme & Makeig, 2004). The 

EEG data were down-sampled to 100 Hz, filtered between 0.5 and 40 Hz using the 

EEGLAB function ‘pop_eegfilt’, and segmented into 6-second epochs time-locked to the 

onset of the auditory cue. The EEGLAB filter function consisted of a two-step least-

squares finite impulse response filter. The data were first filtered with a high-pass cut-off 

of 0.5 Hz, and the data were then filtered with a low-pass cut-off of 40 Hz. The 

electromyographic data were rectified and then filtered with a 10 Hz high pass filter using 

the same EEGLAB least-squares filter function previously described. Trials containing 

physiological artefacts, including overt hand movements as evident from the 

electromyographic data, were identified by visual inspection and removed. After artefact 

rejection, the median number of trials included in each imagery and rest condition per 

participant was: 40 in Experiment 1 (range=29−48); 43 in Experiment 2 (range=27−48); 

and 43 in Experiment 3 (range=28−48). Finally, the EEG data were re-referenced offline 
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to form two bipolar channels (FC3−CP3, FC4−CP4) that are subsequently identified as 

C3’ and C4’, respectively.  

2.2.4 Single-trial classification 

A machine-learning algorithm was used for single-trial classification of the EEG data 

(Cruse et al., 2011, 2012). For these analyses, the log band power values of four 

frequency bands at electrodes C3’ and C4’ were the classification features. Based on 

previous work (Cruse et al., 2011, 2012), the frequency bands were: 7 to 13 Hz (mu); 13 

to 19 Hz (low-beta); 19 to 25 Hz (mid-beta); and 25 to 30 Hz (high-beta), for a total of 

eight features per classification analysis (two electrodes x four frequency bands). For the 

single-trial analyses, the spectral power in each band was estimated with a sliding 1-

second Hamming window moving in 50-ms steps and using a short time Fourier 

transform (Matlab function ‘spectrogram’; Pfurtscheller & Lopes da Silva, 1999).  

Classification of each imagined action and the corresponding rest condition was 

performed using a naïve Bayes classifier (Matlab’s ‘naivebayes’ object). Each 

classification analysis was conducted using ten-fold cross-validation. For the cross-

validation procedure, each participant’s trials for one type of imagined action and the rest 

condition from the same experiment were separated into ten groups approximately equal 

in size. The naïve Bayes classifier was trained on the features of nine of these groups 

(training), and then the class of each trial in the tenth group was predicted to calculate the 

classifier’s accuracy (testing). Specifically, during training, the naïve Bayes classifier 

estimated the parameters of a probability distribution per training feature per class. The 

parameters of this probability distribution were the mean and standard deviation of a 

normal distribution; the training features were power per frequency band at each 

electrode; and the two classes were the rest and imagery trial types. Using Bayes’ 

Theorem during testing, the features of the test trials were used to calculate the posterior 

probabilities for each class, and then each test trial was placed in the class with the 

highest posterior probability (Jiang, Wang, Cai, & Yan, 2007). The classification 

procedure was repeated ten times so that each trial served as a test trial in exactly one of 

the ten cross-validation folds. The average classification accuracy across the ten folds 

was then calculated at each time-point. Finally, the time-course of the cross-validated 
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classification accuracy was smoothed with a sliding window of 500 ms to control for 

outliers (Cruse et al., 2012). 

To determine the statistical significance of the classification accuracy, a permutation test 

with 1,000 repetitions was used (Cruse et al., 2012; Maris, 2004). For each permutation, 

the class labels of imagery or rest were shuffled across trials, and the cross-validated 

classification procedure previously described was repeated. The maximum smoothed 

accuracies across all time-points from each of the 1,000 repetitions were used to form a 

distribution representing the expected classification results if the classifier were operating 

at chance (the null hypothesis). The classification accuracy obtained for the participant’s 

original data (i.e., the data with the correct trial labels) was then evaluated against this 

distribution. This comparison step enabled the calculation of a familywise error-corrected 

significance value for the original classification results at each time-point. Finally, to 

control for the multiple comparisons of band power (i.e., one comparison for each time 

point of imagery versus rest), a control of False Discovery Rate approach was used 

implemented via Matlab’s ‘fdr’ function (Benjamini & Hochberg, 1995; Verhoeven, 

Simonsen, & Mcintyre, 2005). The control of False Discovery Rate approach reduces the 

risk of Type I error without requiring as stringent reductions in power as Bonferroni 

procedures (Verhoeven et al., 2005). 

2.2.5 Time-frequency analyses 

In addition to the single-trial classification analyses of the data, the EEG data from all 

three studies were analysed using the same spectral analysis procedure reported 

elsewhere (Cruse et al., 2012). For each time-point at C3’ and C4’, spectral power 

estimates were calculated using a 1-second Hanning window time-frequency 

transformation via the ‘ft_freqstatistics’ function of the open-source Matlab toolbox, 

FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011). The time-frequency data at 

both electrodes were then compared between the imagined movements and rest using 

cluster-based permutation testing implemented via FieldTrip (Cruse et al., 2012; Maris & 

Oostenveld, 2007). For the cluster-based testing, the time-frequency data for a given 

imagery condition and rest (or another imagery condition, as in Experiment 3) were log-

transformed and then compared at each data point by a paired-samples t test. All 
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significant data points (p<.025) were then arranged into groups, i.e., clusters, based on 

their temporal and spectral proximity to each other. The sum of the t values was then 

calculated for each cluster. To determine the familywise error-corrected significance for 

each summed t value, a Monte Carlo randomization test that controlled for familywise 

error was used. In the randomization test, the condition labels were permuted to remove 

task-related differences, and the clustering procedure was repeated 1,000 times. The 

maximum summed clusters from these repetitions were used to form a distribution, and 

this distribution was then used to test the null hypothesis that the original summed t value 

(i.e., the summed t value computed from the data with the correct trial labels) occurred by 

chance.  

2.2.6 Group-level statistics 

For the single-trial analyses of the EEG data, all group-level statistical analyses were 

conducted using IBM SPSS Statistics version 21.0. The Dunn-Sidak correction was used 

for the follow-up tests. For the spectral analyses of the EEG data, all statistical analyses 

were conducted using the cluster-based permutation testing previously described via 

custom Matlab script and FieldTrip (Cruse et al., 2012; Maris & Oostenveld, 2007; 

Oostenveld et al., 2011). 

For the group comparisons of the single-trial analyses, several parametric and non-

parametric repeated-measures statistical tests were used. Paired-samples t tests were used 

to compare maximum classification accuracy and the time at which maximum 

classification accuracy occurred relative to the onset of the instruction in both 

Experiments 1 and 3. Wilcoxon Signed Rank Tests were used to compare the number of 

time-points for which a statistically reliable classification was obtained in the same two 

studies. This test was also used to compare the self-reported vividness ratings of the 

imagined actions from the pianists between Experiment 2 and Experiment 3. An exact 

(rather than asymptotic) calculation of the p value was used with the test of time-points in 

Experiment 1 to account for the positive skew of the count data (given that many 

participants had zero statistically reliable time-points). Finally, the number of trials 

included in each complexity condition of each study was compared using the Friedman 

test. 
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To further illustrate the difference between the single-trial analyses of the complexity 

effects in Experiments 1 and 3, participants were assigned to a binary category based on 

whether at least one imagined movement in each complexity condition was classified 

from rest with a statistically reliable result (0=no statistically reliable classifications). The 

number of participants with at least one statistically reliable classification and the number 

of participants with no statistically reliable classifications in each complexity level were 

then compared using Fisher’s Exact Test.  

For Experiment 2, three separate 3 (Group: Pianist, Hockey, Control) x 3 (Action: Play 

Piano, Slap-shot, Squeeze) mixed analyses of variance were used to compare the 

averaged maximum classification accuracies, the time at which the maximum accuracy 

occurred, and the total number of trials included in each condition (N.B., the trial 

numbers were rank-transformed to meet the statistical assumptions of the analysis). 

Additionally, a Kruskal-Wallis test was performed to compare the self-reported imagery 

vividness ratings between the groups. Given that classification accuracy did not 

statistically differ between conditions in Experiment 2, no comparisons were made for 

the number of time points that were classified with a statistically reliable result.  

The group spectral analyses were conducted with the time-frequency data averaged 

across all trials in each condition per participant. For Experiment 1, the time-frequency 

data for each participant were averaged across the three imagined actions in each of the 

two complexity levels, i.e., simple and complex imagery. The cluster-based permutation 

testing was then conducted between each complexity level and rest, and between the two 

complexity levels (Figure 1). For Experiment 2, comparisons were separately made for 

each familiarity group between each imagery condition and rest (Figure 3). For 

Experiment 3, comparisons were made between each of the two imagery conditions and 

rest, and between the two imagery conditions (Figure 4). Post-hoc comparisons were also 

conducted between the piano imagery in Experiments 2 and 3.  
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2.3 Results 

2.3.1 Experiment 1: Complexity 

In terms of the single-trial analyses of the EEG data, there was a trend for classification 

accuracy to be higher for the complex imagined actions than the simple imagined actions, 

t(15)=-1.963, p=.068, d=0.49 (Simple: Mean(M)=60.68%, Standard Error (SE)=0.74%; 

Complex: M= 62.74%, SE=0.93%). There was no statistical difference for the time at 

which the maximum classification accuracy occurred between the two complexity 

conditions, p=0.29. From the familywise permutation tests, there were more time-points 

at which statistically reliable classifications were obtained in the complex condition than 

in the simple condition, Z=-2.197, exact p=.026, r=.55 (Simple: median of zero 

statistically reliable time-points [range: 0-26]; Complex: median of 14.5 statistically 

reliable time-points [range: 0-31]). There was also no statistically reliable difference in 

the number of trials in the two complexity levels, p=.29. 

There was some variability between and within subjects for the single-trial analyses. 

While at least one simple imagined action type was classified from rest with a statistically 

reliable outcome for only four of the participants (25% of the sample), at least one 

complex imagined action type was classified from rest with a statistically reliable 

outcome for more participants (11 of 16, or 69%), Fisher’s exact p=.032 (two-tailed). 

Notably, there were some participants in the sample who did not produce any statistically 

reliable sensorimotor rhythms for any of the imagined actions (25% of the sample). This 

portion of the sample could reflect the estimated 10 to 30% of users designated as ‘brain-

computer interface illiterate’ in previous work (Vidaurre & Blankertz, 2010). The inter- 

and intra-subject variability in classification accuracy is summarized in Table 4 and 

detailed in the supplementary data tables (Appendix C). 
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Table 4. Summary of the single-trial classification outcomes in Chapter 2. 
Experiment 1 (Complexity; n=16) 

Simple Imagery 

 Right Hand vs. Rest  Left Hand vs. Rest  Both Hands vs. Rest 

  Maximum 
Accuracy  Time of 

Maximum   Duration  ns  Maximum 
Accuracy  Time of 

Maximum  Duration  ns  Maximum 
Accuracy  

Time of 
Maximum  Duration  ns 

M  60.61  2.59  3.63  2  60.15  2.22  1.75  1  61.27  2.85  6.25  4 
SE  0.97  0.29  2.50  -  0.70  0.37  0.94  -  0.93  0.33  3.46  - 

Complex Imagery 
 Juggle vs. Rest  Guitar vs. Rest  Clap vs. Rest 

  Maximum 
Accuracy  Time of 

Maximum   Duration  ns  Maximum 
Accuracy  Time of 

Maximum  Duration  ns  Maximum 
Accuracy  Time of 

Maximum  Duration  ns 

M  62.71  2.79  9.31  8  63.83  2.42  15.06  7  61.67  2.44  6.06  7 
SE  1.07  0.24  3.67  -  1.58  0.32  6.19  -  1.23  0.33  2.63  - 

 

Experiment 2 (Familiarity; n=48) 

 Piano vs. Rest  Hockey vs. Rest  Hand Squeeze vs. Rest 

  Maximum 
Accuracy  Time of 

Maximum   Duration  ns  Maximum 
Accuracy  Time of 

Maximum  Duration  ns  Maximum 
Accuracy  Time of 

Maximum  Duration  ns 

Pianists (n=16) 
M  63.31  2.76  16.31  7  62.74  2.27  9.88  8  60.76  2.45  6.19  7 
SE  1.49  0.24  5.99  -  1.38  0.35  4.69  -  1.05  0.33  2.96  - 

Hockey Players (n=16) 
M  59.23  2.25  3.88  4  60.34  2.31  5.50  4  59.52  2.35  4.69  4 
SE  0.98  0.31  1.95  -  1.64  0.24  2.95  -  1.02  0.28  2.80  - 

Controls (n=16)   

M  63.12  2.35  12.94  8  63.75  2.18  11.69  9  63.69  2.25  12.06  8 
SE  1.49  0.27  5.70  -  1.38  0.26  4.82  -  1.37  0.33  4.53  - 

 

Experiment 3 (Complexity and Familiarity; n=16) 

  Simple Music (Scale) vs. Rest   Complex Music (Arpeggio) vs. Rest 

  Maximum 
Accuracy  Time of 

Maximum   Duration  ns  
 

Maximum 
Accuracy  Time of 

Maximum  Duration  ns 

M  66.34  2.61  23.19  9  69.60  2.51  33.69  13 
SE  1.96  0.19  7.18  -  2.03  0.28  7.10  - 

                 
Notes. Maximum Accuracy=maximum cross-validated classification accuracy (%); Time 

of Maximum=time at which Maximum Accuracy occurred (seconds following the offset 

of the auditory cue); Duration=number of time points for which statistically reliable 

classification results were obtained; ns=number of participants for which statistically 

reliable classifications were obtained; M=mean; SE=standard error. 
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From the group spectral analyses of the EEG data (Figure 1), there were statistically 

reliable event-related desynchronizations over the left hemisphere in the low-beta band in 

the complex imagery versus rest comparison (ps<.014). In the simple imagery versus rest 

comparison, there was an event-related desynchronization over the right hemisphere in 

the mid-beta band that approached statistical significance (p=.050). Additionally, there 

were no statistically reliable clusters in the simple imagery versus complex imagery 

comparisons (ps>.10).  

 

Figure 1. Outcomes of the group spectral analyses in Experiment 1 of Chapter 2. 

Averaged, group (n=16) time-frequency plots from the spectral analyses of the EEG data 

for Experiment 1 (Complexity) averaged across the three imagined actions in each 

imagery condition. The range of power values (log ratio difference) that are plotted is 

±0.6121. Significant clusters (ps<.014) are outlined with solid lines; dashed lines 

highlight a cluster with p=.050. Time is measured relative to the offset of the instruction. 

Although the role of action familiarity was not explicitly examined in Experiment 1, there 

was one interesting finding in this experiment that emphasized the potential influence of 

prior experience on single-subject performance. In Figure 2, the time-course of the 
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single-trial classification accuracies for one of two experienced guitarists who 

participated in Experiment 1 is depicted. In line with the group trends already reported, 

these participants did not produce sensorimotor rhythms that were classified from rest 

with statistical reliability for any of the simple imagined actions. The averaged, 

maximum classification accuracy obtained for these participants during simple motor 

imagery was 57.58% (SE=1.01%). Moreover, the classification results for the simple 

imagery versus rest comparisons were not statistically reliable at any time-point for either 

participant. Both participants produced sensorimotor rhythms for the instruction to 

imagine clapping that were reliably classified from rest for a short time (six to seven 

time-points with smoothed maximum classification accuracy of 64.79%±3.52%, no 

figure provided, and 64.47%±4.04%, as shown in Figure 2). Most interestingly, however, 

both participants produced a markedly robust sensorimotor rhythm for the instruction to 

imagine playing the guitar. These sensorimotor rhythms were classified from rest for 

most of the epoch (68-69 time-points) with very high accuracy (maximum accuracies of 

81.10%, SE=3.44%, as shown in Figure 2, and 71.28%, SE=3.97%, no figure provided).  

 

Figure 2. Single-trial analyses for a musician in Experiment 1 of Chapter 2. 

Mean smoothed, cross-validated classification accuracy from the EEG single-trial 

analyses from an experienced guitar player who participated in Experiment 1 
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(Complexity). Time is measured relative to the offset of the instruction. Shaded regions 

depict ±1 standard error of the mean, and stars denote time-points with statistically 

reliable classification results. 

2.3.2 Experiment 2: Familiarity 

In terms of the single-trial analyses of the EEG data, there were no statistically reliable 

differences in accuracy for any of the imagined action versus rest comparisons, or for any 

group on any of the imagined action versus rest comparisons, ps>.44 (Table 4 and 

Appendix C). The main effect of group on accuracy approached statistical significance 

(p=.054), and this was driven by the relatively low overall classification accuracy of the 

hockey players (M=59.70%, SE=1.03%) compared to the control group (M=63.52%, 

SE=1.24%; pairwise p=.054). There were no statistically reliable differences in terms of 

the time at which maximum classification accuracy occurred for any imagined action or 

any group by imagined action type, ps>.64. There was also no statistically reliable 

difference in the number of trials included in any of the imagined action types or rest 

conditions on average or by group, ps>.41. Finally, the three groups did not differ in their 

self-reported vividness ratings of the imagined actions, p=.34, or in motor imagery ability 

as measured by the Movement Imagery Questionnaire (ps>.545; Table 3). 

In the group spectral analyses of the EEG data (Figure 3), there were statistically reliable 

event-related desynchronizations for the familiar imagery versus rest comparisons for 

both the experienced pianists (ps<0.015) and the experienced hockey players (ps<0.019). 

Although the event-related desynchronizations were statistically reliable bilaterally 

(rather than unilaterally) and over a longer period for the pianists, the statistically reliable 

event-related desynchronizations were similar between the hockey players and pianists 

during imagery of familiar actions. Specifically, these event-related desynchronizations 

featured statistically reliable clusters in both the low-mu (8−10 Hz) and low-beta (13−19 

Hz) bands. However, the pianists also had statistically reliable event-related 

desynchronizations for the hockey imagery (ps<.017) and the simple imagery (ps<0.017), 

and the hockey players had an event-related desynchronization that approached statistical 

significance (p=.036, two-tailed) for the simple imagery. Furthermore, the control group 

also produced statistically significant event-related desynchronizations for both the piano 
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(p=.021) and hockey imagery (p=.002). There were no statistically reliable clusters in 

any of the other comparisons (ps>0.08). Thus, none of the imagined actions conferred a 

clear advantage in terms of sensorimotor rhythm detection for any group of participants, 

regardless of their familiarity (or lack thereof) with the imagined action.  

 

Figure 3. Outcomes of the group spectral analyses in Experiment 2 of Chapter 2. 

Averaged, group time-frequency plots from the spectral analyses of the EEG data for 

Experiment 2 (Familiarity) by imagery versus rest comparison per familiarity group 

(n=16 per group). The range of power values (log ratio difference) that are plotted is 

±0.6121. Statistically reliable clusters (ps<.021) are outlined with solid lines; dashed lines 

highlight a cluster with p=.036. Time is measured relative to the offset of the instruction. 

2.3.3 Experiment 3: Complexity and familiarity 

In terms of classification accuracy for the experiment only involving pianists, there was 

an advantage for the complex imagined action (Complex: M=69.60%, SE=2.03%) 

compared to the simple imagined action (Simple: M=66.34%, SE=1.96%; t(15)=-2.589, 

p=.021, d=0.65). Furthermore, more time-points were classified from rest for the 

complex imagery compared to the simple imagery, Z=-2.510, p=.009 (two-tailed), r=.63 

(Simple: median of 9 time-points [range: 0-76]; Complex: median of 32 time-points 

[range: 0-74]). However, there was no difference between the number of pianists with 
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statistically reliable imagery versus rest comparisons in the two complexity levels, 

Fisher’s exact p=0.25. There also was no statistically reliable difference in terms of when 

the maximum classification accuracy occurred relative to the onset of the auditory cue, 

p=.72. The differences between the complexity conditions were not driven by a 

difference in the number of trials in either condition, p=.16. Notably, there was also no 

difference between the self-reported vividness of the imagined actions in Experiment 3 

compared to Experiment 2, p=.10. 

 

Figure 4. Outcomes of the group spectral analyses in Experiment 3 of Chapter 2. 

Averaged, group (n=16) time-frequency plots from the spectral analyses of the EEG data 

from Experiment 3 (Complexity and Familiarity) by comparison. The range of power 

values (log ratio difference) that are plotted is ±0.6121. Statistically reliable clusters 

(p<.017) are outlined with solid lines; dashed lines highlight clusters with p=.044 (C3’) 

and p=.038 (C4’). Time is measured relative to the offset of the instruction. 

The results of the group spectral analyses are shown in Figure 4 for each comparison. 

Compared with rest, statistically reliable event-related desynchronizations (ps<.017) 

occurred in the low-mu and low-beta bands over the left hemisphere and in the low-,  

mid-, and high-beta bands over the right hemisphere for the simple imagery versus rest 

comparison. For the complex imagery versus rest comparison, a similar response was 
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observed with the same time-course, although the event-related desynchronizations were 

statistically reliable over both hemispheres throughout the low-mu and the low- and mid-

beta bands (ps<.011). In a comparison of the two imagery conditions, there was more of a 

desynchronization bilaterally for the complex imagery in the low-mu and low-beta bands 

that approached statistical significance (ps=.044 [C3’] and .038 [C4’]).  

As an exploratory post-hoc test, classification accuracy was compared for the 

sensorimotor rhythms generated when the pianists imagined playing a musical piece of 

their choice (Experiment 2) versus two specific musical pieces (Experiment 3). This 

analysis resulted in a significant effect of movement type, F(15)=16.016, p=.001, 

ηp2=.361, that was driven by the lower classification accuracy for the piano imagery in 

Experiment 2 compared to the complex piano imagery in Experiment 3 (p=.003; 

Complex Musical Piece [Experiment 3]: M=69.60%, SE=2.03%; Musical Piece of Choice 

[Experiment 2]: M=63.31%, SE=1.49%; other pairwise ps>.06). 

2.4 Discussion and conclusions 

In this chapter, healthy volunteers, including experienced hockey players and pianists, 

imagined actions of varying complexity and familiarity in a series of motor imagery 

paradigms evaluated using EEG. The purpose of this work was to increase the likelihood 

that reliable and robust sensorimotor rhythms would be detected at the single-subject 

level. In future work, these manipulations will be applied to sensorimotor rhythm-based 

brain-computer interface paradigms intended to restore communication to patients with 

disorders of consciousness.  

In Experiment 1, imagery of a range of bimanual sequences of actions (“complex 

imagery”) resulted in sensorimotor rhythms that were classified from rest with similar 

accuracy as imagery of the simple hand squeezes typically used with sensorimotor 

rhythm-based brain-computer interfaces. There was a group trend that the complex 

actions were classified with higher accuracy than simple hand squeezes, although this 

result did not reach statistical significance (p=.068). Furthermore, there was an advantage 

for the complex actions in that the sensorimotor rhythms for these actions were classified 

from rest for a longer period than the simple actions. More participants also produced 
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statistically reliable sensorimotor rhythms for at least one of the complex actions than for 

at least one of the simple actions. Overall, the findings of Experiment 1 align with the 

prediction that there would be an enhancement of the sensorimotor rhythm for complex 

imagery (Holper & Wolf, 2011; Kuhtz-Buschbeck et al., 2003; Roosink & Zijdewind, 

2010). In other words, imagined actions involving more than one body part and 

sequences of actions (complex motor imagery) may improve the detection of covert 

command following in future clinical work and do not necessarily result in less robust 

brain responses than conventional motor imagery. 

Another interesting finding from Experiment 1 was the between- and within-subject 

variability for the various imagined actions. Nearly half of the sample produced a robust 

sensorimotor rhythm for at least one of the complex imagined actions, while less than 

25% of the sample produced a robust sensorimotor rhythm for at least one of the simple 

imagined actions (Table 4). The latter observation is well-illustrated anecdotally by the 

classification results of two guitarists who participated in Experiment 1 (Figure 2). The 

guitarists imagined performing six different actions throughout their participation in this 

study, but both participants generated robust and sustained sensorimotor rhythms only 

when they imagined playing the guitar (defined as a complex action in this work). There 

was likely no advantage for the complex imagery at the group-level because most 

participants, like the guitarists, only produced significant responses for one or two of the 

complex imagined actions, rather than for all three of these actions. Accordingly, 

complex imagery catered to an individual’s prior experience may enhance the neural 

correlates of imagined movement in some cases. 

Experienced athletes and musicians were recruited for Experiments 2 and 3 to directly 

examine the influence of experience on the neural correlates of motor imagery. 

Somewhat surprisingly, there was no advantage for any of the imagined actions for any 

group in Experiment 2, regardless of their familiarity with the imagined actions (e.g., 

pianists imagining playing piano, etc.). Compared to novices, experienced athletes and 

musicians differentially activate fewer regions of the brain when imagining actions 

involving the sport or instrument with which both groups have familiarity (Fourkas et al., 

2008; Lotze et al., 2003; Olsson et al., 2008; Wei & Luo, 2010). Although expert brain 
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responses to familiar imagery are typically consistent within and across individuals 

(Langheim, Callicot, Mattay, Duyn, & Weinberger, 2002), these responses did not result 

in an enhancement of the sensorimotor rhythm in Experiment 2. Interestingly, however, 

there was an advantage for the classification of sensorimotor rhythms generated for 

specific, familiar actions (performance of two musical pieces) in Experiment 3. 

Classification accuracy was higher and robust for a longer period when the experienced 

pianists imagined playing a complex musical piece. Moreover, the imagery of particular 

musical pieces in Experiment 3 was associated with the largest and most sustained event-

related desynchronizations of all the imagery conditions in this chapter (compare Figures 

1, 3, and 4). Finally, classification accuracy was higher when pianists imagined playing 

the complex musical piece in Experiment 3 than when the same pianists imagined 

playing a musical piece of their choice in Experiment 2. It thus seems that imagery of a 

well-specified, complex, and familiar action leads to an advantage in sensorimotor 

rhythm detection. 

Several factors likely contributed to the finding that the specific, complex, and familiar 

imagery from Experiment 3 resulted in the most robust sensorimotor rhythms of this 

chapter. Firstly, there was some variability between the two experiments involving 

imagined musical performance. In Experiment 2, participants were instructed to simply 

imagine playing the piano with both hands, rather than to imagine playing particular 

musical pieces as in Experiment 3. This variability likely resulted in less consistent and 

less robust brain responses over trials and between individuals, regardless of their 

familiarity with the piano. Notably, it is unlikely that the specificity of the instructions 

alone underlies the advantage of the Experiment 3 imagery, given that all the other 

imagery tasks in this work also involved specific instructions (e.g., imagine squeezing 

your right hand, etc.). As an additional consideration, playing the piano involves 

temporally and spatially complex movements (Zatorre, Chen, & Penhune, 2007). 

Analogous finger-sequencing actions that do not require musical training are also 

associated with more robust brain responses than less temporally and spatially complex 

hand actions (Bengtsson, Ehrsson, Forssberg, & Ullén, 2004). It is accordingly possible 

that piano performance imagery was more conducive to an enhanced sensorimotor 

rhythm than the other imagined actions in this chapter. Although the imagery from 
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Experiment 3 is not appropriate for non-musicians, imagery involving music has been 

investigated in several previous brain-computer interface paradigms, including paradigms 

based upon the sensorimotor rhythm (e.g., Curran et al., 2004; Power, Kushki, & Chau, 

2011; Schaefer, Farquhar, Blokland, Sadakata, & Desain, 2011). Indeed, the sensorimotor 

system supports music perception and performance, and musicians and non-musicians 

alike differentially activate the supplementary motor area and other premotor cortical 

areas when listening to complex rhythms and imagining familiar melodies (for a review, 

see Zatorre et al., 2007). As a final possibility, imagery of actions that target other 

sensory modalities may further enhance the sensorimotor rhythm. An example of such 

imagery is imagining using a tool while imagining the noises that the tool makes (Felton, 

Wilson, Williams, & Garell, 2007; Wilson, Felton, Garell, Schalk, & Williams, 2006). 

Although the kinaesthetic (as opposed to visual) aspects of motor imagery correlate with 

sensorimotor rhythm magnitude (Neuper, Scherer, Reiner, & Pfurtscheller, 2005), a 

richer sensory representation of an imagined action may confer advantages in 

sensorimotor rhythm detection. 

Altogether, this chapter provides three important findings regarding the roles of action 

familiarity and complexity in the EEG correlates of imagined movement. Firstly, imagery 

of complex, bimanual actions correlates with more robust brain responses in some cases, 

as anecdotally illustrated in Figure 2. Importantly, these modified imagery tasks do not 

necessarily impair performance compared to the hand-squeeze imagery typically used 

with sensorimotor rhythm-based brain-computer interfaces. Secondly, a familiar action 

may not always correlate with a more robust sensorimotor rhythm than other actions, but, 

thirdly and lastly, an action that is familiar, sufficiently complex, and well specified is 

likely to correlate with a more robust sensorimotor rhythm. Indeed, participants need 

prior experience with an action to reliably perform motor imagery of that action (Olsson 

& Nyberg, 2010). Similarly, brain responses to motor imagery are enhanced following 

overt practice of novel actions (Baeck et al., 2012; Lacourse, Orr, Cramer, & Cohen, 

2005). For these reasons, it is worthwhile to select an imagery task based on a person’s 

skills and interests, regardless of the person’s level of expertise with that action. Most 

importantly, the subtle but important changes in task instructions proposed here may 

provide benefits to those individuals who are unable to control a conventional 
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sensorimotor rhythm-based brain-computer interface (e.g., Figure 2), given the 

substantial variability between and within participants in previous work (Hammer et al., 

2011; Vidaurre & Blankertz, 2010). 
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Chapter 3  

3 Multiple tasks and neuroimaging modalities increase 
the likelihood of detecting covert awareness in patients 
with disorders of consciousness 

A version of this chapter has been published elsewhere and is reproduced here with 

permission from R. M. Gibson from the original open-source publication cited below, 

according to the Creative Commons Attribution License (CC BY), 

https://creativecommons.org/licenses/by/4.0/legalcode. 

Gibson, R. M., Fernández-Espejo, D., Gonzalez-Lara, L., Owen, A. M., & Cruse, D. 

(2014). Multiple tasks and neuroimaging modalities increase the likelihood of detecting 

covert awareness in patients with disorders of consciousness. Frontiers in Human 

Neuroscience, 8, 950. http://dx.doi.org/10.3389/fnhum.2014.00950 

3.1 Introduction 

A key challenge in the differential diagnosis of disorders of consciousness is that these 

disorders arise from heterogeneous disruptions to brain structure and function. Patients 

may have traumatic or non-traumatic brain injuries, and comorbidity with other disorders 

and pathologies is common. Accordingly, there is often high variability between patients 

in the specific cognitive abilities that are preserved and disrupted. These differences are 

difficult to quantify because most patients cannot overtly respond (Monti, Pickard, & 

Owen, 2013; Rodriguez Moreno, Schiff, Giacino, Kalmar, & Hirsch, 2010). Furthermore, 

patients with disorders of consciousness are characteristically variable in their observable 

behaviour within relatively short time frames. It is not uncommon for a patient to exhibit 

different behaviours over the course of one day, although this variability typically 

subsides the longer the patient persists in the same conscious state and can be quantified 

with rigorous neuropsychological assessment (Cruse, Thibaut, et al., 2013; Giacino et al., 

2002). To complement behavioural assessments, a patient’s cognitive and perceptual 

abilities can be evaluated with neuroimaging (Gosseries, Di, Laureys, & Boly, 2014; 

Owen, 2013; Stender et al., 2014). Unfortunately, however, some patients are ineligible 



 67 

 

 

 

for certain assessments. For example, metallic implants may be incompatible with MRI, 

and craniotomies can result in highly abnormal EEG recordings (Lee et al., 2010). For 

these reasons, it is critical to utilize multiple assessment techniques (e.g., behaviour, 

fMRI, EEG, etc.) with a range of cognitive and sensory tasks to obtain an accurate 

representation of a patient’s abilities. 

As previously discussed, the most widely adopted fMRI-based technique to assess covert 

cognition and awareness in patients with disorders of consciousness involves the neural 

correlates of mental imagery. Specifically, fMRI-based assessments often use both a 

motor imagery task (“imagine playing tennis”) and a spatial navigation imagery task 

(“imagine visiting all the rooms in your house”; Owen et al., 2006). These tasks engage 

distinct mental processes and are associated with similarly distinct brain responses. 

Specifically, the motor imagery task requires the participant to imagine swinging a tennis 

racket, while the spatial navigation task requires the participant to visualize the layout 

and contents of his or her home. Consequently, the motor task is associated with 

activation of the supplementary motor area, while the spatial navigation task is associated 

with activation of the parahippocampal gyrus, the posterior parietal cortex, and the lateral 

premotor cortex. These regions of interest have been confirmed in several validation 

studies with healthy volunteers (Boly et al., 2007; Fernández-Espejo, Norton, & Owen, 

2014; Gabriel et al., 2015; Naci, Cusack, Jia, & Owen, 2013; Owen & Coleman, 2007). 

In patient assessments, the reliability of the patient’s brain response is determined by the 

patient’s ability to sustain spatially appropriate activation throughout repeated, 30-second 

blocks of trials (Boly et al., 2007; Fernández-Espejo et al., 2014; Monti et al., 2010; 

Owen et al., 2006). Notably, this prolonged maintenance of a mental representation is the 

hallmark evidence for conscious processing in this paradigm (Dehaene & Naccache, 

2001; Naccache, 2006). 

EEG-based assessments of covert command following for patients with disorders of 

consciousness primarily rely upon motor imagery. The most successful EEG-based 

adaptations employ motor imagery conventionally used with brain-computer interfaces 

(“imagine squeezing your right hand into a fist”; Cruse et al., 2011). The neural 

correlates of this task are reliable increases and decreases in EEG spectral power 
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(Vaughan et al., 2006). Appropriate spectral changes are maximal over topographically 

appropriate areas of the motor cortex (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 

2001; Pfurtscheller, Neuper, Brunner, & Lopes da Silva, 2005; Yuan, Perdoni, Yang, & 

He, 2011). For imagined squeezes of the right hand, appropriate responses are thus 

maximal over the left premotor cortex. Time-frequency analyses are typically employed 

to quantify power changes in the mu and beta frequency bands, which are classically 

defined as 7 to 12 Hz and 13 to 30 Hz, respectively (Neuper & Pfurtscheller, 2001; 

Pfurtscheller & Neuper, 1997). In patient assessments, permutation testing is 

recommended to determine the reliability of these responses (Billinger et al., 2013; 

Cruse, Chennu, et al., 2013; Goldfine et al., 2013; Noirhomme et al., 2014). 

Although the EEG correlates of imagined hand squeezes are well documented, some 

healthy volunteers do not reliably exhibit these neural responses. In brain-computer 

interface applications, this phenomenon is known as brain-computer interface illiteracy, 

and it is estimated to account for about 10 to 30% of healthy volunteers who do not 

exhibit reliable EEG responses during conventional motor imagery (Hammer et al., 2011; 

Vidaurre & Blankertz, 2010). About 15% of patients diagnosed as being in a Vegetative 

State reliably regulate their brain responses to command (Kondziella, Friberg, Frokjaer, 

Fabricius, & Møller, 2016). Given this small portion of eligible patients, a desirable 

improvement in EEG-based assessments of covert command following is a reduction in 

the likelihood of brain-computer interface illiteracy. Accordingly, the patients in this 

chapter were also asked to perform motor imagery of an action identified as familiar to 

them by their caregivers. This task was motivated by the results of previous work with 

non-brain-injured volunteers, including those described in Chapter 2 (Curran et al., 2004; 

Curran & Stokes, 2003; Gibson, Chennu, Owen, & Cruse, 2014; Scherer et al., 2015). 

Briefly, experienced athletes and musicians produce more focused and reliable patterns of 

brain activation when they imagine actions involving the sport or instrument with which 

they have experience (Lotze, Scheler, Tan, Braun, & Birbaumer, 2003; Wei & Luo, 

2010). It was accordingly expected that familiar imagery would result in more robust 

brain responses from patients and thus reduce the likelihood that patients with the ability 

to covertly follow commands would not be identified in the EEG-based assessment. 
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When a familiar action could not be identified, patients were asked to imagine dialling on 

a telephone. This action was selected because motor imagery of finger sequencing actions 

correlates with robust responses from cortical motor areas and enhanced motor evoked 

potentials relative to simpler hand actions (Bengtsson, Ehrsson, Forssberg, & Ullén, 

2004; Roosink & Zijdewind, 2010). The EEG correlates of familiar motor imagery were 

quantified and evaluated in the same way as the EEG correlates of conventional motor 

imagery. 

In this chapter, a small group of patients with disorders of consciousness underwent 

neuropsychological evaluations and fMRI- and EEG-based assessments of covert 

command following. Behavioural assessments were performed using the Coma Recovery 

Scale-Revised (Kalmar & Giacino, 2005). In the fMRI assesment, patients were asked to 

perform the motor imagery and spatial navigation imagery tasks previously discussed 

(Boly et al., 2007; Owen et al., 2006). In the EEG assesment, patients were asked to 

imagine squeezing their right-hand (conventional motor imagery; Cruse et al., 2011) and 

an action with which they had experience prior to their brain injury (familiar motor 

imagery). In light of the findings of Chapter 2, it was expected that familiar motor 

imagery would result in more reliable EEG responses than conventional motor imagery 

(Gibson et al., 2014). Furthermore, it was predicted that these distinct neural correlates of 

covert command following would provide corroborative evidence for each patient’s 

residual abilities. 

3.2 Materials and methods 

3.2.1 Participants 

An initial convenience sample of 14 patients with acquired brain injuries and disorders of 

consciousness diagnoses ranging from the Vegetative State to the Minimally Conscious 

State Plus were recruited for the EEG and fMRI tasks. Substitute decision makers 

provided written, informed consent for the patients. Ethical approval was obtained from 

Western University’s Health Sciences Research Ethics Board. Three patients were 

excluded from the sample because they were ineligible for the fMRI assessment; two 

patients were excluded because they had craniotomies that resulted in poor quality EEG 
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data (Lee et al., 2010); and three other patients were excluded due to excessive 

movement artefacts. The remaining sample of six patients comprised three patients in a 

Vegetative State and three patients in a Minimally Conscious State. Five patients 

(Patients 2-6) completed the fMRI and EEG experimental procedures in the same week 

with one to three days between sessions, and one patient (Patient 1) completed the fMRI 

experimental procedure seven months prior to the EEG experimental procedure. In the 

latter case (Patient 1), the patient’s ability to follow commands in neuroimaging-based 

assessments has been previously documented using the same fMRI mental imagery 

described here (Fernández-Espejo & Owen, 2013), an fMRI-based attentional paradigm 

(Naci & Owen, 2013), and an EEG attempted movement paradigm (Cruse et al., 2012). 

Demographic and clinical data for the final sample of patients is included in Table 5. 
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Table 5. Demographic and clinical data for the patients discussed in Chapter 3. 

ID 
Sex/ 
Age 

(years) 

Interval 
since 
Ictus 

(years) 
Aetiology Diagnosis 

CRS-R Subscale Scoresa 

Aud Vis Mot Oro Com Aro 

1 M/38 13 
(fMRI) 

13.6 
(EEG) 

Traumatic 

Traumatic brain 
injury secondary to 
a motor vehicle 
collision 

Vegetative 
State 

1 1 2 1 0 2 

2 F/20 6 Non-Traumatic 

Undiagnosed 
progressive 
neuromuscular 
deterioration 

Vegetative 
State 

2 1 2 1 0 2 

3 M/27 4 Non-Traumatic 

Anoxic brain injury 
secondary to 
cardiac arrest 

Minimally 
Conscious State 
Plusb 

3 3 2 2 0 3 

4 F/46 20 Non-Traumatic 

Hypoxic brain 
injury due to near-
drowning 

Minimally 
Conscious State 
Minus 

2 3 2 1 0 2 

5 M/57 4 Non-Traumatic 

Diffuse anoxic 
brain injury 
secondary to 
cardiac arrest 

Vegetative 
State 

1 0 2 1 0 2 

6 F/35 2 Non-Traumatic 

Anoxic brain injury 
secondary to 
cardiac arrest 

Vegetative 
State 

1 0 2 1 0 1 

Notes. fMRI=functional Magnetic Resonance Imaging; EEG=electroencephalography; CRS-
R=Coma Recovery Scaled-Revised; Aud=auditory; Vis=visual; Mot=motor; 
Oro=oromotor/verbal; Com=communication; Aro=arousal; M=male; F=female. 
aHighest CRS-R score recorded by the research team until the time of assessment. For Patients 
2-6, this period was three to nine months (see text for details). For Patient 1, this period was 24 
months (21 evaluations). 
bPatient 3 generated reproducible movements to verbal commands on the auditory sub-scale of 
the CRS-R during each evaluation. 
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3.2.2 Imagery tasks 

During the fMRI testing sessions, patients were asked to perform alternating sessions of 

repeated rest-imagery cycles. Each period of imagery or rest lasted for 30 seconds, and 

each patient completed five cycles for both imagery tasks. In the motor imagery task, 

participants were instructed to imagine swinging their right arm to firmly hit a tennis ball, 

as if competing in a tennis match. In the spatial navigation task, the patients were 

instructed to imagine moving from room to room in their homes whilst visualising all the 

objects they would encounter. The experimental procedure has been reported in previous 

work (Boly et al., 2007; Fernández-Espejo et al., 2014; Monti et al., 2010; Owen et al., 

2006). 

For the EEG task, the procedure was similar to that reported in (Cruse et al., 2012; 

Gibson et al., 2014). Specifically, every trial began with one of three instructions: 

‘Imagine squeezing your right hand’, ‘Imagine dialling 9-1-1’ (or a custom action, 

detailed in Table 6), and ‘Now, please just relax’. All instructions were 3 seconds in 

length and were followed by 2 to 5 seconds of silence. The silent interval was randomly 

selected from a uniform distribution on each trial, and the instructions were presented by 

earphone. The task was completed in blocks of 48 trials (16 trials per instruction) 

presented in a pseudorandom order such that no more than three instructions of the same 

type were consecutively presented. Each patient completed four or five blocks during the 

assessment, for a total of 192 (four blocks) or 240 (five blocks) trials, with short breaks 

between each block. 

Table 6. Familiar motor imagery tasks for the patients discussed in Chapter 3. 

Patient ID Familiar Imagery Task 

1 Make a tennis serve  
2 Dial 9-1-1 

3 Lift a weight 
4 Play a scale on the piano 

5 Kick a soccer ball 
6 Dial 9-1-1 
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3.2.3 fMRI data acquisition and analysis 

fMRI data were acquired in a 3 Tesla Siemens scanner (Magnetom Trio Tim, Siemens, 

Germany) with a Siemens 32-channel head-coil (Patients 2, 3, and 6) or a Siemens 12-

channel head-coil (Patients 1, 4, and 5) at the Centre for Functional and Metabolic 

Mapping (Robarts Research Institute, Western University, Canada). Head-coils were 

chosen for patient comfort. The MRI protocol included a single session of 165 volumes 

of 36 axial slices each covering the whole brain using echo-planar images (repetition 

time=2,000 ms, echo time=30 ms, matrix size=70×70, slice thickness=3 mm, in-plane 

resolution=3×3 mm, flip angle=78°). High-resolution T1-weighted three-dimensional 

magnetization-prepared rapid gradient-echo images were acquired in the same session 

(repetition time=2,300 ms, echo time=2.98 ms, inversion time=900, matrix 

size=256×240, voxel size=1 mm3, flip angle=9°). The task instructions and cues were 

presented using E-Prime® 2.0 running on Windows XP and an MRI-compatible high-

quality digital sound system incorporating noise-attenuating headphones (Silent Scan™, 

Avotec Inc.). 

The fMRI data were pre-processed and analysed using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm). Data were first manually reoriented into the anterior 

commissure/posterior commissure plane. Spatial pre-processing included: realignment to 

correct for motion; co-registration between the structural and functional data sets; and 

smoothing with an 8-mm full width at half maximum Gaussian kernel. Single-subject 

fixed-effect analyses were then performed for each patient. The analysis was based on the 

general linear model using the canonical hemodynamic response function (Friston et al., 

1995). Each scan was modelled as mental imagery (i.e., motor imagery or spatial 

navigation) or rest. Movement parameters calculated from the realignment step were also 

included as covariates of non-interest. Additionally, repetition times with levels of 

motion above 2 mm and 0.035 radians were discarded. High-pass filtering using a cut-off 

period of 128 seconds was implemented to remove slow-signal drifts from the time 

series. Linear contrasts were used to obtain subject-specific estimates of the effects of 

interest.  
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In healthy volunteers, spatial navigation imagery is typically associated with strong and 

reliable activity in the parahippocampal gyrus, the posterior parietal cortex, and the 

lateral premotor cortex, while tennis imagery elicits activity in the supplementary motor 

area (Boly et al., 2007; Fernández-Espejo et al., 2014). For reference, single-subject 

activation in a prior study of 14 healthy young adults is depicted in Figure 5 (Fernández-

Espejo et al., 2014). In the current study involving patients with disorders of 

consciousness, a voxel level, family-wise error, whole-brain statistical threshold of 

p<0.05 was used. Given the strong anatomical a priori hypotheses, however, the 

statistical threshold was reduced to an uncorrected p<0.001 when activation was not 

detected at the more conservative threshold (Fernández-Espejo et al., 2010; Friston, 

Holmes, Poline, Price, & Frith, 1996). 

 

Figure 5. Activation from healthy young adults during spatial navigation and tennis 

motor imagery (Fernández-Espejo et al., 2014).  
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The figure depicts single-subject blood-oxygen-level dependent responses from 14 

healthy volunteers during mental imagery. The participants completed the same two 

mental imagery tasks (spatial navigation and tennis motor imagery) as in the current 

work. All participants were scanned using the same 3 Tesla Siemens scanner, and their 

fMRI data were processed using the same pipeline and analysis procedure as reported in 

this chapter. In the figure, the region of interest showing highest consistency across 

scanning sessions in the imagery versus rest contrast is displayed with a family-wise 

error-corrected statistical threshold of p<0.05. No scaling for the inset statistical maps 

was provided in the original publication and is accordingly not included in this thesis. All 

participants aside from C03, C08, C10, and C12 reliably activated the supplementary 

motor area for tennis imagery. Participants C03 and C10 reliably activated other 

anatomically appropriate areas for tennis imagery (dorsal premotor cortex and inferior 

parietal lobule), while Participants C08 and C12 failed to show any appropriate activation 

for tennis imagery. For spatial navigation, the following regions were reliably activated: 

occipito-parietal junction (C01, C07 C14); parahippocampal cortex (C02, C06, C13); 

dorsal premotor cortex (C03, C04, C08); retrosplenial cortex (C05, C11); and precuneus 

(C09, C10, C12). This image is reproduced in a slightly modified version with the 

permission of D. Fernández-Espejo from the original open-source publication 

(Fernández-Espejo et al., 2014). 

3.2.4 EEG data acquisition and analysis 

The EEG acquisition and pre-processing protocol was the same as that reported in 

Chapter 2 (Gibson et al., 2014). Briefly, the EEG data were recorded using the g.Gamma 

active electrode system with a four-channel montage housed in an electrode cap (g.tec 

Medical Engineering GmbH, Austria). The electrodes were placed at sites CP3, FC3, 

CP4, and FC4, and the EEG signals were acquired using a g.USBamp amplifier. Stimuli 

presentation and physiological data recordings were performed using a Simulink® model 

in Matlab (Mathworks, Inc., Natick, MA). Online, the EEG data were filtered from 0.5 to 

60 Hz with a 60 Hz notch filter. The recordings were referenced to the right earlobe with 

a forehead (Fpz) ground. The data were sampled at 600 Hz with impedances below 5 kΩ 

at the beginning of the EEG recording.  
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Offline data processing was conducted with EEGLAB (Delorme & Makeig, 2004). The 

EEG data were down-sampled to 100 Hz, filtered between 0.5 and 40 Hz, and segmented 

into 5-s epochs time-locked to the onset of the auditory cue. Trials containing 

physiological artefacts were identified by visual inspection and removed. After artefact 

rejection, the median number of trials included in each imagery and rest condition per 

patient was: 43 for the hand squeeze (range=29−57); 45 for the custom action 

(range=32−57); and 44 for rest (range=27−58). Finally, the EEG data were re-referenced 

offline to form two bipolar channels (FC3−CP3, FC4−CP4) that are subsequently 

identified as C3’ and C4’, respectively. 

The EEG data were analysed from 7 to 30 Hz using the same spectral analysis procedure 

reported in previous work and Chapter 2 (Cruse et al., 2012; Gibson et al., 2014). In 

Figure 6, patterns of spectral changes from a sample of six healthy young adults using the 

same task and analysis procedure are presented (Cruse et al., 2012). For each time-point 

at C3’ and C4’, spectral power estimates were calculated using a 1-second Hanning 

window time-frequency transformation via the ‘ft_freqstatistics’ function from the open-

source Matlab toolbox, FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011). The 

time-frequency data at both electrodes were then compared between motor imagery and 

rest using cluster-based permutation testing (Cruse et al., 2012; Gibson et al., 2014; 

Maris & Oostenveld, 2007). For the cluster-based testing, the time-frequency data for 

each imagery condition and rest were log-transformed and then compared at each data 

point using paired-samples t tests. All significant data points (p<0.025) were then 

arranged into clusters based on their temporal and spectral proximity to each other, and 

the t values were summed for each cluster. A Monte Carlo randomization test that 

controlled for family-wise error was used to determine the significance value for each 

cluster. In the randomization test, the condition labels were permuted, and the clustering 

procedure was repeated 1,000 times. The clusters from these 1,000 repetitions were used 

to form a distribution, and this distribution was then used to test the null hypothesis that 

the original summed t value occurred by chance. 
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Figure 6. EEG responses from healthy young adults during conventional motor imagery 

(Cruse et al., 2012). 

The figure depicts event-related desynchronizations and event-related synchronizations 

over left and right motor cortex in a sample of six healthy young adults. The participants 

completed the same conventional EEG motor imagery task as in the current work (right 

hand motor imagery) and an additional task of left hand motor imagery, as indicated. The 

ranges of log power values that are plotted in each spectrogram are indicated in 

parentheses at the top of each plot. This figure is reproduced with the permission of D. 

Cruse from the original open-source publication (Cruse et al., 2012). 

3.3 Results 

Figure 7 provides a summary of the results from the behavioural, EEG, and fMRI 

assessments for each patient. Patient 1 was diagnosed as being in a Vegetative State from 

21 evaluations with the Coma Recovery Scale conducted in the 24 months prior to the 

fMRI/EEG assessments (highest score=7, range=4−7). In the fMRI study, this patient 

produced reliable and appropriate activation in both the spatial navigation and motor 

imagery tasks (occipito-parietal junction and supplementary motor area respectively, 

family-wise error p<0.05). In the EEG task, Patient 1 also produced a contralateral event-

related desynchronization in the mu frequency band (9−13 Hz) for the conventional 

imagery (p=0.018). Patient 2’s highest score on the Coma Recovery Scale was 8 (range: 

4−8, period: five assessments in four months), leading to a diagnosis of Vegetative State. 

Patient 2 did not produce reliable activation in the fMRI tasks or reliable spectral changes 
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in the EEG tasks. Patient 3 scored in the Minimally Conscious State Plus range (highest 

score=13, range=11−13, period: four assessments in four months). This patient did not 

produce significant activation during the fMRI tasks. However, he did produce 

appropriate, reliable spectral changes during the conventional EEG motor imagery task 

(contralateral event-related desynchronization, 7−13 Hz, p=0.004). Patient 4 was 

diagnosed as being in a Minimally Conscious State Minus (highest score=10, 

range=8−10, period: three assessments in nine months). Although this patient showed no 

activation at the conservative threshold (family-wise error p<0.05), she produced 

reliable, appropriate activation during the fMRI spatial navigation task in the bilateral 

occipito-parietal junction (uncorrected p<0.001). However, Patient 4 did not produce 

reliable, appropriate activation for the fMRI motor imagery task, or the EEG motor 

imagery tasks. Patient 5 scored in the Vegetative State range (highest score=6, 

range=3−6, period: four assessments in five months) and did not produce reliable 

responses for any of the fMRI or EEG assessments. Finally, Patient 6 also scored in the 

Vegetative State range (highest score=5, range=3−5, period: four assessments in three 

months). As with Patient 4, reliable, appropriate activation was detected during the 

spatial navigation fMRI task (right parahippocampal gyrus and right premotor cortex, 

family-wise error p<0.05). However, this patient did not produce reliable activation for 

the fMRI motor imagery task, or the EEG motor imagery tasks. 
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Figure 7. Summary of the patient outcomes in Chapter 3.  

CRS-R=Coma Recovery Scale-Revised; fMRI=functional magnetic resonance imaging; 

EEG=electroencephalography; VS=Vegetative State; MCS=Minimally Conscious State; 

OPJ=occipito-parietal junction; SMA=supplementary motor area; PMC=premotor cortex; 

PHG=parahippocampal gyrus; ERD=event-related desynchronization. Significant task-

related fMRI activation is labelled by region. Scales depicting the statistical maps (t 

values) are inset. Results are shown at uncorrected p<0.001 and rendered on each 

patient’s T1 MRI image. Spectrograms of the log ratio differences in EEG power 

between conventional motor imagery and rest are shown for the left (contralateral) 

hemisphere. The vertical axis depicts the frequency of the EEG signal (7−30 Hz), and the 

horizontal axis depicts time (seconds) relative to instruction onset. The inset colour scale 

depicts the log ratio power values of the z-axis with significant clusters outlined in black 

(Patient 1, p=0.018; Patient 3, p=0.004).  
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To complement the experimental neuroimaging-based assessments, clinical radiologists 

(authors BYK and DHL in the published version of this chapter) provided assessments of 

the available clinical structural images of each patient’s brain. The radiologists were 

blinded to all aspects of the patient’s identities, diagnoses, and experimental outcomes. 

The time of the clinical assessments varied for each patient, but all scans had been 

conducted near the time the patients were admitted following their brain injuries for 

Patients 1 and 5. More recent clinical assessments were available for the remaining 

patients, although no clinical structural brain images were available for Patient 4. The 

radiological reports are summarized in Table 7. The only finding involving a brain region 

of interest in these assessments was low signal change in the bilateral pre- and post-

central gyri of Patient 6. This area is a region of interest in the fMRI-based motor 

imagery task.
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Table 7. Summary of the radiological evaluations of available clinical structural brain 

images for the patients in Chapter 3. 

Patient ID    Radiological Findings 

1 Moderately severe contralateral shift to the midline  

Effaced subarachnoid space and convexity sulci 

2 Generalised brain edema 
Decreased grey and white matter differentiation 

No sign of hematomas or contusions 

3 Diffuse progressive atrophic change  

Volume loss with severe ventricular dilation	 

4 Clinical images unavailable for assessment 

5 Areas of signal change within the caudate nuclei and putamen 

Some attenuation of the distal arterial branches  
No vascular irregularity in the proximal vessels 

6 Decreased signal and restricted diffusion in cerebral white matter  

Low signal within white matter of the pre- and post-central gyri bilaterally 

No evidence of bleed 

In summary, six patients were evaluated using a standard clinical behavioural assessment, 

the Coma Recovery Scale-Revised (Kalmar & Giacino, 2005), two fMRI-based imagery 

tasks (Boly et al., 2007; Owen et al., 2006), and two EEG-based motor imagery tasks 

(Cruse et al., 2011; Gibson et al., 2014). Patient 1 (Vegetative State) was unable to 

follow commands behaviourally, but exhibited covert command following in both the 

fMRI- and EEG-based tasks. Two patients (Patient 4 [Minimally Conscious State Minus] 

and Patient 6 [Vegetative State]) also showed no signs of behavioural command 

following, but exhibited covert command following in the spatial navigation fMRI task. 

Patient 3 (Minimally Conscious State Plus) followed commands behaviourally and 

covertly in the conventional motor imagery EEG task. Finally, Patients 2 and 5 (both 

Vegetative State) did not follow commands in either the behavioural, fMRI-, or EEG-

based assessments. 
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3.4 Discussion and conclusions 

Functional neuroimaging methods for the detection of covert command following can 

improve diagnostic and prognostic accuracy in disorders of consciousness (Owen, 2013). 

Due to the heterogeneity of aetiology and pathology in this patient group, however, 

multiple imaging techniques and functional tasks are necessary to accurately identify a 

covert ability to follow commands. In this chapter, three patients who were unable to 

follow commands with their behaviour exhibited appropriate and statistically reliable 

signs of covert command following. Furthermore, two of these patients (Patients 1 and 6) 

were repeatedly diagnosed as being in a Vegetative State. These findings thus add to the 

growing body of evidence that some patients with severe brain injuries have cognitive 

abilities that are not necessarily evident from their external behaviour (Kondziella et al., 

2016; Owen, 2013).  

One patient diagnosed as being in a Vegetative State (Patient 1) exhibited covert 

command following during both the fMRI- and EEG-based motor imagery tasks—i.e., 

“imagine playing tennis” in the fMRI-based assessment, and “imagine squeezing your 

right-hand” in the EEG-based assessment. The covert awareness of this patient has been 

previously reported in other fMRI and EEG tasks (Cruse et al., 2012; Fernández-Espejo 

& Owen, 2013; Naci & Owen, 2013). Indeed, across all published studies, this patient 

demonstrated his covert awareness with three separate fMRI tasks and two EEG tasks, 

thus providing perhaps unequivocal evidence that he was aware. Although internally 

consistent, these findings conflict with the outcomes of repeated clinical evaluations 

throughout the 12 years in which the patient survived following his injury.  

Two patients (Patient 4 [Minimally Conscious State Minus] and Patient 6 [Vegetative 

State]) only followed commands during the spatial navigation fMRI imagery task. The 

absence of statistically reliable results in the EEG tasks for these patients is consistent 

with the absence of reliable activation during the fMRI ‘tennis’ task in the same patients, 

as both tasks require brain responses that correlate with motor imagery. From their 

radiological findings (Table 7), Patient 6 (Vegetative State) presented with specific 

damage to motor areas as evident from scattered areas of low fluid attenuation inversion 
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recovery signal and high white matter signal in the posterior precentral gyrus. Patient 1, 

on the other hand—also Vegetative State but, unlike Patient 6, capable of successful 

performance in the motor imagery tasks—showed no apparent damage to motor areas 

bilaterally. Together, these findings suggest that the absence of reliable motor imagery 

responses may be a result of a specific impairment in motor planning, or at least in the 

detectability of EEG/fMRI responses from brain areas that correlate with motor function.  

Patient 4 (Minimally Conscious State Minus) also followed commands only during 

spatial navigation. Unlike Patient 6, however, Patient 4 did not present with any damage 

to cortical motor areas. Notably, this patient was tested about twenty years after her 

injury. It is possible that functional reorganization in motor areas occurred in this time, 

although it is unclear why such functional reorganization would have occurred in brain 

areas that correlate with motor imagery and not spatial navigation imagery. Nevertheless, 

the results of Patients 4 and 6 together emphasize the importance of a battery of 

assessments to accurately characterise a given patient’s abilities. Indeed, if motor 

imagery were the only option provided to Patients 4 and 6, their covert awareness may 

have never been elucidated. 

Patient 3 (Minimally Conscious State Plus) could follow simple behavioural commands 

and exhibited covert command following in the EEG conventional motor imagery task. 

However, this patient did not yield positive results in either of the fMRI-based 

assessments. While the presence of awareness was never in question for this patient due 

to his behavioural diagnosis of Minimally Conscious State Plus, his divergent fMRI and 

EEG results again highlight the importance of multiple modalities and tasks in the 

assessment of patients with disorders of consciousness. Indeed, the fMRI and EEG 

assessments were performed on different days and at various times of the day, thereby 

increasing the patient’s opportunities to demonstrate his command following capacities. 

Moreover, varying levels of arousal and awareness are defining traits of patients in a 

Minimally Conscious State (Giacino et al., 2002) and may have contributed to the 

divergence between behaviour and fMRI in this case.  
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Patients 2 and 5 (both Vegetative State) did not demonstrate command following in any 

of the fMRI- or EEG-based assessments. These results mirror the outcomes of their 

behavioural evaluations. Indeed, patients in a Vegetative State completely lack voluntary 

behaviour, and very few patients diagnosed as being in a Vegetative State possess covert 

awareness and cognition (Di Perri et al., 2016; Kondziella et al., 2016; Schiff & Fins, 

2016). It is accordingly plausible (and quite probable) that the converging results of the 

assessments of Patients 2 and 5 accurately represent the abilities of these patients. 

Nevertheless, and as has been discussed at length elsewhere, null neuroimaging findings 

from patients with disorders of consciousness cannot be interpreted as a lack of 

awareness per se (Laureys & Boly, 2007; Owen et al., 2006). Indeed, false negatives may 

occur due to fatigue, lack of understanding, or insufficient cognitive resources. In the 

absence of self-report, it is difficult to distinguish negative findings that arise from a lack 

of ability from those that arise due to an intention not to perform the task. Healthy 

volunteers and patients with brain injuries may elect not to engage in a volitional mental 

process, and false negatives occur in neuroimaging studies of healthy volunteers, 

especially at the single-subject level (e.g., Cruse et al., 2011; Fernández-Espejo et al., 

2014; Naci, Cusack, Jia, & Owen, 2013). Although multiple assessments can provide a 

more thorough characterisation of a patient’s abilities, these approaches do not eliminate 

the possibility of attribution errors. 

This chapter also included an exploratory secondary EEG motor imagery task. All 

patients were asked to perform two types of motor imagery during the EEG task: 1) 

imagined squeezes of their right-hands, in line with conventional motor imagery EEG 

tasks (Cruse et al., 2011, 2012; Pfurtscheller & Neuper, 1997); and 2) imagined familiar 

actions that were selected in consultation with their caregivers. Unfortunately, there were 

no positive results for any patient during the familiar EEG motor imagery task, even 

though two patients demonstrated positive results during the conventional EEG motor 

imagery task. One potential explanation for the lower sensitivity of the familiar imagery 

in this chapter is that familiar imagery resulted in brain responses that were not detected 

with the present EEG acquisition protocol. For example, imagined familiar actions may 

have involved memories or emotions to a greater extent than hand squeezes. Kinaesthetic 
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motor imagery is associated with more robust EEG correlates of imagined movement 

than visual motor imagery (Neuper, Scherer, Reiner, & Pfurtscheller, 2005). Accordingly, 

the patients may have engaged in more visual imagery during the familiar task, and 

consequently produced brain responses that were not easily detected with the current 

experimental set-up. Fortunately, both patients (Patients 1 and 3) who exhibited reliable 

EEG responses to conventional motor imagery produced sensorimotor rhythms that are 

consistent with previous studies of healthy individuals (Pfurtscheller & Lopes da Silva, 

1999; Pfurtscheller & Neuper, 1997). This finding is reassuring for further investigations 

of the EEG correlates of motor imagery in patients with disorders of consciousness. 

As a final consideration, attempts have been made to develop an EEG-based assessment 

of covert command following using spatial navigation (Cabrera & Dremstrup, 2008; 

Curran et al., 2004; Goldfine, Victor, Conte, Bardin, & Schiff, 2011). These attempts 

employed an identical imagery task as the fMRI-based equivalent (Boly et al., 2007; 

Owen et al., 2006). Notably, spatial navigation imagery was associated with better 

classification accuracy than motor imagery in one EEG study of healthy volunteers 

(Curran et al., 2004), and modest improvements in classification accuracy were obtained 

with optimized machine learning techniques (Cabrera & Dremstrup, 2008). In terms of 

electrophysiological correlates, spatial navigation imagery corresponds with enhanced 

theta oscillatory activity in the hippocampus and related brain structures in the medial 

temporal lobe (Cornwell, Johnson, Holroyd, Carver, & Grillon, 2008; Kahana, Sekuler, 

Caplan, Kirschen, & Madsen, 1999; see also Maguire, Frackowiak, & Frith, 1997). 

Unfortunately, these signals are not easily detected at the scalp, and no consistent EEG-

based correlate of spatial navigation was identified in any of the studies that employed 

acquisition protocols suitable for future use at the bedside (Cabrera & Dremstrup, 2008; 

Curran et al., 2004; Goldfine et al., 2011). Similarly, the only reported validation of an 

EEG-based spatial navigation task involving patients with disorders of consciousness 

rendered inconclusive results (Goldfine et al., 2011). Accordingly, an EEG-based 

assessment of spatial navigation imagery was not included in this thesis because there is 

no reliable EEG correlate of this mental task.  



 86 

 

 

 

In summary, covert signs of awareness can improve diagnostic and prognostic accuracy 

in patients with disorders of consciousness (Owen, 2008). The current findings 

demonstrate that a range of tasks and neuroimaging modalities are required to accurately 

characterise residual cognition in patients with disorders of consciousness. Indeed, two 

patients failed to follow commands in motor imagery tasks, but produced appropriate 

activation in a spatial navigation task. In these cases, the patients’ specific patterns of 

brain damage may have disproportionately impaired some cognitive abilities, or made 

their neural markers more difficult to detect. An effective battery of assessments for 

patients with disorders of consciousness should therefore include a variety of tasks that 

probe a range of cognitive abilities supported by spatially-distinct brain regions and 

indexed by multiple neural signatures, including EEG oscillations, event-related 

potentials, and fMRI-detected hemodynamic responses. Indeed, five patients were 

excluded from the current study because they did not qualify for evaluations with one of 

the two neuroimaging techniques. While no neuroimaging-based task is likely to be 

100% sensitive, the implementation of a battery of assessments alongside standardized 

behavioural evaluations will go a long way to address the currently low rate of diagnostic 

accuracy for patients with disorders of consciousness (Childs, Mercer, & Childs, 1993; 

Schnakers et al., 2009). 
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Chapter 4  

4 Somatosensory attention identifies both overt and 
covert awareness in disorders of consciousness 

A version of this chapter has been published elsewhere (citation below) and is reproduced 

here with permission from the publisher, John Wiley and Sons (Appendix B). 

Gibson, R. M., Chennu, S., Fernández-Espejo, D., Naci, L., Owen, A. M., & Cruse, D. 

(2016). Somatosensory attention identifies both overt and covert awareness in disorders 

of consciousness. Annals of Neurology, 80(3), 412–423. 

http://dx.doi.org/10.1002/ana.24726 

4.1 Introduction 

To facilitate the differential diagnosis of disorders of consciousness, researchers have 

developed assessments of brain function to describe a patient’s abilities within a 

hierarchy of increasingly complex information processing. For example, an fMRI-based 

technique was developed to characterise the speech processing abilities of patients with 

disorders of consciousness (Coleman et al., 2009). This approach distinguished between 

low-level auditory processing, speech-specific perceptual processing, and semantic 

processing. While the level of auditory processing had a high correspondence with 

subsequent behavioural recovery, it did not provide diagnostic information—i.e., some 

patients in a Vegetative State and other patients in a Minimally Conscious State 

performed at each level of the hierarchy (Coleman et al., 2009). A similar technique was 

developed using EEG, with levels ranging from the discrimination of sound versus 

silence to semantic speech perception (Beukema et al., 2016; Cruse et al., 2014). As in 

the fMRI approach, however, some patients in a Vegetative State and other patients in a 

Minimally Conscious State performed at all levels of the hierarchy (Beukema et al., 

2016). Investigations of attentional processing have rendered similar findings; while 

some investigators reported that only patients in a Minimally Conscious State produced 

markers of higher-order attentional information processing (Bekinschtein et al., 2009; 

Chennu et al., 2013; Faugeras et al., 2012; Lew et al., 2003), others did not (Fischer, 
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Luaute, & Morlet, 2010; Kotchoubey et al., 2005; Steppacher et al., 2013). Although 

neuroimaging-based assessments of patients with disorders of consciousness can 

complement behavioural evaluations, improvements are needed to ensure that a patient’s 

abilities are accurately represented when there are discrepancies between behavioural and 

neural profiles. 

The inconsistent correspondence between diagnosis and the presence or absence of neural 

markers of higher-order information processing in previous work may be due to 

misdiagnoses of covert command following. Indeed, only one of these investigations 

identified patients with covert command following abilities (Chennu et al., 2013). Up to 

15% of patients diagnosed as being in a Vegetative State may have the ability to covertly 

follow commands (Kondziella, Friberg, Frokjaer, Fabricius, & Møller, 2016), and it 

would be useful to characterise the cognitive abilities of such patients. Additionally, most 

previous approaches to cognitive assessments of patients with disorders of consciousness 

rely on auditory information (c.f. Monti et al., 2013). While visual stimuli are impractical 

given that many patients with disorders of consciousness cannot fixate their eyes, tactile 

stimulation is a promising alternative. Tactile stimulation has been successfully used to 

facilitate brain-computer interface-based communication with healthy volunteers and 

patients with Locked-in Syndrome (Brouwer & van Erp, 2010; Kaufmann, Holz, & 

Kübler, 2013; Lugo et al., 2014; Ortner, Prückl, & Guger, 2013; van der Waal, Severens, 

Geuze, & Desain, 2012). Some healthy volunteers also report that tactile feedback seems 

more natural than visual or auditory feedback in brain-computer interface paradigms 

(Chatterjee, Aggarwal, Ramos, Acharya, & Thakor, 2007; Cincotti et al., 2007). 

Furthermore, brain-computer interfaces that use tactile stimulation may be more feasible 

in activities of daily living because these approaches leave the auditory and visual 

systems free for other applications (Maye, Zhang, Wang, Gao, & Engel, 2011; Zhang et 

al., 2007).  

Many previous assessments of the somatosensory system in patients with disorders of 

consciousness pertain to pain perception. A common paradigm involves the application 

of noxious electrical stimulation to the patient’s wrist to determine whether the patient 

can sense or perceive pain (Boly et al., 2008; Laureys, 2005). Notably, this technique has 
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strong prognostic value in that patients who lack cortical responses to somatosensory 

stimuli whilst in an acutely comatose state are very unlikely to recover awareness 

(Zandbergen, de Haan, Stoutenbeek, Koelman, & Hijdra, 1998). In contrast, the approach 

described here involves the administration of non-painful vibrotactile stimulation to a 

patient’s wrists and upper back. The prognostic value of this type of stimulation is 

currently unknown, and the large-scale clinical studies needed to evaluate prognosis are 

beyond the scope of this thesis. Importantly, it is also not appropriate to attribute 

awareness per se to brain responses in the absence of self-report. Nevertheless, the tactile 

stimulation used in this work can provide caregivers with more insight into the patient’s 

probable subjective experience, including whether the patient responds to touch at the 

cortical level and exhibits differential cortical responses to changes in touch. 

In this chapter, a hierarchical cognitive assessment of attention based on tactile 

stimulation is described. Each participant was presented with repetitive vibrotactile 

stimulation to the upper back alongside relatively more infrequent vibrotactile stimulation 

of the wrists. Stimulation was applied at a high, uniform rate to elicit a marker of sensory 

perception called the steady-state evoked potential (Picton, John, Dimitrijevic, & Purcell, 

2003; Regan, 1977; Snyder, 1992). Infrequent stimulation was also applied to the wrists 

to elicit an event-related potential correlate of attention called the P300 (Comerchero & 

Polich, 1999; Picton, 1992; Polich, 2007). Although steady-state responses have not been 

extensively studied in this patient population (Chatelle et al., 2012), some patients with 

disorders of consciousness can generate P300s (e.g., Faugeras et al., 2011, 2012; Fischer 

et al., 2010; Hauger et al., 2015; Schnakers et al., 2008; Steppacher et al., 2013). P300 

responses also have similar morphological and topographic characteristics when 

generated by somatosensory, auditory, and visual stimuli (Kaufmann et al., 2013; Lugo et 

al., 2014; van der Waal et al., 2012; Yamaguchi & Knight, 1991a, 1991b).  

The vibrotactile attention task probed selective attention. Specifically, participants were 

instructed to selectively attend to the infrequent wrist stimuli by counting vibrations on a 

designated target wrist, i.e., their left or right wrist. This manipulation was intended to 

elicit changes in the P300 due to top-down, conscious processing (Comerchero & Polich, 

1999; Squires, Donchin, Herning, & McCarthy, 1977). If successful, the counting aspect 
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of the task could eventually be applied in future communicative applications of the 

paradigm (e.g., attend left wrist to answer “yes”, etc.). The selective attention measure 

also dissociated between endogenous and exogenous attentional processing in the 

patients, and thus provided additional insight into their cognitive abilities (Chennu et al., 

2013; Chennu & Bekinschtein, 2012). 

In total, a sample of fourteen patients with severe brain injuries and a group of healthy 

volunteers underwent a hierarchical cognitive assessment based on vibrotactile 

stimulation and EEG. Importantly, patients were also evaluated using two previously 

established fMRI-based assessments of covert command following; one fMRI-based 

assessment involved mental imagery (Owen et al., 2006), and the other involved selective 

auditory attention (Naci & Owen, 2013). All patients underwent clinical behavioural 

assessments with the Coma Recovery Scale-Revised (Kalmar & Giacino, 2005). By 

identifying patients with the ability to covertly and overtly follow commands, these 

additional assessments ensured a more accurate representation of each patient’s residual 

cognitive abilities. Furthermore, these repeated assessments provided an opportunity to 

test the divergence and convergence of all techniques. It was expected that event-related 

potential markers of higher-order attention would be evident in patients with the ability to 

follow commands. 

4.2 Materials and methods 

4.2.1 Participants 

Fourteen patients [mean age 41 (range: 19 to 58) years] contributed sufficient data for 

inclusion in this investigation. Seven patients were diagnosed as being in a Vegetative 

State (Royal College of Physicians Working Group, 2003); four patients were diagnosed 

as being in a Minimally Conscious State; two patients were diagnosed as emergent from a 

Minimally Conscious State (Giacino et al., 2002); and one patient was diagnosed with 

Locked-in Syndrome (Smith & Delargy, 2005). Six patients had sustained traumatic brain 

injuries from motor vehicle accidents. The remaining eight patients had sustained non-

traumatic brain injuries from different aetiologies including cardiac arrest (3 cases) and 

near drowning (1 case). Each patient’s substitute decision maker provided informed, 
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written consent for the patient’s participation in the study. Ethical approval was obtained 

from the University of Western Ontario’s Health Sciences Research Ethics Board 

(London, Ontario, Canada).  

As a scientific control, a sample of fifteen healthy volunteers also participated in the 

somatosensory selective attention task. These participants ranged in age from 17 to 23 

years (mean age of 18 years). All healthy volunteers provided informed written consent 

and received course credit for their participation. The Psychology Research Ethics Board 

of the University of Western Ontario (London, Ontario, Canada) provided ethical 

approval for the control study. Control studies of the other neuroimaging paradigms have 

been reported elsewhere (Boly et al., 2007; Gabriel et al., 2015; Naci, Cusack, Jia, & 

Owen, 2013). 

4.2.2 Procedure 

For each patient, this study comprised participation in three experimental paradigms:  

(1) A somatosensory selective attention paradigm using EEG; 

(2) An auditory selective attention paradigm using fMRI (Naci et al., 2013; Naci & 

Owen, 2013); and 

(3) A mental imagery paradigm using fMRI (Bardin et al., 2011; Boly et al., 2007; 

Fernández-Espejo & Owen, 2013; Gibson, Fernández-Espejo, et al., 2014; Monti et 

al., 2010; Owen et al., 2006; Stender et al., 2014). 

Immediately prior to his or her participation in each experiment, each patient also 

underwent a behavioural assessment using the Coma Recovery Scale-Revised (Kalmar & 

Giacino, 2005). The fMRI data from Patient EMCS2 could not be analysed due to 

excessive motion artefacts. However, this patient was included in this investigation 

because his ability to follow simple commands and communicate was evident from his 

overt behaviour. Similarly, the data for Patient VS7 from one fMRI session (selective 

auditory attention, Experiment 2) were discarded due to excessive movement. This 

patient was included in the current investigation because useable data were obtained from 
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this patient for the other two experimental paradigms. Details of the Coma Recovery 

Scale behavioural outcomes for all patients are available in Appendix D. 

All patients completed the two fMRI paradigms within a two-day period. Ten patients 

completed the fMRI assessments within two days of their EEG assessments. The other 

four patients completed the EEG assessments after the fMRI assessment with the 

following delay: 1.5-months (EMCS1); 7.5-months (MCS3); 1-year (VS3); and 3.5-years 

(VS7). Only Patient MCS3 demonstrated a clinical status change between her 

assessments with EEG and fMRI (Minimally Conscious State Minus to Minimally 

Conscious State Plus). Given the aetiology, age, and time post-ictus of those patients with 

a year or more between assessments (Appendix D), it is unlikely (although not 

impossible) that either of these patients underwent a change in their conscious states 

between assessments (Multi-Society Task Force on PVS, 1994a, 1994b; Royal College of 

Physicians Working Group, 2003). Indeed, Patients VS3 and VS7 demonstrated overt 

behaviour consistent with a Vegetative State at all assessments. 

4.2.2.1 Experiment 1: Somatosensory selective attention with EEG 

Participants completed a short somatosensory selective attention task as their 

electroencephalograms were recorded. One stimulator was affixed to each wrist and the 

upper back for a total of three stimulators per participant. Each stimulator administered 

non-painful vibrotactile stimuli via a motor housed in a rubberized casing (Ortner et al., 

2013). A similar paradigm has also been evaluated for patients with Locked-in Syndrome 

(Lugo et al., 2014). The experiment comprised 14 blocks. Participants were presented 

with a series of vibrations alternating among their wrists (10% per wrist) and upper back 

(80%). A vibration occurred every 200 ms and lasted for 50 ms. The number of 

vibrations presented to each wrist in a block was randomly selected from a uniform 

interval of 28 to 32. There was always a minimum of three (maximum=21) upper back 

stimuli between wrist vibrations; on average, 49% (standard deviation=13%) of the wrist 

stimuli followed exactly three upper back stimuli. Participants were instructed to count 

the vibrations only presented to the target wrist. The experimenter touched the patient’s 

target wrist after the instruction. The right wrist was always the target wrist for the first 
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block and subsequently alternated between the left and right wrists. The healthy 

volunteers reported their count at the end of each block; these participants reported the 

correct number of vibrations for 12 of 14 blocks on average, and all reports were within 

±3 of the true number of targets. One block of trials lasted for approximately one minute. 

4.2.2.2 Experiment 2: Auditory selective attention with fMRI 

The fMRI selective auditory attention paradigm has been previously described in healthy 

individuals (Naci et al., 2013) and patients with disorders of consciousness (Naci & 

Owen, 2013). In brief, this task was designed to identify the ability to follow a command 

pertaining to selective attention. On each trial, participants were instructed to either count 

a target word (“yes” or “no”) presented among pseudorandom distractors (spoken digits 

one to nine), or to relax. Each trial had an on/off design of about 22.5 seconds of sound 

followed by 10 seconds of silence, and each scan lasted five minutes, including 

instructions.  

4.2.2.3 Experiment 3: Command following with fMRI 

During an fMRI scan, patients were asked to engage in two mental imagery paradigms 

(Bardin et al., 2011; Boly et al., 2007; Fernández-Espejo & Owen, 2013; Gibson, 

Fernández-Espejo, et al., 2014; Monti et al., 2010; Owen et al., 2006; Stender et al., 

2014). In the motor imagery task, patients were instructed to imagine swinging their right 

arm to hit a tennis ball. In the spatial navigation task, patients were instructed to imagine 

moving from room to room in their house whilst visualising all the objects they would 

encounter. Instructions were delivered with noise cancellation headphones (Silent 

ScanTM, Avotec Inc. for patients scanned in the Trio system, as well as Patient VS6 [first 

visit], and Sensimetrics S14 for the patients scanned in the Prisma system, including 

Patient VS6 [second visit]). Patients VS1, VS2, VS4, VS5, VS6 (second visit), MCS4, 

and EMCS1 completed two sessions of each task, while patients VS3, VS6 (first visit), 

VS7, MCS1, MCS2, MCS3, and LIS1 completed only one session due to scanner 

availability or suspected patient fatigue. Each task alternated five 30-second blocks of 

mental imagery and five 30-second blocks of rest for a total of five minutes per scan. 
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4.2.2.4 Replication data 

Patients VS4, MCS3, and EMCS1 participated in second assessments with the 

somatosensory selective attention task and the Coma Recovery Scale. These assessments 

occurred from 2 to 3.5 months following their initial participation. Patient VS6 completed 

a second assessment comprising her participation in all three experimental paradigms and 

the Coma Recovery Scale 22-months after her initial participation. All four patients 

maintained the same clinical status at follow-up (Appendix D). 

4.2.3 EEG data acquisition and pre-processing 

EEG data were recorded at sites FC1, Fz, FC2, C3, Cz, C4, CP1, CP2, Pz, Oz, PO7, and 

PO8 using an electrode cap with the g.Gamma active electrode system (g.tec Medical 

Engineering GmbH, Austria). This montage was selected following a previous study 

conducted in patients with Locked-in Syndrome (Lugo et al., 2014) and previous work 

concerning optimal P300 classification (Krusienski et al., 2006). Data were sampled at 

256 Hz and filtered between 0.5 and 30 Hz using a digital Butterworth filter. Stimuli 

were presented with the g.VIBROstim box (g.tec Medical Engineering GmbH, Austria) 

using a custom Matlab script for Simulink® (Mathworks, Inc., Natick, MA). The 

recordings were referenced to the right earlobe with a forehead (Fpz) ground with 

impedances below 5 kΩ at the beginning of the EEG recording.  

Offline data processing was conducted with EEGLAB (Delorme & Makeig, 2004). The 

data were segmented into 1-second epochs including data from 200 ms prior to stimulus 

onset. Linear detrending and baseline correction were applied to each epoch. For artefact 

correction, all trials containing data with voltages exceeding ±100 µV were rejected. In a 

second step, the kurtosis of the signal across all channels was separately calculated for 

each stimulus type, and all trials exceeding 2.5 standard deviations of the mean were 

rejected. Final trial numbers are reported in Table 8. 
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Table 8. Trials remaining following artefact rejection for Experiment 1 in Chapter 4 

 Stimulus Type 
Mean  

(Minimum−Maximum) 

Upper Back Target Wrist Non-Target 
Wrist 

Trials Rejected 
(%) 

Patients  
(n=14) 

2614  
(1591−3246) 

313  
(188−384) 

311  
(180−388) 

35  
(20−59) 

Controls 
(n=15) 

2890  
(2718−5026) 

345  
(327−363) 

345  
(321−359) 

25  
(20−32) 

Notes. A 2x3 Chi-square goodness of fit test indicated that the minimum number of trials 

in each of the three stimulus types did not significantly differ between the controls and 

patients at the group level, χ2(2)=0.21, p=0.9. 

4.2.4 fMRI data acquisition and pre-processing 

The MRI data were acquired in a 3 Tesla Siemens scanner (Siemens, Erlangen, Germany) 

with a Siemens 32-channel head-coil at the Centre for Functional and Metabolic Mapping 

(Robarts Research Institute, Western University, Canada). The patients were recruited 

over 30-months, in which time the 3 Tesla scanner was upgraded. Three patients (VS3, 

VS7, and MCS3) were scanned in a Magnetom Trio system. All other patients were 

scanned in a Magnetom Prisma system. Functional echo-planar images of 36 slices 

covering the whole brain were acquired (repetition time=2,000 ms, echo time=30 ms, 

matrix size=420x420, slice thickness=3 mm, in-plane resolution=3×3 mm, flip 

angle=78°; for patients VS6 and LIS1 only, matrix size=384x384 and flip angle=75°). 

High-resolution T1-weighted three-dimensional images were acquired in the same 

session (Trio system: repetition time=2,300 ms, echo time=2.98 ms, inversion time=900 

ms, matrix size=256×240, voxel size=1 mm3, flip angle=9°; Prisma system: repetition 

time=2,300 ms, echo time=2.32 ms, inversion time=900 ms, matrix size=256x256, flip 

angle=8°; for patients VS6 and LIS1 only, matrix size=240x256 and flip angle=9°). Data 

from the mental imagery paradigm were pre-processed using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm), as described in Chapter 3 (Gibson, Fernández-Espejo, 
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et al., 2014). For the selective attention paradigm, the same pre-processing was 

performed with the Automatic Analysis software (Cusack et al., 2014). 

4.2.5 Statistical analyses 

4.2.5.1 Experiment 1: Somatosensory selective attention with EEG 

The EEG data were assessed for the presence of a steady-state evoked potential to the 

repetitive vibrotactile stimulation. As one vibration occurred every 200 ms, an evoked 

response was considered present when the averaged peak of the frequency spectrum of 

the data at the stimulation rate (5 Hz) and its first harmonic (10 Hz) was significantly 

higher than the background noise (Dobie & Wilson, 1996). A frequency spectrum was 

calculated with a discrete Fourier transform over the entire 1-second epoch from the 

average of all trials only using data from site Pz (Mouraux et al., 2011; Tobimatsu, 

Zhang, & Kato, 1999). An F ratio (alpha=.05; F2,20>=3.49) was computed to compare the 

power at 5 and 10 Hz with the average power in the ten adjacent frequency bins (2−4 Hz, 

6−9 Hz, and 11−13 Hz; Dobie & Wilson, 1996). 

Two analyses of the EEG data were conducted to identify the attention-based event-

related potentials. For the bottom-up attention effect, responses to wrist (deviant) and 

upper back (standard) stimuli were compared. A pseudorandom subset of the standard 

stimuli (equal in number to the deviant stimuli) was selected because there were many 

more standard than deviant stimuli. For the top-down attention effect, responses to the 

target and non-target wrist stimuli were compared. Trial numbers were matched between 

the target and non-target trials. 

Of note, the event-related potential comparisons in this work employ cognitive 

definitions of top-down and bottom-up attention. However, the resultant contrasts differ 

from the classic event-related potential contrasts for bottom-up and top-down attention, 

known as the P3a and P3b event-related potentials, respectively (Polich, 2007). 

Specifically, the classic P3a effect involves a contrast of responses to non-target deviant 

and standard stimuli, and the classic P3b effect involves a contrast of target deviant and 

standard stimuli. In this work, the bottom-up event-related potential effect involves a 

contrast of responses to all deviant stimuli (target and non-target) and all standard stimuli. 
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This contrast has more statistical power than the conventional P3a contrast because more 

deviant trials are available. This approach also corresponds with a cognitive definition of 

attentional orienting. One potential shortcoming of this approach, however, is that the 

resultant event-related potential could contain correlates of top-down attention from the 

target deviant stimuli (Bonfiglio & Carboncini, 2016). Importantly, a cognitive 

subtraction approach is also used to isolate top-down attention in this paradigm, i.e., 

target deviant versus non-target deviant stimuli. This approach is necessary because a 

deviant stimulus is only a target if the participant selectively attends to that deviant 

stimulus when instructed (Gibson et al., 2016a). If the participant does not comply with 

task instructions, the conventional P3b contrast for top-down attention (target versus 

standard) could return a significant effect driven by attentional orienting to deviant 

stimulation. This concern is particularly relevant for the patients in this study who could 

not overtly confirm that they understood and followed task instructions. Accordingly, the 

event-related potential effects in this work are not referred to as P3a and P3b event-

related potentials and are instead described as bottom-up (or P3a-like) and top-down (or 

P3b-like) event-related potential effects. 

In the event-related potential analyses, data from 50 to 750 ms relative to stimulus onset 

were analysed using the cluster-mass procedure of the Matlab toolbox FieldTrip  

(Oostenveld, Fries, Maris, & Schoffelen, 2011). This technique was described in detail in 

Chapters 2 and 3 (Gibson, Fernández-Espejo, et al., 2014; Gibson, Chennu, Owen, & 

Cruse, 2014), and elsewhere (Cruse et al., 2014; Maris & Oostenveld, 2007). Briefly, 

data were first compared at each time-point using a t test. In the second step, the t values 

of adjacent spatiotemporal points with p<.05 were summed to form clusters. The largest 

cluster was retained. This entire procedure was repeated 1,000 times with recombination 

and randomized resampling of the event-related potential data. This Monte Carlo method 

generated a nonparametric estimate of the p value representing the statistical significance 

of the originally identified cluster. 
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4.2.5.2 Experiment 2: Auditory selective attention with fMRI 

The general linear model (SPM8) was used to explore effects of interest. Two event types 

were defined corresponding to the on/off periods (count/relax, or vice-versa). The silent 

period served as an implicit baseline for all trials. Events for these regressors were 

modelled by convolving boxcar functions with the canonical hemodynamic response 

function. The following nuisance variables were also included in the general linear 

model: the movement parameters in the three directions of motion and three degrees of 

rotation, and the mean of each scan. Linear contrasts were used to obtain subject-specific 

estimates for the effect of interest. Clusters with p<.05 after the familywise error 

correction were reported as significant. 

4.2.5.3 Experiment 3: Command following with fMRI 

Single-subject fixed-effect analyses were performed for each patient. The analysis was 

based on the general linear model using the canonical hemodynamic response function 

(Friston, Holmes, Poline, Price, & Frith, 1996) implemented with SPM8 

(http://www.fil.ion.ucl.ac.uk/spm). The analysis pipeline was previously reported in 

Chapter 3 (Gibson, Fernández-Espejo, et al., 2014). Linear contrasts were used to obtain 

subject-specific estimates, and results were thresholded at a voxel level, whole-brain 

family-wise error-corrected p<.05. When no significant activations were found at this 

level, the statistical threshold was reduced to an uncorrected p<.001 because of the strong 

anatomical a priori hypotheses (Bardin et al., 2011; Boly et al., 2007; Fernández-Espejo 

& Owen, 2013; Gibson, Fernández-Espejo, et al., 2014; Monti et al., 2010; Owen et al., 

2006; Stender et al., 2014). This less conservative threshold excluded the possibility of 

failing to detect more subtle changes in the signal (Fernández-Espejo et al., 2010; Friston 

et al., 1996). 

4.3 Results 

All patient outcomes are summarized in Table 9. Additional details concerning each 

patient’s outcomes on the Coma Recovery Scale are available in Appendix D. 
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Table 9. Summary of patient demographics and experimental outcomes in Chapter 4. 

ID (Diagnosis) 

Sex/Age 
(years)/ 
Interval 
post-ictus 
(years) 

Aetiology 
Evoked 

Potential 
(EEG) 

P300 
(EEG) 

Voluntary 
Behaviour 
(CRS-R) 

Mental 
Imagery 
(fMRI) 

Selective 
Auditory 
Attention 
(fMRI) 

VS1 (VS) M/19/4.0 Non-
traumatic 

Present Absent Absent Absent Absent 

VS2 (VS) F/51/0.9 Non-
traumatic 

Present Absent Absent Absent Absent 

VS3 (VS) M/57/3.1 
(fMRI) 

58/4.1 
(EEG) 

Non-
traumatic 

Present Absent Absent Absent Absent 

VS4 (VS) F/42/4.3 Non-
traumatic  

Present Absent Absent Absent Absent 

VS5 (VS) F/52/6.5 Non-
traumatic 

Present Absent Absent Absent Absent 

VS6 
(VS/MCS*) 

F/44/20.4 
(Test 1) 

46/22.2 
(Test 2) 

Traumatic Present Present 
(Test 1) 

Absent 
(Test 2) 

Absent Present Present 

VS7 
(VS/MCS*) 

M/23/6.0 
(fMRI) 

26/9.5 
(EEG) 

Traumatic Present Present Absent Present N/A 
(motion) 

MCS1 (MCS-) M/40/3.1 Traumatic  Present Absent Absent Absent Present 

MCS2 (MCS+) M/35/16.9 Non-
traumatic  

Present Present Object 
localisation 

Reproducible 
movement to 
command 

Absent Present 

MCS3 (MCS+) F/47/19.8 Non-
traumatic 

Present Present Reproducible 
movement to 
command 

Present Present 

MCS4 (MCS-) 

 

 

 

F/25/5.7 Traumatic Present Present Absent Present Present 
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ID (Diagnosis) 

Sex/Age 
(years)/ 
Interval 
post-ictus 
(years) 

Aetiology 
Evoked 

Potential 
(EEG) 

P300 
(EEG) 

Voluntary 
Behaviour 
(CRS-R) 

Mental 
Imagery 
(fMRI) 

Selective 
Auditory 
Attention 
(fMRI) 

EMCS1 (EMCS) F/49/12.3 Traumatic Present Present Functional 
object use 

Functional and 
accurate 
communication 

Present Absent 

EMCS2 (EMCS) M/32/4.1 Traumatic Present Present Functional 
object use 
Functional and 
accurate 
communication 

N/A 
(motion) 

N/A 
(motion) 

LIS1 (LIS) M/55/1.5 Brainstem 
infarct  

 Present Present Functional and 
accurate 
communication 

Present Present 

Notes. CRS-R=Coma Recovery Scale-Revised; fMRI=functional magnetic resonance 
imaging; EEG=electroencephalography; VS=Vegetative State; MCS=Minimally 
Conscious State; EMCS=emergent from a Minimally Conscious State; LIS=Locked-in 
Syndrome; M=male; F=female; N/A=not applicable. 

4.3.1 Experiment 1: Somatosensory selective attention with EEG 

A steady-state evoked potential was detected in the EEG data of all healthy volunteers 

(n=15; Figure 8) and all patients (n=14; Figure 9).  

Bottom-up attention effects (deviant versus standard stimuli) were detected from eight 

patients and all the healthy volunteers (n=15; Figure 10). All patients who demonstrated a 

differential response to the deviant versus standard stimuli also demonstrated command 

following in either a behavioural or a neuroimaging-based assessment (Figure 13).  
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Figure 8. Steady-state evoked responses from the healthy volunteers in Chapter 4. 

Power spectra (top panels) and averaged EEG responses (bottom panels) calculated over 

a 1-second period. Analyses were conducted using the data recorded from site Pz only; 

each waveform (bottom panels) is depicted with ±1 standard error of the mean in colour-

matched shading. **=p<0.01; ***=p<.001. 
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Figure 9. Steady-state evoked responses from the patients in Chapter 4. 

Power spectra (top panels) and averaged EEG responses (bottom panels) calculated over 

a 1-second period. Analyses were conducted using the data recorded from site Pz only; 

each waveform (bottom panels) is depicted with ±1 standard error of the mean in colour-

matched shading. *=p<0.05; **=p<0.01; ***=p<.001. 
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Figure 10. Bottom-up attention event-related potentials from Chapter 4. 

Spatiotemporal clusters were calculated across all twelve electrodes and are depicted with 

±1 standard error of the mean in colour-matched shading. The electrodes included in the 

significant spatiotemporal cluster are enclosed with a black line on each topographic plot. 

Panel A depicts the grand-averaged and Panel B depicts the single-subject event-related 

potential effects for the healthy volunteers (p<9.9E-03 in all cases). Panel C depicts the 

single-subject event-related potential effects for patients with statistically reliable results. 
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Top-down event-related potential attention effects (target versus non-target wrist 

vibrations) were not detected from any of the patients. However, this event-related 

potential effect was evident for healthy volunteers at the group level (n=15) and at the 

single-subject level, albeit with a hit-rate of 67% (Figure 11). Hit-rates of at least 80% 

(12/15) and 100% (15/15) have been reported for fMRI-detected mental imagery and 

selective attention, respectively (Naci et al., 2013). Given the low sensitivity of the top-

down attention event-related potential analysis (i.e., 67%), additional post-hoc 

comparisons were conducted. While the number of trials available after artefact rejection 

did not differ across groups (Table 8; χ2(2)=0.21, p=0.9), some patients had many fewer 

useable trials available than healthy volunteers. The single-subject event-related potential 

analyses for the healthy volunteers were thus repeated in the post-hoc analyses using only 

a pseudorandom subset of trials equal in number to the minimum number of trials 

available in the single-subject analyses of the patient data (180 trials, in the case of 

Patient MCS2).  

Bottom-up attentional event-related potential effects were detected at the single-subject 

level for all healthy volunteers when as few as 180 trials were included for each stimulus 

type. However, top-down attentional event-related potential effects were detected from 

only seven healthy volunteers. Subsequent analyses revealed that a minimum of 300 trials 

were required to detect the top-down attentional event-related potential effects from the 

same 10 healthy volunteers as in the a priori analyses. Four patients did not have enough 

data available to meet this criterion. Overall, these analyses indicate that the top-down 

attentional event-related potential effect may not have been detected in some single-

subject analyses due to low trial numbers. Nevertheless, the bottom-up attentional event-

related potential effect was robust to data loss. 
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Figure 11. Top-down attention event-related potentials from Chapter 4. 
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Spatiotemporal clusters were calculated across all twelve electrodes with each waveform 

depicted with ±1 standard error of the mean in colour-matched shading. The electrodes 

included in the significant spatiotemporal cluster are enclosed with a black outline on 

each topographic plot. The grand-averaged result (n=15) is depicted in (A). For the single 

subject results (B), only results from participants with statistically significant clusters are 

shown. 

4.3.2 Experiment 2: Auditory selective attention with fMRI 

The results of each patient from all fMRI assessments (Experiments 2 and 3) are 

summarized in Figure 12. Of the patients diagnosed as being in a Vegetative State, only 

Patient VS6 generated a statistically differential hemodynamic response following the 

instruction to count as compared to the instruction to relax. Specifically, this patient 

exhibited increased activation in the temporal and parietal cortex bilaterally (family-wise 

error-corrected at p<.05). Patients MCS1-4 and LIS1 also produced more hemodynamic 

activation following the instruction to count than the instruction to relax (family-wise 

error-corrected at p<.05 in each case). The regions differentially activated by these 

patients are as follows: Patient MCS1, frontotemporal and parietal cortex bilaterally; 

Patient MCS2, temporal cortex bilaterally; Patient MCS3, parietal cortex bilaterally; 

Patient MCS4, frontotemporal and parietal cortex bilaterally; and Patient LIS1, 

frontotemporal cortex bilaterally. Notably, Patient EMCS1 did not show differences in 

activation in the command following task even though she was able to follow commands 

with her overt behaviour immediately prior to her assessment. Patients VS7 and EMCS2 

were excluded from this analysis because both patients moved excessively during their 

functional scan.  
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Figure 12. Summary of fMRI outcomes from Chapter 4. 

SMA=supplementary motor area; OPJ=occipito-parietal junction; TOPJ=temporo-

occipito-parietal junction; PHC=parahippocampal cortex; IFG=inferior frontal gyrus. 
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Only positive results are depicted. For the fMRI mental imagery paradigms, significant 

task-related fMRI activation is labelled by region (Imagery>Rest), and results are 

thresholded at an uncorrected p<.001. For the fMRI selective auditory attention task, only 

activation clusters within the attention network (Count>Relax) that survived the 

familywise error correction threshold of p<.05 at the whole-brain level are displayed. All 

fMRI results are rendered on each patient’s T1 anatomical MRI image, and scales 

depicting the statistical maps (t values) are inset. 

aPatient MCS1 scored in the Vegetative State range immediately prior to his participation 

in the EEG assessment. However, this patient scored in the Minimally Conscious State 

Minus range in another CRS assessment several hours prior to his participation in this 

EEG investigation. For this reason, this patient has been classified as being in a 

Minimally Conscious State Minus. 

4.3.3 Experiment 3: Command following with fMRI 

The results of each patient from all fMRI assessments (Experiments 2 and 3) are 

summarized in Figure 12. In her first visit, Patient VS6 produced reliable, appropriate 

activation during the motor imagery task in the supplementary motor area and cerebellum 

bilaterally at an uncorrected p<.001 (cluster level family-wise error-corrected p<.05). In 

her second visit, Patient VS6 produced reliable, isolated clusters of activation during the 

motor imagery and spatial navigation tasks in the left precentral gyrus at an uncorrected 

p<.001 (cluster level family-wise error-corrected p<.05). The patient was thus 

reclassified as being in a non-behavioural Minimally Conscious State (Gosseries, Zasler, 

& Laureys, 2014). Patients VS7 showed high levels of motion requiring 37% and 37.5% 

of his data to be discarded for motor imagery and spatial navigation, respectively. The 

analysis of the remaining data only revealed appropriate activation during the spatial 

navigation task (i.e., the left occipito-parietal junction at uncorrected p<.001.). The 

patient was also reclassified as being in a non-behavioural Minimally Conscious State 

(Gosseries et al., 2014).  

Patients MCS3, MCS4, EMCS1, and LIS1 also only showed reliable activation during 

the spatial navigation task. This involved: bilateral occipito-parietal junction (uncorrected 
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p<.001) for MCS3; right temporo-occipito-parietal junction (family-wise error-corrected 

p<.05), as well as right dorsal premotor cortex, right insular cortex, and right putamen 

(uncorrected p<.001) for MCS4; right occipito-parietal junction, a region in the 

boundaries between right lingual gyrus/parahippocampal cortex, left precentral gyrus 

(comprising the supplementary and pre-supplementary motor areas), as well as some less 

typical areas such as the inferior frontal gyrus, the left superior temporal gyrus, and the 

left striatum (family-wise error-corrected p<.05) for EMCS1; and the supplementary 

motor area, right precentral gyrus, occipito-parietal junction, posterior temporo-occipital 

region, and cerebellum (uncorrected p<.001) for LIS1. The remaining seven patients 

(VS1-5, MCS1, and MCS2) showed no activation at the conservative family-wise error-

corrected statistical threshold, or at uncorrected p<.001. 

4.3.4 Correspondence between command following and EEG 
responses 

The main hypothesis in this investigation was that patients who were aware would exhibit 

EEG markers of higher-order attention processing. While top-down processing was not 

detected in the event-related potentials from any patients, an interesting relationship is 

evident between a specific marker of awareness—command following—and the bottom-

up event-related potential effect. A patient was considered aware if he or she 

demonstrated command following in any one of the three assessments not based upon 

EEG responses (i.e., selective auditory attention, mental imagery, or a behavioural 

assessment with the Coma Recovery Scale). This approach is consistent with clinical 

behavioural guidelines in which a diagnosis of awareness (Minimally Conscious State) is 

given if a patient reliably follows a command across multiple trials (Kalmar & Giacino, 

2005). A Fisher’s exact test revealed a significant positive association between command 

following and event-related potential evidence of bottom-up attention (p=.007; note 

p=.0047 if the two observations of Patient VS6 are not included to maintain the 

assumption of independence). This relationship is summarised in Figure 13. 
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Figure 13. Summary of the relationship between command following and the EEG 

outcomes of Experiment 1 in Chapter 4. 

fMRI=functional magnetic resonance imaging; VS=Vegetative State; MCS=Minimally 

Conscious State; EMCS=emergent from a Minimally Conscious State; LIS=Locked-in 

Syndrome. The summary depicts the number of patients and healthy volunteers who 

generated each of the three possible outcomes (i.e., sensory response [steady-state evoked 

potential], bottom-up attention [event-related potential], or top-down attention [event-

related potential]) on the somatosensory selective attention task (Experiment 1, EEG). 

4.3.5 Replication data 

The replication results are depicted in Figure 14. All patients exhibited consistent effects 

across assessments apart from Patient VS6. For Patient VS6, the bottom-up attention 

event-related potential effect was only detected during her initial assessment. 
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Figure 14. Replication data from the follow-up visits with some patients in Chapter 4. 

Data are depicted for the initial and follow up tests of Patients VS4, MCS3, EMCS1, and 

VS6, as labelled. For the steady-state evoked potentials, power spectra (top left panels 

within each cell) and averaged EEG data (bottom left panels within each cell) were 

calculated over a 1-second period. Analyses were conducted using the data recorded from 

site Pz only; each waveform is depicted with ±1 standard error of the mean in colour-
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matched shading. For the bottom-up attention event-related potential effects (right panels 

within each cell), spatiotemporal clusters were calculated across all twelve electrodes and 

are depicted with ±1 standard error of the mean in colour-matched shading. The 

electrodes included in the significant spatiotemporal cluster are enclosed with a black line 

on each topographic plot. The temporal boundaries and the probability value of each 

cluster are indicated with shading and inset text. For Patient VS6 only, two separate fMRI 

assessments were conducted at each testing session. For the fMRI mental imagery 

paradigm, significant task-related fMRI activation is depicted (Imagery>Rest), and 

results are thresholded at an uncorrected p<.001. For the fMRI selective auditory 

attention task, only activation clusters within the attention network (Count>Relax) that 

survived the familywise error correction threshold of p<.05 at the whole-brain level are 

displayed. The fMRI results are rendered on the patient’s T1 anatomical MRI image, and 

scales depicting the statistical maps (t values) are inset.  

*=p<0.05; **=p<0.01; ***=p<.001; n.s.=not statistically significant. 

4.4 Discussion and conclusions 

In this chapter, fourteen patients with severe brain injuries underwent a novel EEG-based 

assessment of residual sensory and cognitive processing. The EEG outcomes were 

compared with two fMRI-based assessments of covert command following and one 

behavioural assessment of overt command following. The primary novel finding of this 

work was the relationship between an event-related potential marker of bottom-up 

attention orienting and command following. Specifically, all patients with the event-

related potential bottom-up attention effect (P300) demonstrated command following. 

Similarly, most patients who did not generate an event-related potential marker of 

bottom-up attention also did not demonstrate command following (Figure 13).  

Some investigators have reported positive prognostic value in the presence of a P300 

following traumatic brain injury (Cavinato et al., 2009; Lew et al., 2003). There have 

also been reports of correlations between cognitive event-related potentials and 

behavioural markers of awareness (Kotchoubey et al., 2005; Schnakers et al., 2008). 

Furthermore, other investigators have found that cognitive event-related potentials are 
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predictive of recovery in patients with acute disorders of consciousness (Steppacher et 

al., 2013; Wijnen, van Boxtel, Eilander, & de Gelder, 2007). Crucially, the current study 

included two neuroimaging-based assessments of covert command following. This step is 

important given that a recent meta-analysis estimated a 15% rate of covert awareness 

among patients diagnosed as being in a Vegetative State (Kondziella et al., 2016). 

Previous studies of the P300 in patients with disorders of consciousness are likely to have 

included patients capable of covert command following, thus obscuring the relationship 

reported here. While the feasibility of routine neuroimaging assessments in clinical 

practice is limited by health, safety, and financial factors, the findings of this work 

suggest that these assessments are necessary to elucidate the relationship between a 

patient’s conscious state and his or her residual sensory and cognitive abilities.  

It is curious that an event-related potential marker of unconscious (or preconscious) 

processing is closely linked to awareness in this work. Indeed, the classic event-related 

potential marker of bottom-up attention, the P300, can be elicited by unattended stimuli 

and during REM sleep and deep sedation (Chennu & Bekinschtein, 2012; Polich, 2007). 

It may be that the correspondence between the event-related potential marker of bottom-

up attention and command following stems from the overlap of the neural networks that 

support attention. Such networks are relatively more preserved in conscious patients 

(Fernández-Espejo et al., 2012; Thibaut et al., 2012). Moreover, frontal lobe lesions have 

been associated with diminished P300 responses to auditory and somatosensory 

stimulation (Knight, 1984; Yamaguchi & Knight, 1991a). Notably, this association 

suggests that a P300 response may be less informative for patients with specific frontal 

lobe injuries. Nevertheless, a P300 can be elicited without the explicit collaboration of 

the individual—i.e., without following task instructions (Chennu & Bekinschtein, 2012). 

This feature is appealing because it suggests that a passive assessment of attention 

orienting, which entails lower cognitive demands than active assessments of voluntary 

top-down attention, may be sufficient to identify patients with covert awareness. 

The P3b-like event-related potential marker of top-down attention was not detected from 

any of the patients in this sample. A similar finding has been previously reported in one 

study of patients in a Minimally Conscious State (Pokorny et al., 2013). It has also been 
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suggested that the single-subject sensitivity of the P3b is too low for clinical awareness 

detection (Höller et al., 2013). While the single-subject sensitivity of the P300 is typically 

100% in healthy volunteers, the single-subject sensitivity of the P3b ranges from about 

44% to 70% (Höller et al., 2011, 2013; Kotchoubey, Lang, Herb, Maurer, & Birbaumer, 

2004). Notably, P3b-like event-related potentials in the current work were detected from 

only 67% (10/15) of the healthy volunteers when relying upon a cognitive subtraction to 

isolate top-down attentional processing. However, the conventional P3b contrast yielded 

a hit-rate of 100% from the healthy volunteers. As highlighted in the Methods section, 

this conventional contrast does not necessarily isolate top-down attention in this 

paradigm. Indeed, the conventional P3b contrast of target deviant versus standard is no 

different from the conventional P300 contrast of non-target deviant versus standard if the 

participant does not comply with the instruction to selectively attend to certain deviant 

stimuli. For this reason, a cognitive subtraction (target deviant versus non-target deviant) 

is needed quantify any differences in responses to deviant stimuli due to top-down, 

selective attention. Alternatively, the oddball task used in this investigation frequently 

involved the presentation of a deviant stimulus after three standard stimuli (49% of 

trials). Greater variability in the rate of deviant stimulus presentation may reduce 

expectancy effects and elicit more stable P3b-like event-related potentials in future work. 

Finally, the P3b effect was not detected from any patients in this study using either the 

cognitive subtraction technique or the conventional contrast. For this reason, it is not 

clear from this investigation whether event-related potential markers of top-down 

attention will facilitate the differential diagnosis of disorders of consciousness. 

As a final consideration, time-variant levels of arousal and fatigue characteristic of 

disorders of consciousness may have led to inconsistent engagement in the EEG counting 

task (Giacino, Fins, Laureys, & Schiff, 2014; Whyte et al., 2013). Participants were 

required to sustain attention for five minutes in blocks of about twenty-two seconds for 

both fMRI tasks, whereas the EEG task involved fifteen minutes of attention in blocks of 

about one minute. The EEG task was longer to ensure that a high EEG signal-to-noise 

ratio was achieved, and post-hoc analyses confirmed that the top-down event-related 

potential effect was sensitive to data loss. Unfortunately, increased task duration requires 
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participants to sustain attention for an even longer period and may have contributed to the 

low sensitivity of this marker in the patient cohort. Some investigators use machine 

learning to circumvent these issues and address possible time-dependent variations in the 

electrocortical responses of patients with brain injuries (e.g., King et al., 2013). For 

simplicity of interpretation and consistency with clinical methods, however, a more 

traditional event-related potential voltage comparison was used in the current work. 

Notably, statistical reliability was assessed with permutation testing following the 

recommendations of other researchers in this field (Billinger et al., 2013; Goldfine et al., 

2013; Noirhomme et al., 2014). Although machine-learning techniques may have 

rendered a more sensitive description of time-variant results, the analyses were conducted 

in line with recommended practice for this type of translational research.  

In closing, the determination of whether patients with disorders of consciousness are 

aware is a clinical standard of care. To influence clinical practice, it is essential to 

compare novel assessments with existing techniques. The current investigation directly 

compared two previously established fMRI-based assessments of covert command 

following (Naci & Owen, 2013; Owen et al., 2006) and one novel EEG-based 

hierarchical cognitive assessment (Gibson et al., 2016b). The results of the fMRI 

assessments converged for nine of the twelve patients with useable data from both 

paradigms, and an EEG marker of attentional orienting (the P300) identified patients with 

the ability to follow commands. The behavioural profile of disorders of consciousness—

that is, time-variant fatigue and arousal—always affords the possibility that a patient did 

not demonstrate covert command following due to lack of voluntary engagement in the 

mental task. Likewise, false negatives occur in assessments of healthy volunteers (e.g., 

Cruse et al., 2011; Fernández-Espejo, Norton, & Owen, 2014). Nevertheless, the less 

than perfect correspondence of the assessments of covert command following reported 

here may have occurred because the demands of a given task were better suited to some 

patients than others. For example, some individuals find it difficult to engage in motor 

imagery (Hammer et al., 2011; Vidaurre & Blankertz, 2010), and in some reports, brain-

computer interfaces driven by the neural correlates of selective attention are successfully 

operated by more users than brain-computer interfaces driven by the neural correlates of 
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imagined movement (Guger et al., 2009; Guger, Edlinger, Harkam, Niedermayer, & 

Pfurtscheller, 2003). Accordingly, assessments of covert command following based on 

selective attention may be better suited to a general population. Overall, however, an 

optimal evaluation of a patient with a disorder of consciousness should include multiple 

assessments to maximise the likelihood of detecting responses that are not evident from 

overt behaviour. In the absence of unambiguous ground truth, an investigation of the 

concordance between assessments may be the best way to improve diagnostic and 

prognostic accuracy. 
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Chapter 5  

5 General Discussion 

5.1 Key contributions and limitations 

Patients with disorders of consciousness have significant behavioural impairments due to 

their severe brain injuries. Patients in a Vegetative State exhibit no voluntary behaviour 

and lack awareness of all external stimulation, while patients in a Minimally Conscious 

State exhibit variable, but reproducible, voluntary behaviour and awareness (Bernat, 

2006). It is difficult to differentially diagnose disorders of consciousness, and neural 

correlates of minimal versus absent awareness are occasionally used to complement and 

supplement behavioural evaluations (Giacino, Fins, Laureys, & Schiff, 2014; Laureys, 

2005; Owen, 2013). A small number of patients diagnosed as being in a Vegetative State 

demonstrate covert awareness through appropriate and reliable modulations of their brain 

activity in response to verbal commands (Bardin, Schiff, & Voss, 2012; Cruse et al., 

2011; Goldfine, Victor, Conte, Bardin, & Schiff, 2011; Owen et al., 2006). The aim of 

this thesis was to improve existing EEG-based assessments of covert command following 

and cognition to further facilitate the differential diagnosis of disorders of consciousness 

at the bedside. Novel techniques were validated in healthy volunteers, and all patients 

underwent assessments based upon behaviour, EEG, and fMRI. Strategies to improve the 

sensitivity of single-subject analyses of neuroimaging data were discussed in all 

empirical chapters, including customised mental tasks and distinct neural correlates of the 

mental processes of interest. 

Together, the three experiments described in this thesis have advanced the scientific and 

clinical understanding of disorders of consciousness in at least two ways. Firstly, 

paradigms and stimuli that are customized to a participant can result in more reliable 

single-subject outcomes. Indeed, the primary finding of Chapter 2 was that musicians 

generated enhanced responses to motor imagery involving musical performance relative 

to motor imagery of other actions. The customisation of the motor imagery task to the 

participants’ previous experiences accordingly resulted in a more sensitive detection of 
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volitional brain responses. Unfortunately, customised motor imagery did not facilitate the 

detection of covert command following from the small sample of patients with disorders 

of consciousness in Chapter 3. Nevertheless, this study involving patients contributed to 

the second major finding of this thesis: assessments of multiple cognitive abilities, 

supported by distinct brain regions and neural signatures, are needed to characterise a 

patient’s level of residual cognition. Indeed, many patients in Chapters 3 and 4 

demonstrated covert command following in only one assessment. For instance, one 

patient in Chapter 3 had selective damage to cortical motor areas; this patient did not 

produce a reliable brain response to motor imagery, but she did produce a robust brain 

response to mental imagery involving spatial navigation. In Chapter 4, an event-related 

potential marker of attentional orienting (the P300) identified patients with the ability to 

follow commands. This finding indicates that a simple bedside assessment of oddball 

detection may be sufficient to identify patients with residual cognitive abilities or 

awareness. Notably, multiple assessments of the same patient in Chapters 3 and 4 did not 

always yield converging results; for example, some patients did not exhibit both EEG- 

and fMRI-based responses to motor imagery (Chapter 3) or selective attention (Chapter 

4). Nevertheless, if the patients discussed in this thesis had been assessed on just one 

occasion, or repeatedly with the same mental task, their covert cognitive abilities may 

have never been identified. Accordingly, customized assessments that probe a patient’s 

abilities in more than one sensory domain and with more than one neural correlate are a 

promising way to minimise false negatives in the detection of covert cognition and 

awareness. 

A common limitation of all three empirical chapters in this thesis is the possibility of 

attribution errors. Attribution errors in the detection of covert cognition and awareness 

carry significant consequences. Among other possibilities, patients may receive 

unsuitable care, medical resources may be inappropriately used, and families may suffer 

unnecessary emotional distress or financial loss (Jox, Bernat, Laureys, & Racine, 2012; 

Peterson, Cruse, Naci, Weijer, & Owen, 2015). In terms of false negatives—i.e., the 

failure to attribute awareness to a patient who is aware, validation studies with healthy 

volunteers can eliminate some confounding factors in patient assessments. For example, 
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healthy volunteers can overtly confirm or deny their conformance with tasks demands to 

identify the neural correlates of compliant, successful task performance. However, 

assessments of patients with severe brain injuries are designed to be response-free with 

low cognitive demands; findings based on the responses of healthy volunteers to simple 

cognitive tasks may not generalise to patients. Additionally, 10 to 30% of healthy 

volunteers generate negative results in mental imagery paradigms under optimal 

performance conditions (Vidaurre & Blankertz, 2010). Single-subject effects may also 

differ from group effects in neuroimaging paradigms due to variations in individual brain 

structure. Moreover, patients may produce negative results because they do not 

understand a task, or because they temporarily exhibit reduced responsiveness secondary 

to a medical comorbidity. In future work, healthy volunteers could be instructed to ignore 

commands in some blocks of trials to characterise the neural correlates of interest during 

volitional inhibition (Owen et al., 2007). Similarly, target neural responses could be 

validated during natural fluctuations in vigilance, such as distraction or drowsiness 

(Chennu & Bekinschtein, 2012). Nevertheless, it may be impossible to identify the 

ground truth about awareness in the absence of self-report, and false negatives in the 

attribution of awareness are a pervasive challenge in studies of patients with disorders of 

consciousness. 

False positives—i.e., the ascription of awareness to a patient who is not aware—are also 

possible in the attribution of covert awareness. False positives may occur due to 

variations in statistical thresholds and analysis techniques. Statistical corrections for 

multiple comparisons and restrictions of analyses to brain or scalp regions of interest are 

commonly used in neuroimaging studies to reduce false positives (Bennett, Wolford, & 

Miller, 2009; Kilner, 2013; Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). 

Similarly, permutation tests are preferred to binomial tests to reduce false positives in the 

statistical assessment of classification outcomes in this field (Cruse, Chennu, et al., 2013; 

Goldfine et al., 2013; Noirhomme et al., 2014). Additionally, however, false positives 

may occur if a brain response of interest does not correlate with a volitional mental 

process. For example, linguistic stimuli in mental imagery paradigms could elicit 

involuntary neural responses (Greenberg, 2007; Nachev & Husain, 2007). Indeed, action 
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words such as “kick” or “lick” correlate with a few seconds of activation in brain areas 

associated with motor function (Hauk, Johnsrude, & Pulvermüller, 2004). Notably, 

unconscious mental representations persist for a few seconds or less (Greenwald & 

Draine, 1996; Naccache et al., 2005). The prolonged responses (30 seconds) necessary in 

fMRI-based assessments of covert command following accordingly provide compelling 

evidence of sustained, and arguably conscious, responses to verbal commands (Dehaene 

& Naccache, 2001; Naccache, 2006; Owen et al., 2007). As an additional consideration, 

the incidence of positive neuroimaging results is lower than the incidence of negative 

neuroimaging results in studies of covert awareness. For example, approximately 15% of 

patients diagnosed as being in a Vegetative State can covertly follow commands 

(Kondziella, Friberg, Frokjaer, Fabricius, & Møller, 2016), and only about 45% of 

patients who could overtly follow commands also demonstrated covert command 

following in one large clinical validation study (Stender et al., 2014). Nevertheless, 

clinicians and scientists must ensure that appropriate analytical techniques and construct 

validity are applied to the clinical determination of awareness, regardless of whether 

positive or negative results are obtained. 

5.2 Understanding consciousness via acquired brain injury 

Historically, acquired and congenital brain injuries have provided unique opportunities to 

study cognition and perception in humans (Thiebaut de Schotten et al., 2015). For 

example, the famous patient Henry Molaison (“H.M.”) had a large portion of his medial 

temporal lobe removed to treat intractable epilepsy (Scoville & Milner, 1957). Although 

this surgery resulted in profound memory loss for the patient, his subsequent participation 

in research significantly advanced understanding of the hippocampus and other medial 

temporal lobe structures in human memory (Eichenbaum, 2013). Moreover, this patient 

and the subsequent understanding of his abilities and impairments helped guide surgical 

practice toward the minimally invasive protocols used today (Mauguiere & Corkin, 

2015). It may be that patients with disorders of consciousness, who present with profound 

disruptions to the behaviours commonly ascribed to awareness, provide a similar 

opportunity to study consciousness in humans. 
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The bad news about the scientific study of consciousness, particularly when relying upon 

patients with disorders of consciousness, is both logistical and philosophical in nature. 

Firstly, it is difficult to obtain a sufficient quantity of high-quality neural data from 

patients with disorders of consciousness. Most patients lack voluntary motor control and 

exhibit fluctuations in arousal. Accordingly, patients who remain alert throughout an 

assessment are likely to move, and patients who do not move during an assessment may 

not be alert or awake. The former scenario results in data loss due to motion-related 

artefacts, while the latter scenario results in data with insufficient construct validity to 

assess conscious processing. Furthermore, patients with disorders of consciousness 

typically have severe and diffuse acquired brain injuries. Findings concerning the neural 

structures or functions that support conscious processing in these patients may not 

generalize to persons with healthy brains. As a second consideration, it is difficult to 

operationalize conscious processing. There are several philosophical, psychological, and 

neurobiological perspectives on the neural correlates of consciousness (e.g., Chalmers, 

2000; Dennett & Kinsbourne, 1992; Hohwy, 2009; Rees, Kreiman, & Koch, 2002). 

However, consensus has not yet been reached as to how best measure consciousness 

within existing theoretical frameworks (Block, 2007; Seth, Dienes, Cleeremans, 

Overgaard, & Pessoa, 2008). For instance, self-report is one of the only widely accepted 

techniques to identify self-awareness (Naccache, 2006; Weiskrantz, 1997). 

Unfortunately, it is unclear whether the neural mechanisms that underlie self-report, 

especially those pertaining to linguistic and gestural communication, can be isolated from 

the neural mechanisms that underlie awareness (Block, 2007; Lamme, 2006; Seth et al., 

2008). This issue is particularly problematic for patients with disorders of consciousness; 

most patients with disorders of consciousness cannot overtly respond, and yet patients 

who can follow commands using neural correlates of volitional mental tasks exhibit 

compelling evidence of awareness (Owen, 2013; Stins & Laureys, 2009).  

Notwithstanding its inherent limitations, the scientific study of consciousness involving 

patients with disorders of consciousness has elucidated the now classic distinction 

between wakefulness and awareness in human subjective experience. It is remarkable that 

a person can survive a catastrophic brain injury; present with an apparent absence of all 
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voluntary behaviour and responsiveness to external stimulation; and yet retain cycles of 

wakefulness and quiescence. In a healthy brain, the brainstem ascending reticular 

activating system regulates cyclical wakefulness through diffuse afferent connections to 

the thalamus and cerebral cortex (Moruzzi & Magoun, 1949; Plum & Posner, 1972). 

Many patients with disorders of consciousness present with periods of wakefulness and 

non-wakefulness because their reticular activating systems are spared from injury, whilst 

insults to other brain structures lead to the profound disruptions in awareness 

characteristic of these disorders (Bernat, 2006). Owing in part to this dissociation 

between wakefulness and awareness in patients with disorders of consciousness, 

consciousness is now often described as a continuum of abilities with different modes of 

operation (Bayne & Hohwy, 2007; Blume, Del Giudice, Wislowska, Lechinger, & 

Schabus, 2015). Furthermore, awareness can persist in the absence of wakefulness. For 

example, healthy sleepers have demonstrated priming effects, movement preparation, and 

preliminary attentional processing in different stages of sleep (Bareham, Manly, 

Pustovaya, Scott, & Bekinschtein, 2014; Chennu & Bekinschtein, 2012; Hobson, 2009). 

Likewise, some patients with disorders of consciousness exhibit severely disrupted sleep 

architecture, and many patients possess no discernible circadian rhythm, even though 

they occasionally exhibit voluntary behaviour (Cologan et al., 2010; Cruse, Thibaut, et 

al., 2013; De Weer et al., 2011). In light of these findings, a promising future direction in 

the scientific study of consciousness is to determine whether awareness can persist in the 

complete absence of wakefulness characteristic of the comatose state. Such evidence 

would provide a fascinating new perspective on our understanding of subjective 

experience via acquired brain injury. 

From a scientific standpoint, preserved awareness in some patients with disorders of 

consciousness suggests that the neural correlates of consciousness are dependent on 

whole brain integrity rather than a designated brain structure per se. For example, some 

researchers posit that awareness is supported by two distinct cortical networks: (1) a 

network pertaining to external awareness of information perceived using the senses, and 

(2) a network pertaining to internal awareness of stimulus-independent thoughts 

(Demertzi et al., 2011; Demertzi, Soddu, & Laureys, 2013; Heine et al., 2012; 
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Vanhaudenhuyse et al., 2011). Within these networks, activity in the frontoparietal 

network is impaired in most patients in a Vegetative State and in many healthy volunteers 

during slow wave sleep, deep anaesthesia, and absence seizures (Blumenfeld, 2012; 

Boveroux et al., 2008; Cavinato et al., 2015; Thibaut et al., 2012). Additionally, it has 

been hypothesised that executive function, which correlates with activity in frontoparietal 

brain networks, could serve as a cognitive proxy for human consciousness (Naci, Cusack, 

Anello, & Owen, 2014; Naci & Owen, 2013). From a functional perspective, executive 

function enables an organism to process information from the external environment to 

make predictions and plan behaviours (Stuss & Knight, 2013). In this respect, executive 

function is the cognitive equivalent of generating an internal experience from external 

stimulation and may accordingly index conscious processing. Finally, many state-of-the-

art psychological hypotheses posit that consciousness arises from wide-scale brain 

function (e.g., Cleeremans, 2011; Dehaene, Changeux, Naccache, Sackur, & Sergent, 

2006; Tononi, 2004). Patients with disorders of consciousness provide valuable 

opportunities to evaluate and refine all models of conscious processing, and the study of 

these patients continues to inform leading theoretical accounts of consciousness as a 

psychological construct. 

The most impactful discovery in the scientific study of consciousness via acquired brain 

injury may pertain to the patients with disorders of consciousness themselves. There is 

robust evidence that patients in a Vegetative State lack both behavioural and neural 

responses to external stimulation (Bernat, 2006). Some patients in a chronic Vegetative 

State exhibit cerebral metabolism arguably more similar to brain death than healthy 

wakefulness (Laureys, Owen, & Schiff, 2004). It is very unlikely that patients with 

chronic disorders of consciousness, particularly those in a Vegetative State, will regain 

functional independence (Royal College of Physicians Working Group, 1996, 2003). 

Nevertheless, clinicians and most other people are appropriately cautious to designate any 

patient as completely ‘unaware’, and early neuroimaging-based research supported this 

intuition by demonstrating that some patients in a Vegetative State could engage in 

complex information processing (e.g., Owen et al., 2002; Schiff et al., 2002). After about 

a decade of additional study, it is now acknowledged that a substantial minority of 
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patients in a Vegetative State can volitionally modulate their brain activity in response to 

command (Giacino et al., 2014; Gosseries, Zasler, & Laureys, 2014; Kondziella et al., 

2016; Owen et al., 2006). It is a fascinating and somewhat incidental scientific finding 

that the neural mechanisms thought to support awareness can persist following such 

profound disruption. For the small number of patients with residual awareness, however, 

the detection of covert command following may be life changing, particularly if their 

ability to communicate is restored. 

5.3 Recommendations and future directions 

Recent advancements in neuroimaging technology and technical computing have led to 

innovative developments in neuroscience research and related medical practice. Our 

understanding of the abilities of patients with disorders of consciousness has been 

substantially advanced by assessments that are not contingent on motor output and 

instead rely on brain responses. Significantly, it is now understood that some patients 

who lack overt responsiveness following catastrophic brain injury can exhibit sleep-wake 

cycles and engage in voluntary regulation of their brain activity in response to command. 

Although these two findings are revolutionary for the clinical understanding of patients 

with disorders of consciousness, and provide some insight into the neural basis of 

consciousness in general, the study of disorders of consciousness needs new growth. 

Three promising ways forward are discussed next with reference to the findings of this 

thesis and the relevant current literature.  

The first area of recommended growth for the study of disorders of consciousness is the 

conduct of large-scale, multicentre, clinical validation studies. Indeed, this manner of 

inquiry may be the only way forward for medical purposes (Laureys & Schiff, 2012). 

Some physicians and other people involved in patient care are sceptical of neuroimaging-

based approaches, even though these approaches facilitate differential diagnosis in some 

cases (Owen, 2013). This scepticism arises in part because many people adopt 

behaviourist approaches to assess awareness (Kurthen, Moskopp, Linke, & Reuter, 1991; 

Plum & Posner, 1972). Furthermore, most investigations that use neuroimaging rely upon 

single cases or small, heterogeneous cohorts of patients with disorders of consciousness 
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to validate techniques. These small-scale investigations provide valuable proof-of-

concept for future clinical trials, but do not provide sufficient evidence to warrant 

adoption in standard medical practice. Additionally, the primary aim of most 

neuroimaging-based investigations involving patients with disorders of consciousness is 

to facilitate differential diagnosis. However, the prediction of recovery, especially during 

the acute treatment phase, is at least equally as important from a clinical perspective. A 

few candidate neural markers of recovery exist: for example, patients with higher 

cerebral metabolism, or resting EEG with higher complexity, are more likely to recover 

awareness (Babiloni et al., 2009; Bagnato et al., 2010; Di, Boly, Weng, Ledoux, & 

Laureys, 2008; Stender et al., 2016). Unfortunately, the prediction of the absence of 

recovery is more reliable than the prediction of recovery (Stender et al., 2014; Wijdicks, 

Hijdra, Young, Bassetti, & Wiebe, 2006). Accordingly, investigations concerning the 

neural markers of positive prognosis in the acute treatment phase are needed. With 

appropriate validation in large, multicentre cohorts of patients, neuroimaging-based 

techniques will significantly advance knowledge and standards of care pertaining to 

diagnosis, prognosis, and medical management of patients with disorders of 

consciousness. 

A second avenue of progress for the study of disorders of consciousness is the 

implementation of feedback in brain-computer interface-based paradigms intended to 

support two-way communication with these patients. It is unlikely that many patients will 

possess the cognitive resources needed to communicate with a brain-computer interface; 

to the best of my knowledge, fewer than ten patients with disorders of consciousness 

have communicated using neuroimaging techniques to date (Bardin et al., 2012; 

Fernández-Espejo & Owen, 2013; Forgacs et al., 2014; Monti et al., 2010; Naci & Owen, 

2013). Nevertheless, other patients with prolonged immobility from severe motor 

impairments have already benefited from brain-computer interfaces. For example, state-

of-the-art brain-computer interfaces have provided patients who are quadriplegic with a 

reasonably sophisticated ability to grasp objects using a mechanical arm (Hochberg et al., 

2006, 2012). Other brain-computer interfaces have provided patients who are paralysed 

with the ability to create simple graphic designs (Münßinger et al., 2010). Similarly, a 



 140 

 

 

 

few patients diagnosed as being in a Minimally Conscious State have successfully 

operated brain-computer interfaces presented as simple video games, such as moving a 

ball to a basket with motor imagery or selecting a target photograph with a reward in a 

forced choice paradigm (Coyle, Carroll, Stow, McCreadie, & Mcelligott, 2013; Coyle, 

Stow, McCreadie, McElligott, & Carroll, 2015; Pan et al., 2014). Notably, these 

successful brain-computer interfaces provide direct, online feedback to the user. Indeed, 

effective feedback provides users with positive reinforcement and entertainment to 

reduce frustration and fatigue (Kleih & Kübler, 2013; Nijboer, Birbaumer, & Kübler, 

2010; Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002). Changes in 

feedback could also identify sleep onset or lack of interest (e.g., a sudden drop in 

performance mid-session). While it is not known how many patients possess the 

cognitive resources needed to communicate using a brain-computer interface, the 

implementation of feedback is an important next step toward the restoration of 

communication and environmental control for patients with disorders of consciousness.  

A third and final way forward for the study of disorders of consciousness pertains to 

ethical models of patient care. For example, a primary claim of this thesis is that multi-

modal assessments are needed to minimize false negatives in the attribution of awareness. 

A patient is likely to exhibit divergent outcomes on different assessments due to the 

heterogeneous nature of severe, acquired brain injuries and the unusual behavioural 

profile characteristic of disorders of consciousness. Unfortunately, it is not yet clear how 

to interpret conflicting outcomes or to communicate feedback from contradictory findings 

to a care team or family member (Fins, 2013; Graham et al., 2015). A primary concern is 

that positive evidence from only one assessment in a battery will undermine confidence 

in the positive result, even though the incidence of positive outcomes is lower than the 

incidence of negative outcomes overall. Alternatively, communication via fMRI has been 

a possibility since at least 2009 (Sorger et al., 2009). Other neuroimaging techniques, 

such as functional near-infrared spectroscopy and EEG, also offer pragmatic solutions to 

issues of infrastructure and expense in standard clinical practice (Chatelle, Lesenfants, 

Guller, Laureys, & Noirhomme, 2015; Naci et al., 2012; Naseer & Hong, 2015). The 

development of bedside brain-computer interface-based communication will accordingly 
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warrant additional consideration of medical decision making for non-communicative 

patients. Although brain-computer interface output may be sufficient for the 

identification of at least minimal consciousness, there may be no level of confidence in 

communicative brain-computer interface output that is appropriately high to inform major 

medical decisions (Fins & Schiff, 2010; Mackenzie, 2013; Peterson et al., 2013). As 

medical knowledge and related technology advances, it is essential to revisit the ethical 

framework pertaining to patient care to ensure that a patient’s rights and best interests are 

respected (Fins, 2009; Weijer et al., 2014). 

5.4 Conclusions and extrapolations 

The scientific and clinical understanding of patients with disorders of consciousness has 

been revolutionised by neuroimaging in the last twenty years. Nevertheless, the 

differential diagnosis of awareness remains a challenging clinical determination. In this 

thesis, neuroimaging-based assessments that probe a patient’s abilities in more than one 

sensory domain and with more than one neural correlate were applied to reduce false 

negatives in the attribution of awareness. The novel EEG assessments were developed 

with reference to existing gold standards and implemented with relatively simple and 

inexpensive bedside acquisition protocols. Over the next twenty years, it is expected that 

some patients with disorders of consciousness will be able to communicate at the bedside 

using similar techniques. Such technology will be accessible and widely available owing 

to further advancements in commercial human-machine interfaces for healthy users. At 

that time, many patients will have experienced brain-facilitated device control prior to 

their injuries. These factors will in turn enhance a suitable patient’s ability to demonstrate 

volitional modulations of his or her brain activity during rehabilitation. Notably, it is 

anticipated that patients with chronic disorders of consciousness will continue to reap no 

direct benefit from translational research because curative treatment will remain unlikely. 

Nonetheless, many patients will experience an improved quality of life because 

affordable brain-computer interfaces will provide them with entertainment, two-way 

communication, and correspondingly sensitive care. In short, research pertaining to 

disorders of consciousness in the next twenty years will continue to instigate positive 

changes and impactful scientific discoveries for researchers, clinicians, and patients alike. 
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Appendix C: Supplementary data for Chapter 2. 
Supplementary Table C-1. Single-trial classification outcomes for Experiment 1 of 
Chapter 2. 
 

Participant 
  

Simple Imagery 
vs. Rest   

Complex Imagery 
vs. Rest 

 Acc  Time  #TP  Acc  Time  #TP 
1  59.13  3.9  0  56.97  3.1  0 
2  66.70*  3.1*  24*  64.81*  3.1*  10* 
3  60.87  2.3  0  60.43  3.3  0 
4  57.36  3.9  0  68.76*  2.8*  25* 
5  58.78  2.4  0  62.58*  3.8*  5* 
6  61.80*  3.5*  3*  56.89  3.2  0 
7  59.36  2.9  0  58.11  2.5  0 
8  59.26  4.9  0  66.58*  3.4*  19* 
9  59.71  2.5  0  60.35  3.0  0 
10  66.43*  4.6*  26*  66.19*  4.3*  31* 
11  64.42*  3.5*  6*  67.44*  4.6*  20* 
12  57.81  2.4  0  64.23*  4.5*  12* 
13  57.80  2.1  0  64.04*  3.7*  25* 
14  61.57  3.1  0  63.10*  5.1*  4* 
15  58.15  3.0  0  59.16*  4.5*  1* 
16  61.74  3.6  0  64.14*  2.2*  4* 

M  60.68  3.22  3.69  62.64  3.55  9.69 
SE   0.74   0.20   2.13   0.93   0.21   2.71 

             
Notes. Acc=maximum cross-validated classification accuracy (%); Time=time of Acc 
(seconds following offset of auditory cue); #TP=number of time points for which 
statistically reliable classification results were obtained; M=mean; SE=standard error of 
the mean.  
 
*p<.05, with False Discovery Rate correction for multiple comparisons  
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Supplementary Table C-2. Single-trial classification outcomes for Experiment 2 of 
Chapter 2. 

Participant 

  
Piano Imagery 

vs. Rest 
  

Hockey Imagery 
vs. Rest 

  
Hand Squeeze Imagery  

vs. Rest 
 Acc  Time  #TP  Acc  Time  #TP  Acc  Time  #TP 

Pianist                   
1  63.45  3.2  14*  60.91  4.5  0  62.22  4.0  5 
2  59.31  4.1  0  63.75  4.2  7  58.03  4.0  0 
3  58.20  1.8  0  63.32  1.8  5  63.21  2.0  11* 
4  60.15  2.0  0  62.36  2.7  0  56.96  3.6  0 
5  68.24*  4.4*  39*  70.28*  4.4*  52*  61.78  4.1  0 
6  56.67  3.3  0  59.72  4.9  0  57.66  1.3  0 
7  66.02*  2.9*  32*  69.08*  2.9*  14*  62.53  2.0  5 
8  76.25*  4.4*  71*  75.31*  5.2*  61*  57.09  5.1  0 
9  69.76*  4.9*  29*  65.07  2.3  11*  67.92*  4.9*  21* 
10  59.48  3.9  0  62.71  1.8  4*  62.74  2.9  5* 
11  59.08  3.6  0  53.33  1.1  0  57.31  5.3  0 
12  63.27*  5.2*  12*  58.21  3.9  0  56.05  3.9  0 
13  57.50  3.7  0  54.97  1.1  0  65.09  4.5  7* 
14  73.99*  4.3*  64*  63.85  4.2  4*  68.04*  4.2*  45* 
15  59.78  3.9  0  59.75  3.0  0  53.97  1.8  0 
16  61.81  4.9  0  61.24  4.8  0  61.49  2.0  0 

M 
 

63.31 
 
3.76 

 
16.31 

 
62.74 

 
3.27 

 
9.88 

 
60.76 

 
3.45 

 
6.19 

SE  1.49  0.24  5.99  1.38  0.35  4.69  1.05  0.33  2.96 
Hockey Player                 

1  58.93  3.2  0  66.35*  2.3*  9*  62.33  4.2  0 
2  56.74  5.5  0  55.24  3.4  0  52.71  1.5  0 
3  59.45  1.7  0  66.64*  2.0*  10*  60.51  1.4  0 
4  66.11*  3.3*  19*  59.58  2.2  0  69.05*  3.1*  42* 
5  56.15  3.8  0  56.88  4.8  0  58.51  3.8  0 
6  64.49  3.8  11*  69.15*  4.2*  32*  64.57*  3.7*  19* 
7  56.88  1.1  0  60.20  3.6  0  59.78  4.0  0 
8  56.38  2.6  0  56.90  3.1  0  56.99  2.5  0 
9  57.26  4.9  0  59.26  4.9  0  56.56  5.3  0 
10  55.95  3.6  0  57.89  3.1  0  54.02  2.6  0 
11  59.59  3.3  0  52.26  3.4  0  63.43*  4.2*  9* 
12  55.19  2.5  0  53.07  4.0  0  56.76  4.7  0 
13  63.58*  1.5*  7*  59.52  1.8  0  58.76  4.5  0 
14  67.03*  4.5*  25*  77.59*  4.2*  37*  61.57  2.7  5* 
15  58.90  4.3  0  57.92  3.3  0  59.43  2.7  0 
16  55.08  2.8  0  56.96  3.2  0  57.38  3.1  0 

M 
 

59.23 
 
3.25 

 
3.88 

 
60.34 

 
3.31 

 
5.50 

 
59.52 

 
3.35 

 
4.69 

SE  0.98  0.31  1.95  1.64  0.24  2.95  1.02  0.28  2.80 
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Participant 

  Piano Imagery 
vs. Rest  Hockey Imagery 

vs. Rest  Hand Squeeze Imagery 
vs. Rest 

 Acc  Time  #TP  Acc  Time  #TP  Acc  Time  #TP 
Control                   

1  55.93  1.7  0  60.40  4.1  0  56.47  2.1  0 
2  64.05  3.5  3*  69.09*  5.1*  19*  65.34  5.5  3* 
3  62.08  2.9  0  68.41*  2.7*  18*  68.33*  2.7*  21* 
4  58.30  3.4  0  61.32  4.3  0  59.63  2.8  0 
5  54.89  4.3  0  57.70  4.2  0  58.43  2.9  0 
6  62.36  5.3  0  72.71*  3.4*  52*  69.83*  5.5*  30* 
7  58.08  4.9  0  59.03  2.5  0  60.55  2.5  0 
8  60.28  2.7  0  60.51  2.7  0  66.79*  4.7*  10* 
9  66.55*  2.6*  34*  62.31  3.8  6*  65.03*  3.5*  20* 
10  62.13  2.5  4*  62.86  3.0  4*  65.34*  4.6*  25* 
11  70.64*  1.4*  15*  63.94  1.4  4*  61.99  1.3  0 
12  70.32*  3.3*  66*  64.07*  1.8*  13*  57.86  2.2  0 
13  77.58*  4.1*  67*  77.16*  3.3*  64*  76.53*  3.3*  67* 
14  59.02  4.4  0  57.31  1.9  0  58.18  1.7  0 
15  61.86  3.1  4*  59.47  4.4  0  68.56*  4.5*  17* 
16  65.89*  3.9*  14*  63.69  2.6  7*  60.22  2.8  0 

                   
M  63.12  3.35  12.94  63.75  3.18  11.69  63.69  3.25  12.06 
SE   1.49   0.27   5.70   1.38   0.26   4.82   1.37   0.33   4.53 

Notes. Acc=maximum cross-validated classification accuracy (%); Time=time of Acc 
(seconds following offset of auditory cue); #TP=number of time points for which 
statistically reliable classification results were obtained; M=mean; SE=standard error of 
the mean.  

*p<.05, with False Discovery Rate correction for multiple comparisons 
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Supplementary Table C-3. Single-trial classification outcomes for Experiment 3 of 
Chapter 2. 

	

Participant 
  Simple Piano Imagery 

vs. Rest   Complex Piano Imagery 
vs. Rest 

 Acc  Time  #TP  Acc  Time  #TP 
1  74.10*  3.2*  45*  72.48*  2. 9*  64* 
2  65.47*  3.5*  9*  64.29  3.7  9* 
3  59.25  3.6  0  67.50*  2.7*  24* 
4  61.32  4.3  0  60.47  3.3  0 
5  60.46  3.9  0  71.67*  5.5*  43* 
6  61.31  4.6  10*  64.55*  4.8*  23* 
7  79.41*  2.9*  76*  84.77*  2.8*  74* 
8  81.60*  3.6*  69*  82.22*  3.6*  73* 
9  67.74  4.1  37*  72.78*  4.5*  64* 
10  62.35  4.6  9*  76.09*  5.2*  40* 
11  60.84  3.5  0  56.81  1.8  0 
12  58.44  1.6  0  61.37  2.8  6* 
13  76.45*  4.1*  63*  72.88*  4.1*  51* 
14  72.14*  3.0*  53*  78.50*  3.1*  63* 
15  61.21  3.1  0  64.25  3.9  5* 
16  59.28  4.5  0  63.05  1.8  0 

M 
 

66.34 
 

3.61 
 

23.19 
 

69.60 
 

3.51 
 

33.69 
SE   1.96  0.19  7.18  2.03  0.28  28.41 

  

Notes. Acc=maximum cross-validated classification accuracy (%); Time=time of Acc 
(seconds following offset of auditory cue); #TP=number of time points for which 
statistically reliable classification results were obtained; M=mean; SE=standard error of 
the mean.  
 
*p<.05, with False Discovery Rate correction for multiple comparisons 
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Appendix D: Clinical behavioural data for the patients in Chapter 4. 

Coma Recovery Scale-Revised scores for each patient immediately prior to the experimental assessments with electroencephalography 
and functional magnetic resonance imaging. 
 

ID 
 CRS-R Sub-scores at EEG assessment  CRS-R Sub-scores at fMRI assessment 

Test Auditory Visual Motor Oromotor Comm Arousal  Task Auditory Visual Motor Oromotor Comm Arousal 

VS1 1 1-Startle 0-None 2-Flexion 

withdrawal 

1-Reflexive 0-None 1-Eye open 

w/ stim 

 Attention 1-Startle 1-Startle 0-None 1-Reflexive 0-None 2-Eye open 

w/out stim 

 Imagery 1-Startle 0-None 2-Flexion 

withdrawal 

1-Reflexive 0-None 1-Eye open 

w/ stim 

VS2 1 1-Startle 0-None 1-Abnormal 

posturing 

1-Reflexive 0-None 1-Eye open 

w/ stim 

 Attention 1-Startle 0-None 1-Abnormal 

posturing 

1-Reflexive 0-None 1-Eye open 

w/ stim 

 Imagery 1-Startle 1-Startle 0-None 1-Reflexive 0-None 1-Eye open 

w/ stim 

VS3 1 1-Startle 0-None 2-Flexion 

withdrawal 

1-Reflexive 0-None 2-Eye open 

w/out stim 

 Both 1-Startle 1-Startle 2-Flexion 

withdrawal 

1-Reflexive 0-None 1-Eye open 

w/ stim 

VS4 1 2-Localization 1-Startle 2-Flexion 

withdrawal 

1-Reflexive 0-None 2-Eye open 

w/out stim 
 (fMRI assessments conducted only at EEG Session 2) 

2 1-Startle 0-None 2-Flexion 

withdrawal 

1-Reflexive 0-None 2-Eye open 

w/out stim 

 Imagery 1-Startle 1-Startle 2-Flexion 

withdrawal 

1-Reflexive 0-None 2-Eye open 

w/out stim 

 Attention 1-Startle 0-None 2-Flexion 

withdrawal 

1-Reflexive 0-None 1-Eye open 

w/ stim 

VS5 1 1-Startle 0-None 1-Abnormal 

posturing 

1-Reflexive 0-None 1-Eye open 

w/ stim 

 Attention 1-Startle 0-None 2-Flexion 

withdrawal 

1-Reflexive 0-None 1-Eye open 

w/ stim 

 Imagery 1-Startle 0-None 2-Flexion 

withdrawal 

1-Reflexive 0-None 2-Eye open 

w/out stim 

                

                



159 

 

 

 

ID 
 CRS-R Sub-scores at EEG assessment  CRS-R Sub-scores at fMRI assessment 

Test Auditory Visual Motor Oromotor Comm Arousal  Task Auditory Visual Motor Oromotor Comm Arousal 

VS6 1 1-Startle 0-None 2-Flexion 

withdrawal 

1-Reflexive 0-None 1-Eye open 

w/ stim 

 Both 0-None 1-Startle 0-None 0-None 0-None 2-Eye open 

w/out stim 

2 1-Startle 0-None 2-Flexion 

withdrawal 

1-Reflexive 0-None 2-Eye open 

w/out stim 

 Both 0-None 0-None 0-None 0-None 0-None 2-Eye open 

w/out stim 

VS7 1 1-Startle 0-None 1-Abnormal 

posturing 

1-Reflexive 0-None 2-Eye open 

w/out stim 

 Imagery 1-Startle 1-Startle 2-Flexion 

withdrawal 

1-Reflexive 0-None 2-Eye open 

w/out stim 

 Attention 1-Startle 0-None 2-Flexion 

withdrawal 

1-Reflexive 0-None 2-Eye open 

w/out stim 

MCS1 1 1-Startle 1-Startle 1-Abnormal 

posturing 

1-Reflexive 0-None 1-Eye open 

w/ stim 

 Both 1-Startle 3-Pursuit 1-Abnormal 

posturing 

1-Reflexive 0-None 1-Eye open 

w/ stim 

MCS2 1 1-Startle 3-Pursuit 2-Flexion 

withdrawal 

1-Reflexive 0-None 1-Eye open 

w/ stim 

 Both 1-Startle 3-Pursuit 4-Object 

manipulation 

1-Reflexive 0-None 1-Eye open 

w/ stim 

MCS3 1 3-Reproducible 

movement to 

command 

3-Pursuit 2-Flexion 

withdrawal 

1-Reflexive 0-None 2-Eye open 

w/out stim 

 Imagery 2-Localization 3-Pursuit 2-Flexion 

withdrawal 

1-Reflexive 0-None 2-Eye open 

w/out stim 

 Attention 1-Startle 3-Pursuit 2-Flexion 

withdrawal 

1-Reflexive 0-None 1-Eye open 

w/ stim 

2 3-Reproducible 

movement to 

command 

3-Pursuit 2-Flexion 

withdrawal 

2-Vocalization 0-None 2-Eye open 

w/out stim 
 

(fMRI assessments conducted once 7.5 months prior to EEG Session 1) 

MCS4 1 1-Startle 3-Pursuit 1-Abnormal 

posturing 

1-Reflexive 0-None 2-Eye open 

w/out stim 

 Imagery 1-Startle 3-Pursuit 1-Abnormal 

posturing 

1-Reflexive 0-None 2-Eye open 

w/out stim 

 Attention 2-Localization 3-Pursuit 1-Abnormal 

posturing 

1-Reflexive 0-None 2-Eye open 

w/out stim 

EMCS1 1 4-Consistent 

movement to 

command 

5-Object 

recognition 

6-Functional 
object use 

2-Vocalization 2-Accurate, 

Functional 

3-Attention  Imagery 4-Consistent 

movement to 

command 

5-Object 

recognition 

6-Functional 

object use 

2-Vocalization 2-Accurate, 

Functional 

3-Attention 

 Attention 4-Consistent 

movement to 

command 

4-Object 

localization 

4-Object 

manipulation 

1-Reflexive 1-Non-

Functional: 

Intentional 

1-Eye open 

w/ stim 
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ID 
 CRS-R Sub-scores at EEG assessment  CRS-R Sub-scores at fMRI assessment 

Test Auditory Visual Motor Oromotor Comm Arousal  Task Auditory Visual Motor Oromotor Comm Arousal 

2 (Not assessed)a  (fMRI assessments conducted once 1.5 months prior to EEG Session 1) 

EMCS2 1 4-Consistent 

movement to 

command 

5-Object 

recognition 

6-Functional 
object use  

3-Intelligible 

verbalization 

2-Accurate, 

Functional 

3-Attention  Imagery 4-Consistent 

movement to 

command 

5-Object 

recognition 

5-Automatic 

response 

0-None 2-Accurate, 

Functional 

3-Attention 

 Attention 4-Consistent 

movement to 

command 

5-Object 

recognition 

5-Automatic 

response 

3-Intelligible 

verbalization 

2-Accurate, 

Functional 

3-Attention 

LIS1 1 4-Consistent 

movement to 

command 

5-Object 

recognition 

0-None 1-Reflexive 2-Accurate, 

Functional 

3-Attention  Both 4-Consistent 

movement to 

command 

5-Object 

recognition 

0-None 1-Reflexive 2-Accurate, 

Functional 

3-Attention 

 
Notes. CRS-R=Coma Recovery Scale-Revised (Kalmar & Giacino, 2005); EEG=electroencephalography; fMRI=functional magnetic 
resonance imaging; Comm=communication; w/=with; stim=stimulation; VS=Vegetative State; MCS=Minimally Conscious State; 
EMCS=emergent from a Minimally Conscious State; LIS=Locked-in Syndrome. 
aPatient EMCS1 was not assessed with the CRS-R at her replication session. However, she could communicate using an arm 
movement. 
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