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Abstract 

Neuroimaging technology is the most widely used tool to study human cognition. While 

originally a promising tool for mapping the content of cognitive theories onto the structures 

of the brain, recently developed tools for the analysis, handling and sharing of data have 

changed the theoretical landscape of cognitive neuroscience. Even with these advancements 

philosophical analyses of evidence in neuroimaging remain skeptical of the promise of 

neuroimaging technology. These views often treat the analysis techniques used to make sense 

of data produced in a neuroimaging experiment as one, attributing the inferential limitations 

of analysis pipelines to the technology as a whole. Situated against the neuroscientists’ own 

critical assessment of their methods and the limitations of those methods, this skepticism 

appears based on a misunderstanding of the role data analysis techniques play in 

neuroimaging research. My project picks up here, examining how data analysis techniques, 

such as pattern classification analysis, are used to assess the evidential value of neuroimaging 

data. The project takes the form of three papers. In the first I identify the use of multiple data 

analysis techniques as an important aspect of the data interpretation process that 

is overlooked by critics. In the second I develop an account of inferences in neuroimaging 

research that is sensitive to this use of data analysis techniques, arguing that interpreting 

neuroimaging data is a process of isolating and explaining a variety of data patterns. In the 

third I argue that the development and uptake of new techniques for analyzing data must be 

accompanied by changes in research practices and standards of evidence if they are to 

promote knowledge generation. My approach to this work is both traditionally philosophical, 

insofar as it involves reading and analyzing the work of philosophers and neuroscientists, and 

embedded insofar as most of the research was conducted while attending lab meetings and 

participating in the work of those scientists whose work is the object of my research. 

Keywords 

Philosophy of Science, Philosophy of Neuroscience, Epistemology of Experiment, 

Neuroimaging, Data, Data Analysis, Pattern Classification Analysis, Multivariate Pattern 

Analysis, Explanation. 
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Chapter 1  

1 Evidence in Neuroimaging 

Neuroimaging technology is the most widely used technology in cognitive neuroscience 

to study the human brain. Neuroimaging experiments involve measurements of blood 

oxygenation levels and participant behaviour, which are used as evidence for claims 

about the relationship between cognitive processes and neural activity. Techniques of 

data manipulation and analysis are what, in practice, bridge the gap between the objects 

of measurement and the phenomena that neuroscientists are interested in learning about. 

To motivate the three papers that follow and situate them as addressing a common 

challenge, in this introductory chapter I examine and contrast the philosophical and 

neuroscientific views on the promise and perils of data analysis techniques as used to 

interpret neuroimaging data. 

1.1 Introduction 

Neuroimaging data are large, complex and laden with uncertainties. A single scanning 

session, which a neuroimaging experiment includes at least twelve of, can produce over 

20,000 data points, making neuroimaging data ‘big’ by most measures. The data are 

complex as they include measurements of blood oxygenation, behaviour and brain 

structure. Uncertainties arise from the fact that the details about the relationship between 

the data points and phenomena of interest are not fully known. The strategy 

neuroscientists use to bring this data to bear as evidence on claims about the phenomena 

they are interested in involves the application of methods of data analysis and 

manipulation. The broad aim of this project is to develop an account of how methods of 

data analysis and manipulation are used to overcome challenges with interpreting 

neuroimaging data. This is done in the context of ongoing debate between skeptics of the 

technology and critical advocates as contrasted with the methodological debates that 

occur within the neuroscientific literature. 

Functional magnetic resonance imaging (fMRI) is the most widely used methodology 

that modern neuroscience has at its disposal to investigate the healthy human brain in 
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action; fMRI data are used to support claims about the involvement of particular brain 

regions in performing specific cognitive functions, and in representing different types of 

information. The technology provides insight into variations in neural activity via 

measurements of blood oxygenation levels in the brain — called the blood oxygenation 

level dependant, or BOLD, signal. In human neuroimaging research, BOLD 

measurements are collected while participants perform tasks in the scanner. Participant 

behaviour and facts about the task parameters are used to relate variations in BOLD 

activity to cognitive processes, capacities and states. 

In the introduction to a volume of reflections on the then 20 year history of fMRI, Peter 

Bandettini explains that “[e]ven though the underlying relationships between changes in 

brain activation and changes in BOLD contrast-weighted MRI signal are still debated, it's 

clear that the method has proved itself more robust, reliable, and information-rich than 

most originally anticipated” (2012, p. 576). The surprise is in part due to, as Bandettini 

notes, uncertainty about the relationship between the measured data points and 

phenomena the data are used to make claims about. Functional scanning protocols 

measure changes in blood oxygenation, which is, at best, a proxy for cognitively relevant 

neural activity. Even though the measurements are of causal factors indirectly related to 

the neural and cognitive systems neuroscientists are interested in, neuroimaging data has 

been put to some surprising uses in the field. Relatively recently neuroimaging data has 

come to be viewed as valuable for pursuing a deeper understanding of how information is 

processed and represented in the brain. Kenneth Norman and colleagues, for example, 

note that “[f]unctional MRI (fMRI) is a powerful tool for addressing questions…” such 

as “… what information is represented in different brain structures; and how is that 

information transformed at different stages of processing?” (Norman et al 2006, p. 424). 

The indirect and uncertain relationship between the objects of measurement and 

phenomena of interest makes it prudent to ask: Is the BOLD signal really as valuable for 

the study of human cognition as the current practice in neuroscience takes it to be, or are 

these research projects reaching well beyond the evidence? The philosophical literature 

on neuroimaging research tends to favour a skeptical answer, stocked as it is with 

regularly rehearsed arguments that theories and claims neuroscientists often infer on the 
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basis of neuroimaging data are not justified by the available evidence (van Orden and 

Paap 1997; Uttal 2001; Hardcastle and Stewart 2002; Aktunç 2014; Ritchie, Kaplan and 

Klein forthcoming). In addition to their skeptical conclusions and apprehensive stance 

towards neuroimaging research, the arguments offered by critics of the technology often 

include a detailed analysis of the logic implicit in the methods of data analysis applied in 

the interpretation of neuroimaging data. As it was the dominant method of analysis in the 

early days of neuroimaging research, skeptics have tended to emphasize the problems 

with subtractive methods of analysis (beginning with van Orden and Paap 1997). While 

new analysis methods have entered the field in the last decade and a half, the focus on 

subtraction has continued in the skeptical literature (e.g., Aktunç 2014). That is, at least, 

until very recently (e.g., Ritchie, Kaplan and Klein forthcoming). 

It is no accident that the primary point of contact between skeptics and the practice of 

neuroimaging research are the methods of data analysis that dominate the field. Methods 

of data analysis, like subtraction or the newer machine-learning inspired methods that are 

rapidly taking over, are a central part of neuroimaging research methods. Indeed, the 

progress alluded to above has, at least in part, been driven by the development of new 

techniques for analyzing and manipulating data. Examples of innovations in the methods 

of analysis and data manipulation driving progress include the discovery of the default 

mode network, which is a collection of brain regions that have been shown to reliably co-

activate when subjects are required to ‘do nothing’ in the scanner (e.g., Gusnard & 

Raichle 2001), and research on the representational character of brain activity patterns 

(e.g., Tong and Pratte 2012). The discovery of the default mode network was partly based 

on manipulating data differently during their analysis. That is, “… researchers began 

routinely noticing brain regions more active in the passive control conditions than the 

active target tasks” (Bucker, Andrews-Hanna and Schater 2008, p. 3), and so began to see 

control conditions as potentially reflecting the influence of a shared phenomenon. This 

became what is now known as the default mode network. With respect to research on 

representations, the critical development seems to have been the uptake of machine 

learning methods of data analysis that bring “... fMRI investigation closer to investigating 

the codes for how functions are represented in neural population responses…” (Haxby 

2010, p. 56). In both of these cases, changes in the way neuroimaging data was 
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manipulated and analyzed were critical for making discoveries, or changing scientist’s 

views on what claims the available data are relevant for learning about. 

Given the central role of methods of data analysis, it should not be surprising that 

neuroscientists frequently engage in discussion and debate over the uses and limitations 

of techniques like subtraction and the machine learning methods behind research on how 

information is represented in the brain. As it turns out (and as I discuss in more detail in 

the next section), many of the assumptions identified as problematic by skeptics parallel 

the limitations of the analysis methods that are openly discussed and debated in the 

scientific literature. What differs is the response to these challenges. Where skeptics 

argue for tempering conclusions and limiting the scope of neuroimaging research, 

neuroscientists forge ahead. The different conclusions may either be due to skeptics 

overlooking some important feature of the research that blunts the force of their critiques, 

or neuroscientists failing to grasp the significance of these challenges. The responses to 

skeptics available in the philosophical literature, however, tilts the scales in favour of the 

neuroscientists. Critical advocates of the research tend to resist skeptical arguments by 

identifying how the skeptic in question has overlooked or oversimplified an epistemically 

relevant aspect of the practice. This is not to say that research practices in neuroimaging 

research are flawless. Only that it seems, from this cursory and top-down viewpoint, that 

the positions offered by critics miss something about the role of data analysis techniques 

in neuroimaging research. This raises the question that is central to my project: what 

contribution do data analysis techniques make to the inferential practices operative in 

neuroimaging research? 

As the skeptical perspective appears to consistently miss important aspects of the 

research practices neuroscientists engage in, I have explicitly adopted an approach to 

conceptualizing and analyzing research practices that is distinct from the form of features 

of the skeptics’ arguments. Instead of examining the structure of inferences and 

articulating the conditions that must obtain for those inferences to be warranted, then 

assessing if those conditions do in fact obtain in practice, I examine the procedures 

neuroscientists engage in to interpret and make sense of neuroimaging data. In doing so, 

my aim is to uncover the various factors that contribute to the perceived value of 
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neuroimaging data that ultimately result in inferences to claims. I treat assessments of the 

evidential value of data, or the process of data interpretation, as the primary object of my 

analyses, and not the form of the inference that results from that process. I have pursued 

this project piecemeal, writing three research papers each engaging with a question 

related to judgements of the evidential significance of neuroimaging data. In the first I 

articulate how skeptical arguments overlook certain uses of data analysis techniques by 

virtue of isolating the analysis process from the broader research context. The second 

paper argues that data analysis techniques support data interpretation through the 

isolation of data patterns that can be explained by appeal to claims about the phenomena 

of interest. In the third paper I argue that the use and uptake of large scale databases and 

meta-analysis tools must be accompanied by the development and uptake of research 

practices appropriate for interpreting the resulting data sets if it is to be epistemically 

advantageous. 

My research for this project has involved regular interactions with neuroscientists via the 

lab associates program available through a mutually beneficial arrangement between the 

Rotman Institute of Philosophy and the Brain and Mind Institute at the University of 

Western Ontario. This has afforded me opportunities to collaborate on research projects 

(e.g., Martin et al 2015), attend lab meetings, and regularly interact with members of the 

brain and mind institute in general, and the Köhler memory lab in particular. These 

experiences underpin many of my arguments and views that follow. As casual and 

regular interactions are not inherently convincing or reliable data points, I support the 

insights gained from my experience in the lab with textual analyses of research papers 

published in neuroscience journals. 

With the remainder of this introductory chapter I provide the background and further 

motivation for this project by examining the philosophical and neuroscientific 

perspectives on data analysis in neuroimaging research. The next section presents the 

view from neuroscience. I provide an overview of the significance and promise of data 

analysis techniques, and some of the concerns that neuroscientists have raised with 

respect to the current state of the field. In the third section I present the view from 

philosophy. There, I briefly outline two philosophical debates that pertain to inferences in 
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neuroimaging research. On one hand, there is the ongoing debate about the claims 

neuroimaging data can and cannot be used to infer, and on the other is Jim Bogen’s 

argument that counterfactual (Woodward 2000) and error-statistical (Mayo 1996) 

accounts of experimental evidence fail to identify what makes neuroimaging data 

epistemically valuable (2001; 2002). Contrasting the views from neuroscience and 

philosophy raises a number of questions about the significance of data analysis for the 

interpretation of neuroimaging data that are taken up in the papers that follow. In the 

fourth section I present an overview of those papers, and roughly situate their individual 

contributions within the larger aims of this project. 

1.2 The View from Neuroscience 

Neuroimaging data are used by neuroscientists as evidence for claims about the 

relationship between cognitively relevant brain activity and cognitive processes, states, or 

capacities. While experimental design plays an important role in establishing the 

evidential value of neuroimaging data, data analysis techniques act as a bridge between 

the data that is produced in an experiment and the claims neuroscientists take those data 

to be evidence for. New methods for the analysis of neuroimaging data are often 

developed in the pursuit of a particular question or hypothesis, and some of these go on to 

take on a life of their own as they are refined and see uptake throughout the broader 

community. This process is only possible because neuroimaging data itself is rich enough 

to be useful for addressing research questions beyond those it is produced to investigate. 

The phenomena cognitive neuroscientists use neuroimaging technology to investigate 

requires information about the structure, activity and connectivity of the brain to be 

brought together with information about cognitive processes. Each of these experimental 

targets is accessed by different modes of measurement within a neuroimaging 

experiment. 

Experiments using fMRI involve placing a human subject in a magnetic resonance 

imaging scanner (MRI) while they perform a cognitive task, such as attending to a 

moving pattern of dots (Liu et al 2011), or deciding whether or not an image is one they 

saw in a previous part of the experiment (Martin et al 2013). While the participant 
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performs the task, the scanner measures changes in brain activity. The BOLD signal data 

captured by fMRI provides information about the activity of the brain, MRI scanning 

protocols provide structural information, while the cognitive states of subjects are probed 

through the use of carefully designed cognitive tasks. Each of these produce distinct data 

sets that are used together to make inferences in neuroimaging research. 

There are many ways to integrate, analyze and classify these data sets. Since each 

decision made in the process of integrating, manipulating and analyzing data is informed 

by the aims of the scientists, it is in principle possible to use neuroimaging data to 

investigate phenomena that they were not originally produced to investigate by analyzing 

them in different ways. Indeed, advocates of open databases often argue for data sharing 

by emphasizing the need to capitalize on this potential. With respect to neuroimaging 

data, the argument is that “[i]f such data can be archived, indexed with accompanying 

meta-data, and combined, there is an enormous opportunity to obtain deep insights into 

the workings of the brain and mind” (p. 678) since “... there are often dimensions of the 

data that are not fully explored or even recognized by the researchers obtaining it…” 

(Van Horn and Gazzaniga 2013, p. 678). 

An example of the potential for making new discoveries through the reuse of 

neuroimaging data can be found in the discovery of the default mode network, which 

created a sub-field of research on resting state fMRI, and is an important component of 

the Human Connectome Project (Smith et al 2013). Early fMRI research treated task-free 

conditions as a baseline, where task-free conditions require the participant to ‘do 

nothing’, let their ‘mind wander’, or otherwise remain still in the scanner without 

executing a particular task. These task-free conditions were typically used as a baseline 

contrast for a task-based condition in research aiming to isolate task-relevant brain 

activity through subtraction analyses. The discovery of networks of brain activity 

persistent across subjects in resting state was made possible by a combination of a choice 

in the analysis of neuroimaging data — that is to look at the ‘task free’ data — and the 

availability of a large volume of useable data. Analyses of task-free data revealed a 

collection of brain regions that are consistently active across subjects. Those patterns are 
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now thought to reflect the activity of a ‘default mode network’ (Gusnard & Raichle 2001; 

Greicius et al 2003; Morcom and Fletcher 2007). 

While an example of how new ways of looking at neuroimaging data can lead to 

discoveries, the story of default mode network isn’t driven by the development of a new 

technique for the analysis of data. The recent trend towards research aimed at 

understanding representations in the brain, however, provides a clearer example of this. 

Traditionally neuroimaging data was used to identify the regions of the brain associated 

with cognitive tasks, a theoretical project sometimes referred to as the localization of 

cognitive functions. This was often done by analyzing fMRI data using subtraction 

analysis. Subtraction involves taking the difference between two BOLD signal data sets 

associated with distinct task conditions and attributing the difference in measured BOLD 

signal to the cognitive difference between the tasks. 

More recently neuroimaging data has been used to identify the informational content of 

brain activity and to investigate where and how representations of stimuli are contained 

and processed in the brain (Tong and Pratte 2012). This relatively new use of 

neuroimaging data has been driven by the development of new techniques for analyzing 

and interpreting it. These include machine learning tools such as pattern classification 

analysis (Haxby 2010), and representational similarity analysis (Kriegeskorte and Kievit 

2013). Advocates of these techniques argue that they can be used to answer new 

questions. For instance, an introduction to pattern classification techniques identifies 

three new questions that they can be used to address. They are: Is there information about 

a variable of interest? Where is the information? And, how is that information encoded? 

(Pereira, Mitchell and Botvinick 2009, p. S208). Some even go so far as to argue that 

"[i]n addition to allowing us to sensitively detect and track cognitive states, MVPA 

methods can be used to characterize how these cognitive states are represented in the 

brain" (Norman et al 2006, p. 425). 

The paper often cited as pioneering these techniques approached data analysis with a 

technique inspired by machine learning to discriminate between three hypotheses about 

the functional architecture of the ventral visual pathway (Haxby et al 2001). Of the three 
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hypotheses, two proposed modular architectures in which distinct parts of the region are 

specialized for processing or representing information about a particular category of 

object or performing a particular process. The third proposed that the “representations of 

faces and different categories of objects are widely distributed and overlapping” (p. 

2425). The new method of data analysis used in the study, which involved determining if 

variations in the BOLD signal could be used to predict the object category (face, house, 

cat, etc) of the stimulus correlated with it, was chosen for its capacity to discriminate 

between modular and distributed processing hypotheses. 

This data analysis technique was introduced to the field because researchers saw in it the 

potential to provide information relevant to the assessment of a claim that the functional 

architecture of a brain region is distributed. This marks an important change in the 

epistemic landscape of neuroimaging research. Consider, a common criticism of 

localization research that uses neuroimaging data is that the analysis procedure often 

used, that is subtraction, assumes that cognitive processing is not distributed across the 

cortex, or even within a larger region (e.g., Uttal 2001; Hardcastle and Stewart 2002). 

Localization hypotheses, critics argue, are assumed by virtue of the analysis technique 

used to confirm them. If the analysis method Haxby and colleagues used can in fact 

discriminate between modular and distributed processing hypotheses of brain 

architecture, then the availability of these new data analysis method renders this line of 

skepticism obsolete. 

Haxby and colleagues’ result was important as it set a new threshold of evidence for 

modular theories of functional architecture. They demonstrated that it is possible, and 

necessary, to not only show preferential activation but also to show that the regional 

activity carries information about the relevant stimuli (as noted in Kanwisher 2017). 

Separately from its impact on theories of ventral visual stream architecture, it acted as a 

proof of concept for a new approach to the analysis of neuroimaging data. The little 

machine learning inspired methods presented in their paper has since grown into a rich 

and diverse collection of analysis techniques broadly referred to as multivariate pattern 

analysis (MVPA). 
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The BOLD signal is now, when analyzed with MVPA techniques, used to pursue a 

broader range of theoretical aims than merely assigning cognitive functions to discrete 

regions of the brain, as was the standard contribution of the technology in its early years. 

Pattern classification techniques, for instance, have been used to show that variations in 

BOLD activity can predict the features of a stimuli a participant is attending to (Kamitani 

and Tong 2005), to test whether the perception of an object and the act of imagining that 

object share a representational profile (Reddy, Tsuchiya and Serre 2010), to address a 

number of confounds and challenges in the study of consciousness (Sandberg, Andersen 

and Overgaard 2014), and has been identified as a solution to the problem of ‘reverse 

inference’ in neuroimaging research (Poldrack 2011). The last of these provides another 

example of innovations in data analysis changing the epistemic landscape of cognitive 

neuroscience. 

Reverse inference refers to the use of brain activity data to ascribe a cognitive state to a 

subject, such as inferring that a subject is experiencing fear on the basis of an observation 

of activation in their amygdala (an area commonly associated with fear). Reverse 

inferences are common in neuroimaging papers, and while often informal there are 

studies for which reverse inferences are a central result. The problem is that 

neuroimaging experiments involve manipulations of behaviour and measurements of 

correlated changes in brain activity, while reverse inferences start from brain activity and 

move to ascriptions of cognitive states. This has been identified by neuroscientists as 

committing the logical fallacy of ‘affirming the consequent’ (Poldrack 2006, p. 2). 

Furthermore, meta-analysis evidence provided in the same paper suggests that reverse 

inferences are unreliable as ‘best explanations’ for brain activity patterns observed in an 

experiment because any given region of the brain is implicated in a wide range of 

cognitive processes and so the activity could be reflecting any one of those (p. 4-5). The 

same neuroscientist who classified reverse inferences as a fallacy, has, with the uptake of 

MVPA methods, recently changed his view. He has argued that pattern classification 

techniques in particular “… provide a formal means to implement reverse inference” 

(2011, p. 4). One of the problems with reverse inference is that the evidence available in 

a neuroimaging experiment cannot discriminate between two competing reverse 

inference claims. Pattern classification techniques are used to evaluate if patterns and 
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variations within one set of variables can be used to predict, or identify, the values of 

correlated variables. This allows neuroscientists to directly evaluate whether or not 

variations in brain activity are predictive, or diagnostic, of the engagement of specific 

tasks and cognitive states, an evaluation that simply was not possible prior to the 

development of these methods. Treating this change in perspective at face value, the 

problem with reverse inferences is resolved not by building better measurement devices, 

designing better experiments or considering theoretical constraints arising from other 

areas of neuroscience. The problem with reverse inferences is solved by analyzing 

imaging data with an analysis technique suitable for evaluating reverse inference claims. 

How data analysis techniques are used, including the decisions made in their 

implementation as well as the form of the results scientists focus on, impact the 

phenomena neuroscientists recognize data as relevant for learning about. Pattern 

classification analysis is one of the more popular MVPA techniques. It involves training a 

machine learning classifier to predict task conditions (e.g., ‘face’, ‘chair’, ‘building’), or 

behavioural responses (e.g., ‘remembered’, ‘forgotten’) based on variations in the BOLD 

signal that are correlated with those conditions or responses, then testing it on novel data 

and evaluating its accuracy. Investigators typically focus on the accuracy of the classifier 

at performing a primary classification task, such as identifying which of two patterns of 

moving dots a subject is paying attention to (as in Liu et al 2011). Classifier accuracy is 

used to support claims about the information carried by patterns of brain activity. If a 

classifier is able to discriminate between different attentional conditions, one might 

conclude that there is information in the brain activity patterns originating in the region of 

interest relevant for making such a discrimination. Determining whether or not a 

classifier can accurately classify is not always the only dimension of the analysis process 

that is relevant. Classification failures can sometimes be important and informative when 

they are found to correlate with behavioural errors, as they allow investigators to begin to 

draw closer relations between the information contained in the brain activity and 

information that the participant is acting on (Walther 2012, for instance, proposes a 

mathematical method for doing so). Choices about the data the classifier is using can also 

be informative to consider when evaluating certain hypotheses. Tambini and Davachi, for 

instance, test and train a classifier using data from different time points after the task of 
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interest to evaluate whether or not activity patterns permitting classification persist in the 

same way our actual memories of events do (2013). Comparing different analysis results 

is often useful for better understanding what it means for a classifier to be able to 

accurately identify the task conditions correlated with BOLD measurements. For 

example, classifier accuracy is often contrasted with subtraction results to assist in 

determining if information in the activity pattern requires the full multi-dimensional 

representation that classifiers leverage, or if average or mean BOLD activity is sufficient 

for consistently linking the brain activity to the task condition (Kohler et al 2013; 

Coutanche 2013). These examples show that the evidence provided by a data analysis 

process depends in part on the decisions investigators make when implementing it. These 

include decisions about how to implement an analysis technique, which variables and 

results to focus on, and the supplementary methods investigators choose to use. 

The development and uptake of new analysis techniques is treated by many 

neuroscientists with cautious optimism. In light of the kinds of developments discussed 

above, there are three concerns raised as barriers to the promise of progress that 

innovations in data analysis bring with them. Those concerns are: (1) the impact of an 

increase in analytic flexibility on false positive rates, (2) technical analytic skills 

overriding practical intuitions, and (3) the risks of replication failures. 

Analytic flexibility refers to the “… range of analysis outcomes across different 

acceptable analysis methods” (Carp 2012, p. 1), and has been associated with an increase 

risk for inflating the rate of false positives within a research domain (Ioannidis 2005). 

Joshua Carp examined the analytic flexibility in fMRI analysis pipelines, where a 

pipeline is a series of data manipulations that produce an interpretable result (2012). 

Variations in the order of manipulations, including those used to reduce error and correct 

for artifacts, as well as variations in the statistical techniques themselves constitute 

distinct pipelines. Carp found that, while some outcomes were consistent across a wide 

range of pipelines, other results varied substantially. This flexibility means that, “… a 

motivated researcher determined to find significant activation in practically any brain 

region will very likely succeed…” (p. 12). Flexibility isn’t only worrisome in the case of 

a ‘motivated researcher’, but creates a situation in which a well-intentioned researcher 
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may infer claims that would not have appeared to be supported by the data had they made 

different decisions in their analysis procedure. Andrew Gelman and Eric Loken, for 

instance, argue that “… researchers can perform a reasonable analysis given their 

assumptions and their data, but had the data turned out differently, they could have done 

other analyses that were just as reasonable in those circumstances” (Gelman and Loken 

2013, p. 1). These results appear to have all the significance of well-conducted statistical 

tests, and yet, due to the degrees of freedom in the analysis that are not apparent to the 

researchers conducting it, can have the same epistemic standing as the results of p-

hacking or the work of a ‘motivated researcher’ seeking any ‘publishable result of 

statistical significance’. 

Analytic flexibility and its impact on false positive rates is a significant concern for 

neuroimaging research when considering only the variations in standard pipelines. 

Introducing new methods for data analysis, such as those briefly discussed above, creates 

more opportunity for this kind of inferential error to occur. This worry is amplified by the 

fact that these new techniques are more sophisticated than their predecessors. Eve 

Marder, reflecting on the history and future of neuroscience, notes that, in this era of high 

volumes of data and complex techniques for analyzing it, “… new findings will depend 

on data analyses that are highly quantitative and that employ statistics and algorithms that 

many of their users may not completely understand…” (2015, p. 3). Marder argues that 

good intuitions about what methods of data analysis and manipulation (‘data treatments’) 

will provide “… an answer that is true to the essence of the biological process studied” 

(p. 3), are important for avoiding mistakes and making genuine progress. Her concerns 

are partly rooted in the problem of analytic flexibility and the sophistication of analysis 

techniques, but her primary concern is the growing body of evidence showing the various 

ways that brains are highly complex and interconnected systems. In particular, brains 

include multiple parallel pathways allowing for any given processing problem to be 

solved in multiple different ways (p. 2-3). Without good intuitions about what analysis 

technique to use when making sense of data about a system like this, it is likely that 

hypotheses will be pursued that, in fact, are not borne out in reality but only appear to be 

true as a consequence of complexity in the system under study. Marder argues that good 

models and theories that hone intuitions about “… which biological details are significant 
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for a given brain function and which details can, as a first approximation, be ignored” (p. 

4) are necessary for effectively navigating this difficult situation. The view that 

familiarity with the material objects of investigation, in this case the biological materials 

that make up brains, is critical for effectively using data to study those objects is echoed 

in philosophical work on data sharing in biology (Leonelli 2013). Marder’s concerns are 

also reinforced by recent discussions sparked by the replication crises occurring 

throughout the sciences. 

The reuse potential of neuroimaging data, and the potential for progress provided by 

innovations in methods and approaches to analysis conspire to create an environment 

where inferences may not be verifiable. Neuroimaging research, because of the “…high 

dimensionality of fMRI data, the relatively low power of most fMRI studies and the great 

amount of flexibility in data analysis…” has recently been dubbed “… a ‘perfect storm’ 

of irreproducible results” (Poldrack et al 2017). The problem is framed as one of 

reproducibility, that is the ability to reconstruct the analysis and reasoning procedures 

used to arrive at a given body of evidence. Reproducibility has to do with the capacity of 

independent investigators to reconstruct a result from the original data following the same 

steps as reported by the original authors, and a common proposal for improving 

reproducibility is to foster transparent practices. Common suggestions include sharing 

data, sharing algorithms and analysis code, and the pre-registration of research plans, 

including methods of data analysis (Poldrack et al 2017; Munafò et al 2017). The success 

of these proposals depends on their adoption throughout the community, and their 

capacity to reveal the epistemically relevant aspects of the data interpretation process. 

In summary, neuroimaging data are regarded as informationally rich, as they have the 

potential to be relevant for the study of phenomena beyond those they were produced to 

investigate. That potential is realized through the use and development of different data 

analysis techniques. The richness of neuroimaging data allows changes in the analysis 

process to influence the phenomena they are regarded as informative about. The richness 

of the data and variability in analysis processes is also a potential source of inferential 

errors. This potential and its realization through innovations in data analysis risks 

increasing false positive rates by increasing analytic flexibility, the depreciation of 
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intuitions based on details about the material objects under study, and reinforcing 

research practices that have made it difficult to independently reproduce experimental 

results. This is the potential and peril of data analysis in neuroimaging research as viewed 

from within. In the next section, I discuss the view of neuroimaging research from the 

perspective of philosophy. 

 

1.3 The View from Philosophy 

Philosophical work on neuroimaging research takes a variety of forms. This includes 

debates about the evidential value of fMRI data with respect to investigations of the 

relationship between the brain and cognition (Uttal 2001; Landreth and Richardson 2004; 

Aktunç 2014), the evidential value of the images produced by common analysis pipelines 

(Roskies 2010a; Klein 2010a), discussions about the validity (or invalidity) of particular 

inferential practices such as reverse inference (Machery 2014; Glymour and Hanson 

2016), the ethical and social dimensions of fMRI research (e.g., Figdor 2013; Bluhm 

2013), and debates about the adequacy of the current stock of concepts used to theorize 

about cognitive processes (Figdor 2011; Klein 2012; Anderson 2015). Here, I focus on 

the epistemic dimensions of fMRI research and the role data analysis plays in the data 

interpretation process. The original motivation for this project stems from an examination 

of skeptical arguments about neuroimaging research that persist in the philosophical 

literature, and in particular the recurring form of critical arguments and counter-

arguments. The persistence and consistency of the back and forth between skeptics and 

critical advocates of neuroimaging technology leaves the impression that something 

important in the research practices is being overlooked. Situating the debate against the 

backdrop of the view from neuroscience presented in the previous section reinforces that 

impression. 

Critics tend to examine an inference in neuroimaging research by outlining its logical 

structure, and then pick out one or more assumptions that must obtain for the inference to 

follow from neuroimaging data. These assumptions are then challenged, either by way of 

an argument from underdetermination that involves suggesting a number of alternative 
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possibilities or explanations for the results (e.g., Mole and Klein 2010), or by showing 

that the assumptions, once made explicit, reveal a vicious circularity (e.g., Hardcastle and 

Stewart 2002). Responses to skeptics also follow a similar pattern. They typically deflate 

the target skeptical argument by showing that the skeptics’ presentation of the research is 

narrow (e.g., Landreth and Richardson 2004), misrepresents the data analysis techniques 

in questions (e.g., Machery 2014), or otherwise overlooks epistemically relevant aspects 

of the experimental practice (e.g., Roskies 2010b). 

Criticisms of inferences common in neuroimaging research begin with van Orden and 

Paap’s incisive critique of the logic of subtraction (1997). At the time this paper was 

published subtraction was the most used method of analysis in neuroimaging research. 

The method involves using two task conditions that differ by an isolable cognitive 

component. The example van Orden and Paap use is a task in which the subject examines 

pairs of words and decides whether or not they rhyme, and a contrast task in which the 

same subject examines pairs of words but does not indicate whether they rhyme. To 

perform a subtractive analysis, the BOLD signal data measured during each of these two 

tasks is subtracted. The resulting difference in BOLD activity is then attributed to the 

difference in cognitive activity. In the case they review, the subtraction isolated a small 

part of the left temporoparietal cortex as differentially more active during the rhyming 

judgement. They argue that this result does not warrant the conclusion that the cognitive 

process crucial for making rhyming judgements resides in the region picked out by the 

subtraction. 

The use of subtraction, they argue, assumes that cognitive components can be isolated at 

all. This assumption, sometimes referred to as the ‘pure insertion’ hypothesis, reflects the 

notion that a single element or component of a cognitive process can be ‘inserted’ (or 

removed) from a process without effecting the overall performance of that process 

(Harrison and Pantelis 2010). Van Orden and Paap argue that “… the conclusion that an 

observed pattern of dissociated brain regions demonstrates separate cognitive 

components … simply affirms the inevitable consequent of assuming there were single 

causes in the first place…” (van Orden and Paap 1997, p. S90), and further that this 

assumption is likely to be false. This so-called ‘doctrine of single causes’, which 
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attributes a single cause to an observed effect, is “… at odds with the nature of cognitive 

systems” (p. S92), which they argue are reciprocally causal insofar as each component of 

a system contributes to every outcome of that system. Furthermore, they claim that, “[i]f 

the original assumption of single causes is false, the statistical tools will nevertheless 

discover components” (p. S90). Taken together, the use of subtraction to localize 

cognitive functions to parts of the brain is a failed program because the method assumes 

such localization is possible, will produce apparently successful localizations no matter 

the facts of the system, and forecloses viable alternative possibilities such as a distributed 

processing account of cognitive function. This argument, while the first, is not the only to 

challenge neuroimaging research in this way. 

Valerie Hardcastle and Matthew Stewart provide a blanket criticism of research that 

claims to have localized any cognitive process to any discrete part of the brain that targets 

all of neuroscience, ranging from single cell recordings (2002, p. S73), to neuroimaging 

(p. S77). The argument runs the same course as van Orden and Paap’s, resting on the 

observation that the methods of analysis, and research strategies more generally assume 

“… local and specific functions prior to gathering appropriate data for the claim” (p. 

S80). That is, the inferences from experimental results to claims about the cognitive 

contributions made by structures of the brain are based on experimental methods and 

analysis procedures that presuppose brain structures play a specific cognitive role. They 

reinforce their argument by an appeal to underdetermination, suggesting that the core 

problem is that results could be due to functional diversity of brain regions, details of the 

neurophysiology that are not considered when inferences are made, and cannot be 

considered given the assumptions required by the methods and techniques used to 

produce the data in the first place. 

One common feature of these arguments is that they all take aim at subtraction analysis, 

which, as it turns out, is no longer the dominant method for analyzing and interpreting 

neuroimaging data. This change in analytic methods has, until recently, only been briefly 

alluded to in contributions to these debates (e.g., Klein 2010a; Roskies 2010a). A recent 

contribution does engage pattern classification analysis in detail, and it joins the skeptical 

chorus. Following the critical format outlined above, Brendan Ritchie, David Kaplan and 
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Colin Klein argue that interpreting pattern classification analysis results as evidence for 

claims about neural representations relies on assumptions about the cause of the 

classifier’s performance that are not likely to be borne out (forthcoming). 

These arguments share a similar structure. They claim that inferences in neuroimaging 

research are undermined by the assumptions motivating, or implicit in the use of, 

particular data analysis techniques. In each case, assumptions are shown to make the 

inferences viciously circular, or relevant and compelling possible alternatives are 

identified as overlooked by virtue of these assumptions. Compared against the perils of 

innovations in data analysis reviewed in the previous section, the novelty of these 

critiques is that they argue for a vicious circularity in the logic of the application of 

methods of data analysis. After all, the neuroscientific view on the challenges with 

interpreting neuroimaging data is attentive to the inferential risks that follow from the 

causal complexity of brain systems, and the indirect nature of neuroimaging data. If the 

inferential practices that skeptics identify accurately reflect the practice, then concerns 

about analytic flexibility and the inability to replicate experiments, are deeper problems 

than neuroscientists give them credit for. The other half of the debate about the epistemic 

status of neuroimaging data provides reason to doubt that skeptical arguments do in fact 

accurately capture the inferential practices neuroscientists engage in. Those responding to 

skeptical views tend to argue that the critics have, in one way or another, misrepresented 

or overlooked epistemically relevant dimensions of the experimental practice. I briefly 

review two such responses. 

William Uttal’s suggestively titled book The New Phrenology (2001) provides one of the 

most comprehensive critiques of the form noted above. In a more recent book that 

expands on the argument in the first, he argues that fMRI is an “epistemological sledge 

hammer” and that a close examination of the experimental protocols of a variety of 

publications is not encouraging: “[v]arious kinds of statistical manipulations may appear 

to define particular prototypical response patterns: however, given their variability all 

must be considered skeptically” (2011). In a response to Uttal’s 2001 book, Anthony 

Landreth and Richard Richardson criticize him for misrepresenting neuroimaging 

methodology (p. 118). They note that, while Uttal is correct that separating signal from 
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noise in the BOLD signal is a difficult task, research practices such as controlling 

stimulus presentation, the repetition of trials to enable signal boosting through averaging, 

and the use of supplementary statistics, are essential aspects of the experimental process 

that Uttal doesn’t take into account (p. 118-9). They conclude that, while the science is 

not perfect and Uttal raises important issues with respect to the prospects of localization 

projects, it isn’t productive to raise those issues by misrepresenting the practice and 

leaving out epistemically relevant details. 

Separately, Adina Roskies uses a similar strategy to refute the critique laid out by van 

Orden and Paap. She argues that interpretations of neuroimaging data involve what she 

calls ‘functional triangulation’, noting that “… in functional imaging, information from 

other task comparisons and other studies is brought to bear on the interpretation of 

experimental data” (Roskies 2010b, p 641), and further that “[c]onvergence across 

multiple experiments is key to epistemic warrant when it comes to attributing function to 

anatomical regions” (P. 641). The examples of convergence she notes includes 

convergence between different task paradigms within an experiment, across experiments 

within a discipline, and across different measurement techniques. Viewing the inferential 

practices engaged in neuroimaging research through the lens of functional triangulation, 

van Orden and Paap’s criticism loses its force.1 An individual experiment must be 

recognized as part of a larger practice. The inferential limitations of the results of 

subtraction analysis are not indicative of the limits of the entire data set, or domain of 

research. The consistent features of arguments resistant to skeptical conclusions, and the 

divergence between the pessimistic outlook of skeptics, and optimistic outlook of 

                                                 

1 Hardcastle and Stewart’s argument, which is critical of a number of different experimental methods 

common in neuroscience, can be diffused in a similar fashion. Their general skeptical view about 

neuroscience is based on arguments that each of the parts of neuroscience are inferentially limited. This is 

the very kind of argument, and conclusion, that Roskies’ functional triangulation account of evidence 

resists. Additionally, with respect to neuroimaging in particular, they place the weakness of neuroimaging 

research on decisions about statistical thresholding in the application of subtraction (p. S78), and the fact 

that fMRI measures metabolic, not neural, change (p. S79). These are the very inferential challenges that, 

as I argue in what follows, neuroscientists engage through the use of a variety of data analysis techniques. 
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neuroscientists suggests that there may be a systematic problem in the way skeptics, and 

philosophers in particular, approach their analysis of neuroimaging data’s evidential 

significance. 

Neuroimaging research is not only discussed in the context of debates about the merits 

and challenges of neuroimaging data. Parallel to this debate is an argument by Jim Bogen 

that philosophical accounts of evidence in experiments do not capture what “make[s] 

experimental evidence” like that obtained from functional imaging technologies 

“epistemically valuable” (2002). Bogen focusses his attention on accounts of 

experimental evidence that emphasize error-statistics (Mayo 1996) and counter-factual 

dependencies between the processes of data production and claims data are used to 

support (Woodward 2000). Both of these views recognize the primary role of data 

manipulation as correcting for errors. Bogen observes that “... what is epistemically good 

about functional images is not that they are highly accurate with regards to [biological 

indicator] levels or locations of individual brains” (p. S65), and further that the purpose 

of manipulating imaging data is not to “... bring error-ridden, [biological indicator] 

estimates recognizably closer to what would have resulted from ideal experiments 

shielded from significant sources of error” (p. S65). 

In the introduction of Bogen’s paper he notes that neuroimages are different from the 

kinds of data considered when he and Woodward developed the data-phenomena 

distinction, which forms the basis of Woodward’s counterfactual account of experimental 

evidence (2001, p.S61). The data they had in mind is data that owes their evidential value 

to “... having been produced in such a way that the item they are used to study exerts a 

detectable causal influence on them” (p. S61). Bogen suggests that neuroimages are 

distinct from data in that they are, as images, “… more like graphic representations of 

interpretations of data than what Woodward and I meant by data” (p. S61). Whether or 

not neuroimages themselves are best treated as data, or representations of interpretations, 

they are the most salient output of a neuroimaging experiment. It is common in the 

philosophical literature to treat the neuroimages produced as part of the analysis of 

neuroimaging data as the central piece of evidence produced by the analysis of 

neuroimaging data (e.g., Roskies 2010a; Klein 2010; Klein 2012; Machery 2014). 
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Whether this tendency involves treating neuroimages as a compact representation of the 

interpretive process, or as the final product of a complex data production process, it is 

important to recognize that neuroimages are just one of many data patterns used by 

investigators in the interpretation of neuroimaging data. This is the conclusion Klein 

arrives at in his aptly titled “Images Are Not the Evidence in Neuroimaging” (2010b). 

Klein acknowledges that, because the brain is causally dense, that is a change in BOLD 

signal in one voxel can be caused by changes in almost any other part of the system, that 

neuroimages do not even provide weak evidence for claims about the cognitive 

contribution of regional brain activity (p. 275).2 He cautions, however, against extending 

this to the whole of neuroimaging data. Neuroimages are the product of one analysis 

procedure, and they provide a ‘first-pass sanity check’ on the data, but additional 

analyses are required to interpret them (p. 275). Klein points towards ‘more sophisticated 

analyses’, details about neural anatomy and converging evidence for other research 

modes such as single cell recordings, as providing the additional evidential value to 

neuroimaging data above and beyond the neuroimages themselves (p. 276). 

Evidence accumulated across laboratories and research paradigms is important for any 

account of explanation and knowledge production in neuroscience broadly construed 

(Bechtel 2004). Indeed, convergence across measurement technologies played a critical 

role in the eventual uptake of neuroimaging methods in cognitive neuroscience (Bechtel 

and Stufflebeam 1997). These factors certainly contribute to the strength of inferences in 

neuroimaging research, but they cannot explain what makes neuroimaging data itself 

epistemically valuable. They are part of the body of evidence neuroscientists appeal to 

                                                 

2 It is noteworthy that this argument has been disputed for misrepresenting the kind of statistical inference 

neuroscientists engage in. Where Klein presents neuroimaging researchers as aiming to reject ‘point null’ 

hypotheses, statistical testing in neuroimaging research involves the rejection of a ‘range null’ hypothesis 

and not a point null, and the causal density of the system is not problematic in the way Klein makes it out to 

be for range null hypothesis tests (Machery 2014). That neuroscientists are concerned about the causal 

density of the brain, however, is reason to take Klein’s argument seriously even if it misrepresents some of 

the technical aspects of the practice. 
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when making inferences, but neuroimaging data must also make their own contribution to 

the inferences if it is to be worth the effort to produce and analyze. Appealing to 

convergence with external results does not help clarify the intrinsic evidential value of 

neuroimaging data. This leaves ‘sophisticated data analysis techniques’ to make up the 

difference, which is the very thing that critics of the technology focus on in their 

analyses. That is, the same skeptical arguments that have been criticized for overlooking 

epistemically relevant aspects of the research practices neuroscientists engage in. The 

systematic problem with the skeptical approach, then, may be that they mistakenly treat 

all data analysis techniques as tools for reducing noise and ‘approximating the results of 

an ideal experiment’ (that is, an experiment that actually measured the causal factors of 

interest). 

Some contributors to the discussion of evidence in neuroimaging have acknowledged that 

data analysis is important, and that techniques beyond subtraction (Roskies 2010a) and 

image production (Klein 2010a), make a difference to judgements of the evidential value 

of neuroimaging data. A detailed account of how data analysis techniques that are not 

used to account for error, eliminate artifacts or approximate the results of an ideal 

experiment, contribute to the evidential value attributed to neuroimaging data is at 

present absent. This leads to the primary question this project seeks to answer: What 

contribution do data analysis techniques like subtraction and pattern classification 

analysis make to the process of interpreting neuroimaging data? I pursue this question by 

addressing three narrower questions relating to the use of data analysis in neuroimaging 

research. 

1.4 Towards a Philosophy of Data Analysis 

The questions motivating each of the three papers that follow are: Is the skepticism about 

inferences in neuroimaging research warranted? How does the use of data analysis 

techniques account for the epistemic value neuroscientists recognize in neuroimaging 

data? How does the availability and use of data and analysis tools shape assessments of 

the evidential value of neuroimaging data? The included papers each examine how 

neuroscientists bring neuroimaging data to bear on claims about the relationship between 

cognition and the brain. 
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The first paper, “Data Analysis and the Evidential Scope of Neuroimaging Results”, 

argues that philosophical skepticism about the ability of neuroimaging data to support 

theoretical hypotheses that relate brain function to cognitive function is not warranted. I 

identify the skeptics’ strategy of treating data analysis techniques in isolation from the 

research context in which they are used as a shortcoming of the approach common to 

many skeptical arguments. To demonstrate the importance of situating the use of data 

analysis within a research context, I show how multiple data analysis techniques are used 

to minimize confounding interpretations of the analysis results. As it turns out, the 

assumptions addressed through the use of multiple analysis techniques include some of 

the assumptions that critics are keen to identify as sufficient for undermining these 

inferences. 

The second paper, “The Interpretation of Neuroimaging Data as Explanations of Data 

Patterns”, presents a conceptual framework for evaluating the contribution data analysis 

techniques make to the interpretation of data. The problem with many skeptical 

arguments, as argued in the first paper and alluded to above, is that they are not attentive 

to the complexity of data interpretation, or the subtleties of the contribution data analysis 

techniques make to that process. By situating data analysis techniques within the process 

of data interpretation, I argue that data analysis techniques facilitate data interpretation by 

isolating data patterns that neuroscientist explain by appeal to claims about phenomena. 

The third paper, “Data Analysis and The Perceived Value of Data", examines a dispute 

between neuroscientists over the evidential value of data represented in the NeuroSynth 

repository. NeuroSynth is novel insofar as it is curated and annotated by an algorithm. I 

use this dispute to argue that strategies for data interpretation are likely to be successful 

only insofar as they are sensitive to facts about how the data came to have the form that it 

does. In particular, I trace the inferential errors made by the users of the data to the 

inappropriate application of criteria of explanatory adequacy honed for the interpretation 

of locally produced data to the interpretation of synthesized data. Set alongside the first 

two papers, this paper begins exploring factors that contribute to the explanations of data 

patterns. 
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The concluding chapter takes up where this one leaves off: addressing the broad question 

set out above: how do data analysis techniques contribute to the inferential practices 

operative in neuroimaging research? To spoil the conclusion, I argue that they are not just 

tools for quantifying the strength of hypotheses via statistical tests, or correcting for 

various sources of noise and artifacts in the data. While some data analysis techniques 

perform these roles, the techniques at the heart of neuroimaging research make a distinct 

contribution to the data interpretation process. They are valuable because the results of 

data analysis techniques, unlike the ‘raw’ data provided by neuroimaging experiments, 

can be explained in terms of claims about phenomena. In this way data analysis 

techniques are integral to the practice of neuroimaging research. In the final chapter I use 

the arguments and cases examined in the included papers to add detail to this account, 

articulating more clearly the role of data analysis in the interpretive process in terms of 

the interpretive and epistemic leverage they provide. 
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Chapter 2  

2 The Analysis of Data and the Evidential Scope of 
Neuroimaging Results 

 

2.1 Introduction 

The debate amongst philosophers about the epistemic status of neuroimaging begins with 

van Orden and Paap’s criticism of the logic of subtraction (1997), the primary technique 

used to analyse neuroimaging data at the time their paper was published. Philosophers 

have continued to debate the strengths and weaknesses of neuroimaging as a tool for 

investigating the relationship between cognitive functions and the brain (Uttal 2001; 

Hardcastle and Stewart 2002; Roskies 2010a; Klein 2010a; Uttal 2011; Aktunç 2014). I 

argue that, since most critics have not taken into account the significance of the diversity 

of data analysis techniques used to analyse neuroimaging data, the skepticism towards 

neuroimaging technology is misplaced. 

Many of the skeptical positions are grounded on careful analyses of subtraction and 

subtraction logic (Uttal 2001; Hardcastle and Stewart 2002; Klein 2010a). While 

philosophers are rightly critical of the ability of subtraction analyses, on their own, to 

support claims about the relationship between cognitive functions and the brain, 

subtraction is only one kind of data analysis technique used to analyse neuroimaging 

data. Given that the development of new data analysis techniques has been a significant 

driver of progress in neuroimaging over the last decade and a half,3  a narrow focus on 

                                                 

3 There has been a steady shift from using univariate analysis techniques that treat the 

neuroimaging data as a scalar value, usually an average, towards the use of multivariate 

analysis techniques that treat the neuroimaging data as a vector. These new techniques 

have allowed neuroimaging researchers to pursue new theoretical goals and study new 



30 

 

subtraction is a problem for any argument that aims to shed light on the range of 

hypotheses that neuroimaging technology can discriminate between.  

Indeed, some recent contributors have noted that the role and impact of multivariate 

analyses has not been fully appreciated in this debate (Roskies 2010a; Klein 2010b). 

However, while they acknowledge that techniques other than subtraction are important to 

consider, they do not, themselves, take up the task of exploring how the use of other 

analysis techniques changes the evidence available in neuroimaging research. My aim 

here is to begin to fill this gap by demonstrating that, when evaluating the hypotheses and 

claims that neuroimaging technology can and cannot support, it is important to take into 

account the contribution of new analysis techniques such as pattern classification 

analysis, and to consider how multiple analysis techniques can be brought together to 

strengthen the evidence provided by neuroimaging technologies. 

I proceed as follows: In section two I review the debate about the epistemic status of 

neuroimaging and specify the categories of hypotheses that philosophers claim 

neuroimaging data can and cannot support. In section three I present a conceptual 

framework for evaluating the strength and content of evidence produced via a data 

analysis technique. In section four I apply this conceptual framework to a study that uses 

multiple analysis techniques to generate evidence in support of a hypothesis and, where 

critics of neuroimaging would argue that the data do not support this hypothesis, I show 

how they can. The evidence is stronger than it appears because one analysis technique is 

used to validate a crucial assumption required by the other. In section five I argue that 

different analysis techniques provide different evidence, and that the use of multiple 

analysis techniques to examine the same data provides experimental results with a kind of 

local robustness. 

                                                                                                                                                 

 

hypotheses, such as the investigation of the content of neural representations (see Tong & 

Pratte 2012 for an introductory review of multivariate techniques). 
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2.2 Skepticism About Neuroimaging 

Functional magnetic resonance imaging (fMRI) allows neuroscientists to study the 

human brain through non-invasive measurements of metabolic activity (see Ashby 2011 

for a technical introduction). Experiments using fMRI typically require a participant to 

perform a cognitive task – such as identifying faces as familiar or unfamiliar (as in 

Martin et al. 2013) – while the scanner measures changes in the Blood Oxygenation 

Level Dependent (BOLD) signal throughout their brain. 4 Roughly speaking, the scanner 

does this by dividing the brain into voxels (volumetric pixels), which are one millimeter 

to three millimeter cubes of brain matter, and measuring the BOLD signal in each voxel 

over time. The value of the BOLD signal is the ratio of oxygenated to deoxygenated 

hemoglobin in a voxel at the time of scanning. Since it tracks properties of blood flow, 

the BOLD signal is often referred to as the hemodynamic signal. After a scanning 

session, the investigators will have a data set that consists of BOLD signal values for 

each voxel labeled with the task condition that the participant was performing when that 

data was collected. 

Neuroimaging data has historically been analysed using subtractive analyses. In the 

simplest case of subtraction, two sets of neuroimaging data are required, each obtained 

while the participant performs a different task. The goal of subtractive analysis is to 

identify the difference in BOLD signal that corresponds with the cognitive difference 

between the tasks. Roughly, the BOLD signal values in each voxel associated with one 

task are subtracted from the values in the same voxels associated with the other task. This 

analysis is classified as univariate because each voxel is treated independently of each 

                                                 

4 The fMRI scanning protocol does not directly measure metabolic activity. During an 

fMRI scan, radio pulses cause hydrogen atoms to align with a uniform magnetic field. As 

they relax to equilibrium they release energy, which the scanner measures. Deoxygenated 

hemoglobin, unlike oxygenated hemoglobin, causes the nearby magnetic field strength to 

vary, resulting in a difference in the measured energy, and forming the basis of the 

BOLD signal. 
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other voxel, and as such the data needs to be corrected for multiple comparisons. The 

result is a difference map that identifies the voxels (or regions) where brain activity is 

significantly different between the task conditions. To evaluate if the difference effects 

can be attributed to the population, and not just a given subject in the study, a second-

level analysis is carried out (typically random effects analysis, see Friston et al 1999). If 

this analysis shows the difference to be consistent across subjects, then the cognitive 

difference between the tasks is attributed to the regions of the brain shown to be 

differentially active. To illustrate the conceptual logic of the process, consider van Orden 

and Paap’s toy example in which task A is reading two words, and task B is reading two 

words then judging whether or not they rhyme (1997). The resulting subtraction between 

the imaging data obtained during task A and the data obtained during task B is taken to 

indicate the regions of the brain that are involved in the cognitive process that underlies 

the rhyming judgment. 

Van Orden and Paap argue that the subtractive method cannot be used to locate where in 

the brain cognitive functions ‘reside’ because the reliability of subtractive inferences 

depends on several assumptions that they believe are not likely to be true. In particular, 

the reliability of subtraction with respect to localizing cognitive functions to regions of 

the brain requires that ‘. . . one must begin with a “true” theory of cognition’s 

components, and assume that the corresponding functional and anatomical modules exist 

in the brain’ (1997, p. S86). These assumptions, they argue, follow from the fact that a 

valid subtraction requires that the task-difference precisely isolates a single cognitive 

component, which can only be the case if the cognitive theory used to design the tasks is 

accurate (p. S87). Additionally, they argue that functional localization using subtraction 

further requires that those modules are feed-forward ‘. . . to insure that the component of 

interest makes no qualitative changes “upstream” on shared components of experimental 

and control tasks’ (p. S86), and that the contrasted tasks ‘. . . invoke the minimum set of 

components for successful task performance’ (p. S86). 

William Uttal engages in a similar kind of skeptical attack on neuroimaging in his book 

(2001). Building on van Orden and Paap’s critique, Uttal compares neuroimaging to 

phrenology and argues, among other things, that it requires the false assumption that 
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cognitive processes are managed and maintained by isolable modules of the brain. 

Valerie Hardcastle and Matthew Stewart (2002), express a similar type of skepticism, 

arguing that the logic of neuroimaging is viciously circular and conclude that ‘. . . 

neuroscientists cannot use the data they get to support their claims of function . . .’ 

because ‘. . . they are assuming local and specific functions prior to gathering appropriate 

data for the claim’ (p. S80). These critiques all point to a vicious circularity in the 

inference from the results of subtraction analysis to claims about the localization of 

cognitive function. 

Some philosophers have defended cognitive neuroscience from these criticisms. For 

instance, Landreth and Richardson responded to Uttal’s arguments (2004) in part by 

clarifying the details of how neuroimaging data are processed, analysed and interpreted. 

Additionally, Roskies has rejected van Orden and Paap’s characterization of subtraction 

(2010b). She argues that subtraction results are just one part of a more complex scientific 

procedure that she calls functional triangulation, whereby ‘. . . information from other 

task comparisons and other studies is brought to bear on the interpretation of 

experimental data’ (p. 641). She also argues that characterizing neuroimaging as solely 

aimed at localizing cognitive functions to specific brain regions, as the three critics noted 

above do, is not representative of all uses of neuroimaging data. After providing 

examples of the variety of theoretical aims neuroimaging and subtraction methods are put 

towards she concludes that ‘without recognizing the diversity of the immediate goals of 

imaging studies, it is impossible to do justice to the technique’ (p. 639). 

Indeed, the recent development of new multivariate analysis techniques,5 which were 

introduced to discriminate between modular and distributed accounts of the role that the 

                                                 

5 It is important to note that the techniques discussed here, collectively referred to as 

multivariate pattern analyses (MVPA), are neither the only nor first multivariate 

techniques to be used in neuroimaging. For example, spatio-temporal partial least squares 

(PLS) is a multivariate technique that has been in use since the late 90s (McIntosh et al. 

1996; 1998). I owe this clarification to an anonymous reviewer. 
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ventral visual pathway plays in visual perception (Haxby et al. 2001), has motivated 

cognitive neuroscientists to investigate hypotheses about the content of brain activity. In 

a review of the theoretical uses of multivariate techniques the authors predict that ‘… the 

enhanced sensitivity and information content provided by these methods should greatly 

facilitate the investigation of mind-brain relationships by revealing both local and 

distributed representations of mental content, functional interactions between brain areas, 

and the underlying relationships between brain activity and cognitive performance’ (Tong 

and Pratte 2012, p. 503). The study of mental content, neural representations and the 

characterization of these in terms of distributed patterns of brain activity are very 

different theoretical goals than the localization of cognitive functions to parts of the brain. 

This is grist for Roskies’ mill. Whenever critics of neuroimaging research treat it solely 

in terms of localization, the critics have failed to appreciate the variety of theoretical 

applications that the technology is put towards. Furthermore, this theoretical shift, which 

was made possible by the development of data analysis techniques that treat 

neuroimaging data as multidimensional patterns, illustrates the importance of evaluating 

analysis techniques other than subtraction when evaluating the epistemic value of 

neuroimaging technology. 

Despite these defenses of neuroimaging, and the theoretical and analytic advances in the 

field of cognitive neuroscience, the general trend towards skepticism and the focus on 

subtractive analyses has persisted. While more recent conclusions tend to be on the 

milder side of skepticism, philosophers continue to challenge the ability of neuroimaging 

technology to provide evidence that supports the claims neuroscientists use the 

technology to investigate. Additionally, they continue to do so on the basis of an 

evaluation of subtraction and subtraction logic. I will examine one of the most recent 

contributions to this debate in more detail, as it challenges the inferences neuroscientists 

make on the basis of an evaluation of subtraction and subtraction logic, and leans on the 

rest of the skeptical literature to reinforce its conclusions (Aktunç 2014). In line with the 

skeptical tradition, Aktunç argues that, while neuroimaging data are useful, they cannot 

be used to support the kinds of hypotheses that cognitive neuroscientists use them to 

support. 
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Aktunç distinguishes between two types of hypotheses that neuroimaging data might be 

brought to bear on. There are hemodynamic hypotheses, which relate BOLD signal 

activity to the performance of cognitive tasks, or parameters of the tasks. There are also 

theoretical hypotheses, which relate cognitive processes to the brain structures that 

implement them (this distinction is from Huettel et al. 2008). To illustrate this distinction 

consider the following example: The claim that patterns of BOLD signal activity in both 

PrC and PhC are sensitive to differences between faces, buildings and chairs (Martin et 

al. 2013, p. 10921), is a hemodynamic hypothesis. The tasks used in this study require 

participants to judge images of faces, buildings and chairs as familiar or novel. Thus, this 

claim is about the relationship between patterns of BOLD signal activity and features of 

stimuli used in the cognitive task that participants performed. After discussing these 

results, the researchers advance a theoretical hypothesis. They claim that the ‘. . . findings 

indicate that both PrC and PhC contribute to the assessment of item familiarity’ (p. 

10922). This is a theoretical hypothesis because it identifies two brain structures, PrC and 

PhC, and specifies a cognitive process that they implement, the assessment of item 

familiarity. It is worth noticing the inferential relationship between these two types of 

hypotheses: the theoretical hypothesis is inferred from the hemodynamic hypothesis. 

Where a hemodynamic hypothesis specifies BOLD signal activity, a theoretical 

hypothesis specifies a structure of the brain. Likewise, where a hemodynamic hypothesis 

specifies a cognitive task, a theoretical hypothesis specifies a cognitive process. 

Given this distinction between hemodynamic and theoretical hypotheses, Aktunç uses 

Deborah Mayo’s error statistical framework to argue that neuroimaging data can only 

provide a severe test of hemodynamic hypotheses. On the simplest interpretation of 

Mayo’s severity criterion, a hypothesis passes a severe test just in case (1) the data agree 

with the hypothesis and (2) there is a sufficiently high probability that, if the hypothesis 

were false, then the data would not agree with the hypothesis (Mayo 2005, p. 99). 

Aktunç argues that, while neuroscientists may be interested in providing evidence that 

supports theoretical hypotheses, neuroimaging only has evidential import with respect to 

hemodynamic hypotheses (2014, p. 969). This is because a difference in mean BOLD 

signal, which is the pattern identified by subtractive analyses, can be embedded in a 
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statistical significance test. From this, Aktunç argues that ‘. . . using error probabilities, 

we can find out whether specific fMRI experiments constitute a severe test of specific 

hemodynamic hypotheses. Thus, fMRI data do have evidential import for hemodynamic 

hypotheses’ (p. 969). His argument that theoretical hypotheses cannot be subjected to 

severe testing relies on two premises. First, there is the ‘fact’ that ‘. . . fMRI obviously 

does not test for the existence of cognitive modules or functions as defined by theories of 

cognitive science’ (p. 969) because ‘. . . fMRI gives us data only on hemodynamic 

activity . . .’ (Aktunç 2014, p. 968). The second premise rests on the arguments made in 

the existing skeptical literature (specifically Uttal 2001; Hardcastle and Stewart 2002; 

Klein 2010a). Thus, according to Aktunç, neuroimaging data cannot support theoretical 

hypotheses because (1) the data are indirectly related to the content of those hypotheses 

and, (2) critiques of subtraction analysis show that such inferences are viciously circular, 

unstable or otherwise unreliable. Neither of these premises can support the derived 

conclusion. 

Inferences from neuroimaging results to theoretical hypotheses, like most inferences from 

measurement results to theoretical claims, are ampliative; hemodynamic activity is at best 

an indirect measure of neural activity (see Logothetis 2008), and task performance is at 

best an indirect indicator of cognitive functions (see Poldrack 2010a). However, the 

indirect relationship between the data and content of the theoretical hypothesis is not 

sufficient to support the claim that neuroimaging cannot provide evidence for hypotheses 

that relate cognitive functions to brain activity. Whether or not these inferences are 

warranted depends on the particular theoretical hypotheses that are advanced, and 

whether or not the assumptions required by the inferences are justified. Indeed, this is 

how van Orden and Paap originally argued against the logic of subtraction. It was not on 

the basis of the indirectness of the data itself, but on the basis of the specific assumptions 

required to infer from the data to a theoretical hypothesis of a certain kind.  

However, no matter where you stand on the reliability of inferences from subtraction 

analysis to claims about the localization of cognitive functions, these arguments cannot 

be grounds for a sweeping claim about the evidential scope of neuroimaging data. Just 

because one data analysis technique has certain limitations does not mean that the data 
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themselves are similarly limited. Indeed, neuroimaging data can be, and are, analysed 

with other analysis techniques that reveal different patterns and correlations in the data. 

Whether or not neuroimaging data provides evidence in support of theoretical hypotheses 

depends on how the other analysis techniques help neuroscientists to mediate the 

inferential gap between hemodynamic hypotheses and theoretical hypotheses. 

Inferences to theoretical hypotheses from neuroimaging data can be, and in practice are, 

strengthened by the use of multiple analysis techniques. The specific case I consider is 

when analysis techniques are used in sequence as a way to validate assumptions required 

by the primary analysis procedure. In the final section I distinguish this use of multiple 

analyses from functional triangulation as discussed by Roskies, in which multiple 

independent analyses provide convergent evidence for a hypothesis. In the next section I 

provide a framework for evaluating the kinds of information about theoretical hypotheses 

data analysis techniques provide. 

2.3 Data Analysis and Evidence 

The skeptical position reviewed in the previous section is a claim about the kinds of 

hypotheses neuroimaging data can and cannot support. According to skeptics, it can 

support hemodynamic hypotheses, which specify a relation between features of the data. 

It cannot support theoretical hypotheses, which specify a relation between the phenomena 

that those features are taken to indicate. Whether it is used to investigate a hemodynamic 

or theoretical hypothesis, neuroimaging data needs to be manipulated to reveal 

relationships between features of the data that are relevant to the hypothesis under 

investigation. This is the function of data analysis techniques, such as subtraction and 

pattern classification analysis. 

Data analysis techniques transform the data produced by experimentation into evidence 

suitable for statistical analysis. These transformations reveal patterns and correlations 

between features of the data, which are then taken to be evidence in support of a 

hypothesis. Bogen and Woodward’s distinction between data and phenomena (1988) is a 

useful place to begin thinking about this process. Broadly speaking, they characterize 

data, which are the result of the interaction between experimental design, implementation 
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and measurement, as ‘. . . idiosyncratic to particular experimental contexts, and typically 

cannot occur outside of those contexts’ (p. 317). Phenomena, on the other hand ‘. . . have 

stable, repeatable characteristics which will be detectable by means of a variety of 

different procedures, which may yield quite different kinds of data’ (p. 317). On this 

view, data provide evidence for claims about phenomena, while claims about phenomena 

provide evidence for theories. 

Bogen and Woodward illustrate this by considering how one might determine the melting 

point of lead (pp. 309-310). To do so, a researcher might take several measurements of a 

sample of lead just after it melts. The data, in this case, is a collection of temperature 

measurements. These temperature measurements provide evidence about the melting 

point of lead, which is a claim about a phenomenon. The data are idiosyncratic because 

the result of each temperature measurement depends on a complex network of causal 

interactions, many of which are not related to the phenomenon of interest. The value of 

each temperature measurement will be influenced by features of the thermometer used, 

the heating apparatus, the sample of lead, the time of day, the ambient temperature, and 

more additional causal factors than could be named. After collecting sufficiently many 

measurements, the researcher averages them and, on the basis of the value of that 

average, makes a claim about the melting point of lead. Notice that it is not the individual 

temperature measurements, but the average value of the temperature measurements that 

provides evidence in support of a claim about the melting point of lead. This calls 

attention to a general feature of scientific practice: the individual data points, which are 

the products of specific runs of an experiment, need to be transformed to reveal their 

evidential value. Typically, this involves eliminating the effects of factors that contribute 

to the value of specific data points that are not relevant to the theoretical question or 

hypothesis under investigation. The data, without the influence of these factors removed, 

speaks only to the melting point of this sample of lead, at this time, as measured with this 

thermometer. Factors such as those arising from the peculiar features of the thermometer 

used are irrelevant to the melting point of lead insofar as they distort or conceal patterns 

in the data that reflect the ‘true’ melting point of lead. 
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After data is produced it is manipulated so that the patterns relevant to the phenomenon 

of interest are revealed and the irrelevant patterns are suppressed. Averaging the 

temperature measurements of melted lead is intended to suppress the patterns in the data 

caused by the irrelevant causal factors that contribute to the value of each specific data 

point. Other examples of manipulations that suppress irrelevant patterns are noise 

reduction procedures, and manipulations that remove the effect of measurement artifacts. 

Averaging, as well as more complex analytic techniques such as those discussed in detail 

below, transform data such that patterns relevant to the phenomenon in question are 

revealed. The result of these manipulations is taken to be evidence for one or more claims 

about the phenomenon. A data analysis technique, then, is a series of data manipulations, 

or transformations, that clarify the evidential import of the data. 6 

Different data analysis techniques can be distinguished by the data points that they 

operate on and by the specific transformations of the data they involve. For example, 

univariate and multivariate techniques can be distinguished by the data points that they 

manipulate. Univariate techniques, such as subtraction, treat voxels as independent 

variables while multivariate techniques, like pattern classification analysis (discussed in 

detail below) and representational similarity analysis (Kriegeskorte and Kievit 2013), 

treat the data as having many dependent variables. Data analysis techniques that operate 

on the same class of data points, such as these two multivariate techniques, can be 

distinguished by the particular manipulations they apply to the data. For example, pattern 

classification analysis uses a machine-learning decision procedure to classify the data, 

whereas representational similarity analysis uses a measure of similarity to compare brain 

activity between task conditions. 

Data manipulations are important because they transform otherwise complex data into a 

form that investigators can interpret and statistically analyse7 (Good 1983, pp. 285-286). 

                                                 

6 Thanks to an anonymous reviewer for this phrasing. 

7 This process is often referred to as data reduction. 
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Each manipulation, by virtue of the transformation that it makes, imposes assumptions on 

the result. These assumptions limit what the result can be taken as evidence about. Just as 

van Orden and Paap identified several assumptions required by the use of subtractive 

analyses, most data manipulations require researchers to make assumptions about the 

data. For example, a standard manipulation performed on neuroimaging data is the 

removal of patterns caused by magnetic field drift. Magnetic resonance scanners use the 

variations in a magnetic field to detect the BOLD signal, and the magnetic field in some 

scanners slowly changes during the course of scanning. Manipulating data such that the 

effects of field drift are removed requires assuming that the data are corrupted by 

magnetic field drift. If the procedure is used on data produced by a scanner that does not 

have a field drift, then the procedure would introduce artificial patterns into the data. It 

would create artificial patterns in the data because the required assumption, that the 

scanner has a field drift with specific parameters, is not true of the data. In the case of 

field drift correction, the assumption can be validated by measuring the field drift of a 

scanner. This simple example illustrates how data manipulations entail or require 

assumptions to be made of the data, and shows that treating a specific data manipulation 

in isolation from the rest of the experimental process can make the evidential status of the 

data appear weaker than it in fact is. 

Different analysis techniques operate on different data points, implement different 

manipulations and require making different assumptions of the data. This is how they 

reveal (and suppress) different data patterns. For example, subtraction reveals 

correlations between average amplitudes of the BOLD signal and task performance. 

Techniques like subtraction, when they include processes for smoothing and averaging 

the signal, suppress information about differences in activity between voxels within a 

region. Thus, some subtraction analyses are unable to reveal correlations between the co-

ordinated activity of groups of voxels that preserve the same level of average activity 

between tasks. On the other hand, multivariate techniques, such as pattern classification 

analysis, correlate distributed patterns of BOLD signal activity with task performance. 

Pattern classification analysis is sensitive to distributed activity patterns that univariate 

techniques, like subtraction, cannot detect. However, multivariate techniques are less 

sensitive to one-dimensional effects that covary with stimulus features, to which 
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univariate techniques are very sensitive (see Davis and Poldrack 2013 for a detailed 

discussion of the uses of these techniques). 

By leveraging their differences, investigators can use several data analysis techniques 

together to overcome the inferential limitations of a particular technique. The limitations 

of a technique tend to derive from the assumptions that the technique requires. If 

assumptions can be identified, depending on the nature of those assumptions, other data 

analysis techniques can be used to validate them. In this way, the use of multiple analysis 

techniques on the same data can strengthen an inference from the result of one analysis to 

the target hypothesis by providing a clearer picture of the evidential import of the data. 

Specifically, where a given analysis technique provides evidence that can support a 

hemodynamic hypothesis, the inference from that hypothesis to a theoretical hypothesis 

will require investigators to make further assumptions about the data. Since different data 

analysis techniques reveal different patterns, it is often possible to validate some of those 

assumptions by analyzing the data in another way. This is how multiple analysis 

techniques can come together to strengthen the inference from a hemodynamic to a 

theoretical hypothesis. Typically, this is done through functional triangulation (Roskies 

2010a), where multiple techniques are used separately on the data, and the hypotheses 

inferred are further supported by independent analysis of different data sets. The case I 

will discuss below is different, as the evidence is strengthened not through the 

independent application of multiple analyses, but the sequential application of analysis 

techniques.  

2.4 Case: Deconvolution and Pattern Classification 
Analysis 

Liu and colleagues’ study aims to determine the role that certain regions of the brain play 

in directing attention (Liu et al. 2011). The primary analysis technique used is pattern 

classification analysis, a multivariate technique derived from research on machine 

learning. Pattern classification analysis is used to determine if cognitive tasks can be 

differentiated exclusively on the basis of patterns in the BOLD signal that correlate with 

task performance. As I argue below, this technique alone cannot support a theoretical 
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hypothesis attributing a cognitive role to activity within a region or part of the brain. 

However, Liu and colleagues do not deploy the technique in isolation. Their analysis 

includes a region of interest selection procedure that partially validates one of the crucial 

assumptions required by pattern classification analysis. While this does not provide 

definitive evidence in support of the theoretical hypothesis they advance, it demonstrates 

how multiple techniques can be used together to bring neuroimaging data to bear on 

hypotheses beyond those that merely relate hemodynamic activity to task performance. 

Two behavioural tasks were used to generate their data set. In both tasks subjects were 

presented with two overlaid patterns of dots and were instructed to attend to one pattern 

or the other. In the first task both patterns were composed of white dots, but one was 

rotating clockwise and the other counterclockwise. In the second task, both patterns were 

moving in a random-walk, but one was composed of red dots and the other green dots (p. 

4485-6). The resulting data set contained BOLD signal measurements for each of the six 

task conditions: attending to clockwise rotating dots, attending to counter-clockwise 

rotating dots, attending to red dots, attending to green dots and the null-condition for each 

task (attending to a fixation cross). 

The data were pre-processed before they were analysed. This involved head motion 

correction (to remove artifacts caused by subjects moving while being scanned), removal 

of low-frequency drift (this corrects for a scanning artifact due to a drift in the magnetic 

field of the scanner) and conversion of the BOLD signal measurements from raw values 

into a percentage of signal change (p. 4486). The result of these transformations is a data 

set suitable for the analysis procedures with patterns due to known artifacts from head 

motion and scanner drift suppressed. The pre-processed data were analysed using a series 

of analysis techniques. Before discussing the techniques in detail, I will provide a brief 

overview of the whole procedure. 

The analysis began with deconvolution, a technique used to isolate the task-relevant 

portion of the BOLD signal data. The result of the deconvolution analysis was used as the 

input for a region of interest (ROI) selection procedure. The combination of the 

deconvolution and ROI selection was then used as the input for pattern classification 
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analysis. The result of the pattern classification analysis was then taken to support a claim 

about the regions of the brain involved in the modulation of attentional control. Notice 

that this is not a claim about the relationship between task performance and 

hemodynamic activity. It is a claim about which parts of the brain implement a particular 

cognitive process (modulation of attentional control). It is about the relationship between 

a cognitive function and regional brain activity. This is a theoretical hypothesis. 

There are multiple inferences involved in moving from a hemodynamic hypothesis to a 

theoretical hypothesis. Recall that a hemodynamic hypothesis relates BOLD signal data 

to the performance of a task, whereas a theoretical hypothesis relates brain structure (or 

the activity in brain structure) to a cognitive process. Inferring from one to the other 

requires treating the BOLD signal measurements as an indicator of cognitively relevant 

brain activity within a brain structure, and task performance as an indicator of one or 

more cognitive processes. Whether or not the task can be taken as an indicator of the 

cognitive function that the researchers are interested in depends on an underlying theory 

of psychological processing, and the robustness of the accompanying task analysis. As 

the focus of this paper is on the interpretation of the neuroimaging data, I’m going to 

assume that the behavioural tasks used are reliable indicators of the modulation of 

attentional control. It is worth noting, however, that this assumption does not generally 

hold, especially given the relative lack of critical task analyses in neuroimaging research 

(see Poldrack 2010b for a discussion). 

2.4.1 Deconvolution Analysis 

Not all of the measured changes in the BOLD signal are relevant to the subject’s 

performance of the cognitive task. The first substantive step in analyzing neuroimaging 

data is to extract the portion of the BOLD signal that corresponds with the task 

manipulation. This process is called deconvolution. Deconvolution is an algorithmic 

solution to a particular type of signal processing problem in which a signal of interest is 

convolved, or mixed with, another signal. In general, deconvolving the signal of interest 

requires solving an equation of this form: 

(f ⊗ g) = h 
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Where h is the recorded signal, f is the signal of interest and g is the signal that f needs to 

be separated from. In the case of fMRI data, h is the measured BOLD signal, g is the 

design matrix (a mathematical representation of the task) and f is the hemodynamic 

response function (hrf). The hrf represents the change in blood oxygenation levels that 

corresponds with the demands of the cognitive task that the subject performed. The aim 

of deconvolution analysis is to identify the portion of measured brain activity that is 

modulated by the task. Solving for the hrf requires pseudo-inverting the design matrix 

and multiplying it by the measured BOLD signal (this is the matrix-algebra equivalent of 

dividing both sides in the above equation by ‘g’ in order to calculate f). 

It is important to note that this procedure only works when the trials are mathematically 

separable, which can be achieved using an event-related design. An event-related design 

is such that the stimuli or tasks are separated by an intertrial interval (usually there are 

about twenty seconds between tasks). Investigators can then assume that task-relevant 

BOLD activity occurs for short, discrete intervals corresponding to the onset of the task. 

The intertrial interval supports this assumption by ensuring that the trial-relevant signal is 

temporally localized, and does not uniformly influence subsequent trials.8 

Mathematically, this amounts to assuming that task-relevant variation in the BOLD signal 

is linearly summed with the task-irrelevant BOLD signal, and so the two can be separated 

by the deconvolution procedure described above. It is worth noting that these (and the 

following) assumptions are supported by supplementary empirical research, and are not 

                                                 

8 The intertrial interval does not need to be the same between every trial. Indeed, it is 

typically jittered, or randomly varied so that the interval between any two pairs of trials 

varies. The variation in intertrial interval is important for blocking certain confounds and 

artifacts that can arise when event onset is uniformly spaced. Since jittered events are still 

mathematically separable, I have omitted a detailed discussion of jitter for the sake of 

simplicity. 
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arbitrarily made or taken for granted (see Chapter 12 of Kass, Eden, Brown 2014 for a 

technical introduction to linear regression). 

Typically, researchers assume that the hemodynamic response has a canonical shape and 

use that assumption to determine the form of the hrf. In this case, however, the 

investigators did not want to assume that the hemodynamic response function takes the 

canonical form and so they used a linear regression formula to model the hrf. This 

decision eliminates confounds that might arise from deviations in the hrf from the 

canonical model. The regression approach also allows the form of the hemodynamic 

response function to vary from voxel to voxel, instead of assuming that the BOLD signal 

follows the same pattern in every voxel. 

Regression is a curve fitting procedure. The investigators specify an equation, a linear 

one in this case, with unknown coefficients, that is fit to the data. In this case, the ‘data’ 

that the curve is fit to is the result of multiplying the BOLD signal measurements with the 

inverted design matrix. The regression formula is expressed by the following equation: x 

= 𝛽y + 𝝐. Regression requires assuming that errors are independent (which is ensured by 

the event-related design) and that the noise term, 𝝐, is linearly additive. For each 

regressor there will be an additional 𝛽y term. Liu and colleagues treated each 

experimental condition as a separate regressor, which resulted in a total of six regression 

terms (one for each of the clockwise, counterclockwise, red, green and null task 

conditions). 

Once the regression formula and design matrix are determined, the design matrix is 

pseudo-inverted and multiplied by the measured BOLD signal. Then, the result of that is 

used to determine the unknown 𝛽 values in the regression equation. Note that this 

procedure is implemented for each voxel, and so each voxel will have its own set of 𝛽 

values. The 𝛽 values are then filled into the linear regression formula and the result is the 

hemodynamic response function. 

The hemodynamic response function, as represented by the 𝛽 values, indicates the 

portion of the measured BOLD activity that varies with task onset. This could be 

understood as capturing the portion of the data that is relevant to the manipulation of the 
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experiment. The 𝛽 values are used in both the ROI selection procedure and the pattern 

classification analysis. 

2.4.2 Region of Interest Selection 

Once the hrf was calculated, the investigators used a goodness-of-fit measure to 

determine the amount of variance in the measured signal that the hrf accounted for. This 

provides an indicator of the portion of the signal that the hrf models accurately. To do 

this, they first averaged the modelled activity (the 𝛽 values) over continuous groups of 

voxels (which they took to indicate specific regions of the brain). Then, they calculated 

the goodness-of-fit of the hrf, which is a measure of the amount of variance in the signal 

that is accounted for by the hrf. To evaluate the statistical significance of the estimate 

they used a permutation test (see Gardner et al. 2005 and Nichols and Holmes 2002 for 

details on these procedures). 

Where the hrf identifies the portion of the signal modulated by the experimental tasks, the 

goodness-of-fit measure specifies the regions of the brain (understood as a collection of 

nearby voxels) where the hrf accounts for a significant portion of the variance in the 

BOLD signal data. The result of the procedure identifies regions of the brain where the 

variation in activity is correlated with the task demands of the experiment. When the 

variance of activity in a region accounted for by the hrf was sufficiently high, the 

investigators concluded that activity in that region ‘. . . is modulated by feature-based 

attention’ (p. 4488). 

This interpretation of the analysis result is a hemodynamic hypothesis since it relates 

variation in BOLD signal activity to specific task conditions. The particular 

hemodynamic hypothesis advanced attributes the portion of the measured BOLD signal 

captured by the 𝛽 values that satisfy the goodness-of-fit criteria to the behavioural tasks. 

Calculating the hrf identifies the portion of the signal that corresponds with the onset of 

each task condition, eliminating the task-irrelevant portion of the signal. The goodness-

of-fit procedure identifies the areas of the brain for which the hrf accounts for a 

significant portion of the variance in the activity. In other words, this ROI selection 

procedure identifies the regions in which the measured variation of the BOLD signal can 
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be explained in the context of the experiment. The result is used as a pre-processing step 

to select regions of interest for pattern classification analysis. As I will show, this step 

improves the strength of the experimental evidence for the theoretical hypothesis the 

investigators infer by providing partial validation for a crucial assumption implicit in the 

use of pattern classification analysis. 

2.4.3 Pattern Classification Analysis 

The primary aim of the study was to use pattern classification analysis to test ‘. . . 

whether the pattern of fMRI response across voxels in an area could distinguish which 

feature was attended, although the average amplitude9 did not’ (p. 4490). Pattern 

classification analysis is a type of multivariate analysis technique that treats each voxel as 

a dependent variable. The procedure involves four distinct stages: feature selection, 

classifier selection, training and testing. Feature selection involves choosing the voxels 

that will be included in the analysis. Typically, the chosen voxels are those within a 

particular ROI, although how that ROI is defined varies from study to study. Regions of 

interest can be defined anatomically, either using software to select the voxels that fall 

within the anatomical ROI, or by manually tracing the ROI. They can also be defined 

functionally, using a functional localization task. The BOLD signal data collected while a 

participant performs such a task can be used to identify voxels that are strongly activated 

during the performance of that task, which are then defined as the ROI. In this case, the 

investigators selected the voxels indicated by the procedure discussed in the previous 

section.10 

                                                 

9 The investigators reported on a third analysis in the paper that I do not discuss in detail. 

That analysis, which adheres closely with the logic of subtraction, was intended to 

investigate if average BOLD signal amplitude discriminated between the specific features 

attended (red-dots vs. green-dots). It did not. 

10 In addition to the analyses I discuss in detail, they also completed a whole-brain 

searchlight analysis. A searchlight is a specific kind of feature selection and analysis 
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Classifier selection involves choosing the classifier, which is a machine-learning 

algorithm that will be used to implement the analysis. The classifier represents brain 

activity in a multidimensional space where each dimension corresponds to the BOLD 

signal value in each voxel. If three hundred voxels are selected, then the space has three 

hundred dimensions. Each point in this space specifies a particular BOLD signal value 

for each selected voxel and so corresponds to a particular state of brain activity. For the 

purposes of this paper, the particular classifier used does not matter, but it is worth noting 

that different classifiers have different strengths and weaknesses (see Misaki et al. 2010). 

Once the classifier is selected it is trained and tested. During the training phase, the 

classifier is presented with labelled data (the labels indicate the task condition, such as 

‘attending to clockwise rotating dots’). The classifier identifies correlations between 

patterns in the BOLD signal and the provided labels, and based on those correlations it 

divides the multidimensional space into subspaces. Different classifiers use different 

procedures for subdividing the multidimensional space. Once subdivided, the classifier 

identifies each subspace with the task condition that is most frequently associated with it. 

During testing, the classifier is presented with unlabelled data that it has not seen. It 

locates the novel data in the multidimensional space and, based on the subspace that it 

falls into, predicts the task label that corresponds with the data. A data point that is 

located in the ‘attending to red’ subspace is labelled as ‘attending to red’. The predicted 

labels are compared with the true labels and the classifier’s accuracy at predicting the 

task condition on the basis of the BOLD signal data is calculated. The regions of the 

                                                                                                                                                 

 

process. In a searchlight, investigators define a volume (the ‘searchlight’), and then run 

the pattern classification analysis procedure over voxels within that volume. Then, they 

move the volume and run the analysis again. This procedure is typically used to identify 

arbitrary subdivisions of the brain that result in reliable classification, or to examine how 

classification accuracy changes as the classifier is given data from different parts of the 

same network or part of the brain. 
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brain (as defined by the ROI selection procedure) where the classifier performed with 

sufficient accuracy are said to ‘. . . contain the control signals for maintaining attention to 

visual features’ (p. 4493). That is to say, the investigators took the classification results to 

indicate the regions of the brain that contain signals used for the maintenance of 

attention. They are attributing a cognitive function to a particular region of the brain (in 

fact, several regions of the brain). This is an inference to a theoretical hypothesis. In this 

case the hypothesis specifies the particular role that the identified regions perform - 

control of attentional processes. 

The attribution of functional role is made on the basis of the information carried in the 

signal that is necessary to support the cognitive function. It’s not just a claim that the 

indicated regions ‘play such and such a role’, but, by basing this inference on pattern 

classification analysis, it is a specification of that role in terms of the signal content. 

Given this, the inference from the successful predictions of a pattern classifier to the 

content of the brain activity, and subsequent attribution of functional role, requires 

additional assumptions. One particular assumption is that the patterns leveraged by the 

classifier contain information that is accessible to the brain. 

One way to understand why this assumption is required is by distinguishing between the 

informational and representational content of a signal. The informational content of a 

signal is whatever facts you can learn from the signal. The representational content of the 

signal is the message actually carried by the signal. Informational content and 

representational content are not necessarily the same (Dretske 1981). Consider the 

following simple case: you are in a closed room and someone in an adjoining room is 

communicating a message by banging objects together. Perhaps they are using Morse 

code to express a fact about the weather. With sufficient equipment and expertise you 

could determine if the person in the other room is moving around, or features about the 

materials that they are banging together. These facts are part of the informational content 

of the signal, as they are facts you can learn by analyzing the signal. The actual message 

being communicated, however, may have nothing to do with these facts. Indeed, in this 

case the message is about the weather. It may even be the case that the individual who is 

communicating does not have access to the facts you are able to infer from the signal. 



50 

 

They may not know what material the objects are made of, and so could not possibly be 

communicating those facts. Without some knowledge of Morse code, or additional 

constraints beyond the signal itself, it is difficult to verify that facts learned from analyses 

of the signal correspond to the representational content of the signal. Thus, showing that 

regularities in a signal can be used to reliably make inferences or predictions about the 

world, as pattern classification analysis does, is not sufficient to support the claim that the 

signal is transmitting those facts. 

In these terms, pattern classification analysis characterizes some of the informational 

content of the BOLD signal. It identifies which tasks can be discriminated between on the 

basis of patterns in the signal. The inference from the informational content of the BOLD 

signal to an attribution of functional role requires the assumption that the informational 

content extracted by the analysis reflects the representational content of the signal. Thus, 

successfully making an inference to the role a region plays on the basis of pattern 

classification requires, at least, that the information leveraged by the classifier is 

accessible to the brain or, more broadly, the organism. 

Neuroscientists are well aware of this limitation. Classifiers are known to be very 

powerful and researchers caution against drawing inferences from the particular decision 

metric that a classifier implements. This is because a classifier will leverage anything that 

permits it to make reliable predictions, including patterns in the data irrelevant to 

understanding the functioning of the brain (Anderson and Oates 2010). Tong and Pratte 

relate an illuminating case of a classifier achieving near perfect accuracy at predicting the 

experience of humour when a subject was watching a sitcom while in an MRI scanner 

(2012). A close inspection of the classification process revealed that several voxels in the 

data were located along the edge of a ventricle (ventricles are a hollow space in the brain 

filled with cerebrospinal fluid). Since the ventricles contain no blood, the BOLD signal 

there is zero. Thus, a voxel along the edge of a ventricle will display a significant change 

in BOLD signal value should the subject’s head move (even slightly), such as when 

stifling laughter. The classifier’s performance was due to a correlation between slight 

head motion, humorous stimuli and voxels that overlap with ventricles. This is why 

researchers use secondary analyses, such as the ROI selection procedure described above 
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and the searchlight procedure described in footnote ten. These procedures help limit the 

possibility of the classifier 'cheating', which in turn provides (some) validation for the 

assumption that the information in the signal leveraged by the classifier is accessible to 

the brain.    

2.5 The Strength of Multiple Analyses 

The analysis techniques discussed above support different types of hypotheses. The ROI 

selection procedure supports a hemodynamic hypothesis about the relationship between 

variation in the BOLD signal and variation in the task conditions. Pattern classification 

analysis is taken to support a theoretical hypothesis about the functional role played by 

parts of the brain in attentional processes. The difference in use reflects a difference in 

evidence. 

ROI selection identifies the portion of the data that can be explained in the context of the 

experiment. Pattern classification analysis identifies the task conditions that can be 

discriminated between on the basis of the fMRI data. The goodness-of-fit measure does 

not provide evidence that could support a claim about what task conditions can be 

discriminated between on the basis of the neuroimaging data. Likewise, the result of 

pattern classification analysis cannot support a claim about the quality of the data, or 

characterize which portion of the signal is modulated by the experimental manipulation. 

Indeed, that the classifier will leverage any correlation between task label and fMRI data 

suggests that it is particularly poorly suited to provide evidence in support of such a 

claim. The difference in evidence can be traced to a difference in the manipulations of the 

data. Through their different manipulations, the different techniques reveal different 

patterns. 

Using these analyses together strengthens the evidence provided by classification analysis 

with respect to the target theoretical hypothesis. The permutation test indicates the 

portion of the signal that can be explained in the context of the experiment. By using the 

results of that procedure to select features for the classifier, the investigators ensured that 

the patterns available to the classifier are only those contained in the portion of the signal 

that is modulated by the experimental task. While this does not guarantee that the 
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leveraged signal carries information that is accessible to the system, it ensures that the 

leveraged variations are at least relevant to the experimental manipulation. In this way, 

some of the confounds that might prohibit inferring from the result of classification 

analysis to the target theoretical hypothesis are controlled for by using multiple analyses 

in series.11 

The permutation test, when used to select a portion of the data for classification, provides 

validation for one of the problematic assumptions invoked by pattern classification 

analysis. Not only do these analysis techniques have different evidential targets, but 

brought together they provide stronger evidence for a theoretical hypothesis than either 

could alone. In this way, multiple analysis techniques that provide different perspectives 

on the same data and can strengthen the evidence produced in a single neuroimaging 

experiment. This is a kind of local robustness. 

Robustness has been used to defend experimental practice from critiques similar to those 

discussed here. Specifically, Collins’ experimenter’s regress proposes a vicious circle 

between experimental results and the techniques that produce those results. He argues 

that a technique is verified only when it produces correct data, but a technique is only 

known to produce correct data when it is verified (1985). The critiques raised against 

neuroimaging by van Orden and Paap, which form the foundation of skepticism towards 

the technology, are of a similar form. The main issue they identify is that subtraction 

analysis requires assuming that the brain can be subdivided into functional parts, which is 

the very claim the analysis result is taken to support. This is a localized case of the 

experimenter’s regress where the feature of scientific practice under scrutiny is not an 

instrument, but a data analysis technique. 

Philosophers have argued that, with respect to the experimenter’s regress, the epistemic 

situation is not as dire as Collins makes it out to be. Cartwright, for example, argues that 

                                                 

11 Although not all. I leave discussion of those details for future work as it is beyond the 

scope of this paper. 
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the regress is broken by the robust reproducibility of instrument results (1991). 

Confidence in the report of an instrument is justified when the measurement result aligns 

with results produced by a variety of instruments, each of which relies on independent 

assumptions (p. 451-452). Culp offers a more careful defense along the same lines 

(1995). She argues, via a detailed case study analysis of approaches to DNA sequencing, 

that experimentalists are convinced that measurements are getting at the same 

phenomenon when multiple measurement techniques, each with different theoretical 

presuppositions, produces a robust body of evidence (p. 441). 

Robustness is achieved when the same result is obtained by multiple, independent (or 

mostly independent) techniques (Wimsatt 1981). Robustness analysis involves 

determining the features of measurement or analysis techniques that are invariant under 

changes in the technique that might influence the result (Calcott 2011). Robustness is 

derived from the use of multiple independent approaches to detecting, isolating or 

measuring the same target. The independence of measurement results is characterized in 

terms of theoretical presuppositions required by the use of the instrument. These can also 

be understood as assumptions researchers must make about the production of the 

resulting data. Different instruments are independent insofar as they require different 

assumptions. The same can be said of different data analysis techniques. 

Data analysis techniques, because of the manipulations they impose on data, require 

investigators to make assumptions about the result. These assumptions, if true, justify 

interpretations of the result of the data manipulation or analysis procedure. Different 

techniques, as used to support different hypotheses, require different assumptions. 

However, there is a relevant difference between using multiple data analysis techniques 

as I have described, and the use of multiple measuring instruments to detect the same 

phenomenon. The robustness of a measurement outcome is improved when independent 

techniques produce the same result. A defense of neuroimaging against van Orden and 

Paap’s criticisms along these lines is offered by Roskies with her account of functional 

triangulation (2010b). Functional triangulation occurs when different analysis techniques 

produce the same result, and so generate a robust body of evidence. The situation I have 

described is different. 
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The techniques discussed above do not, and indeed cannot, provide the very same result. 

While the results of the analyses are not precisely the same, they are similarly aimed. The 

permutation test indicates the regions of the brain that may play a role in attentional 

processing, and the pattern classification analysis further clarifies that role. Thus, while 

they do not provide evidence in support of the very same hypothesis, the hypotheses they 

individually support are mutually supportive. The permutation test provides support for a 

hemodynamic hypothesis, and the subsequent analysis of the evidence revealed by that 

test using pattern classification analysis is brought to bear on a theoretical hypothesis. 

Insofar as this is a robust result, then, it might be regarded as a weakly robust result. 

Weak because the techniques do not have the same outcome.12 

In general, different data analysis techniques provide different perspectives on the same 

data, and the use of multiple analysis techniques together can strengthen the quality of 

evidence produced by a particular method or instrument. This can result in evidence that 

can support inferences that may not be warranted by the result of a single analysis 

technique or data manipulation. In this way, multiple analysis techniques used in series 

can provide experimental results a kind of local robustness. It is ‘local’ because the 

techniques ultimately depend upon each other. While the different perspectives are not 

fully independent, because one analysis technique is used as a pre-processing step for a 

subsequently applied technique, they still contribute to the robustness of the inference 

because different techniques reveal (and suppress) different patterns and rely on different 

assumptions. Their differences are what contribute to the strengthening of the evidence. 

The general lesson of the experimenter’s regress is that problematic assumptions can 

arise in the context of experimentation. The general lesson of the appeals to robustness is 

                                                 

12 This should not be cause for skepticism, at least not skepticism that is localized to the 

particular case of neuroimaging. There is reason to believe that any difference between 

measurement techniques can contribute to a difference in the phenomena probed by those 

techniques (see Sullivan 2009 for a discussion of this with respect to neurobiology). If 

this is true, then weak robustness is the norm for scientific knowledge. 
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that those assumptions can (sometimes) be validated by comparing different perspectives 

of the same subject. With respect to skepticism towards the use of neuroimaging data, I 

have argued that problematic assumptions, which arise from the use of particular analysis 

techniques, can be validated by using different data analysis techniques that require 

different assumptions. This provides the inference with a (weak) local robustness. 

2.6 Conclusion 

I have demonstrated that different data analysis techniques provide evidence for different 

phenomena and that multiple analysis techniques can be used together to improve the 

epistemic situation in neuroimaging research. Thus, the debate about the epistemic status 

of neuroimaging, which is framed in terms of the logic of subtraction, is at best an 

evaluation of the limitations of analysis techniques that depend upon that logic. Sweeping 

conclusions about the range of hypotheses that neuroimaging technology can and cannot 

be used to investigate are not supported by this literature. 

The argument presented above provides grounds for a mild optimism with respect to 

neuroimaging technology. That is, optimism that it can be used to do more than provide 

evidence about hypotheses specifying the relationships between BOLD activity and task 

performance. I leave identifying what specific hypotheses and phenomena neuroimaging 

technology can be used to investigate for future work, as completing this task will require 

a careful evaluation of a representative collection of the data analysis techniques and 

experimental strategies used in neuroimaging research. Given that different analysis 

techniques provide different evidence, the diversity of techniques used in neuroimaging 

research suggests that philosophers concerned with the epistemology of neuroimaging 

should focus their attention on evaluating the evidential quality and scope of particular 

analysis techniques (such as subtraction) and classes of analysis techniques (such as 

multivariate analyses). Such evaluations should take into account the specific theoretical 

goals they are put towards (functional localization, or tracking the content of neural 

representations, to name two). 

The general lesson here is that data analysis techniques play an important role in the 

generation of scientific evidence. Differences in the data analysis procedure used and 
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differences in how that procedure is implemented can make a difference to the range of 

phenomena that the result of the analysis is informative about. This is a feature of 

scientific practice in need of more careful philosophical attention. 

References 

Aktunç, E. M. [2014]: ‘Severe Tests in Neuroimaging: What We Can Learn and How We 

Can Learn It’, Philosophy of Science, 81, pp. 961-73.  

Anderson, M. L. and Oates, T. [2010]: ‘A critique of multi-voxel pattern analysis’, 

Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 

1511-16  

Ashby, F. G. [2011]: Statistical Analysis of fMRI Data. The MIT Press. 

Bogen, J. and Woodward J. [1988]: ‘Saving the Phenomena’, Philosophical Review, 97, 

pp. 303-52. 

Calcott, B. [2011]: ‘Wimsatt and the robustness family: Review of Wimsatt’s Re-

engineering Philosophy for Limited Beings’, Biology and Philosophy, 26, pp. 

281-93. 

Cartwright, N. [1991]: ‘Replicability, Reproducibility, and Robustness: Comments on 

Harry Collins’, History of Political Economy, 23, pp. 143-55. 

Collins, H. [1985]: Changing Order. London: SAGE Publications. 

Culp, S. [1995]: ‘Objectivity in Experimental Inquiry: Breaking Data-Technique Circles’, 

Philosophy of Science, 62, pp. 430-50. 

Davis, T. and Poldrack, R. A. [2013]: ‘Measuring neural representations with fMRI: 

practices and pitfalls’, Annals of the New York Academy of Sciences, 1296, pp. 

108-34.  

Dretske, F. [1981]: Knowledge and the Flow of Information. The MIT Press. 

Friston, K. J., Holmes, A. P., Price, C. J., Büchel, C., Worsley, K. J. [1999]: 

‘Multisubject fMRI Studies with Conjunction Analyses’, NeuroImage, 10, pp. 

385-96.   

Gardner, J. L., Sun, P., Waggoner, R.A., Ueno, K., Tanaka, K., Cheng, K. 2005: 

‘Contrast adaptation and representation in human early visual cortex’, Neuron, 47, 

pp. 607– 20.  

Good, I. J. [1983]: ‘The Philosophy of Exploratory Data Analysis’, Philosophy of 

Science, 50, pp. 283-95. 

Hardcastle, V. G. and Stewart, M. C. [2002]: ‘What do brain data really show?’, 

Philosophy of Science, 69, pp. S72-82. 

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai A., Scouten, J. L., and Pietrini, P. 

[2001]: ‘Distributed and Overlapping Representations of Faces and Objects in 

Ventral Temporal Cortex’, Science, 293, pp. 2425-30.  



57 

 

Huettel, S. A., Song. A. W., and McCarthy, G. [2008]: Functional Magnetic Resonance 

Imaging. 2nd ed. Sunderland, MA: Sinauer. 

Kass, R. E., Eden, U., and Brown, E. [2014]: Analysis of Neural Data. Springer-Verlag: 

New York. 

Klein, C. [2010a]: ‘Images are not the evidence in Neuroimaging’, British Journal for the 

Philosophy of Science, 61, pp. 265-78. 

Klein, C. [2010b]: ‘Philosophical issues in neuroimaging’, Philosophy Compass, 5, pp. 

186-98. 

Kriegeskorte, N. and Kievit, R. A. [2013]: ‘Representational geometry: integrating 

cognition, computation, and the brain’, Trends in Cognitive Sciences, 17, pp. 401-

12.  

Landreth, A. and Richardson, R. C. [2004]: ‘Localization and the new phrenology: A 

review essay on William Uttal’s the new phrenology’, Philosophical Psychology, 

17, pp. 107-23. 

Liu, T., Hospadaruk, L., Zhu, D. C., and Gardner, J. L. [2011]: ‘Feature-Specific 

Attentional Priority Signals in Human Cortex’, The Journal of Neuroscience, 31, 

pp. 4484-95. 

Logothetis, N. K. [2008]: ‘What we can do and what we cannot do with fMRI’, Nature, 

453, pp. 869-78. 

Martin, C. B., McLean, D. A., O’Neil, E. B., and Köhler S. [2013]: ‘Distinct Familiarity-

Based Response Patterns for Faces and Buildings in Perirhinal and 

Parahippocampal Cortex’, The Journal of Neuroscience, 33, pp. 10915-23.  

Mayo, D. [2005]: ‘Evidence as Passing Severe Tests: Highly Probably versus Highly 

Probed Hypotheses’, In P. Achinstein (ed), Scientific Evidence: Philosophical 

Theories and Applications, Baltimore: John Hopkins University Press, pp. 95-

127. 

McIntosh, A., Lobaugh, N., Cabeza, R., Bookstein, F., and Houle, S. [1998]: 

‘Convergence of neural systems processing stimulus associations and 

coordinating motor responses’, Cerebral Cortex, 8, pp. 648–59. 

McIntosh, A. R., Bookstein, F. L., Haxby, J. V., and Grady, C. L. [1996]: ‘Spatial pattern 

analysis of functional brain images using Partial Least Squares’, Neuroimage, 3, 

143–157. 

Misaki, M., Kim, Y., Bandettini, P. A., and Kriegeskorte, N. [2010]: ‘Comparison of 

multivariate classifiers and response normalizations for pattern- information 

fMRI’, NeuroImage, 53, pp. 103-18.   

Nichols T. E., and Holmes A. P. [2002]: ‘Nonparametric permutation tests for functional 

neuroimaging: a primer with examples’, Human Brain Mapping, 15, pp. 1–25. 

Poldrack, R. [2010a]: ‘Subtraction and Beyond: The Logic of Experimental Designs for 

Neuroimaging’, in M. Bunzl and S. J. Hanson (eds), Foundational Issues in 

Human Brain Mapping, The MIT Press, pp. 147-60. 



58 

 

Poldrack, R. [2010b]: ‘Mapping mental function to brain structure: How can cognitive 

neuroimaging succeed?’, Perspectives on Psychological Science, 5, pp. 753-61.  

Roskies, A. [2010a]: ‘Neuroimaging and Inferential Distance: The Perils of Pictures’, in 

M. Bunzl and S. J. Hanson (eds), Foundational Issues in Human Brain Mapping, 

The MIT Press, pp. 195-216. 

Roskies, A. [2010b]: ‘Saving Subtraction: A reply to Van Orden and Paap’, British 

Journal for the Philosophy of Science, 61, pp. 635-65.  

Sullivan, J. [2009]: ‘The multiplicity of experimental protocols: A challenge to 

reductionist and non-reductionist models of the unity of neuroscience’, Synthese, 

167, pp. 511-39.  

Tong, F., and Pratte, M. S. [2012]: ‘Decoding Patterns of Human Brain Activity’, Annual 

Review of Psychology, 63, pp. 483-509. 

Uttal, W. [2001]: The New Phrenology, The MIT Press. 

Uttal, W. [2011]: Mind and Brain: A Critical Appraisal of Cognitive Neuroscience, The 

MIT Press. 

van Orden, G. C., and Paap, K. R. [1997]: ‘Functional Neuroimages Fail to Discover 

Pieces of Mind in Parts of the Brain’, Philosophy of Science, 64, pp. S85-94. 

Wimsatt, W. [1981]: ‘Robustness, Reliability, and Overdetermination”, in Re-

Engineering Philosophy for Limited Beings, pp. 43-74. 



59 

 

Chapter 3  

3 The Interpretation of Neuroimaging Data as 
Explanations of Data Patterns 

 

3.1 Introduction 

Debates about the inferences neuroscientists make on the basis of neuroimaging data 

have persisted in the philosophical literature amidst significant changes in the methods 

and techniques used in the field (e.g., van Orden and Paap 1997; Uttal 2001; Klein 2010). 

In addition to their skeptical conclusions, these arguments are similar in a number of 

respects. The neuroimaging data discussed consists in measurements of blood 

oxygenation levels and is used to investigate cognitively relevant neural activity. The 

indirect relationship between the measured data points and the targets of inference is 

taken by some skeptics to be sufficient grounds for sweeping skepticism about the status 

of these claims (e.g., Aktunç 2014a). These arguments also share an approach to 

evaluating the inferential limitations of neuroimaging data. Skeptics tend to examine the 

evidential relationship between the results of data analysis techniques, such as subtraction 

and more recently pattern classification analysis (PCA), and the phenomena that 

neuroscientists deploy those techniques to investigate. That is the localization of 

cognitive functions and claims about neural representations respectively. The analyses 

provided by the skeptics make explicit the logic implicit in the use of the techniques, and 

argue that treating the results of subtraction as evidence for localization claims 

(Hardcastle and Stewart 2002), or PCA results as evidence for claims about neural 

representations (Ritchie, Kaplan and Klein forthcoming), is viciously circular, or 

otherwise invalid. 

Debates about the claims neuroimaging data can provide evidence for, and the best 

methods for pursuing this research also occur between cognitive neuroscientists. For 

instance, multivariate pattern analysis (MVPA) is a relatively new collection of analysis 

techniques that are often used to evaluate what information is carried in, or represented 
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by, neural activity (Tong and Pratte 2012; Haxby 2010). Cognitive scientists have 

criticized this use of MVPA methods by pointing out that changes in blood oxygenation 

are indirectly related to neural activity, limiting the strength of inferences that can be 

made (de-Wit et al 2015), and by clarifying how variations in the analysis process 

contribute to the obtained results (Anderson and Oates 2010; Misaki et al 2010). These 

concerns parallel those raised by skeptics. They draw out inferential challenges that 

follow from the indirectness of the data, and examine how the particulars of the data 

analysis processes used to investigate specific claims and hypotheses should influence the 

inferences made on the basis of the analysis results. They diverge from the skeptical 

arguments in their conclusions. 

Where skeptics often recommend conservative interpretations of the data, insisting for 

example that inferences should be restricted to claims about the relationship between 

behaviour and blood oxygenation levels (Aktunç 2014a), neuroscientists continue to use 

these data to make claims about the relationship between the brain and cognition. Indeed, 

there has been a steady increase in the use of MVPA and claims about representations in 

the brain. This is at least in part because MVPA techniques are regarded as useful for 

investigating new questions and hypotheses, including questions about the content and 

structure of representations in the brain, but also because neuroscientists continue to work 

to improve their use (see Haxby et al 2014). While there are debates about the inferential 

limitations of these techniques as noted above, most of the contributions to these 

discussions are made by investigators who rely on them in their own research. 

Neuroscientists and skeptics disagree about the implications of well-known challenges 

with the use of neuroimaging data as evidence for particular kinds of claims. Other 

contributions to the philosophical literature suggest two reasons for this disagreement: (1) 

skeptical accounts overlook epistemically relevant details of the practice, and (2) some 

philosophical approaches to evidence in science do not capture what is epistemically 

good about the results of data analysis techniques as applied to neuroimaging data. 

Like the skeptical arguments, the defences of neuroimaging research that resist them are 

similar. They each point out that the critics have, in some manner or another, 

mischaracterized the research process. This includes (a) focussing on rarely used 
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statistical methods (Machery 2014 on Klein 2010), (b) simplifying the analysis processes 

considered (Landreth and Richardson 2004 on Uttal 2001), (c) failing to consider 

supplementary evidence (Roskies 2010 on van Orden and Paap 1997), and/or (d) 

overlooking the diversity of analysis processes used to evaluate neuroimaging data 

(Wright forthcoming on Aktunç 2014a). The general lesson here is that, while there may 

be value in explicating the inferential limitations of specific analysis techniques, it is 

important that these limitations are not taken to reflect limitations of neuroimaging 

research as a whole, or even the limitations of a given neuroimaging data set. No matter 

how central they appear to be to an empirical investigation, even powerful data analysis 

procedures like pattern classification analysis do not comprise the full evidential base for 

inferences in neuroimaging research (see Roskies 2010 and Wright forthcoming in 

particular). 

Separately from the debate over the efficacy of neuroimaging research, Jim Bogen uses 

inferences in neuroimaging research to argue against the adequacy of Jim Woodward 

(2000) and Deborah Mayo’s (1996) accounts of evidence in experimental science. This 

argument shows that some philosophical approaches to examining inferences in 

neuroimaging research are ill suited for addressing questions about the evidential value of 

the data with respect to the claims neuroscientists use it to support. Mayo and 

Woodward’s views locate evidential value in the ability to account for errors and produce 

data that are accurate with respect to the content of the claims the data are used as 

evidence for. Identifying, eliminating and reducing the impact of errors is certainly an 

important part of the interpretation of neuroimaging data. This is the role that many data 

analysis techniques perform, including the tools of inferential statistics and the data 

manipulations used to eliminate artifacts, reduce noise, and amplify signal. However, this 

is not the only contribution that data analysis techniques make to this process, and 

treating it as such leads to systematically undervaluing neuroimaging data. Indeed, 

Mayo’s account is at the heart of a recent contribution to the skeptical tradition that 

argues that neuroimaging data's value is fundamentally limited because the techniques 

used to analyze it, such as subtraction, do not constitute tests with sufficiently stringent 

error-characteristics (Aktunç 2014a; 2014b). 
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Orthogonal to the skeptical literature, Bogen argues that this should not be taken to 

reflect a failure of inferences in neuroimaging research, but instead taken as a problem 

for Mayo and Woodward’s accounts of evidence. The problem, Bogen argues, is that 

neither account fully captures the evidential value of neuroimaging data (Bogen 2002). 

His argument turns on the observation that “... what is epistemically good about 

functional images is not that they are highly accurate with regards to [biological 

indicator] levels or locations of individual brains” (p. S65), and further that the purpose 

of manipulating imaging data is not to “... bring error-ridden, [biological indicator] 

estimates recognizably closer to what would have resulted from ideal experiments 

shielded from significant sources of error” (p. S65). Bogen's proposal is that we should 

“… think of functional images as perfectly accurate, error free representations of the 

anatomy and cognitively significant [biological indicator] of highly idealized, imaginary 

brains” (p. S67). On this view, the epistemic value of the functional image is determined 

by the degrees of resemblance between the idealized brain it portrays and the real brains 

it is used to make claims about. The images need not be accurate in every respect, but 

only in those respects that are relevant given the hypotheses under investigation (p. S68-

9). 

While Bogen focusses on neuroimages, which are one product of data analysis in 

neuroimaging research, a similar argument could be made for MVPA techniques like 

pattern classification analysis. The purpose of these techniques is not to better 

approximate the results of an ideal experiment — such as one directly measuring the 

representationally-relevant dimensions of neural activity — and so analyses of the 

evidential value of neuroimaging data cannot treat them as such. The problem with the 

skeptical literature is not just that skeptics ought to include more details about the 

practice in their analysis, but that their approach to evaluating the inferences made in 

neuroimaging research may itself need revision. The aim of this paper is to argue for a 

new approach to examining inferences in neuroimaging research that is sensitive to the 

epistemic role data analysis techniques actually play in those inferences. 

My first step towards this is methodological. Instead of examining the logical structure of 

particular inferences, I examine how data analysis techniques are used to arrive at those 
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inferences in the first place. In doing so I focus on the data interpretation process in 

which scientists use data analysis techniques to assess the evidential relations that hold 

between the data at hand and a claim, and not the product of that process — which is an 

inference, or judgement of evidential value. This work is informed by my experience 

collaborating with neuroscientists, both as a lab member and as a collaborator (e.g., 

Martin et al 2015). This experience is what made clear to me that analyses of the 

structure of inferences from data to claims must be complemented by an examination of 

the processes and assumptions that scientists use to navigate and engage with the 

challenges that complicate those inferences. 

Inspired by Bogen's view on the epistemic value of neuroimages, in what follows I show 

how data patterns are in general inferentially limited and yet valuable as evidence for the 

claims neuroscientists regularly infer. A conceptual framework that is adequate with 

respect to the actual practice of data interpretation in neuroscience must provide an 

account of how the limited evidence provided by data patterns could be accumulated into 

evidence sufficiently strong to justify the claims inferred. Julian Reiss’s pragmatic 

account of evidence provides a good starting point for articulating the aspects of this 

process (2015). In applying it I argue that the account of evidential accumulation Reiss 

proposes is inadequate in the case of neuroimaging research. I argue instead that this 

process has an explanatory character, and appeal to I.J. Good’s work on exploratory data 

analysis to draw a parallel between the process of interpreting neuroimaging data and the 

processes of exploratory data analysis (1986). 

I proceed as follows: in section 2, I provide an overview of neuroimaging experiments 

and outline three challenges with using neuroimaging data as evidence in cognitive 

neuroscience. In doing so I identify an apparent tension in the use of data analysis 

techniques to assess the evidential value of neuroimaging data. In section 3, I diffuse this 

tension by looking more closely at pattern classification analysis (PCA) and the 

relationship between its results and claims it is used to investigate. By distinguishing 

between claims about data, claims about phenomena, and the evidential relations that can 

hold between data and such claims, I show how the inferential limitations of data analysis 

techniques outlined in section 2 do not undermine their usefulness in assessing the 
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evidential value of neuroimaging data. In section 4, I argue that the strength of evidence 

that a data set provides for a claim is a function of the explanatory relation that holds 

between the claim and each of a variety of data patterns isolated by different analysis 

techniques or variations of a single technique. I conclude in section 5 with reflections on 

further questions raised by this account. 

3.2 Neuroimaging Experiments 

Neuroimaging experiments13  are used to learn about the relationship between brain 

activity and cognitive functioning in humans. The research that I will focus on involves 

the use of functional magnetic resonance imaging (fMRI) to measure changes in the ratio 

of oxygenated to deoxygenated hemoglobin in the brain, called the BOLD (blood 

oxygenation level dependent) signal, as a subject performs a variety of cognitive tasks 

(see Ashby 2011 for an introduction). Experiments involve placing a human subject in a 

magnetic resonance imaging scanner while they perform a cognitive task, such as 

attending to a rotating pattern of dots (Liu et al 2011), or deciding whether or not an 

image is one they saw in a previous part of the experiment (Martin et al 2013). While the 

participant performs the task, the scanner, using a functional scanning protocol, measures 

changes in blood oxygenation throughout their brain. The resulting data set is used as 

evidence for claims about the relationship between brain activity and cognitive 

processing. This includes claims about the role regions play in cognition, such as the 

claim that the hippocampus is involved in memory (e.g., Greicius et al 2003), and claims 

about the information carried or represented in neural signals, such as claims that the 

content of memories can influence their maintenance (e.g., Kim et al 2014). The first 

                                                 

13 The discussion of experimental practice I provide is only as detailed as required for the 

discussion that follows. It is informed by a variety of accounts of experimental practice 

(Hacking 1983; Bogen and Woodward 1988; Mayo 1996; Woodward 2000; Sullivan 

2009), and accounts of scientific data (Hacking 1983; Rheinberger 2011; Leonelli 2015). 

For broader perspectives on experimentation in science Hans Radder’s volume The 

Philosophy of Scientific Experimentation (2003) is an excellent place to start. 
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claim is an example of a ‘localization claim’, since it attributes a cognitive role to a 

particular region, network or part of the brain. The second claim is an example of what I 

will call a ‘representational claim’, since it is about the information carried in, or 

represented by, patterns of brain activity (in this case, the content of memories). 

Skeptics tend to emphasize two challenges for these inferences: (1) neuroimaging data 

consists in measures of blood oxygenation and behaviour, and thus cannot be used to 

reliably make inferences about neural activity and cognitive processes (Aktunç 2014a; 

2014b); and (2) the techniques used to analyze neuroimaging data require investigators to 

make assumptions that undermine the inferences those techniques are used to support 

(Hardcastle and Stewart 2002; Ritchie, Kaplan and Klein forthcoming). The first of these 

challenges is often supported by an argument from underdetermination. The indirect 

nature of the data, combined with the complex interconnectedness of neural systems, 

ensures that there are a large number of viable alternative claims that the results of a 

neuroimaging experiment are consistent with. This is regarded as sufficient grounds for 

suspicion (Mole and Klein 2010; Klein 2012; Aktunç 2014a). The second challenge 

usually accompanies a logical analysis of the use of a popular data analysis technique, 

such as subtraction or pattern classification analysis. These analyses identify assumptions 

implicit in the operation of the techniques, or the most common interpretations of their 

results, that undermine the inferences either because the assumptions are likely to be 

false, or worse make the inference viciously circular (van Orden and Paap 1997; Uttal 

2001; Hardcastle and Stewart 2002; Ritchie, Kaplan and Klein forthcoming). 

As noted above, arguments against these skeptics tend to identify epistemically relevant 

aspects of the data interpretation process that skeptics deemphasize, overlook or fail to 

take into account. While these are grounds for denying the conclusions, skeptics arrive at, 

the skeptical views are not without merit. Even if their conclusions are not warranted 

because they overlook a relevant aspect of the practice they criticize, they still identify 

genuine inferential challenges characteristic of neuroimaging research. These are the 

challenges that investigators must somehow overcome if they are to justifiably infer, for 

example, representational claims, on the basis of data produced in a neuroimaging 

experiment. An adequate account of the interpretation of neuroimaging data must identify 
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how these challenges originate, and how the interpretation process engages them. The 

aim of this section is to address the first requirement, while the remainder of the paper 

addresses the second. 

I have divided this section into two parts: data production and data interpretation 

(following Woodward 2000). The primary reason for this is pragmatic, as doing so makes 

it easier to locate the origins of the challenges noted above and identify a tension in the 

use of data analysis techniques to address them. To this end, I use data production to refer 

to any and all processes by which investigators assemble, produce or access a collection 

of data for the purpose of learning about one or more target phenomena. Data 

interpretation, on the other hand, refers to the processes investigators engage in to assess 

the evidential value of the produced data with respect to claims about the phenomena of 

interest. The product of data interpretation is an inference from the produced data to one 

or more claims about phenomena. 

3.2.1 Data Production 

Data production in neuroimaging research involves collecting data about structural 

features of participant’s brains, changes in brain activity, and details about each 

participant's behaviour during the experiment. This comes in the form of three distinct 

data sets: structural, functional and task data. These data sets are used together to make 

claims about the features and anatomical origins of cognitively relevant brain activity and 

the cognitive processes, states, functions or capacities that are correlated with that 

activity. 

Structural data are obtained using a magnetic resonance imaging scan. This data set 

captures information about anatomical features of the scanned brain such as the shape of 

regions, the size and location of folds (sulci and gyri), and the division between grey 

matter (areas mostly consisting of neuron cell bodies) and white matter (areas mostly 

consisting of axons). 

Functional data are collected using scanning protocols that measure the ratio of 

oxygenated to deoxygenated hemoglobin in small ‘pieces’ of the brain. The pieces that 
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the scanner divides the brain into are called voxels, which are typically 2 to 3 mm 

cubes.14 A functional scan measures the ratio of oxygenated to deoxygenated hemoglobin 

within each voxel. This is called the BOLD, or blood oxygenation level dependent, 

signal. 

Task data consists in features of the task, stimuli parameters, and measurements of task 

performance. Task data are used to identify the cognitive functions, states and processes 

engaged by the participant during the experiment. This data consists in measurements of 

externally accessible behaviours that are used to make claims about cognitive processes 

internal to the subject that are themselves not directly detectable. In this way, the data are 

indirectly related to the phenomena that they are used to make claims about. Steps are 

taken in the production stage to overcome this limitation and provide opportunities for 

addressing it during the interpretation stage. 

Investigators design tasks to target specific cognitive states or processes and use 

behavioural measures to detect instances of those states or processes. For example, in an 

experiment where participants must attend to one of two overlapping gratings, the 

investigators may require participants to press a button when the grating they are 

attending to changes in size. By controlling when each grating changes in size the 

behavioural data can be used to accurately classify each instance of the task (Kamitani 

and Tong 2005). Task parameters are also used to discriminate between instances of 

cognitive processes. For example, the properties of a field of dots can be varied in order 

to contrast attention-to-colour with attention-to-motion (Liu et al 2011). Typically, a 

                                                 

14 The relatively new 7-Tesla scanners have more powerful magnets than the 3.5-Tesla 

scanners that have become the standard for neuroimaging research. 7T scanners, since the 

increase in field strength increases the signal, allow for functional scans with voxels as 

small as 0.7mm cubes. The increase in signal, however, calls for new methods to analyze 

the data. Work is ongoing to understand how 7T measurements compare with the results 

of weaker scanners, and for the sake of simplicity I will not discuss them here (e.g., 

Seiger et al 2015). 
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combination of behavioural measures, properties of the stimuli, and task demands are 

used to control, and later evaluate, what cognitive processes are engaged by subjects 

during an experiment. 

Like task data, functional data are also indirectly related to the causal factors that give 

rise to the phenomena they are used to investigate. This is one of the central challenges 

with using neuroimaging technology to investigate the relationship between cognitive and 

neural processes. The fact that access to information about neural activity is mediated 

through measures of the BOLD signal places limits on the specificity of the claims that 

BOLD signal data can support about neural activity. For instance, it is known that “[t]he 

fMRI signal cannot easily differentiate between function-specific processing and 

neuromodulation, between bottom-up and top-down signals, and it may potentially 

confuse excitation with inhibition” (Logothetis 2008, p. 877). That is to say, there is a 

number of functionally distinct neural activation patterns that can give rise to a given 

BOLD signal measurement. This fact is often noted by critics of inferences made on the 

basis of neuroimaging data (e.g., Klein 2012; Aktunç 2014a). 

Compounding the challenge arising from the indirect relationship between the data and 

phenomena is the growing body of evidence showing that observed localized change in 

brain activity, say in the hippocampus, could be the result of any of a number of possible 

upstream activities. This is because a number of the brain regions have connections that 

feed into the hippocampus, and any of those — or a combination of them — could be 

responsible for the observed change. This has been identified as an inferential challenge 

by skeptics (Klein 2012), and neuroscientists (Marder 2015). This adds to the number of 

claims that a given result might support, further amplifying the underdetermination of 

inferences in neuroimaging research that was already high due to the indirect nature of 

the data. 

A well-designed experiment is one that is capable of producing data that has the potential 

to recommend accepting or rejecting the hypothesis it was produced to investigate. 

However, a data set does not, merely by its production, provide evidence for or against 

any particular hypothesis or claim. When the data is in hand investigators must make a 
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judgement about which claims the data provides evidence in favour of, and which claims 

they provide evidence against. To make such an assessment is to make a judgement of the 

evidential value of the data with respect to a number of claims about phenomena. Thus 

begins the stage of data interpretation. 

3.2.2 Data Interpretation 

Assessing the evidential value of neuroimaging data requires investigators to analyze and 

manipulate it. Scientists working with neuroimaging data are well aware of the 

limitations discussed above, that is the indirect nature of the data and the implications of 

the interconnectedness of brain systems. To determine whether or not a given data set 

provides evidence for or against a target claim, investigators manipulate the data. While 

there are data manipulations, referred to as ‘pre-processing steps’, whose primary 

function is to eliminate errors in the data (see Poldrack, Mumford & Nichols 2011, Ch 3, 

p. 34-50), the techniques skeptics emphasize in their critiques are not amongst these 

procedures. Techniques like subtraction, and pattern classification analysis, perform a 

distinct epistemic role. Instead of correcting for errors, they are used to directly assess the 

evidential value of the data set with respect to specific claims. Localization claims in the 

case of subtraction, and claims about representations in the case of pattern classification 

analysis. 

Take pattern classification analysis (PCA) as an example. PCA involves training a 

machine learning classifier to correlate BOLD signal measurements with either task 

conditions (such as ‘dots rotating clockwise’ or ‘dots rotating counterclockwise’), or 

cognitive processes (such as ‘attending to rotating dots’ or ‘attending to counter-

clockwise rotating dots’). Then, the classifier is provided with BOLD signal data and 

assigns a label to it. When the classifier’s accuracy at labelling the functional data is 

significantly above chance investigators interpret this as showing that information in the 

BOLD signal permits the discrimination of the task conditions or cognitive processes the 

classifier was trained to label (as in Haxby et al 2001; Kamitani and Tong 2005; Liu et al 

2011; Martin et al 2013; Sandberg et al 2014). PCA results are often treated as evidence 

for claims about information in or carried by brain activity (Norman et al 2006), an 

inference that philosophers have recently criticized for assuming that the ability to decode 
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a signal is directly informative about the information carried in that signal (Ritchie, 

Kaplan and Klein forthcoming). Concerns about what can be inferred from the results of 

PCA are echoed in the scientific literature (Anderson and Oates 2010; Davis and 

Poldrack 2013; de-Wit et al 2015). 

This points towards a tension in the use of data analysis techniques to find patterns in the 

data that are informative about specific hypotheses or phenomena. On one hand, tools 

like PCA are necessary for assessing the evidential value of neuroimaging data with 

respect to claims about phenomena that are indirectly related to the measured data points 

— representational claims in particular. Without techniques for identifying patterns in the 

data that are informative about the target phenomenon, neuroimaging data are at best 

useful for studying the relationship between blood oxygenation levels and behaviour. On 

the other, the use of these techniques introduces assumptions into the inference from the 

data to the target claim — assumptions that have been identified as threats to the validity 

of those inferences (van Orden and Paap 1997; Hardcastle and Stewart 2002; Anderson 

and Oates 2010; Davis and Poldrack 2013; Ritchie, Kaplan and Klein forthcoming). 

Even with knowledge of these challenges, neuroscientists continue to regard 

neuroimaging data as a valuable source of evidence for claims about the informational 

content of brain activity, and the relationship between the brain and cognition more 

generally (Haxby et al 2014). In the rest of this paper I examine the process of data 

interpretation neuroscientists typically engage in, and identify how that process is 

sensitive to these challenges. Data analysis techniques like PCA play an important role in 

this process, and accounting for their contribution requires diffusing the apparent tension 

in the use of data analysis techniques to interpret neuroimaging data. This is the task of 

the next section. 

3.3 Data and Evidence 

The indirect relationship between the data and phenomena they are used to investigate 

make it necessary to manipulate the data in order to assess their evidential value. 

However, the techniques used to do so appear to rely on, or invoke, assumptions that can 

undermine the resulting inferences to claims about the target phenomenon. In this section 
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I diffuse this apparent tension. Doing so requires distinguishing between kinds of claims 

about phenomena that arise as part of the data interpretation process, and also 

distinguishing between two evidential relations that can hold between evidence and a 

claim. Making these distinctions shows how techniques like pattern classification 

analysis are unable to provide sufficient evidence to justifiably infer representational 

claims, and yet can be useful for assessing the evidential value of the data they are 

derived from with respect to such claims. I begin with an overview of pattern 

classification analysis. 

Pattern classification analysis (PCA) is a multivariate analysis technique that is used to 

examine the informational content of brain activity (Norman et al 2006; Haxby 2014). 

The results of PCA indicate the extent to which it is possible to use one set of 

experimental variables to predict the values of another. The procedure of implementing 

PCA has four major steps: (1) feature selection, (2) classifier selection, (3) training, and 

(4) testing. 

Feature selection involves identifying a portion of the functional data set to be used in the 

pattern classification analysis. Feature selection is driven by considerations of the 

hypothesis or claim of interest, and ideally picks out data points that are most likely to be 

informative about that target. Features may be selected by their anatomical location (Liu 

et al 2011), by their responsiveness to particular task conditions (Martin et al 2013), a 

mixture of these factors, or by a stochastic procedure (Etzel et al 2013). Classifier 

selection involves selecting, or programming, the machine learning classifier that will be 

used in the analysis. Both pragmatic considerations and features of the hypotheses and 

data sets are relevant for selecting a classifier. For instance, a Gaussian Naive Bayes 

classifier is better for procedures that need to be repeated may times since it can be 

trained faster than others, while Support Vector Machines tend to work best when there 

are only two experimental conditions that the classifier has to select between (Pereira, 

Mitchell and Botvinick 2009; Pereira and Botvinick 2011). 

With features and a classifier in hand, the subset of data picked out by the feature 

selection process is divided into two portions, one for training and one for testing. The 
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functional data in the training set are provided to the classifier along with labels of the 

task or cognitive process it is associated with. During training the classifier develops a 

decision procedure, based on correlations between BOLD signal patterns and the labels 

that it will use to label novel data. Finally, the labels are removed from the portion of the 

data that it was not trained on and the classifier assigns labels to these data according to 

its decision procedure. The assigned labels are compared against the true labels and the 

accuracy of the classifier is calculated. The accuracy of the classifier during the testing 

phase is the primary output of this analysis procedure. 

The primary advantage cited for using PCA, and MVPA methods more generally is that 

they can be used to ‘decode’ the neural signals (Norman et al 2006; Kriegeskorte, Mur 

and Bandettini 2008; Tong and Pratte 2012). Some advocates of the method go so far as 

to claim that MVPA techniques have “… allowed researchers to access the contents of 

thoughts in considerable detail” (Haynes 2012, p. 30). Others recommend restraint in 

treating the results of PCA and similar techniques as ‘reading off’ the neural code 

(Anderson and Oates 2010; Davis and Poldrack 2013). Even the cautious, however, still 

regard the technique as useful for investigating claims about the content of 

representations in the brain, at least when the methods of analysis and interpretation are 

appropriately tempered by considerations of their limitations (Etzel et al 2013; Davis et al 

2014; Haxby et al 2014). 

MVPA techniques like PCA are often advocated for on the grounds that they bring “... 

fMRI investigation closer to investigating the codes for how functions are represented in 

neural population responses…” (Haxby 2010, p. 56). PCA techniques allow for a ‘closer 

look’ insofar as they are sensitive to smaller variations in the BOLD signal than other 

methods of analysis, not because they 'pick out' the representations directly (Haxby 2010, 

p. 57). MVPA methods, of which PCA is an example, are sensitive to different kinds of 

variations in the data than the subtraction methods that originally dominated the research 

literature. In particular, they are sensitive to multidimensional effects that cannot be 

detected by techniques like subtraction. This increased sensitivity comes at a cost, as 

there are some patterns subtraction and other univariate methods are better suited for 

highlighting (Davis and Poldrack 2013). 
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Inferring, on the basis of successful classification, a claim about the content of a 

representation in the brain, has been a recent target of criticism in the philosophical 

literature (Ritchie, Kaplan and Klein forthcoming). The interpretation objected to is 

treating significant classifier accuracy as “… strong evidence that the information is 

represented by the patterns of activity used as the basis for the decoding” (p. 8). Such an 

inference starts from a successful classification result, which establishes that the 

functional data contains sufficient information to predict the task labels, and from there 

concludes that this information is available to the classifier because it is represented in 

the brain activity underlying the BOLD signal measurements. 

This inference, the authors argue, is undermined by a ‘fundamental methodological issue’ 

with classification techniques (p. 9). The problem is in assuming that the classifier uses 

the same information carried by, encoded in, or represented by the neural activity 

underlying the BOLD signal to label the novel data. However, classifiers are known to 

rely on any available correlations to make their predictions, and their performance is 

influenced by a number of decisions made in the course of the analysis. For example, the 

particular classifier (Misaki et al 2010), the method used to select data points for 

classification (Pereira, Mitchell and Botvinick 2009), and the timing windows that the 

functional data are divided into (Kohler et al 2013), can all influence classification 

accuracy. 

It is on these grounds that Ritchie and colleagues conclude that “[a]t best, MVPA-based 

decoding shows that information about experimental conditions is latent in neural 

patterns. It cannot show that this information is used, or is even usable, by the brain” (p. 

15-6). In a footnote, they argue that this argument retains its force even if the inference 

were adjusted, and classification results are taken to be weak (as opposed to strong) 

evidence for claims about representations (p. 16). Classification accuracy is insufficient, 

on its own, to warrant any claim about representations. 

This exemplifies the tension noted in the previous section: PCA is used because it is 

regarded as informative about the content of representations in the brain, but the way the 

analysis technique is applied and the decisions made in its implementation conspire to 
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undermine its value as evidence for claims about representations in the brain. If the 

function of these techniques is to ‘close the gap’ between the data and target phenomenon 

by approximating the results of measurements of the relevant casual factors, then it would 

be fair to treat the classification results as the evidence upon which claims about 

representations are inferred. This account of their epistemic role mischaracterizes the 

contribution analysis techniques like PCA make to assessments of the evidential value of 

the data. 

PCA allows investigators to determine if a task or cognitive processes can be predicted or 

classified via variations in the functional data15. Even considering the assumptions and 

challenges noted above, accurate classification is informative insofar as it demonstrates 

that information is available in the functional data. While PCA results cannot justify an 

inference to a claim about representations, they can be used to justifiably infer a claim 

that ‘pattern-variations in the BOLD signal permit reliable discrimination of task 

conditions X, Y and Z’, which is a claim about what the classifier has shown to be 

possible. This inference is not disputed by Ritchie and colleagues. They object to the 

further inference from these results to a claim about representations. The first step 

towards diffusing the tension in this use of data analysis techniques is to distinguish 

between the kinds of claims data analysis results can, on their own, justify and those they 

cannot. 

The assumptions involved in PCA prohibit the analysis results from justifying 

representational claims, but claims about the information contained in the data are within 

reach. The first of these claims is a claim about the phenomena that the data were 

produced to evaluate, while the second is a claim about a regularity in the data — that is 

the information about task labels available from measures of BOLD signal activity. The 

                                                 

15 This has been referred to as a ‘reverse inference’, a practice that has only come to be 

viewed as possible with the development of MVPA techniques (compare Poldrack 2006; 

2011). 
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targets of these claims map roughly onto what Uljana Feest calls ‘hidden’ and ‘surface’ 

phenomena (2011). 

According to Feest, surface phenomena are “... equated with empirical data patterns that 

are either found in the world or created in the lab…” and hidden phenomena are “... more 

removed from particular regularities…” (p. 63). Surface phenomena occur as data 

patterns, while hidden phenomena are indicated by, and so are more removed from, the 

data. This distinction tracks the difference between claims about the discriminability of 

task conditions, which are justified by patterns in the data, and claims about 

representations, which are distant from the data and are not justified by the results of any 

particular data analysis procedure. Multiple analysis procedures, or multiple data 

patterns, are the required evidence for claims about hidden phenomena. If not evidence 

that justifies an inference to claims about hidden phenomena, then what contribution do 

techniques like PCA make to assessments of data’s evidential value with respect to those 

claims? 

An inference from data to a claim is a judgement of the evidential value of the data, but 

not all assessments of evidential value conclude with an inference. For instance, Sabina 

Leonelli, in a discussion of the processes involved in accessing and using data from a 

shared repository, notices that scientists first judge the relevance of the data, then the 

strength of evidence it provides for or against the hypotheses they are interested in 

(2009). More generally, Julian Reiss’ pragmatic account of evidence recognizes these 

judgements as reflecting different evidential relations that can hold between a body of 

evidence and a claim (2015). 

Reiss argues for a theory of evidence16 that provides “... criteria and guidelines that 

translate between knowledge of the facts relevant to a hypothesis and judgements about 

                                                 

16 The account of evidence briefly discussed here is intended for evaluating evidence in 

situations that are not ‘epistemically ideal’. This is certainly the case in neuroimaging 
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the hypothesis” (p. 343). He refers to these as ‘supporting evidence’ and ‘warranting 

evidence’ respectively. Supporting evidence is evidence that a fact, data set or source of 

information is relevant for evaluating a hypothesis or claim. Supporting evidence can be 

directly or indirectly related to a claim. A result directly supports a hypothesis when the 

result is predicted by the hypothesis, and indirectly supports it when the result is 

incompatible with one or more alternative hypotheses (p. 347). Warranting evidence, or 

warrant, is grounds for inferring that a given hypothesis or claim is true (p. 342-3). 

Applying this distinction to the results of PCA diffuses the apparent tension in its use. 

PCA aids the assessment of the evidential value of the data with respect to 

representational claims by providing supporting evidence for those claims. The support is 

provided via the claim about the data that is warranted by the PCA results. The kind of 

support provided depends on the details of the experiment. Direct support requires that 

the evidence, the claim about the data in this case, is predicted by the claim about the 

target phenomenon. Indirect support requires the claim about the data to be consistent 

with the target claim and inconsistent with a number of alternative claims about the 

phenomenon. I briefly consider examples of each. 

On the minimal assumption that at least some differences in representations in the brain 

are “… represented by different patterns of neural firing…” (Norman et al 2006, p. 425), 

the claim that ‘region y represents cognitive dimension x’ predicts that differences in 

brain activity in region y can be used to discriminate between cognitive states that vary 

along dimension x. For example, it has been proposed that pattern classifier accuracy 

could be used to identify candidates for neural correlates of consciousness (Sandberg et al 

2014). The logic behind this is that neural activity representing the content of an 

experience will be more consistently correlated with that experience, and so the BOLD 

activity correlated with that activity should permit more accurate and consistent 

                                                                                                                                                 

 

research where causal factors of interest cannot be intervened upon, and the data points 

measured are indirectly related to the phenomena of interest. 
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classification of a participants' awareness of stimuli (p. 4). In such a case, high classifier 

accuracy would provide direct support for a claim about neural correlates of 

consciousness, as the target claim about phenomena predicts a claim about data. That is, 

classification accuracy will be high for regions where candidate neural correlates occur. 

The first use of pattern classification techniques in neuroimaging research provides an 

example of indirect support (Haxby et al 2001). In that paper, Haxby and colleagues used 

PCA to argue that object representations in the hippocampus are distributed throughout 

the region and not localized to specific areas such as the ‘parahippocampal place area’ or 

‘fusiform face area’. They use PCA to show that the brain activity could be used to 

discriminate the object categories of stimuli with high accuracy even when the data from 

the specialized sub-regions is excluded from the analysis. This result is consistent with 

the distributed representation hypothesis and inconsistent with the localized 

representation hypothesis. In this way the classifier’s performance provides indirect 

support for the distributed processing claim. 

By providing supporting evidence, directly or indirectly, for representational claims 

pattern classification analysis is able to assist in the assessment of the evidential value of 

neuroimaging data with respect to those claims. This is consistent with arguments that 

PCA results are unable to justifiably warrant such claims. While this accounts for the 

contribution that data analysis techniques make to the interpretation of neuroimaging 

data, it is not sufficient to explain how such inferences could justifiably be made. 

Fortunately, multiple data analysis techniques are used to assess the evidential value of 

neuroimaging data (e.g., Wright forthcoming). Each individual technique at best provides 

supporting evidence for claims about the target (hidden) phenomena, and only justifies 

claims about the data (or surface phenomena). For the inferences that the data 

interpretation process results in to be justified, the process must be such that identifying 

and interpreting a number of data patterns ‘adds up’ to warrant. Doing so requires the 

process to be sensitive to the other line of skepticism: the underdetermination due to the 

indirect nature of the data and complexity of the system under investigation. 
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3.4 Explaining Data Patterns 

The data patterns that are the result of a data analysis technique are inferentially limited. 

They provide warrant for claims about the data, reflecting surface phenomena, but merely 

support claims about the hidden phenomena that are the targets of investigation. In 

practice, multiple techniques and variations on those techniques are used to assess the 

evidential value of neuroimaging data. What remains to be shown is how these results 

can elevate the data set they are derived from to the status of warranting evidence. Put 

another way, by what process of reasoning are the claims about the data inferred from 

data analysis results brought to bear on the target claim about phenomena? 

Warrant, on Reiss’ view, is a feature of a diverse body of evidence that includes both 

direct and indirect support. Crucial to this process is the rejection of alternatives, which is 

provided by indirect support (p. 357-8). As Reiss notes, rejection of alternatives is a 

judgement, and supporting evidence at best recommends a decision, but cannot decisively 

rule out all possible alternatives (p. 354). Reiss identifies a number of pragmatic criteria 

that scientists rely on when such judgements come into conflict. These include the effect 

size, study characteristics and political, social and economic considerations (p. 355-6). 

While enumerating pragmatic criteria is useful for explicating the factors that contribute 

to a given inference that is the product of an assessment of evidential value, it leaves 

unspecified the details of the reasoning process by which such judgements are arrived at. 

This is especially true in the context of criticisms of neuroimaging research, where the 

underdetermination of claims about phenomena challenge the adequacy of assessments of 

the warrant of claims based on neuroimaging data. 

For example, Christopher Mole and Colin Klein argue that inferences from neuroimaging 

data often mistakenly treat consistency with a claim as evidence for that claim (2010, p. 

101). They argue that the mere consistency of data and a hypothesis is insufficient 

grounds for inferring, assenting to or believing the hypothesis in question because 

consistency does not entail that alternatives are ruled out, and it is only by ruling out 

alternatives that hypotheses are confirmed (Mole and Klein 2010, p. 100). This is in line 

with Reiss’ pragmatic account of evidence, which puts the weight of warrant on how 

much direct support there is for the alternatives ruled out by the indirectly supporting 
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evidence (2015, p. 359). Unfortunately, the indirect nature of neuroimaging data and the 

causal complexity of neural and cognitive systems ensure that viable alternatives appear 

easy to come by. 

Mole and Klein argue that aspects of neuroimaging data provide ample space for 

constructing viable alternatives to an inferred claim. These include appealing to details of 

the experiment not explicitly considered in the interpretation (2010, p. 105), varying the 

parameters of analysis procedures (p. 108), and adopting alternative background theories 

(p. 109). Even if the details and conclusions of this argument are not aligned with the 

practice17, they raise an important challenge for inferences in neuroimaging research. 

Pragmatic criteria of the form Reiss proposes will not be sufficient for addressing this 

challenge, as they do not address what appears to be a persistent underdetermination of 

the inferences. A comparison with the severity requirement in Mayo’s error-statistical 

account of evidence is suggestive of what is missing from the story so far (1991; 1996; 

Mayo and Spanos 2010). 

The severity requirement states that, where T is a statistical test, e is an experimental 

outcome or data set, and H is a hypothesis or hypothetical claim, “[p]assing a test T (with 

e) counts as a good test of or good evidence for H just to the extent that H fits e and T is a 

severe test of H” (1996, p. 180). In other words, the evidential value of data with respect 

to a claim is a function of the severity of the relationship between the data, a claim and 

the testing procedure that connects them. Severity is not an all-or-nothing feature of a 

test. Instead, it can be improved by eliminating alternatives, testing assumptions of the 

statistical models, and identifying sources of experimental error — all of which are 

                                                 

17 Mole and Klein’s argument is specifically based on the logic of null-hypothesis 

statistics testing, which has been shown to be more sophisticated than their treatment of it 

(Machery 2014), and may also make the error of treating data patterns as evidence for 

claims about phenomena, which, if it happens in experimental practice, is rare (Roskies 

2010; Wright forthcoming). 
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procedures that can be conducted independently of the primary test whose severity is 

being evaluated (also see Mayo 1991; Mayo and Spanos 2011). 

Like Reiss’ account, the severity principle recognizes the importance of ruling out 

alternatives and accumulating evidence. Unlike Reiss’ account, it situates the ‘test’, or 

more generally the reasoning process by which the evidential relation is assessed, as a 

necessary component of the criteria for evaluating the resulting inferences. What’s 

missing, then, is an account of the reasoning process neuroscientists engage in when they 

assess the degree of warrant a neuroimaging data set provides for a claim about the 

phenomenon it was produced to investigate. To aid in articulating that process I briefly 

consider an example. 

3.4.1 Representations in Parahippocampal Cortex 

Martin and colleagues used pattern classification analysis to bring neuroimaging data to 

bear on claims about the content of memory representations in subregions of the 

hippocampus. At the time this paper was published, the received view was that PhC’s 

contribution to memory was representing episodic contextual information. Contrary to 

this view, these authors argue that “… parahippocampal (PhC) cortex does not only 

represent episodic context but can also represent item information for some object 

categories in recognition-memory decisions” (Martin et al 2013, p. 10915).18 

The particular memory phenomenon they are interested in is familiarity, which is often 

distinguished from recollection. A recollection is a memory of an object that includes 

contextual details of the encounter, while familiarity is a memory of an object absent 

such contextual details. That is, a ‘feeling’ that an object is familiar, without explicit 

memory of what else occurred in the previous encounter with the object that is being 

remembered. 

                                                 

18 The study also examines representations in other regions in the medial temporal lobe 

(MTL), but for the sake of space I focus on only one claim. 



81 

 

To investigate memory representations in PhC, they use a two stage experimental task. In 

the first stage, participants are presented with images of faces, chairs and buildings, and 

have to decide for each if it was attractive, comfortable or valuable respectively (p. 

10916). This stage is conducted outside of the scanner. In the second stage, participants 

are placed in an MRI scanner and functional data are collected while they perform a 

recognition memory task. They are presented with images from each category (face, chair 

and building), some of which they had seen in the first stage, and some of which are 

novel. For each image, they rate their familiarity with the item on a scale of 1 (least 

familiar) to 4 (most familiar). A separate response option allows participants to indicate if 

they recollect contextual details associated with the feeling of familiarity so that these 

data points can be excluded from the analysis. 

There are two aspects to the claim that the regional activity contains category-specific 

memory representations. That is, the representations are both category-specific and 

influence memory. To assess if the data so produced warrants the target claim, they use 

pattern classification analysis to address two central questions. The first is to “… 

determine whether distributed patterns of activity in any of the [medial temporal lobe] 

structures examined could reliably distinguish between the stimulus categories” and the 

second is to “… examine whether distributed patterns of activity could be identified that 

reflected a memory signal, ie. differences between familiar and novel stimuli, for each 

stimulus category” (p. 10917). The first question addresses the category-specificity, and 

the second the influence on memory. Notice that neither question is a question about the 

phenomena per se, but questions that pertain to patterns in the data. These questions are 

informed by consideration of the phenomena under investigation, the design of the 

experimental task, and are formulated as questions that can be addressed using a pattern 

classification method. 

To address the first question, a classifier is trained to label the stimulus category of the 

objects based on the functional data. To ensure that the underlying signal could not be 

associated with memory the analysis includes only data from the novel trials. The 

resulting pattern shows that the classifier performs above chance at labelling the object 

category using data from the regions of interest (p. 10918). This result is reinforced by 
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pair-wise classification analysis for each region and each pairing of the categories 

(buildings vs chairs; buildings vs faces; faces vs chairs). These patterns show classifier 

accuracy is above chance at discriminating between any pair of categories in PhC (p. 

10919). This together is taken to be “… evidence for category specific representations…” 

in PhC. The patterns isolated by these analyses are restricted to novel trials, and so they 

do not assist in determining the evidential status of the data with respect to the memory 

aspect of the central claim. 

To address the second question, the classifier is trained to label each trial as low (1 or 2) 

or high familiarity (3 or 4). Classification is then performed for each object category. The 

resulting patterns show that activity in PhC could be classified by familiarity rating only 

for buildings and chairs, but not for faces (p. 10919). These results, together, support the 

claim that PhC represents category information for buildings and chairs in the context of 

memory judgements. 

Examining this set of three patterns suggests an alternative explanation for the result. 

Specifically, “… above-chance classifier performance … [could be] based on a common 

familiarity signal” (p. 10920). That is, while there is evidence for category relevant 

information, the results up to this stage provide no evidence that the information is 

actually category-specific. It could be that the familiarity signal is shared across 

categories, it is not ‘chair’ or ‘building’ specific but instead reflects a category-

independent feature of the stimuli in a manner that the classifier can leverage to label the 

data. To address this possibility, they use a cross-classification analysis. This involves 

training the classifier to label the data as familiar or novel within one category, then 

testing it on data for a different category. If the information permits category 

discrimination but is not category-specific, then the classifier should perform above 

chance in cross-classification. Just as the decision to use PCA in the first place is guided 

by the target phenomena, here too the decision to perform a cross-classification analysis 

is guided by the search for a pattern that would be explained by only one of the candidate 

claims. In the end, the cross-classification test result supports the claim that the 

information is category-specific, as when the classifier is trained on building data it fails 

to reliably label chair data and vice versa (p. 10920). 
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These patterns (and others I have not discussed) are taken to justify the judgement that 

the data are evidence for the claim that PhC represents object-category information in the 

context of memory judgements. Notice that it's not a single classifier result, but a 

collection of them, that provides warranting evidence for the claim. The process of 

incorporating diverse analysis results into a broader interpretation of the data is driven by 

attempts to explain the analysis results in terms of claims about phenomena. This 

includes a search for patterns that provide evidence that the data are relevant for 

addressing the question, further patterns to work towards developing a clear answer to 

questions relating to the target claim, and patterns specifically for the purpose of ruling 

out alternative explanations for the set of patterns isolated up to that stage. Treating the 

reasoning process involved in assessments of neuroimaging data as explanatory provides 

the resources necessary to weaken the threat of underdetermination. 

3.4.2 Towards the Best Explanation 

I. J. Good's discussion of the reasoning process involved in exploratory data analysis is, 

perhaps surprisingly, a good fit for capturing how data analysis results contribute to 

assessments of the evidential value of neuroimaging data. Good argues that exploratory 

data analysis involves manipulating the data to highlight specific features and suppress 

others (1986, p. 290). The aim of exploratory analysis is to identify patterns in the data 

that are potentially explicable, then to formulate hypotheses about those patterns and 

improve those by examining other patterns in the data (p. 291). When a plausible 

explanation for a pattern is identified, the data analyst examines the residuals of the 

pattern to evaluate the plausibility of the offered explanation. The residuals are the 

portions of data that were set aside, or suppressed, by the manipulations used to arrive at 

the original pattern. The same is true of the interpretation of neuroimaging data. 

The investigators in the case discussed above chose to use PCA because of its potential to 

isolate patterns in the data that could be explained by the target phenomenon. The 

patterns are regarded as potentially explicable in terms of claims about representations in 

part because the form of patterns that obtain indicates which of the claims under 

consideration are likely to be true. Once a number of patterns are isolated, explaining 

them leads investigators to notice alternative explanations not controlled for in the data 
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production process. The potential availability of these alternatives threatens the 

plausibility of the offered explanation, and so they isolate and examine other patterns in 

the data to rule out alternatives. All of this was done while actively considering the 

experimental protocols involved in the production of the data, the manipulations 

implemented by the classifier, and the overall aim of the research project. 

The judgement that neuroimaging data warrants a claim about a phenomenon is justified 

when the claim can be shown to be the best (available) explanation for the data. This is 

established by isolating patterns in the data that are explicable in terms of the claims 

under consideration. Warranted claims are those that explain the collection of isolated 

data patterns, while also taking into account the procedures of data production and 

manipulations that together produced each data pattern. Claims about data provide useful 

scaffolds for this reasoning process, as claims about phenomena can sometimes be used 

to formulate claims about data in the form of a prediction, and because claims about data 

are, unlike the abstract data patterns that justify them, more susceptible to explanations. 

An inference in neuroimaging research is warranted not only by the structure of the body 

of evidence that the accumulated data patterns provide, but also to the degree that the 

claim inferred is regarded as the best explanation of the data patterns isolated in the 

process of interpretation. This provides some resistance against straightforward 

underdetermination arguments such as that offered by Mole and Klein. There are, as 

Mole and Klein notice, a variety of decisions made in the process of producing and 

analyzing neuroimaging data, and any given decision may be the cause of an observed 

data pattern. However, data patterns are not considered in isolation of the rest of the 

experimental context, and so alternative hypotheses based on isolating one or another 

decision point as critical and mistaken are not likely to be serious threats to the inferences 

scientists make. Alternatives, to be viable threats to an inference, must be as good of an 

explanation of the total set of patterns explained by the claim under scrutiny. 

Furthermore, where alternatives are threats, as in the case considered above with respect 

to the possibility that the familiarity signal is shared across categories, it is sometimes 

possible to rule them out, or at least address them, by analyzing the data further. One way 

this is done is by articulating the data patterns predicted by the viable alternative that can 
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be isolated with the available tools of data analysis, and conducting the relevant analyses. 

If those patterns are not found, the once-viable alternative can no longer be regarded as 

sufficient to explain the collected data patterns. 

Explanations are valuable because they are easier to communicate and conceptualize in 

terms of claims about phenomena than statistical facts, or raw data. Their function is 

heuristic, and not necessarily truth conducive. In this regard, I am sympathetic to Andrea 

Woody’s recent work on explanation in science, in which she argues that explanations are 

“… genuinely important to the proper functioning of science, but it is a worker bee, 

rather than … a shiny bauble proudly displayed in the aftermath of scientific activity, or 

… a mysterious seer pointing us toward a yet undiscovered truth” (2015, p. 86). On her 

view, philosophical inquiry into explanations ought to begin by asking what roles they 

play in science. Here, I have argued that they are used in making judgements about the 

evidential value of data. 

3.5 Conclusion 

Treating the process of data interpretation as explanatory allows the well-known 

challenges associated with using neuroimaging data to be reconciled with the continued 

enthusiasm for their potential. Data analysis techniques are used to isolate patterns in data 

that are explicable in terms of the target claim. Insofar as these claims are consistent with 

claims about phenomena they are evidence that the data set they are about is relevant to 

consider in evaluations of those claims. As more patterns are isolated, investigators 

attempt to explain the collection of patterns in terms of claims about the target 

phenomena. Neuroimaging data are judged to warrant a claim about the relationship 

between brain activity and cognition to the extent that such a claim explains the 

collection of data patterns isolated in the process of its interpretation. This process 

weakens threats of underdetermination due to the indirectness of data and complexity of 

the system because a viable alternative cannot simply explain a single pattern, but must 

account for at least as many of the patterns as the claims inferred from the data explain. 

If the purpose of isolating a data pattern is to arrive at a form of evidence that is 

interpretable by a human investigator, as Good argues, then an important contribution to 
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the epistemology of neuroimaging research would be to examine how the process of data 

analysis can lead well-intentioned investigators to misinterpret the resulting pattern. 

Treating this process as explanatory suggests that what is required is an account of what 

criteria neuroscientists do (and ought) to use in evaluating competing explanations of data 

patterns. This is particularly important given current trends in neuroimaging research. 

New data analysis techniques are continually in development and, especially with the 

rising popularity of multivariate methods, each is more complex and sophisticated than 

the last. While new analysis techniques certainly constitute a form of progress, this 

progress is regarded with caution by many members of the neuroscientific community. 

Concerns raised include a trade off in computational sophistication and deeper 

understanding of the material objects under investigation, that is brains (Marder 2015), 

and inferential risks that are associated with an increase in analytic flexibility within a 

scientific community which can lead to an increase in false positive rates (Carp 2012). 

Proposals for improving the epistemic status of neuroimaging research promote sharing 

data and sharing algorithms (Poldrack et al 2017), and include a demand for pre-

registration of research plans (Munafò et al 2017). The explanatory treatment of data 

interpretation argued for above suggests that the success of these models and research 

strategies will depend on how they interact with the criteria communities, and individual 

researchers, use to assess the adequacy, or ‘bestness’, of explanations of data patterns. 

Engaging with concerns about analytic flexibility, the differential expertise with respect 

to the computational and material aspects of neuroscience, and the promise and 

challenges with reproducible neuroscience are important and valuable areas for 

philosophical inquiry. As these issues are timely, philosophical contributions could have 

a direct impact on the trajectory of cognitive neuroscience. These impacts, however, are 

only possible to the extent that philosophical analyses are sensitive to the relevant details 

of the practice, and how the procedures that compose that practice contribute to its 

outcomes. I offer the account provided here as one way to approach such an analysis. 
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Chapter 4  

4 Meta-Analyses and Brain Mapping 

 

4.1 Introduction 

Cognitive neuroscience, broadly understood as the study of the relationship between the 

brain and cognition, has seen a significant increase in the volume and complexity of data 

produced over the last two decades. The rapid growth of subfields and steady increase in 

the sophistication and power of tools for the production and analysis of data has added to 

existing concerns about the effectiveness of the knowledge produced in cognitive 

neuroscience. The high volume of published results makes it difficult for investigators to 

stay aware of current trends even within their own subfield (Yarkoni et al 2011; Silva, 

Bickle and Landreth 2013). Indeed, the isolation of areas of research, which are 

organized around investigations of particular regions of the brain, or particular cognitive 

functions, has been flagged as a possible cause for the lack of critical discussions about 

the adequacy of popular brain mapping strategies (e.g., Price and Friston 2005). 

Additionally, neuroscientists are increasingly aware of the limitations of neuroimaging 

experiments, which, due to practical constraints, have low statistical power and are 

unable to support generalized claims about the relationship between brain activity and 

cognitive functioning (Lieberman and Cunningham 2009; Costafreda 2011; Poldrack et al 

2017). In light of these challenges, philosophers and neuroscientists have identified large-

scale meta-analyses as a promising method for making progress in cognitive 

neuroscience (e.g., Yarkoni et al 2011; Klein 2012; Silva, Bickle & Landreth 2013; 

Anderson 2015; Sullivan 2017). 

Meta-analyses are already being used to address a number of barriers impeding progress 

in neuroimaging research. These challenges range from the low statistical power of 

inferences, to concerns about the validity of concepts used to theorize about cognitive 

processes and states (Yarkoni et al 2011; Anderson 2015). The effectiveness of a meta-

analysis is partly tied to the volume and diversity of data that it operates over. Thus, the 
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push for bigger, more powerful and more robust meta-analyses is one of the primary 

motivations behind the development and maintenance of repositories of neuroimaging 

data, such as NeuroSynth (Yarkoni et al 2011), BrainMap (Laird 2011), NeuroVault 

(Gorgolewski et al 2015), openfMRI (Poldrack et al 2013) and even a database of meta-

analysis results, ANIMA (Reid et al 2015). 

Philosophical work on the epistemic impacts of and conditions necessary for data sharing 

and data repositories to promote knowledge generation shows the importance of 

community coordination and collaboration (e.g., Leonelli and Ankeny 2012; O’Malley 

and Soyer 2012; Leonelli 2016). Recent work on the prospects of meta-analyses and large 

repositories of neuroimaging data indicates that cognitive neuroscience presently lacks 

sufficient coordination of the methodological and conceptual practices necessary to 

promote knowledge generation through data sharing (Sullivan 2017). Complementing 

concerns about the need for community coordination and organization, here I argue that 

research practices themselves must change with the uptake of meta-analysis tools and 

widespread use of shared data sets. 

If not accompanied by changes in the practices and standards that inform and direct the 

analysis and interpretation of data, easy access to large-scale meta-analyses could lead to 

the production of apparently justified, but likely misleading theories and hypotheses. To 

make this argument I examine a recent dispute over the evidential significance of meta-

analysis results between well-intentioned users of the NeuroSynth database, a data set 

made by the automated extraction of reported findings from published neuroimaging 

studies, and the lead developer. I argue that the dispute reflects a difference in the 

methods of analysis and interpretation favoured by the investigators, as well as a different 

understanding of the implications of data manipulations used to synthesize data drawn 

from diverse sources. The inferential and analysis errors the database users make 

indicates an inadequacy in the approach to data interpretation that they take. Their 

approach is sound in the context of neuroimaging research, but likely to be mistaken 

when applied to the analysis of a data set made from the synthesis of a diverse collection 

of neuroimaging results. If it is to be epistemically advantageous, the development and 

uptake of data repositories and the large-scale meta-analyses they make possible must be 
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accompanied by the development and uptake of research practices adequate for the 

analysis and interpretation of diverse data sets. 

I proceed as follows: in section 2 I begin by outlining some of the problems meta-

analyses and repositories of neuroimaging data are expected to solve. In section 3 I 

briefly discuss challenges for meta-analyses that follow from current research practices 

operative in neuroscience. In doing so, I raise the possibility that changes in research 

practices may be necessary if meta-analysis techniques and data repositories are to 

succeed at resolving the problems outlined in the second section. In section 4 I review a 

dispute over the interpretation of meta-analysis results, emphasizing the factors that direct 

the use and interpretation of the shared dataset and contribute to the persistent 

disagreement between participants in the dispute. In section 5 I argue that research 

practices in cognitive neuroscience need to be adapted in order for meta-analyses and 

data repositories are to promote genuine progress. 

4.2 Meta-Analyses, Databases and their Promise 

Cognitive neuroscience, and neuroimaging research in particular, faces a number of 

practical, theoretical and structural barriers to progress. These problems include the 

inability of neuroimaging experiments to provide evidence that can support generalizable 

claims about the relations between brain activity and cognitive states, and the rapidly 

increasing volume of publications in the primary literature. Aggregating data from 

disparate experiments into accessible repositories, and providing meta-analysis tools to 

evaluate their evidential significance, are expected to address these barriers to the 

production of knowledge from the results of neuroimaging experiments. 

Functional magnetic resonance imaging (fMRI), is used to measure the ratio of 

oxygenated to deoxygenated hemoglobin in small pieces of the brain (called voxels, 

which are typically 2 to 3 mm cubes). This is called the BOLD (blood oxygenation level 

dependant) signal, and it is used as an indirect measure of neural activity. A change in the 

BOLD signal within a voxel occurs when the oxygenation needs of cells in that voxel 

change. As neural activity increases, the neurons (and other cells) will require more 

oxygenation and so the BOLD signal will change. Neuroimaging data are collected while 
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a human participant performs cognitive tasks. Tasks are designed to require participants 

to engage specific cognitive processes, such as memory or attention, or experience 

specific cognitive states, such as a feeling of familiarity or pain. The resulting data set 

consists in BOLD signal measurements that are correlated with the performance of 

specific cognitive tasks. 

Investigators go to great lengths to ensure that only the cognitive processes of interest are 

reflected in an experimentally produced data set. Such a data set may be useful for 

identifying the origin and character of the brain activity sufficient for the implementation 

of the particular cognitive states or processes of interest, but is unable to substantiate 

claims about the general function performed by the brain region or network. This 

problem is at the heart of discussions about the evidential value of neuroimaging data for 

reverse inferences, which involve attributing cognitive states or processes on the basis of 

observed patterns of brain activity (see Poldrack 2006, 2011; Klein 2012; Machery 2014; 

Glymour and Hanson 2016). 

Neuroimaging data showing, for example, a correlation between the experience of pain 

and activity in the dorsal anterior cingulate cortex (dACC), cannot warrant the 

corresponding reverse inference claim that if ‘a subject’s dACC is active, then they are in 

pain’. The central problem with the reverse inference claim is that brain regions19 could 

also be activated by a variety of different cognitive tasks and processes. Data originating 

from a neuroimaging experiment correlating pain and dACC activity, on their own, 

cannot substantiate claims about reverse inferences because such a data set does not 

reflect a sufficiently diverse collection of cognitive states and processes. For instance, in 

                                                 

19 While there is hope that network-analyses may be able to resolve this problem (e.g., 

Klein 2012), there is evidence that network activity also stands in a many-to-many 

relationship with cognitive processes (see Pessoa 2014 and Horwitz 2014 for a relevant 

discussion). For this reason, while I focus this discussion on brain regions and areas, it is 

likely that the same concerns and challenges will also apply to network-based 

approaches. 
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addition to pain, experimental data have correlated dACC activity with executive control 

(Carter et al 1999), emotion (Etkin et al 2011), and salience (Menon and Uddin 2010). 

Thus, an observation of dACC activity, at best, warrants a claim that one, or some 

combination of, these cognitive states or processes are active. 

The problems with reverse inferences are barriers to achieving a larger theoretical goal of 

cognitive neuroscience: mapping the relationship between brain activity and cognitive 

processes, states and capacities. Currently competing theories of the relationship between 

brain activity and cognition propose everything from one-to-one mappings in which each 

brain activity pattern has an associated cognitive process or state, to many-to-many 

mappings in which activity patterns and cognitives states have a complex relationship. 

These theories have similar evidential requirements that neuroimaging experiments fall 

short of providing. Evidence for claims about the relationship between brain activity 

patterns and cognitive processes must include evidence that the cognitive process of 

interest is associated with a brain activity pattern, called a forward inference, and that the 

brain activity pattern indicates the engagement of the cognitive process, or evidence for 

the corresponding reverse inference (Price and Friston 2005; Klein 2012; Anderson 

2015). While consulting the broader literature, as briefly done above, may be the obvious 

solution to this problem, the steadily increasing volume of primary research findings 

makes that approach less feasible by the day. 

Even relatively narrow subfields, such as research on ‘visual working memory’— which 

is a particular subcategory of working memory, which is a specific category of explicit 

memory — can produce over 800 publications in one year (based on a pubmed search of 

articles published in 2014). The same is true of research relevant to claims about the 

functional role of discrete brain regions (almost 8000 articles were published on the 

hippocampus in 2014, one of the most widely studied regions of the brain. At least 1100 

of those publications include fMRI data). The volume of literature directly relevant to any 

given research question is only part of the problem. These searches only capture studies 

that explicitly report the data and findings as relevant to understanding memory or the 

function of the hippocampus. Countless other studies in the literature may include data 

patterns and correlations linking hippocampus activity and other cognitive process, and 
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even hippocampus activity and various memory processes, that go unreported because the 

hippocampus was not the region of interest in those studies. 

The aggregation of data into central repositories, and the meta-analyses they make 

possible, are expected to provide a way through these obstructions. The hope is that, by 

performing meta-analyses on large collections of neuroimaging data, the statistical power 

of results will increase, false positives can be identified (Lieberman and Cunningham 

2009; Yarkoni et al 2011; Costafreda 2011), the current status of hypotheses and theories 

can be established beyond the boundaries of specific research projects pursuing them 

(Silva, Bickle, Landreth 2013), an evidential base that can be used to evaluate 

generalizable claims about brain-cognition relations will become available (Price and 

Friston 2005; Kober and Wager 2010), and patterns in data relevant for evaluating 

theories beyond those the data produced to evaluate may be discovered (Van Horn and 

Gazzaniga 2013). Most of the advantages meta-analyses are purported to have over 

individual experiments rests on the diversity of the data they operate on. This is the 

feature that is supposed to allow neuroscientists to move away from claims restricted to 

the occurrences in laboratories and towards generalizable theories of the brain’s 

contribution to the realization of cognitive capacities. 

By combining data from multiple experiments each using different task manipulations, 

meta-analyses accommodate a diverse range of cognitive functions (Reid et al 2015; 

Poldrack and Gorgolewski 2015). This makes it possible to evaluate if a pattern of brain 

activity, or the activation of a specific area of the brain, is consistently associated with a 

given cognitive process, and to determine if it is specific to one cognitive process or if it 

is also associated with other cognitive processes. To do this is to assess the consistency 

and specificity of the relationship between a pattern of brain activity and a cognitive 

process or state. That is, to evaluate the evidential support for both forward and reverse 

inference claims (Kober and Wager 2010). Providing a data set and analysis tools that 

can support claims about forward and reverse inferences is one of the aims of the 

NeuroSynth's database (see Yarkoni et al 2011). 
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NeuroSynth data are curated by an algorithm that scans articles published in journals it 

can parse and extracts peak-activation coordinates from tables in those articles. Peak 

activation coordinates are the X-Y-Z coordinates in a brain atlas at which investigators 

measured the greatest level of activation in their study. A text-analysis of the abstract is 

used to label the coordinates. All terms (a term is a word or word pair) in the abstract that 

occur in a sufficient number of other abstracts in the database are assigned as labels 

(examples include ‘pain’, ‘language’, ‘magnetic’, ‘task’, ‘working memory’ and 

‘cingulate’). The result is a collection of peak activation coordinates labelled by words 

that appear in the abstract of the article the coordinates were extracted from. NeuroSynth 

also includes a number of automated meta-analysis tools, making it relatively easy to 

conduct meta-analyses of the represented literature. 

These tools provide forward and reverse inference maps correlating terms and activation 

coordinates. A forward inference map highlights coordinates that are more likely to be 

reported in articles that are labelled by a given term than in articles that are not labelled 

by the term. For example, if you were to randomly select a ‘pain’ study, the coordinates 

indicated on the forward inference map for ‘pain’ are likely to be amongst the peak 

activation coordinates reported in the study. A reverse inference map highlights terms 

that are more likely to be reported in articles reporting the given co-ordinates as active 

than in articles without. If you were to select a random study that reported activity in a 

coordinate shown in the reverse inference map, it is likely that the study would have the 

label you ran the analysis on. 

Meta-analyses and data repositories together can help address the practical challenge of 

canvassing an ever-growing literature by providing tools that can expedite and guide the 

literature review process. This is one of the functions of NeuroSynth, which is expected 

to “... accelerate progress in cognitive neuroscience through greater formal synthesis of 

the rapidly growing primary literature” (Yarkoni et al 2011, p. 489). NeuroSynth not only 

aggregates data, but allows users to group and identify published research by similarities 

in terminology, or by similarities in reported peak activity co-ordinates. More 

sophisticated meta-analytic tools for collecting research outputs and providing automated 

guidance on future research are on the horizon. One example is the Network of 
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Experiments (NEX) framework presented by Silva, Bickle and Landreth (2013). The 

NEX uses graph-theoretic representations of neuroscientific research to evaluate the 

strength of evidence supporting claims about causal relations between cognitive 

phenomena. While there are reasons to be skeptical that the NEX framework will 

catalyze a revolution in neuroscience in the way the authors imagine (see Klein 2014), it 

is another example of the conviction that meta-analytic tools will propel neuroscience 

(and neuroimaging) forward by enabling the automated synthesis, search and 

classification of evidence available in the literature. 

Whether or not these tools can succeed at achieving these goals depends on how they are 

received and used by the neuroscience community. In the next section I briefly review a 

number of challenges for the efficacy of meta-analyses that follow from concerns about 

the current state of experimental practice in neuroscience. I then raise it as a possibility 

that some of the conditions that have established some of the problems that they are 

supposed to resolve, are also barriers to the capacity of meta-analyses to resolve those 

very problems. In the following sections, by analyzing the factors contributing to a 

dispute over the evidential significance of NeuroSynth data, I argue that research 

practices must be adapted to the differences between synthesized data sets and the 

experimentally produced data they are derived from for meta-analyses to succeed at 

improving the knowledge producing capacity of cognitive neuroscience. 

4.3 Challenges for Meta-Analyses 

The cultivation of a diverse data set, made by combining data produced in different 

experiments each aiming to better understand distinct cognitive phenomena, is what 

enables meta-analyses to provide support for hypotheses about the relationship between 

cognitive processes and brain activity that are generalizable beyond the few cognitive 

states represented in a single, experimentally produced, data set. However, the 

differences between data sets that are the source of strength for meta-analyses may also 

be a potential weakness if research practices, and specifically approaches to the analysis 

and interpretation of data, are not adapted to account for the limitations and features of 

the data sets that result from the synthesis of disparate data. 
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Research programs in cognitive neuroscience are typically aimed at providing evidence 

for theories about the role played by regions, or networks, of the brain and specific 

cognitive capacities. Different investigators working in different laboratories are likely to 

use different task parameters, and even different tasks, to study what they consider to be 

the same phenomenon (i.e., ‘working memory’, ‘cognitive control’, or ‘pain’). 

Inconsistencies due to variations in research methods and the use of terminology, 

especially across subdomains, are recognized as a barrier to the effective integration of 

data. For instance, Poldrack and colleagues note that ‘working memory’ has at least three 

distinct meanings in the literature (Poldrack et al 2011). This makes it challenging to 

combine data together with the aim of, for instance, conducting a meta-analysis on 

research related to working memory. The situation is complicated by the common 

treatment of tasks as equivalent to the cognitive constructs that they are used to study. 

Tasks typically require participants to perform a number of different cognitive processes 

to complete them, including the process investigators are interested in. Treating a task as 

equivalent to a psychological construct invokes assumptions about the cognitive 

strategies participants use to complete the task. The assumptions weaken the inferences 

drawn on the basis of the data, as they are rarely justified. The inconsistent use of 

terminology and treatment of tasks and constructs as equivalent makes it “… difficult to 

draw meaningful inferences from existing literature and limits the cumulative value of the 

knowledge represented in this literature” (Poldrack et al 2011). Furthermore, these 

problems are a recognized challenge for the integration of data in the neurosciences 

(Turner and Laird 2012; Sullivan 2017, p. 1-3). 

The terminological ambiguity noted above is not just due to different communities of 

researchers using similar terms for different purposes. It is also due to the widespread 

disagreement over the best explanations for cognitive phenomena, and the conceptual 

resources necessary for understanding these phenomena. This is reflected in the structure 

of the Cognitive Atlas, a wiki-inspired knowledge base, which, it is hoped, will provide a 

framework for clarifying current descriptions of phenomena. One valuable feature of the 

Atlas is its wiki-like structure which allows for disagreements about the meaning and 

empirical basis for terms to be captured and discussed. This is important in a field where 
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“there is precious little consensus … regarding the basic units of mental function” 

(Poldrack et al 2011). 

This lack of consensus reflects more than disagreements over the correct theory of 

cognition. It can be traced to the inconsistent use of conceptual terminology across tasks 

(Figdor 2011), and to variations in the experimental protocols used to realize phenomena 

in experiments (Sullivan 2009 discusses analogous challenges in neurobiology; also, see 

Sullivan 2016). Additionally, there is a growing consensus that, even when the meaning 

of the terms is agreed upon, the cognitive taxonomy is not ideal for capturing the 

mapping between brain processes and cognition (see Bunzl, Hanson and Poldrack 2010). 

The rationale for this is partly empirical, as terms and concepts used to theorize about 

cognitive processes stand in a many to many relationship with regional brain activity 

(Price and Friston 2005), and network activity (Pessoa 2014). A fact revealed by 

comparing findings from disparate subfields (as in Price and Friston 2005), which has 

since been reinforced by evidence provided by meta-analyses (Lenartowicz et al 2010; 

Yarkoni et al 2011). This is taken by some within the community as an indication of the 

failure of theories of cognition to reflect ‘the brain’s native ontology’, and is a central 

motivation for efforts to revise and redefine the cognitive ontology (Anderson 2015). 

Data-driven revision projects, as it happens, are one of the research programs that have 

been made possible by the availability of large data sets and meta-analysis techniques (of 

which Leonartowicz et al 2010 is an example; and Klein 2012 and Anderson 2015 

discuss the strategy in more detail).20 

                                                 

20 By data-driven approaches, I refer to those revision projects that begin from a large 

data set and apply machine learning analysis tools to identify the categories and concepts 

that ‘best’ capture the patterns in the collected brain activity data. These approaches are 

data-driven as they aim to be agnostic about which cognitive theories are best, and 

instead let the available data ‘decide’. Anderson’s functional fingerprinting approach is 

one example of a data-driven approach to ontology revision. Roughly, the process 

involves using an algorithm that identifies the minimum set of variables that maximally 
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While tools like NeuroSynth are developed by members of the scientific community, and 

collect together neuroimaging data produced by cognitive neuroscientists for a diverse 

range of theoretical purposes, they are not (yet) a hub around which the community is 

organizing itself. This is noteworthy because, in other domains of the life sciences where 

data repositories have had a positive impact on knowledge production, community uptake 

and engagement with the repository development was an important factor in the success 

of these initiatives (e.g., Ankeny and Leonelli 2012; O’Malley and Soyer 2012; Leonelli 

2012; Leonlli 2015). Community coordination is necessary for achieving the 

development of a shared taxonomy or ontology that could alleviate the barriers to data 

integration noted above. That is, to eliminate the terminological ambiguity and 

inconsistencies in conceptual and methodological practices across research programs that 

make data integration, and the progress it promises, difficult to achieve (see Sullivan 

2017 for a detailed discussion). It is not enough to improve community coordination, and 

alter research practices so that they support the downstream integration of experimentally 

produced data into repositories. The research practices themselves, and in particular 

approaches to the analysis and interpretation of data, must also be adapted to the use and 

analysis of synthesized data sets. The methods, techniques and reasoning procedures that 

are applied to the analysis and interpretation of neuroimaging data are not appropriate for 

the interpretation of large bodies of synthesized neuroimaging data. 

                                                                                                                                                 

 

captures variation in brain activity patterns defining the ‘functional fingerprint’ of each 

region. The variables, then, are examined to determine the cognitive capacities they 

might refer to (see 2014, chapter 4). An alternative is the machine learning approach used 

by Lenartowicz and colleagues (2010). This method uses a machine learning classifier to 

determine which cognitive term can be discriminated between on the basis of brain 

activity patterns and which cannot. Those that cannot be discriminated become 

candidates for being removal from the ontology. 
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Looking to work on the epistemic character of integrative practices in other life sciences, 

collaboration is often emphasized as an important aspect of successful data-intensive 

research practices (Leonelli 2013; O’Malley and Soyer 2012; Sullivan 2017). 

Collaboration is important because integrating data involves “… abstracting data from 

their original sources…” to produce a new body of information (O’Malley and Soyer 

2012, p. 61), and effectively interpreting a diverse body of data requires familiarity with 

the material objects that the data are about, as well as the methods and tools used to 

produce it (Leonelli 2013). Sabina Leonelli argues that manipulation of data such that it 

can be integrated with other data sets broadens its evidential scope by making it relevant 

for evaluating hypotheses and theories it may not have been produced to investigate 

(2009). However, data manipulations also restrict the scope of a data set as they 

inevitably suppress patterns and information in the data (Good 1983; Wright 

forthcoming). The processes of data manipulation used to abstract and integrate data is 

itself a tool that changes the evidential value of data by both expanding it and restricting 

it, and so familiarity with these process is also important for the effective use of 

synthesized data. 

Data manipulations are used to eliminate noise, by suppressing the influence of 

detectable causal factors unrelated to the phenomena of interest — such as head motion, 

or a measurable drift in the magnetic field strength of the scanner. They are also used to 

emphasize patterns in the data, allowing human investigators to make judgements about 

the evidential significance of complex and multifaceted data sets. This is one of the 

primary functions of data analysis and manipulation in neuroimaging research: to identify 

patterns in a complex data set that are relevant for evaluating the hypotheses under 

consideration (see Wright forthcoming). Consider the use of subtraction analysis, which 

involves subtracting BOLD signal measurements between two task conditions, to identify 

parts of the brain that ‘preferentially activate’ for one task over another. The method 

itself has often been the target of criticism (Uttal 2001; Hardcastle and Stewart 2002; 

Klein 2010; Aktunç 2014), and has declined in popularity with the development of 

machine learning methods of data analysis (Haxby 2010; Kriegeskorte and Kievit 2010). 

However, it remains useful for addressing basic questions about regional involvement in 

cognitive processing. Even in the wake of powerful techniques like the machine learning 
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methods alluded to above, subtraction analysis results are recognized as important for 

clarifying the implications of more sophisticated techniques (Coutanche 2013; Davis and 

Poldrack 2013). 

Whether to remove the influence of noise, or to emphasize aspects of the data set 

investigators regard as informative about a hypothesis under consideration, data 

manipulations support the interpretation of data by suppressing patterns and information. 

Specific methods of analysis and interpretation, such as subtraction or machine learning 

methods of analysis, are regarded as useful for answering specific questions about the 

data and underlying phenomena, in part because they are sensitive to different variations 

in the data. For instance, machine learning methods have been shown to be sensitive to 

variations between BOLD signal values at a voxel-by-voxel level, while univariate 

methods like subtraction are sensitive to variation in activity level between subjects that 

machine learning methods are unlikely to pick up on (Davis et al 2014). Which is to say, 

the implications of a data analysis result are contingent on facts about the data’s 

production, but also on the operations that make up the analysis technique itself. 

The results of a single analysis technique are rarely able to definitively discriminate 

between hypotheses and theories neuroimaging experiments are designed to test. Multiple 

techniques are used to isolate a variety of patterns, which together are used to assess the 

significance of the data set with respect to the hypotheses and theories under 

consideration (Wright forthcoming). The details of the tasks, behavioural performance, 

analysis techniques used to interpret the data, and their resulting data patterns, are all 

important in the context of the original research for drawing conclusions. These details 

are often suppressed in the process of data integration because they are not shared by all 

data sets — this is one way that data integration involves abstraction. Integrating data can 

restrict their evidential scope as data patterns relevant for making inferences about the 

phenomenon it was produced to study may be removed to facilitate the smooth 

integration with other data sets. To get a sense of how synthesized data sets may have 

different evidential value from the data sets drawn on to construct them, consider the 

following example. 
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If you search the term ‘working memory’ in NeuroSynth there is a prominent area of 

activation roughly centred on the coordinates X: -44, Y: 0, Z: 36. You can use 

NeuroSynth to find studies that report activation within a specified radius of these 

coordinates — these are the results that positively contribute to the forward and reverse 

inference maps relating these coordinates and the term ‘working memory’. One such 

study is the work of Todd and colleagues to identify the region of the brain that encodes 

visual working memory (2011). Limitations of fMRI temporal resolution make it difficult 

to distinguish between visual working memory encoding, perceptual and maintenance-

related activity (p. 1528). To overcome this limitation Todd and colleagues had subjects 

perform two working memory tasks. In one task the participants had to distinguish 

between two faces and in another they had to distinguish between two colours. Other 

research has shown that encoding two faces takes almost ten times as long as encoding 

two colours into working memory. This allowed the researchers to distinguish visual 

working memory encoding from perceptual and maintenance-related processing because, 

“... brain regions involved in [working memory] encoding should show differential 

durations of activity depending on the time it takes to encode objects of different 

complexity” (p. 1528). The results identify the region roughly centred on the coordinates 

noted above as the only area of the brain where the time course of the measured signals 

matches this prediction. 

Todd and colleagues’ conclusion is supported by a pattern in the data which is not 

included in the NeuroSynth database. The details of the task design and the time course 

of the signal that justify the inferred relation between regional brain activity and working 

memory are removed by NeuroSynth's automated curation procedure. The data reflected 

in NeuroSynth are, at best, a rough proxy for the data that supports the claim that a 

particular brain region is involved in encoding visual stimuli during a working memory 

task.21 The details of the data set necessary for isolating patterns in the data that support 

                                                 

21 This is not to say NeuroSynth has limited value. NeuroSynth is useful for identifying 

connections between areas of research that might not be apparent when data is considered 
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the claims inferred from it are potentially absent from the synthesized data set. The 

methods of analysis and interpretation adequate for evaluating the evidential significance 

of a single experimentally produced neuroimaging data set are not guaranteed to be 

successful when applied to the evaluation of a meta-analysis result. The synthesized data 

set, by virtue of the processes of manipulation required to integrate disparate data, is 

different in kind from the experimentally produced data sets that it is made from. This 

presents a risk for the promise of meta-analyses: it may not be sufficient to coordinate 

community practices to facilitate the integration of data. The methods of analysis and 

interpretation need to also be adapted to suit the use of meta-analysis tools and 

interpretation of synthesized data sets. 

In the remainder of this paper I argue that inferences made on the basis of a meta-analysis 

informed by research methods honed for the interpretation of locally produced 

neuroimaging data are likely to be error-prone, and yet will appear to be justified from 

the investigator’s perspective. The appearance of justification arises from the recognized 

soundness of the approach to data analysis and interpretation in the context of a 

                                                                                                                                                 

 

in isolation. For example, while ‘working memory’ is strongly correlated with those 

particular coordinates, the terms ‘phonological’, ‘frontal eye’ and ‘saccade’ are also 

strongly correlated with those coordinates. This suggests that there may be data from 

research on the phonological loop (which is a component of one psychological model of 

working memory, for example see Baddeley and Wilson 2002), as well as from research 

on the control of the visual system, relevant to the study of visual working memory. This 

second connection may be of particular value to Todd and colleagues as one important 

difference between their stimuli (which may contribute to the increased encoding time) is 

a difference in the way the stimuli are scanned, as defined by saccade sequences. While 

the stimuli and task design prevent differences in sustained focal attention from driving 

differences in neural activity, there was no control for differences in saccade sequences 

(and thus the active direction of attention) from driving the differences in activity. 
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neuroimaging experiment, and the errors arise due to the differences between 

neuroimaging data sets and the synthesized data sets available from data repositories. To 

make this argument, I examine a recent dispute over the evidential value of NeuroSynth 

data between researchers who argue that the data are evidence for the claim that a 

discrete region of the brain is selective for pain processing and the developer of the 

database who claims otherwise. I argue that the dispute, and its persistence, is due to the 

very problem gestured towards above: methods of data interpretation adequate for 

determining the value of neuroimaging data are applied to NeuroSynth data, resulting in 

apparently-justified, but likely mistaken, inferences. 

4.4 NeuroSynth Data and Pain Selectivity 

Neuroimaging data sets are, at best, able to support claims about the relationship between 

observed brain activity and the specific cognitive processes brought about by the 

cognitive tasks participants perform. This makes it difficult to use neuroimaging data to 

support general claims about the contribution specific regions of the brain make to the 

realization of cognitive phenomena. Meta-analyses are expected to overcome this 

limitation through the aggregation of a diverse body of data that represents a broader 

collection of cognitive phenomena than can possibly be brought about in a neuroimaging 

experiment (Kober and Wager 2010). This is what motivated Matthew Lieberman and 

Naomi Eisenberger (L&E hereafter) to use NeuroSynth, a repository of published 

neuroimaging results, to examine the relationship between activity in the dorsal anterior 

cingulate cortex (dACC), and the numerous cognitive processes correlated with it. 

L&E's collaborative work includes the use of neuroimaging technology to investigate the 

neural correlates of ‘social pain’, such as rejection or exclusion from activities 

(Eisenberger, Lieberman, and Williams 2003; Lieberman and Eisenberger 2004). In this 

work they find that social rejection is correlated with activity in regions of the brain 

separately associated with pain (the dACC included). This has led to more recent work 

promoting and defending their view that social and physical pain, while 

phenomenologically distinct, rely on shared neural systems (Eisenberger and Lieberman 

2005; Eisenberger et al 2006; Eisenberger 2015). This view is not without its challenges. 

One alternative is the salience account, which explains the activation of dACC in both 
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social and physical pain conditions by a sensitivity to highly salient stimuli, such as 

feelings of pain and rejection (see Eisenberger 2015). While not direct alternatives, 

dACC activity has also been shown to activate during memory tasks (Wager and Smith 

2003), emotion (Etkin, Egner and Kalisch 2011), and a number of other cognitive 

processes and states that are not easily classified as ‘pain’ (Lieberman and Eisenberger 

2015, p. 15250). Since L&E’s argument that physical and social pain share a neural 

substrate depends on neuroimaging evidence showing that dACC is active under both 

conditions, these results are confounding for their view. The big problem with this 

domain, as with many in cognitive neuroscience, is that neuroimaging experiments 

cannot provide evidence for reverse inference claims. Furthermore, evidence for reverse 

inferences is just what is needed to discriminate between competing accounts of dACC 

function (Eisenberger 2015, p. 619; Berkman, Cunningham and Lieberman 2014, p. 144). 

This also happens to be the kind of evidence NeuroSynth has been promoted as able to 

provide (Yarkoni et al 2011). 

In an effort to determine which of the candidate accounts of dACC functions is supported 

by reverse inference evidence, L&E use NeuroSynth to “... explore the best general 

psychological account of [dorsal anterior cingulate cortex] dACC function” (2015, p. 

15250). Reporting on comparisons of reverse inference maps from NeuroSynth for terms 

associated with the competing accounts of dACC function, they conclude that ‘pain’ 

provides the best account of dACC function. Shortly after the paper was published, the 

lead developer of Neurosynth, Tal Yarkoni, thoroughly criticized the paper in a pair of 

blog posts (2015a; 2105b). Yarkoni’s position is that “... Neurosynth data does not 

support any of the main claims ...” of the paper, arguing that L&E’s choice of analysis 

methods, and interpretive decisions, amount to a misuse of NeuroSynth data (2015b). 

This dispute played out mostly through blog posts, with Lieberman replying to Yarkoni’s 

first post on a separate blog (Lieberman 2015), which Yarkoni engages in his second post 

with a point-by-point critique. Later, a letter to the editor (Wager et al 2016), and an 

official reply by the authors (Lieberman et al 2016) were published, continuing the same 

lines of argument articulated in the blog posts. In the end, L&E were unconvinced by 

Yarkoni and colleagues’ arguments that their analysis and interpretation of NeuroSynth 

data is mistaken. 
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This dispute is informative because it involves the use of a meta-analysis tool to conduct 

the very kind of research these tools are purported to enable, and yet the results instigated 

a heated debate between the database developer and well-intentioned users. Why did this 

dispute occur, what factors contributed to it, and why might L&E’s unwavering position 

be justified? The answer, as suggested at the end of the previous section, is that L&E’s 

approach to the analysis and interpretation of the data is not appropriately sensitive to the 

inferential limitations of NeuroSynth data, and yet it is also adequate for the 

interpretation of neuroimaging data. To argue for this position, I first review L&E’s 

findings, and the rationale offered for their interpretation, and then Yarkoni’s criticism. 

4.4.1 The dACC is Selective for Pain 

Lieberman and Eisenberger’s most general conclusion is that “... the clearest account of 

dACC function is that it is selectively involved in pain-related processes” (2015, p. 

15255). A region is selective for a process when there is evidence for the generalizability 

of both forward and reverse inferences between observations of activity in that region and 

instantiations of that cognitive process. As noted above, evidence that can support reverse 

inferences is not available from most neuroimaging experiments. To this end, Lieberman 

and Eisenberger justify their use of NeuroSynth by noting that it offers “… the 

opportunity to perform comprehensive reverse inference analyses that include virtually 

every psychological process that has been attributed to dACC” (p.15250). 

To determine the significance of the data with respect to the claim that dACC is pain 

selective, they examine the forward and reverse inference maps for a collection of terms 

associated with four candidate psychological categories. Each of the categories 

considered — pain, executive control, conflict processing and salience — is matched 

with one to six terms in NeuroSynth (for instance, “pain”, “painful” and “noxious” are 

the terms they used to capture the category of ‘pain’). They justify the selection of four 

categories by identifying them as the best candidates for dACC function currently 

available in the relevant literature. They also provide forward inference maps from 

NeuroSynth as confirmatory evidence for this claim, and further justification for this 

decision (p. 15251). 
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The reported reverse inference maps show ‘pain’ terms as having a greater overall 

density of dACC activity than the terms associated with the other three categories. On 

this basis, they conclude that “… the only psychological phenomenon that can be reliably 

inferred given the presence of dACC activity is pain” (p. 15251). The analysis results 

L&E take to be the most important for their conclusion are the probability of the term 

occurring given activation in dACC, and the associated z-scores, which are a measure of 

statistical significance. L&E compare the posterior probabilities in each of eight evenly 

distributed coordinates from the dACC, and find that, at seven of the eight points, only 

the posterior probability estimates for “pain” are statistically significant. They interpret 

this as “... strong evidence that dACC activity in seven out of eight foci … could be 

attributed to pain by quantitative reverse inference” (2015, p. 15252). It is noteworthy 

that it is not the value of the posterior probability estimates themselves, but the statistical 

significance of those values, that L&E regard as the relevant criterion for assessing the 

evidential value of the data. 

In a similar vein, L&E also compare the z-scores for pain reverse inference maps in 

dACC with the z-scores for reverse inference maps for all other terms in the database. 

They find that pain z-scores in the dACC are either the largest of all terms or, in the case 

of one coordinate, second only to the term ‘clinical’. They interpret this result as ruling 

out the possibility that terms not considered in the above analyses are better candidates 

for reverse inferences from dACC activity (p. 15253). It is on the basis of these two 

comparisons of statistical significance, that L&E come to regard the NeuroSynth data set 

as strong evidence for the claim that ‘pain’ is the best general psychological account of 

dACC processing. Yarkoni's position, on the other hand, is that NeuroSynth data provides 

evidence for the contrary conclusion: dACC activity and pain are not bound by a relation 

of selectivity. Yarkoni offers a number of arguments for this position, two of which are 

aimed at disputing L&E’s primary claim and are relevant to my aims here. 

4.4.2 The dACC is not Selective for Pain 

Two of the arguments Yarkoni offers are aimed at establishing that (1) NeuroSynth data 

cannot provide strong evidence for reverse inference claims, and (2) L&E's method of 

analysis and interpretation is not able to support their interpretive aims. Yarkoni argues 
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that while NeuroSynth data could provide some evidence for pain selectivity, further 

evidence showing that “... no other process activates dACC in a meaningful way 

independently of its association with pain” (Yarkoni 2015a) is required. He contends that 

NeuroSynth data are only able to provide weak evidence in support of reverse inferences. 

Part of the reason for this is that NeuroSynth data are the product of an automated 

curation process, which, as with any curatorial process, involves abstracting away from 

the details of the experiment the data are drawn from in order to integrate them 

seamlessly into the database. While the automated process NeuroSynth uses will retain 

the fact that activity in a region is correlated with an ascribed label, it does not 

necessarily include the aspects of the data and experimental conditions which are needed 

to justify the claim that the label and regional activity are correlated. The letter to the 

editor reinforces this point, concluding that “… Neurosynth is useful for exploring 

structure-to-function mappings … but it cannot provide definitive inferences about 

specific brain regions” (Wager et al 2016). 

There is a deeper problem that Yarkoni raises for L&E’s analysis: a comparison of 

reverse and forward inference maps over four categories does not represent a sufficiently 

diverse collection of candidate cognitive processes to warrant a reverse inference claim. 

The problem with L&E’s approach is that restricting comparisons to only four categories 

recreates the epistemic limitations of neuroimaging experiments that NeuroSynth aims to 

alleviate. L&E’s decision to do so is justified by reference to the extant literature on 

dACC function, which is the product of a focussed effort to use neuroimaging 

experiments to identify candidate processes for dACC function. These experiments, 

however, lack generalizability— they cannot be used to establish a general claim about 

dACC function, only a claim about dACC function relative to those cognitive capacities 

explicitly targeted by the tasks. This is one reason for L&E’s use of the NeuroSynth 

database, to diversify the cognitive states represented by the data set. Unfortunately, their 

methodology, informed as it is by the standards of research guiding the conduct of 

neuroimaging experiments, and the interpretation of the resulting data, leads them to 

overlook patterns in the NeuroSynth data that contradict their conclusion. This problem is 

exacerbated by the fact that they compare the z-scores of the reverse inference maps, and 

not posterior probabilities. Where z-scores provide a measure of statistical significance, 
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posterior probabilities provide an estimate of the accuracy of a reverse inference. The 

latter is, contrary to L&E’s view, the data pattern most relevant for evaluating the 

selectivity of dACC for pain. 

Considering a more diverse selection of categories and comparing posterior probability 

estimates provides evidence that dACC is not pain selective. Wager and colleagues letter 

to the editor notes that “… using the same database, we estimate the probability of a 

study including physical pain given activity in pain-selective dACC at ~12%, on par with 

language, emotion, attention, and memory” (2016, p. E2474). Yarkoni, additionally, 

provides a comparison of posterior probability estimates for a selection of terms — 

motor, fear, reward, working memory — showing that, while the z-score for ‘pain’ is 

greater than that for ‘motor’, the probability that ‘motor’ is a term labelling the data given 

that any activity is reported in dACC is around 18%, while pain is around 8%. These 

results show that “… it’s probably a bad idea to infer any particular process on the basis 

of observed activity, given how low the posterior probability estimates for most terms are 

going to be” (Yarkoni 2015b). 

In the next section I argue that L&E’s judgement of the significance of NeuroSynth data 

is directed and informed by a research strategy that is appropriate in the context of a 

neuroimaging experiment, where efforts to maximize the reliability of the data limit the 

generalizability of the supported claims and hypotheses. Applied to a data set arrived at 

by integrating a diverse body of data, their approach leads them to make a number of 

inferential errors — as identified by Yarkoni and colleagues. The dispute is, from this 

vantage point, over the appropriateness of methods for analyzing and interpreting 

synthesized data sets available from NeuroSynth. 

4.5 The Analysis and Interpretation of Synthesized 
Data 

There are two factors that contribute to the dispute between Yarkoni, the developer of the 

database, and Lieberman and Eisenberger, database users. They are (1) the application of 

analysis strategies appropriate in the context of neuroimaging research to the 

interpretation of NeuroSynth data, and (2) a misunderstanding of particular data 
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manipulations and the meaning of the patterns they produce. L&E’s interpretation of the 

data is mistaken, in part, because decisions made in their analysis and interpretation of 

NeuroSynth data are guided by an interpretive strategy that is tuned for the interpretation 

of data produced in a neuroimaging experiment, and not a data set made from the 

integration of a diverse collection of neuroimaging data. The misunderstanding of z-

scores further suggests that the understanding investigators have of the operation and 

meaning of data analysis techniques plays a signifiant role in directing judgements of the 

evidential significance of the data those techniques are applied to. 

L&E focus on four specific cognitive processes because the categories of pain, executive 

control, conflict processing and salience are the four accounts of dACC function that are 

currently best supported in the literature they are contributing to (Lieberman 2015). In a 

review of research on social and physical pain (which Lieberman refers to in his blog 

post), Eisenberger argues for the view that social and physical pain share an underlying 

cognitive state — the “… feeling of distress or suffering and the motivation to put this 

experience to an end” (p. 607).22 The alternative accounts of dACC function Eisenberger 

presents in that article match with the categories, and terms, L&E considered in their 

NeuroSynth analysis. The empirical question that this leads to is the one their 

NeuroSynth analysis addresses: which of pain, salience, or a number of cognitive 

accounts best explains dACC activity? This is why their NeuroSynth analysis takes into 

consideration only the terms as associated with these four cognitive processes. While it is 

misleading to take this approach in evaluating the evidential significance of NeuroSynth 

data for a selectivity claim, this approach is methodologically sound when considered in 

                                                 

22 Eisenberger doesn’t just rely on neuroimaging evidence to argue for this point. The 

evidence presented in support of this view largely consists in research showing that tasks 

inducing physical and social pain activate the dACC (e.g., Eisenberger 2003; Wager et al 

2009; Kross et al 2011) as well as evidence from other areas of neuroscience, such as 

lesioning research correlating dulled pain experiences with damage to dACC 

(Eisenberger 2015, p. 604-5). 
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the context of a neuroimaging experiment and the more restricted inferences those 

experiments can be used to make. 

In neuroimaging experiments the number of distinct cognitive processes comparable 

when analyzing and interpreting the data are limited by the details of the tasks 

participants performed and how they performed them. This is necessary because, without 

these controls, it would be (more) difficult to discern the evidential significance of 

neuroimaging data, given that it is influenced by causal factors other than those that are 

associated with the phenomena it is collected or produced to learn about. Many of these 

factors are idiosyncratic to the instances of measurement or data collection, and so are 

difficult to identify. Recognizing that data are noisy in this way entails an epistemic 

challenge that all scientists must overcome. That is, researchers somehow use data 

influenced by both the phenomena of interest and innumerable causal factors 

idiosyncratic to the circumstances of data production as evidence for claims about 

phenomena that occur in a variety of settings and circumstances (see Bogen and 

Woodward 1988; McAllister 1997; Woodward 2000; Harris 2003; Schindler 2011; 

Massimi 2011; Apel 2011 for a variety of accounts of these inferences, and arguments 

identifying various factors that influence them). 

Experiments can be divided into two broad steps: data production and data interpretation. 

Following Jim Woodward’s classification, data production “… has to do with the causal 

processes that lead from the phenomena of interest to the data”, while data interpretation 

“… involves the use of arguments, analytic techniques, and patterns of reasoning which 

operate on the data so produced to reach conclusions about phenomena” (2000, p. S165). 

Data production has to do with what is done to create a data set, while data interpretation 

captures those steps involved in assessing data’s evidential significance. There are two 

broad strategies for strengthening inferences in experimental science: improve the 

process of data production (i.e., ‘build a better telescope’, or design a better experiment), 

or improve the process of data interpretation (i.e., use better statistics, a new theory, or 

different reasoning strategies). Improving upon the process of data production results in a 

data set that is less noisy, and so more reliable as evidence (Woodward 2000; Sullivan 

2009). The problem with L&E’s inference is that, while it is based on ‘better data’ than a 
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neuroimaging experiment could provide for investigating the selectivity of a region, the 

data interpretation process that they use is not adequate to the task. 

In designing an experiment to address an empirical question, such as the one L&E use 

NeuroSynth data to pursue, researchers will attempt to constrain the experimental 

conditions to ensure that the resulting data are able to discriminate between the specific 

hypotheses under evaluation. This effort aims toward the ideal data production process 

that Woodward describes, which is one that produces “… different sorts of data … in 

such a way that investigators can use such data to reliably track exactly which of the 

competing claims … is true” (2000, p. S166). Decisions about which processes to focus 

on are guided by the current literature, which will include proposals and evidence for a 

number of competing hypotheses that experiments can be designed to discriminate 

between (see also Sullivan 2009; 2016). There is a tradeoff in using experimental controls 

to enhance the capacity of data to discriminate between a specific set of hypotheses 

(Sullivan 2009; 2015). 

Jacqueline Sullivan argues that the reliability of data and their capacity to warrant 

inferences that are true of phenomena produced outside of laboratory settings are in 

tension because the controls necessary to improve the reliability of data often involve 

creating circumstances far removed from those that occur outside of laboratory settings. 

Research in neurobiology emphasizes reliability, and as a result “… inevitably restricts 

the extension of interpretive claims to the laboratory” (Sullivan 2009, p. 535). The same 

could be said of neuroimaging experiments (see Sullivan 2015). Indeed, this tension 

captures part of the problem with using neuroimaging data to conduct reverse inferences. 

Reverse inference claims, such as ‘dACC activity indicates pain-related processing’ are 

about the cognitive capacity, state, or process indicated by the engagement of a region of 

the brain. A data set that could provide this evidence, at minimum, must represent as 

many cognitive states and processes as dACC could conceivably be involved in bringing 

about. Since many correlations between regional activity and cognitive processes go 

unreported, these processes must include, but not be limited to, those that dACC has 

specifically been implicated in. Neuroimaging experiments, however, prioritize reliability 
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with respect to discriminating between a specific set of hypotheses, and so cannot provide 

the requisite evidence to support a generalizable reverse inference (see Poldrack 2006; 

Klein 2012; Machery 2014). 

L&E regard NeuroSynth data as valuable for overcoming the limitations of neuroimaging 

experiments because the analyses it provides include “… virtually every psychological 

process that has been attributed to dACC” (2015, p. 15250). This, however, only goes 

part of the way to overcoming the problems with reverse inferences. While a data 

representing a broad selection of cognitive processes are necessary to support a reverse 

inference claim, simply possessing data that could be used as evidence for a reverse 

inference claim is not sufficient to warrant such a claim. One one hand, the tradeoff 

between external validity and reliability cuts both ways. Synthesizing data sets to secure 

greater external validity for reverse inference claims means reducing the reliability of the 

data with respect to those very claims. The process of data synthesis also eliminates 

patterns in the data that are important for determining what each data set was originally 

about (see the example at the end of section 3, and also Sullivan 2016). This is 

particularly true for NeuroSynth, as its curatorial process is implemented by an 

automated computational procedure. This is why Yarkoni insists that NeuroSynth data, at 

best, can support weak claims. NeuroSynth data cannot stand on their own as evidence 

warranting a reverse inference, let alone a claim about the selectivity of a region for a 

cognitive process. The other reason data aggregation is not sufficient as a solution for the 

problems of reverse inference is that the problems go beyond problems with data 

production processes. Many methods of data interpretation and analysis popular in 

neuroimaging research are unable to provide clear indications of whether or not a reverse 

inference claim is supported by the data (Poldrack 2010, p. 755-6). 

Proposals for improving the quality of reverse inferences typically recommend 

improvements to both data production and data interpretation procedures. Colin Klein, in 

addition to recommending a focus on networks over regions, gestures towards meta-

analyses as the way forward (2012); Russell Poldrack promotes machine learning 

methods of data-analysis as a tool for conducting investigations of reverse inference 

claims using large bodies of synthesized data (2012); and Clark Glymour and Catherine 
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Hanson propose a different analysis strategy from Poldrack, which also depends on the 

availability of a large and diverse body of neuroimaging data (2016). Each of the 

proposals recommends that both better data and a new method of analysis are needed to 

assess the data’s evidential significance with respect to reverse inference claims. L&E 

also use a new method of analysis to evaluate the data, relying on the reverse inference 

maps which are produced by a machine learning method similar to the one Poldrack 

argues formally implements reverse inferences (2011; see also Yarkoni et al 2011). The 

problem with L&E’s approach is that they’ve only implemented a change in the data and 

analysis techniques, and not a corresponding change in their approach to the data’s 

interpretation. 

By restricting their focus to the four categories identified within the specific literature 

they are contributing to, L&E are assuming that the diversity in the cognitive states 

reflected in the data set is a sufficient change to their research practices for evaluating a 

selectivity claim. This would be fine if L&E were analyzing data produced in an 

adequately controlled experiment, and if they were content to restrict the inferred claims 

accordingly. As presented, however, they draw the stronger conclusions that dACC is 

pain selective. Their approach to evaluating the evidential significance of the data with 

respect to this conclusion, that is the process of data analysis and interpretation they use, 

is not up to this task. 

This dispute reflects a conflict between approaches to the analysis and interpretation of 

data appropriate in the context of a neuroimaging experiment and approaches appropriate 

for evaluating the significance of a synthesized data set. The analysis strategy L&E 

apply, while it may be misleading when used to evaluate NeuroSynth data, is justifiable 

in the context of a neuroimaging experiment. In this way, L&E’s interpretation can be 

regarded as justified, if misleading. This presents a problem for the prospects of meta-

analyses, above and beyond challenges to data integration that follow from the lack of 

coordination in methodological and conceptual practices emphasized by other 

commenters on the prospects of meta-analyses (Yarkoni et al 2011; Poldrack et al 2017; 

Sullivan 2016; 2017). The problem, as it relates to the misuse of powerful new 

technologies for data analysis and interpretation, is not unique to meta-analyses, but is a 
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problem for cognitive neuroscience more generally. The general problem is related to the 

second problem with L&E’s interpretation: it is based on a misunderstanding of data 

analysis techniques and the meaning of the data patterns they isolate. 

The perception of tools like NeuroSynth as ‘solving’ the problems with neuroimaging 

experiments with respect to reverse inferences is part of what builds L&E’s confidence in 

the soundness of their approach — they say as much in the introduction of their paper. 

This is not to say L&E simply trust that NeuroSynth data are adequate to this task. They 

consider some of the facts of NeuroSynth’s curatorial process, as they note that “... the 

reverse inference is linguistic, focused on the terms used across articles rather than on 

task trial types of specific psychological states” (2015, p. 15254), and in their official 

reply to Wager and colleagues, they report that they manually verified the ascription of a 

random selection of labels to fifty papers for each category (2016). Even so, L&E still 

mistake it as providing strong evidence for the claim that dACC is pain selective in part 

because they understand NeuroSynth as a tool that can provide evidence sufficient for 

definitively evaluating a reverse inference claim. A similar misunderstanding affects their 

assessment of NeuroSynth’s evidential significance and guides the decision to focus on z-

scores associated with the considered reverse inference maps. 

In justifying the focus on z-scores over posterior probabilities, Lieberman explains that 

they were “not interested in effect sizes” (which is what posterior probabilities are), but 

wanted to evaluate the “accumulated evidence for the reliability of reverse inferences” 

and for this reason focussed on z-scores (2015). If z-scores reflect the accumulated 

evidence for the reliability of an inference, then a higher z-score indicates a more likely 

reverse inference target. Whether or not L&E’s interpretation of z-scores is accurate, that 

they understand them as they do explains why they judge the data to be positive evidence 

for the pain-selectivity of dACC.23 Yarkoni, on the other hand, is familiar with the details 

                                                 

23 Comparing the z-scores for reverse inference maps associated with different terms 

assumes that differences between z-scores are statistically significant. This is an 

assumption that has been criticized by statisticians on the grounds that differences in 
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of the NeuroSynth algorithm and meta-analysis tools, having developed them. Yarkoni 

rightly regards z-scores as estimates of statistical significance, since they are computed 

by transforming p-values, and views effect sizes as the relevant statistical output to 

compare when evaluating selectivity claims. Posterior probabilities, and not z-scores, are 

the relevant data pattern for judging the selectivity of a pattern of brain activity for a 

cognitive process or state. 

Tools for the efficient conduct of large-scale meta-analyses, like NeuroSynth, are only 

the latest example of novel techniques for manipulating and analyzing data driving 

progress in cognitive neuroscience. The last two decades of neuroimaging research has 

seen the development and uptake of a diverse collection of distinct tools and technologies 

for manipulating and analyzing data. This has been viewed as both valued and dangerous 

- with neuroscientists cautioning that with the increasing number of methods for 

analyzing data comes an increased rate of false positives (Carp 2012a; 2012b), an 

increased potential for misinterpretation of results, more opportunities for questionable 

research practices, and the potential of ‘getting lost in data’ (Poldrack et al 2017; Munafò 

et al 2017). In response to some of these worries, Eve Marder has argued that, as data 

analysis processes become more complex and more diverse, intuitions about how to 

                                                                                                                                                 

 

statistical significance are often not themselves significant (Gelman and Stern 2006), and 

has been identified as an ubiquitous and problematic practice in the neuroimaging 

research (Nieuwenhuis et al 2011). Lieberman’s response shows that they are unaware of 

this problem, as they interpret a difference in z-scores as showing that “… we can be 

more confident that there is some real association between pain and dACC than between 

the other three terms and dACC” (2016). L&E’s understanding of z-scores leads to 

inferring a descriptive claim about the data that is incorrect: that the evidence in support 

of a reverse inference from dACC activity to pain is stronger than for other terms. This in 

turn leads to explaining the z-score comparison by appeal to the selectivity of dACC for 

pain. 
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engage with data will become more important for driving progress in the neurosciences in 

a positive direction (Marder 2015). Intuitions about how to engage with, analyze and 

interpret data are also important because, as the dispute and discussion above shows, they 

can promote inferential errors and lead to faulty judgements of data’s significance on the 

basis of interpretive strategies that are sound in other contexts. Progress requires more 

than just making tools, making them available, and community coordination. Open 

discussions about the effective use of these tools, and changes in the standards of 

evidence guiding the conduct and evaluation of approaches to the analysis and 

interpretation of data must accompany these technologies. The debate between Yarokni 

and Lieberman that unfolded in the blogosphere is an example of an open discussion, but 

such discussions also need to be channeled into changes in research practices if they are 

to be productive. 

Disputes between stake holders in the scientific community are all but guaranteed in the 

context of data sharing and meta-analysis, in part because individuals, labs, and research 

groups have different goals, theoretical backgrounds, technical expertise and research 

priorities. One striking difference between the data sharing efforts in cognitive 

neuroscience and those operative in other biological sciences is that cognitive 

neuroscientists have not instituted a mechanism of ‘governance’. In the case of bio-

ontologies — which are the taxonomic structures used to label, categorize and organize 

data within a database — consortia were formed that effectively forced curators, 

regulators and users of databases to coordinate and interact by providing a platform for 

stakeholders to engage in discussion, and mechanisms for dissent to be transformed into 

action (see Leonelli 2016, chapter 2). Such a mechanism allows disputes to be 

productively funneled into changes in research practices, repository structure and 

curatorial procedures. 

In cognitive neuroscience, there are informally organized communities of like-minded 

researchers, database developers and curators who actively interact with users (Yarkoni, 

for instance, is active on a google group for NeuroSynth), but there is not yet an 

established regulatory body or disciplinary framework for assessing, guiding and 

formalizing research practices as the discipline beings to engage with and use large data 
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repositories. The situation in neuroimaging research may just be a temporary symptom of 

the growing pains associated with efforts to grow and enrich a research community 

through the integration of data. Cognitive neuroscience, as is to be expected, faces its 

own unique set of challenges including ongoing efforts to establish standardized data 

formats and incentivize their uptake by the wider community (e.g., Gorgolewski et al 

2015), research and funding incentives that are not aligned with data sharing, and a 

limited allocation of resources to the sustainment of data repositories (Poldrack and 

Gorgolewski 2015). Even so, the argument above demonstrates that, in addition to 

community-wide collaboration and coordination as others have argued is necessary 

(Sullivan 2017), data sharing practices also need to be accompanied by changes in the 

standards appealed to in the assessment of the adequacy of analysis methods and 

interpretive strategies if they are to promote the generation of knowledge as their 

advocates promise. 

4.6 Conclusion 

The capacity to engage in large scale data integration, and conduct meta-analyses over 

such a database, is a relatively new possibility for cognitive neuroscientists. It remains to 

be seen if they will be successful at improving knowledge of human cognition in the way 

that database developers hope. 

The integration of data into shared and accessible repositories, and the meta-analysis 

techniques they make possible promise to improve theories and knowledge production in 

cognitive neuroscience. If meta-analyses are to productively move the discipline forward, 

standards guiding the analysis and interpretation of data must be changed. Explicitly 

outlining the pitfalls and limitations of databases and meta-analysis tools is not sufficient 

to offset the potential application of analysis and interpretive strategies that are sound in 

the context of neuroimaging experiments, but insensitive to the limitations of synthesized 

data. Indeed, L&E refer to Yarkoni’s own work outlining the limitations and effective 

uses of NeuroSynth as justification for their methods — which I have shown are, by 

Yarkoni’s own lights, ill-suited to the interpretation of NeuroSynth data. They identify a 

paper outlining the value of NeuroSynth for reverse inference claims (Yarkoni et al 

2011), as well as discussions in the google group dedicated to answering questions about 
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the use of NeuroSynth, as templates upon which their analysis and interpretation is based 

(Lieberman and Eisenberger 2015). Furthermore, rigid guidelines for data use may 

undermine one of the known epistemic advantages of data sharing. Sharing data promotes 

knowledge, in part, by creating the potential for new discoveries to be made with old data 

(e.g., Leonelli 2009, 2015; O’Malley and Soyer 2012). Arguments in cognitive 

neuroscience for sharing data often refer to this potential as justification for the allocation 

of resources to database development and maintenance (Van Horn and Gazzaniga 2013). 

It is important that investigators are given some latitude in the way they access, analyze 

and interpret shared bodies of data. 

With respect to the broader philosophical impact of this discussion, the situation in 

cognitive neuroscience is relevantly different from that in other areas of the life sciences 

where data repositories have been successful. Neuroscientists are responding to typical 

challenges for open science and sharing data in novel ways. NeuroSynth is a prime 

example: it uses automated curation to bypass the need for the wider community to 

commit to data sharing in order to effectively populate a large-scale database. It is, thus, 

an occasion and a time in which philosophers might learn from carefully examining how 

efforts to integrate neuroimaging data interface with the organization of the research 

community. One promising approach is to compare the epistemic and social dimensions 

of successful data sharing practices with the current practice of cognitive neuroscience 

and use that as a lens through which to identify likely pitfalls and barriers to progress, as I 

have begun to do here. In this way, philosophical contributions may also be able to 

productively impact cognitive neuroscience by identifying similarities and differences 

between strategies proven successful in other fields and the social, empirical and practical 

conditions that allowed those strategies to succeed. 
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Chapter 5  

5 Data Analysis in Neuroimaging 

 

5.1 Introduction 

The development and use of new techniques for creating, storing, transporting, 

transforming, analyzing and/or organizing data has been instrumental in moving 

cognitive neuroscience forward. These developments have brought to light novel 

hypotheses and phenomena that could not be investigated before the development of new 

techniques for creating, handling and manipulating neuroimaging data. These innovations 

and the progress they bring are not without their challenges. Data analysis involves 

manipulating and changing data through the application of sophisticated computational 

processes. This creates opportunities for results to be misinterpreted, or techniques to be 

misapplied. The rapid rate of innovation in the methods of analysis and tools for handling 

and sharing data, when not accompanied by equally rapid adaption and updating of 

research methods and practices, also creates opportunities for well-intentioned 

researchers to misuse and misinterpret data’s evidential significance. These are reasons 

for the philosophical community working on the nature of evidence in neuroscience to 

turn an eye towards data analysis. A first step towards this end is understanding what role 

data analysis techniques play in cognitive neuroscience, and how that role is played. This 

has been the broad aim that unites the preceding three papers. 

Often, when we discuss data analysis and manipulation we think of statistical tests and 

correcting for noise and artifacts. While data analysis techniques and manipulations are 

used to quantify the evidential relation between data and a hypothesis, to eliminate 

detectable artifacts, and minimize random noise, these are not the only functions 

performed by the processes and techniques used to analyze neuroimaging data. The 

techniques at the heart of neuroimaging research, including MVPA techniques like 

pattern classification analysis, make distinct contributions to the data interpretation 

process. MVPA techniques have, among other things, made possible a number of novel 
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and promising research projects, including: interrogating the validity of concepts used to 

describe cognitive capacities and processes (as in Lenartowicz et al 2010; Anderson 

2015), tracking changes in information as it moves through the brain (as in Kohler et al 

2013; Tambini et al 2013), and decoding the contents of brain activity by predicting 

participant behaviour (as reviewed by Tong and Pratte 2012). In chapter three I argued 

that these techniques are valuable because the results of data analysis techniques, unlike 

the ‘raw’ data provided by neuroimaging experiments, can be explained in terms of 

claims about phenomena. Data analysis techniques are useful because they isolate 

patterns in the data that are explicable in terms of claims about the phenomenon 

neuroscientists are interested in. They are, however, themselves inferentially limited. In 

the second chapter, I showed that multiple analysis techniques are used together to 

determine the evidential significance of neuroimaging data. In the fourth chapter, I 

argued that research goals and background theory inform the decisions made in the 

application of data analysis techniques, and in turn the explanations offered for the data 

patterns. In this last chapter I use the arguments and cases examined in the previous 

papers to articulate how data analysis techniques facilitate data interpretation in terms of 

the interpretive and epistemic leverage they provide. 

To this end, the next section clarifies the distinction between data and data patterns that 

has been a central part of how I think about data analysis. I draw this distinction by virtue 

of the advantages data patterns have in comparison to the challenges with interpreting the 

data they are derived from. In the third section, I examine the epistemic advantages and 

disadvantages of multiple analysis techniques more closely — reflecting on the examples 

discussed throughout the preceding papers. I argue that the evidence provided by multiple 

data patterns is unlikely to produce genuinely robust results, as suggested at the end of 

the second chapter. I argue that it is not the independence or convergence of data patterns 

that allows a variety of them together to enhance the value of neuroimaging data, but 

their distinctiveness. In the final section, I reflect on the challenges and questions raised 

by this project given the current trajectory of neuroimaging research. 
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5.2 Evidence in Neuroimaging 

I have argued throughout the preceding chapters that the argumentative strategy skeptics 

of neuroimaging research rely on is not sensitive to a number of epistemically relevant 

features of research practices operative in cognitive neuroscience. In the second chapter, I 

contributed my own defence of neuroimaging research, arguing that the skeptical strategy 

mistakenly treats data analysis techniques in isolation of each other (Wright 

forthcoming). Adequately treating of inferences in neuroimaging research requires 

attending to the diversity of analysis techniques used to interpret the data. It also requires 

recognizing and evaluating the impact that each individual technique, and decisions about 

which techniques to use and how to use them has on the evidential value of neuroimaging 

data. In the third chapter, I noted that the challenges raised by skeptics, while based on an 

artificial treatment of the data interpretation process, are still legitimate challenges that 

inferences in neuroimaging research must overcome. That is, analysis techniques require 

assumptions to be made of the data that can undermine the inferences they are used to 

support. The indirect relationship between neuroimaging data and the phenomena it is 

used to study, combined with the sophistication of data analysis processes further 

complicates this situation by making it relatively easy to identify viable alternative 

hypotheses. To overcome these challenges, the interpretive process must (1) not be 

weakened by assumptions implicit in each of its parts, and (2) provide resistance against 

alternative and competing hypotheses not explicitly considered in the interpretive 

process. This, I argued in chapter 3, is achieved through the explanation of a variety of 

data analysis results. 

In this section I argue that data and data patterns can be distinguished by the different 

evidential roles that they play. This distinction serves two purposes: (1) it makes clear 

why the argumentative strategy of examining a single, if salient and significant, analysis 

technique fails, and (2) it shows how the use of multiple analysis techniques can address 

the two challenges noted above. This distinction is then taken up in the next section, 

which re-examines the epistemic advantage provided by the use of multiple analysis 

techniques. 
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5.2.1 Data, Data Patterns, and Phenomena 

Recall that, on Bogen and Woodward’s view (1988), data are the product of an 

experiment. They characterize data as “... idiosyncratic to particular experimental 

contexts, and typically cannot occur outside of those contexts” (317). Phenomena, on the 

other hand “.... have stable, repeatable characteristics which will be detectable by means 

of a variety of different procedures, which may yield quite different kinds of data” (317). 

Bogen and Woodward further argue that “... facts about data and facts about phenomena 

differ in what they serve as evidence for (claims about phenomena versus general 

theories)” (306). Data are evidence for claims about phenomena, which in turn provide 

evidence for the general theories that explain them. Treating data as evidence for a claim 

about a regularity in the world is no small task, often requiring the careful construction 

and implementation of an experimental circumstance that instantiates an instance of the 

target phenomenon such that it is susceptible to measurement. Indeed, Woodward argues 

that improvements to the reliability of data-phenomena inferences often comes from 

improvements to the quality of and knowledge about the means of data production 

(2000). 

Woodward contrasts improvements to the quality of data production with improvements 

to the reasoning processes involved in data interpretation, insisting that, instead of by 

changes in background theory and data interpretation, “… in real science the most 

effective improvements in reliability very often are achieved by altering the data 

production process—by building a better telescope …” (2000, p. S165). As the preceding 

cases and arguments show, in neuroimaging research at least, significant progress has 

been made not only by altering the data production process (neuroimaging technology 

has certainly improved over the last two decades), and providing better and more 

sophisticated theories, but also through the development and uptake of new tools for 

analyzing, organizing, accessing and manipulating data. In situating data analysis as part 

of the interpretation process, I have been implicitly arguing that the progress made 

through innovations in data analysis constitute an improvement to the process of data 

interpretation. Variations in BOLD signal measurements and behavioural data are 

causally distant from the neural activity and cognitive processes investigators use those 
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variations to make inferences about. This extra challenge, above and beyond those that 

are characteristic of all experimental science, necessitates the need to improve reasoning 

processes. This is necessary because neuroscientists using neuroimaging data to make 

inferences to claims about phenomena must not only contend with noise in the data, but 

also the fact that the objects of measurement are indirectly related to the causal factors 

that give rise to the phenomena of interest.  

Estimating the portion of the BOLD signal measurement that corresponds with task 

related activity is an example of data manipulations used to improve the evidential 

significance of neuroimaging data. This typically involves picking a model for the 

hemodynamic response function (hrf), and, as discussed in the second chapter, using 

deconvolution to partition the BOLD measurements into the hrf and noise. There are a 

variety of approaches to estimating the hemodynamic response from the BOLD signal, 

each of which involves making different assumptions about the causal factors involved in 

its production. This is why the choice of model has a significant impact on the resulting 

parameter estimates (see Lindquist et al 2009). 

The deconvolution process plays a different epistemic role than analysis techniques like 

subtraction and multivariate pattern analysis. Calculating an hrf is a pre-processing step 

conducted to improve the strength of evidence provided by the results of subsequent 

analyses. In the case considered in the second chapter, the process is used to minimize the 

possibility that a machine learning classifier’s accuracy is due to convenient correlations 

between biological processes that are concurrent with, but irrelevant to, the realization of 

the cognitive process or state of interest (Wright forthcoming). Techniques like 

subtraction and pattern classification analysis are not as important for addressing noise as 

they are for addressing the indirectness of the data. The difficulty of this task is a function 

of the knowledge investigators have about the causal links connecting the phenomena of 

interest and the measurements. In the case of the BOLD signal and neural activity, the 

fine-grained details of those causal connections are mostly unknown. 

Data analysis techniques — such as subtraction or pattern classification analysis — are 

used because they isolate patterns in the data that are informative about the claims, 
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hypotheses or phenomena under investigation. New data analysis techniques change the 

evidential value of data by making it possible to detect phenomena via the data patterns 

they isolate. They do not do so by directly detecting the influence of the phenomena. If 

they were supposed to detect the influence of phenomena directly, then the skeptical 

arguments that point out worrying assumptions (e.g., van Orden and Paap 1997; Ritchie, 

Kaplan and Klein forthcoming), would be sufficient to undermine the capacity of data 

patterns to aid in assessment of the evidential value of neuroimaging data. It is here that a 

distinction between data and the data patterns is informative. Such a distinction, like the 

distinction between data and phenomena, can be drawn by appeal to the different 

evidential roles data and data patterns play in neuroimaging research. 

Data are often recognized by philosophers of science as valuable as evidence for claims 

about phenomena to the degree that it is produced in such a way that the phenomenon of 

interest exerts a detectable influence on it. Bogen and Woodward notice that data have a 

number of undesirable features, in that they are complex and idiosyncratic to the context 

in which they are produced. These features are tolerated because they allow “… data to 

be useful as evidence…” (1988, p. 319). Ian Hacking recognized data as the ‘marks’, 

produced by interactions between experimenters, measuring instruments and the objects 

of measurement (1992). The most recent account of data made available in the 

philosophical literature goes a step beyond this, arguing that data are anything that are 

used as evidence (Leonelli 2015). This places the need to use data as evidence as more 

than just a constraint on data production, but constitutive of what data are. 

Experimental practices, such as carefully controlling experimental environments and the 

efforts scientists go through to fix and stabilize observations, are often identified as the 

central facilitators of the ‘detectability’ of the influence of the target phenomena. This is 

part of Woodward’s argument that ‘building a better microscope’ is the most common 

path to better science (2000), and these practices are the source of complexity and 

idiosyncrasy that Bogen and Woodward identify as a necessary for the pursuit of 

experimental knowledge (1988). The preceding arguments and examples I have presented 

make clear that, as is the case in neuroimaging research, when experimental controls are 

unable to ensure that there is a clear and clean causal link between the objects of 
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measurement and the target phenomenon, data analysis and manipulation practices are 

used to ‘cross the gap’. They do this by identifying, or isolating, patterns in data that 

could possibly reflect the influence of the target phenomenon. Data patterns, however, do 

not provide sufficient evidence to warrant claims about that phenomenon. 

As I argue in the third chapter, data patterns are ill suited as evidence for claims about 

phenomena because they are the product of manipulations that suppress information 

relevant for evaluating claims about phenomena. This is consistent with the skeptical 

arguments that identify the decisions involved in data analysis as a source of inferential 

error (such as Aktunç 2014; Mole and Klein 2010). Skeptical arguments criticizing 

inferences in neuroimaging research by focussing on the limitations of data analysis 

techniques identify genuine inferential limitations of data patterns, but then mistakenly 

ascribe them to the data the patterns are derived from. This move conflates the evidential 

value of data with the value of data patterns. Data patterns are evidence for claims 

pertaining to the evidential relation that holds between data and phenomena, and not 

evidence for the claim about phenomena directly. 

If data patterns are used to evaluate the evidential relation that holds between data and 

claims about phenomena, then what criteria do, and ought to, guide their isolation and 

explanation? In the fourth chapter, I argued that the choice of data analysis techniques, 

and decisions made during their application, are guided by investigator’s understanding 

of the function of the technique, the background theory they are approaching the data 

from the perspective of, and the research questions they are analyzing it to answer. In 

chapter three, I argued that data patterns are valuable insofar as they can be explained by 

appeal to claims about phenomena. Putting these together, a data pattern is explicable 

within a context when the theoretical background and understanding of the analysis 

technique used to isolate it provides the explanatory resources to connect claims about 

the target phenomena to the data pattern. Changes in any of these factors — analysis 

techniques, theoretical background or understanding of the analysis process — can 

change the perceived value of data by altering the explanatory relations investigators 

perceive between claims about phenomena and data patterns. 



136 

 

In summary, for data to be evidence for a claim about a phenomenon the causal factors 

that give rise to the phenomenon must (1) be involved in the production of the data such 

that they (2) leave detectable patterns in the data. The first condition reflects the fact that 

data cannot provide evidence for a phenomenon that played no role in its production. The 

second constraint is epistemic. Data cannot provide evidence for a phenomenon that 

played a role in its production, but leave no detectable patterns in the data. Data 

production processes are important for ensuring that the first condition is satisfied, while 

the second condition is contingent on the methods and processes used to isolate and 

interpret patterns in the data. Data patterns are valuable because they allow researchers to 

assess the relevance and significance of data with respect to a claim about phenomena. 

Data patterns are not a panacea to the challenges of interpreting data and determining its 

evidential value. They, and the analysis techniques used to isolate them, are better 

regarded as tools that play a central role in engaging and overcoming those challenges. 

I argued in the preceding papers that the inferential gap between data and claims about 

phenomena is managed by the use of multiple analysis techniques to isolate and explain 

multiple patterns. In the next section I return to this idea and re-examine the significance 

of multiple data patterns given the challenges with using neuroimaging data as evidence 

outlined above. Where I had suggested in the second chapter that they provide inferences 

with a degree of robustness, taking into account the inferential limitations of data patterns 

and the process by which they are created as discussed above, robustness doesn’t quite fit 

as an account of the epistemic advantage provided by multiple data patterns. 

5.3 Multiple Patterns and Robustness 

Interpreting neuroimaging data involves using a variety of analysis techniques. Each 

technique produces a different data pattern by imposing different manipulations and 

transformations on the data. Each manipulation, if the resulting data pattern is to be 

interpreted as informative about the target phenomena, involves making assumptions 

about the data. This is what skeptics often pick up on — arguing that subtractive methods 

assume that discrete regions have discrete function (van Orden and Paap 1997), and that 

classification analysis assumes successful classification is indicative of informational 

content (Ritchie, Kaplan and Klein forthcoming). The example I considered in the second 
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chapter showed how analysis procedures involving distinct assumptions can be used to 

limit the reliance on assumptions in the final inference. In particular, the use of a 

permutation test to select voxels for the pattern classification analysis minimized the 

extent to which the inference relied on the assumption that the classifier was leveraging 

relevant patterns in the BOLD data. I concluded the paper by drawing a parallel with 

discussions of robustness in the context of debates about the epistemic advantages of the 

use of multiple modes of measurement to validate measurement devices. When the same 

result is obtained by multiple, independent, processes that result is regarded as robust 

(Wimsatt 1981, p. 61). The suggestion was that multiple analysis processes enhance 

inferences in neuroimaging research by providing a more robust body of evidence than 

the results of a single analysis technique. Robustness is desirable because each line of 

supporting evidence is independent, ensuring that the result stands even if some of the 

evidence for it is overturned. 

While this use of multiple analysis techniques in the interpretation of neuroimaging data 

appears to fit the model of robustness, I did cautiously classify the robustness of a 

collection of data patterns as weak and local. These qualifications are noteworthy 

because, upon closer inspection, they each cut against one of the core features of 

robustness. A conclusion is robust when multiple independent lines of evidence converge 

on it. A collection of data patterns is weak because the outcomes are not directly 

comparable and local because they are derived from a shared data set. With the 

arguments and examples from previous chapters now in hand, as well as the distinction 

between data and data patterns, it is worth looking again at these qualifications. I consider 

the locality and weakness each in turn. 

5.3.1 Local and Dependent 

The dispute examined in the fourth chapter, over the reliability and significance of 

NeuroSynth data for claims about the selectivity of discrete regions of the brain, shows 

that the significance of data is determined by locally shaped epistemic criteria. The 

criteria investigators consider when making judgements of data’s relevance are not 

passively applied to the results of analysis techniques, but actively direct decisions made 

during the analysis process. In this way, theoretical goals and the conceptual 
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understanding of data analysis procedures that determine the epistemic criteria data 

patterns are evaluated by also influence decisions made in the process of creating those 

patterns. While the concerns about locality raised in the second chapter mostly had to do 

with the data patterns originating from the same data set, the case examined in chapter 

four suggests that the shared theoretical context may be a bigger threat to their 

independence. Alison Wylie’s work on inferences in archaeology puts a finer point on the 

problem here. 

Wylie distinguishes two dimensions along which research practices can be independent: 

theoretical independence, which concerns the background theories, auxiliary hypotheses 

and modes of reasoning involved in the practice; and causal independence, which 

concerns the causal factors that give rise to a given data set or body of evidence (1999, p. 

304). She argues that both are necessary for convergent results to be truly robust, and 

cautions, as many contributors to the work on robustness analysis do, that appearances of 

independence can lead to mistaken confidence in claims inferred on their basis (also see 

Wimsatt 1981; Calcott 2013). 

The lines of evidence represented by a distinct analysis process are conceptually 

dependent. They are produced within the same research context and decisions made 

along the way are guided by the same theoretical goals and background. While there is a 

limited degree of causal independence — different patterns emphasize the influence of 

some causal factors, suppress the influence of others, and often require different 

assumptions of the data to obtain for their results to be interpretable — the patterns 

ultimately originate from the same data set. This creates the conditions that can lead to 

what Wimsatt calls illusions of robustness (1981, p. 71). Illusions of robustness can occur 

when the appearance of independence conceals the dimensions along which the results 

and methods are the same. The dispute over the value of NeuroSynth data provides a 

compelling example of how the failure of the process by which data patterns are arrived 

at to be theoretically independent can lead investigators to be mistakenly confident in a 

result. 
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Lieberman and Eisenberger’s mistaken assessment of the data’s value is driven by the 

theoretical perspective they approach data interpretation from. Their theoretical 

perspective, informed by their prior work on dACC function and understanding of the 

meaning of reverse inference maps, directs the decisions they make in the analysis of the 

data. In particular, the decision to only analyze reverse inference maps for a small 

selection of terms, and discounting the significance of posterior probabilities. Both 

decisions are justified by appeal to their theoretical commitments (Lieberman 2015), and 

together they lead them to regard the data as warranting evidence for a selectivity claim. 

L&E present multiple lines of evidence in the form of reverse inference maps to support 

this conclusion. A conclusion ultimately dependent on the theoretical perspective they 

approached the analysis from, as Yarkoni’s criticism — which is made from a distinct 

theoretical perspective — demonstrates.24 

                                                 

24 Recall that Lieberman, in response to Yarkoni’s argument that the posterior probability 

estimates are the right data pattern to consider when evaluating the significance of 

NeuroSynth data for the target claim, insisted that they were ‘not interested’ in posterior 

probabilities. This reflects a judgement that a data pattern, which Yarkoni presents as 

contradictory evidence for the claim that dACC is pain selective, is actually irrelevant. 

This example echoes a central premise of Jacob Stegenga’s argument against the 

significance of robustness (2009). According to Stegenga, it is rare for a diverse body of 

evidence to be convergent, and in cases where there is discordance the pursuit of 

robustness does not help because the independence of the multiple modes of evidence is 

often the source of the problem (p. 658). Indeed, the dispute over the value of 

NeuroSynth data appears intractable in part because of the theoretical differences which 

lead to opposing judgements of evidential value. Yarkoni’s lack of expertise with respect 

to research on dACC function, and Lieberman and Eisenberger’s lack of expertise with 

respect to the curatorial procedures of NeuroSynth, are referred to in arguments against 

the validity, or relevance, of the opposing interpretation. Stengenga notes that decisions 

about the relevance of data may be able to resolve the problem of discordant evidence. 
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Data patterns isolated by multiple analysis techniques applied to a neuroimaging data set 

are both causally and theoretically dependent. The shared theoretical background of a 

collection of data patterns is a greater inferential risk than the shared origins. Not only 

can the theoretical background data patterns be considered within direct assessments of 

evidential value, but it also guides the process of creating those data patterns and can 

direct judgements of the relevance of contradictory results provided by independent 

analyses. Furthermore, the data interpretation process is aimed at determining the 

evidential value of a particular data set and so, if multiple analysis processes are to be 

used, it only makes sense to apply them to that data set. Theoretical dependence is an 

epistemic liability, and causal dependence is unavoidable. Next, I consider the 

relationship between the ‘weakness’ qualifier and the requirement that a robust body of 

evidence converges on the same result. 

5.3.2 Weak and Divergent 

I classified the body of evidence provided by multiple analysis techniques as weak 

because the patterns isolated by each technique are distinct and often cannot be directly 

compared. In a footnote, I remarked that, while this is a problem for evaluating the 

convergence of the results, which is required by a robust body of evidence, it isn’t a 

problem unique to neuroimaging research. I referred to Jacqueline Sullivan’s work on the 

multiplicity of experimental protocols, which casts doubt on the assumption that different 

experiments aiming at understanding the same phenomenon in fact instantiate the same 

phenomenon, given that the experimental protocols guiding the experiment often differ 

between research contexts (2009). An analogous problem holds for the use of multiple 

                                                                                                                                                 

 

However, this just shifts the problem of identifying criteria for adjudicating between 

discordant results, to identifying criteria for determining what results are relevant (p. 

660). The same theoretical perspectives that lead to the opposed judgements of 

significance, also direct the arguments against the relevance of the contradictory 

interpretation and its supporting data patterns. 
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data analysis techniques. Since they each implement a distinct series of manipulations, 

isolating distinct patterns by suppressing different facets of the data, their results are not 

about ‘the same’ thing. 

Consider how the results of univariate techniques and pattern classification analysis are 

used together in practice (as discussed in Coutanche 2013; Davis et al 2014). Subtraction 

techniques proceed by averaging BOLD signal data within a region of interest then 

contrasting that regional average between two task conditions. The result indicates the 

mean difference in activity between the task conditions, or the mean activation of the 

region. Pattern classification analysis involves using one set of variables, usually BOLD 

activity, to predict another, either task conditions or behavioural responses. Classifier 

accuracy is taken to indicate if information relevant to discriminating between the tasks is 

available in the signal. Marc Coutanche’s discussion of the combined value of these tools 

indicates that some studies use univariate techniques, such as subtraction analysis, in 

series with pattern classification analysis in order to evaluate the sufficiency of the 

information carried by multivariate patterns, while others use them in parallel to evaluate 

the necessity of multivariate patterns for successful classification (2013, p. 669). The 

sequence approach involves using a univariate technique to remove the mean activation 

from the data and assess the effect on classifier performance. If the classifier accuracy 

remains high, then this is evidence that the multivariate pattern (that is, relative 

differences in activity between data points) is sufficient for classification. The parallel 

approach can be conducted in several ways, either by performing classification on the 

isolated mean activity, or by comparing subtraction and classification results. In either 

case, the aim is to determine if there is information available in one, both, or neither of 

the multivariate pattern and mean activity (p. 669-70). These comparisons would not be 

meaningful if the patterns isolated by subtraction and pattern classification analysis were 

convergent. 

In characterizing the common features of concepts of robustness, Wimsatt notes that they 

often involve looking for and analyzing things that are “invariant over or identical in the 

conclusions or results of…” independent processes (1981, p. 44). The invariant results or 

conclusions are regarded as robustly supported, and are conferred additional support by 
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the independence of the various processes that produce them. In the comparison of mean 

activation and classifier accuracy, investigators are not trying to identify an invariant 

value, variable or pattern. Instead, claims about mean activation and claims about 

classifier accuracy are taken together to be informative about the how information may 

be encoded in the BOLD signal. If the mean activity is low, and the classifier is accurate 

with and without the mean levels, then investigators conclude that task relevant 

information is encoded in a multivariate pattern (that is, multiple parts acting in a 

coordinated way). Identifying invariant properties is not the aim of applying multiple 

analysis techniques to the data. Each technique is applied for the unique perspective it 

provides on the evidential significance of the data with respect to a specific set of claims 

and hypotheses. 

This, and the failure of independence noted above, are together strong reasons to resist 

the robustness account of the value of multiple patterns. While multiple analysis results 

do not confer a data-phenomena inference with robustness, they are valuable for 

interpreting the data and that value follows from their distinctiveness, not their 

independence or convergence. William Bechtel, looking at how neuroscientists combine 

multiple research techniques to make inferences, provides an alternative to robustness 

along these lines. He argues that multiple research techniques are valued in neuroscience 

for their complementarity, not independence (2002). The same can be said of multiple 

data analysis techniques. 

5.3.3 Complementary Perspectives 

Techniques like single cell recording and neuroimaging are often used to calibrate one 

another, and so fail to be independent in the way required for a convergence of results to 

be regarded as an instance of robustness (Bechtel 2002, p. S49). Furthermore, techniques 

like single cell recording, involve invasive interventions, such as implanting electrodes 

into the brain, that can alter the functioning of the system. The same could be said about 

the manipulations involved in the production and analysis of neuroimaging data: they 

distort the data so that the data fail to reflect the full spectrum of causal factors that give 

rise to the phenomena of interest. In this way, these techniques “… provide a very 

selective and distorted perspective on the phenomena” that they are used to investigate (p. 
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S49). Bechtel argues that this is not necessarily a problem for inferences in neuroscience, 

as these differences can be, and are, leveraged to strengthen inferences and develop better 

theories. Each technique is able to answer specific questions about the relationship 

between brain activity and cognitive functioning. Taken together, they provide a more 

complete picture of the phenomena involved in the production of the data. For instance, 

where single cell recordings are limited to providing information about the function of 

specific pieces of the brain, neuroimaging can provide information about more 

widespread network-level activity (p. S54-5). The results of different techniques are 

complementary as each provides information about the target phenomena that the others 

cannot. 

The same can be said of multiple analysis techniques as used to aid in the interpretation 

of neuroimaging data. Data analysis techniques transform data by suppressing some 

features and highlighting others in order to isolate a data pattern. The usefulness of a data 

pattern is its interpretability when compared to the often-complex data sets it is derived 

from. This is especially true in neuroimaging research, where data sets are large, and 

measurements are indirectly related to the phenomena neuroscientists are interested in 

learning about. Analysis techniques like subtraction and pattern classification analysis are 

used to pick out specific patterns in the data that are informative about some, but not all, 

aspects of the phenomena involved in its production. Data patterns do not reflect the full 

range of causal factors involved in the data’s production that are relevant to the 

phenomena of interest. In other words, data patterns are selective distortions of the data. 

Multiple data analysis techniques do not provide independent lines of evidence as much 

as they clarify the evidential import of the data with respect to claims about phenomena 

by virtue of the distinct, and distorted, perspectives they make available to investigators. 

Neuroimages and the machine learning classifier’s accuracy at discriminating between 

conditions are each the product of a process that distorts the data. Each analysis result is 

an isolated data pattern that reveals specific features of the data set at the expense of 

being informative about other features. Distinct patterns warrant different claims about 

the data, which in turn can be explained by appeal to claims about phenomena. Their 

individual value is in their explicability, and their collective value in their distinctiveness. 
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While each analysis technique may require assumptions of the data that are potentially 

false, and the manipulative process itself invites a variety of alternative explanations for 

the pattern, the collection of multiple distinct patterns softens the impact of these 

complications. As argued above, data patterns are not used to infer claims about 

phenomena but are used to make claims about data and assess its value as evidence for 

claims about phenomena. The distinctiveness of a collection of data patterns provides a 

richer explanatory target than a single data pattern. Viable alternative explanations for a 

data pattern may be readily available when only one pattern is considered, but to remain 

viable the alternative must not be ruled out by another pattern in the data. The 

distinctiveness of the patterns improves the capacity of a large collection of them to rule 

out alternatives in this way, and their collective explanation provides resistance against 

alternatives not explicitly considered by the investigators. 

This process has epistemic advantages, as discussed above and in the second and third 

chapter, but also brings with it risks, as demonstrated in the fourth chapter. Viewing the 

process of data interpretation as explanatory, and aimed at explaining data patterns, 

provides conceptual resources — and a perspective — that can aid in disentangling the 

various factors that contribute to inferences from data as complex, varied and difficult to 

make sense of as neuroimaging data. I have shown as much with this collection of work, 

but there is much more work to be done. Especially as the technologies and tools for 

handling, manipulating, analyzing and sharing neuroimaging data continue to rapidly 

evolve. 

5.4 Looking Forward 

I have focused, with the exception of chapter four, on the positive contribution data 

analysis makes to the interpretation of neuroimaging data. On the other side of the coin 

are the inferential errors and reasoning mistakes that these techniques and the explanatory 

process they contribute to, make possible. The increasing variety and complexity of 

analysis procedures can lead to inferential errors or the misinterpretation of data in a 

number of ways. Errors can be made in the data manipulations themselves, as a recent 

paper showing that a significant number of neuroimaging studies may be the product of 

systematic errors in standard analysis software and pipelines demonstrates (e.g., Eklund 
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et. al. 2016). Errors can also arise when investigators’ understanding of the analysis 

technique misrepresents its actual function. More generally, some have raised a concern 

that the emphasis on greater sophistication in analysis may slow progress since a strict 

focus on data creates distance between researchers and the material objects and 

phenomena they are investigating. Familiarity with and close proximity to the material 

objects under study has historically been important for inspiring the ideas that have 

marked significant leaps of progress in the history of neuroscience (Marder 2015), and 

has been identified as necessary for the effective interpretation of data in general 

(Leonelli 2013). However, the work here shows that familiarity with the data analysis 

techniques is equally important for shaping intuitions informing judgements about the 

relevance of data patterns, the claims they warrant about the data, and explaining them by 

appeal to claims about phenomena. Concerns about analytic flexibility, such as those 

raised by Joshua Carp (2012), draw attention to inferential errors that can occur due to 

decisions made in the course of implementing a data analysis technique. These kinds of 

decisions have more impact when they pertain to pre-processing steps, which affect all 

subsequent analyses of the data, then if they occur in the interpretive stage where they 

only affect one data pattern. Analytic flexibility could also lead to prematurely ending 

data interpretation because the data patterns isolated first do not provoke alternative 

explanations, making the data appear to better support the target claim than it may have if 

other data patterns had been isolated. 

All of this points to an epistemic tension in the development and uptake of novel 

techniques for analyzing data. On one hand, new techniques can clarify the evidential 

import of data with respect to competing claims and hypothesis and promote the 

discovery and study of phenomena previously impossible to detect in a data set. On the 

other, new analysis techniques have the potential to lead a field towards the ever more 

sophisticated production of misleading results. This situation is even more precarious in 

neuroimaging research, where the data sets investigators work with consist in a large 

number of variables — every six seconds a subject is in the scanner can result in over a 

thousand data points — and have relatively low power due to low participant counts, and 

limitations of experimental paradigms. Factor in the increasing variety of approaches to 
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data analysis, and there are sufficient grounds to argue that neuroimaging research is “… 

a ‘perfect storm’ of irreproducible results” (Poldrack et al 2017). 

A common proposal for addressing this situation is to foster reproducible research 

practices. Reproducible practices are those which allow independent investigators to 

reconstruct the data analysis process using publicly accessible materials. Suggestions for 

doing so include sharing data, algorithms, analysis code, and the pre-registration of 

research plans (Poldrack et al 2017; Munafò et al 2017). The ideal reproducibility aims at 

is a practice in which independent investigators can reconstruct the data interpretation 

procedures that lead to the results of articles published by their peers. While the first step 

towards fully reproducible practices is to make data and the code used to analyze it 

accessible, achieving the ideal depends on the ability of investigators to identify, and 

contrast, the rationale for the decisions made at each step of the process. Disputes such as 

the case examined in chapter four show how doing so can be informative. Open 

discussion allows for errors in reasoning due to the misunderstanding of data analysis 

techniques, and mistaken judgements of data’s relevance to a claim, to be unearthed and 

articulated. While it may not resolve the disagreement between the involved parties, the 

ability to reproduce the conceptual elements of the interpretive process is necessary for a 

practice to be fully reproducible. These factors permeate the interpretation process, and 

so may have a greater influence on the judgement of data’s significance than the 

manipulations of the data themselves. 

New tools and techniques for the analysis, handling, storing and classification of data are 

being developed and promoted in response to limitations of neuroimaging research 

methods, and the growing volume and complexity of both the data, and knowledge, 

produced by neuroscientific research. These tools include automatically curated databases 

that allow users to perform large-scale, automated meta-analyses, such as NeuroSynth 

(Yarkoni et al 2011), data repositories designed to handle the full complexity and 

diversity of neuroimaging data produced in experiments, such as OpenfMRI (Poldrack et 

al 2013; Poldrack and Gorgolewski 2015), and frameworks that support and facilitate the 

development of a community-driven knowledge base, or ontology, such as the Cognitive 

Atlas (Poldrack et al 2011). Critical analyses that examine how the interface between 
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data, theories, and communities, are changing and have been changed by these 

technologies will contribute to philosophical debates and could improve neuroscientific 

practice. The arguments of the preceding papers, the approach presented above, and a 

method of research that includes close interactions with scientists, provides a foundation 

for pursuing this investigation in a manner that could prove valuable for improving the 

inferential practice of those using these new techniques. 
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